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I. INTRODUCTION

The purpose of this paper is to summarize work of Xarr (1972a,
1972b, 1973) concerning a class of models of combat attrition
processes which, in the sense that attrition occurs instantaneously,
do not evolve over time (although discrete time dynamic processes
can be constructed from these essentially static models as we briefly
discuss). We refer the reader to Karr (1974) for a detailed dis-
cussion of a class of continuous time parameter stochastic processes
analogous to F. W. Lanchester's differential equation models.

Implementation of these static models in ccmpiterized combat simu-
lations is sometim. , by means of an exponential approximation to an
equation for expecied attrition which is binomial in form (hence the
title of the paper). We discuss the desirability and applicability of
such approximations, but only after first giving rigorous derivations,
from carefully and precisely stated probabilistic assumptions, of the
expected attritions in homogeneous and heterogeneous cases of point
fire combat (where a target must bz detected before it can be attacked)
and for area fire directed at a homogeneous set of targets. The meaning
and appropriateness of the families of underlying assumptions may
then be discussed in a useful manner. In addition to exponential
approximations we consider scme computational simplifications in the
heterogeneous point fire case and difficulties which occur when, as
happens in an iterative conputerized simulation, random variables
are replaced in computstions by their expectations.

The attrition equations we derive here are one-sided in the sense
of expressing attrition to each force in terms of its initial strength,
the initial strength of the opposition, and parameters cdescribing the
physical situation., All attrition is suffered instantaneously. Two-
sided models can be constructed but only in a rather contrived manner.

1
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II., HOMOGENECUS POINT FIRE MODEL

1. Basic Derivation

Consider a one-siaed combat between two homogeneous forces, a
force of R indistinsuishable ftargets® and a force of B indis-

tinguishable "searchers®, We make the following a3sumptions cor -
cerning this combat,

Al) At a fixed time all R targets become vulnerable to
detection and attack by the B3 searchers;

-

A2) The probakility that the ith searchar detects the jth
targett is d foralli=1, ..., Band j = 1, ., R. Each par-
ticular searcher detects different targets; independently cf one
another;

A3) R searcher who makes no detections makes no attack. A
searcher who makes one or more detections chooses one target to
attack according to a uniform distribution over the set of targets
he has detected, independent of his detection process;

A4) The conditional probability that a searcher kills a target

given detection and attack is k , for all searchers and targets;
AS) No searcher may attack more than one target;

A6) Detection and attack processes of different searchers are
mutually independent.

We begin by computing the expected number of tergets killed,

(1) FROPOSITION. Assume Al) - A6) are satisfied. Then if X denotes

the number of targets killed, we have

BLK] = R{L - (1 - & 11 - (1~ NP} .
2
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PROOF. By elementary conditional probability arguments,

P{searcher i kills target i}

}]

P{searcher i detects and attacks and kills target i}

P{ searcher i kills target j | searcher i detects and attacks
' target j}. P{searcher i detects and attacks target j}

k P {searcher i detects and attacks target i}

kP {searcher 1 attacks target j | searcher 1 detects target j}
* P{searcher i detects target j}

kd P{ searcher i attacks target j | searcher i detects target j} .

]
{ By the Law of Total Probability,
P{ searcher i attacks target j | searcher i detects target j}
R-1
Y = T P{ searcher 1 attacks target 3j and detects m other targetsl
m=0

searcher ‘i detects targét j}

b R-1
z P{ searcher i- attacks target j ! searcher i detects
m=0

target j and exactly m other targets}
+ P{searcher i detects exactly m other targets|
searcher 1 detects target j}

—
B

by the identity P{A n B|C} = PjA[B n clPi3|c} .

By assumption A3)

P{searcher i attacks target j ! searcher i detects target j

1
m4+ 1

T g T —

and exactly m other targets}=

while by A2)

P{searcher i detects exactly m of the other R-1 tarqets}

(;‘1) & (1 - R
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Therefore

P{searcher i attacks target j ‘ searcher 1 detects target j}

R-1
s L (R-l) d (1 - qR1

m=0 ™ *+ I\m
R-1
=- 1 (R-1)! gm R-m-1
RIS e A
| _1 R R! L1 _ gyR-(mel)
"W P W DUR - m ¥ D)

=2 [1- -

b
S We thus obtain
P{searcher i kills target j }=‘§ (L -.1- d)R1

which, as one expects, is independent of i and j . It follows by

the independence assumption A6) that

(2) Pitarget j is killed}

= 1 -Jp target j is not killed}
B .
' = 1 - P{ N {searcher i does not kill target 3j}}
L/ i=1
- B
l =1 - 1 {P searcher i does not kill target j}
] i=1
B R
y =1- 01 Q-§(l-@-a0
b i=1
R.B

r =1-@Q-g0l-@-dD




so that we finally have

R
T P{target j is killed}
j=1

ETX]

 {1-a-g K- - afpd)
le

RIL- (1-=T11-(1-afDP

as asserted,

==

The possibility that two or more searchers "kill" the same
target is not excluded,

2., Probability Distribution of the Number of Kills

To compute the probability distribution of the number of targets
killed, which is needed to extend this static model to a discrete time
dynamic model, we take an alternative approach, It is not true, as
one might naively conjecture, that the number of targets killed is
binomially distributed with parameters R and q , where q is the
probability given on the right hand side oI (2). The reason for this
is that aven though searchers ooerate '~,dependently of one another,
different targets do not die independen:ly of one another, Since each
searcher can attack at most one target. “nowing that a8 particular
target was killed means that some other target was not attacked by
the sea.cher that kiiled the former target and is hence less likely
to have been killed.

(3) PROPOSITION. For =« such thaz m < R and m*< B we have

(4 ﬂx—ﬂ—/ﬂ T m*(\qu+ =y

ymJ v=0 }

where

= w1 - (1 - .
5
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PROOF. To begin, the Law of Total Probability implies that
B

P{K = mf = ¥ P{K = m, £ "fatal" attacks are made}
£=m
B
= T P{K =m|s "fatal" attacks are made}
L=m

P{s "fatal" attacks are made}

where the sun is zero if the lower limit exceeds the upper. Here a
"fatal® attack is one which would kill the target attacked if no
other attacker attacked the same target. The fact that two or more
searchers may simultaneously attack and "kill® the same target means
that there may be more *"fatal" attacks than targets killed.

Now by (2), since each searcher can kill at most one target,

P{searcher i makes a "fatal" attack}

R

= T P{searcher i kills target j}
j=l
R

= « K1 _ (1 - g9R

(5) - .. R [l (-L d) ]

J"‘.;

=k - (1-dY

=q .

But by the independence assumption A6) different searchers make
tfatal" attacks independently of one another, so

P{exactly 4 “fatal! attacks are made}

_ (B ’ B-g
- (z) (a)? (1 - q)P* .

Next, one notes that computing the conditional prcbability
P{ K = m|exactly 4 "fatal® attacks are made} is equivalent to the
problem in combinatorial probability of finding the probability
that if ¢ indistinguishable balls are placed into R indistin-
guishable boxes, independently and according to a uniform
6
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distribution, exactlQ R-m boxes remain empty. Th.s is so in view
of the fact that

P{searcher i kills target j|searcher i makes a "fatal" attack} =

ol

for all i and j , which follows at once from expressions above, The
occupancy probability is well-known and by Feller (1967, p. 6C) is

) E o (et

The Proposition now follows by some elementary computations.]

We may use Proposition (3) to construct a ‘wo-sided, discrete-
time, dynamic version of the unilateral. static attrition process -
studied in Proposition (l1). We begin by 1.nting that we can use
hypotheses Rl) - A6) to compute attrition to the B searchers if
roles were reversed and these were subject to detecticn, attack,
and destruction by the R targets, Dcrection and kill probabili-
ties are in general a function of the side attacking, so if d’, k*
are the parameters of the complementary process and I denotes the
number of searchers killed, then by Proposition,(%)

n _ Qnt
(6) P{L = n} = (ﬁ) Z ¢-1)" z(}‘)[(l-qB) + -

where

a = k1 - (1-d% .
One way to reulize a two-sided attrition process from our one-
sided model is to suppouse that each side is vulnerable to the
opposition's initial strength, and that the twWo siaes independently
attrit each other according to equations (4) and (£). This is
unsatisfying from a physical standpoint because it essentially
requires assuming that all detections and target choices are made

7

[

Lo Soac %R0

Db,




L ey B NG T S T e S O e y —*ﬁ*ﬁ-—-—mwﬂ

and then all shots fired simultaneouslv. . \

This assumption does, however, lead to a dynamie model based
on the stated assumptions. The model is a discrete time stochastic
rrocess constructed on the assumption that at each time point an

. interaction occurs &s described in the preceding paragraph, in-
volving cnly those searchers and targets that have survived
previous interactions and which is otherwise independent of the
prior history of the process. Let P,(5,R; k) be the probability {

% v o S

that exactly k targets survive a single interaction if there are

J—

B searchers and R targets present; that is Pl(B,R; k) dis
P{K = R-k} as given by (4). Similarly, let P,(R,B; j) be P{L = B-3}
as given by (6). Let T, denote the number of targets surviving

k after n dinteractions and Sn the corresponding number of |
{ surviving searchers.

Ad.

The preceding statements together imply the following result.

(7) THEOREM. Under the preceding hypotheses, the process ((Sn’Tn))nzl

is a two-dimensional Markov process with state space {0,1,2,h..} X
» {0,1,2,...} and transition matrix P given by

P((B,R), (3,k)) = Py(B,R; J) = Pyo(B,R; K) . )

’ 3. Exponential Approximations

F‘Z Use of the approximation

l (8a) BIK] ~ R[1 - exp( - B¥[1 - (1 - 1))
\

or the further approximation

k -dR
(8b) E[K] ~ R[1 - exp( - %—[l -e D] ,
is valid in the sense that
Lm e -@-a =0
n+o, a {0

but largely unnecessary, especially within the context of computerized

8




combat simulations. The correct expression given in (1) can be

cocmputed as quickly (or perhaps 2ver more quickly, depending on

how a specific computer performs exponentiations) as either ( 8a)

or (8b). Moreover, ‘he approximations may be rather poor for small
~ values of B or R, or moderately large values of k and d.

4, Use of Expectations &s Inputs

Another problem involved in the use of this model in com-

r puterized simulations is the replacement of random variables in
certain expressiouiis by the expectations of those random variables.
To be more specific, suppose in the Markov process of Theorem (7)

we wanted to compute E[T2], the expected number of targets surviving
two interactions, Let us assume for simplicity that only targets
can be killed. Then subject to the injtial conditions of B
searchers and R targets we have

z
j k
where P2 is the square of the matrix P defined in (7). One might

seek, however, especially in simulation models, to use instead the
tapproximation!

E[T,] ~ R - E[T;]
- ngl] 1-(1-~- ET%ET (L -(1 - d)B[Tllj)B ,

with E[Tl] computed using Propostion (1). What is done here is co
suppose there are exactly E[Tl] targets surviving after the first
interaction, even though this number need not be an integer (which
doesn't matter tco much, since the right-hand side of (1) makes
sense for any B e&nd R) and to assess the expected number of kills
in the second interaction using E[Tl] as the initial number of
targats.
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This technique is simply wrong; it is not an approximation
because we cannot estimate the error committed by its use, nor
give a limiting process leading tc no error, even though, as the
example below indicates, that error may be rather small.

The following example gives an illustration.

EXaMPLE, Suppose that B = 1. Then (Tn) is a Markov process
with transition matrix P given by

k(1 - (1 - &N j=R-1
P(R,5) =( 1 - K[1 - (1 - ¥ 5 =R
0 otherwise
Suppose
d=.1
k=.5
TO =3 .
Restricted to {0,1,2,3} P is given by
1l 0
.05 .95
P= 1o  .095 .915 O ’
0 0 .1405 8595
By direct computation
1l 0 0
, | .10 .90
P- = L]
.005 .185 .81 0
0 014 .246 .74

Thus

E(T,] = 2P(3,2) + 3P(3,3) = 2.85

10




and

ErT,] = P2(3,1) + 2p%(3,2) + 3P%(3,3) = 2.72 .
If we try to compute E[T2] as

1001 - gy 11 - @ - 0l

we obtain 2.70 which is near to the correct value 2,72 in absolute

terms and roughly one percent different in relative terms.

Hence in this case the error is small, but the error grows
with n and cannot, so far as we have been able to investigate,
be estimated or bounded a priori. Thus there remains the possibility
of substantial error if (1) is used as an assessment equation in a
dynamic combat model.

1l
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IIT. HETEROGENEOUS POINT FIRE MOREL

1. The Basic Modeli

In this section we extend the model of Section IT to the case
where there are several types of targets and searchers, with detec-
tion and kill probabilities dependent on the type of target and type
of searcher. The physics of the process, however, remains unchanged.

Let us assume that there are M types of searchers, Bi searchers
of type i (i =1, ..., M), N types of targets, and Rj targets of
type j (3 =1, ..., N). We will impose the following hypotheses:

ARl) At a fixed time all targets become vulnerable to detection
and attack;

A2) The probability that a given, fixed searcher of type i
detects a given, fixed target of type j is dij‘

A3) Of the targets (of ali kinds) detected by a given searcher,
he chooses one to fire upon according to a uniform distribution,

A4) Given that he detects and fires upon a target of type j,
a given searcher of type i destroys that target with prcbability kij;

AS) A given searcher detects different targets independently of
onz another;

A6) No searcher may fire more than once;

A7) The detection and firing processes of all the searchers are
mutually independent,

We wish to compute, under these assumptions, the expected number
of targets of each type destroyed. First, we give an analytical
solution, Let

B = Bl + se0 + BM

13 Preceding page blank




denote the total number of searchers aud

R = R F oese + RN

the tot:al number of targets. Let Kj be the number of type j targets
destroyed.

" (9) THEOREM, Under the assumptions Al) -~ A7) the expected
nunber of type j targets destroyed is given by
B3
=R.{1 - - k
ao)  Erx)) =Ry lr=13 (1 - dyghgy2Ci, 500 )
where
Ry Kjy Ryl Ry, Ry

(11) p(i,j) = Z. .\Z.‘, 2 Z Z

= = - —

Iy 0 rj-l C rJ =0 rJ+l =0 rN—O

R.-1-r.

—_— (le)dj(l-d 33
L+ £ v\, /
ps1 P 3

R\ ¢ R -1

x 1 qdiq(l—d y & ap .

L<qeN A
ot @

PROOF. To begin, let us define the following events

Kij(k,z) = {gth target of type j is killed by kth searcher of
type i}
B, (x ) = {Lt“ target of type j is attacked by kP gearcher

of cype %}

Dij(k,z) = {zth target or type j is -".tected by kth searcher
of type i}

for i <M, j <N, k <B; and % < Ry.

14
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By A2) and RA4), P{Kij(k,z)} is independert of k and g .
Moreover, A7) implies that

P{nth target of type j is killed!
M { Bi
=1- 0 I1-PK.(3,01]°.
i=1 51}

We now need to find the probabilities P{Kij(k,z)}. To begin,
since

Ki50K54) € Ay5(k,0) € Dys(k, 2)

we have

PIK 506 00F = PUK; (G 0)|By 50 00} - PR SC, 00}
kij P;Aij(k,z)lnij(k,z>}P{Dij(k,z)}

kij P{Aij(k,z)|Dij(k,£)}dij .

We may write the remaining conditional probability, which is
independent of k and 4 for fixed i and j, as

P{R, (K, 2)| D 5 (k, 23}

= E * e Z Z * o0 L
rj=0 rl=3 rj_1=0 erluo rN—O

P{Ai’j(k,z)lnij(k,z) i1 Gy5(rys vy Py Ky}
X P{Gij(rl, cees Ty k, 20

h searcher of type

where Gij(rl, vees Tl k,£) is the event "the x®
i detects, in addition to che zth target of type j, rj other type j
targets and rp targets of type p # j," whose probability is independent

of k and 4 . By A3)
15
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1+ r

1
P{Aij(k,z)lGij(rl, LA ) I‘N; k’z)} = __T___ ,
El P

2

while by AS)

=
RJ 4. rj Rj-l-I‘j
J
R\ r RgT
q q _d. qQ 9
* Ll )te @i ’
q

q#j

which, as expected, is independent of k and g when i and j
are fixed.

Collecting terms now yields the asserted result,

| £t ]

Instead of the assumptions Al) and A3) corcerning the physics
of the process of detection and attack, we could assume that targets
become vulnerable to a given searcher sequentially in a randomly
chosen order, with all R! orders equally probable, that each target
is either detectrd or not and that the first detected target is fired

upon., This process occurs once for each searcher independently of the
processes corresponding to other searchers, but no targets are destroyed
until the end of the entire process. This interpretation is useful in

considering allocation of fire problems.

2. Fire Allocation

It should be noted that this model has no provision for searcher
determination of whether a given detected target is to be attacked or
not. In reality a searcher might be tempted to pass over low value
targets in the hope of detecting a high value target. Or, if all
targets are vulnerable simultaneously, a given searcher would not

16
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choose among them uniformly, but would instead choose the target whose
destructicn entails the largest reward to him,

While the model makes no provision for such a choice mechanism,
it could be incorporated in the ":imultaneously vulnerable" inter-
pretation., Referring to the proof of (9 ), we see that the uniform
target choice is manifested solely in the conditional probability
1
N

1+ ¢ r
n=1

&

PR (6, 0)]65(ry, ony Ty 00} =

p

Hence a different rule for target choice can be incorporated
simply by changing the form of this conditional pronability, subject
to somz obvious regularity conditions,

EXAMPLE. Suppose the value to a type i searcher of destroying
a type j target is uij‘ Then

v.. = k..u, .
ij ij i3

is the expected return from an attack upnn type j turget, TIhe rule
“0f the targets detected fire at one whose destiuction is of maximal

value® leads to

P{Aij(k,z)IGij(rl, vees Ty Ky i)}

1 . ) .
1+, if Vij 2 Yim for all m # j such that r, >0,
0 otherwise.

Here we have assum:< for simplicity that Vij # Vim whenever j # m.
Other examples can be described similarly.

3. Purther Computations

To implement (10) as the attrition equation in a computerized
combat model would be laborious, and lead to a cumbersome result.
17

. e . -~ - -

-

’r'---l-z__f-wer‘“r———:"mnn--l--l-rmrqu-:-qnnnu-rnpﬂ-w-m'--' E%g =

]




st
*
-

Let us consider the difficulties more carefully beginning with
some simple cases. First suppose that

N=23
and

Rl = R2 =

|
e
1}
!—l

In this case, (11) yields

1l 1 \

. - 1 1l 2 1-2

p(1,1) = L E 3 77 m [(z) dip (1 - ds5)
£=0 n=0

1}
(]
~—
~
=
1
),
.
N
A
~
=
i
£,
(W
N
)

i
o
1
|
—
o

which doesn't look too ugly; analogous expressions for p(i,2) and

p(i,3) clearly exist. If

and

p(i,1) = 1 5 (d + d + d )
( ’ ) T2 i2 i3 i4

+ % (dgp dyg + dyp dyy + dy3dgg)

fl= W

dip d53 454 -

18

e p—

Rt g




T ———— Ay

§

-y
+

v —

a\rum-qm

The general pattern is by now evident; we summarize it in the
following result, whose inductive proof we omit.

(12) PROPOSITION. For any N , if

Rl=R2=R3=,,,=RN=l,

then for 1 <i<Mand 1< j <N,

m . . . . i,i i,i i,1
=3 1. > 1>l bRk b b
m=2 27% m -m-1 + 2

1,73 1,73 173

m

p(i,j) =1 + g(_l)“‘ z 2 z d ...d,
- i

Proposition (12) is not so useless as it first appears: in a
computer implementation one could assume that there is only one
target of each type--even thougii scme targets have the same prob-
bilities of detection and kill given detection--then carry out the
attrition calculation using (10) and (12). If targets were grouped
into classes of indistinguishable (except by artificial notation)
objects, attrition AR, to objects in the kth class would then be
given by

M k. .p(d .)]Bi
(13) AR, = % ( - 0 L -a..k..p(d,]
ke \ = 13713
h
. .t . N
where Ck is the set of indices j such that the j  object kelongs

to the k7 class, For fixed i and k , dij and kij are indepen-

dent of j ¢ Ck‘

4, Approximations and Simplifications

While (13) could be implemented on a computer, its use might
involve lcng and time~consuming computations, especially if R were
of the magnitude of the number of soldiers in a moderate-sized land
battle, Hence it is worthwhils to seek simplified versions of (10),
several of which we now proceed to consider.
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The following result, which aids in developing simplified versions
of (10), shows that the ccmplicated form of (10) arises from having J
more than one type of target, rather than from having more than one
type of searcher.

(14) PROPOSITION. If N = 1, then

M K. By
(15) ErK] = R( -1 (1 - s (L - di)R]) )

B e VR

i=l
where subscripts i denote the type of searcher,.
PROOF. From (ll) we have for each i

R L R-Dy g g BT
l+0r ( r iv-e i

p(i) = p(i,1) = ¢
r=0

T ————

1

which, as indicated in the proof of Proposition (1), is equal to

1 R -
ﬁ(l—(l-di)> P

ki

yielding (15). E ﬁ

We next discuss three simplified versions of (1Q) for the case
N > 1. The notation AR__j = E[Kj] is used hereafter.

a. Successive Application of All Searchers to Each Type of

Target, If there were only type j targets then by (15) the expected 4
number of such targets destroyed would be
B
M Ky ) 1]
(16) AR.-_j = Rj[l - igl(l - Rj[i - (1 - dij) .

One means of attrition assessment would calculate each Agjby (16),
but this method clearly gives an advantage to searchers which is
unwarranted in terms of assumption Al), In effect, this methcd
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allows each searcher one shot at each type of target, rather than
one ?hot altogether.

b. Calculation With Weighted Probabilities., For each i
quantity

, the

1 N
4, == % d..R.
1 R j=1 13773
represents a detection probability for tvpe i searchers which is
averaged with respect to the numbers of targets present, while

k. == T k..R.
i R 521 1377
is a similarly averaged conditional probability of kill given detection.

We could then approximate the original attrition process by one
with R targets of a single type and for each i Bj searchers of
type i with detection and kill probabilities Hi and Fi, respectively.
Using (15), attrition tc these R targets would be

AR = R( - < i %[l -k Hi)R])Bi)

i=1

-

this attrition AR , so that

K. a0
(17) ARJ. = Rj( - %1(1 - -R&[l - (1 - Ei)“J) \ .

i= /

Rgainst type i targets would then be assessed the fraction Rj/R of

In (17) it was unnecessary to use the averaged conditirnal
probabilities of kill given detection and attack, and we could
as well (and more accurately) have written

B.
8
(17;\ AR. = R.11 - g l...lii._il—(l_d.)R . -
’ J J i=1 R €1

It is possible, using one further averaging step, to use the
homogeneous equation directly. The numbers

21
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d=—1§ T B.4.
i=p * 7
and
M
k=% Y B.K.
i=1 121

are, respectively, probabilities of detection and kill given detection
averaged with respect to both targets and searchers.

We may approximate the original attrition process by an attrition
process with R targets of a single type, B searchers of a single
type, an’ parameters d,k as computed just atcve, The exact attri-
tion in such a process is given by

B
AR=R(1-(1-§[1—(1-:1)R])> :

Using the same attrition apportiomment as in (17), these three
equations yield the following values for the expected attrition to
type j targets

B
- _¢1 .k - _ 43R .
(18) AR, = Rj<l (L-5M-(1-dD )

¢. Prior Apportionment of Searchers. We .ight also model the

attrition process as a number of smaller erngagements by, prior to
attrition assessment, Jividing the searchers among different types
of targets on the basis of relative numbers of targets present and
vulnerable. That is, type j targets would be vulnerable to only

R.

B(i,j) = B, - &

type i searchers, rather than to all Bi type i searchers. One can
interpret this as assigning to each searcher one and only one type
of target.

22
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Using (15), we see that attrition to type j targets is given in
this case by

M R. \B(i’j>)

X. .
(193} AR. = R.(l -1 (1 - -—11{1 -(1-4d..97 )
’ o J \ i:-l Rj ( 13) -.l i

But there are other methods of prior searcher allocation which
are more closely related to our model and to methods developed by
L. B. Anderson (1973). The point is to compute explicitly the
searcher allocation for a Mtypicall target set (w2 leave the term
purposely vague) and to use this allocation to allocate searchers
in each attrition computation, as described below.

Suppose that tj is the proportion of a "typicall target set

which are type j targets anc that agj

is the fraction of the shots
fired by a type i searcher which are directed at type j targets

when the target set is "typical®., If .e put

at.
23
€.
J

(20) aj; =

then the fraction of shots fired by a type i searcher wnich are
aimed at type j targets when the target set consists of Rj targets
of type j (j =1, ..., N) is given by

et e I
L s R
K ik"k
and we could then define
a..R.
. e i35
B(i,j) = B; m—p >
ROk

to be used in (19).
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An interesting question at this point is, Can the agj be derived
from other given quantities using the assumptions set forth above?
To begin, we note that the object is to derive a distribution of the
fire of each searcher. For the model described by Al) - A7) we have

_ the following result.

(21) PROPOSITION, For each i and 3 , the conditional probabi-
lity that a fixed type i searcher attacks some type j target, given
that the searcher makes an attack, is

R.d,.p(i,5)
(22) — R
1- 1 (L-d;,)
k=1 ik

with p(i,j) defined by (11).

PROOF. 1In the proof of (9) we showed that the probability that the

th

k="' searcher of type i attacks the zth target of type j is given by

P{Aij(k>3)} = dijp(i,j)

The probability that the kth

one minus the probability that he fails to mae a detection; by AS5)

type i searcher makes an attack is

this latter probability is

N Rk

kgl (1 - dik) .
By elementary conditional probability argumernts (22) is now
obtained. ]

Suppose now that a ®typical" target set consists of R; targets
of type j, j =1, ..., N, We can then define




~

and wefine, through (22),

t t,. .
R Rjdijp (1,3)
ij N rE
l1- 10 (L-4d.,)%
k=1 ik
with pt(i,j) computed by (1ll) with the Rk there replaced by RE. Then,
to compute attrition in an engagement with arbitrary numbers Rl’ cey

RN of targets, we would compute the oy by (20) and apply equation
(19). In use, this procedure would require only one computation of
p(i,j)'s-~-that for the "typical® target set.

The rationale behind this procedure is that in a statistical sense
of the long run, the probability that a given type of target is fired
upon, given that there is a shot fired, is the same as the fraccion of
shots fired at type j targets if the actrition process were carried
out experimentally a large number of times.

S. A Multiple Shot Model

The preceding discussion shows that the complexity of (10) and
(11) results almost entirely from the Assumption A3) that each
searcher fires at most one shot, If we replace A3) by

A3)" Each searcher has sufficient firing capability to fire
once and only once at each target he detects,

then we have the following result.
(23) PROPOSITION. Under Assumptions Al), A2), A3)”, A4) - A7),

M B;
=R, (1- - d, k..
(24) bRy = Ry (1 igl (1 - djskss) )

for each j .

We omit the simple proof. The equation (24) is a reasonable
and more easily computable alternative to (10), especially for
modeling situations in which the one-shot hypothesis A3) seems

unrealistic, 25




s T T il

6. Exponential Approximations

As in the homogeneous case

various exponential approximations

to the attrition equations of this section are possible, some of
which we give below, Corresponding to (16) are

1
AR. ~ R. - - =
R:J RJ[ZL exp( R.
J
and
AR, ~ R.|1 - exp{ - 1
J J Rj

Approximations of (17) are

l
L‘R. ~~ R. l - exp -
[ (

and

. ~R.|1 - ex -
ARJ J[ p(

M R.
o 3
121 Bikij[l (- 455 ])]

M -d, R
5 B.k..[l e 13 3])] )
i=p * I

ol
™M=
0
n
o
%)
ln)
=
i
~
1=
[}
0,
-~
)
—
——

ool

[ g IS
Pw
B
——

=

]
-2
—_

i=1

Equation (18) is approximated as

ARj ~ Rj[l - exp(-
and

ARJ. ~ Rj[l - exp(—
Finally, two approximations to

AR, ~ R.|1 - -
R:J RJ[ZL exp(

and

AR. ~ R. - -
RJ RJ[l exp(

Bk R
-R—El'(l-d) ])]

%k (1 - e-dR])] .

(19) are

y M Ry ]
R g Bikij[l - (1 - dij)]
i=1
M -d..R.
1 17
— z B-k. . 1 - e - ))] .
R 4o 4 13(

pp— D e mu‘e—J‘"




Such relations as these should be used with great care, if at
all, since they are three- and four-tier approximations to the

correct computation given by (10) and (1ll).
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IV. AREA FIRE MODEL

1. The Basic Model

We give in this section. an axiomatic treatment of a ciassical
area fire problem, following the format of the preceding sections.
Karr (1972b) is the basis for this presentation. In our first model
here both defenders and incoming shots are uniformly distributed over
a disk in the plane; it is shown that under carefully stated assumptions

an independence assertion usually thought to be true fails and we
dencte some attention to the consequences. The second model is an
elementary Markov process analysis of a sitmation in which the
defenders regroup after every shot so as to defend an area propor -
tional to0 their numerical strength, the constant of proportionality
being fixed.

For each r > 0 let Sr be the disk in‘§2 with center 0 and
radius r ; we denote the unit disk S by A. Defenders (or
targets) located in A are attacked according to the following
assumptions.

Al) Each incoming shot has a circular area of (theoretical - see
A3) below) lethality whose radius is uniformly distributed on the

interval fr,, r2], where ry, T, are numbers with

l,
0 < ry STy < .

with the understanding that if ry =7, the radius is ry almost surely.

A2) The center of the area of lethality of each shot is uniformly

distributed on Sl r and is independent of the radius of lethality.
T2

This means that the attacker is able to (and does) aim his shots
to the extent that no lethal area falls outside A , but that centers
are otherwise uniformly distributed. Note also that no point of A is

29 Preceding page blank
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a priori immune, although points near the boundary of A
safer,

appear

A3) There is a measurable function g from A x Sl—r2 x 0, r,]
into 0, 1] with the interpretation that g(x,u,r) is the prob-
ability that a defender at x € 3 1is killed by a shot with lethal
radius r centered about u ¢ Sl-r2'

A4) Each cefender's position is uniformly distributed on A and

is independent of all incoming shots,

The purpose of the function g is to take account of the effect
of terrain, shelters, etc., in decreasing the lethality of a shot.
Thus one may suppose that the lethality of Al) is hypothetical in
the sense of representing lethality on a treeless plain, so that
g has the effect of transforming a "potential® lethality which is
a property only of the weapon into an Mactual® lethality which
depends on both the weapon and the physical situation.

Some examples are helpful at this point.

EXAMPLES, 1) the function

1 for |x-u| <r
(25) g(x,u,7) =
0 otherwise,
where | - | denotes Euclidean distance on R2, is the classical

toookie cutterf damage function: anything in the lethal range of
the shot is annihilated with probability one and everything nct in
the lethal range is unaffected.

2) Supposc the subset T of A is sheltered in the sense that
no defender in the shelter can be kiiled except by a direct hit on
the shelter. We would then have for x ¢ T

1 ifueTand |x-u] <1

g(x,u,r) = .
0 otherwise ,

while for x ¢ T, g(x) could be defined by (1) or by some other
recipe.
30
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Note that A4) does not require that positions of different
defenders be independent of one another, but only that each position
be uniformly distributed on A . The independence assumption will
be imposed in the second model.

Let us consider the probability p(l) that & single defender
with position X survives a single shot with (center, radius)

pair (C,R). Writing § for Sl-r , we have
2

(26) 1 - p(1) = E fg(X,C,R)] =

2
= (]2} - |s] - (r, - rl)]—lj" dx J’ du .f dr g(x,u,r) .
A S rl

2

where |F| is the two-dimensional Lebesgue measure (= area) of F < R

~

Of course, |A| = 7 and [S] = w(1- r2)2, but we leave these
quantities unewaluated for the sake of easier interpretation., It
should be noted that throughout this section u and x are two-
dimensional variables, while r is one~dimensional.

(27) PROPOSITION, If R is any nonnegative random variable

bounded above by Ty, if

P{C ¢ sl_rz} =1 ,

and if g is of the form (25), then

E R
(28) ~p(uy = B R
[A]
PROCF . Let F be the distribution of R anda G that of

C; then with the assumption on g , and an application of Fubini's
Theorem, we have

1-p(l) = ..1_| J' F(dr) { 6(du) [ dx I[O,r](lx-ul)
o A

S
31
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(here IB is the indicator function of the set B: IB(y) =1 if
y € Band 0 otherwise)

r
2
= Ti? J' F(dr) J'G(du)l{x eR: [x-u] < r}, .
0 S

But, since for u e S and r < u, sr(u) clk ,

l{x eh: |x-u| < r}' o
so that the last expression is equal to
, 2 2 E[n R
e B CORE fc(du)=_—"'——l i
LY S A

When R has the distribution specified in Al),

Efm R°] = — T f 2 dr

i 2 2
3 (g + TyT) + 7).

As a special case of (27) we may take
cé(jop) =1 ,

and notice that the probability the defender survives a single shot
whose center is fixed at the origin is the same as the prcbability
that he survives a shot with the same radius of lethality distri-
bution whose center is uniformly distributed on S .

Let p(n) be the probability that a single defender survives
n independent and identically distributed shots. Then it is
not true that

32




(29) p(2) = p(1)2

since the events

3]
1]

1 {defender survives first shot }

and

E

i

o = {defender survives second shot}

are not independent, but only corditionally independent given the
defender's position X .

Thus

p(2) = PIE. n E

Y
ECP{E; N E,|X}]

E[P{E, [ X} - P{E,|x}]

It follows from (26) and (27) that for i = 1, 2
P{E;| X} = h(X)

where

h(x)

T
2
-1
(s| - (r, = 13)) f dufdr I(r’m)(|x -
S r
1

-;L-D%lle S : [x - ul >y}l

s
w2t/
+ r, -

2 1 r,<|x-u|<r,

(|x - u| - rl)du] .
ues

Note that h(x) is the probability that a defender at x ¢ A survives

a shot which is uniformly distributed on S . It follows that
(30) p(2) = IAl-l./~h(x)2 dx
o

33




and, by induction, that

(32) p(n) = |A|‘1fh(x)“ dx
A

The probability q(n) that a single defender fails to survive n
independent and identically distributed shots is given by

a(n) = 1 - p(n)

1 - (3] [ reo" ax
A

|A|"lf[1 - h O"] dx
A

which is not equal, in general, to

1- - am)® =1 (™ oo a0t
A

The expected attrition to m defenders whose distributions satisfy
RA4) is then given by

(32) m .+ qn)= m|A|'lf(1 - h()™) dx = A(m, n) .
A

Let us again point out that A4) is satisfied and hence (32) is valid,
without assuming that defenders' positions be independent of one
another. For example, if a single defender chooses a uniformly dis-
tributed position and other defenders position themselves at the same
distance from 0 in such a way as to make all angular distances
between adjyacent defenders equal, then A4) is satisfied. Or all
defenders may be placed at a single point which is uniformly distri-
buted on A , so a defender seeking to minimize his expected attrition

gains nothing by dispersing his perscnnel, in a situation modeled by
Al) - B4), The same would not be true, however, of a defender who
tries to minimize the probability of annihilation of all his personnel
(provided his forces are more than one).

34
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2, Edge Effects

As will be discussed in considerable detail below, the difficulties
in the failure of (29) arise in the fact that h is not constant oves
all of A : clearly h(0) < 1, while h(x) = 1 for x in the boundary

Fr(A) of A . The reason h is not constant is beacause shots are aimed

sO that no lethal area gver falls outside A , making it less likely
that a shot whose center is uniformly distributed on § will kill a

defender whose position is close to Fr(A). This is an edge effect,

It will be proved in (38) that h is constant over most of A H
we will then consider the effect of neglecting the set where h # h(0).
Another alternative which makes h constant over all of A would be
to make shot centers uniformly distributed on Sl+r2’ but if this is
done then (28) is no longer true, The difficulties arise in "edge
effects® near the boundary of A . One is tempted to conclude that
edge effects can be neglected if r, is small; tc a certain extent this
is so, or that these edge effects are a result of the formulation of
the model rather than the underlying physical process. We believe the
second conclusion is unjustified. In physical models, from fluid dvna-
mics to statistical mechanics, of finite systems it is precisely the
boundary behaviors which must be considered most carefully and which
make the theories valuable; we feel the same is true here,

3. Repositioning in the Same Area

We now proceed, as promised above, to a detailed analysis of the
failure of (29) and one way of rectifying this difficulty (if one
considers it to be a difficulty) by imposing an additional (but not
very plausible) assumption.

Suppose we add to Al) - R4) the following hypothesis:

A5) Shots are made one at a time and between each pair of shots
every defender repositions himself according to a uniform distribution
on A , independent of the past positions of all defenders and of the
entire procecs of incoming shots.

35
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We begin by considering the survival probabilities for a single
defender; suppose there are n shots that his positions (provided
he lives long enough to occupy them) are xl. sany X and that (C- R ),
vees (O R ) are the (center, radius) pairs of the incoming shots
Contlnue to assume ¢g is of the form (25). Then for k = 1,
the probability of surviving the first Xk shots is

v ey n

p(k) = P n fx ¢ sp (c )}}

=1 !
k

g éscﬂ&=<mnﬁ .

Hence under A5) and the assumptions of Proposition (27)

n
2
(33) p(n) = 1-5ﬂi) , =12 ...,
|3]
where R 1is a random variable with the same distribution as Rl’ ooy Rn'

From (33) it is evident that

(34) q(n)

n
1 - (l _ EfnRz])

|2]

1-(1-qan™

We emphasize that (34) is valid only under the restrictive and rather
implausible hypothesis AS5) and that A5) is meaningless in a situation
where n shots are fired simultaneously and independently from differ-
ent weapons.,

For small values of r, and large values of n , oine may make the

approximation
(35) p(n) ~ exp (- nECRZ1/|A])

although neither its desirability nor its necessity is clear, since,
after all, exact expressions such as (33) are available, If (35) is
employed, the expected attrition A(m, n) to m defenders by n shots

36
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is approximately

A(m,n) ~ m(l - exp ( - nE[ﬁRz]/IAI)) ;

the true value is

n
2,
(36) A(m, n) = m[l - <1 - E[mRT:) ] :

[a]

It seems reasonable to define the quantity nE{nR‘] as the (expected)
"antipersonnel potential® of n shots. It is the word "potential"
which is crucial: this is the expected lethal area of n shots with
the same radius of lethality distribution whose areas of lethality
do not intersect (which is the best situation the attacker can heps for).

Continuing to assume Al) - AS) and the hypothesis of (27), we see
that the probability p(nl, ceos nj) that a single defender survives ny
independent shots from a type 1 weapon with expected area of lethality
E[nRi], n, independent shots from a type 2 weapon that are independenc
of the shots from the type 1 weapon and have expected area of lethality

2
E[nRE], and so on, is
n,
i
\ : ) j E[nRg']
(37 Ny, eeey N:) = qq | 1-
. = ||

We may, provided n nj all be 1large, approximate the corresponding

l’ 00y
kill probability q = 1 - p by

Q(nl, LY nj)=l"'p(nl, LI nj)

J
~ 1 - exp (- 2+ X niB[an?]) .
[A] i=1

Again, it may be reasonable to interpret § niE[nRi] as antipersonnel
potential., It should be noted, however, that no such scalar quantity
appears in the exact equations (34) and (37), let alone the equations
derived without the use of AS).
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4, The Effect of Edge Effects

An alternative analysis of the failure of (29) is based on the
following result. We assume until further notice that r, < 1/2.

(38) ~ PROPOSITION. If |x| <1 - 2r,, then
h{x) = r(0)
S (l-2r)+2/3(r2+rr +r2\-r(r + 1))
(1 - 192 2 27127 1y T Y2t

2

PROOF. For [x| <1 - 2r, we have, from the computation of h given
previously,

h(x) =-L[Hu €S : |x - u| > 1,
|s|
+'r—-—_l——r— f (|X"U|-I‘l)dU]
271 1 <l e,
ues

1 2
'i—s-i- [(lSl - ‘nI‘2)

+ o) [ (|x - u - 1y) du] .
rl_\:{x-ulr2
u|<1-r,
In the second term, inake the change of variable y = u - x (y is two-
dimensional) to obtain

1

: (IYI - I‘l)dy .
181(zp = 7)) 2 olyler,

| x+y|<1-r,

38
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For [y| <r, and {x| <1 - 2r,,
Ix+y] < x| + ]yl c1-1, ,

so the second restriction on the domain of integration is irrelevant,

Hence for |x| <1 - 2r, ,

1
+ == ) f Ayl - =) dy]

r,<|y|<r,

-_-___}..__)_f [n.(l - 20y} + — ‘1‘ TI f (lyl - r,) dy] .

l

(1l - r,
r <|yl<r,

We may evaluate the integral changing to polar coordinates y - (r ¢Os 4,
r sin §), where r = |yl and § = tan'l(yQ/yl), with the result

l -
T, o S -
r.<|ylzr,
2n
1 ;
e (r - r,) rdr dp
r, - Ty f f 1
r,<r<r, 0
=2 f (r2 - r,r) dr
r, - Ty 1
r<r< T,

T
2 33, F12 2
=T, -1 [1/3(1‘2 r)) - 5ry - 1))

which completes the proof. ]
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COROLLARY.
[{x : n(x) # h(O)}] = an(z, - r2) .

PROOF. This requires only noting that h(x) is strictly greater than

h(C) if |x| > 1 - 2r, and a simple computation. 1]

2
Since

n
(1 -aan" ={=2 [ ) d
(IAI { ”

while

1 n
G(n) = 1 - — § h(x) dx ,
IAI{

we see that the failure of q(n) to equal 1 - (1 - Cl.(l))n under Al) -
A4) and the hypotheses of (27) is due to the inequality

n
L/h(xr‘dx# (i /h(x) dx) .
1Al 4 |al 2

We know that if G is 2 probability measure and f = ¢ is a

constant function then

ffndG=(ffdG)n=cn

for all n > 0.

Since we showed in Proposition (38) that h is constant except
over a subset of A of small Legesgue measure (provided r, is small)

n
it seems plausible that (-—1I— f h\ should serve as an approximation
M/
A

to—L hn

This, in fact, is so in two senses, which we note next.
|2 4
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(39) PROPOSITION. For any fixed n ,

n
11ml fh(x) dx -(—L]h(x) dx) =0 ,
LIRS |A] 4
and for any fixed r, > 0,
n
lim \—-l—fh(x)n dx —(—-l-fh(x) dx) = 0
n-e | [A] 4 ] 2

We omit the proof.

COROLLARY. For each fixed n > 1 and each 6§ ¢ 0, 1),
_}—fh(x)“ dx = h(O)" + o(xd) , 1, -0
‘A[ 2 2

and
n

(_th(x) dx) =h(O)" +cird) , Ty~ 0
|a] 4

The qualitative content of the corollary is that for fixed n and
small r, the error in approximating either a(n) ¢ 1 ~ (1 - q(l)) by
1- h(O)n and hence the error in the approximation

a(n) ~1 - (1-a(aN" ,

is (roughly) proportional to T,; estimates of the constant of pxopor-

tionality may be made if required.

Let £(x) = 1 - h(x), so that f(x) is the probability that a defender
at x ¢ A is killed by a single shot whose center is uniformly distri-
buted on S, . and is independent of the radius of lethality which is

Lo

uniformly distributed on [rl, 2] Then the approximation
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an) ~ 1 - h(o)"

may be written as
a(n) ~ 1 - (1 - £(oN"

Since both sides here go to zero as n - «, we may make the further
approximation

a(n) ~ 1 - exp { - nf(0))

which is valid for small r, and large n ,

5. Repositioning With Fixed Density

We will next discuss a generalization of the model based on Al) -
A4) which treats incoming shots as occurring one after another and
requires that the defender reposition his forces after each shot in
such a way as to maintain a fixei density of forces. Specifically,
we will assume Al) - A4), that there are initially m defenders, and
the following additional hypotheses:

B6) Let p = m/|A|. If after a given shot there are k(l <k <m)
surviving defenders, each of those k defenders positions himself on
the disk Sr(k) with radius r(k) = (k/on)% = (k/m)% and center J ,
independent of the rvepositionings of the (k - 1) other survivors, of che
past positions of all defenders and of the entire process of incoming
shots,

A7) Initial positions of the m defenrders are independent of one

another and of all incoming shots.

Hence the density of the repositioned defenders (over the smaller
set Sr(k) to which they have rétreated) is k/nr(k)2 = p so the density
of defenders (relative to the set over which they are uniformly dis-
rributed--not to A !) vremains constant.

For simplicity we further assume that g is of the form (29),
that all shots have lethality radiue r aimost surely, that the
attacker is unaware of the pullback of defender personnel and
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continues to fire shots whose centers are uniformly distributed on
Sl—r’ and that r < 1/m. Let Tn be the number of defenders remaining
alive after the nth shot: The important result concerning the sto-

chastic process (','L‘n)nzl is the following.

(40) THEOREM. Under Al) - A4), A6), A7), and the additional
assumptions stated in the preceding paragraphs, T = (Tn)n>l is a
Markov process with state space E = {0, 1, ..., m}, initial distri-

bution ¢ given by

k m-k
(41 a0 =Rz =k = (Pa - Eh L k=0, .
and transition matrix P given by

(42a) P(0, j) = 8(0, 3) , j=0,1, ..., m

while for l<ic<m

1l-x
‘ . . y 14
(425) (;) R f u(l - fi(u))J £,(u) I aun
o Q-7 ifF 550, ..., i
P(i, j) =
0 if j=4i4+1, ..., m ,

where Sr (0, u)] is the disk with radius r and center (0, u) and

!Sr(i) N Sr[(O, U)]l

me(i)?

fi(u) =
and finally

(42c) P(m, 3} =a(j), J=0, ..., m .,

PROOF. As in the derivation of (31) one must guard against unwarranted
independence assumptions, That (42a)hcids is clear from physical
interpretation.

If Xl, ooy xm are¢ the positiuns of the defenders prior to the
first shot and Cl the position of the center of the first shot then
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PiT, = Xk} & (Q)P{xl £8.0C), -.uy X #8.(C),
Xiqr € Sp(Cy)s ves X € 8.(Cy)

(because defenders are indistinguishable)

= (%) BLRIX) £8,0C), oy X € 5(Cy),

X € Sp(C)s oes Xy € 8(CI[CH]
. k -k
=.(2) L ey el st e e Sr(y)}m

Isi |s‘

(because X, ..., X, are independent of one another and of Cl)
k m-k

2 2
=(m) 1 - I (nr
k m T
proving (41) and (42c). A similarly pleasant simplification in the
proof of (42b)is not possible because a shot uniformly distributed

on 8, . does not have a probability of killing a defender uniformly

1~
distributed on Sr(i)’ which, given the center of the shot, is con-

stant, as was true above, except for i = m.

Suppose C,, C2, cees Ck+1 are the centers of the first k+l shots
and let Xl, cees XT be the positions assumed by the Ty defenders
X p

surviving the first k shots. Since by A6) Xps eees XTk are
independent and identically uniformly distributed on Sr(T ) given
k

7., and are independent of Cl’ cees Ck and of all previous defender

k,
positions, it follows that xl, cess Xp are conditionally independent
k

of Tl’ cess TP-i given Tk’ and hence that the Markov property holds:

PiTy,1 = FITys eees ) = PiTk+1 = j|T} -
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It remains to prove that

P{Ty,1 = 31Ty = B(Ty, 3)

with P defined by (42); we may and do assume that Tk > 1. Noting
that PfT, , = jITk} is the conditional probability given T, that
exactly Ty - j of the points Xis vees XTk are within the disk Sr(ck+l)
and again using the indistinguishability of the defenders, we obtain

P{Ty,, = 3Ty =

T
= (K
_(j) P{Xy, -os X ¢ 5.(Cq)s Xsp1s ees ka e sr(ck+l)|Tk}

T
k

' ’ j Tk-j
T 1
=<_k) y / dy P{xl £ sr(y)% P{xl € SI,(y)} .
3785 4l

1-r

By rotational symmetry of a uniform distribution on a disk,
Pfxl € Sr(y)} depends only on |Y£ and since |ck+1| is distributed on
[0, 1 - r] with density (1 - r) “2u the last expression becomes

Tk-j
(Tk) _—_f f 2udu P{Xl ¢ S, (o, u)]} X €S [0 u)l .
(L -1
Since Xy is uniformly distributed on Sr(i)’ we have
851y N 8,0(0, W]
P{X, € 8. [(0, wWl= £,(u) = T
(i)
which completes the proof. |
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Further remarks concerning the functions fi are in Appendix A.
The complexity of the expressions for the elements of P and the
L exact form of the fi as given by (A.4) seem to preclude efficient
computation of P on a computer,

L4

Appendix B considers this process with an exogeneous time scale,
rather than that determined by numbers of shots.

[P

Do b o =
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APPENDIX A

Let us consider in more detail the functions fi defined in (40),
To find the exact form of these functions one must compute

!Sr(i) n s.0(o, u)j| for u e [0, 1 - r]. It is evident that

nr2 5 if0<u<r(i)-r
S5y N 8,LC0, W] =
0 s ifu>v@d)+r ,

so that only u ¢ (r(i) - r, r(i) +r) remain to be considered. If one
draws a picture with the upper half of the circle bounding Sr(i)’ which
has the equation

(A.1) y = (2(i)? - %2

b

and the circle which is the boundary of srr(o, u)] and whose equation
is

(A.2) x2 4 (y - U)2 = r? ’

he sees that conventional methods of analytic geometry may be used to
evaluate the area of Isr(i) n s [(o, wil.

Solving (A.1l) and (B.2) simultaneously shows that the two curves
intersect at the points (ml(u), m2(u)), ( - ml(u), mo(u)), where

o 1/2

m.(u) = r(i)2 _ (I‘(i)2 _ r2 + u2)
1 2u

A.3)
¢ m(u) = r(i)2 - r2 + u2 .
2 2u
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Let

%
(x()? - 3, - r(i) < x < r(d)

B,(x)
u + (r2 - x2) -

8,(u; X)

Lo
IA
bas
N
Lr]

K
B3(u, x) =u - (r° - x%) -

L]
1A
X
1A
H

Note the implicit dependence of Bl on i,
1
From (A.3) we see that ml(u)=r when u=(r(i)2—r2)5 and' that ml(u)<r
for all other r in [r(i)-r, r(i)+r].

L
.\ 2 2.2 .
Thus for (r(i)” - r") <u<rfi)+r ,

m, (u) m, (u)
|sr(i> n s, (o, w)]l| = f Bl(x) dx - f 85(u, x) dx
-ml(u) -ml(u)
%

whilé for r(i) ~r<uc< (r(i)2 - r2)

m, () my (u)
lsr(i) ns, (o, wl= B,(u, x) dx - ./~ B (x) dx .
-ml u) -ml( u)

Using tables of integrals we obtain the following evaluation of

the functions fi .
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(A.4)
£.(u) = _.__1.7
1 me{i)

/.
|
|
|

}5 .
m(w) (n(i)? - my(w)?) , if (D) -

r.r , if 0<u<r@d)-r-

]
_L(U) + ml(u)(r - ml(u) ) ,if r(i) -r<u<x ’I‘(l)
()
+ v2 sin ML
1'\
1

¥
- my (W) (2(1)? - my(w)?)

_1/m,(u)

(uv3
* r(l) l( %(1;)

1

2
- m (% 4 my) (2 - mw?)

_afm (u)
+rzsinl(i )

,ifr(i)+r<u<l-r.
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APPENDIX B

The regrouping model suggested here is capable of handling random
numbers of shots between repositionings of the defenders. We now give
the theory and computations necessary to make this generalization.

Consider the Markov process (Tn)n>l with transition matrix P .
Let U be the number of shots on day n ; we assume

A9) Numbers of shots on various days are independent, identically
distributed, bounded, positive, integer-valued random variables,
independent of the positions and lethalities of all shots and of
defender positions.

If we put
Y, = U+ oo+ U n>1 .
Then Sn = TY is the number of surviving defenders at the end of the
th n
n~ day.

(B.1) DROPOSITION. Under the preceding assumptions, (Sn)n\l is a
Markov process with initial distribution p given by -

u(k) = Pfs; =k}

‘o m i-1
(B.2) o(i) = a(3)P” (3, k)
i=1 =0

1}
™

and transition matrix Q given by
Yo m,. .
(B.3) Qi, 3) = 21 o(m)P (1, §) .
m=

o Preceding page blank
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Here ¢ 1is the common distributicn of U
bound on the number of shots per day.

U2, ... and zo is the upper

l’

PROOF. According to the terminology of Feller (1966), (Sn) is sub-
ordinated to (Tn) by the distribution ¢ . The proof required here

is a straightforward application the theory derived in Feller (1966). -

Likely candidates for ¢ would be Poisson and geometric
distributions.
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