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1.  INTRODUCTION 

Like most engineering design problems, the design of a weapon-vehicle 

system for given objectives is first subjected to an analysis of a model. 

The model should be such that it describes the actual system as closely as 

possible and be still within the analysis capabilities. The mode.1, of a 

weapon-vehicle system considered in this report is, in some respects, 

similar to the models presented in previous Themis Reports [1,2]. However, 

it differs from the previous models in that it includes the simulation of 

some environmental conditions. The primary interest is to study the role 

of these environmental conditions in the design problems. 

In Section 2 of this report, the weapon-vehicle model is described. 

A detailed analysis and equations of motion of the system are presented. 

Then the problem is formulated as a parametric optimal design problem in 

Section 3. A complete analysis of environmental parameters and a target 

analysis are presented there. No numerical results are presented in this 

report. This is due to the fact that the problem of parametric optimiza- 

tion has not been explored in any detail in the past. Currently, this 

problem is receiving considerable attention at the University of Iowa. So, 

any developments from this effort will be reported at a later time. 

X 
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2.  DYNAMIC ANALYSIS OF THE WEAPON-VEHICLE MODEL 

2.1 Description of the Model 

Figure 1 shows the model of weapon-vehicle system considered in this 

report. The gun and its flexible mount are attached to a vehicle supported 

by a suspension system that is simulated by a model similar to the one pre- 

sented in [3,4]. Here, the suspension model is a two-dimensional analog 

of the three-dimensional model presented in [3j. The mount is considered 

as an elastic structure with a finite number of elastic elements. Further- 

more, the gun is assumed to have a barrel moving back and forth due to a 

recoil mechanism simulated by a reaction force R(t), a spring and a damper. 

The masses m. and m. represent wheels, axles and associated mechanism 

of the rear and the front of the vehicle, respectively. The equivalent 

spring and damper coefficients for the rear suspension are denoted by k. 

and c., respectively, and the spring k. 0 is included to denote a spring- 

like property of the tire. As will be discussed later, inclusion of thi 

variable force f- acting en m. will explain the base displacement due to 

various road conditions. Similar variables with subscript 2 represent 

properties of the front suspension of the vehicle. 

The main body of the vehicle is idealized as a rigid body A on which 

the weapon C + D is connected through a flexible mount B. The weapon is 

composed of a rigid housing assembly C, a rigid gun barrel D, and a recoil 

mechanism whose presence is denoted by the reaction force R(t) acting at 

the *» int8 Q. and Q_, and a spring and damper system k and c , respec- 

tively. For the purpose of representing other types of recoil mechanisms, 

J ■•"-«.■ ...},"■ ^i:i, _ 
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the reaction force R(t) is assumed to be a known function of the relative 

displacement of the gun barrel and its housing. The flexible part B repre- 

sents a set of structural elements such as truss, beam, plate, and shell. 

In the present formulation, B is assumed to be a beam element with both 

ends clamped at the points B and B of bodies A and C. 
S       c 

Following assumptions are made in the analysis: 

1) The weapon is automatic with relatively high number of bursts. 

2) The aiming by the operator is perfect. 

3) Every motion is confined in a plane. 

4) The whole system is located in an inertial frame R translating with 

a uniform velocity in the plane considered. The notation R should 

not be confused with the reaction force R(t) or its magnitude 

R(t). 

5) The point masses m., m„ and the mass center of A can move only 

perpendicular to a flat surface fixed in R. 

6) The flexible mount B is composed of linearly elastic structural 

elements. 

7) No dry friction and no mass variation exist. 

8) The axis of the gun barrel D passes through the mass center of the 

housing assembly C. 

9) The flexible mount B can be subjected to a finite element analysis. 

This is discussed in a later section for a general approach. 

Other assumptions will be made whenever necessary during the analysis. 

I With these assumptions, the model is a holonomic mechanical system having 

seven degrees of freedom, since infinite degrees of freedom of the flexi- 
I 

ble mount B can be assumed to be represented by a finite number of boundary 

\ 
J 



displacements. The generalized coordinates chosen are; 1) the displace- 

ments 6, and 6„ measured from the unstretched lengths d. and d. of the 

springs k-0 and k„0, respectively, 2) the rotation a, in R and linear 

displacement 6, of the mass center of body A measured from a configuration 

represented by the unstretched springs k-_, k-,, k and k_, 3) the end 

deflection 6, and the slope ou of the tip of the beam element with the 

displacement along the central axis neglected, and 4) a relative displace- 

ment 6, of the gun barrel D with respect to the housing assembly C. The 

other necessary geometrical dimensions are denoted by d., 6. and e, 

i - 1, 2, ... The inertia properties of the rigid bodies are assumed to 

be known and will be denoted by M and 1 with appropriate subscripts. 

2.2 Analysis of Flexible Mount 

An exact dynamic analysis of the flexible mount should be based on a 

continuous model, but for the purpose of this report, a finite element 

model is used. For static problems, the displacements in a continuous 

st. '-cture can be related to a finite number of displacements selected at 

some arbitrary points on the structure, usually the boundary points inter- 

secting with the surrounding systems. For dynamic problems, the displace- 

ments and velocities of any point are implicitly related through the 

differential equations of motion to the history of the displacements and 

velocities of boundary points interacting with surroundings. No explicit 

expression can be found for general dynamic loadings. For a simple anal- 

sis, therefore, an approximate treatment is necessary to reduce the system 

to a finite dimensional one. 

Recently, some approximate techniques have been used in the analysis 

of a flexible satellite. In Ref. [5],the authors used synthetic 
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modes in the process of truncating the modal coordinates obtained from a 

linearized system, assuming small motions. Robe and Kane [6] considered 

two symmetric rigid bodies connected by a flexible beam. They neglected 

masses of the connecting structures, and linearized the equations with a 

small angle restriction. 

Another approach is to assume that ehe accelerations are small and 

use static displacement distributions for the dynamic case. This approach 

is conventional [7], and is suitable for matrix dynamic structural analysis. 

In this method, the element stiffness and mass matrices for each element 

are generated in a local coordinate system. These are then transformed to 

a datum coordinate system, and combined to form structure stiffness and 

mass matrices. To remove the internal degrees of freedom, the virtual work 

principle is applied. For details, the reader is referred to [7,8]. Let 

the stiffness matrix K and the displacement vector u be partitioned as 

K » 
*!!  K12 

K21  K22 

(2.1) 

u. 

(2.2) 

where the vector u. refers to the boundary displacements to be retained as 

the degrees of freedom for the dynamic analysis, and u. denotes all the 

remaining displacements, i.e., the internal degrees of freedom. Then the 

resulting condensed stiffness and mass matrices corresponding to u. are 

given by 

\ X 
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K - Klt - K12 K22  K21 (2.3) 

c   T 
M - L ML (2.4) 

where 

L » 

"(K22)     K21 

(2.5) 

and I is an identity matrix. Note that these matrices are time dependent, 

since the transformation matrix from the local system to datum system 

contains time variable. The internal displacements u« are related to the 

boundary displacements u. by 

u2 - - K^"
1 K21 ux (2.6) 

In the present problem, some further approximations will be made concerning 

the flexible beam element. In obtaining a strain energy expression, the 

static configuration will be used and for kinetic energy, and potential 

energy due to gravity, a lumped mass system will be used. 

2.3 Equations of Motion of the System 

The equations of motion of the system will be derived using Lagrangian 

formulation. The notation used is the same as in Ref. [9]. For conven- 

ience of easy modifications of the resulting equations in case of some 

adjustments in the model at a later stage of numerical solutions, the 

J 
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expressions of kinematic analysis are written in detail followed by 

dynamic analysis leading to the equations of motion. 

2.3.1 Kinematic Analysis 

For the kinematic analysis of the mechanical system, let (I, J, K) 

be the right-handed orthonormal vectors fixed in the inertial reference 

frame R, and let the right-handed orthonormal vectors (i., j., k.) and 

(i-, I2, k_) be fixed in the bodies A and C, respectively, as shown in 

Fig. 1; here k. ■ k„ - K. In order to abbreviate kinematical equations, 

let cosine and sine functions be denoted by c and s, respectively. Then, 

for the base vectors, 

1 " c ai h - 8 °i h 

J ■ s a. i, + c a, J. 
11    1 A 

i2 - c(a2 + 6^ + s(a2 + 61)j1 

j2 - - s(a2 + ^1)±1 + c(a2 + 81)j.. 

The angular velocities of the rigid bodies are, 

(2.7) 

(2.8) 

R-A  , - 
(2.9) 

R_r 
V - (4X + 42)K , (2.10) 



^s^: ry^i 

R_D  R_C 
0)  *  0) (2.11) 

Now, the position and velocity vectors of various points of interest are 

obtained. A superscript * on an entity refers to the position of mass 

center of a body. For Body A, 

?A*/0 - <d2 + 63)J  , (2.12) 

R-A* v  ■ L(s c^ ij^ + c c^ jj) (2.13) 

For a simplified analysis assume that the relative displacements of Body 

B with respect to Body A are small. From the given end deflection 6^ and 

its end rotation a_, one can write down the position vector of B* as 

follows [10]: 

B*/B 
" e5 *1 " <hl 64 + h2 ot2)Il    » 

(2.14) 

where 

2 

2 
e6 

e
5 

3 - 2 — 
e6 

(2.15) 

er    /e. 

2      e 
- 1 

6    \c6 
(2.16) 

LJ ~'A«*i"«i«^«ia»fee'.feS:*.i 
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The angle of rotation at any point from the original axis la obtained by 

differentiation of (h. 6,  + h. a«) with respect to e.. The velocities of 

the location e, is given by 

IUB* ?B* - {«3 s ox - hx 6A - h2 &2 - &1(e4 + e5)}±1 

+ {6 c ax + 0^3 " 1»! 
64 " h2 

02)JJ1 * 
(2.17) 

For the point B , 

B /0 
r e  - (d + 63)J + (e3 - 64)i1 + (e4 + e^jj  , (2.18) 

V e  ,* - («3 s ax - i4 - 41(e4 + e^^ 

+ {«3 c ax + a1(e3 - 6^}^ . 
(2.19) 

Similarly, for the Bodies C and D, one caa obtain the following position 

and velocity vectors: 

-c*/o ,V. {e7 c(a2 + 6i) + eg 8(a2 + e^}^ 

- {e7 s(o2 + üx) - eg c(a2 + 6^}^ ,    (2.20) 

\ 
swH—lWBMH—I !M&^#> 
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R_C* 
V • [63 s■ Oj_ - «4 - a1(e4 + e6) + (&x + o2

){e7 s(o2 + 01) 

- eg c(o2 + 6^}]^ + [63 c ax + o^ - 5J - (dj + &2) 

{e7 c(a; r Oj) + eg s(a2 + 6^}^ , (2.21) 

_D*/0 m  -C*/0 + (^ + e^ _ ^ + eio){c(a2 + e^ + 8(a2 + 6^} , 

(2.22) 

R_D*  R_C* vU - V + {65 c(a2 + 9X) - (dx + d2)(65 + el5 - eg + e10)s(o2 + 6^}^ 

+ {&5  s(a2 + 8X) + (&x + d2)(65 + e15 - e9 + e1Q) 

c(a2 + 01)}j1 . (2.23) 

2.3.2 Potential and Dissipation Energies 

The potential energy of the system in R, disregarding irrelevant 

constants, consists of potential functions of the gravitational and spring 

forces, and the strain energy stored in the flexible mount B. 

Using the position vectors derived in kinematic analysis, the total 

potential energy ? is obtained as: 

P - m1 g «x + m2 g «2 + MA g 63 

+ Mg g{«3 + (e3 - hj «^ - h2 a2)s o^ + (e4 + e$)c c^} 

+ (Mc + MD)g{63 + (e3 -  64)s ^ + (eA + e6)c c^ 

- e» s(a1 + a2 + 8j) + eg c(aj + a2 + 6^} 

> ' ■**"*«»»*,   -*fete^,g 
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+ ^ g(65 + e15 - e, + e10)8(Ol + a2 + 9^ 

+ II?.  k1Q 6
2 + 1/2 k2Q 6

2 + 1/2 ^(63 - ex 8 ox - 6X)
2 

+ 1/2 k2(«3 + e2 s ax - 62)
2 + 1/2 kr 6

2 

. 2EI I 2  _ a26'» . - \ 
(2.24) 

2EI 
where g is the gravitational constant, and   is a stiffness factor for 

e6 
the beam. The strain energy of the beam was obtained by integration of 

the square of second derivative of the deflection curve, from Eq. (2.14). 

Similarly, the dissipation energy is, 

*f - 1/2 c1(63 - &x ex c ax - hj)2 + 1/2 c2(63 + ^ e2 c Oj_ - $2) 

:2 
+ 1/2 c 6, . 

r 5 
(2.25) 

2.3.3 Kinetic Energy 

The translational kinetic energy is obtained from velocity of the 

mass center. For the beam element an integration of the square of velocity 

along the axis of beam will give the total kinetic energy. As outlined 

before, this energy is obtained by assuming that the entire mass is con- 

centrated at the mass center of the beam. The angular velocity of the 

mass is approximated as 

*5B * (&x + *2/2)R . (2.26) 

J 
***mam/&)fitt. 
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The total kinetic energy of the system is then obtained as 

T - 1/2 «^ 6j + 1/2 m2 fij + 1/2 MA 63 + 1/2 IA 5* 

+ 1/2 ^[{63 s ax - hx  «4 - h2 &2 -  a^ + e,.)}i 

+ {63 c a1 + ^3 - hx 64 - h2 a2)r] 

+ 1/2 y^ + a2/2)' 

+ 1/2 MC[{J3 s ox - 44 - &x(e4 + e6) + (&x + &2> (e? s(a2 + 6^ 

- eg c(a2 + ex))}
2 

+ {63 c ox + ^(83 - fi4) - (&x + o2)(e? c(a2 + 9^ 

+ eg s(o2 + e^)}"] 

+ 1/2 1^ + a2)
2 

+ 1/2 HJJU^ ■ oj - «4 - o1(e4 + e6) + (&j_ + d2)(e? s(o2 + 6^ 

- eg c(<*2 + e^) 

+ fi5 c(a2 + 6^ - (d1 + a2)(65 + e15 - eg + e10)s(a2 + 6^}' 

+ {63 c ax + 6^3 - «4) - (&x + a2)(e? c(o2 + 0^ 

+ e8 8(a2 + 9^) 

+ 65 8(o2 + ex) + (4X + a2)(35 + e15 - eg + e1Q) 

c(a2 + e^n 

+ 1/2 ID(ox + &2)2    . (2.27) 

-J '«t'.'j. „.,.».,, 
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where 

I. ■ moment of inertia of Body A along K direction for the mass 

center of A, etc. 

2.3.4 Generalized Active Force 

Now, adopting the terminology and definition of Kane [9], one needs 

to find generalized active forces of the system. Since no external couple 

is assumed, forces that contribute to the generalized active force are 

the breech force acting on the gun barrel through its axis, the reaction 

force from the recoil mechanism acting on the housing assembly, and the 

forces f1 and f_ acting on masses m. and nu, respectively. The breech 

force is given by 

F(t)--F(t) {c(o2 + 61)i1 + s(a2 + 6^} , (2.28) 

and the reaction force is given by 

R(t) - R(t)  {c(<*2 + 61)i1 + s(a2 + epjj)    . (2.29) 

Since F(t) can be considered acting at the mass center of D, one has the 

partial rates of change of point D*, as 

R_D*  s 

62 
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V6, " 8 °1 H + C °I h    • 

- e8 i2 + (65 + e15 " e9 - e7 + e1Q)J2 , 

R_D*    T 

^ ■ - e8 l2 + «5 + el5 - e7 " e9 + el(Ä • 

R-D*  r 

i' •' 

Hence, contribution of the breech force F(t) to the generalized active 

force vector is: 

[0, 0, - F(t)8(0l + cu + 6X)    , 

F(t){eg + (e4 + e6)c(a2 + 6^ - (e3 - 6A)s(a2 + 6^} , 

F(t) c(o2 + 6^ ,   F(t) eg ,    -F(t)T • (2.30) 

For the forces f, and f_, the only nonzero components are 

F  • f F«2  
f2 * 

(2.31) 

\ 
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respectively. For R(t), the partial rates of change of positions of Q. 

and Q7 are the same, except those for the generalized coordinate 6,, and a 

force of the same magnitude acts in opposite directions at Q. and Q„, 

respectively. Hence, a net contribution to the generalized active force is 

FR(t) - R(t)  , (2.32) 
65 

since    vi ■ i-   and   vi - 0 . 

Therefore, the generalized active force vector of the system in R is 

given by 

\'h    ' 

Ff "f2 • f2       l 

Ffi - - F(t) s(ai + a2 + 61)  , 

Fo - F(t){eg + (e4 + e6)c(a2 + 6^ - (e3 - 6A)s(a2 + 9^} , 

Ffi - F(t) c(a2 + ex)  , 
4 

F  - F(t) eR , 
a2       8 

F, - R(t) - F(t)  . (2.33) 
65 

^mmssm^mv. ..«$.-:. .v 
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2.3.5 The Equations of Motion 

The equations of motion of the system are obtained by the Lagrange's 

equation: 

d_ 3J_ _ 3(T-P? + l£ . p (2 34) 
dt 3q±       3q±   

+ 3^   Fq± 
U'34) 

where 

ql, 2 7 5 I61' 62« V V V V S1 '        (2'35) 

As seen from the expressions derived before, the kinetic energy of the 

system is a homogeneous quadratic function of the variables q., that Is, 

T - 1/2 q± H±j  4 
+ (2.36) 

where H  is an inertia coefficient of the system in R, and is a symmetric 

matrix of functions of the generalized coordinates q. only. Therefore, 

Wt "W«j • <2-3" 

Defining 

Vv V> 5 Ft - flj+ {£ - wt   • (2-38) 

tA repeated subscript indicates summation having a range of 1 to 7. 

■'-■'V-l"':.. .,*?;...,.:.,;,*•;.-ra 
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the equations of motion now becone 

Hij qj + Hij ^j " Gi »    l " lf 2 ? * (2#39) 

Equation (2.39) can be put in a first order form &s follows: 

q± - u± » (2.40) 

W*i " Gi(V V - fiij(V V>°j * (2*41) 

where i, j ■ 1, 2 7. 

After a straightforward differentiation, the elements of the matrix 

H and vector G can be obtained. Tables 1 and 2 give expressions for the 

elements of G and H in the original notation of the generalized coordinates. 

For abbreviation, the following notation is introduced: 

h-e3-hl64-h2a2 • 

5t-65+e15-e9+e10    » 

eg - e? s(a2 + 9^ - eg c(a2 + e^)    , 

ec - e? c(a2 + 6^ + eg s(o2 + 6^    , 

et - e7 cfa.^ + o2 + By) + eg 8(0^ + a^ + By)    , 

^ £l4i.^*/->''-/!L,S*> 



5^-^- WWB 
^ 

1) 

ä45"e4+e5    • 

e46"e4 + e6    ■ 

vx - 63 s Oj_ - hx 64 - h2 a2 - d1 e45    , 

v    - 6- c a.  + a.  h    , 

VVVV "l e46 + (&1 + °2)es    ' 

V4 " *3 c al + °l(e3 " V " <Ä1 + &2)ec 

v5 - v3 + 65 c(a2 + 61) - (ax + a2)6t s(a2 + 6^  , 

V6 " V4 + 65 S(°2 + 61) + (&1 + d2)fit C(a2 + V • 

To complete the system of the differential equations, initial condi- 

tions should be given. As noted earlier, the weapon is assumed to be 

fired automatically at the equilibrium configuration under gravity. Hence 

the initial conditions for the differential equations are prescribed such 

that q.(0) satisfy the equilibrium configuration under gravity, and the 

velocities are zero. To get the initial configurations one has to solve 

the static problem 

1 m    X f £, )  • • • f  /   • (2.42) 
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In some instances, one may impose certain initial values to specific 

generalized coordinates; for example, q_ ■ S, may usually be specified 

initially from the actual measurement. In such a case, the number of 

equations in Eq. (2.42) is reduced, accordingly. The equilibrium configu- 

ration will be denoted by a superscript e. 

3. FORMULATION AS OPTIMAL DESIGN PROBLEM 

3.1 Introduction 

The ultimate goal of engineering design may be stated as that of 

synthesizing a system for the stated needs and objectives. A conceptual 

model for the system is usually used for analysis and a quantitative 

identification of the objectives. The model should be designed in such a 

way that it represents the system as closely as possible and is still with- 

in the analysis capabilities. In the previous section, such a model was 

described and the governing equations of motion were derived. In this 

section the problem is posed as a "parametric optimal design" problem. In 

this problem, the maximum of cost function over a conceivable range of 

environmental parameter is to be minimized by choosing the design variables. 

3.2 Classification of Parameters 

The first step in an optimal design algorithm is to identify various 

parameters that describe the system. These system parameters may be 

divided into three groups, and this classification is described for the 

model at hand. The "state parameters" are the generalized coordinates of 

the mechanical system and these are 6., 6., 6., cu, i,, a., and 5,. 
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"System design parameters" are those describing the system geometries and 

properties of the specific elements, such as, k-Q, k.., k,, k_, c., c-, 

cr, El, m^, m2, MA, Mg, Mc, Mp, IA, Iß, I^,, Ip, d^, d2> e^,  e2, and so on. 

Th system design parameters, to be determined by an optimization 

technique, are chosen by the designer. The last group of parameters, 

called the "environmental parameters," is that group which interacts with 

the environment or external agencies. Hence, the environmental parameters 

can be characterized as having some degree of uncertainty during performance 

of the system. For the present model, f., f_, 8., F(t) and R(t) can be 

considered as environmental parameters. It may be noted that this classi- 

fication is not necessarily unique, but depends on the designer's choice, 

especially for the latter two classes of parameters. For example, if the 

recoil mechanism is not specified explicitly and the reaction force R(t) 

is !,nown to vary within some given range, one could choose R(t) as an 

environmental parameter (in this case one may call it an environmental 

variable). On the other hand, if a recoil mechanism is to be designed such 

that the system performance is optimized by choosing R(t), then R(t) is 

classified as a system design variable. 

In the following formulation, k. (- k2), k , c. (- c2>, and El are 

chosen as design variables, while the other system design parameters are 

assumed to be specified, f. and f«, related to the road conditions, and 

81 related to operator's choice, are chosen as the environmental para- 

meters. 
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3.3 Environmental Parameters from Road Conditions 

It Is assumed that the road shape Is sinusoidal with amplitude and 

wavelength of a and X, respectively. The vertical displacement is then 

given by 

v «* a sin 
2mc 

(3.1) 

where x is a coordinate in the direction of road. Let speed s of the 

vehicle be uniform, and the distance between front and rear wheels be 

b(- e1 + e2). Then, 

x - st (3.2X 

v • a sin Y* » 
r 

(3.3) 

2irs where y - -=- , and v   is the vertical displ«cement of the rear wheel 
A       r 

bottom. Since the time difference between the rear and front wheel passing 

a point on the road is b/s, the vertical displacement of front wheel 

bottom is 

r,  ■ a sin y(t - b/s) . (3.4) 

Denoting the time difference between initial firing and the instant of 

zero vertical displacement of rear wheel bottom by f, one obtains expres- 

sions for the vertical displacements (Fig. 2) as 
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FIRING STARTS 

a SIN r (t-1) 

FIGURE 2. DISPLACEMENT OF REAR WHEEL BOTTOM. 

'*MM&Nifc£ 
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vr - a sin y(t - f)  , (3.5) 

vf - a sin y(t - b/s - f) . (3.6) 

It may be noted that a, y» f» and s are the environmental parameters 

related to the road conditions. Assuming the amplitude is also fixed, one 

has Y» f» and s (or correspondingly X, f, and s) as the environmental para- 

meters. 

By defining f. and f, such that 

fl " k10vr " k10 a 8in Y(t ~ f) °*7) 

f2 " k20Vf ' k2ö a 8in Y^ " b^8 " f>  • (3,8) 

the masses tn. and m. of the model on an even surface will have same 

response as that of the vehicle running on a sinusoidal road [11]. 

3.4 Objective Function 

As described earlier, an objective for the system must be formulated 

quantitatively, possibly as a function of the parameters. Sometimes, the 

choice of a function form for the objective is obvious, but in general, it 

depends on the designer. 

For the weapon-vehicle system, it is assumed that the motion of the 

system Is induced only by a cyclic breech force due to continuous auto- 

matic bursts, starting at time, t ■ 0. Then the system will get into a 

steady state motion after a transient period. Neglecting the factors 

^^^■'-fc&ftfcÜ^.^^^.-^ 



^ 

25 

such as, wind velocity and gravitational force, trajectory of the bullet 

can be assumed to be a straight line. A plane that is normal to the axis 

of gun barrel at equilibrium position is defined as a target plane. A set 

of bullets on target plane at a distance I from the mass center of gun 

barrel is shown in Fig. 3, for a two-dimensional case and for a one- 

dimensional case. For general environmental conditions with irregular 

road shape, the shot pattern would be more irregular. In any case, after 

firing for a sufficiently long period of time, the shot pattern will be 

bounded by a finite radius. The design objective is to have an optimal 

system property that minimizes the disturbance i.e., the radius of the shot 

pattern of continuous bursts. The idea here is that the initial few shots 

are more important than the rest of the shots. Also, the deviation of the 

first shot from the aimed point is not important, for the deviation is a 

constant property of the gun and can be assumed fixed for a given gun. 

Hence, without loss of generality one can assume that the aimed point is 

the same as the point where first bullet lands. 

Now, some objective functions will be described. The choice is depen- 

dent on the designer's view. The simplest one may be, 

N 
Y u. r        N 

Ja-Hl     •   E-i-1 » (3.9) 

where r is the distance from the aimed point to the ith point of shot 

pattern, and u. is a weighting factor. This objective function gives the 

weighted average distance of the first N shots from the aimed point. The 

second objective function may be 
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LIMIT POINT- N 

X-« AIMED POINT >-X 

2-DIMENSIONAL TARGET 1 DIMENSIONAL TARGET 

FIGURE 3. SHOT PATTERNS 

H'i • 

FIGURE 4. GEOMETRY FOR THE TARGET ANALYSIS 

\ 
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(3.10) 

denoting the weighted sum of the squares of the consecutive deviations of 

the first N shots. This form of the objective function nay be good if a 

fast steady state is needed. A third objective function may be 

N 
Jv " L  wi(ri " ra>  • 

i"l 
(3.11) 

where 

N 

a -E VN (3.12) 

Still another type of objective nay be defined as a functional, 

•/; 
J - I  w(t) r(t)dt , 
c  »0 

(3.13) 

where T is the duration of operation, u(t) is a weighting function, and 

r(t) is the distance from the aimed point to the point of intersection of 

the gun barrel axis with the target plane. Other objective functions are 

also possible. In the next subsection an explicit expression for r. will 

be derived from geometrical considerations. 

3.5 Target Analysis 

The target plane was defined such that its normal was along the 

barrel axis at equilibrium. The aimed point is the intersection of the 

barrel axis with the target plane. In Fig. 4, the following vectors are 

known, after the equations of motion have been solved: 

-««•»■kfcfeatti 
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_P/0   e = . e •= , e = 
f   - a. I ■»• a_ J + a. K (3.14) 

fP'/0 . a J + a j + a £ (3.15) 

Ie - a* I + a* J + a* K (3.16) 

i - «K I + a, J + a, K (3.17) 

where I and 1 are the orientation of the barrel at equilibrium and at 

arbitrary time t, respectively, and (I, J, k) are same as defined before. 

The distance A of the target plane to the mass center of the gun barrel is 

known. Then from the geometry, one has 

-P7P  -T/P . -T7P  -T'/T n r-r+r-r   "0, (3.18) 

-T7P'   T      -T7T  ?e n r    -ai,   r   • i - 0 . (3.19) 

-T7T Let the unknown vector r   be denoted as 

_T7T    - r ' - x. I + x2 J + x» K . (3.20) 

By substitution, one obtains the following set of equations: 

ai " ai " * °i + Ä ai " Xi " ° *    i - 1, 2, 3 (3.21) 

J  ****«»■ M--M'te*% 
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Xi°i"°    ' (3.22) 

Solving for a, x., x_, x», one obtains 

l\W?-^\ 

or, 

Vi 

(3.23) 

ie  • ;P/0 ± t I* • I« - I6 •  rP'/° 
i •  ie 

(3.24) 

e e 
x^ - a. - a. - £ o. + a o.     , i ■ 1, 2, 3 (3.25) 

One rat;y also write, 

-T'/T      -P'/P      -T/P  .  -T'/P'      -P'/O      -T/0  .T ,, „,. r-r-r+r -r-r+ai. (3.26) 

-T/0 T'/T Since r   is a fixed vector, r    is a function of only the position of 

mass center and the orientation of the barrel. 

3.6 Formulation as an Optimal Design Problem 

After identification of the parameters and the objective function, 

one is ready to formulate the optimal design problem. Redefine the para- 

meters as follows: 

_J *'*""*'*"*4&äi ' «vfiÄfcr«, ii 
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Design Variable,  b = (k^- k2>, c^- c£, El] , (3.27) 

Environmental Parameter,   o = [6-, s, X, £] , (3.28) 

State Variable,   z = [q^, u ] ,    m - 1, 2, 3, ..., 7        (3.29) 

Then the optimal design problem will be in the following form: 

min max J (3.30) 
cteA 

subject to 

h(z, b, a) - 0 ,   z(0) given , (3.31) 

and 

g(z, b, a) < for all oeA , (3.32) 

where 

A = {c|q(a) < 0} . (3.33) 

J represents one of the objective functions from Section 3.A, and 

h(z, b, o) - 0 represents the equations of motion from Section 2.3.5. 

■"«"•««awwjMSääiSifc^i^^ 
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This formulation is more general than the conventional nonlinear 

programming problem or the minimax problem, and is termed as "parametric 

optical design" problem. The g-constraint which depends on the environ- 

mental parameter a is called "parametric constraint." The a-constraints 

define a constrained set in the space of environmental parameters. Here 

one may choose, 

min - 1 - max 
(3.34) 

s < s    , - "max ' (3.35) 

X .  < X , 
min -   ' 

(3.36) 

f2 < (X/2s)2 , (3.37) 

where the subscripts min and max denote the given lower and upper bounds. 

The last inequality indicates that the time difference f is restricted by 

the period. 

A transcription of the problem is made into a more manageable form. 

The state equations, being a set of differential equations, are discretized 

for numerical solution. Also, instead of the min-max type of objective, 

an artificial assign variable b .. is introduced. A transcribed optimal 

design problem is 

min b n+1 (3.38) 

X X 
J <-'•- »«A^Wtiijfej».;, 
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max J(z , b, a) < b ... 
. -  ttrl 

oeA 
(3.39) 

zi+1 - z1 - SCz1, b, a)  , z° given , (3.40) 

g(b) < 0 (3.41) 

where 

z± " W» Uo(ti)lT '   m - 1, 2, .... 7 , (3.42) 

and t. is a discretized time point which is chosen such that the grid 

contains the firing instant where the values of z are denoted by an upper 

bar. S is symbolically used as an operator giving the numerical solu- 

tion to the initial problem. In Euler's method, this would be 

S = At 

H"1 (G - Hu) 

(3.43) 

Other methods of solving the equations of motion are possible and can be 

easily implemented in the solution algorithm for "parametric optimal 

design" problem. 

-J -"*^*>»^m0>um^ ]m^^.^^J_,.^X: 
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4. SUMMARY 

In this report, a model for conceptual design of an automatic weapon- 

vehicle system is suggested and analyzed such that a study of the inter- 

action of the environmental conditions is possible. Although the motion 

is constrained in a plane, the model has several important features, such 

as, simulation of the road conditions by externally varying forces f, and 

f., inclusion of the control of the azimuth angle which may be randomly 

varied by the operation, simulation of the recoil mechanism having a com- 

paratively large mass moving back and forth, and the flexible mount. Due 

to the flexible part, the model has infinite degrees of freedom. The in- 

ternal degrees of freedom of the flexible part are removed by the assumption 

that the dynamic configuration is the same as the static configuration 

which can be related to the finite number of generalized coordinates at 

the interface. Thus, the infinite degrees of freedom system reduces to a 

finite degrees of freedom system. An explicit form of the equations of 

motion are then derived for the proposed model. The system has seven 

generalized coordinates in all, and the governing equations of motion are 

highly nonlinear because of a relatively large oscillating mass. The 

system may be linearized by the usual method of linearization in the 

neighborhood of equilibrium configuration except for the portion involving 

large oscillatory mass. 

The design concept adopted is to find the design variables such that 

the system has a desirable property of least possible disturbance from 

the perturbation due to a continuous burst under uncertainty of the 

_J 1  ' '"**"• *"*•*"■ -.*>■*- :i»,S astjK, 
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environment such as, road conditions and the azimuth angle. Some expres- 

sions for this objective are given after an identification of the para- 

meters. In the formulation, it is assumed that only the first N shots 

are important, or a finite duration of the operation from the start of 

bursts is of importance. The objective functions considered are functions 

of only the position of the mass center of the gun barrel and its 

orientation. 

The conceptual optimal design problem is, then, formulated mathema- 

tically as a "parametric optimal design" problem. A numerically implement- 

able transcription is given such that the formulation fits into the finite 

dimensional parametric optimal design problem. 

\ 
■'■'■>*<■*?. _t.,. : .p- 
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H11-«1    , 

^12 ™ * * * * ^17 ™ ^    ' 

TABLE 1.    ELEMENTS OF H 

H22"°2    ' 

H23- ... -H27-0    , 

H33-MA + MB + MC+MD    • 

H34 " *B(h C °1 " e45 8 °1) 

+ (Mc + MJJM^ - «4)c ax - c46 8 ^ - at> 

+ Hp 6t c(0l + a2 + 6J    , 

H35 " " (hl "B " MC " V8 al    ' 

H 36 " " h2 "B 8 wi ~  ^C + Vet + "D 6t C(°l + "2 + 61)     • 

«37 - IS) ■<«! + «2 + V    * 

\*'h+h + lC + ll> + Wl5 + *2) 

+ (Mc + M^ + (e3 - 64)2 + •* + ^ > 2e^ 6g - 2(e3 - 6^) 

+ MjjtÖ2 - 26t(e7 - i ^ s(o2 + Bx) - (e3 - «4)c(a2 + 01)}]     , 

HA5 * hl \ e45 + *MC + V<%6 " es> + «D 6t 8(o2 + 91)    • 

J -^««MtoSStÄi.«., 
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TABLE 2.    ELEMENTS OF G 

I, ,/ 
\     Preceding page link 
\ 

Gl " fl + cl(63 "VlcV V 

" ml 8 " k10 61 + kl(63 " el 8 al " V 

G2 - f2 + c2<*3 + ax a2 c ^ - $2) 

- «2 g - k2Q $2 + k2(63 + e2 8 Oj - 52) 

G3 - - F(t) s(ax + a2 + 8^ - «^(63 - d1 e1 c Oj - ä^ 

" C2(«3 + dl e2 C °1 - *2> 

-  (MA + Mg + Mc + tyg - ^(«j - ex s ax - 6X) 

- k2(«3 + e2 s Oj_ - «£> 

G4 - F(t){eg + e46 c(a2 - 6^ - (e3 - 64)s(a2 + BjH 

+ Cj «jtfj - 4j ^ c «j - «1)c ox 

- c2 e2(i3 + Sj e2 c Oj - 62>c c^ 

+ Mg 63^ c ax - v2 s ax) 

+ Mc 63(v3 c al - v4 s ax) 

+ Mp 63(v5 c ax - v6 8 aj 

' S 8(h C al " e45 8 °1) 

- <MC + MD)g{(e3 - 64)c ax - ^ B a% « efc> 

- Mp g «t c(0l + o2 + ex) 

+ ^(63 - «x • ax - «1)e1 c ox 

- k2(63 + e2 c ax - «2)e2 c c^ 

'"4«**S^«^-Ktä..A„K 
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TABLE 2  (cont'd) 

G5 - F(t)c(a2 + e2) -  %\V2
+HC\ + HD V*l 

+ hx Mg g s ax + (Mc + MD)g s ox 

. 6EI     12EI . 

e6     e6 

G6 " F(t)e8 " "B V2 h2 *1 + V*l + *2)(v3 Cc + VA e8> 

+ MD(Ä1 + &2){v5 ec - 6t v5 c(a2 + 6^ + vfi .§ - «fc V(. 8(a2 + 0^} 

- Mp 65{v5 s(a2 4 9^ - v6 c(a2 + 6^} 

+ Mg g h2 8 ax + (Mc + MD)et 

" «S) 8 C(al + °2 + ei)6t 

4EI   . 6EI , 

6     e6 

G7 - R(t) - F(t) - cr 65 

+ Mp v^ + a2){c(a2 + 8^ - s(a2 + 6^} 

- MJJ g 8(0l + a2 + 6X) - kr 65 . 

" ^fe^s MjwnrifitliKliUJiintn «MUMM» 


