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1. Introduction

Because of its value as a method of assuring
structural reliability, proof testing is often used in the design of
structursl ceramics. Proof testing is especially valuable in applica-
tions in which ceramics are subjected to tensile stresses. In proof test-
ing, ceramic components are subjected to stresses that are greater
than those expected in service in order to break the weak components and
thus to truncate the iow end of the strength distribution. In this
manner, weak components are eliminated before thay can be placed in
service. Proof testing has been applied to windows for spacecraft
and experimental aircraft,l-3 to electrical porcelain insulatnrs that
are expected to surport tcnsile loads for long periods of Lima? and to
ceramic pressure vessels.5 Proof testing also finds agplication in more
complex situations in which complete engineerirg assemblies are tested.
In this way, proof testing i3 used to assure the performance of aircraft
engines and may find similar application in gas turbines for energy
generation.

Despite its great value for assuring reliability, proof testing has
had no firm thecretical basis until very recently. Using trial-and-
error estimates, proof test loads for ceramic materials were generally
set at two to six times the expected load. Whereas such estimates have

usually resulted in reliable structural ceramics, a more systematic method of
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seiectiny a proof test load offers the advantage of either lighter
structural components ov fewer rejects due to breakage during the
proof test. 2 more systematic method of selecting a proof test load
also eliminates the possibility of selecting a test load too small to
assure structural reliability. We gain these advantages because a
more exact: value of the proof test load can be selected for a given

application,

Racognizing the need for greater insight into proof testing,

6-9 provided a mathematical foundation for

Wiedernorn, Evans and Fuller
the selection of the proof test load and for the establishment of proof
test conditiona. Their analysis is baged on the fact that failure of
ceramic materials occurs mainly from the growth of preexisting cracks.
By characterizing crack growth,and coupling crack growth parameters
with proof testing, they have demonstrated how to construct design
diagrams that relate the expected failure time to the maximum design
stress. Their analysis provides a rutional guide for the selection of
both proof test load and teat conditions. Since these are the keys to
a successful proof test, the analyai; by WieAerhorn, Evans and Fuller

is the basis of a general method that can be incorporated into the

design of struccural ceramics.

This paper presents a raview of the mathematical foundation for
proof testing. For clarity of presentation, most of the important

equatione are derived from first principles. Examples are given of how

|
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these equations may be ugsed ¢o assure structural reliability. The
proof testing technique is compared with the technique of structural
design that is based on Weibull statistics, and the superiority of the
proof testing techrique is demonstrated.

In developirng the mathematical foundation of proof testing, an
estimate is fivst presented of the time to failure due to crack growth.
The time to failure is shown to depend critically-on the size of the
largest flaw contained within the structurai cqﬁponent. Fy using a
proof test method, or a statistical analysuis of strength to estimate
the critical flaw size, design diagramsg are obtained chat relate the
faiiare time to the service stress. The value of prcof vasting cerami.c
couponents prior to use is discussed and precautlon; are presented for
conducting proof tests on brittle waterials. It /s hoped that this
paper will provide the background needed to deve.op better design
techniques for structural ceramic materials.

2. FAILURE_TIME UNDER ETFESS

The time required for the failure of a eramic component under tensile

stress can be calculatiad by using fracture ‘aechanics concepts. For most

materials, :he stress irtensity factor, nr, at a flaw is related to the

applied ntrese, o.. and flaw slize, a, by the followiag equatian-

K, = o.Yy"a' 7 )

e .7 S i
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Y in the above equation is a geometric constant that depends on both the
shape and lccation of the flaw, and the type of stress appliad to the material%o
For surfuce flaws (cracks) which are usually the most critical flaws in ceramic
materials, Y:/7. For a constant applied stress the derivative of both

sides, of Eq. 'l) with respect to time yields the following equation,

where v is the créck velocity,
dK_/dt = (02Y2/2K )v (2)
1 a I

B7 separating the variables of Eq. (2) and rearranging the equation,

the following expression is obtained for the total time-to-failure under
constant load, where KIC is the critical stress intensity factor and KIi
is the initial streas intensity factor at the most serious flaw in the

component.,

K
t= (/v f (K /K (3)

Ky

Evaluation of Eq. (3) zequires information on the coritical stress
intensity factor, the initial stress intensity factor at the most serious
flaw, and the functional relationship between the stress intensity factor
and the crack velocity. The critical stress intensity factor is cbtained
by fracture mechanics techniques. Fracture mechanics specimens are
broken in an inert environment and Kic is calculated from the dimensions
of the specimen, the crack length, and the failure load. A critical review




of techniques commonly used to determine K__. on ceramic components may

IC
be found in Ref. 1ll.

The relationship between the stress intensity factor and the crack
velocity in a given environment can also be found by fracture mechanics
techniques. Usually crack velocity measurements are made on specimens
similar in shape and size to those used for critical stress intensity
factor measurements. Again, the stress intensity factor is calculated
from the crack length, load and specimen dimensions. Although fracture
mechanics techniques are commonly used to collect crack growth data,
these data can also be obtained by measuring the strength as a function
of loading rate. A critical review of these methods has been presented
in Ref. 12. Por the purposes of the present paper, it should be

recognized that both the critical stress intensity factor and the relation-

ship between the crack velocity and the applied stress intensity factor
are easy to measvre.

For many ceramic materials, the crack velocity is a power function
of the stress intensity factor, v = Ax?. in which case Bq. (3) is inte-

grated to give (to a good approximation) the following equation for the
time to failure:

a-n e
t = 2k0,"/M02v? (n2) ()

However, other analytical expressions relating RI to v may also be used,
or if no simple expression is available, Eq. (3) can be integrated

numerically.




Because of its dependence on flaw size, K i in Egqs. (3) and (4) is not

I
easily measured on real components. Flaws in most ceramic materials are less
than 1 mm in size and their dimensions are not easily measured by nondestructive
meansf Therefore, indirect methods must be used to estimate the size of

flaws in ceramic materials.

There are two indirect methods for determining the initial size of the most
serious flaw in ceramic materials. One nethod uses statistics to characterize
the strength of the ceramic component as a function of the cumulative
probability for failure. The flaw sgize is then estimated on a
statistical basis by substituting the results of the statistical analysis
into Eq. (1). The second method employs a pruof test to determine the
maximum size flaw in the component at the time of the test. Once an

estimate of a, is available (by either method) the initial stress

i
intensity factor is determined from the equation: K, .= oaYJE:‘ The

expected service life of the component can then be calculated by

substituting X_, into Egq. (3) or (4).

Ii
3. STATISTICAL APPROACH

The statistical approach usually used to describe the strength of

13

materials was originally developed by Weibull. This technique uses a

form of ‘extreme value statistics that is particularly sensitive to the

[ ]
By contrast, Zlaws in metals are larger and can bas measured by

& variety of nondestructive techniques: X-ray radiography, ultrasonics,

dye penetrants, etc.




low strength end of the strength distribution. Weibull's relationship

*
between the cumulative failure probability, P, and the strength UIC is

given by the following equation:

m
P = 1 - exp -[(O’IC - 02)/001

where O 02. and m are empirical constants. Oic is the strength measured under
the condition that no subcritical crack growth occurs prior to failure,and should

be determined in an iuert environment using rapid loading rates. By arranging the
strength measurements in order of increasing strength, P may be determined
from the equation: P = 3/(3 + 1), where j is the position of the jth strenqth
meaéurement in the ordered set of strengths and J is the total number
of measurements. Y the lowest possible strength, is usually set equal
to gzero. oo is a scaling parameter and m iz a shape parameter. m and (:!°
are detcmmined by fitting a straight line to the strength data which
have been plotted as log log (1/1 = P) versus log c;c (Fig. 1); the
slope of the line is a yhereu the intercept iz m log Oy

In practice the Weibull theory is easy to appl:y because once m and
c o have been evaluated the strength is uniquely characterized on a
statistical basis. However, some precautions must be exercised when the
Weibull theory is used for strength analysis. m and 9, bay vary from
ons component to the next dus to the susceptibility ¢f strength to
variations in the nnufncturing.pr’ocuh. Because of ‘hese variations,

n and °o determined on laboratory specimens may not ).e correct for

S R o e T e e A s T

*
The cumulative failurc probability gives the fraction of specimens that will

break at a given stress level.
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structural components. m and oo are also subject to inaccuracies which
result from the statistical uncertainty encountered whenever a straight
line is fitted to a set of experimental data. If only a small number
of strength measurements are used to determine m and Oo. the statistical
uncertainty of these parameters can cause substantial errors in estimates
of the strength at low failure probability. As shown in Fig. 1 this
uncertainty in strength increases as the failure ﬁrobability decreases.
Finally, even if co and m are accurately determined, e rors in estimating
the strength may occur because strength depends on componen. size. Be-
cause of the greater probability of larger flaws, large ccmponents
are usually weaker than small ones. Although scaling equations are
used to account for size effects, these equations are sometimes difficult
to obtain and may be complex, especially for complex stress distributions.
Furthermore the location of the flaw that causes failure must be identified,
because scaling equations differ depenﬁing on whether the crucial flaws
lie at the surface or in the volume of the component. Becausa of uncertain
information regarding the flaw location, scaling equations must be tested for
accuracy by using laboratory test specimens of varying size and shape.
All of these considerations decrease the valus of Weibull statistics
a8 a method of date wmining strength. Consequently, design values of
strength must be more conservative than those givan by equa-
tion 5.

Although the method used by Weibull did not consider strength as a
time dependent variable, a time depsndence due to crack growth can be
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easily introduced into the Weibull method by expressing K

the failure probabi lity?']'4

1i in terms of

ht failure, the critical stress intensity factor,

KIC' the fracture strength, 0__, and the crack length, ai, #re related

IC

by: K. = UICY/;;. At the service load the initial stress inensity

factor, K_,, is related to the service stress, Oa. and the crack length

Ii

by: K, = oaY"a—i' From these two equations, an equation for K., is ob-

tained:

K = Xpcl92/9%¢! )
By svbstituting Eq. (5) (with oz = 0) into this equation, an equation

may be obtained relating K

i to the cumulative.failure probability:

=-1/m

Keg = KIC(oaloo) {log(l/1 - P)] (7)

This equation may now be substituted into Eq. (3) or (4) to obtain an
equation that relates the failure time to the cumulative probability for
failure. The functional form of this equation is:

-nn R -
t= 0. +£(P) (8)

For each value of P the fuilure time is a power function of the-

applied stress. Therefore a series of atraight lines of slope -n can be
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obtained from a logarithmic plot of t versus qa (Fig. 2), each line

representing a different value of P. This type of diagram completely
describes the failure characteristics of a material on a statistical

basis. Similar diagrams are often used to represent gtatic fatigue

data. However their value is more limited for design purposes because only
the average or median strength is used as a plotting parameter. By
contrast, diagrams such as that given'in Fig. 2 represent the general
fatigue behavior of a material and are more useful for design purposes.

To illustrate how the diagram can be used for design purposes, refer
to the data of Fig. 2 which was cbtained on a glass that is being
considered for the space shuttle.3 During its lifetime the shuttle
will undergo many stress cycles. The windows must not fracture during
the critical period of each cycle when the spacecraft is in orbit. To
assure reliable performance, the windows should be able to survive for
at least one vear under load while subjected to the most severe environ-
mental conditions expected in each cycle. Since the spacecraft will be
periodically exposed to moist air, and since water causes stress corrosion
in glass, the moét adverse ‘environment for the proposed space shuttle
glass would be a moist environment. For this reason, the diagram shown
in Fig. 2 has been based on crack propagation data collected on élass
gpecimens that were immersed in wﬁ:er. From Fig. 2 we see that for a

failure probability of 107>

the windows can be subjected to a stress of
no more than 2,000 psi if one vear's survival is desired. This stress

value is approximately one-half the present design load, 4,000 psi. If




S

!

BRCSVISLATES A . R

7

RGN R

L e R S A

o e s

a design load of 4,000 psi is used the probability of failure for these

windows increases to approximately 2 x 10-3, a probability much too high
for safety. Hence, we see that the statistical approach leads to low design
values of the load if low failure probabilities are gequired.

The design load suggested from Fig. 2 has not been scaled for the
fact that laboratory specimens were much smaller than the spacecraft
windows. The laboratory specimens used to evaluate m and 0, were disks
approximately one inch in diameter, while spacecraft windqws will be
trapezoids approkimately 1000 inz. If the high stress regions of these
two sets of specimens are assumed to be proportional to their areas,
then to a first order approximation the Weibull approach prediéts a reduc-
tion of strength proportional to the ratio of the two areas raised-to the

l/m power, which reduces the strength of glass by a factor of 3 for all

probability levels. This reduction limits the use at the 10—5

probability level to a strength of approximately 700 psi instead of the
2000 psi shown in Fig. 2. A further reduction in stress may bc required
because of uncertainties in the assumption of equal distribution of flaws

in large and small components and because of the very simplified treat-
ment used to get the correction ratio.

4. PROOF TESTING APPROACH

P;oof testing removes many of the difficulties present in the
statistical spproach to failure. Proof testing truncates the strength
distribution, eliminating those specimens with the largest probability
for failure? As a result, components can be used at higher stress levels
with greater assurance of reliability thin can be obtained from the

statistical approach.

"
For effective proof testing, all components intended for service must be

tested.




To develop the mathematical basis for proof testing, one must
recognize that a proof test limits the maximum flaw size that can be
present in the specimen after the proof test?lskll specimens containing
flaws larger than this critical value will fail during the proof test,
because the stress intensity factor at the tips of the flaws will exceed |
the critical stress intensity factor, KIC' For flaws that are smaller
than the critical size, the stresé intensity factor will be less than
the critical‘stress intensity factor and the components will survive
the proof test. Therefore, if failure does not occur during a proof
test, K, > K, = OPY/E;, where K, is the stress intensity factor at the
largest flaw during the proof test, and op is the stress applied during
the proof test. When the component is first used in service, the relation-
ship between the initial stress intensity factor, KIi' the applied stress,
_oa, and the flaw size is given by KIi = an/Z;. From these two equations,

the following equation is oktained:
. < '
KIi KIc(oa/cP) (9)

This estimate for the initial stress intensity factor can be substituted
into Eq.' (3) or (4) to obtain an estimate for the minimum time to failure.
Because the limits of integration of Eg. (3) depend only on the ratio of
the proof test load to the applied load, the minimum time to failure,

t

min’ is given by the following functional relationship:

]
In this section it is assumed that crack growth does not occur during the

proof test., Crack growth during the proof test is discussed in section 5.4.




t .
“min

-2,
= Oa f(dé/ca)

Thus, for any given proof test ratio, Op/ca' the minimum time to failure
is inversely proportional to the square of the applied stress. A loga-
rithmic piot of the minimum time to failure versus the applied stress
gives a2 straight line with a slope of -2, the positicn of the straight
line depending on the proof test ratio.

A design diagram incorperating these ideas is presepted in Fig. 3,
which is a logarithmic plot of the time to failure versus the applied
stress. Lines derived from the statistical approach to failure are
also included in this diagram for comparison. For a survival time of
one year at a stress of 4000 psi, a proof test ratio of 2.6 will be neces~-
sary for this glass. Specimens passing the proof test will survive the
minimum time to failure with zero probability of earlier failure. By
comparison, the failure probability is 2 x 10"3 at the same stress levels
in the absence of a proof test. To pass the proof test, the glass
windows will have to sustain a load of approximately 11,000 psi,

Referriqg now to the Weibull diagram for these glasses
(Fig. 1), it is observed that at a stress level of 11,000 psi only one
specimen ‘in a thousand will be broken during the proof test. If the

reduction in strength is taken into account because the glass windows

are much larger than the disks tested in this experiment, a failure
rate of one in ten is reached. Thus, by taking the chance that one
window out of ten will break during the proof tes', adequate performance

of the remaining_windaws is assured.
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~ As shown in an analysis by Evans and Fuller, proof testing can also
be applied to cyclic loading.8 If failure involves subcritical crack
growth, the failure time due to cyclic loading, tc, is proportional to
the failure time, tmin,'due to static loading: t = g-ltmin' vhere gt
is a proportionality constant that can be evaluated by a numerical
integration for any periodic load cycle. For square wave, sinusoidal or
saw-tooth type of loading, values of <:,'"l have bgen evaluated analytically
and are available in diagrams that express g-l as a function of the

exponent n and the ratio Ol/Ga, where ¢, is the stress amplitude and oa

1

is the average applied stress. (Fig. 4). tmin is determined from a design
diagram (Fig. 3) by setting the service stress equal to the average

applied stress for the cycle. The analysis by Evans and Fuller permits

a direct comparison of experimentally determined crack growth data and
failure times for cyclic and static loads. Agreement between these

two types of data indicates that failure is most likely due to sub-
critical crack growth. However if these two types of data dc not agree,
failure is most likely the result of some mechanism besides subcritical crack
growth due to static loading. Crack propagation and strength results on
porcelain, alumina and glass at room tempexaturea and on silicon nitride
and alumina at high temperatnre,]'6 give no indication of an enhanced effect

of cyclic loading on slow crack growth. Consequently, by using q-} design

diagrams developed for failure predictions for static loading are also

applicable to cyclic loading of these materials.




The main advanfage of the proof test procedure is its relative
insensitivity to the particular flaw distribution associated with a given
component. Since the flaw size distribution is determined by the component's
history, it follows that the proof test method of assuring reliability is

independent of the component's history prior to the time of the test.
By contrast, diagrams obtained from statistical congiderations are
extremely sensitive to the flaw size distribution and therefore to the
component's higtory. A further advantage of the proof test method is its
insensitivity to the particular arrangement of flaws in a component. Thus
even though the analysis of failure assumes that the most serious flaw
lies perpendicular to the maximum stress, a deviation from this condi-
tion leads to a more conservative estimate of failure time.6

5. PRECAUTIONS IN PROOF TESTING

In this section a discussion is presented of some of the precautions
to be exercised when proof testing is used for design. These precautions
are concerned with the service stresses, the accuracy and applicability
of the crack growth data, the design of proper proof test procedures and
the possibility of strength degradation as a consequence of the

proof test. This discussion is necessary since an incorrect assesament
of any of these precautions could invalidate the proof test and result in.
premature component. failure.

5.1 Strouag§ggivalonco During Proof Testing

Proof testing is besed on the assumption that all parts of a

structural component are subjected to the required proof stresses during the

proof test. At any point in the component these stresses must exceed the

15
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service streases by a specified amount, otherwise portions of the component
will remain untested and predictions of component lifetime will not be
meaningful. Therefore proof tests must duplicate the expected service
stress distribution as closely as possible. For simple components such
as windows for pressure vessels or electiical porcelain suspension
insulators, service stresses are easily duplicated by applying loads that
exceed the service load by the required amount. However, for other types
of components duplication of the service stress distribution may be

more difficult because of complizated component geametry or stress
distribution. In some cases a double proof test may be necessary to

test different types of loading expected in service. For example, proof
tests for turbine rotors must duplicate the stresses resulting from both
the centri?ugal force and the gas pressure on the vanes of the rotor.

In general, each structural component must be considered individually

to decide on the appropriate proof test.

5.2 Parasitic Stresses

The results of a proof test are sometimes invalidated by parasitic
stresses that cause strength deterioration or crack growth over and above
that predicted by the proof test. Parasitic stresses arise from unintended
features of the proof test, for example, if the proof test apparatus inad-
vertently applies loads that di!:gr from the service loads. An example of
component deterjoration due to parasitic stresses was recently observed in

large porcelain iniulatog; neant to support radio towero.‘ The proof test

16




consisted of slowly increasing the load on the insulators to 2.5 x 106
pounds, and then slowly decreasing it to zero locad. During the proof
test,acoustic emission transducers that were attached to the insulator
indicated_high rates of emission at approximately two million pounds as
the load on the insulator was decreasing. The emission was due

to the growth of a large internal crack during the unloading
pzocedure.* The presence of this crack was confirmed by an ultrasonic
examination of the insulator during the test. The stresses that caused
the crack to grow resulted from unexpected slippage of the porcelain in

. :
As a consequence of this observation, it may

*
its metallic end caps.
be concluded that proof test procedures should be designed to avoid
parasitic stresses.

5.3 Equivalence of Crack Propagation Data and Failure Mechanism

The proof test method of assuring reliability depends critically
on an accurate evaluation of the crack propagation pa:ametgrs that control
fracture. If proof test methods are to be of value, these parameters
must represent the failure mechanism. Therefore, information on the
factors that detarﬁine the crack propagation parameters is essential.

These factors include: the crack tip environment; the size of the strength
limiting. flaw relative to the microstructure of the component; and ;ho

functional dependence of crack velocity on stress intensity factor.

»

The crack growth detected by acoustic amission transducers does not
necessarily result in wmechanical failure for compressive loading. These
porcelain insulators are not acduptnbla for service if they contain large

cracks because the cracks cause the insulators to become electrically unstable.

"w. suspect that this type of !ailﬁ:o may bs characteristic of some kinds
of compressive loading.




For many materials (ceramics, metals and polymers) environment
is the dominant factor that controls crack growth. Many structural
ceramics are sensitive to water in the environment, which causes stress
corrosion cracking.12 As water penetrates to the crack tip, crack motion
results from a stress enhanced chemical reaction between the water and the

material at the crack tip. This reaction can occur even in relatively

dry gasesl7 or in'organic liquidsl§ In aqueous solutions the reaction

is sensitive to the pH of the solution.19 In glass for example crack
propagation curves are steeper in high pH solutions than in low pH

3,419 (Fig. 5). Finally, the crack tip environment may differ

solutions
from the bulk environment as a result of the chemical reaction at the
crack tip.l9 Therefore, to use crack propagation data for failure
prediction purposes, one has to be certain that the crack tip environ-
ment is the same for the crack propagation measurements as for the com-
ponent in service.

Another factor that influences the crack growth is the size of the
strength limiting flaws relative to features of the microstructure such
as grain size, pore size, or pore spacing. The relative flaw size is
important because of a possible dependence of crack propagation rate on
microstrgcture. In crack growth studies, the flaw is artificially pro-
duced and is always larger than characteristic dimensions of the micro-
structure. Howaver in some materials, the flaws that limit strength
are comparable in gixo to the microstructure. Therefore, crack growth

behavior of these flaws will not necessarily be described by crack

growth data obtained on fracture mechanics specimens. As a consequence,
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failure predictions may not be vaiid if they dre based only on design diagrams
derived from this growth data. Fortunately, for many materials the flaw size ig
large relative to the microstructure and the assumptions used to construct

proof test diagrans are valid. In hot-pressed silicon nitride for example the

flaw size, 100um, is approximately 100 times the grain size.20

Similarly, cracks in glass are usually much larger than the inhomogeneities

that may be present in this material. This assumption of large crack

size is not valid for other materials. For example, the crack size in

aluminum oxide is approximately equal to the grain size.21 For these

materials, proof test diagrams should be used only if it can be shown on

a laboratory scale that material strength can be predicted from these

diagrams. Agreement between strength measurements and crack propagation

data in laboratory studies would permit these diagrams to be used for

design purposes.

The functional dependence of crack velocity on stress intensity

factor is another variable that must be considered in the design of a

prcof teat. Knowledge of this functional dependence is important when

large values of the proof test ratio are used for design. 1In this case

the crack propagation data have to be extrapolated to low values of the ‘
velocity, and the accuracy of the extrapolation determines the validity 3
of the t'im-to-failuxe prediction. This point is illustrated in Fig. 6 ‘
vhich gives a logarithmic plot of “Op/ca) from Eq. (10) versus op/c. |
for two representations of the crack velocity data, (a logarithmic and a

power function representation). As !(0',/6.) and OP/O‘ exceed the limits ﬁ

T




of the experimental data, given by the cross in the figure, the two
curves diverge, resulting in some uncertainty in the selection of

an appropriate proof test ratio. For the proposed space shuttle

glass this uncertainty was not large since the power function representa-
tion of Fig. 6 suggested a proof test ratio of 2.6 to 1 for a year's
lifetime at 4,000 psi, while the exponential representation suggested

a proof test ratio of just over 2.8 to 1 for the same stress. However,
for other materials this uncertainty might be crucial. To avoid this
source of error, crack velocity data should be collected at as low a
velocity as is feasible.*

One way to assure the applicability of crack growth data to failure
predictions is to demonstrate an agreement between the strength and
crack growth data. This agreement has been demonstrated for the glass
proposed for the space shuttle3 (Fig. 7) and for hot pressed silicon
nitride22 (Fig. 8). The points in Fig. 7 represent the mean value
of the strength of the space shuttle glass obtained for each value of the
loading rate; the brackets give 95 percent confidence limits for the
mean values. The solid straight line is a least squarcs fit of all of
the strength data, while the dashed line is the predicted strength
from cragk propagation data. Since the dashed line falls wi.hin the 9%
percent confidence limits of the strength data, one may conclude that

for this glass the crack propagation data and the proof test diagram

' : -
Since lpp:oximnt.;y one month is required to measure a crack velocity of 10
meters per second, this velocity appears to represent a lower practical limit

for crack propagation data.

20
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derived from it can be used effectively for design purposes. Similar
agreement is found for the silicon nitride data given in Fig. 8 where

a comparison is presented between strength data obtained at 1400° C23
and crack propagation data (the solid lines) obtained at the same tempex-
ature.22 The lines fall close to the measured strength values suggesting
that crack propagation data on hot pressed silicon nitride gives adequate
predictions of strength, and that proof test diagrams can be used for
design purposes for this material.

For general application ofAthe proof test method, additional
comparisons between crac: propagation data and strength data will be
necessary. An equivalence between crack propagation data ard strength
data should be demonstrated on a laboratory scale for each material

go that proof test diagrams can be used confidently for design purposes.

5.4 Lloading Procedure Duriny Proof Test

In section 4 the minimum time to failure, tmin' was estimated on
the assumption that crack growth did not occur during the proof test. In
addition, failare was assumed to occur instantaneously if the critical
stress intensity factor was exceeded at some flaw in the compcnent. As
a consequance of these assumptions, the failure probability was found to
be zero for all periods of time that were less than the minimum failure
time, t min® While these aasumptions are valid for some commercially

important materials (silicon nitride and silicon carbide tested in air at

rooa tunpo:aturcxz‘ silica, chemical Pyrex and the space shuttle glas.: tested

| s
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in vacuumzs), they are not valid for others. Soda lime silicate type
alasses, for example, exhibit subcritical crack growth even in a vacuum.25
If crack growth occurs during a proof test, then the failure probability
is no longer zero, but has a finite value that is determined by the proof
test conditions and the test environment. Fortunately, the failure
probabglity can be reduced to & vanishingly small quantity by judicious
selaction of the proof test conditions.

A theoretical basis for selection of the proof test conditions
has been developed recently by Evans and Fuller9 who have exaained the
effect of crack growth on the failure probability after proct testing.*
Evans and Fuller assumedthat constant rates of loading, 62' and unloading,

&u. were used in the proof test, and that the proof test load, o_, was

P
held on the_component for a period of time, tp. They also assumed that
crack growth was controlled by a single fracture mechanism go that the
crack growth rate could be expressed as a power function of the stress
intensity factor, v = Ax;. Using these assumptions, they found that the
crack length after a proof test could be described by the following

equation:

n-2 -:-2-

N

) (11)

=4

»
aw aoll - (uoluo)

"
Their theory is fully developed in the appendix for the interested reader.

.

22




wilere a is the crack length after completion of the proof test and ao is
the initial crack length. a:, the critical crack length for failure
during the proof test,is.the initial length of a crack that will just
grow to failure during the proof test. As shown by the following equation
a: is completely determined by the proof test conditions:

-2

a, =([(RopY e2)/21 (e + (g, + ) /(0s1)1} w2 (12)
where tg = op/al is the time required to lcad the component to the proof
test load, OP. and tu = GP/&u is the time required to unload the component.

The dependence of crack length a on a, is depicted in Fig. 9 for
n = 20 and n = 100. As indicated by the abrupt increase in a/ao
as a approaches a;, crack growth is significant only when a is closge in
value to a;. Because of this behavior, strength degradation is serious
only for components that contain cracks for which a, = a;.

The failure probability after a proof test is determined by the
range of initial crack lengths that result in significant crack growth (R
of Fig. 9): The narrower the range of the crack lengths, the lower the
failure probability. Since this range is small for large values of n,
test environments should be selected so that n is large. Thus, proof
tasts On soda lime silicate glass should ke conducted in dry nitrogen
for which & = 100 rather than in air for which n = 20. This conclusion
is supported by a detailed calculation of the failuve probability after a

proof test.

i e e
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An estimate of the probability for failure after a proof test
can be obtained by using the crack length, a, of equation 11 to evaluate in
of Eq. (4). After rearranging the equation and using a Weibull analysis
to describe the initial crack size distribution (see appendix), the fol-
lowing equation is obtained for the failure probability, Pa' after a proof

test:

n-2

*
= B m ot n-m-2 - .n=2 13
P, =z G0 (Kp/Kp) (/tng) (13)

. *
where:s m and co are Weibull parameters; n and n are crack propagation

*
equation exponents, n referring to the test environment and n referring

to the service environment; and tmin is the minimum failure time calculated

from Fig. 3 which is based on the assumption that crack growth does not

'-,‘ha&' .

occur during the proof test. t is the time in service after the proof
test. K; is the.stress intensity factor calculated for a crack of length
a:; K; = cPYJQ:f_>K; would be the stress intensigy factor for this crack
if crack growth -did not occur during the proof test.
.,Pa:ié'a‘useful engineering quantity becauée it gives the fraction
of coﬁpqnents that break in servi?e”in_a period of time t. P, is a function
of. the time Sﬁ‘load, inéreasing with service time, t. By a proper selection of ths”
proof-testjbroéedure, Pa' éan in pr;ﬁcipﬁe be made arbitrarily émall. Since n is ;
' 3; R usually muﬁh iaiéer‘thgn n', the failure probability is very sensitive to i

the ratiO‘t/tnin. 'Therefore by selecting the service time to be less than

tmin' the value of P‘ can be reduced without limit. In practice this
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requires the proof test load to be increased over the value estimated if
crack growth did not occur du;ing the proof test. This increase of proof
test load is usually not excessive for t/tmin = 0.1.

K; is completely determined by the proof test conditions and can
be evaluated from the following equation which relates the crack propaga-

tion data to the proof test conditions:
&) 2w = 022 a-2)/2] [t + (t,+t )/ (ntD)] (14)
*p’ /Vp p- B P 9 !/ B /

The right hand side of this equation (14) is easily evaluated from the
proof test load, GP' the crack prorpagation parameter, n, the loading and
unloading times, tz and tu' and the time, tP, that the component is exposed

to the proof test load. To evaluate K; from the above equation, a plot of
Ki/v versus KI is useful, since K; can be easily evaluated from such a
diagram once (K;)z/vb has been determined from Eq. 14.*

‘ The use of Eq. (13) will now be demonstrated for abraded soda
lime silicate glass, for which a Weibull plot is given in Fig.10 and the
crack propagation data is given in Fig. ll. A plot of Ki/v versus KI
calculated from the crack propagation data is given in Fig. 12. For
illustrative purposes suppose that the glass is required to support a
load of 4 MN/m2 (~570 psi) for a period of 10° seconds in a wet environ-

meht;' By selecting tmin to be 106 seconds a proof test xatioc of 3 is




estimated from Fig. 13; thus 0_ = 12 MN/mz. This proof test ratio is

P
larger than the ratio of 2.6 that would be required if crack growth did
not occur during the proof test. If the'proof test ic conducted in a
moisture-free environment, n = 100 while n* = 20. KIC for soda lime
silicate gla3926 is 0.75 MN/m3/2 and from Fig. 10 m = 2.43 and do = 45
MN/mz. If the glass components are loaded and unloaded in a relatively
short time, ~10 sec, and if the proof load is applied for ~l1 sec, then
from Eq. (14) (K;)?‘/vP is calculated to be 2.66 x 1016. From the vacuum
curve in fig. 12, K; is estimated to be 0.71 MN/M3/2. By substituting
these values into Eq. 13 a value of 1.6 x 10-ll is obtained for Pa' which
for practical purposes is equal to zero. The fraction of specimens that
would have been broken in the proof test, given by PP = (GPKIC/GOK;)m

(see appendix), is 0.03. If the glass had been used without prior proof
testing the failure probability from Fig. 13 would have been approximately

5 sec). Thus by

5 x 10-3 at the service conditions (Ga = 4 MN/mz; t =10
breakihg only 3 percent of the components during the proof test, a much
greater assurance of reliability is obtained.

The assurance of reliability is not nearly as great if the proof
test is conducted in a wet environment, for which n = n* = 20, PFor the
same loading ?onditiops and proof load, (K;)z/vP is 7.95 x 1015' and
K; calculated from Fig. 1l (the éurve for water) is 0.58 MN/mz. P, is now
8.7 x 10‘5 and the fraction breaking during the prdof test is approximately

0.061. Although tha failure probability in a wet gnvironment can be improved

26




by increasing l(‘;,/.vP {by increasing tP for example) the values are never
as small as those obtained in a dr& environment using the same test
conditions. Thus, Whenever possible; inert environments should be used
for proof tests.

From the above results one may conclude that proof testing is
a valuable method of assuring the reliability of structural ceramics even
if crack growth occurs during the proof test. To apply the method, a
statistical description of the component strength and crack propagation
data in both an active and inert environment are needed. However, these
types of data are easy to obtain, and once these data have been obtained.

they may be used to establish proof test conditions that assure a low

failure probability after proof testing.

5.5 Protection of Components after Proof Testing

Although proof testing assures a minimum 1ifetime at the time
of the test, it loses value if subsequent damage occurs. This can be a
serious problem for materials which fail from surface flaws, since these
flaws are easily introduced into the material by rough handling. This
problem can also arise in materials that fail primarily from internal
flaws if the structure changes in service. Therefore some considerations
have to be given to protection of components after the proof test and
to periodic retesting of components during use.
- . For components that fail from surface flaws, caution in handling
or the adoption of. some protective measure after proof testing is necessary

to assure reliability during survice. For glass, which is particularly
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susceptible to surface damage, this means that the surfaces have to be
protected, perhaps by plastic coatings which would prevent abrasive damage
of the surface after proof testing. In the space shuttle windows, damage
after proof testing is avoided by the design of the windows. These are
triple paned, the tensile stress surfaces being on the interior of the
panes. Thus further surface damage by handling cannot occur.

The possibility of strength degradation in service due to the
initiation of new flaws must also be considered. This degradation could
occur by chemical reactions within the material, by phase transformations,
or by pore growth at high temperatures. Strength degradation of this kind
is not considered in the equations used to predict the time to failure.
Perhaps the best way to eliminate such degradation is by designing the
material so that new flaws will not generate during use. However, if this
is not possible, periodic proof testing may be needed to assure minimum
periods of service life.

6. SUMMARY AND GENERAL CONCLUSIONS

In this paper, proof testing is considered as a general method of
assuring reliability of ceramic components'for structural uses. A review
of current work in this f£ield is presented. The proof test technique is
compared with the older statistical apprcach for design, and it is
dcnon:tr#tod that'many of the uncertainties inherent in the statistical
approach are eliminated by the use of proof testing. It is shown for
example that lifetime predictions after proof testing are not affected by the
particular flaw ci‘c distribution contained within the specimen, whereas




predictions obtained by the statistical approach are affected by the

flaw distribution. In proof testing, predictions of lifetime depend more
on material properties, such as the value of the critical stress intensity
factor and the relationship between the stress intensity factor and the
rate of crack growth in a given environment. Since these both can be
determined to high precision, proof test diagrams derived from these
parameters should be reliable for the prediction of design lifetimes.
However, certain precautions must be exercised in the application of proof
testing. The proof test must duplicate the actual stresses expected in
the component. Otherwise, the most serious flaw in the specimen might
not be subjected to a proof test load. Crack propagation data used to
develop design diagrams for proof testing should represent the failure
mechanisms that occur in service. To ensure an equivalence between the
proof test diagram and the actual failure mechanism, crack propagation
data should be compared with data obtained from strength measurements.

An agreement between tiese two types of measurements will lend assurance
that the proof test diagram does in fact des;ribe the failure mechanism,
The loading procedure during proof test is also important since crack
growth during the proof test may result in weak components. To eliminate

_this problem, the proof test should be conducted in an environment that

e v . 1 e bt et thvs

is relatively ,_\1nert, An analysis Aof the loading procedure demonstrates

t:.hnt low proba!;i"litiu of failure after proof testing can be achieved even
if subcritical crack growth does occur during the proof test. The importance
of parasitic stresses as a limitation to the proof test method is also

discussed. Here it is noted that unexpected stresses may arhc during the
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proof test. These stresses may in fact damage the specimen to an extent
not predicted by the proof test technique. In some cases, the damage

may be unavoidable and proof testing may not be a viable procedure.
Finally, the necessity of protecting the specimen after proof testing is
emphasized since subsequent structural damage may degrade the specimen to
a greater extent than is predictgd by the proof test. Periodic proof

testing is recommended for materials that change structurally or develop

damage in service. Provided these precautions are followed, proof testing -

can be a practical method for assuring the structural reliability of

ceramic materials.
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APPENDIX

PROBABILITY OF FRACTURE AFTER PROOF TESTING

The failure probability after a proof test was calculated by Evans
and Fuller9 by considering the growth of cracks during the proof test.
The length to which a crack grows during a proof test can be calculated
from the definition of crack velocity, v=da/dt, and the functional
dependence of crack velocity on stress intensity factor, v = AK;.

Combining these equations and using the expression KI = g(t)¥Wa, the

following differential eqmation is obtained:
a./3t = ag®(t) YaV?
where the stress, o(t), is a function of time. If the stress, o(t), is

known, this equation can be integrated after rearranging the variables.

Evans and Fuller assumed that constant stress rates were used to load and

unload the component and that the proof stress was held for a time, tp

The total time to load the components to the proof test load, op. is given

by t!. - op/a‘z wlfuxo (.1,‘ is the stress rate. Similarly the total time to

unload the component is given by tu = OP/(‘}“. By using these values of time

as integration limits, equation (1A) can be integrated to give the following

equation for the crack length, a, after the proof test:

L
A=Al (a/a)

i
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where a, is the crack length before the proof test and a: is the critical
crack length that will just result in failure during the proof test. a: is
given by the proof test conditions:
=2
a, ={L oy (021 /2) ] (e, + (& + & /(n+ DIF™2 (3)
Since a is the crack length after the proof test, it is also the initial
crack length when the component is placed in service. Therefore, when the
compcnent is placed in service, the initial stress intensity factor KIi is
given by: Ky = oani. The time to failure after the proof test is given
by
2-n* * 2,2, %

t= 2K, /A 0,¢ (n =2) (43)
E¢. (4n) is identical to Eq. (4) of the text. A' and n* represent the crack
propagation parameters for an active enviromment while A and n used in Eqs.
(2A) and(3A) represent these parameters in the proof test environment. This
distinction is made becausc the proof test environmont may differ from the

test environment. By substituting Eq. (2A) and the equation for KI i into

Eq. (4A), the following equation is ocbtained for the failure time:

| , B2 =
* 2. » * " -
t= [2(0‘!!/&:)2 R TN I TR [t

By using a; to define a proof test stresc intensity factor: ‘; - opvv/az '
' »

and by using the identity: K, = Km (l&:/ltm) » the following equation is

ocbtained for the failure time:
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. . B2 n -2

R 4 a2 @ B =20 0T 1TE5
tew [““xc /o) A -z)] [xm/xp] {(ao/ao ) -1] (68)

The first term in brackets of Eq. (6A) is the minimum time to failure,
t i, Used to compute proof test diagrams. Therefore Eq. (6A) can be

min
simplified:

*
*n -2 * n-2
Y/ thin = (KK [(a/a) © -1 (78)

By expressing the crack lengths, a, and a:. of Eq. (7A) in terms of
the fracture strength, OIC' and by using the Weibull equation to relate the
strength to the failure probability, the failure time of Eq. (7A) can be
expressed in tearms of the failure probability. The crack lengths and the
strengths are related by the following equation:

W2, \
(aolao) cxl_c/ctIc (8A)
since 0_. = K_ /v/a_and 9yc " -k ila For a given strength dis‘tr*.bution

1 " Fro/?a, ax 1’78, g g $ '
the cumulative probability for failure, P, s related to t:he strength, ¢ :c'
by the woibuu equation:

v
fa &n (1/1-?) =-min (cm/ao) (9A)

vhere m and o, are empirically determined constants. Yor sutficiently
small values of P (P < 0.1): &n(1/1-P) = P, Therefore P = (o /0 ™ and
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x _
PP = (UIC/Oo)m, from which the following equation is obtained:

*m
P/PP = (0__/C_)

1¢’ %10 (104)

where PP is equal to the fraction of specimens broken during the proof

test. Both P and Py refer to the initial flaw distribution, the distribution
before the proof test. Crack growth alters the initial flaw distribution

so that after the proof test the probabilities for failure, Pa' is given

by the following equation:

P'l = (P - PP)/(l - PP)

If only a small fraction of the components tested are broken, Py is a

small number and to a good approximation:

P =P -p
a

P (127)

By substituting Egs. (12A), (10A), and (8A) into Eq. (7A), an equation
rolating the failure time, t, to the failure probability, Py is cbtained:

n=2 n.-z
By 22 (13A)

| ]
/b, = /K" T2 v e e

n-2
For a p.oof test to be of any value P, <« Py in which case (1 + P./PP) »




n-2
can be expanded by the binomial theorem to give: (1 + Pa/PP) " -

1+ (n-=-2) Pa/mPP' Substituting this equation into Eq. (13A) we obtain

the following equation relating the failure probability Pa to the failure

tilne' t:

n-2

m ® n-2 n*-2
Pa - PP(;:EQ(KP/KIC) (t/tmin) (14A)

By eliminating PP' Eq. (14A) can be expressed in terms of the Weibull

parameters and crack propagation parameters. For small values of PP:

* m . * * *Y/‘T
P = (OIC/GO) , and from the definitions of %0 and KP (KIC =0 Ya ;

P

K* o] Y/r‘ * * ubsti i th two ations into
p p ao). GIC = op(KIC/KP). Substituting these equ

Eq. (14A) we obtain the relationship between the failure probability, Pa.

and the Weibull and crack propagation parameters:

n-2

m m * n-m-2 n*-2
Pa = oo /%) /Ky (t/tnin) (15R)

m and oo of this equation are determined by a Weibull fit of strength

*
data (measured in an inert environment); n and n are crack propagation
exponents measured respectively in an inert and active enviromment; and

tmin is .determined from a proof test diagram.

*
KP is determined by the proof test conditions. By substituting Eq. (33)

* *
into the definition of KP (KP = OpY/ao) we obtain the following equation

*
for KP:
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* - n.n n-2
Kp OPY[(AO'P Y (n - 2)/2) (tP + (tz + tu)/n + 1)1 ; (16An)

Eqg. (16A) can be expressed in a simpler form by defining a crack

velocity v_: v_ = AKPn, Physically, v

p° Vp p is the velocity of a crack cf

*
length al if the proof test load is applied instantaneously so that crack
growth does not occur during the loading period. After rearranging Eq. (16A)

and using the definition of Vs the following eguation is obtained:
&) 2w = 10 2% - 2)/21 Tt + (£, + £ )/(m+ )] (178)
p’ /Vp p- " P Lt N '

The left-hand side of this equation is determined by the crack propagation
data, while the right-hand side is determined by the loading conditions.

%*
To determine KP, the right-hand side of Eq. (17A) is evaluated from the
[.

*
proof test conditions,and KP is determined from an experimental plot of

Ki‘/vP versus K This procedure is illustrated for abraded soda lime

I
silicate glars in the main body of the text.
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Figure Captions

Weibull plot of the strength data for a low expansion glass beiug
considered for the Space Shuttle. The hyperbola gives 95% confidence
limits for the best straight-line fit of the data, m = 6,29; 0 =
250 MN/m + After Wiederhorn, Evans, Fuller and Johnson, referegce 3.

Statistically based design diagram. For a given value of the failure
probability, each line on this diagram relates the failure time to

the applied stress. The crogs-hatched area gives 95 percent confidence
limits for the position of each line.

Design diagram based on proof testing. For a given value of the

proof test ratio, Op/05, each line on this diagram relates the

minimum failure time to the applied stress. The numbers over each

line give Op/0,. The probability lines from figure 2 are included
here for comparison.

Curves to estimate g‘l for sinusoidal load. After Evans and Fuller,
reference 8,

The effect of pH on crack propagation in the low expansion glass being
considered for the Space Shuttle. After Wiederhorn, Evans, Fuller and
Johnson, reference 3.

Proof test diagram comparing power function and exponential function
representations of the crack propagation data. The cross, +, marks
the lower limit of the crack propagation data. After Wiederhorn,
Evans, Fuller and Johnson, reference 3.

Strength as a function of loading rate. The brackets represent 95
percent confidence limits for the mean strengths. The solid line
is a least squares fit of the strength data. The dashed line was
calculated from the crack velocity data for the low -expansion glass

being considered for the Space Shuttle. After Wiederhorn, Evans,
Fuller and Johnson, reference 3. '

,-A comparison of the stress rate dependence of the strength predicted

from crack velocity data with experimental data obtained by Lange
for similar data. After A. G. Evans and S. M. Wiederhorn, reference 22.

Dependence of the crack length, a, on the initial crack length, a_,
and crack propagation exponent n. A significant amount of crack
growth ocours when a5 = aj. For a 5 percent increase in crack length,

a= 0.998 a¥ un-loo;a-ogoagun-zo.
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10.

11.

12.

13.

Weibull plot of strength data for abraded soda-lime silicate glass.
After Evans and Wiederhorn, reference 7.

Crack propagation data for soda lime silicate glass in water12 and in
vacuum. 2

Crack propagation data from figure 11 replotted as Ki/v versus KI.

'Design diagram based on proof testing. Data for soda lime silicate

glass. After Evans and Wiederhorn, reference 7.
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Fig. 1.
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Weibull plot of the strength data for a low expansion glass being
considered for the Space Shuttle. The hyperbola gives 95% confidence
limits for the best straight-line fit of the data. m=6.29; ¢ =

250'MN/m2. After Wiederhorn, Evans, Fuller and Johnson, referegce 3.
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Statistically based design diagram.

For a given value of the failure

probability, each line on this diagram relates the failure time to

the applied stress.
limits for the position of each line.

42

The cross-~hatched area gives 95 percent confidence
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Fig. 3. Design diagram based on proof testing. For a given value of the
proof test ratio, Op/0a, each line on this diagram relates the
minimum failure time to the applied stress. The numbers ovex aach
line give 0p/C,. The probability lines from figure 2 are ‘rrluded
here for comparison.
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Curves to estimate g"l for sinusoidal load.
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Fig. 5,
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The effect of pH on crack propagation in the low expansion glass being
considered for the Space Shuttle. After Wiederhorn, Evans, Fuller and
Johnson, reference 3.
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Fig. 6. Proof test diagram comparing power function and exponéntial function

representations of the crack propagation data. The cross, +, marks
the lower limit of the crack propagation data. After Wiederhorn,
Evans, Fuller and Johnson, reference 3.
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Fig' 7-
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Strength as a function of loading rate. The brackets represent 95
percent confidence limits for the mean strengths. The solid line
is a least Squares fit of the strength data. The dashed line was
calculated from the crack velocity data for the low expansion glass

being considered for the Space Shuttle. After Wiederhorn, Evans,
Fuller and Johnson, reference 3.

47



600

T T T T T T
s00}- —
420
§T
E
P
Z 300 —
[75]
[%2]
W
[«
-
n I 1400°C
(Y]
[+
P 200 -
Q
[ ¢
[+ 4
[T
100 | 1 | L | |

02 o0 i 10 102 103 104 0%
STRESS RATE (N sec™!)

Fig. 8. A comparison of the stress rate dependence of the strength predicted
from crack velocity data with experimental data obtained by Lange
for similar data. After A. G. Evans and S. M. Wiederhorn, reference 22.
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Fig. 9. Dependence ef the crack length, a,

and crack propagation exponent n. & significant amount of crack

growth.occufs when ag = aj. For a 5 percent increase in crack length,
2,7 0.998 a  if n = 100; a_= 0.90 aj if n = 20.

on the initia’. crack length, a ,
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Weibull plot of strength data for abraded soda-lime silicate glass.
After Evans and Wiederhorn, reference 7.
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Fig. 13. Design diagram based on proof testing. Data for soda lime silicate
glass. After Evans and Wiederhorn, reference 7. '
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