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PREFACE 

This document has been prepared under contract DASA 01-71-0-0036 for 

the Defense Nuclear Agency by Braddock, Dunn and McDonald,  Inc., Albuquerque 

Operations in accordance with Work Order 179024.    The Handbook contains a 

comprehensive treatment of the subject of the EMP Data system and data 

reduction technology.    The ARES Site Project Officer is Major B.  Sanderson 

(USAF), Air Force Weapons Laboratory.    The ARES Project Officer is Major 

W.  Youngblade (USA)  Headquarters, Defense Nuclear Agency. 

Major contributors to this document are:  James W. Dyche, Dr. Robert 

L.  Hutchins, Jeffrey L. Cooke, Willie M. Servis, and Marilyn R.  Lauck. 
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SECTION ) 

INTRODUCTION 

1.1     HANDBOOK SCOPE 

The scope of the EMP Data Handbook is threefold, designed to: 

(1) Present a practical guide to the planning, design, and 

operation of the EMP test data system. 

(2) Present a tutorial and practical  guide to the use of 

commonly used EMP test data reduction tools and 

techniques. 

(3) Illustrate the importance of the test data management 

and reduction functions as the interface between the 

test system (simulator)  and the data analyst. 

The Handbook uses the Advanced Research EMP Simulator (ARES)    data 

management and processing system as a model  fcr most of the subject matter 

covered.    However, many subject areas are generalized to broaden the 

applicability of the Handbook. 

This introduction is the first of three sections of the Handbook.    The 

remainder of the  introductory section covers general aspects of data 

ARES Is located at Kirtland AFB, New Mexico and is under the management 
of the Defense Nuclear Agency (DNA). 

\ 
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mananement and processing systems which are important to their design and 

operation.    These  include: 

(1)      Relationship of the data system to the overall  test 

program, an overview. 

(2) Factors which must be considered in planning for a 

data system and the importance of these factors. 

(3) The influence of data quality on the successful 

performance of the management and processing 

functions. 

The final topic  in Section 1   is a glossary of terms used in the Handbook. 

Sections 2 and 3 present a detailed discussion of the subjects of the 

data system and data processing respectively.     (In presenting the various 

subjects of Sections 2 and 3, a familiarity with certain topics is assumed 

on the part of the reader.    References are liberally used throughout these 

two sections to assist the user in gaining this familiarity,  if necessary.) 

1.2.  RELATIONSHIP OF THE DATA SYSTEM TO THE OVERALL EMP TEST PROGRAM, 

AN OVERVIEW 

Most EMP test programs can be broken down into three main functions: 

(1)      Generation of test data. 

(2)      Management and processing of test data. 

(3)      Analysis of test data. 

10 
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The generation of test data Is the responsibility of the test system, 

including the simulator and associated personnel.    Such generation 

executes the EMP test plan and records the various tested system responses. 

(These response recordings are most often Polaroid oscillographs; here 

called raw test data.)    The test system is also responsible  for maintaining 

the simulator operation  including test volume field mapping,  test sensor 

calibration and recording Instrumentation calibration.    Each of these 

activities also results in data (again Polaroid oscillographs) which will 

be termed simulator calibration data. 

1.2.1  Data Analysis Function 

The data analysis  function, using test data,  includes all 

activities associated with the vulnerability assessment of the tested 

system.    This assessment normally takes place throughout the test program 

and requires the use of test data in various forms  ranging from raw test 

data to transfer function estimates of various  tested system components 

or subsystems.    Data assessment most often begins with the characteriza- 

tion of raw test data.    In this process, gross tested system response 

characteristics are measured from the test response photographs, such as 

peak-to-peak response currents and predominant frequencies. 

It seems fairly evident that most EMP test programs result  in a 

large volume of test data and this volume of test data is  further expanded 

through the  requests of the data analysts that the raw test data be 

converted into forms better suited for assessment purposes.    This 

conversion process Is typically termed "data processing."    Note that the 

term "data reduction" Is sometimes used for this function.    Data process- 

ing, however.  Is a more encompassing term and will  be used throughout the 

Handbook. 

\ 
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1.2.2   Data System 

The function which Is responsible for handling and processing 

this large volume of data  Is typically called the data system or data mill. 

It has two main responsibilities: 

(1) Management of the test data. 

(2) Processing of test data. 

Then,  in effect,  the data system acts as an  Interface between the test 

system and the data analyst, and as a service organization to both.    This 

relationship Is shown in  its simplest form in Figure  1-1.    In Figure 1-1 

It is shown that the data management function really provides the inter- 

faces while the data processing function is an internal function within 

the data system and interfaces to the "outside world" only through the 

data management function. 

1.2.3   Data Management 

Data management is perhaps a new term to use for this data 

system function but it  is the one that most accurately describes it.    The 

sheer volume of raw test data Involved, the processing of data required 

before the data analyst can use it, and timeliness with which this 

processing must take place, require a system which can "manage data." 

The essential parts of data management are: 

(1) The control of data  in process in the data, system. 

(2) Maintenance of the total EMP test data bank. 

(3) Quality control. 

12 
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Control   is considered an essential part in the sense that  large quantities 

and various types of data are  in process within the data system at any 

one time.    Because of scheduling requirements or priorities set by users 

(the test system and/or data analysts), a considerable amount of control 

must be used with the data system to assure best results. 

Data are the most obvious product of the EMP test program, and 

they must be  in an easily accessible and usable form to be of maximum use 

to the overall  program.    This  requires a comprehensive data  bank into 

which data can be easily and efficiently entered  (in all   its various 

forms) and from which  it can  be retrieved easily as required. 

Finally,  because both the test system and the data analysts need 

the data system for all  data  handling and processing,  the data system 

must  include a working quality system.    This must be done  both in the 

sense of controlling the data that are input to the system,  and also in 

continued control as the data are processed. 

1.2,A    Data Reduction 

The second major function of the data system, data  processing is 

shown in Figure l-l as off-line from the main flow path through the system. 

It  is depicted this way because data processing  is normally performed on 

only a limited amount of the total  test data set generated.    The main 

data processing services performed in the data system include: 

(1) Digitiration 

(2) Characterization 

(3) Data Conversions   (Fourier transforms,  transfer function 

estimation, etc.) 

Ik 
/ 

/ 
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Note that it is common for characterization to be performed on all test data 

generated. Also, in the case of ARES, the characterization process is 

carried out in the test system rather than the data system and only the 

resulting data are entered into the data system for storage m the data bank. 

The reason behind this arrangement is that characterization should be carried 

out by the persons responsible for planning the tests and assessing test 

results. There is, however, no reason why the characterization process cannot 

be done within the data system if operation personnel are properly trained. 

(For example, this is the case on the B-52 vulnerability assessment 

program being carried out at the Kirtland AFB Vertically Polarized 

Dipole (VPD) as part of the Aeronautical System Vulnerability assessment 

program.) 

In any event, data processing of all types can be looked upon 

as a function performed on request from either the test system or data 

analysts. 

1.3 PLANNING AND ITS IMPORTANCE 

The total task of putting a data system into operation can be broken 

down into four basic subtasks: 

Planning 

Des i gn 

Implementation 

Operation 

The success of the design, implementation, and operation subtasks is 

directly proportional to proper planning.   Therefore, the importance of 

planning cannot be over-emphasized as the first step In the total process. 

15 
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This is as true for the planned  revamping of an existing data system in 

preparation for a new test program, as it  is for initial  data system 

design. 

Before discussing how a planning exercise should be carried out and 

the factors which must be considered during the exercise,  it will be 

helpful to outline some of the problems that poor planning can cause. 

Major problems  include: 

(1)      System hardware not available at the beginning of 

the test program.    Possible causes:    long  lead time 

hardware  items not   identified and not ordered as 

soon as possible. 

(2) System inability to handle data load.    Possible causes: 

improperly predicted  load, improperly sized staff, 

inadequately trained staff, or improperly designed 

instrumentation system. 

(3) System inability to meet user requested turnaround time. 

Possible causes:    Improperly size»1 staff,  Improper 

evaluation of instrumentation capabilities, or  improperly 

designed operational  procedures. 

CO      Generation of poor quality data.    Possible causes:    poorly 

designed quality control procedures, poor input data 

quality from the test system, improperly trained staff, 

or improperly designed hardware system. 

1    I 

(5)  Poor quality of processed data output. Possible causes: 

lack of understanding in the use of data processing 

techniques, or poor input data quality. 

16 I 



(6)      Inflexibility in performing data reduction functions. 

Possible causes:    improperly designed computational 

hardware and software. 

The  foregoing list covers problems that occur both  in attempting to 

bring a data system "on the air" and  in its day-to-day operation.     It is 

understood that any new or modified system of this type must be "debugged" 

when  it  is put into operation;  fherefore, smooth operation cannot be 

expected  immediately.    However,  if the first six months of a one-year 

test program are spent debugging the data system, then the remaining six 

months are often spent playing "catch-up" and the data system can become 

the nemesis of the test program. 

1.3.1    Who Must Be  Involved in Planning and Wh/ 

There are several  persons  associated with the overall  EMP test 

program who must become involved in the data system planning exercise. 

The following list  represents those persons who were  involved in the ARES 

planning exercise.    Other test programs may be organized  in a different 

manner.    However, this list  indicates  the management  level  and 

responsibi litier, which should be  represented. 

1.3.1.1    The Test Director 

The Test Director has the complete picture of how the 

intended test program is to be conducted, its schedule, and how the test 

schedule affects the scheduling requirements of all  components of the test 

program,   including the data system.    He is in the best position to determine 

the general objectives and requirements for the data system. 

17 
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1.3.1.2 The Facility Di rector 

The Facility Director is responsible for the day-to-day 

operation of the test facility.    He is, therefore, responsible for facility 

security requirements,  regulations, and other applicable procedures.    He 

is also responsible for coordinating any construction or installations 

which must take place. 

1.3.1.3 The Data System Supervisor 

The Data System Supervisor is  responsible for the design, 

implementation, and operation of the data system.    His  role  in the planning 

exercise is, therefore, obvious. 

1.3.1.A   The Data Coordinator 

The Data Coordinator is responsible to act as  the inter- 

face between the various  interested contractors and the data system.    He is, 

therefore, responsible for understanding the contractor's  requirements which 

affect the data system and for putting these requirements  into the planning 

process. 

1.3.1.5   Air Force Representatives 

There are a number of Air Force representatives who may 

become involved in various areas of planning.    These  include procurement of 

advice on procuring GFE, base computational  facilities representative to 

advise on the use of site computer facilities, and instrumentation personnel 

familiar with equipment to be used  in the data system,   (e.g., mini-computers, 

microfi 1m equipment, and digitizers). 

18 



TKese individuals should coordinate through a series of 

meetings to establish the requirements for the data system.    The planning 

areas which must be discussed  in  these meetings are covered  in the next 

subsection. 

1.3.2 Planning Areas 

The areas which are Important to the design,  implementation, 

and operation of the data system are covered below.    A flow diagram is 

provided  (Figure 1-2)  to illustrate how the various areas  Interrelate 

and  the order in which they must be considered in the planning exercise. 

1.3.2.1    System Input/Output  (I/O) Requirements 

System !/0 requirements begin with which data mediums 

will  flow into the data system and which mediums will  be required from the 

system. 

In the case of ARES,  there are two primary  Input mediums, 

the Polaroid photographs (raw data) and the characterization parameters 

derived from each photograph.    These Input data, of course, come from the 

test system.    The data output mediums,   In the case of ARES,  Include computer 

listings or printouts,  plots, punch cards, and digital magnetic tape.    These 

outputs are generated when dictated by the data processing requirements set 

by data analysts working with the test program.    However,  test engineers can 

also dictate output requirements,  based on their needs for the processing of 

simulator calibration data. 
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1.3.2.2 System I/O Lead Level and Turnaround Requirements 

The overall test schedule for the EMP test will specify 

the timing for each test to be run, the number of test shots to be fired, 

and the number of photographs generated per shot. This information can be 

used to determine both the average and peak raw test data flow rates into 

the data system. It may also be important in planning for an increased 

data system staff for known work load peaks. 

Turnaround time required for processing data through the 

data system is a function of how the processed data are to be used in test 

planning. For example, it may be deemed necessary to have Fourier trans- 

forms or transfer function estimates back from the data system within a 

turnaround time of one to three hours after test photographs are submitted 

to the data system. As another example, it may be satisfactory for charac- 

terization data to be entered into the data bank with turnaround time as 

much as 2k  to 72 hours after submission to the data system. 

Output load requirements can be assumed to be much lower 

than input load requirements. This is because most of the test data flow 

into the data system and are stored in the data bank. The data that flow 

out are in reduced form and are a small fraction of the total data quantity. 

1.3.2.3 System Processing Requirements 

There are several basic processing capabilities which a 

data system can be expected to do. These fall into three basic categories: 

(1) entry of data into the data bank, (2) retrieval of data from the data 

bank, and (3) performing various processing functions. The processing 

method used is dependent on the orm in which the data enter the data 

\ 
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system, the forms in which the di fa are stored in the data bank, the forms 

in which data are displayed upon retrieval from the data bank, and the 
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types of data processing required. For example, most input data are in the 

form of Polaroid photographs, but may be most conveniently stored in the 

data bank on microfilm. Therefore, microfilm processing would be required. 

Choracterization data may be put into the data bank in the form of written 

or typed lists of parameters, but would be stored in the data bank on 

digital magnetic tape. Therefore, a means of processing new characteriza- 

tion data for storage on tape would be required. As one final example, the 

generation of a Fourier transform from a photographic time waveform would 

require several processing steps. The first processing step would normally 

be digitization of the oscillograph trace. However, it may be desirable to 

enlarge the waveform by microfilm enlargement in order to achieve better 

resolution in the digitizing process. After digitization, the data must be 

processed through a digital computer to generate the Fourier transform and 

display the results in graphic format. The intermediate steps in the pro- 

cessing are dependent on the specific on-site data processing capabilities. 

1.3.2.'» System Equipment Requirements 

Once requirements (1) through (3) are established, 

equipment to perform the various processing requirements can be specified 

and procured. Since certain types of processing will require several 

pieces of equipment, the equipment must be selected for interface compati- 

bility where necessary. For example, it may be desirable to feed the 

output of a digitizer onto digital magnetic tape which can be transferred 

directly to a digital computer for further processing. Thus, an interface 

system must be used between the digitizer and tape drive which can accept 

digitizer output format, convert to a computer compatible format, and 

write data onto tape in the computer compatible format. Such an interface 

system may be a mini-computer (which is the case at ARES). 
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There are three main data processing subsystems: 

(1) The microfilm processing subsystem. 

(2) The digitizer subsystem. 

(3) The computer subsystem. 

The microfilm subsystem will  normally include both 

recording and reader/printer capability.     It must be selected for ease of 

use and quality of end product.    For example,   if microfilm is used to 

produce photographic enlargements for digitizing and an enlargement   is of 

low quality,  then the digitization results will   suffer. 

The digitizer subsystem must be able to handle the 

specified data load at the specified  level of accuracy and resolution. 

There are many digitizer alternatives to choose  from, ranging from completely 

manual   to completely automatic systems.    Each has advantages and disadvan- 

tages, and a trade-off analysis  is required in order to make a proper 

selection. 

The required computer subsystem is dependent on such 

factors as what computer facilities are  remotel,' accessible from the data 

system, what turnaround time can be expected from remote facilities, and 

what  types of data processing and instrumentation control must be performed 

on-slte.    As an example, the ARES data system has a NOVA 1200 mini-computer 

which is used to control a digitizer and to process characterization data for 

recording on digital magnetic tape.     It  is not used to run data processing 

algorithms such as Fourier transforms because of  its limited configuration 

(however,   it could be so used with proper hardware expansion).   Therefore, all 

software codes used in data processing are run on the Kirtland AFB CDC 6600 

computer system which is accessible through a remote job entry terminal 
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located within the data system.    Factors which must be considered in 

selecting a data system computational capability include availability of 

off-site computers, software processing requirements  (core memory, bulk 

storage, plotting, etc.), turnaround time,  interfaces with other process- 

ing equipment, and cost. 

One factor which is paramount  in the processing equipment 

planning is the ordering of long lead time items as early as possible. 

The lead time between ordering and delivery for most equipment of the 

types discussed above is 60 to 120 days. 

].k    SYSTEM SOFTWARE REQUIREMENTS 

There are several computer software programs used  in a data system 

depending on the data processing requirements.    The following  is a repre- 

sentative list of the software developed at ARES to support the data 

system: 

(1) NOVA 1200 program to control  the digitizer, format the 

digitizer output, and record on digital magnetic 

tape. 

(2) NOVA 1200 program to accept characterization data via 

teletype, format it, and record on digital magnetic 

tape. 

(3) CDC 6600 progr;.,.! to update the master characterization 

data tape from daily characterization tapes. 

(4)    CDC 6600 program to sort characterization data based on 

characterization parameter specification.    Master 

characterization data tape used as the input data base. 
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(5) CDC 6600 program to generate Fourier transforms using 

linear Fourier transform algorithm. 

(6) CDC 6600 program to generate Fourier transforms using 

Fast Fourier Transform algorithm. 

It is evident that the software requirements can be considerable and 

require understanding in a number of software disciplines.    For example, 

writing the software to control the digitizer required understanding the 

use of software drivers for peripheral hardware systems.    Developing 

sort software required understanding of large machine sort/merge codes 

and, in addition, a complete understanding of user requirements so that 

output data are displayed in the most usable format.    Development of 

Fourier transform codes required understanding of the various limitations 

of computer implemented Fourier analysis techniques. 

Development and debugging of the necessary softwar»* must also be 

considered a long lead time item, taking anywhere from one to three 

months for a new data system. 

1.5    SYSTEM OPERATIONAL PROCEDURES 

In order for data to move smoothly through the data system and to 

maintain a consistently high level of quality control, a comprehensive 

set of operating procedures must be developed.    These procedures must 

include the methodology for: 

(1)      Entering data into the data system (Including who 

Interfaces with whom, what additional   information 

must accompany the raw data, how It is logged Into 

the system, and initial quality control   Inspection). 
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(2)    Entering data into the data bank (including indexing 

Items of data, microfilming, storage, and quality 

control). 

(3)    Retrieving data from the data bank (including request 

forms specifying data needed and any additional pro- 

cessing required, copying, and quality control). 

CO    Carrying out data processing requests  (including request 

forms specifying processing required, equipment operating 

procedures,  software usage procedures, classification 

level of data, and output format procedures). 

(5) Classified data control (including processing classified 

data on computer facilities, storage of classified data, 

and coding schemes for declassification of data). 

1.6    SYSTEM FACILITY REQUIREMENTS 

It is most convenient to house trie complete data system in a single 

building.    This allows the processing system (equipment and personnel 

stations) to be laid out in such a fashion that smooth coordination can be 

maintained between each processing step.    In the case of ARES1,  this has 

been done in a single 12- by 65-foot trailer.    In planning a facility, 

these are the factors which must be considered: 

(I)    Floor space sufficient to house all data processing equip- 

ment, supporting equipment, and operating personnel stations. 

(2)    Supporting equipment such as general office equipment 

(desks, tables, chairs, typewriters, duplicating 

machines, etc.). 
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(3) Data storage equipment such as file cabinets for Hollerith 

cards, microfilm reels, digital magnetic tape, notebooks, 

etc. 

(4) Classified containers. 

(5)      Heat and air-conditioning (0 driving factor  in air-condi' 

tioning is the instrumentation BTU output). 

(6) Plumbing including lab facilities for microfiIm work, 

toilet facilities, and drinking fountains. 

(7) Electrical:    Sufficient service must be planned to meet 

instrumentation and equipment needs, and electrical 

outlet layout so that service  is convenient to all 

instrumentation and equipment stations.    Proper grounding 

must also be considered. 

(8)    Shielding and Decoupling:    If the data facility is located 

close to the EMP simulator, significant field  levels will 

occur inside the facility.    Also,  impulse noise can feed 

through on electrical powerlines.    These types of noise, 

which can cause equipment malfunctions, have been experienced 

at ARES and resulted in interruptions in the operation of 

various data processing systems.    The noise an! EMP radiation 

problems were reduced significantly by properly filtering 

powerlines and by electrically shielding the data facility. 

This is an extremely Important problem and  It may prove 

impossible to use certain equipment close to an EMP simu- 

lator.    EMP field levels should be monitored before a data 

facility location Is selected. 
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1.7    SYSTEM OPERATING PERSONNEL 

Personnel  requirements can be broken down  into job type and number. 

The types are, of course, determined by the activities to be carried out 

In the data system;  the number is determined by both activities and 

overall expected processing load.    Here Is a list of the normal  type of 

personnel and their capabilities associated with a data system: 

(1) Data System Supervisor:    must have full  knowledge 

of all activities associated with EMP data management 

and data processing. 

(2) Data Librarian:   must be able to design and maintain the 

EMP data bank Including all data storage and retrieval 

methods. 

(3)    Microfilm Operator:   must be able to operate microfilm 

recording, duplication and printing equipment.    Hay 

also be required to perform equipment maintenance. 

(k)    Keypunch Operator. 

(5) Digitizer Operator:   must be able to produce consistently 

high quality digitizations within the limits of the raw 

test data provided.    Requires high level of patience, sharp 

eyes, and good manual dexterity. 

(6) Computer Programmer:   must understand computer and software 

systems used.    Preferably, has been responsible for the 

development of procurement of all software. 
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(7)    Computer Operator:    must be able to set up and execute 

day-to-day software programs used  in the data system. 

This  requires the use of on-site or off-site computer 

faci1ities or both. 

It is desirable to have a given individual do more than one of the 

jobs outlined above.    This  is desirable from the standpoint that a number 

of the jobs will  not require one person's full  time attention, and it is 

desirable from the standpoint of cross training of people as backups to 

assure that one key job is not dependent on one person.    There are three 

key positions of responsibility  in the data system:    the Supervisor,  the 

Data Librarian, and the Programmer.    The Supervisor's responsibilities 

are obvious, but  it should be noted that  it  is useful  for him to have 

programming experience as backup in that position.    The Librarian's 

position is crucial  because he or she should be the designer of the data 

bank and responsible for data quality control.    The Programmer position 

is crucial because of the importance of software to overall  data systen 

operation.    In addition, the Programmer should be the designer of the 

software system.    All other jobs cat! be done by data clerks who can be 

cross trained in microfilming, digitizing, key punching, computer operation, 

and general data handling or processing. 

This philosophy worked efficiently in the ARES2 data system.    As an 

example of personnel  level   requirements,  the ARES data system used a two 

shift operation to process an  input data load of approximately 300 Polaroid 

photographs per day plus accompanying characterization lists,  and an output 

load of approximately 25 digitizations per day as well as associated 

computer processing of the resulting data.    The first shKt operation 

consisted of a supervisor, a data librarian, and three data clerks; the 

second shift, a supervisor,  a programmer, and a data clerk. 
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1.8 INFLUENCE OF DATA QUALITY ON DATA SYSTEM FUNCTIONS 

This subsection is provided to alert the reader to possible problems 

which can arise if consistent data quality standards are not 

e:«-abl ished. These standards must be designed for data flowing into the 

system, being processed within the system, and flowing out of the system. 

The burden of meeting and maintaining input data standards, for the most 

part, falls on the test system where the data are generated and initially 

recorded. Meeting standards for processing within the data system as 

well as for data output from the data system is the responsibility of the 

data system itself. However, the responsibility for setting the standards, 

to a large extent, rests with the users, the test system, and data 

analysts, with the approval of the test conductor. 

1.8.1 Input Data Quality 

Input data quality must be maintained in two areas; the quality 

of the raw test data and the quality of supporting data which accompany the 

raw test data. Assuming raw test data to be Polaroid photographs, the 

quality of these data can be maintained only through proper maintenance and 

use of recording instrumentation. Technicians must be trained to operate 

an oscilloscope for the "best" recording conditions in terms of oscilloscope 

focusing, scope intensity, amplitude dynamic range, sweep speed, and graticule 

lighting. Poor quality photographs degrade any data processing using the 

photographs. 

Supporting data which accompany the photographs include test 

conditions, such as oscilloscope settings, plus any peculiar test 

conditions which may affect the photographs. These data are usually 

recorded on the back of the photographs and/or forms designed for this 

purpose. Consistency in recording these data must be maintained, other- 

wise, there will be inteVpretation problems by the data personnel. 
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1.8.2 Internal and Output Data Quality 

The data system must create and maintain high standards of data 

quality throughout its operation.  If input data quality meets the standards, 

there is no reason or excuse for output data quality to fall below established 

standards. This can be assured through a well planned quality control system 

with check points at all key points in the processing cycle. 

Setting up and maintaining these standards is often easier said 

than done because vague measures of quality must be used in some cases. Two 

good examples of this are in the microfilm copying of Polaroid photographs 

and the digitization process. Both processes require operator judgment as 

to whether the best end product is being generated. This requires an exten- 

sive program for training operator personnel for their full appreciation of 

the variables involved. 

Data users must get involved in the procedures for processing 

data under certain conditions. For example, how a photograph should be 

digitized when the waveform is blurred or truncated. The users must have 

a full appreciation of the effects of such photograph quality on data pro- 

cessing results (e.g., a Fourier transformer transfer function estimate). 
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1.9    GLOSSARY OF TERMS 

(1) Data System - Service organization responsible for the processing 

and control of all  test data generated on an EMP test program. 

(2) Data Management Function - First of the two major data system 

functions.    Responsible for the control and maintenance of the 

EMP test data bank.    Controls data being processed by Data 

System. 

(3) Data Processing Function - Second of the two major data system 

functions. Responsible for providing data processing services 

to meet user needs. 

(A)    Test System - Organization conducting test and providing raw 

data to Data System. 

(5) Data Analysts - Any persons associated with the EMP test 

program who use test data for vulnerability assessment. 

(6) Characterization - The process of measuring and recording 

gross test waveform characteristics such as peak-to-peak 

current, and primary and secondary frequency components. 

(7) Digitization - The process of converting an analog signal or 

waveform into an ordered set of digital  X-Y pairs. 
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SECTION 2 

THE DATA SYSTEM AND DATA MANAGEMENT 

2.1  INTRODUCTION 

EMP test programs typically generate large quantities of test data 

which are used during and following the test program for the vulnerability 

assessment of the system tested. There is a definite requirement to orga- 

nize the test data so that they are readily accessible during the vulner- 

ability assessment and, in many instances, to process the data into forms 

more uc,feful to the assessment than in their raw form. The system respon- 

sible for these control and processing requirements is the Data System or, 

as it is often called, "the Data Mill." 

In Section 1, the test program was broken into three elements: 

(1) The test system which generates the test data. 

(2) The data system which controls and processes the data. 

(3) The data analysts who use the data in vulnerability assessment. 

In addition, the relationship between these three elements was shown 

in Figure 1-1 as the data system performing the interface between the test 

system and the data analysts. This concept can be expanded by defining 

the data system as a service organization designed to satisfy the data 

requirements of both the test system and the data analysts. As such a 

service organization, the data system accepts newly generated test data 

from the test system and processes it into the EMP test data bank (perma- 

nent storage) and processes data out of the data bank for use by the data 

analysts. This concept is modified only slightly to include the possi- 

bility of data being processed out of the data bank for use by the test 

system (e.g., simulator calibration data). 
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A second way of viewing the data system is on a functional basis; as 

performing two basic functions: 

(1) Data Management 

(2) Data Processing 

The concept of data nanagement,  then,   is almost synonymous with the term 

data system.     It can be said that all  data flowing into or out of the data 

system are controlled by the data management function, whereas only  limited 

quantities of the incoming or outgoing data are processed by the data pro- 

cessing  function.    (The subordinate role of the data reduction function is 

also illustrated in Figure 1-1.)    This  relationship can be stated  in 

another way by saying that all control of t#st data within the Data System 

and most of the data processing requirements are the responsibility of data 

management whereas only a limited number of the data processing requirements 

are the responsibility of the data processing function. 

In the remainder of this section  it will be shown how a data system 

is organized and how it operates from the functional standpoint.    This 

will  be done by presenting a simple model of the data system which will  be 

built upon in the course of discussion.    The elements of the model  are 

either data control   (management) or data processing in nature.    Each of 

these elements will be discussed in terms of how it functions  individually 

and how it fits into the data system. 
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2.2    THE GENERAL DATA SYSTEM MODEL 

2.2.1 Users - The External Environment 

The generalized model  shown in Figure 2-1 will be used in 

describing the various data system control  and professing elements, and 

their interrelationships.     It will be noted first that the external environ- 

ment is shown as the data system "user" who either submits data to the 

system for processing or retrieves processed data from the system.     In 

either case,  these actions are started by a formal  request to the system. 

2.2.2 Interface 

The interface between the external environment and  internal 

environment requires that there must be formal procedures for starting 

processing action within the data system.    As will be shown in later dis- 

cussions,  the formality of the interface  itself assures that data flowing 

into or out of the system are properly quality controlled and recorded  in 

permanent  logs.    This action insures: 

(1) The quality of the data flowing into the data 

system, placing the responsibility for this 

quality on the submitter (Test System). 

(2) The quality of all data flowing out of the 

data system, placing the responsibility for 

this quality on both the user and the data 

system.    Responsibility  is placed on the user 

from the standpoint of the completeness of his 

request for processing action and on the data 

system for the quality of the processed data 

passed to the user.    The user must be aware of 

the capabilities and limitations of the data 

processing system and must fit his requests 

within these. 
35 
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In addition, the interface acts as a buffer zone where special 

problems can be resolved (such as turnaround time requirements, changes in 

projected test schedules, or requests for special processing action, and 

changes to reduction procedures or programs). 

It should be noted that the control action of data processing 

which takes place at the interface is a major data management subfunction. 

2.2.3 The Internal Environment 

Inside the data system, three types of action take place: 

(1) processing data into the data bank, (2) processing data out of the 

data bank, and (3) maintenance of the processing system (software and 

hardware).  In either case, the processing involved will taka on many 

different forms depending on the medium or the input data, the medium in 

which the data are stored, and the medium of the output data. It should 

be noted, in the case of processing data out of the data bank, that the 

results of processing, besides being passed to the user, are often stored 

in the data bank as a permanent record of this action. Thus, the processed 

results are available to other users at future dates on an immediate basis. 

In addition to the function of data processing, there is the 

function of data control. The control function allows the data system 

supervision to determine the status of any "job" in process within the 

system. Thus, the Supervisor can determine if schedules are being met 

within his operation and, if need be, to report the status of a given job 

to the user. 

2.3 DATA SYSTEM INPUTS AND OUTPUTS 

Before discussing the details of how data are processed through the 

system, how data are stored, and how control is exercised over the system, 

details of system inputs and outputs must be established. The types or 
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mediums of system input/output   (I/O)  described are typical  for a data 

system supporting a pulse simulator such as ARES. 

The concept of the "request" as a formal way of initiating the storage 

or  retrieval  of data from the data bank was  introduced in the discussion 

above and is shown schematically in Figure 2-1.     It would seem logical   to 

address the request as the first topic under I/O because all   I/O is 

accompanied by a formal  request.    However,  the description of the request 

is more easily made with a knowledge of typical   I/O.    Therefore,  the 

request will  be covered last. 

2.3.1    Typical  Data System Inputs 

The most  typical data system  input data for pulse simulators 

are Polaroid photographs of waveforms.    There are two categories of 

such photographs: 

• Test Response Photographs. 

• Simulator Cal ibration Photographs. 

2.3.K1    Test Response Photographs 

Test response photographs which make up the bulk of 

the photographic data, are typically generated on a test/shot/channel  basis. 

That is, a test program is broken down into a number of individual  tests, 

during which a number of test shots are made where one shot  is equivalent 

to pulsing the test object one time.    During each test shot, a number of 

oscilloscope channels of test  responses  (transient waveforms) are recorded 

on Polaroid photographs.    In the case of recent ARES tests,  there were 20 

oscilloscopes  (10 channels with two scopes per channel) for recording 

response data and  It was typical for as many as 20 test shots to be made 

during a given test setup (specific sensor placement).   The average number 

of shots per day was between eight and 10.    Thus, the number of response 

photographs generated averaged between 160 and 200 per day. 
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Where a test ranged from five to 20 shots,  the response 

photographs were usually submitted to the data system as packages on a test 

or multitest basis.    Therefore, the number of response photographs  in a 

package of data submitted to the data system ranged from 200 to 1000.    The 

rate of input of response photographs to the data system is, of course, 

peculiar to the test program being conducted and the EMP simulator system 

used.    However,  the  important factor that came out of the ARES experience 

was that the rate of response photograph input to the data system did not 

fluctuate much during the test program.    There was a gradual  build-up to 

a broad peak level  and then a fairly abrupt decrease as the program ended. 

It is interesting to note at  this point that individual 

tests can be numbered sequentially.    Thus,  test, shot, and channel  numbers 

can conveniently be used as a natural   identifier or index to identify test 

photographs.    This number sequence was written on the back of all ARES 

photographs by the test system personnel.1 

2.3.1.2    Calibration Photographs 

There are two common types of calibration or simulator 

checkout photographs generated for pulse simulators: 

*    Simulation Environment Photographs 

Instrumentation Calibration Photographs 

Environment photographs are generated on a continuing basis to assure that 

the test volume environment is within specifications.    In the case of ARES, 

four recording channels  (in addition to the 20 response channels) were 

available for recording environmental  data.    An average of two such environ- 

ment waveforms were photographed for each shot, bringing the average total 

number of photographs generated during a test shot to 22.   These environ- 

ment photographs were packaged separately from the response photographs but 
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were submitted to the data system simultaneously.     As in the case of response 

photographs,   certain supporting   information needs  to be included with the 

environment photographs to identify them and  indicate the test and  instru- 

mentation conditions  under which they are  recorded.    The identification 

information   is written on the back of the photographs.    The identifier used 

is normally the test/shot/channel number.    Supporting test and   instrumenta- 

tion information  is written on a form prepared for this purpose and  is keyed 

to the test/shot/channel number.     In the case of ARES3, such forms were 

called "run Sheets," and were not attached to the photographs. 

Instrumentation calibration photographs are taken 

periodically  to assure that the  instrumentation system from the test sensor 

through the recording oscilloscope camera  is functioning properly.    Thus, 

the volume of such photographs   is dependent on how often the test system 

considers these tests necessary.    Several  categories of such tests were 

run at ARES  including: 

• Frequency Sweep to Check  Instrumentation 

Frequency Response 

• Noise Check 

• Linearity Check 

* Calibration Pulse Check 

These calibration tests are not generally tied to a 

given test and shot,  but are a specific test of a channel at a certain time 

and date.    Thus, the test, shot, and channel   identifier scheme will  not 

suffice.    An appropriate identifier scheme to be written on the back of 

each calibration photograph would include: 

kO 
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Channel Number 

Date 

• Time 

• Test Type (as listed above) 

2.3.1.3   Characterization Parameter Lists 

It is very common in pulse testing to make measure- 

ments of key response waveform (photograph) parameters and  to assemble 

these along with other test parameters which identify the photographs and 

the test conditions under which it was generated.    This process is termed 

characterization, and the listing of parameters  is termed a character- 

ization data list or simply characterization data. 

For ARES1} the process of characterization was carried 

out by the test system with the parameter lists passed to the data system 

for processing into the data bank.   This characterization process could, 

however, be performed by the data system.    The basic input data to the 

characterization process are the response photograph plus the additional 

supporting data which identify the test and test conditions.    Thus, if the 

characterization is done within the data system, these supporting data 

would have to accompany the response photograph into the system. 

The following parameter list is that used to character- 

ize each response photograph at ARES during   the MINUTEHAN  Il/ill test program. 

Some of these parameters are self explanatory; others are not and may be 

peculiar to the particular test for which the list was designed.   Therefore, 

no explanation will be given for any of the parameters.    Those parameters 
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measured from the response photograph are indiccted with an asterisk.    The 

remaining parameters are test and test condition  identifiers which would 

have to be supplied by the test system if the characterization process took 

place in the data system.    Note the inclusion of test,  shot, and channel 

numbers  in the 1 ist. 

Test Series   (MINUTEMAN  II  or  III) 

Test Number 

Shot Number 

Date of Test 

Test Configuration Number 

Environment Level 

Risetime of Pulse 

Channel Number 

Sweep Speed 

Location Number of Sensor 

Location  I.D. Number 

•        Probe Impedance 

•        + Calibration Divisions 

k2 
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•       + Signal Divisions 

Calibration Divisions 

Signal  Divisions 

•        Verification Number 

•        Primary Frequency 

•        Secondary Frequency 

• Loop 

• Plume/Chaff 

•       Active/Detector 

.J 

•   Braid/No Braid 

Close/Open/Base 

•   Closure/Opening 

2.3.2 Typical Data System Outputs 

include: 

Typical  data system outputs which are requested by the user 

(1)    Copies of Polaroid photographs. 

(2)    Digitizations of Polaroid photographs. 
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(3)    Computer reduction of digitized data. 

(k)    Sorts of characterization data sets. 

2.3.2.1 Photograph Copies 

There are two common methods for passing copies of photographs 

back to the user.    Both assume that the photograph data are stored in the 

data bank on microfilm.    The first method is copies of the microfilm itself. 

For example, complete microfilm copies of all  photographs generated on the 

MINUTEMAN ii/ili  test program at ARES were made for several   Interested con- 

tractors on the program.    The second method of photograph copies are hard 

copy prints  (8-1/2 x 11   inches) made from the microfilm.    Microfilm 

printers are available for this purpose. 

2.3.2.2 Digitization Data 

Digitization Is  the process of converting analog graphical 

waveform data into numerical  data for computer input.    Digitization of 

photographic data Is often done as an intermediate step for further data 

reduction done internal   to the data system.    However, the data analyst is 

often interested In performing his own computer analysis with digitized wave- 

forms used as  input data.    The medium in which the digitized data set is 

passed back to the user depends on the digitizing system used In the data 

system.    Punched cards or digital magnetic tape are common mediums 

compatible with most computer systems.    Both of these mediums are available 

from the ARES Data System. 

2.3.2.3 Computer Reduction Output 

It Is typical  for a data system to have a computer software 

package   for performing various data processing functions on digitized data. 

kk 



Examples are Fourier transform generation, waveform integration,  transfer 

function estimation, and waveform unfolding (removal  of  instrumentation 

transfer characteristics).    The outputs from these computer operations are 

computer printouts and plots of graphic results.    Many computer facilities 

have both hard copy and microfilm plotting capability. 

2.3.2.A   Characterization Data Sorts 

Characterization parameter sets are often used by the data 

analyst to search out special  trends  in the test response data.    This 

searching process  is typically done by sorting parameter sets based on key 

parameter specifications.    These sorts are done with a computer6 and the 

output  is a computer printout which results in either a standard or user 

specified special  format. 

are: 

The mediums of output data typically required of a data system 

Microfilm 

• Microfilm Hard Copies 

• Punched Cards 

• Magnetic Tape 

• Computer Printout 

• Computer Plots 

2.3.3  The Processing Request 

The data system processing request is simply a form which 

is submitted by the user to initiate entry of data into the data bank, 
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request its retrieval, and/or any other processing within the capability 

of the data system.     In the case of entering data  into the data bank, the 

request form accompanies the raw test data as  it enters the data system. 

The form must contain sufficient pertinent information so that the data 

system knows what data  it  is receiving and what to do with it.    This infor- 

mation, which must be supplied by the user, should  include: 

(1) Submitter (user's name). 

(2) Submission date. 

(3) Type of photograph (response, environment, and/or 

calibration). 

{k) Number of photographs of each kind. 

(5) Test number to which photographs belong. 

(6) Any peculiarities about the data. 

(7) Any special processing instructions. 

From the discussions  in Paragraph 2.3.1,  it  is obvious that 

there were only two basic forms of data system input data during the ARES 

MINUTEMAN I l/l 11  tests;  photographs and characterization parameter lists. 

Throughout the test program, both forms of data were processed  into the 

data bank in a consistent manner.    Therefore, the Instructions for pro- 

cessing the data into the data bank were repetitious and, for the most 

part,  implicitly understood by both the users and the ARES Data System 

and did not have to be entered on the request form.    Only deviations from 

the norm, such as peculiarities  in the data (e.g., photographs missing) or 

special processing Instructions,   if any, were entered on the request form. 
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There are basically two types of requests for retrieving data 

from the data bank; standard and special.    For standard requests,  the 

instructions for processing required are implicitly understood by the 

user and the data system.    Thus,  the request form used to initiate a 

standard processing request need contain only the following  information: 

• Submitter 

• Submission Date 

• Processing Requirement 

• Data Bank  Items to be Processed 

In the case of special processing requests, very explicit 

instructions must be given by the user.    For example, ARES special  pro- 

cessing requests usually involved the data system's developing new computer 

software  in order to process or display results  in a nonstandard manner. 

ARES used two request  forms during the MINUTEMAN Il/lI I   test 

program as shown in Figures 2-2 and 2-3.    The first form was used to 

initiate all   input requests and  special  output requests.    The second 

form was used to initiate all  standard output r quests.    Both forms have 

a space for the date and the submitter's name.    The first form has a space 

for the number of photographs submitted.    This number told the data 

system how much data they were receiving in the package and gave them a 

quality control check number  (i.e.,  they were able to count the number 

of photographs  in order to determine  if the count coincided with the 

stated number). 
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DATA SYSTEM INPUT, COVER SHEET FOR 

(Submit to Data Support Team - Shift Supervisor) 

Date 

Submitter 

Number of pictures submitted 

INSTRUCTIONS: 

FOR DATA SUPPORT USE ONLY: 

Received      (Time) 

Control § 

Entered in request log by 

Characterized        , 

Keypunched/ver i f i ed 

Microfilmed        Thru 

Library (FiIm S Cards) 

Shift Supervisor 

Figure 2-2.      ARES Request Form for Data System 
Input and Special Output Requests 
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Additional information needed was filled in the space marked 

"Instructions." Examples of instructions are: 

"Environment Pictures for 373-2 through AOl-l." 

This means environmental photographs from test 373. shot 2 through test 

kQ],  shot 1. 

"Response Pictures for BkS'l  through 875-10." 

The same meaning is attached to this statement as for the environment 

photographs. However, for response photographs, normally a charac- 

terization parameter list accompanied each response photograph. 

'Response Pictures Missing for 856-7 and 856-9" 

This means, shots 7 and 9 were not made for test 856. 

When the form shown in Figure 2-2 was used to initiate a 

special output request, the blank for number of photographs submitted was, 

of course, left empty, and all Information was supplied In the "Instruc- 

tions" area. Always Included In the instructions were test/shot/channel 

numbers for the data to be used (I.e., the common index for most data 

stored in the data bank was the test/shot/channel number). 

The form shown In Figure 2-3 was used for standard output 

requests. The form has a number of standard data reduction functions 

listed under "Analysis Required," and a number of output and display 

options which could be checked. Also, there Is a space to list the photo- 

graphs to be used in the processing, plus some pertinent p-rameters (sweep 

speed, etc.) which might have been needed during the processing. 
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It should be noted that both forms contain a space titled "BDM 

Internal  Use Only" or "For Data Support Use Only."    These forms accompanied 

the data being processed through the data system and were used  in the con- 

trol procedures used internal  to the data system.    This control  use  is 

covered  in detail   in Paragraph 2.^». 

2.k    DATA SYSTEM PROCESSING AND CONTROL REQUIREMENTS 

The ground work has now been  laid to discuss the internal  workings 

of the data system.    The actions which take place will  be looked at as 

either "processing" data into the data bank or "processing" data out of the 

data bank as suggested  in the model   (Figure 2-1).    The term "processing" 

as used here denotes various sequential  processing steps which the data 

must go through  in order to prepare them for data bank storage or for the 

user.    This series of steps will  be termed a processing cycle. 

Several  such cycles can be defined for a data system designed to 

satisfy the data requirements of a pulse simulator  (transient waveform 

data).    The number of cycles  involved depends on the number of different 

forms of data input to the data system,  how the data are to be stored  in the 

data bank, and the requirements for output data.    The individual  process- 

ing steps  in each cycle are also dependent on these factors.     In any case, 

the processing steps are directed toward changing the medium or format 

of the test data  Into a more efficient or usable form, and are, for the 

most part,  hardware oriented. 

In addition to the processing steps which take place In a cycle, 

there are a number of control  steps which take place.    There are three 

categories of control which are commonly used: 
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• Data Bank. Control 

• Data  In-Process Control 

• Quality Control 

üata bank control functions are basically library oriented. They involve 

using a well-defined data logging and indexing system that allows assess- 

ment of the contents of the data bank at any time. This is very 

important from the standpoint of retrieving data from the data bank. 

In-process control of data involves procedures for checking the 

in-process status of any request submitted to the data system. The pro- 

cedures allow the data system supervisor to know if schedules are being 

met and if his operation is running smoothly in general. It also allows 

the supervisor to report the status of a request back to the user if 

necessary. This may be important if the user has requested an other-than- 

normal schedule or processing procedure to be used by the data system. 

Quality control procedures are used throughout each processing 

cycle to assure the quality standards of data entering the data system, 

entering the data bank, and leaving the data system. 

Since the steps which take place in a processing cycle are dependent 

on the input to the cycle and its data output, it will be instructive 

to consider how data are typically stored in the data bank. Once these 

are defined, the particular processing and control steps which take place 

in definable cycles can be discussed. The cycles selected for discussion 

are ones patterned after those used in the ARES Data System.1 This is also 

true for the discussion of the data bank which follows. 

2.4.1 The EMP Test Data Bank 

The EMP test data bank is a collection of various types of 

test information generated during a test program. In fact, it should 
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contain all  test information generated during the test program so that a 

complete data record of the test is permanently recorded and controlled. 

The mediums used in storing data in the data bank are normally selected for 

ease and utility of future retrieval as well as for convenience (as in the 

case of data reduction results being stored in the data bank as well as 

being passed on to the user)  (see Figure 2-1).     In this case, the medium 

passed to the user Is also the medium stored. 

ommon data bank storage media are: 

Microfilm 

Digital Magnetic Tape 

Punched Cards 

Punched Paper Tape 

Computer Printout 

Computer Plots 

Forms 

Index Logs 

2.4.1.1    Microfilm 

Microfilm Is a compact and convenient medium for 

storage of photographs.    As many as 1500 photographs can be recorded on a 

single reel of microfilm.    Microfilm can be rapidly scanned with a scanner 

to Inspect and select data for further processing.    It can be easily 

duplicated so that  records of test data can be passed out to 
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multiple users   (usually contractors associated with the test program) 

as well  as be stored in the data bank.    Hard copies of any recorded frame 

can also be made with a  hard copier capability.    Besides being used for 

the storage of photographs, microfilm is commonly used to record computer 

graphic output of high quality.    During the ARES MINUTEMAN Il/l 11  test 

program, the ARES Data System recorded more than 90,000 Polaroid photo- 

graphs on microfilm and made 12 copies of all  microfilm for distribution 

to users.     In addition, approximately 6,000 computer reductions were per- 

formed on response photographs which resulted  in six or more microfilm 

plots each.    Based on the volume of data for this program, the utility of 

microfilm as a storage medium is obvious. 

2.4.1.2 Digital Magnetic Tape 

Digital magnetic tape is also a compact medium of 

data storage and especially convenient for numerical data which are to be 

subsequently exercised by a computer (e.g., characterization data). 

Magnetic tape is susceptible to possible degradation (e.g., data acci- 

dentally being overwritten by the computer). Therefore, some method should 

be used to assure that such degradation does not take place (e.g., a backup 

tape of permanently stored data). 

2.4.1.3 Punched Cards/Punched Paper Tape 

Either punched cards or punched paper tape provides 

a convenient means of storing limited quantities of numerical data used 
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in subsequent computer processing.    This  is especially true if the user 

may request a limited set of these stored data for his own use as com- 

puter  input.    For example,  the results from digitizing a limited number 

of waveforms are more conveniently passed to the user as punched cards 

than as magnetic tape and most likely more convenient for the user since 

his program probably exists as a card deck. 

2.^.1.4    Computer Output 

Usually the computer output will  be stored as part 

of the data bank since much of the data reduction done by data systems 

is computer based.    The common computer output mediums are printouts 

and plots, although punched cards and magnetic tape can also be outputs. 

Plots are typically generated in one of three ways:     (1) microfilm (as 

covered  in Paragraph 2.4.1.1),  (2) digital  plotter  (e.g., CalComp), and 

(3)   line printer.    Binders are commonly available for storing printout 

and digital  plots. 

2.4.1.5 Forms 

The use of request forms has already been discussed 

in Paragraph 2.3.    Other forms may be used which aid the various process- 

ing cycles.    These forms are valuable records of user  input to the system 

and  internal actions taken within the system.    They,  therefore, must be 

stored,  preferably  in permanent binders. 

2.4.1.6 Index Logs 

The data bank is,   in effect, a library system con- 

taining a variety of data mediums.    Any library system must have an 

indexing system which allows access to the data.     In the data system 

data bank,  this  is accomplished through the use of written logs which 
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Indicate what has come into the data system for processing and what Is 

stored In the data bank.    All such logs should be  included as part of the 

data bank.    Two log forms are common:    notebooks and computer printout 

listings.    Accepted  library practices should be followed  in selecting an 

indexing system. 

2.'♦.1.7    Others 

Obvious additional candidates for storage are the 

Polaroid photographs and characterization parameter lists which enter the 

data system as raw data. 

2.k.2    Processing Cycles 

Four processing cycles are discussed below.    These four are 

the cycles which were used at ARES during the HINUTEMAN Il/lt I  test pro- 

gram.    They are considered very typical of the processing cycles which 

would be found in any data system handling pulse simulator data  (transient 

EMP waveforms). 

In discussing the cycles, each definable processing or control 

procedure will be Identified.    Those procedures of major importance which 

need extensive explanation will be covered in more detail  In Paragraph 2.5 

and in Section 3. which cover data processing techniques. 

The four processing cycles to be covered are: 

(1) Processing Polaroid photographs data Into the 

data bank. 

(2) Processing characterization parameter data 

lists Into the data bank. 
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(3) Retrieval and display of characterization 

parameter data. 

{k)    Retrieval, processing, and display of photograph 

data. 

2.4.2.1 Processing Polaroid Photographs 

The processing cycle for Polaroid photographs is 

shown in Figure 2-'». The incoming data or input to the cycle is a request 

form previously filled in by the user (test system) and a package of 

photographs. The supporting data are written on the back of each 

photograph (see Paragraph 2.3 covering data system I/O). The first 

step in the processing cycle is to log the work unit into the system. 

This is done by making a copy of the request form and entering this copy 

in a log-in notebook. Recall (Paragraph 2.3) that the request form 

contains all pertinent information about the input data.  It, therefore, 

acts as an ideal entry in a log-in notebook. 

In addition to entering the request form in the log 

book, a sequential internal data system control number is assigned to the 

work unit. This number is taken from the log-in notebook "index." 

Certain summary information about the incoming work unit is also filled in 

the index as shown in Figure 2-5- This information includes submission 

date, submitter's name, a very brief description of the job, and the 

number of photographs in the work unit (if applicable). Thus, the index 

is merely a summary in the log of the request forms and allows a quick 

check of submissions to the data system. The assigned control number, 

a simple, internal identifier of work units in process, is used for internal 

control purposes. 

The concept of a Data Coordinator was introduced in Section 1. At ARES, 
the Data Coordinator was the individual who acted for all users as 
liaison to the data system. He, therefore, submits all requests. 
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Date [Control No. | Submitter j Any Notes [Pictures JDate 1 Control  No. 1 Submitter 6 Notes | Pictures 

k* |      00151 bsjJn.'jU, 

W" }      00152 1 /'     ^ \ftJ-f/jin. 

h/w j      COI53 , J'^ui /c.-.yiiHsimi. U/7 

V/s j      0015'i 1/1/? 

V/5 j      00155 'r-ruM/ J J{.\ m«l 1                \ 

y^ j      00156 7J. 

%i 00157 \iV? 

%i 00158 

M/Js 00159 
^>/M J  1 JA. t.tilLf 

K/« 00160 0   A^./ji /j\,ii I'&d*  '-AX, 

mt 00161 l^lUO / / A .- yyj, v /Vii 1    7 

1 

i     i 
Figure 2-5.  Log-in Logbook Index 
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Referring  to the example request form of Figure 2-2, 

it  is seen that an area of the form has been reserved for "Data Support Use 

Only."    This form accompanies  the work unit through the processing cycle 

as a control mechanism (i.e., a sign-off form to indicate that given steps 

in the cycle have been completed).    Thus, the first point of "sign-off" 

will  be the log-in step.    The steps taken at the log-in process before 

s!gn-off can be summarized are as follows: 

(1) Write the date and time the work unit  (request) 

is  received on the request form.    Also, assign 

the next free work unit control  number from the 

log book index to the request form. 

(2) Copy the request form and enter the copy  in the 

log book as a permanent record of that request. 

(3)    Quality control  the work unit by counting the 

number of photographs to assure the count coincides 

with the number entered on the request form by the 

test system,  inspecting the back of each photograph 

to assure that proper supporting  information is 

written there, and inspecting the  instructions on 

the request form to assure that they are understood 

and consistent with the data submitted. 

(k)    Sign off the request form for the  log-in process 

as completed. 

(5)    Attach the request form to the work unit and pass 

on to the next processing step. 
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The next processing step is the microfilming of all 

photographs as shown in Figure 2-b.    This step typically involves indexing 

each photograph, recording the Indexed photograph on microfilm, and making 

extra copies of the microfilm. 

The index procedure used for the three categories of 

photographs (response, environment,and calibration) may differ depending on 

how the photographs are normally identified and what supporting information 

goes along with the photograph concerning conditions under which the 
•7 

photograph was generated. For example at ARES the three categories of 

photographs were handled in this way: 

(1) Response photographs were indexed with a test/shot/ 

channel number label placed on the photograph at 

the time it was "shot" onto the microfilm as 

shown in Figure 2-6. No additional supporting 

information was added to the index because all 

necessary supporting data were part of the charac- 

terization data list available in the data bank 

through the test/shot/channel number. All response 

photographs were put on microfilm reels labeled 

with the letter "R" denoting "response." A 

sequential number was also used in the label, 

(i.e., R-l, R-2, and so on). 

(2) Environmental photographs were indexed with a 

test/shot/channel number but supporting informa- 

tion was also included as shown in Figure 2-7. 

Thus all pertinent information associated with 

the photograph was recorded on microfilm along with 

the photograph. A special form called a photomount 

was developed for this purpose. The information 
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and Recorded on Microfilm 
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needed to fill in the photomount was obtained from 

a "run sheet" which accompanied environmental 

photographs into the data system. Environmental 

photographs were put on microfilm reels labeled with 

the letter "E," (i.e., E-l, E-2, etc.). 

(3) Calibration photographs were treated in a manner 

similar to the environmental photographs with all 

supporting information included in the indexing 

scheme as shown in Figure 2-8. The main identifier 

in the index is the date and type of calibration. 

The photomount concept was also used in micro- 

filming calibration photographs. Microfilm reels 

were labeled with the letter "C" (i.e., C-l, C-2, 

etc.). 

The handwritten microfilm log book is kept so that the 

information on microfilm can be retrieved. The indexing scheme used in the 

written log should be based on cross referencing the microfilm reel number 

(R-5, C-15. E-2, etc.) and the reel frame number to the photograph index, 

(i.e., test/shot/channel number for response and environmental photographs, 

and date and calibration type for calibration photographs). Thus one 

section of the log could be filled out as: 

PHOTO INDEX 
REEL      FRAME   (TEST/SHOT/CHANNEL) 

^31       73/6/1 E-15 

E-15 ^32 73/6/2 

A reel of 16 mm microfilm typically has 1500 to 1600 frames or individual 
pictures on it. These frames can be thought of as numbered sequentially 
for the purposes of finding information on a given reel. 
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(a) 

CALIBRATION PULSE » RAMP 

Level: 

Channel:  i. 

Vertical: 50 "v/div 

Horizontal: 100 ni/dlv 

Date:  9/8/71 

Time: 

Note»: 

(b) 
Figure 2-8.    Calibration Photographs as  Indexed 

and Recorded on Microfilm 
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REEL FRAME PHOTO INDEX 

E-15 i.36 73/6/6 

R-S't 1103 73/6/1 

R-5'* 73/6/2 

• 

R-5't 1142 

• 

73/6/40 

E-15 437 

• 

73/7/1 

• 
• 

• 
• 

139 

• 

n/13/72-NOISE 

As shown,  both the reel and frame numbers run sequentially and act as the 

key  indices. 

A second section could be filled in with the photo- 

graph index or identifier as the key index. Response and environmental 

photographs use the same identifier,thus they could be entered as follows: 

TEST/SHOT/CHANNEL 

73/6/1 

RESPONSE 
REEL      FRAME 

R-54      1103 

ENVIRONMENTAL 
REEL      FRAME 

E-15      431 

73/6/2 R-54 1104 E-15 

* 

432 

73/6/6 R-54 

• 
■ 

1108 

• 

E-15 436 

73/6/7 R-54 1109 E-15 437 

73/6/40 R-54 1142 E-15 470 

73/7/i R-54 1143 E-15 471 

73/7/2 R-54 1144 E-15 472 

• • • 
• 

• 
« 
• 

Note:    This  is a calibration photograph entry.    Therefore,  its  index is 
the date and calibration test type. 
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RESPONSE ENVIRONMENTAL 

TEST/SHOT/CHANNEL REEL FRAME REEL    FRAME 

73/7/6 R-Sk ma E-15    442 

73/7/7 R-5A mg 

73/7AO K-5k 1182 

Calibration photographs cannot be included in this 

indexing scheme because they do not use a test/shot/channel number as a 

key identifier.    However,  they can be Indexed in a similar way as follows: 

7/3/72 

7/3/72 

TYPE 

FS 

N 

REEL 

C-l 

C-l 

FRAME 

773 

774 

7/15/72 
7/15/72 

LC 

FS 

C-l 

C-l 

942 

943 

9/28/72 C-2 13 

The last step in the microfilm process Is to make 

copies of the microfilm as required by the user.    Copies are usually 

made of a total microfilm reel rather than partial  reel.    Therefore, copying 

is not a continuing process but only occurs when one or more reels are full. 

A continuing procedure which must take place throughout 

the microfilming process Is quality control.    In a data system, quality control 

factors considered are completeness, consistency, and quality of the results 

of each processing step.    Thus the quality control checks which are exercised 

during the microfilming process Include: 

Note that "type" denotes type of calibration photograph (I.e., Frequency 
Sweep (FS), Noise Check (N), etc.). 
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(1) Check for ambiguities or inaccuracies in supporting 

data written on the back of photographs or run 

sheets. 

(2) Visual checks to make certain that microfilm image 

quality is consistent with photograph image 

qua] ity. 

(3) Inspection of microfilm  indexing to assure that 

all supporting  information  is correct.     If 

inaccuracies are found,  the photograph should be 

reshot with the corrected supporting  information 

and spliced  into the microfilm reel. 

(4) Check the microfilm copies for image quality. 

(5)    Randomly check microfilm  log book with microfilm 

reels to spa  if log  indexing data match reel 

indexing data on a frame by frame basis. 

The final actions which take place in the photograph 

processing cycles are: 

(1) Sign off the  request form   (Figure 2-2)  to indicate 

microfilming   is complete. 

(2) Pass the request sheet to the data system super- 

visor or his assignee so that the input log book 

can be up-dated to show the job as complete. 

(3) Store photographs  in data bank. 
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2.k.2.2   The Characterization Data Cycle 

Characterization data lists are input to the data 

system to be processed  into the data bank.    The processing cycle to do 

so is shown  in Figure 2-9.    The output  (the output data medium) of the 

cycle is assumed to be digital magnetic tape.    This assumption is based 

on the assumed use of characterization data by the user or data analyst. 

The data analyst is typically interested in sorting and organizing the 

characterization parameter sets for particular trends   in the data.    This 

sorting and organizing  is best done by a digital  computer and because 
■k 

of the volume of data involved   the input data are best stored on magnetic 

tape. 

As explained earlier, a characterization data set 

(or parameter list)  is generated for each response photograph and they 

normally are part of a total data package input to the data system (photo- 

graphs plus parameter lists).    Except for the fact that the total package 

arrives under the same request form, the parameter lists can be treated 

as a separate input. 

The first step in the processing cycle is to log the 

request into the data system and perform the first quality control check 

on the data package.    The logging in procedure is exactly the same as that 

given for the photographic input data.    A copy of the  request form is 

entered in the log book, an internal control  number is assigned, and the 

original  request form is attached to the package of parameter lists. 

The quality control exercised at  log-in consists of 

counting the number of parameter lists submitted to see  if the count 

The ARES MiNUTEMAN ll/IM Test Program ended up with some 80,000 characteriza- 
tion data sets, each with 3' numerical parameters. 
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coincides with that given on the request form and scanning the data in each 

list to determine if each list is complete. 

The next step in the cycle of Figure 2-9 is  to transfer 

the parameter lists to digital magnetic tape format.    Two methods are 

shown for doing so (teletype or punch card input)  and are dependent on what 

type of computer facilities are available to the data system.    Using a 

teletype requires an on-site computer which is equipped with a teletype 

and a tape drive.    Using punched cards requires either an on-site or 

off-site computer equipped with a card reader and tape drive.    The tape 

created from the new parameter lists can be termed an "update tape."   When 

creating an update tape, it is typical to make each parameter set a 

separate "record" on the update tape. 

The final step in the process  is to add the newly 

recorded data to a master tape containing all previous parameter sets, 

which is the data bank for characterization data.    However, before doing 

so,  the new data should be quality controlled to assure that no mistakes 

were made in the translation process.    This can be done by listing the 

update tape contents and comparing the listing with the parameter lists, or 

by listing the punched cards  (if they are used) and making the same com- 

parison.    If errors are found, one must have a means of correcting the 

update tape,    if punched cards are used, one can simply change the incorrect 

cards and then generate the update tape.    When cards are not used (i.e., 

the teletype method is used)  cards could be generated  (punched) from the 

update tape, corrections made, and a new update tape made. 

Adding the update tape contents to the master tape 

is simply a tape-to-tape transfer operation requiring a computer equipped 

with at least two tape drives and the appropriate software to do so.    It 

is a definite advantage to have two master tapes available with one acting 

as a back-up in case the primary tape is destroyed. 
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2.^.2,3    Characterization Data Retrieval/Display Processing 

Cycle 

Characterization data sets are used by the data analyst 

to search for meaningful   trends  in test data.    This search   is typically 

done on a digital   computer using a data SORT/MERGE  routine  to select 

various characterization data sets, with  the selection based on key param- 

eter specifications.    The selected data are then displayed  in a manner 

which allows easy  interpretation by the data analyst. 

The processing cycle to retrieve and display charac- 

terization data  is shown  in  Figure 2-10.    The cycle  is started by a 

request from the user which must specify: 

(1) Which characterization data sets are to be 

included in the  retrieval   process   (SORT/MERGE). 

(2) On which data set parameters  the  retrieval   is  to 

be based. 

(3) How the retrieved results are to be displayed. 

The data   input to the cycle  is  the master characteri- 

zation data tape   (discussed   in Paragraph 2.^.2.2)  plus   instructions to 

set up the sort program and data output format.    These instructions are 

usually submitted via punched cards.    The output formats  for displayMg 

results normally consist of standard formats and special   formats.    ARES 

used two standard output formats:  the card  image and matrix shown  in 

Figures 2-11  and 2-12  respectively.    The software to produce either of 

these was written as part of  the SORT/MERGE  routine and the selection of 

either was made   in the  instruction cards at  the user's option.    The software 

for any special   display format was generated by the data system to user 

specifications. 
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A  large computer system    is normally  required for sorting 

the characterization data sets.    This  is because  large systems  are equipped 

with  the necessary random access and bulk storage peripheral  devices  (disk 

and tape units) used  in data sorting, and have available "canned" SORT/MERGE 

software packages which can be integrated into a total  software package 

accepting sort and displaying instructions, performing the sort, and display- 

ing the results. 

The  log-in procedure for this processing cycle 

amounts to the user submitting a request form with the  information listed 

above  (i.e., data sets  to be  included in the sort by test/shot/channel 

number, parameters to sort on, and display requirements).    The  request 

form should be copied and the copy entered  in the  log book as a permanent 

record.    An internal  control  number  is also assigned  to the request form 

as discussed in Paragraph 2.^.2.1.     if the request calls for a special 

display format, the details of the requirement should be  reviewed by a 

data system programmer to assure that they are clearly understood. 

At this point,  the request  is passed on to a programmer 

so that required sort and display  instruction punch cards can be generated. 

Once this is done,  the  instruction cards are submitted to the computer 

system to perform the sort and display.    The displayed  results are then 
i 

quality checked to assure that they meet the request  instructions.    They 

are then passed to the user.    Copies of the results can be retained as 

data base records.    However, characterization data sorts are usually 

specialized enough,   in terms of the particular data sets  involved, that 

there is a low probability that a request for the same sort conditions 

would be called for again. 

Examples of computer systems typically equipped to perform SORT/MERGE 
operations are CDC 3000 or 6000 series machines or  IBM 3^0 or 370 series 
machines. 
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2.k,2.k    Data Reduction Processing Cycle 

The term "data processing" is used  in the Handbook to 

denote a number of computer  implemented techniques for transforming  raw 

test data  into forms more suitable to assessment.    Assessment activities 

are carried on by both the test  system and data analysts.    The test system 

is primarily interested  in  the proper operation of the simulator and 

associated  instrumentation so the  raw data of interest here are environ- 

mental  and calibration photographs.    The data analyst  is primarily 

interested  in assessment of the  tested system and uses the response photo- 

graph as  his raw data.     In either case,  the data processing or transforma- 

tion techniques typically  include waveform integration,  Fourier transforms, 

or transfer function estimation. 

The data  input to the data processing cycle  is  the 

Polaroid photograph.    Since the data processing techniques  require the 

use of a computer, the photograph data must be converted  to a computer 

readable format.    This  is done by the process of digitization   (see Para- 

graph 2.5-2 for a detailed discussion of photograph digitization).    Once 

digitized,   the test dita are fed to the computer system as  input to the 

appropriate data processing  technique and  results are displayed as 

required. 

The processing cycle  is shown in Figure 2-13.    Action 

in the cycle  is  initiated by a  request  from the user.    The first step  in 

the cycle  is the logging  in of the request by the data system.    The  request 

is not normtlly accompanied by test data since all  photographic data reside 

in the test data bank on microfilm.    Therefore, the request form must specify: 
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(1) What photographs are to be processed. 

(2) What data processing action is to be taken. 

(3) Any special  computer software which must be 

generated to perform the data  processing. 

(k)    Any special   instructions   (e.g.,  the way  in which 

digitization   is to be carried out). 

The log  in procedure consists of copying the request 

form, assigning an  internal  control  number to the request, entering the 

copy  in the  log book,  and passing the request on to the next processing 

step  (digitization).     If the request calls for special software development, 

the request should be reviewed by a data system programmer at  the time of 

log  in so that a clear agreement of what  is to be done is  reached by the 

data system and submitter  (user). 

Usually a number of standard or "canned" data reduction 

techniques are available to the data system.    Therefore, a request form, 

such as that shown  in Figure 2-3,  is convenient.    The form does not have 

space for any special  instructions so that all  processing operations must 

be  implicitly understood by both the user and the data system.     If special 

instructions are required, the form of Figure 2-2 can be used alone or to 

supplement the form of Figure 2-3- 

Following log  in,  processing can take two parallel 

paths,  photograph digitization and software generation.    Digitization is 

necessary  in every case; software generation is necessary  in only those 

cases where  instructions so indicate and, presumably, these cases are 

1imited. 

The digitization process begins with location of the 

photographs of interest on microfilm and the generation of hard copies of 

the microfilm waveforms to be used  in digitizing.    As indicated in Paragraph 
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2.k.2.],  when photographs are recorded on microfilm, an eye legible index 

is also recorded. Thus, the photographs of interest are first located by 

identifying the microfilm reel containing the photograph (this is 

conveniently done via the microfilm log book), then scanning the reel 

with a microfilm scanner to visually locate the photographs. The scanner 

should be equipped with a hard copy printer, so that as a photograph is 

located, a hard copy is made. Note that there is a definite advantage to 

using the microfilm hard copies in digitizing as opposed to the photograph 

itself. The hard copy is typically 8-1/2 x 11 inches in size, whereas the 

Polaroid pnotograph has approximate dimensions of 3 x 4 inches. Thus, the 

waveform is enlarged more than two times which allows better resolution in 

digitizing. 

As indicated above, the results of digitizing are 

a sample data representation of the photograph waveform in a computer 

readable medium. The medium will normally be either punched cards or 

digital magnetic tape. 

Any software development which is done in parallel 

with the digitization process needs little explanation except to say that 

the programmer responsible for generating special data processing computer 

routines must have a thorough understanding of the subject of time series 

analysis.  In particular, he must have an appreciation of transient waveform 

analysis, the effects of sampling on such waveforms, how to use various 

numerical algorithms available for exercising the sampled data, and the 

effects of noise contamination on computed results. This type of under- 

standing suggests the data s/stem programmer should have an engineering, 

physics, or applied mathematics background with a good understanding of 

EMP test data assessment techniques. 

Following digitization and software generation (if 

necessary), the data are submitted to the computer system for processing. 

Which data processing code is used determines the type of computer 

required to perform the codes. Typical codes include: 
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(1) Preprocessing program to scale digitized data and 

perhaps time lie multiple waveforms. 

(2) Linear Fourier transform algorithm. 

(3) Fast Fourier transform algorithm. 

CO    Transfer function estimation algorithm. 

(5) W:.:      .  ''itegration  routine. 

(6) Data display routines for plotting results. 

Most of the codes  listed above can be done on a com- 

puter equipped with 30K or more words of core memory.    For convenience, 

the computer should be equipped with one or more magnetic tape drives, a card 

reader, a line printer, and a plotter. 

Since most scientific software is written  in FORTRAN, 

the computer system should be able to compile FORTRAN source code. 

The execution time for processing software depends on two factors:    the 

computer and the efficiency of the FORTRAN compi'er.    Large machines  like 

a CDC 6600 are specifically designed for "number crunching" computations 

which is characteristic of many data processing roues.    This  is basically 

due to the per  instruction execution time and the basic computer word length 

(60 bits for the CDC 6600).    Large scientific computers jlso generate very 

efficient machine codes from their FORTRAN compilers. 

As the size of the computer is reduced (in terms of 

basic computer word length in bits), the execution time for a given code 

generally increases, often by an order of magnitude or more. 

The final  step  in computer data processing  is 

the display of  results.    Results are typically displayed as plots or as 

computer printouts.    When plots are made,   it   is  important to assure that 
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the plot axis labeling and scale are ccrrect for the variables plotted. 

To do so, one must understand the units of the data input to the processing 

code and how units are changed by the processing codes, 

2.5 PROCESSING HARDWARE SUBSYSTEM 

The four test data processing cycles commonly found in BMP data systems 

were discussed in Paragraph 2»^». Three major hardware subsysteri were 

outlined in those discussions:  the microfilm subsystem, the digitizer 

subsystem, and the computer subsystem. These three subsystems are covered 

in more detail here to better understand their required design and operation. 

Because digitizers are probably the least understood of the three categories 

of hardware (that is, as they are used in processing EMP test data), the 

greatest emphasis is put on these systems. 

2.5.1 The Microfilm Subsystem 

2.5-1.1 Equipment Requi rements 

Under the assumption that both the microfi1m copies 

and hard copy prints of microfilmed test data are required from the data 

system, there are four basic pieces of microfilming equipment required; 

• Microfi1m Camera 

• Film Developer System 

• Fi1m Copier 

• Scanner/Hard Copy Printer 

As  indicated in earlier subsections, the average daily 

microfilming  load may be as high as 300 Polaroid photographs, with occasional 

peaks of 600 or more.    Thus,  the microfilm camera must be convenient and 

reliable to use with features such as easy focusing and an automatic 

exposure meter to assure proper light level. 
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Film developing can be done by hand  in a dark room or 

in an automatic system.    Normally, the automatic developer systems are com- 

pletely self contained, having one-pass systems which can operate in complete 

daylight and which require minimum handling of chemicals.    An automatic system 

with such features  is a definite requirement, especially when large quanti- 

ties of microfilm must be processed. 

Also, a film copier system is needed to make microfilm 

copies for distribul.on to parties who need a permanent record of test data 

collected. The only requirement on such a system is that it produce copies 

with least degradation  in  information content. 

The basic requirement on the hard copy system is that  it 

produce high quality  reproduction of the microfilm information.    The  informa- 

tion is, of course,  test waveforms and the hard copies are required 

as the waveform images for the digitizing process.    Therefore,  the 

quality of the digitized data is proportional  to the quality of the micro- 

film hard copy.    There are two basic types of hard copy processes:    dry and 

wet.    Both process types wve thoroughly evaluated when the ARES Data System 

was being developed and it was found that all dry processes produce prints 

of unacceptable quality.    Therefore, a wet process system is a definite 

requi rement. 

2.5.1.2    Example Microfilm Equipment 

A brief description of the microfilm equipment used at 

ARES is given as examples of some equipment that meets data system requirements. 

2.5.1.2.1    Recordak Micro-File Machine12 

The Recordak Micro-File machine is designed 

for making permanent microfilm (16 mm) of documents up to ?.6-lA inches by 
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36-3A inches.    The microfilm records are normally made on 100-foot rolls 

of 16 mm fi'm (see Figure 2-14). 

All  controls are  integrated  in the machine 

and the lens system provides automatic focusing at all  reductions.    Each 

selected reduction ratio is  indicated to the operator.    The film unit  is 

raised or lowered by a wheel on the front of the machine. 

The photoelectric exposure meter determines 

the required  light   intensity and, being  in a fixed position, the meter does 

not have to be swung over the document to determine proper exposure.    A 

split-field range finder allows the operator to easily adjust the copy 

level  for depth of field focus. 

The model MRD-2 has a photo reduction range 

of from 5:1  to 21:1. 

2.5.1.2.2    ITEK 335 Transflow Processor13 

The Transflow Microfilm Processor provides 

an automatic film processor and features straight-through processing, day- 

light loading, premixed chemicals, and simultaneous processing of multiple 

fi1m rolIs and widths. 

The straight-through film channel  passes 

through three stages;  processing, washing, and drying.    Any point  in the 

film transport may be reached in a matter of seconds by raising the three 

top hoods and lifting out the tank covers   (see Figure 2-15). 

The processor  is designed for complete day- 

light operation.    Film is processed under ordinary room light.    No prethread- 

ing  is required.    Film is started by attaching it to a 36-inch opaque leader 

which  is then fed  into the feed rollers of the processor. 
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Figure 2-]4. Recordak Micro-File Machine 
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Eleven pairs of rollers pass the film through 

the processor in a straight line to the delivery rollers and the take-up 

section. Here the leader is removed and the film wound on the take-up spool. 

The basic units include a film input magazine; 

developer, fixer and wash applicators; dryers, and take-up spools. Each 

section of the processor has two sets of rollers that feed the film through 

in a straight line.  In support of the main film track are the supply tanks, 

drains, thermometers, and control units. 

2.5.1.2.3 ITEK 303 Contact Printer1** 

The ITEK 303 contact printer will make 

contact copies of microfilm, including 16 mm, 35 mm, and 70 mm film. At 

ARES, 16 mm film is standard. Figure 2-16 shows the four spindles for 

holding the negative film to be printed, take-up reel after printing, the 

positive roll of film to be printed, and its take-up spindle. 

2.5.1.2.4 Bell & Howell Hlcro-Data Printer15 

The Bell 6 Howell Micro-Data Printer is used 

to make positive prints of microfilmed data. This machine has controls for 

varying the print size, as well as the contrast of the prints. Other controls 

provide for variable speed control of the film, image rotation to allow any 

desired rotation of image axes, focus control, and a scan control to provide 

movement of the image on the screen in either a horizontal or vertical 

direction. Figure 2-17 shows a photograph of controls and film mounting. 

'7 





Figure 2-17. Bell and Howell Micro-Data Printer 
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2.5.2 Digitizing Subsystem 

2.5.2.1  Introduction 

Digital computer processing of EMP test data requires 

that the test data be conveyed from continuous analog test signals to a form 

usable by a digital computer. This usable form is a series of digital words 

and the conversion process is called digitization. The conversion process can 

take place in real-time in which case the "digitizer" operates directly on 

test sensor voltages or currents; or it can take place in other than 

real-time which requires that the test signals be recorded on an interme- 

diate medium such as a storage oscilloscope or a photograph. 

Because of signal bandwidth requirements, and because 

real-time analog to digital converters with a sufficiently high sampling 

rate have yet to be perfected (i.e., sampling rates of 2 x lo samples/ 

second or greater are normally required), the storage of test signals on 

an intermediate medium is the most common approach. 

Since the intermediate recording medium technique is 

commonly used (that medium most commonly being the Polaroid photograph), 

the material presented in this subsection will concentrate on digitizers 

for the conversion of graphical photograph data to digital data. Examples 

of digitizers of other types will also be covered but to a lesser extent. 

9 10 
2.5.2.2 Digitizer Fundamental ' 

Digitizers of all types are basically samplers and 

encoders which transform continuous or analog Information to digital form. 

The analog information of interest for this discussion is a graphical 

representation of an EMP time waveform. The graphical medium can be a 

Polaroid photograph, microfilm copy of the Polaroid, or enlargement made 

from either. 

90 



■ET! T-^  in» 
i ^ 

In the transformation or conversion process,   it   is 

necessary to sample and transform selected  locations,  (x., y.), on the spatial 

waveform into pairs of digital words  (Z    , Z   ),    Since the measurement of 

x-y coordinate locations must be made with respect to some reference location 

or distance  (xR, yR), one can define: 

x. 
i 

Xi     =    XR 
Z 

(Eq.  2-1) 

Z 
Y; 

i 

In these two equations, Z     and Z      are taken to be the closest digital 
I 1 

approximation to x./x. and y./yB respectively. 

If xB and ,    are assimed to be "full  scale" distances, 
R R 

then both Z   and Z    can be implicitly represented as fractional  binary 
x y 

numbers of the form 

-.   Z = a^"1 + a22"2 + ... + an2"n (Eq.  2-2) 

in which the a. are 0 or 1.     It should be clear that Z is always  less than 

unity since x,  < x. and y. <  y. 
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The a^      term represent the bits in the digital 

-1 ' 
word.     The a.2      term is called the most significant bit  (MSB)  and has a 

value of 1/2  (2    ).    The a 2      term  is call.;d the  least significant bit 

(LSB)  and has a value of 1/2 .    The value of the binary word   is obtained 

by adding up the value of all  terms which have a non-zero coefficient 

(a.  -  1).    The value of the digital  word when all  coefficients equal   1   is 

1-2      or 'lormalized full scale less one LSB. 
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This particular binary representation or code is 

called "natural binary." There are many other codes used in digitizers, 

all of which are variations of natural binary and are usually chosen for 

convenience in application or in interfacing with other systems.  Examples 

include binary coded decimal (BCD), bipolar, offset binary, one's comple- 

ment, and two's complement. 

2.5.2.3 System Operational Requirements 

There are a number of factors which are fundamentally 

important to digitizer performance and selection such as resolution, 

accuracy, basic operational mode (manual or automatic), and control. 

Before discussing these, it will be valuable to develop a simple model of 

graphic digitizers to use in subsequent discussions. 

All graphic digitizers can be looked upon as having 

four basic elements (see Figure 2-18): 

(1) Reference Plane 

(2) Pointer or Cursor 

(3) Analog-to-Oigital  Converter 

C») Control  Unit 

The reference plane acts as the working surface on which the graphical or 

spatial waveform to be digitized  is  placed.    The pointer is used to  locate 

the point on the waveform to be digitized.    The reference plane/pointer 

normally acts  in an emitter/sensor relationship so that the position of the 

pointer on the reference plane can be sensed.    There are many electronic 

and electromechanical schemes used to form this relationship but all 

produce essentially equivalent results. 
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For most digitizers, the emitter/sensor system pro- 

duces analog voltages or currents proportional  to the position of the 

pointer on the  reference plane.    The voltages or currents are then fed to 

an analog-to-digital   converter to produce Z    and Z  ,  the digital outputs. 
x y 

The control  unit basically serves  the purpose of 

buffering,  formatting, and  storing the digital  outputs  from the analog-to- 

digital  converter.     It can serve a number of additional   functions  important 

to digitizing EMP waveforms   (see the discussion   in  the  paragraph on 

control). 

2.5.2.3.1    Resolution 

The first operational   factor of fundamental 

importance  is digitizer resolution.    For graphical  digitizers,  the  resolu- 

tion  is determined by the usable dimensions of the reference plane  (x_ and 

yn)  and  the number of bits   in the digital words,   Z    and  Z   .     (Note that  the 'R 3 '     x y 
number of bits   (n)   is assumed  in these discussions  to be  the same  for both 

words although  this   is not always  the case.)    A digital  word with n  bits 

has 2    unique states   (e.g.,   for n = 3,   there are 2    or 8 unique states). 

Then,  the number of  uniquely definable  locations,  N,   in  either orthogonal 

dimension   (x or y)   of the   reference plane  is given by: 

XR 
x     „n 

(Eq.  2-3) 

and 

N    = — (Eq.  2-k) 

Assuming  the digitizer to be linear,  these uniquely definable locations  are 

equally spaced across the surface of the reference plane. 
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As seen  In   Figure 2-18,  resolution governs the 

quantization error   in Z    and Z   .    The dots  represent  the uniquely definable x y 
locations on the  reference plane.    As the pointer  is n,r>ved along the con- 

tinuous waveform,   the analog-to-digital  conversion  logic solects that  loca- 

tion which the pointer  is closest to, with transitions theoretically made 

halfway between any two adjacent points.    The result of digitizing the 

waveform in Figure 2-19 with   the resolution  indicated  is  illusfated in 

Figure 2-20. 

In actual   fact,   the resolution for most 

commercially available graphical  digitizers  is sufficient so that the 

quantization error  is more than acceptable for digitizing photographic data. 

Available resolution is  typically between 0.01  and 0.001   inches.    Consider- 

ing the dimensions of a Polaroid waveform, one can visualize that the result- 

ing digitized waveform will be very close to the pattern traced during 

digitizing.    Note    that  this  does not  imply the digitizes waveform is 

necessarily equivalent  to the actual waveform,  but only to the pattern traced. 

The equivalence of these two waveforms  (actual  and digitized)   is a function 

of operator ability and photograph quality in the case of a manual 

system, or of photograph quality and system complexity in the case of an 

automatic scanning system. 

2.5.2.3.2    Accuracy9»10 

Accuracy  (conversely error)   is the measure 

of closeness between the actual and theoretical  digitizer outputs.    Refer- 

ring to the simple discrete grid model of  Figure 2-19. when  the pointer or 

cursor Is closest  to grid point (x. , y.),  then the digitizer outputs should 

be Z     and Z This may not be the case for reasons of poor design or 

digitizer operation outside the specified environmental   limits  (e.g., tem- 

perature, humidity, and dust).    The types of error which may occur include: 
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• Quantization Error 

• Offset or Bias Error 

• Scale Factor Error 

• Linearity Error 

To discuss the effects of  these errors, 

the simple analog-to-digital   conversion model of  Figure 2-21 will  be used. 

The model, as shown,   is a graphical   representation of the   ideal   conversion 

process.    The abscissa  represents   the analog  input normalized to full scale. 

The ordinate  represents the  resulting digitized output.     Note that 

a digital word of length 3  is assumed giving eight unique quantization 

levels.    Note also that the transition in the ideal   case  is assumed to 

take place midway between quantization levels.    The numerical  value of 

the digital word as well  as  its bit values are given along the ordinate. 

Figure 2-21  clearly  illustrates  the effects 

of quantization error alluded to   in the discussion on resolution.    Any 

analog input value between 9/16 and 11/16 of full scale will be converted 

to a digital  value of 5/8  (code of  101). 

Figure 2-22  illustrates  the second type of 

error, offset or bias.    The error  is strictly analog  in nature and occurs 

either in the process of sensing  the location of the pointer on  the 

reference plane or in  the analog-to-digital  converter.    The offset shown 

would cause all  digital  outputs  to be low  in value by 3/16 of FS.    The offset 

could, of course, be  such  that all   readings would be high by some value. 

The third error type,  scale factor or gain 

error,  is  illustrated  in   Figure 2-23.    Here the analog-to-digital conversion 

process is  linear but transitions  no longer take place at the  ideal  transi- 

tion thresholds.    For example,  the lower conversion threshold for full 
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Figure 2-21.    Model  of   Ideal   Analog-to-Digital   Conversion 
Process   (n = 3) 
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scale digital   (Z = 111)   is  located at 3A FS rather than 7/8 FS as  it 

should be.     This  is also an analog type error which takes  place prior to 

the conversion process. 

The final   error type discussed   is   linearity 

error, shown  in Figure 2-24.     An  arbitrary nonlinear gain  curve has  been 

drawn to  illustrate  its effects.     The gain  relationship can,   in  fact,  be 

any  relationship that distorts  the conversion in a nonlinear way. 

As   in  the case of  resolution,  most commer- 

cially available digitizers  should have  the above discussed error problems 

worked out so that the digitizer operates with an acceptable overall 

accuracy.     An acceptable accuracy  is one on the order of the stated resolu- 

tion.    For example,   if  the resolution  is given as 0.001   inch,   then an 

acceptable accuracy would be ± 0.005 inch or less.    This means  that a 

distance measured from any point   in the reference plane to any other point 

in  the reference plane can be in error by as much as ± 0.005  inch.    How- 

ever,  the stated accuracy  is  usually an "expected maximum error"  in  the 

statistical  sense, which means  that ± 0.005 inch  is  a maximum error where 

the expected error is zero. 

2.5.2.3.3    Basic Operational Mode 

Graphical  digitizers currently  in use for 

EMP test data reduction can be divided  Into three categories: 

• Manual 

• Semiautomatic 

• Automatic 

Manual  systems, as the name  implies, are manually operated,  requiring an 

operator  to move the pointer from waveform location  to location during 
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digitizing.    The chief advantage of the manual  systems   lies   in  the opera- 

tor's ability to overcome certain  photograph quality problems with which a 

semiautomatic or automatic digitizer may have problems.    These photo- 

grspMc quality problems are  partly due  to the inherent complexity of EMP 

test data,  and partly due to human error or  instrumentation  problems during 

the  recording process.     Examples of such photograph problems are   illustrated 

in  Figures 2-25a through 2-25f.    These six test photographs were generated 

at ARES and are considered typical   of the  types of test data digitized by 

data system. 

The first example  (Figure 2-25a)   illustrates 

a near  ideal waveform for digitizing.     The photograph has good contrast  nnd 

the waveform has good frequency resolution  (i.e.,  the waveform is suffi- 

ciently spread out so that all  portions are clearly defined). 

The second example  (Figure 2-25b)   illustrates 

a test waveform in which at   least  two resonant frequencies appear, one much 

higher   in  frequency  relative  to the other.    Thus the high frequency  infor- 

mation as  recorded has very poor resolution and is almost   impossible to 

digi tize accurately. 

The third example  (Figure 2-25c)   is very 

similar to the second, except  that  the high frequency  information persists 

for  the total  duration of the  recorded waveform.    Again  the frequency 

definition   is very poor which would make digitizing very difficult.    The 

photograph also has poorer contrast than  the first two examples. 

The fourth example  (Figure   2-25d)   illustrates 

the problem of portions of the waveform completely disappearing due to 

oscilloscope writing speed  (waveform slope and amplitude).     As  in  the  third 

example, high frequency  information persists for most of the waveform 

duration. 
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Figure 2-25. Photographic Problems 
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Figure 2-25 •    Photographic Problems  (Continued) 
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The fifth example (Figure 2-25e) illustrates 

poor photograph contrast most likely due to improper setting of the grati- 

cule lighting on the oscilloscope. 

The final example (figure 2-250 illustrates 

the problem of baseline drift in which the waveform appears to be biased 

from its true baseline. This is most likely due to oscilloscope mal- 

function.  There is virtually noway to correct for this type of error 

because of the inherent distortion to the waveform. 

As implied at the outset of this discussion, 

a properly trained operator can overcome many of these poor quality problems, 

This is certainly true in many cases where the waveforms are complex with 

poor frequency resolution.  It is also true where contrast is poor within 

certain limits.  In these cases the operator can guess at and "fill in" 

missing or hard to distinguish waveform dita.    This procedure, of course, 

runs the risk of adding waveform features during digitizing which do 

not exist. Finally the major disadvantage of manual systems is:  (1) 

they are slow (one to three minutes to digitize a single waveform), and 

(2) the operator can become disinterested and do a poor job over long 

periods of time. 

Semiautomatic digitizers normally operate 

on a light scanning principle in which the grey level (density) of a 

photograph (in this case its negative) is sensed and, based on sensed 

level, the waveform is located and conversions are made.  In this case the 

light beam acts as the pointer and precision position fixing of the light 

beam during scanning acts as the reference plane. The scanning process is 

automatic and very fast, normally allowing a complete waveform to h-, 

digitized in well under one second. These systems are configured so that 

the operator can interact in the scanning process and manually digitize 

"difficult" portions of the waveform. These waveform portions are 
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diificult  in  the sense that there  is   insufficient  photograph contrast or 

frequency  resolution for the automatic scanning system to accurately  locate 

the waveform. 

Automatic digitizer systems are essentially 

equivalent to semiautomatic except that there are  limited or no means  for 

operator  interaction.    Thus waveform problems as discussed above cannot be 

easily overcome. 

2.5.3    Digitizer Control 

There are several control-oriented functions which are mandatory 

for digitizers used  in EMP data reduction,  and certain additional   functions 

which are desirable but optional.    The discussions here are again directed 

toward manual  digitizer systems rather than semiautomatic or automatic 

systems mainly because manual  systems are predominantly used in  EMP data 

reduction due to the test data quality problem as outlined in the previous 

subsection. 

Tie control  functions which are considered mandatory are: 

(1) Means of  initiating single point digitizations. 

(2) Means of  indicating that a digitizing sequence  is 

completed. 

(3) Means of storing output digital   data which are compatible 

with the computer system which will  use  the data. 

CO    Means of  labeling digitized data  sets. 

There are two typically used modes of digitizing EMP waveform 

data:    polnt-by-polnt and continuous or evenly spaced  In X.    Polnt-by-polnt 
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is  the more commonly used mode for which  the operator selects  points  to be 

digitized along  the waveform, using waveform characteristics   (slope and 

curvature)   as selection criteria.    This  produces a set of digitized points 

in which  the X-axis values   increase  (Zv    > Z )  but are not evenly 
X/._.\ 

spaced  (nonconstant AX).       To operate this mode,  the operator must be able 

to  initiate a conversion after selection of each point.    Many commercially 

available digitizers come equipped with  a button on the pointer   (cursor) 

or foot pedal  for  this  purpose. 

In order that no extraneous  data points are  taken after  the 

end of the waveform  is  reached,  a means  of "turning off"  the digitizer and 

ending the digitized data set  is   required.    Again,  this  function  is  normally 

provided by a push  button on the pointer. 

The output digitized data must obviously be stored on some 

medium compatible with  the computer system in which  it will  be 

used.    There are  three common mediums for this   purpose,  digital  magnetic 

tape,  punch paper  tape,  and punch cards.    Most  commercial  graphic digiti- 

zers are available with  interface options  to  interface with one or more 

of  these storage media. 

Labeling digitized data sets   is necessary for identification 

when  the sets are  used as   input data for data  reduction computer programs. 

Labeling requires   that a means of entering the  label   into the storage 

system must be provided.    A teletype or other keyboard device satisfies 

this  purpose, along with an appropriate  interface to the storage system. 

Control   functions which are desirable but not mandatory   (i.e., 

these functions  if necessary can be performed by a digital computer subse- 

quent  to the digitizing operation)   include: 
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(1) Establishment of a waveform origin with all  subsequent 

digitized points  referenced  to the origin   location. 

(2) Reformatting of data. 

(3) Digitizing   in a continuous mode with data points 

selectively  retained based on a constant AX 

criteria. 

(k)    Quality control. 

Establishing an origin  is a matter of selecting an origin  location,  storing 

the Zu and Z    value for this  location,  and subtracting  these values from 
X y ' 3 

the Z^. and Z    value for all   subsequent data points.    This   is a feature 

provided  in some commercial   digitizers.     If not,  It can be accomplished as 

a preprocessing step by a digital  computer. 

Reformatting of data is often necessary to put  it into the 

required form for use by  the digital computer.    This  reformatting can 

often be accomplished by the  interface system which  interfaces the 

digitizer to the storage system.    If not,  it can also be accomplished as 

a preprocessing step by a digital computer. 

Controlling  the digitizer  to generate constant AX data requires 

a fairly sophisticated  level of control.    The constant AX selection process 

can be done subsequent to digitizing by a digital  computer,  but that means 

a large number of data points must be  recorded at the time of digiti- 

zing with the appropriate constant AX points selected from this  large data 

set.    Depending on the resolution of the digitizer and the speed at which 

the operator traces  the waveform, the rate at which data must be stored 

by the storage system may be beyond its  limit.    For these reasons,  the 

selection process  is best accomplished  in real-time by the digitizer 

control  system. 
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The final   optional  control  function, quality control, basically 

amounts to the capability for making various reasonableness checks on the 

digitized data to assure  that the resulting data set   is not  in error. 

Certain errors can be corrected by subsequent computer  processing, but 

others  that cannot be corrected may render  the data set useless. 

The approach which the ARES data system has  taken to control 

its digitizer system  is  to interface a commercial  digitizer system, with 

very  limited control   features,  to a mini-computer.    The mini-computer, 

because of   its programmabi1ity,   is able to provide all  optional  control 

functions for maximum digitizer flexibility. 

2.5.3.1     Example Digitizer Systems 

Several examples of digitizer systems presently  in use 

for EMP data reduction or which show promise for future application are 

described  in this subsection.    The examples cover both graphical  digitizers 

(manual  and automatic)   and direct digitizers. 

TM 11 

2.5.3.1.1    The Bendix Datagrid 

The Datagrid very closely matches the 

graphical digitizer model  discussed in Paragraph 2.5.2.3 covering System Opera 

tional  Considerations and  Is the digitizer presently  In use at ARES.    As 

seen  in Figure 2-26,  the system consists of a digitizing surface  (reference 

plane), cursor  (pointer) with control  buttons and a rack-mounted unit con- 

taining the analog-to-digital conversion electronics and certain control 

functions.     In the case of ARES, the digital outputs from the conversion 

unit are fed to a mini-computer which completes the necessary control 

requIremen ts. 
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The detailed operating principles  for the 

Datagrid are kept proprietary by Bendix.    However,   in general,  the reference 

plane contains  two large printed circuit boards  located just under the 

working surface.    Each printed circuit board  is etched  to form a  series of 

closely spaced parallel wires.    One of the  two boards   is  used for x-coor- 

dinate data and the other for y-coordinate data so the parallel wires 

of one board  run orthogonal   to the wires on the other. 

The wires on each board are electrically 

driven so that unique amplitude and phase  information  is  emitted by the 

wire network at each point on  the working surface.    The cursor acts as a 

receiver or pick-up for this  emitted  information.    Once picked up,  the 

amplitude and phase  information is decoded  into two voltages  (or currents) 

proportional   to the cursor  location on the working surface.     These two 

analog voltages  (or currents)  are then converted to two 16-bit digital 

words   (Z   and Z ) . 
x y 

The Datagrid  is available with various 

working area  (reference planes)  sizes ranging  from 30 by  36  inches to 

'♦2 by 60 inches.     Resolution  is given as 0.001   inch, with  an accuracy 

of 0.005-inch.    As an  interesting side note, one can see  the requirement 

for a  16-bit digital output word by considering the largest work area size 

of 60  inches and the resolution of 0.001   inch.    The number of uniquely 
o 

definable locations along  the 60-inch axis  is 60 by  10  .     A digital word 
16 3 

of length 16 has 2      or~ 6^ x 10    unique states.    A word of length 15 has 

only ^ 32 x 10    unique states.    Thus 16 bits are required. 

There are numerous control  options avail- 

able for the Datagrid which  include  interfaces  to several   storage devices 

(card punch,  paper tape punch, and magnetic tape),  zero set  (establish 

origin), and continuous curve tracing with constant AX output.     In the 

case of ARES, the decision was made to Interface the Datagrid to a NOVA 
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1200 mini-computer, allowing the NOVA  1200 to provide the necessary control 

functions.    The control   software written for  the NOVA 1200   includes: 

(1) Accept digitizer outputs,  format 

for compatibility with CDC 6600 

data reduction codes,  and write 

onto digital  magnetic tape  in a 

CDC 6600 readable format. 

(2) Accept  identification   label via 

the teletype and append  to digi- 

tized data set. 

(3) implement constant AX algorithm 

for continuous waveform tracing. 

(4) Automatically check for  time 

regression  (i.e.,  !„    must be 

greater  than ZY      ). 
Vl 

Besidos  the control  functions  provided by 

the MOVA 1200,  the Datagrid through cursor push-buttons can establish an 

origin anywhere on the digitizing surface,  initiate a conversion,  indicate 

the completion of a digitizing sequence, and delete an  incorrect data 

po i n t. 

12 
2.5.3.1.2    The Universal  Tele reader 

The Telecomputing Corporation Universal 

Telereader  (Type 17A-1)   is a manually operated film reader capable of 

digitizing hard copy material   such as  Polaroid photographs.     Measurement 

of waveform coordinates   is accomplished by positioning a horizontal  and a 
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vertical  cross hair to be coincident at the coordinate.    To assist  the 

operator and to achieve better  resolution,  the pattern l>eing digitized is 

projected onto a frosted glass  screen with an enlargement of 2.15X using 

a 65 mm lens system or 3.^5X using a 38 mm lens  system.    The system has a 

resolution of 0.0006  inch using the 65 mm lens system and 0.00035 using 

the 35 mm lens system. 

The operator positions  the  cross hairs 

with two independent control  knobs, one for the horizontal   cross hair and 

one for the vertical  cross hair.    The angular position of  these knobs  is 

sensed and converted to appropriate digital  outputs. 

A telereader  is presently   in use at the 

AFWL Computational  Services  Division,  Photo Reduction Section.    This parti' 

cular system  is  interfaced to a card punch as the method for storing out- 

put data. 

13 
2.5.3.1.3    The Telereadex 

The Data  Instruments Telereadex  (Model 

29E-17)   is a manually operated film reader designed to digitize graphical 

patterns recorded on microfilm  (see f'igure 2-27).     Images   from the micro- 

film are projected onto a 28 by 28 working surface using a   lens/mirror 

* system.    Various   lens sizes   (50 mm,   105 mm,  190 mm,  and 360 mm)  are avail- 

able for varying amounts of  Image enlargement.    Digitizing   is achieved by 

positioning a set of cross hairs over the point of  interest on the working 

surface and actuating the digitizer.    Positioning  is accomplished by two 

independent control  knobs, one for the horizontal  cross hair and  the other 

for the vertical  cross hair. 

The system has a resolution of 0.0028  inch 

on the working surface.    This  translates  into a resolution of 0.0016 mm for 

Ilk 

/ 

/ 



POWER 
SWITCH 

FUSES 

HAIN POWER 
SWITCH 

CONVENIENCE 
OUTLETS 

LENS  POST 

PROJECTOR 
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the  50 mm lens system at the microfilm plane, 0.0037 mm for the  105 mm 

lens  system,  etc. 

The Telereadex  Is presently  in me at the 

AFWL Computational  Services Division,  Photo Reduction Section.    This parti- 

cular system  is  Interfaced to both a digital magnetic tape system and a 

card  punch system as storage devices  for output data, 

2.5.3.1.1»    The Hewlett-Packard 986^4 Digitizer 

The Hewlett-Packard Wbk Digitizer  is a 

manual   digitizer system consisting of a digitizer and an HP 9810,  9820,  or 

9830 calculator.    The digitizer  Is  supplied by Bendlx to Hewlett-Packard, 

and  therefore, has  the same operating principles as  the Bendix Datagrid 

digitizer described  in Paragraph 2.5*3-1*    The HP 9820 calculator gives a 

very versatile digitizer system since a number of fairly sophisticated 

algorithms car be Implemented to exercise the digitized data. 

The working area of the digitizer  Is  17 by 

17  inches.     Its resolution  is given as 0.01  inch, with an accuracy 

± 0.001   inch  in the temperature  range of  150C to 30oC. 

The AFWL Vertically Polarized Dipole Data 

System presently uses an HP 986A digitizer system for Polaroid photograph 

transient EMP data reduction.    The system consists of the digitizer,  cal- 

culator,  plotter, and cassette tape drive.    The system  Is capable of  imple- 

menting a  linear Fourier transform algorithm as  part of  Its data  reduction 

capability.    Since the digitizer comes from Hewlett-Packard as  a system, 

all  software required to make maximum use of the system as a graphical 

digitizer  Is  Included as part of the package.    Note also that additional 

peripheral  devices can be  Interfaced to the HP S6(>k such as a  teletype or 

paper  tape punch,  so that data can  be transferred to another computer 

system. 
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2.5.3.1.5 The Automatic   Image Digitizer 

The Automatic  Image Digitizer  is a highly 

sophisticated semiautomatic graphical  digitizer system operated by  the 

AFWL Computational  Services Division,  Photo Reduction Section  (see Figure 

2-28).    The hard copy medium for the system is microfilm.    As seen   in 

Figure 2-28,  the system uses a complex  light scanning scheme  to measure 

microfilm grey  level or density. 

The system basically consists of a pro- 

grammable  light source for scanning  the film,  a density measuring system, 

a film transport system, and signal  processor and logic unit.    The signal 

processor/logic unit consists of a PDP-7 digital computer, a graphic CRT 

display,   teletype, and digital  magnetic tape drives. 

The system is   interactive  in that  the 

operator can manually digitize selected portions of the waveform via the 

CRT display terminal.     The operator can also edit portions of a digitized 

data act via the CRT display terminal.     In the automatic scan mode,   the 

system can digitize a complete waveform  in approximately 30 seconds. 

Depending on the amount of manual  operator  interaction, a typical  good 

quality EMP transient waveform takes  from one to four minutes  to digitize. 

16 
2.5.3.1.6 The Sandia  Image Digitizer 

The Sandia   Image Digitizer  (SID)   is a semi- 

automatic graphic digitizer developed by Sandia Corporation for the purpose 

of digitizing black and white graphic pictures  (see Figure 2-29).   The system 

is built around a television camera which scans the black and white  image 

and converts the camera output  to digital   information proportional   to the 

black/white scale of the scanned  image  (i.e.,  the system discriminates only 

two grey  levels, either black or white). 
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Regardless of picture size, all  pictures 

are laid out   in a 500 by 500 point matrix  if the aspect ratio  is  1:1.     Thus, 

system resolution  is  a function of picture size.     The digitizing speed 

ranges  from 66 to  133 milliseconds depending on picture complexity.    There 

is a TV monitor associated with  the system which   is used  in setting up  the 

picture  for digitizing  (i.e.,  defining boundaries).    The total  digitizing 

time per picture  is   then the sum of the setup time and automatic scan  time. 

The control   system for the digitizer  is a 

PDP-8 mini-computer.     The computer allows  considerable flexibility  in 

exercising  the digitized data with additional data  reduction or analysis 

software algorithms. 

17 
2.5.3.1.7    Biomation Model  8100 Transient  Recorder 

The Model   8100 Transient Recorder  is a 

direct analog-to-digital  converter system.     Thus, test data are digitized 

In  real-time.     The system sampling rate  is  variable from one sample every 

10 seconds  to one sample every  10 nanoseconds.    At  the high sampling rate, 

the system  is claimed to have a  frequency  response of dc to 25 MHz. 

The amplitude resolution  is  1/256 of full 

scale  Input voltage,   (I.e., an 8-bit digitial output word  Is used).    Total 

storage capacity for digital output  Is 2000 words.    At maximum sampling 

rate,  this corresponds to total   data  taking duration of 20 ysec. 

The direct digitizing technique has  the 

distinct advantage of operating directly on the probe voltage,  thus elimi- 

nating  the  intermediate storage of data on Polaroid photographs and the 

associated data quality problems.    At  present,  the major disadvantage   is  the 

sampling rate.     It   is gene.ally accepted that recorded transient EMP data 

should be recorded up to 100 MHz or greater.    This would  imply sampling 

Intervals of 5 nanoseconds or less. 
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2,5,^    Computer Subsystem 

2.5.^.1    Computer Requirements 

In  the discussions on processing cycles, a computer was 

indicated as  being used   in: 

(1) Adding a new characterization data set  to a 

master data tape. 

(2) Retrieving and displaying characterization 

data. 

(3) Executing various data  reduction codes. 

The updating of the master characterization tape is a 

simple card-to-tape or tape-to-tape data transfer operation and requires a 

computer system with a card reader and tape drive or two tape drives. Any 

computer system down to a mini-computer   will   satisfy this requirement. 

The   retrieval  and display of characterization data on 

the other hand has much more demanding requirements.    The  retrieval  operation 

is essentially a SORT/MERGE operation and  is most efficiently performed on a 

computer system equipped with  large scale,   random access, mass storage 

devices   (disks).     Large  scale computer systems  are usually so equipped and 

often have general   purpose  SORT/MERGE codes written  for them which will 

satisfy characterization  data retrieval  requirements. 

The  computer requirements  for executing data reduction 

codes depend on several   factors such as: 

(1) Core required. 

(2) Execution time relative to computer execution 

Mini-computers are typically defined as stored program computers with 

a basic word   length of   16 bits or  less. 
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(3)    Accuracy  required  in  results. 

{k)     Input/output  requirements. 

18 
A recent study    of ARES computer requirements  for data reduction concluded 

that a properly configured mini-computer could have handled the majority of 

the  data  reduction codes used during the MINUTEMAN   I I/I II   test program.     If 

the mini-computer is   looked upon as  the   lower bound  in  required computing 

capability  for executing data reduction software, here  is how the mini- 

computer must be configured: 

(1) Central  processing  unit with 32K words of 

main memory. 

(2) A disk - 256K word or more storage capacity. 

, (3)    A card  reader  -   100  to 300 cards/minute. 
if 

I 
(k)    A line printer - 200 to 500  lines/minute. 

4 

■ 

(5) A keyboard terminal   - teletype or equivalent. 

(6) A digital  plotter - 0.001   to 0.01   inch 

resolution. 

(7) Floating point hardware. 

(8) An  industry standard tape  drive. 

The need for 32K words of core memory is based on the 

fact that most EMP data reduction software  routines  can be written within 

32K words,     if one  finds that this  is not so  in his case, a number of popular 
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mini-computers can have their memories expanded beyond 32K words.    It should 

be noted that  in the case of mini-computers, core memory  is  a very cheap 

commodity  relative  to other computer system costs. 

The disk  Is a necessity so the computer can be  run 

under a disk operating system  (DOS), much  like the monitor systems In  large 

computers.    The specified disk size (in words stored) would allow a 

reasonable number of programs  and data sets to  reside on a  disk at any one 

time. 

The card reader, line printer and terminal device are 

all necessary input/output peripherals and the operating speeds given tend 

to reflect what  Is  available  commercially. 

The plotter is very much a necessity  because so much 

of the data reduction output  Is required In the  form of plots.    The resolu- 

tion range given  is  readily obtainable  In available plotters. 

The floating point hardware  Is  required to decrease the 

execution time of floating point operations, which are commonly involved in 

scientific software.     For example, a floating point multiplication can be 

executed 10 to 20  times  faster using the special  hardware,  than  if executed 

by software.    Thus, the floating point hardware will  assure minimum 

program execution  tl;t«s. 

Finally,  the tape drive  Is specified as a convenient 

means of communicating with other computer systems  and a means of storing 

mass data.    For example, the master characterization data tape could be 

updated on the mini-computer system, with the tap? carried  to a large 

scale computer for SORT/MERGE operations. 
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As part of the above mentioned ARES computer study,  a 

linear Fourier transform code was bench marked on a CDC 6600 and a popular 

mini-computer,  to test execution accuracy.    The  results of the bench mark 

Showed that  the mini-computer generated more than acceptable accuracy  in 

its  results. 

There is one possible additional   use for a computer 

in the data system and  that  is as a controller for the digitizer.    This, of 

course,  depends on what  type of digitizer  is used.     However,  if a computer 

is so used,  a mini-computer would more than satisfy  the requirement. 

To summarize the data system computer requirements, all 

but the sort/merge capability can be satisfied by a mini-computer.    Again, 

the emphasis  on  the mini-computer is  to set a  lower bound on  required 

capability.    The choice of how the computer system is  configured depends on 

such  factors as: 

(1) Whether off-site computer facilities are 

available to the data system. 

(2) The proximity of these facilities to the 

data system. 

(3) If the off-site  facility  is configured to 

satisfy the majority of the data system 

needs. 

CO     If the off-site  facility  is  sufficiently 

loaded  (or overloaded)  so  it cannot 

provide the  required turnaround time. 
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2.5.^.2    Computer  Subsystem Alternatives 

There are  basically three  alternatives  for meeting 

the data system computer requirements  in terms of hardware  subsystems: 

(1) Use off-site computer  facilities  and 

hand  carry all   inp«*".  and output  to and 

from the computer. 

(2) Use off-site computer  facilities,  but 

with a remote job entry terminal* on-site 

which allows the computer to be accessed 

directly from the data system. 

(3)    Have all necessary computer capability 

on-site with the exception of the sort/ 

merge capabi1ity. 

Alternative  (l)  has the obvious  disadvantage that a 

great deal of time would be wasted commuting between  the data system and 

computer facility  to submit jobs and pick up results.     It may satisfy a 

small  test program where a limited amount of test data are generated, but 

certainly not a large test program. 

Alternative  (2) would eliminate much of the commuting 

problem.    However,   it  leaves  the data system completely dependent on a 

remote computer facility.     If the computer facility can meet capability 

(e.g., plotting)  and turnaround requirements, then  it  is a very good 

alternative.     If not,  then the whole EMP test program cculd suffer. 

An example of a  remote job entry terminal   is the 200 User terminal  used 
at ARES to access  the CDC-66OO computer system at Kirtland AFB. 
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The  final   alternative essentially makes   the data 

system independent of any other computer system.     This may be a necessity 

in the case where a suitable off-site computer facility   is not  available 

or in the case where  testing  is  being conducted at a  remote site and  it  is 

desirable  to have all   necessary capability at the  test  site  for rapid 

assessment of test  data. 

This  third alternative   is certainly the most convenient 

from the standpoint of operating the data system.     Assuming that a mini- 

computer system were used,  the disk operating systems  presently available 

for mini-computers  can operate  in a multiprocessing environment.    This means 

that several   tasks  can,   in effect, be going on  in parallel.     Thus, 

the mini-computer could be accepting new characterization data sets via 

the teletype or card  reader,   formatting the data and storing   it on tape. 

At  the same time,   it  could control   the digitizer,  buffer in the digitized 

data, and store completed data sets on a disk for data  reduction.    And  it 

could simultaneously be executing a data reduction code such  as a Fourier 

transform algorithm and plot  the  results.    The reason  this type of 

operation can be performed on a time effective basis  is because at least 

two of the above operations  (processing characterization data and controlling 

the digitizer)   leave the computer CPU idle for long periods of time.    Thus, 

the CPU can be shared among multiple tasks. 

.1 
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SECTION 3 

DATA REDUCTION TECHNIQUES 

3.1  INTRODUCTION 

3- The EMP Problem 

The EMP threat and most simulated EMP tests consist of exposing 

some system to a transient electromagnetic field which Induces transient 

currents (l(t)) on the metallic skin of the system and on Its internal 

wiring. One of the primary experiments in an EMP test program consists of 

measuring the transient Induced currents (I'U)) on internal wiring in the 

vicinity of critical subsystems In order to determine the subsystems' sus- 

ceptibility to the EMP threat. 

H(t) H(t) H(t) 

The objective of most  EMP test programs   Is  to find  some 

relationship between the exciting fields  (I.e.,  E(t))  and the  resulting 

current at some critical   locations  (i.e.,   I'(t)).     This objective has 
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three motivations.    One   is  to minimize the  resources  required  to conduct a 

comprehensive test,     if the  relation between E(t) and   I'(t)  can  be found, 

it   is possible that the physical   system under evaluation can be  replaced 

by a mathematical  model.     The second motivation  is  that  an understanding 

of the relationship between  E(t)  and  I' (t)  can allow a theoretical assess- 

ment of the system's  susceptibility to those electromagnetic environments 

that cannot be simulated  properly.     The third motivation   is that an under- 

standing of the relationship between the exciting fields   (E(t))   and the 

induced  response   (I'U))  at a given   location would   lead  to sufficient 

understanding to  identify the electromagnetic coupling mechanisms.    An 

understanding of the details of the coupling mechanisms   is a prerequisite 

for modifying the system to  reduce or eliminate these unwanted   induced 

signals. 

Unfortunately,   the relationship between  the  transient BMP 

fields and the  induced current response  is seldom made evident  by  inspecting 

the time domain data. 

E(t) I   (t) 

The difficulty  in relating the excitation to the  induced 

response  is that  the two are related by an  integral   and/or differential 

equation whose form(s), as well  as scaling parameter(s) , must be determined 

before the relationship can be established.    Therefore,  a more efficient 
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procedure  than using time domain experimental  data  to relate  the excitation 

to the response is required  to achieve maximum knowledge possible from 

expensive  EMP test programs.     This  procedure  is available through  the  use 

of frequency domain analysis  techniques. 

3.1.2    The Frequency Domain Approach 

The most straightforward approach to obtaining frequency domain 

coupling  relationships   is through continuous wave   (CW)   testing.     Assume 

that the system is  illuminated by electromagnetic fields that are oscillat- 

ing at ü  single frequency  (CW), 

E(f   ) 

> 

H(f  ) 

I   (f  ) 

and the  induced current at some monitor point,   I' (f ),   is measured.     Symbol- 

ically,  this experiment can be represented as a generator driving a "black 

box" while its response is measured at a specified pair of terminals. 
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i   = 0,   1, 

1   (f,) 

If one changes the oscillating frequency of the generator and measures the 

amplitude of the current,   |l'(f.)|,  and   its phase, <t)[r(f.)],   relative to 

the generator at each change,   the relationship between excitation and 

response   (H(f.))  can be obtained as a function of frequency. 

HCf.)! = 
i (fj) 

ETTT 

i  =0,   1,  • • • n 
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In many cases, this relationship, H(f.), is relatively simple 

compared to that in the time domain case because it is still governed by 

the basic integral/differential equations. However, in the frequency 

domain it is possible to reduce the equations for H(f.) to the ratio of 

two polynomials in frequency 

an + a,f.  + ...  a f."1 

H(f)=_0 U 5^ (Eq.   3.,) 
b0+blfi+-bnfi 

For a  system that  is linear and small  compared to the wavelength of the 

exciting fields,  this reduction  to  polynomial   form ic always  possible. 

Systems that are linear and  large compared to the wavelength of the 

excitation can usually be approximated to any desired degree of accuracy 

by this  ratio of two polynomials   in  frequency form.     The advantage of 

this  polynomial   form in the  frequency domain  is  that the  relationship 

between the excitation and the  response  is expressed  in  terms of an 

algebraic function rather than  the   integral/differential  equations required 

in  the time domain formulation.    Obviously an algebraic  form offers 

relative ease of analysis.    An additional  advantage of formulating the 

excitation/response problem in  the frequency domain   is the existence of 

considerable experience and published results on the subject that are not 

available  for the transient time domain formulation. 
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3.1.3    Frequency Domain Analysis for Transient Time Domain  Data 

The previous  subsection has   indicated that the determination 

of the excitation/response relationship can be simplified considerably  if 

the analysis  is done  in the frequency domain rather than the time domain. 

Unfortunately,  the EMP threat and most  EMP testing have transient time 

domain electromagnetic field excitations and  induced responses.     Therefore, 

some  relationship for transforming between data  in the time and  frequency 

domains   is required so the experimentally measured excitation and response 

in  the time domain can be converted to a  frequency domain form where the 

subsequent analysis  is simplified.     Such a relationship  is available and 

is known as the Fourier  Integral  Transform  (FIT). 

The remaining portions of this section will  deal   largely with 

the  theory and application of the  FIT and  its related formulations.    But 

before proceeding further,  the fundamental  prerequisites for the use of 

the  FIT or any time/frequency transform procedure must be emphasized.     If 

these prerequisites do not apply,   then  the analysis must be conducted   in | 

the time domain;  however,  the available  time domain analysis  techniques 

are beyond the scope of this discussion. 

I 

The first and most important prerequisite for the use of any 
i 

time/frequency domain transform is that the excitation/response relation- 

ship must be linear. Simply stated, the response of the system must be 

proportional to the amplitude of the input.  If 

1,^ (Eq. 3-2) 

then 

l2 - AI]~E2 - AE, (Eq. 3-3) 
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where A  is an arbitrary constant.     Linearity must apply for both CW fre- 

quency domain and transient  time domain excitations. 

Another aspect of the  linearity prerequisite  is  superposition. 

Superposition means that  the  response given the simultaneous application 

of  two excitations must equal   the  sum of  the  responses   if  the excitations 

were applied separately.    An example where superposition does not apply  is 

when  the  response   is proportional   to the  square of  the   input.     Then 

I     =  E2 

1       tl 

! 2 

j l2 =  E2 

1,   =   l2ME1+E2)
2 

Because of this  linearity  requirement,  one must  be aware of 

which coupling  relationships  tend  to be   linear and which do not.     The 

coupling of electromagnetic energy  from the EMP environment  to  the metallic 

skin  and   internal  wiring of a  system  is  generally linear.      Important excep- 

tions are:     (1) when arcing or voltage breakdown occurs   in  the  system,   (2) 

when  the conductivity of the atmosphere  surrounding or   internal   to the 

system  is a  function of the  EMP  fields,  and   (3)  when  the coupling  is due 

to electromagnetic fields diffusing through a ferromagnetic shield.    Also, 

the transfer of energy from internal  wiring to critical   subsystems  is gener- 
l 

ally nonlinear.    However,   the purpose of system level   EMP tests   is to 

experimentally determine the amount and  type of electromagnetic coupling at 

various points   in  the  system.     It   is generally assumed  that  the nonlinear 

loads   (subsystems) absorbing energy have a minor effect on   the nature of 

coupling onto cable bundles,  etc.     Therefore,  frequency/time domain  tech- 

niques are generally applicable for  the  study of coupling where nonlinear 

! coupling effects are considered minor.     The  techniques are  not  applicable 

when   studying  the deposition of coupled energy  into critical   subsystems 

with active elements because of severe nonlinear effects. 
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The second prerequisite for use of frequency/time domain trans- 

form techniques presented  in the following subsections,   is that  the  relation- 

ship between the excitation and  the response cannot be a function of the 

time when  the excitation  is applied.    This prerequisite requires some 

interpretation  for EMP test conditions.     If the excitation/response 

relationship changes when the system is   in a different  state   (i.e.,  power 

on versus power off),  then frequency/time domain transform techniques can 

be used only   if each state is studied separately.    The techniques do not 

apply  if the system is changing  states during excitation.    For example, 

the  time when  the system and  its associated environment are changing states 

is when the system is   immersed   in an atmosphere with a time varying con- 

ductivity.     In  such a case, the analysis must  be conducted entirely  in 

the time domain. 
\ 
I 

3.1.4    Section Review 

! 
The remaining parts of this section present the frequency/time 

domain techniques applicable to EMP test data reduction in preparation for 

assessment.  The order of presentation will follow the logical procession 

of data from the field to the finished product. 

A discussion of preprocessing techniques is first. The data 

generally come from the field in the form of analog traces on Polaroid 

photographs.  These data must undergo several operations before any trans- 

form techniques are applied with the aid of a digital computer. This pre- 

processing includes analog-to-digital conversion, scaling, and combining 

of related time domain records. 
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COMPUTER PROCESSING USING 
TIME/FREQUENCY DOMAIN 

TECHNIQUES 

OUTPUT TO 
DATA ANALYSTS 

RAW 
DATA * PREPROCESSING 

Thus, several  preprocessing techniques will  be discussed as a prerequisite 

to presenting the theory and practical  use of transform techniques. 

The discussion of the time/frequency domain techniques begins 

with a thorough discussion of the theory of the FIT applicable to EMP data 

reduction.    This material   is presented because most of the errors occurring 

in the computer processing of EHP data occur because the analyst has only a 

partial  understanding of the applicable theory of the FIT.    Next,  related 

transform techniques such as the Fourier Series Transform (FST) and the 

Discrete Fourier Transform  (OFT), which are commonly used   in EHP data 

reduction, are discussed.     Finally, a subsection explaining the practical 

application of the various time and frequency domain techniques  is pre- 

sented.    This subsection   includes a description of the  limitations of the 

techniques as well  as the various types of errors that commonly occur in 

the use of these techniques.    This subsection  is particularly pertinent 

s'nce it covers certain classes of errors which can contaminate test data, 

how these errors affect the results of transform techniques, and how the 

effects of these errors can be minimized.    The errors  include the noise 

that typically contaminates waveform data during digitizing and the 

truncation of waveforms which occurs when the waveforms are recorded on 

oscillographs. 
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3.2     PREPROCESSING  TECHNIQUES 

It   is generally assumed throughout the  handbook that test waveform 

data are   initially  recorded as Polaroid oscillographs and that  the data 

reduction  techniques   (as described later  in  this section) are  implemented 

on a digital  computer.    There are certain preparatory steps which must be 

taken to  ready test data for input  to data reduction routines. 

At a minimum,  the  raw test data must be converted from the oscillo- 

graph or analog form to a computer readable form.    This  is accomplished 

through the digitization process. 

The coordinate data generated through digitizing must have certain 

scale factors applied before they are used as   input data.    The scaling 

operation converts the waveform data to the value  (and units) of the 

physical  observable as originally sensed.    Some of  the scaling data are 

generated during digitizing, while others are derived from recording 

instrumentation parameters.    Scaling   is performed as a digital  computer 

operation. 

A final  preprocessing technique which  is used  in data reduction  is 

time tying.     In this technique,  two or more waveforms of the same physical 

observable  (recorded at different time bases)  are tied together to form a 

more complete waveform.    Again,  this   is a digital  computer  implemented 

technique. 

The following paragraphs cover each of these preprocessing techniques 

in detail. 
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3.2.1     Digitization 

The subject of digitization technology  is presented  in some 

detail   in Paragraph 2.5.2 from basically a hardware standpoint.    The 

material  presented  in this paragraph  is directed toward operafional  pro- 

cedures  in the use of manual digitizers for preparing oscillographs as 

data reduction  input.     Two subject areas are discussed: 

(1) Setting up digitizer and calibrating the 

osci1lograph. 

(2) The procedures followed  in digitizing thf. 

waveform. 

Before starting these discussions,  however,   it   is useful   to summarize the 

manual  digitizer model   presented in Paragraph 2.5.2.3* 

3.2.1.1     Manual  Digitizer Model 

The manual  graphic digitizer has  four principal com- 

ponents:     (1) a reference plane which acts as a working surface,   (2) a 

pointer or cursor for selecting points on waveforms to be digitized, (3)  an 

analog-to-digital  converter, and  CO  a control  unit. 

REFERENCE 
PLANE 

CONTROL 

A/D 

CONVERTER 

OSCILLOGRAPH ANALOG 
COORDINATE 

DATA 

/ 

CONTROL 

/ 

CONTROL 

UNIT 

DIGI TAL 
COORDINATE 

DATA 
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The reference plane/cursor act in an emitter/sensor 

arrangement which allows the position of the cursor on the reference plane 

to be measured as two electrical signals x. and y., the coordinates of the 

cursor. These analog signals are fed to the A/D converter where they are 

converted into digital words. Z  and Z 3 x.     y. 

The cursor is a free moving device which is manipulated 

by the operator to locate points on the oscillograph for digitizing. The 

cursor is assumed to be equipped with three control buttons which control 

signals to the A/D converter. The first button allows an origin to be. 

established at any desired point on the reference plane. The second 

button initiates an A/D conversion once a desired point is located. The 

third button signals that the end of a waveform has been reached and 

digitizing is to terminate. 

The function of the A/D converter is self explanatory. 

The function of the control unit is to buffer, reformat, and store the 

digital data.  It can also control the A/D converter so that evenly spaced 

(constant Ax) data can be obtained if desired.  The control unit is also 

assumed to be able to accept alphanumeric data from a keyboard device such 

as a teletype.  Note that this manual digitizer model closely resembles 

the Bendix Datagrid System19 used in the ARES Data System. Even so, the 

setup and digitizing procedures covered in the following paragraphs hold 

for an> manual digitizer. 

3.2.1.2  Digitizer Setup 

The purpose of the digitizing process is to convert a 

test variable, such as current, l(t), voltage, V(t), or magnetic field 

strength, B(t), which is in oscillograph form to digitial data. Whereas 

the test variable has units of amperes/second, volts/second, etc., the 

oscillograph has units of length, which the digitizer measures, usually 
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in inches. Thus, scaling data must be derived from the oscillograph which 

allows the measured waveforn 

correct test variable units. 

allows the measured waveform coordinate pairs (x., y.) to be scaled to the 

The first digitizer setup procedure simply involves 

establishing an origin on the reference plane. The digitizer normally 

assumes its origin at the lower left-hand corner of the reference plane. 

However, it is desirable to have the origin at the origin of the oscillo- 

graph waveform. 

w 

M AJ^_ 
X 

-** ' 
(0,0) 

REFERENCE PLANE REFERENCE PLANE 

An origin transformation Is accomplished by simply selecting the desired 

origin point on the reference plane and subtracting its coordinate values 

from all subsequent digitized coordinate pairs. 

xl ■ x - x 
i   I   o 

y| - y, - y0 
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where: 

(x. , y.)  = coordinates measured  relative 

to the reference plane origin 

(x   , y )  = coordinate of  the desired o     o 
origin 

(x|, y|)  = position of   (x. ,  y.) 

relation  to   (x   ,  y ) 
o      o 

Many digitizers do this   transformation as an   internal   operation, with 

resulting digitized data  referenced to the desired origin.     (Recall   the 

origin set button on  the cursor   in the digitizer model.)     If the trans- 

formation   is not done   internal   to the digitizer, x    and y    must be  stored 
o o 

as part of the total  data set with subtraction performed as a preprocess- 

ing operation as  indicated  in Equation 3-k. 

Next, data must be taken which allow any rotation   in 

the oscillograph coordinate system relative to the reference plane coordi- 

nate system to be corrected. 

i  1 
OSCILLOGRAPH                     1 

^           COORDINATE 
f\\       SYSTEM     /=><^' 

1 "l 
\    \          REFERENCE 
X/—PLANE COORDINATE 
*C                   SYSTEM 

REFERENCE PLANE 
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If  the angle a between the two coordinate systems can be determined,  then 

digitized coordinate pairs   (x 

the following transformation: 

digitized coordinate pairs   (x. ,   y.)  can be rotated  through a degrees by 

y 

cos a    s m a 

•s m a    cos a Vt 

(Eq.   3-5) 

The angle a can be derived as  follows:     It  is assumed that  the  recording 

oscilloscope graticule  image  is  superimposed on the waveform oscillograp 

OSCILLOGRAPH 
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This graticule is the coordinate system for the oscillograph. Measure the 

coordinates of any two constant y points on the graticule. 

(x, , y,) (, , | (x2, y2) 

These two points are on a given horizontal   graticule  line and a   is deter- 

mined as 

a ■ tan 

rZ    - Z 
1/  h    yi 

z   - z 
x2      x, ) 

(Eq.   3-6) 

Note that the two coordinates should be taken at opposite ends of the 

graticule Image, since small errors in measuring these two points are 

amplified as the points move closer together. 

The next data taken are used to scale the Z data 
y, 

to the proper test variable units.     It  Is common to superimpose 

a rectangular waveform of known peak-to-peak amplitude  In volts on the 

test waveform at the time of recording. 
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VOLTAGE  CALIBRATION 
WAVEFORM 

TEST WAVEFORM 

If this combined waveform is measured at  its upper and lower values,  then 

a scale factor in units of volts/inch can be derived from the data points. 

(x,,  y.) 

Since the peak-to-peak voltage,  V      is assumed known, the desired scale 

factor  is derived as 

SFVI - 
¥pp/fZ„ - Z ■/(v s) (Eq.  3-7) 
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where: 

SFy = the desired vertical 

scale factor  in volts/inch 

V      = the  peak-to-peak waveform 
PP 

voltage known a priori 

Z    and Z      = digital  values of y.   and y„   in 
y, y2 1 2 

units of  inches. 

Thus,  any  subsequent y.   coordinate,  measured   in   inches,  can  be  converted 

to volts  by 

Z'       = Z    x SFV   (inch x volts/inch) (Eq.  3-8) 
yi yi 

Note  that  the rectangular waveform may not be of constant amplitude at  its 

supposedly constant amplitude positive and negative excursions,   but may 

exhibit a  rapid rise and then a  slow rise to a peak value. 

Thus,  there must be an agreement between the data system  (digitizer 

operator),  the test system, and the data analysts as  to where  this 
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waveform is   to be sampled.     In  the case of ARES,   the agreed upon point was 

approximately half-way along slow rising portions of the waveform. 

If a voltage calibration pulse  is not superimposed 

on the oscillograph waveform,  then  the vertical   scale factor must  be 

derived from both oscillograph measurements and oscilloscope setup data; 

namely,  the vertical   input amplifier gain  setting normally given  in volts/ 

centimeter.     The distance between any two contiguous horizontal  graticule 

lines on  the oscillograph  is one centimeter relative to the oscillograph 

(i.e.,   if the oscillograph  is enlarged for digitizing,  then the distance 

is  larger  than one centimeter but  still  one centimeter  relative to all 

information  recorded on the oscillograph).    Thus, digitizing these two 

points gives  the data necessary to calculate a parameter with units of 

inches/centimeter.    The oscilloscope vertical   amplifier gain  in volts/ 

centimeter can  then he entered through the keyboard terminal  as part of  the 

data set.     The vertical  scale factor  is computed as 

SF,, = GUA/|Z    " Z   \ volts/ V        VZ/^y,       y2j / inch (Eq.   3-9) 

where 

Gy.  - the oscilloscope vertical  amplifier 

gain  in volts/centimeter 

(Z%< - Zw ) ■ the scale parameter  in  inches/centimeter 

relative to the oscillograph 
y,    y2 

The final  setup data taken are for computing the 

horizontal  or time-axis scale factor SFH.    This procedure  is equivalent 

to that discussed above except that  the distance is measured between  two 

contiguous vertical   instead of horizontal  graticule lines. 
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(x2, y2) 

(x1, y^ ^ 

These two measurements are used to compute a parameter with units of 

inches/centimeter 

P = Z    - Z 
Xl       x2 

(Eq.   3-10) 

The sweep rate of the oscilloscope is read from the oscilloscope in centi 

meters/second and is entered into the data set via the keyboard terminal. 

Then SF.. can be computed by 

where: 

SF = SR x P inches/second (Eq. 3-11) 

SR = oscilloscope sweep rate in 

cent imeters/second 
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3.2.1.3    Waveform Digitizing 

The material  contained  in this discussion pertains 

to some of the practices which should be considered in digitizing oscillo- 

graph data.    The discussion can be started by stating that the use of a 

manual  digitizer  involves an operator for all  phases of the digitizing 

process and,  therefore, one must assume a considerable amount of value 

judgment on the operator's part.    EMP transient waveforms are typically 

complex and often of poor quality  (see Figures 2-2ka through 2-2kf). 

Therefore,  the operator must be well   trained and have an appreciation of 

the problems which can result from poorly digitized data  if reasonably 

consistent and high quality results are to be obtained. 

Typically, the oscillographs are made at very high 

oscilloscope writing rates   (e.g.,  five to  10 cm/ns) where the oscillo- 

scope trace tends to fade out  (i.e.,  a high waveform slope typically 

appears at the beginning of the waveform with the trace becoming 

relatively thick as the writing rate slows down). 

Data quality is often sacrificed for quantity  In large system test programs. 
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Thus,  the operator is faced with guessing at  the location of the waveform 

where no data exist and at  the  location of the waveform when  it  is  so 

thick there  is a  loss of resolution.     When the waveform is very complex 

(i.e., multiple  resonant frequencies)   the problem is compounded.    The 

typical   procedure is for the operator  to guess as best he can at where 

the  trace would have been  in places where  it  has dropped out and to digitize 

points  in  the center of the waveform  in portions where the trace  is thick. 

A 
^- 

• ? 
• ? 

u 
Since the cursor which the operator uses to  select the points  he digitizes 

normally  leaves no marking of where he has been  (i.e., what points on the 

waveform have  been digitized)  he  is apt to "bounce around" as he moves 

along the waveform.    This  bouncing around basically amounts to adding 

some type of random noise pattern  to the digitized data set.     The actual 

nature of this  noise distribution has  been  studied by a number of 

interested parties [31],   [32],   [33].     The  important point here  is  that the 

noise  is  known  to contaminate data reduction  results; especially Fourier 

transforms and  transfer function estimates. 

There are  two possible  solutions for minimizing this 

problem,  neither of which are known  to have  been tested at this point  in 

time.    The first solution would  have  the data analyst for whom a given 
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oscillograph  Is being digitized,  trace over  the osci 1 lograph waveform with 

a pin to fill   in missing portions and define his  interpretation of the 

center of thick portions of the trace.    The operator would then digitize 

the data analyst's traced waveform.    This puts the  responsibility of what 

the waveform  is to actually look like on the analyst who is best qualified 

to make that Judgment.    This procedure would be time consuming and  thus  be 

limited to selected oscillographs. 

The second procedure would be  to equip the digitizer 

with a writing stylus as a cursor  if possible.    The basic design of some 

manual  digitizers will  not allow this   (e.g.,  the Telereadex Digitizer) 

but others such as the Bendix Datagrld can  be so equipped.    The operator 

could then  leave a permanent record of where he had  last digitized.    This 

procedure would allow him to smooth out the waveform which he traces as 

he digitizes.     It would also leave a permanent record of "what was 

digitized" for the data analyst  to inspect   if he  suspects problems   In the 

data set  he  is using   in his analysis. 

A second difficult problem which the digitizer 

operator faces  is digitizing a waveform recorded at a relatively low sweep 

rate so that  there are many "cycles" of data  in the waveform. 
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With a dense oscillating waveform as sketched above, the natural  tendency 

is   to sample  the signal at the peaks,  since  finer  resolution  is difficult or 

impossible to achieve.    Thus, this waveform is sampled twice each cycle. 

Then a user would hope that a Fourier  transform of  these digitized data 

would yield good spectrum data in the vicinity of  th^ resonant  frequency. 

However,   the Nyquist sampling criteria  (see Paragraph l.k.S.l  for a 

detailed discussion)   state that  the highest  independent and potentially 

valid frequency component corresponds   to an oscillation that  is sampled 

twice each cycle.    Furthermore,   if the unsampled waveform has   frequency 

components higher than the Nyquist frequency,  then  these components will 

be   irretrievably mixed with components  at  frequencies less than the Nyquist 

frequency.    This mixing is called aliasing.    Therefore,  the region of the 

transform in  the vicinity of the  resonant  frequency, the region of greatest 

interest, will  be in error.    This error is  compounded by the fact that  the 

transform of  the random digitizing error discussed above sometimes  peaks 

near the Nyquist frequency.    Therefore,  the waveform must be sampled at  a 

higher  rate.     A higher sampling  rate would move  the Nyquist frequency above 

the resonant   frequency of the waveform shown in  the sketch and reduce the 

amount of aliasing.     Furthermore,  the peak  in the contribution due to random 

errors, when  present, would be moved  away  from the region of greatest 

interest. 

It  is generally accepted  that the sampling  rate must 

yield a Nyquist frequency three  to five times the highest frequency of 

interest,     in  the previous example,  the  rate would correspond to sampling 

six to ten  times per cycle.    However,   this brings  us back to  the problem 

originally stated.     When the waveform has  a high  density of data,  the 

digitizer operator  cannot hope  to obtain   the required number of samples 

per cycle.     In fact,  as  is often the case,   there   is only enough oscillo- 

graph  resolution to obtain two or three samples  per cycle.    There  is only 

one known solution   to this problem and that is  time tying of waveforms. 

The waveform portion containing most of the high  frequency information  in 

response data typically occurs   in the early part of the  response and damps 
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out within the first 10 to 25 percent of the total   response.    Therefore, 

this high frequency portion can be recorded at a high enough sweep rate to 

"expand" the waveform for digitizing from t - 0 to t - t,.    Then a slower 

sweep oscillograph of the same response can be digitized from t - t.  to 

t - t2, where t2  is essentially where the total  response dies out. 

f   + 

t " 0 t = t, 

l\wrr\— 

The subject of time tying of transient waveforms and some of the problems 

associated with the technique are discussed  in more detail   in Paragraph 

3.2.3. 

The material  presented so far covers some of the 

considerations and problems associated with generating noneveniy spaced 

digital data  (i.e., nonconstant &x).    There are data reduction algorithms 

such as the Fast Fourier Transform (FFT) algorithm which require constant 

&x data as  input.    The procedure for obtaining such data  is to trace the 

waveform with the cursor  in a continuous manner and let  the control unit 

select coordinate pail:, which are constant   in Ax.    This assumes first 

that the A/D converter can operate on a continuous basis   (i.e., sample 

the position of the cursor and convert the samples ct a high enough rate 

that the desired Ax can be obtained).    And second, the control unit has 

the capability to inspect the incoming coordinate pairs   (Z    , Z    ) and 
xi  Yi 

Equally spaced (constant Ax) data can be obtained by Interpolation of non- 
constant Ax data. However, this procedure is rarely used due to the loss 
In computer efficiency and the uncertainty in the effects of Interpolation 
errors. 
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make selections on a constant Ax basis.     Both of these criteria are met 

in the ARES digitizer  system.    There is a waveform tracing rate at which 

the operator can get ahead of the conversion  rate of  the A/D converter, 

but for the ARES system the rate  is so high there  is no problem. 

The basic problem which the operator faces   in per- 

forming the procedure   is maintaining a  tracing which closely matches the 

actual  oscillograph waveform.     If the digitizer  is equipped with a bomb- 

sight  type  cursor,  the operator must keep a  set of cross hairs centered 

on the waveform as he moves the cursor along the curve. 

0 o o 
CURSOR 

•CROSS  HAIRS 

This tracing procedure may be made more  reliable  if a writing type stylus 

were used as a cursor.     This type of cursor would allow the operator to 

trace the waveform,  leaving a permanent  record of the waveform actually 

digitized.     The writing or pen stylus  is also a more natural   instrument 

for tracing since  it has a pen point. 
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3.2.2    Data Seal ing 

Before a digitized data set  is used as  input  to a data reduc- 

tion  routine,   it must be scaled to the proper units.    This scaling opera- 

tion  is done by a digital  computer algorithm specifically designed to 

perform appropriate  scaling computations. 

DIGITAL  COMPUTER 

UNSCALED 
DIGITIZED  DATA- 

SET 

SCALING 
ALGORITHM 

DATA 
REDUCTION 

ROUTINE 

REDUCED 
•W RESULTS 

SCALING 
DATA 

in the previous paragraph   (3.2.1), those scaling data measured during the 

digitizing operation were discussed.    These data accompany the digitized 

waveform data as part of the total  unsealed data  set.    There is, however, 

additional  scaling data which must be fed to the  scaling algorithm.    The 

need for these data  results from the way in which oscillograph data are 

recorded.    This  is   illustrated in Figure 3"1  which is a  simple block 

diagram representation of  the  instrumentation system for sensing and 

recording test variables.     The physical observable  is the electromagnetic 

variable being sensed.    Typical variables of  interest are: 

153 



^ ^ 

z    < 
—      3 

^ < 
tu   o t- 
-t     CC Zi 
00      U Q. 
<     — 2 
o    z — 

a: ac 
o o </) «/) 
z z 
UJ UJ 

Ul 
o a. 
z o — o ^N^ 

O  CO 
oc o 

3 

o -J cn 
O  -J X 
LU   — 
cc o 

l/> 
o 

a. 
< 

o 

<_> 
to 
o 

to 
UJ <_> 
o — 
< z   ^-. 
U- O      3 
Ä QC    ^-' 
UJ |_ _ 
I- o    z 

a. 
< 

I- < 
—    a: — 
-J    o (- 
Q-    1- z 
vi    < uj 

ae a: ac    o UJ 
UJ     UJ u. 
SHU. 
o    z — 
Q.      — Q 

CD • CD 

Ul 
>- 

to 

c 

0 
U 

(0 c 
ai 

to 

a. 

O 

a 

E 
<n 

m 

u 
o 

0) 
L. 
3 
C71 

15U 

X 



^\ 

Current,   1(0 

•        Time Rate of Change of Current,   i (t) 

•        Voltage, V(t) 

Magnetic Flux Density,  B(t) 

Time Rate of Change of B(t),   B(t) 

•        Electric Field  Intensity,  E(t) 

•        Time Rate of Change of Electric Flux Density, D(t) 

The transducer or  test probe  is  the device specifically designed 

to sense the variable  (physical  observable)  of  interest and  to output a 

voltage proportional   to  the sensed variable.    Thus,  there is a transfer 

characteristic or function, HT(ü)), associated with the transducer.     If 

the physical  observable   is voltage, then the transducer transfer function 

has units of volts/volt or simple gain  (or attenuations)  if  the observable 

occurs.     If the observable  is current, the transfer function  has units of 

impedance  in ohms. 

VT(OJ)   = HT(u)   lo(a)) (Eq.   3-12) 

where: 

\/T(ii)) = the frequency domain representation of 

transducer output voltage 

HT(u) ■ transducer transfer function 

(oa) ■ the frequency domain representation of 

the physical observable (current) 
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The data  link  is either a cable or microwave transmission 

system for transmitting the test variables to the  recording  instrumentation. 

A microwave system used at ARES for current probes has an overall   link gain 

of 28 dB and a cable  link used for field probe data which has a link gain 

of unity.     It  is often necessary  to insert an attenuator at  the microwave 

link input so that the  input signal  does not over drive the system.    The 

date  link transfer function  (H  (w))  is simply a gain   (units of volts/volt) 

over some usable frequency band,  with a value equal   to  the algebraic sum of 

the  link gain and attenuator gain. 

The   interface electronics are used to   interface the data link 

to the recording oscilloscope.     The interface  is often a power splitter, 

which divides the signal   so that   it can be recorded on two oscilloscope 

channels.    This  represents an  input to output voltage gain of  -6 dB.    An 

integrator may also  be used as part of the interface when an observable 

such as B(t)   is sensed but  it  is desired to record B(t).    Passive inte- 

grators which cause signal  attenuation are typically used.     (Attenuation 

Is variable with frequency.)    Thus,  the interface electronics transfer 

function  (H.U)) acts to attenuate the output of the data  link and has units 

of volts/volt.    This  is more complex when an  Integrator  is used. 

Finally,  the oscilloscope Input ampltffer can be used for either 

)n or attenu« 

has units of volts/volt. 

amplification or attenuation.    Therefore,   tts transfer function  (HD(w)) also 
n 

A simple example will   illustrate how the digitization scaling 

data and recording  instrumentation scaling data must  be applied to a 

digitized data set  to generate a proper  Input data set for data processing 

routines.    First, assume that the physical observable  Is  induced current 

at some point  In the test object and that the recording  Instrumentation 

system consists of a current transducer, microwave data link with input 

attenuator,   interface electronics consisting of a power splitter, and a 

recording oscilloscope with  input amplifier set at unity gain.    Also assume 

that the oscilloscope superimposes a voltage calibration pulse on all wave- 

forms of 20 millivolts peak-to-peak. ! 
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The first step  in the calibration procedure  is  to subtract the 

origin coordinates  Z    and Z     from all other digitized coordinates   if this 
x y   ^ 

o 'o 
has not been done  in the digitizer.     Next, the rotation angle a  is computed 

as   indicated  in Equation  3~6 and applied to all   coordinate  pairs as   indicated 

in Equation 3"5.    Then,   the  vertical   and horizontal   scale  factors,  SF.. and 

SF    are computed as shown   in  Equations 3"7 and 3~11'     These scale factors are 

applied  to the digitized coordinates as 

Z;    =  SFH x Zx (Eq.   3-13) 
I I 

V     =  SF,.  x Z (Eq.   3-li0 Y; V        y. 

where: V     = scaled x- (or time) axis coordinates in 
x. 

i 
units of seconds 

V     = scaled y-axis coordinates in units of 
Y: i 

mi 11 ivolts 

Z      ■ unsealed or digitizing x-axis coordinates 
X • 

I 
in units of  inches 

Zw    = unsealed or digitizing y-axis coordinates 

in units of inches. 
^i 

The time-axis coordinates Z'    are properly scaled at  this 
xi 

point.     Note that  V    are   indicated as having units of seconds.     This  is 
xi 

because SF., is assumed  to have units of seconds/inch.     Z1     could as easily 
H X| ' 

carry units of microseconds or nanoseconds depending on how SF,,   is com- 

puted  (see Paragraph 3*2.1.2).    Z'     at this point are scaled to their value 

in millivolts as recorded on  the oscilloscope.     It remains yet  to scale 

them to the values of  the physical   observable which,   in  this case,   is 

current. 
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To do so,  note first  that all  of the  Instrumentation transfer 

functions are simple gains or attenuations that are assumed constant over 

their usable bandwidth,  and all   but one,  the  transducer  transfer function, 

have units of volts/volt or are essentially unitless.     Second,  note that 

some of the gain factors   involved   in the transfer  functions are constants 

(data link gain,  power splitter attenuation, and oscilloscope amplifier 

gain) and others are variable  (transducer transfer   impedance and data link 

input attenuator).    The fixed gain  (or attenuation)   factors can be lumped 

into a single scaling constant,   G.    The variable scale factors,  transducer 

impedance, Z-, and data  link attenuator, A, can be treated as separate 

parameters.     Final  amplitude scaling can be computed as, 

Z"  =    yi 
Y:         

V    x G x A 
mi 11 lamps (Eq.   3-15) 

where: 

Z11  « properly scaled physical  observable - 
' j 

induced current -  in mi 11 lamps 

Z'    = y-axis variable scaled  to recording 
y j 

oscilloscope voltage level   In millivolts 

G = fixed   instrumentation gain 

A = variable attenuator gain 

Z_ ■ transducer transfer   Impedance  In ohms 

Note that  if instrumentation gains are read  In dB,  then G and A must be 

calculated as 
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.      ,     -1    /attenuator setting  in dBi ,_      ,  .,» 
A = lo9IO   \ 20 ) (Eq'   3",6) 

and 

_      ,     -1     /sum of  the fixed gain values   in  dBl /r       ,  .-,» 
G = log10    ^ JO ") (Eq-   3",7) 

As  indicated   in earlier discussions,  the  interface electronics 

may contain an  integrator   in order to generate the desired physical 

observable when  its derivative   is sensed.    Passive RC   integrators are 

typically used for this purpose.     For  the typical   transient waveforms 

seen   in  EMP testing   (double exponential   and damped  sinusoids),  the  passive 

integrator  introduces both attenuation   (variable with frequency)  and  errors 

depending on waveform characteristics and  integrator design  parameters.    This 

subject   is treated   in considerable detail   in Reference 20. 

3-2.3    Time Tying 

3.2.3.1     Introduction 

The electromagnetic response of a  test object   to EMP 

pulse   (as opposed  to CW)   testing  is generally of the form, 

m n 

f(t)  ^A.e'V  +]rVe"Yj    sin(ßjt  + (t-j) (Eq.  3-18) 
i=l j=l 

A typical   response will   be characterized by two or more  r sonant frequencies 

or damped sinusoids, with one of the   resonant  frequenc. . . much higher than 

the others   (five to 10 times)   and with the high frequency response damping 

out early  in the total   response   (first  five to 20 percent).     Thus,  a 

typical   response may look  like  the response waveform shown   in  Figure 3"2. 

This response has  resonances at  1,  5,  and 25 MHz. 
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If one were to attempt to digitize  the waveform of 

Figure  3"2,   it  is obvious   that   it would be extremely difficult to digitize 

the early part of  the waveform because of the "density"   (or poor spatial 

resolution) of the  information.    The way around  this dilemma   is to expand 

the early portion of the waveform, as shown  in Figure 3"3.  so that  the 

desired  spatial   resolution   is obtained.     However,   in doing  so, only  1/5 of 

the total   response waveform  is   represented   in Figure 3"3, or  the waveform 

has been  truncated after   1/5 of  its  total  extent.     If the truncated wave- 

form were used as  the   input data to a data reduction routine   (such as a 

Fourier  transform), a considerable amount of distortion or error could 

occur   in the transform results. 

The nature of the error in the Fourier  transform can 

be conveniently analyzed  by noting that the truncated function  (f   (t))   is 

equal   to the complete function   (f(t))  multiplied by a  rectangular wave of 

unit amplitude which starts at  t = 0 and terminates at  t =  1/5 T,  where 

the  length of f(t)   is T. 

MO f(t) J^v 
1/5 T 1/5 T 

RECT(t) 

Al 

1/5 T 

As shown  in Paragraph 3-3   (which covers Fourier transform  '    .damentals) 

when  two time functions are multiplied  in the time domain,  their  respective 

Fourier transforms are convolved  in  the frequency domain.     The rectangular 
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Figure 3~2. Complete Response Waveform 
Recorded at 500 ns/Division 

•' , A 

Figure 3-3. First l/5th of the Complete 
Waveform Recorded at 100 ns/ 
D i vi s ion 
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time function Rect(t) has as its Fourier transform the Sine function where 

c- t T\       sin(toT) Sinc(wT) =  ^—- 

Thus whenever a  time finction   is  truncated,   its  Fourier  transform  is  con- 

volved with a Sine function. 

The  solution to this problem is  through time  tying. 

In using  this technique,   the waveform of Figure 3"3 would be digitized to 

represent   the  response from t = 0 to t  =  1/5 T.     Then  the waveform of 

Figure 3~2 would  be digitized from t =   1/5 T to t = T to complete the 

digitized  data set.    These two data sets are  then combined to obtain  a 

digitized data set for  the total  waveform. 

3.2.3.2    Implementation Problem Areas 

There are several   problems   involved   in  the   imple- 

mentation of time tying.     The first,  and perhaps most   severe,   is how to 

find the  "tie" point.    The expanded   (fast sweep) waveform is digitized 

from t = 0 to t = t. and the slow sweep waveform is digitized  from t = t 

to t = T, where again t = T  is the end of the  recorded  response.     The end 

objective of whatever method  is used to find  the tie point   is to have 

t2 = tr 
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A second problem arises when the two recording oscillo- 

scopes do not have the same vertical gain even though they are set the same. 

This results when the oscilloscopes are out of alignment. When this occurs, 

the two waveforms will not have the same amplitude value at the tie point 

which results in a discontinuity in the resulting waveform. 

Gap at 
Tie Point 

The final problem area which must be considered is 

in digitizing the waveforms. As will be discussed in subsequent para- 

graphs, cross correlation or least square error techniques are typically 

used in searching for the proper tie point. To use these techniques, 

there must be a common Ax (At) between sample points for each wavefort. 

This means that either a digitizer which can take constant Ax data is 

used or polnt-by-point data are taken and then an Interpolation routine 

is used to generate the constant Ax data sets.  If the Ax for the two 

waveform segments Is not the same, one should at least be an Integral 

multiple of the other to facilitate tie point searching methods. 
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3.2,3.3 Methods for Finding the Tie Point21 

Methods generally involve searching for the strongest 

similarity in the shape of the two waveforms in the vicinity of the pro- 

posed tie point. This means that the two waveforms must have some overlap 

about the proposed tie point.  To facilitate the following analysis, let 

the two waveforms be designated the left waveform (fast sweep) and the 

right waveform (slow sweep).  Let the left waveform be defined from t = 0 

to t = T and let a proposed tie point be selected at a value of t < T., 

say t = t.. 

f-l *-t 

Somp criteria must be developed for selecting t.   (e.g., t.  « 0.9 T. ). 

Next,   let  the  right waveform be defined from t » T.R to t = TR where 

TLR < t..    Also pick a point  t = t_  so that  t_~t..     Doing so gives an 

approximate  location for starting the search for the tie point. 
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One may be tempted  to make T     = 0 or the beginning of the right waveform. 

However,  referring to Figure 3"3,   it can be seen that  this would  require 

digitizing the high frequency data which begin at  t = 0.    Making T.     = 

500 ns on the scale of Figure 3"3 would be more  realistic since this  is a 

point at which there  is sufficient waveform resolution for digitizing. 

Based on the above definitions,  the overlap between 

the two digitized data sets  is from T D to T.   assuming the data sets are 

aligned at t. = t^.    What  is desired now is a measure of closeness between 

the overlapping portions of the two waveforms.    When the measure  is 

maximized, presumably the waveforms are  in the correct position and the 

tie can be made.     There are at  least three such measures available. 

(1)    The cross correlation   index. 

(2)    The least squares error. 

(3)    The absolute value of error. 

In using any of these techniques, one can assume that the left waveform 

is fixed and the  right waveform has slid to the left or right about t = t 

in search of the maximum. 

k 
■*-+ 

» i    ■ .  ■ 

-1—r 

TLR    h 
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When the two data sets are aligned at t, = t., 

there will be m common data points between the two data sets in the 

interval of overlap (T.D to T.).  However, as the right waveform is slid 

to the left, m increases and to the right m decreases.  It is convenient 

to base the measure of closeness or a fixed number of points as the wave- 

form is slid left and right. Therefore, one can pick n data points 

(n < m) centered on t. and base the measure always on these n points. 

This, of course, assumes that a maximum will be found before a position 

is reached such that the number of overlapping points is less than n when 

si iding the waveform to the right. 

22 
3.2.3.*♦ Correcting for Amplitude Differences 

If there is relative amplitude difference between 

the left and right waveforms, this can be corrected for after the time 

tie point has been found. To do so, one can ratio the n overlapping 

points in the two waveforms to find the relative point-to-point amplitude 

difference. These n ratios can then be averaged to develop a scale factor 

to apply to all data points of the appropriate waveform. 

Even when a time tie point has been found, and the 

waveforms are scaled to the same relative amplitude, there may be a dis- 

continuity at the tie point. That is, if the coordinates of point t. 

are (x., y.) and the tie point for the right waveform is t, with 

coordinates (x., y.), then y. may not equal y. (x. by definition equals x.) 

The problem arises as to what y value should be chosen for this coordinate 

point and what criteria should be used to select it. No such criteria 

are known to exist.  However, to minimize any discontinuity at this point, 

an interpolation based on several data points on either side of this 

point would be appropriate. 
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3.2.3.S    Summary 

Time tying of EMP test waveforms  is apparently not a 

commonly used technique.A    This might be surprising since many of the 

response data  recorded have high frequency  information at the beginning of 

the response waveform which damps out quickly but the  total   response lasts 

from five to 10 times as  long.    Therefore, the analyst  is faced with using 

digitized data that do not well   represent the waveform when a slow sweep 

waveform is digitized.     On the other hand,  if a fast sweep oscillograph 

is used in digitizing, he must accept truncation error.     It  is not so 

surprising then that these techniques are not widely  used since there are 

obviously many problems  involved in  implementing a practical  algorithm. 

One of the more promising practical  techniques  for 

time tying is being pioneered at the AFWL computer division.    The two 

digitized waveforms are displayed on a digital  CRT  (vector display) with 

light pen capability.    An operator makes a time tie decision based com- 

pletely on visual  Judgment, apparently with very acceptable  results. 

3.3    BASIC TRANSFORM THEORY 

3.3.1     Introduction 

There are a variety of transform techniques that convert data 

as a function of the  independent variable,  time,   into a function propor- 

tional   to the inverse of time, namely frequency.    Choice of a particular 

transform technique depends on the nature of the data being studied, the 

Instrumentation used to record the data, and the available data reduction 

capabilities.    EMP experimental data are characterized as transient time 

domain analog types of signals that are transmitted and recorded with 

analog Instrumentation.    On the other hand, the bulk of the instrumenta- 

tion calibration data are obtained experimentally as functions of frequency. 

A 
The SEIGE MILL at AFWL is one facility which has successfully used time 
techniques. 
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These conditions   imply that  the optimum transform technique  is the Fourier 
.ntegral  Transform  (FIT)*.     Consideration of  the available  data  reduction 

hardware,  computer software,   and computer  running economy  could suggest 

the use of  the Time Sampled  Fourier Transform  (TSFT),  the  Fourier Series 

Transform  (FST) ,  or the Discrete Fourier Transform  (DFT)--'"-.    All   these 

transforms  are candidate  techniques  for use  in EMP data analysis;  however, 

the TSFT,   the FST,  and the  DFT can be shown to be special   cases of the  FIT. 

Therefore,   this  subsection will  be  devoted to  the FIT.     A  thorough under- 

standing of  the  FIT will   provide the necessary background  for understand- 

ing the application and  limitations of the other transforms  that will   be 

discussed   in  the   following  subsections. 

The following portions of this subsection will   present selected 

topics on  the theory of  the  FIT that are most applicable   to the  reduction 

and analysis of EMP data.     This material   is not   intended   to duplicate  that 

contained   in several  good   references on  the subject.     Inevitably,  the 

results of this  section will   not be original,   however,   the approach used 

in presenting the material  will  differ from the available   references.    The 

material   is  directed  to  the  typical   individual  who is not  a mathematical 

specialist,  but   is assigned  to the analysis of EMP data.     Emphasis will   be 

placed on  two aspects:    one   is  the development of a set of mathematical   pro- 

cedures that are directly applicable to EMP data analysis;   the second   is 

acquiring  skill   in   interpreting mathematical   relations and  graphical  displays 

of data.    The selection of  topics   is based on observations at ARES of  the 

most useful   techniques and  the areas where mistakes were  the most frequent. 

This subsection on the FIT contains nine major topics. The 

first is a definition of the FIT and a discussion of when the transform 

exists.    Next  is  the  interpretation of the defining  integral   for certain 

The rationale  for this  statement will   be developed  in a   later portion 
of  this  section. 

■kit 
The Fast  Fourier Transform  (FFT)   is a very efficient version of the DFT. 
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classes of waveforms.  Skill in this interpretation is required to under- 

stand methods commonly used to compute the FIT. The third topic concerns 

scaling relations among transform pairs. Then the transforms of several 

■common waveforms are developed. These simple transforms and the scaling 

relations permit the analysis of a large variety of waveforms. The fifth 

topic is a presentation of graphical methods useful for obtaining hand 

sketches of Fourier transforms. These forms permit a simple check on the 

accuracy and validity of transform calculations. The next topic is a 

presentation of two special functions, namely the delta and the step 

function.  The seventh topic develops the relationship between multipli- 

cation of two functions in one domain (either time or frequency) and the 

corresponding convolution operation in the opposite domain. Thorough 

mastery of these last two topics is required to understand applications 

of transform theory. The next topic is a comparison of the FIT to the 

related Laplace transform.  Finally, a series of examples is presented 

that illustrates the application of the material presented previously. 

Some of these examples are based on problems occurring at ARES. 

3.3.2 Defini tions 

The Fourier   Integral Transform, G(u), of the function,  g(t), 

is defined as 

G(u>)  =J      g(t)e'-iutdt,     u» = 2Trf (Eq.  3-19) 

where u  is the angular  frequency.    The  inverse of Equation 3-19 expressing 

g(t) as a function of G(ft5)   is  given by 

/oo 

G(a))eJWtdU (Eq.   3-20) 
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Equations 3-19 and 3-20 are known as the FIT pair and the relationship of 

this pair is sometimes symbolically indicated as 

g(t)- ^G((ü) (Eq. 3-21) 

The only restriction on  the definition of  the FIT  is  that  the  integrals 

must exist.    The prerequisite of linearity  is not  required at  this stage 

because there has been no attempt yet to relate  the  response to the exci- 

tation.    A qualitative statement concerning the existence of the defining 

integrals  is that   if g(t)   corresponds to a finite energy process,  the 

integrals exist.    A mathematical  statement of the above  is  that g(t) 

must be absolutely  integrable or 

a 

/ 
g<t)|dt  < « (Eq.   3-22) 

There are  important exceptions where g(t)   is not absolutely  integrable 

and the Fourier transform exists.    These exceptions are discussed in the 

subsection on special   functions.    However,  in most engineering applications, 

Equation 3-22  is  an adequate  test. 

There are several   comments concerning the basic definitions. 

One  Is that  the usual  notation will  be used where upper case letters 

signify frequency domain  functions and lower c^se  letters  signify time 

domain functions.     Sometimes  the notation,  F{  }  is used 

F{g(t)} - G(ü»)  =/      g(t)e'jü,tdt (Eq.  3-23) 
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to signify the time to frequency domain transform and, F { }, 

F'UGU)} = g(t) '±f    G(a))eja,tda)      (Eq. 3-2^) 

to indicate the frequency to time domain transfonn.    A second comment is 

that,   in general, both g(t)   and G(ü))  can be complex,     in other words, 

they have a real  and an  imaginary part.    The third  comment concerns  the 

scale  factor  l/(2Tr)   and  the  signs of the exponents   inside  the   integral. 

Other valid definitions of the  FIT pair could have factors such as  1/^27 

in front of each  integral  and have the signs of exponents  reversed. 

However,  the notation used  in  Equations 3"19 and 3~20 are the most common 

forms used in engineering work.    The  reader should be alert  to other 

possible definitions used elsewhere. 

3.3.3    Interpretation of the  Integral  Pair 

Before considering particular examples of functions,  g(t), 

to be used in Equations  3"19 and 3"20,  there are several  generalizations 

that can be deduced from the basic form of  the integrals.    These  include 

the superposition process,  restrictions on the real  and  imaginary parts 

of G(u)  based on the form of g(t)  and the shape of g(t)  as  a  function of 

the form of G(u)). 
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3.3.3.1     Superposi tion 

One   important observation concerning the definitions 

of  the  FIT is  that the transform consists of a superposition process. 

Consider a specific frequency,  u  .    Then,  reducing the  integral   to the 

sum of pulse approximations of  the  functions 

9(0 i 

*■ t 

hC 
.9(1,) 

lliTh » t 
-I U- 

At 

you find that  G{u ) consists of contributions  from g(t)   at each value 

of time, tj , weighted by the values of e     0  ', 

E-jiu t. 
gCtJe    0 ' At (Eq.   3-25) 
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-ju)  t. 
In  this  application,  e is a  function of t.  only since w    is  fixed. 

In  a similar manner,   the value of g(t)   at a specific time,  t   ,  consists 

of contributions from G{ü))  at each  value of u.    Thus, 

(t0) - 27 2 GK)e a)i  0Aa) (Eq.   3-26) 
i 

3.3.3.2 Even and Odd Symmetry 

It was mentioned previously that both g(t) and G(üJ) 

can be complex in the definition of the FIT. However, any measurement 

of a transient time domain phenomenon is entirely real, and this restric- 

tion allows certain simplifications of the integral definitions. Noting 

Euler's identity 

e j±J"e =   cose  + jsine (Eq.   3-27) 

one finds  that Equation 3-19 can  be written as 

G(w)  = /      g(t)cos(ü)t)dt-j  /     g(t)sin(ü)t)dt 

Re{G} + jlm{G} ^  3'28) 

where the notation R    and  I    signify  the real and  imaginary parts  respec- 

tively.     Thus,  in general,  G{u)   is complex when g(t)   is  real.    Now consider 

the symmetry of the definitions of R  {G} and  I  {G}.    Note that coswt  is 
e tn 

an even  function of t and sin(ü)t)   is  an odd function of t.     If g(t)   is an 

even  function of t. 
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cos(a) t) o 

sin(a) t) 
o 

g(t)cos(ü)ot) 

*.t 

.g(t)sin(w t) 
ii o 

the contribution to the  integral  over the  interval   (O,«)   is equal   to the 

contribution from the  interval   (-».O)  and G(i»))   is real 

2/ 
G(ü)) - R {G} - 2/g(t)cos(u)t)dt,        g(t)  even (Eq.  3-29) 

The imaginary part is identically equal to zero since the contribution to 

the integral from (0,») is equal and opposite to that from (-«,0).  If 

g(t) is an odd function of t, then G(u) is imaginary. 

CO 

G(ü)) - JIJG) - -j2/g(t)sin(ü)t)dt,  g(t) odd  (Eq. 3-30) 

The justification Is similar to that for the case when g(t)   Is even. 

17U 
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Inspection of Equation 3-28 shows that R {G} is an 

even function of oi and I {G} is an odd function of u when g(t) is real. 
m 

This fact can be verified by noting 

and 

yG(a))} «y 1 
■/ 

g(t)cos(ü)t)dt =/  g(t)cos(-ü)t)dt = R {G(-ü))} 

(Eq.  3-31) 

/CO /*00 

g(t)sin((dt)dt = -/ g(t)sin(-u)t)dt « -lm{G(-w)} 

The restriction that g(t)   is real can be used  to 

simplify the inverse transform given by Equation 3-20.    Substituting 

Equations 3-27 and 3-28  mto Equation 3-20, one finds 

9(t) = 27/   K {G} + J^61   cos(ü)t)+js'n(ü,t) \ 

g(t) ■if R    {6}cos(a)t)-I {G}si e m 
J -co 

(Eq.   3-32) 

R    {G}sin(ü)t)+I {G}cos(ü)t) 1 e m du 

Note that both of the terms  in the second  integral  of Equation 3~32 are 

odd since they are the product of an even and an odd function.     Since  the 

integral of an odd function over the  interval   (-00,00)   is equal  to zero,  the 

second part of Equation 3*32  is  indentically equal  to zero and g(t) equals 

wr 
g(t) -27J       Re{G}cos((ut)-yG}sin(u)t) du (Eq.   3-33) 
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Since both terms  inside the   inregral  of £quation 3"33 are even, g(t)  can 

be written as 

g(t) = ■if R {OcosCwt)-!   {G}sin(ü)t) 
e m 

dco (Eq.   3-3^) 

3.3'3«3    Transient  Signals 

For a transient  signal, one can define  a specific 

starting  time,   t., such that g(t)=0 for t  <  t  .    The starting  time can 

be arbitrarily  set to zero without  'oss of generality.    Then g(t)=0 for 

t  <  0.     Using  Equation 3"3i» and  substituting  -t for t, one finds 

g(-t) 

OQ 

■if o 
00 

R {G}cos(-a)t)-|   {G}sin(-(Dt) 
e m 

du 

R {G}cos(cot) + f   {G}sin(ojt) 
e m 

du 

(Eq.  3-35) 

(Eq.  3-36) 

The  integral  over «ach term in Equation 3-35  is generally not equal   to 

zero sine; each term is an even  function of u.    Therefore,  the  integral 

over each  '-.erm must be equal   in amplitude and opposite   in  sign  such  that 

o 

/ 
-I    R {G}cos(ü)t)du) 
IT /       e 

a 

■if I   {G}sin((i)t)d(o (Eq.  3-37) 

0 0 

Using this relationship, it is found that g(t) reduces to 

g(t) ■if R {G}cos(ü)t)da) 
e ■if l   {G}sin(ü)t)d(o 

m 

0 0 

It  should be noted that Equation  3"38   is not valid when  t = 0. 

to  Equation 3-3'» with t  set equal   to zero,  one finds 

g(o) -if. {G}d(1 

(Eq. 3-38) 

Referring 

(Eq.  3-39) 
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3.3.3«^    Negative Frequency 

Inspection of Equation1.   3~19 and   3~20 shows that  the 

concept of negative frequency is employed   in  the definition of the FIT. 

An   interesting question   is what  is  the physical   significance of a negative 

frequency.     The answer   is that there  is no physical   significance whatsoever 

in this concept.     The origin of the negative frequency concept stems from 

the use of e-Jll)   .     However,  Equation 3"27 con  be used  to show that 

cosUt)  = J jal.    -JWt e      +e (Eq.   3-^0) 

sin(':i 
-Jl 

'   "wt     -jcot e"     -e 

At a fixed value of time, these real  valued trigonometric functions consist 

of contributions from positive and negative frequencies.    These trigonometric 

functions have physical   significance since they can  be measured with a 

physical   instrument where only positive  frequencies  have any meaning. 

Indeed,   inspection of  Equation 3"3'* shows that   if 9(t)   is real, only 

positive values of frequency are required.    Thus,  the concept of negative 

frequency has mathematical  significance only,   and  it   is employed to obtain 

the notational   simplicity afforded by use of  the function e- 

3.3-3.5    Asymptotic Values 

Use of asymptotic values of 9(1)  and G(a)  provides a 

means of checking the accuracy and validity of transform calculations. 

Two asymptotic forms are available   in the previous material.    They are the 

values of g{t)   and G(ui) as t and w,  respectively,  approach zero.     Equation 

3-M gives  the value of g(t) as t approaches zero from positive values 

of time  and Equation  3"'»2 gives  the value of  G(ü))  as u approaches zero from 

positive values of frequency. 

:/ 
g(o+) = 7 I   R {Gki« 

TT /      e (Eq.   3-41) 
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G(o+) * fgit) dt 

0 

(Eq.   l-k2) 

Thus,  the dc or  zero frequency component of a  transient waveform  Is equal 

to the net area under g(t) 

g(t) 

Equation   3-k2 has an  interesting physical   interpretation applicable to 

EMP studies.    Since it  is  impossible for an antenna to radiate energy at 

zero frequency,   then an antenna excited  by some transient voltage source 

must  radiate a waveform that  has exactly zero net area. 

The asymptotic values of G (OJ) as u approaches  infinity 

are of considerable interest.    The following development shows that the 

asymptotic values are dominated by the  type of discontinuities  in g(t). 

Consider  a waveform, g(t), with a discontinuity equal  to 

Ag - g(to) -g(to) (Eq.   3-^3) 

at  t = t   .    The  symbols g(t  ) and g(t  )   indicate the values of g(t) when 

t approaches t     from positive and negative values of time respectively. 

Now divide the   integral  defining G(u)   into two parts such that 

t 

G(u)) 'f  0g(t)e"jü,t dt +/,00g(t)e"jut 
dt (Eq.   3-^) 
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Integrating Equation S"4»1» by parts, one finds 

G(u)) ^-■J1^M'<--J1> (Eq.3,5) 

ji){/ 0 g'U)«-^ dt +/  g'(t)e"-iü)t dt} 

where g'(t)   indicates the derivative of g(t).     If the second line of 

Equation 3"i»5  is  integrated by parts, G(ü))  equals 

G(a,) = (i^(t)e-Jültjto + [g(t)e--iUJtr   } + 
(Eq.3^6) 

Jüjllja) g,(t)e 
to   +[g'(t)e-Jwt]"   } + 
— 00 

3A {j[   0g"(t)e->t dt ^   g"(t)e-jut dt} 

This messy equation can be simplified by noting that   if g(t)   is a finite 

energy process,  g(t)  must approach zero for  large values of positive and 

negative time.    Also note that the second and third  lines of Equation 
2 

S-^S are multiplied by a l/ui    term.    Thus 

GW=7TV 
•juit 

+ Oi wO (Eq.   I'kj) 

1 
where 01—=-iindicates  that the terms on the second  and third  lines of 

2 
Equation 3*^6 are on  the order of  1/w  .     In the limit as u approaches 
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infinity,  G(ü))   is approximately equal   to 

G(u)fi! 
-jut 

(Jj »   ■» (Eq.   3-^8) 

g(t) 
,Ag 

-»-t 

0(0.) G(Cü)~1/O 

If g(t) is continuous but has a slope discontinuity equal to Ag1 at t = t , 

the value of G(a)) as u approaches infinity is 

(jco)2 
(Eq. 3-^9) 

g(t) Ag' G(ü)) GU)^/^ 

^ 0) 

if g(t)  and   its first n-1  derivatives are continuous but  its n—derivative 

has a discontinuity equal   to Ag        at  t =  t   ,  G(ü)) approaches 

G(u))=i = _ia 
(n) -jut^ 

(jo)) 
n+1 W (Eq.   3-50) 

Equations 3-^9 and 3"50 may be verified by repeated integration by parts, 
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l.l.b    Waveform Modification 

There are a variety of simple operations  that can be performed 

on a waveform such as axis  scaling, waveform translation  in both the time 

and frequency domain,  and  differentiation.     These operations  result   in 

simple modifications of the transform of the basic waveform.     Knowledge of 

the effect of  these  simple operations   is mandatory for one who would use 

transform theory with any  facility.     The following paragraphs develop some 

of the more  important  relations. 

S^.^.l     Simi larity 

Given  a function g(t)   and   its  transform G(a)),   suppose 

the variable   in G((JJ)   is changed to t and the function  G(t)   is plotted  in 

the  time domain.     Now  it   is desired to find  the   transform of G(t).     The 

result may be obtained   in  the following way.     First change t to -t   in 

Equation  3-20 

g(-t) = 
= Lj rt   \   "jut 

G^uije dw (Eq.   3-51) 

Now exchange the variables t and u 

g(-üj) ' 2,j G(t)e"ja)t dt (Eq. 3-52) 

If Equation 3-52 is multiplied by 2v,  one finds the transform of G(t) is 

{^]'f G(t)e"J')t dt = 2TTg(-u)     (Eq. 3-53) 
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g(t) 

•<• ► 

G(t) 

0) 

»• U) 

Thus, the transform of G(t) is found by substituting -w for t in g{t) and 

multiplying by the factor 2TT. 

3.3.^t.2 Axis Seal ing 

There are many occasions where  it  is desired to 

scale the amplitude and  time axes of a waveform by a multiplicative con- 

stant and calculate the modified transform.    This procedure  is nearly always 

required when using analytic forms of Fourier transform pairs listed   in 

standard references.     Since the Fourier transform is a   linear operation, 

scaling the  time domain waveform by an arbitrary constant results   in a 

transform scaled  by the  same constant.     Given a  transform pair g(t)-<->-G((jo), 

and  if g(t)   is multiplied by an arbitrary constant, A,  which can be real, 

imaginary, or complex,  the resultant  transform  is 

Ag(t)  *-> AG((j) (Eq.   3-5^) 

The effect of scaling the time axis of a waveform 

g(t) that has a transform G(ü)) may be found in the following way.  Let the 

variable, time, be multiplied by a real positive constant such that the 

time domain waveform is now g(at). The transform is formally defined as 
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F{g(at)}=y,0Og(at)e'jült dt (Eq. 3-55) 
— 00 

Now substitute  the variable, T =  at,   into Equation  3-55  to yield 

{g(at)}-i/"9(t)e--iT(u/a)dt (Eq.  3-56) 

= -   G(a)/a) a 

If a is either positive or negative, the result is 

{g(at)} G(a)/a) (Eq. 3-57) 

Thus,  if the time axis   is  stretched  (a < 1),  the frequency axis   is com- 

pressed and the frequency domain amplitude is  increased. 

ig(t) 

Ag(t) 

■* ^ 

ig(t) 

I .t 
-^ ►• 

16(0)) 
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3.3-^.3    Time and  Frequency  Shifts 

Shifthg the origin of either g(t) or G(ü))   is 

used quite frequeitl y/in deriving new transform pairs.     The effects of 

such shifts on  the  resulting transforms   is demonstrated  below.    Assume 

one has a  transform pair,  g(t) +-»■ G(a)),  and one shifts  the time origin to 

form g(t -  t  ). 3 o 

g(t) A 

*-t 

g(t-to) 

■♦►    t 

The transform of g(t   - t  )   is formally defined as 

{g(t-to)|=/'g(t  -  to)e"JÜ)L  dt -jiüt 
(Eg. 3-58) 

If   T   =   t t     is substituted   in the above equation, one  finds 
o 

{3(t-to)}./ 
-jüi)(T   +   to) 

g (T ) e dx 

= e 
•Jü)t     / 

Of /    \    "JUT     , J    g(T)e J       dt 

(Eg.  3-59) 

-jut 
= e       0 GU) 
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Thus,   a  shift   in  the origin  of a  time function does  not  affect   the magnitude 

of  the original   transform.     However,  a phase term proportional   to frequency 

is added to the original   phase of  the transform. 

The effect of a shift   in  the origin of  G(a))  can 

be  found  in a  similar manner.     Assume  the origin of  G(a))   is  shifted by an 

amount,  to  ,  to form G (w  - OJ  ). 
o o 

G(üO-üü    ) 
o 

The  formal  definition of the transform is 

IG(W - a) )i - ^- /"   G(ü) - OJ )  e-^1  dw (Eq.  3-60) [ 0  )        ct J c 

Substituting u'   for w - w   , one finds 

."I i        \   ] r ^      jU1 + w )t 
|G(u  -  aio)i= j^j     GO/)   e 0      dw'    (Eq.   3-61) 

/ 
e ^JJ- I      G(u)1 )J du' 

jlü   t 
e   0     g(t) 
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Thus, a shift  in the origin of G(ü))  by the amount u    results  in a time 

domain function equal   to the original  time domain function, g(t), 

multiplied by the term e   o  .    A practical application of these results 

is  to find the transform of a modulated carrier wave.    Noting that 

i i \        "JU) * 
F'1 ^0(0) + a)o)} = e     0 g(t) (Eq.   3-62) 

one finds 

F |g(t)  cos tu tl   = 1    |G(ü) + u) )  + G(ü)  - a) )! (Eq.  3-63) 

g(t) 

'   g(t) cos (o t 

■♦■ t 

l.l.k.k    Differentiation 

Signals proportional  to the time derivative of 

measured currents or electromagnetic fields are commonly produced by 

existing EMP test  instrumentation.    Therefore,  the relationship between 

the transform of a derivative signal and the original  function  is required. 
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Direct differentiation of Equation 3-20 yields the desired results.    The 

derivative may be taken  inside  the  integral  because t  is a parameter  in 

this case.     The n—derivative of Equation 3"20 yields 

9(n)(t)  ^/"W^e^ d. (Eq.   3-6*0 

Thus,  the transform pair associated with the n      derivative of a time 

domain function  is 

g(n)(t) *-> (ju)n G(U)) (Cq,  3-65) 

Although one  is tempted to define the   inverse process at  this  time,  namely 

integration,  the topic will   be deferred to a later section where the 

necessary material  can be developed. 

The transform of the derivative of a frequency 

domain  function,  G((JJ),   is determined   in a similar manner  to  the above. 

The n— derivative of  Equation  3"19  is 

G(n)(u>) =/00(-Jt)ng(t)e-jwt dt (Eq.  3-66) 

Therefore,  the transform pair associated with the n—derivative of a 

frequency domain function   is 

G(n)(u)) ~  (-jt)ng(t) (Eq.   3-67) 

Equations 3-65 and 3-6? define the transforms of 

the derivatives of time and frequency domain functions  assuming that  they 

exist.     Discontinuities could prevent the definition of the derivative. 

Furthermore,  the n—derivative of a function might not have a valid Fourier 

transform.    Therefore,  the derivative relations must be used with care. 
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3.3.5      Simple Transforms 

There are several   waveforms that characterize  the essential 

features of many EMP test waveforms.     Furthermore,   these waveforms and 

their associated  transforms are sufficiently simple to compute and plot 

that the EMP data analyst  should have a thorough working knowledge of 

these  relations.     The following paragraphs develop some of  the most 

common   transform pairs. 

3.3.5.1       Exponential 

Consider a waveform given by 

g(t) = e a > 0,  t > 0 (Eq.  3-68) 

Straightforward application of Equation 3-19 yields the  Fourier  transform 

of this signal 

r 
- )    -at I       1•     /      "at    -jwt 
F|e        / »  I im I   e        e 

T-xx>./„ 
dt 

1 im 
a + W h** 

-aT 
e        e •J^TI 

(Eq.   3-69) 

Thus 

a + jü) 

-at _J  
a + jü) 

t > 0,  a > 0 (Eq.   3-70) 
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3.3.5.2      Double  Exponential 

A so-called double exponential   signal   is character- 

istic of the electromagnetic environment   in  EMP simulators  such as ARES. 

This waveform is expressed as 

i.\        "at        -ßt g(t) = e        - e ß>a>0,   t>0 (Eq.   3-71) 

The  transform of the above equation   is obtained by using  Equation 3"69 

,. I    -at        -Btl 
M e    ■e   f= 1 1 

a + ja)       ß + JO) 

e - a 
(a + jw) (ß + ja)) 

(Eq.   3-72) 

Thus 

-at -ßt 
e - e        +-»• ß - a 

[t + jw) (ß + juj) > a  >  0,   t  >  0 (Eq.   3-73) 

3.3.5. Damped  Sinusoid 

A decaying  sinusoidal  oscillation   is  characteristic 

of many  response signals observed on EMP  tests.    Assume this waveform  is 

represented as 

g(t) = e        sin  ßt, > a > 0;  t  > 0 (Eq.   3-7'0 

Then application of Equations 3-19 and 3-1»0 yield 
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F   | e'at   sin 0tl = 1 im /   e'011  sin  ßt e'j 

1 '      T-x-A 

U)t dt 

/f -t(a + ju>  - jß) -t(a + ju + jß)l 
- o   Le "e J 1 im dt 

^ IT {iTTTT-T? L1    e     e J 

.'       , Ji   -e-aTe-JT(U + ß)]j 
a + ju + jß L J) 

ß 
(a + jw)2 + ß2 

(Eq.  3-75) 

The Fourier transform pair   is 

e'011  sin  ,U <->■ 
(a + ja))2 + ß2 

ß>a>0,   t>0 (Eq.  3-76) 

3.3.5.I»  The Rect and Sine Functions 

A very useful transform pair for application and 

interpretation of Fourier transform is the rectangular pulse function and 

its associated transform.  The pulse function, RectT(t), is defined as 

RectT(t) - 1 |t| < T/2 

It I > T/2 

(Eq. 3-77) 

The notation  Rect and Sine was first adopted by P.  M.  Woodward  in his book, 
Probability and  Information Theory, With Applications to Radar, Pergamon 
Press,  1964, 
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The subscript,  T,   indicates  the pulse has a width equal   to T.    The transform 

of RectT(t)   is obtained  through use of  Equation  3"19 

T/2 

F | RectT(t)|   =/     (1)  e"-1^ dt 

-T/2 

=  -±[e-^J/2  - eJ"T/2]     (Eq.   3-78) 

sin(üiT/2) 
= T       (a,T/2) 

For notational   simplicity,   let us define the Sine function as 

Sinc(x) = tlnM. (Eq.   3-79) 

This function has  the following properties 

(1) Sinc(x)  -»■ 1 as x ->■ 0 

(2) Sinc(x)  = 0 if x = + n,  n   is an  integer 

(Eq.   3-80) 

(3) I Sinc(x)  dx » 1 1. 
f CO       I    Sinc(x - m) Sinc(x - n)  dx =  1   if m = n 

- 0  if m j« n 

The Sinc(x)  function  is closely related to the 

familiar tabulated function,  Si(x).    Si(x)   is defined as 

x 

Si(x)./^i-dy (Eq. 3-81) 
J0 

\ 

i 
i 

r-■ »tfiB%t* *ülftä!«-ji„ ^»^.„ivMJaaibi^; ^ ; 
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Substituting irx for y   in  the above equation,  one finds 

x 
r o 

M CI /    \ /       1 sin(iTX 
Si (X   J/Tl   =(    r1"^ o J      (rrx) dx (Eq.  3-82) 

and 

Si(TTX   )/ 

X X 
/• o r o 
/ sin(TTx) ,       /   . 

•'n Jn 0 'O 

dx = /   Sinc(x)     dx (Eq.  3-83) 

The  Sine  function can be used   in  Equation  3-78. 

Note  chat ü)T/2 = irfT  so  that 

sin (a)T/2) 
(a.T/2) Sinc^T; (Eq.   3-84) 

Therefore,  the Rect and the Sine  functions form a Fourier transform pair 

RectT(t)  ++ T Sinc(fT) (Eq.  3-85) 

g(t) 

11   f— Uni ty Amp 1i tude 
GU/2Tt) 

Peak Ampl itude ■ T 

*" f   ■   ü)/5 IT 

Note that sketches of the Rect and Sine functions have been used previously. 
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It can be shown  in a similar manner,  that a pulse  in 

the frequency domain yields a Sine function transform in the time domain. 

.-1 

/(W2 

o 

du (Eq.   3-86) 

Thus 

f    Sinc(f t), u    =    Zwf 
o o o o 

Rect     (w) •*->■ f    Sinc(f t) 
U) CJ o 

o 
(Eq.  3-87) 

(l ^— Unity Amplitude 

-üj /2 0 u II o o 

g(t) 
4  ^—Peak Amplitude - f 
"Jr o 

Note that the results of Equation 3-88 could have been obtained by using 

the similarity principal stated in Equation 3-87. 
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3.3.5.5    Gaussian 

A Gaussian function has considerable use  in all  phases 

of analysis 

■I 
g(t)  = e"at   , a > 0 (Eq.  3-88) 

Its  transform may be obtained by use of Equation 3~19 

00 

f I e-2 } ■/.- 

J 

Noting that 

at       -jut   .^ e J      dt 

P ('2 * *) « 

and  that 
00 

I    -ax       , /IT je dx^- 

one finds the Fourier  transform pair  is 

19^ 

(Eq.  3-89) 

t^J^-(t + J^f+^rV (Ed- 3-90) 

(Eq.   3-91) 

(Eq.   3-92) 

■ a        \ 2a j       V2a / 

y 

/ 



Thus,  the Fourier transform of a Gaussian   is a.iother Gaussian. 

A particularly symmetric form of this transform pair  is obtained when a 

is  set equal   to IT.    Then 

2 
2 -^- ^2 

-TTt 57       -irf* e        = e 2Trf (Eq.  3-93) 

3.3-6    Plotting Aids 

The double exponential  and the damped sinusoid waveforms 

resemble a  large percentage of EMP experimental data.    Consequently, esti- 

mates of the transforms of  the experimental data can be obtained by using 

the relatively simple analytic transforms of the double exponential or 

the damped sinusoid.     Furthermore,  the astute analyst will  use these 

analytic forms to check numerical   transforms of experimental  data whenever 

possible.    The following paragraphs provide some simple rules for esti- 

mating key parameters and plotting the transforms. 
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3.3>6.1     Double  Exponential 

3.3.6.1.1       Parameter Estimation 

Assume one has an experimental   data  record 

that   resembles a double    xponential   and wants to obtain an estimate of  its 

Fourier  transform.    The first  step  is  to estimate the parameters,  A,  a, 

and  ß,   in 

g(t) = A(e'at   - e"ßt), ß > a > 0,   t  > 0 (Eq.   3-9iO 

from the experimental   data.     An   implicit assumption made  by analysts   in 

estimating a and ß  is  that   the  risetime   is much smaller  than  the decay 

time.      If  this assumption   is valid,   then ß    and a can  be determined  by 

consideration of only  the   risetime and  decay time,   respectively,  of  the 

experimental waveform. 

The parameter, a,   is determined  by the 

late-time behavior of  the waveform.      Inspection of  Equation  3~S^ shows 

that when  ß >> a,   the  late-time  behavior   is approximately given  by 

g(t) * Ae"at, ß  »  a,  t »  0 (Eq.   3-95) 

Now define a decay time, tp., to be the Lime from the beginning of the wave- 

form to the point where the magnitude of g(t) has decayed to 10 percent 

of its peak value. A decay time could be defined between any two easily 

identifiable points on the waveform.  However, the definition given above 

is the one used most often.  Using our definition of t- and noticing that 

e  = .1 when 9 = 2.3, one finds 

2.3/tD (Eq. 3-96) 
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The parameter,  ß,   is determined by  the 

early-time behavior of the waveform.     Note that for t  << t-, e     »1,  and 

Equation  3~73 can be approximated as 

g(t) = A(l   - e"Bt), >>  a,   t  «  t. (Eq.   3-97) 

Now define the  risetime,  tR, as  the  time difference between the  two points 

on  the   initial   rising portion of  the waveform where the amplitude equals 

10 percent and  90 percent of peak.     In  this  case 

0 = 2.2/tr (Eq.   3-98) 

Note that both ß and a have units of   (seconds)     .    Figure y-k  shows a 

double exponential with definitions of tD and tn  indicated. 
R D 

The parameter, A, cannot be determined by 

simply noting the peak value, P, of the experimental waveform. The reason 

is  that  the peak value of the function 

,/,v -at        -ßt f(t)   = e - e (Eq.  3-99) 

does not,   in general, equal   unity.     The multiplicative constant,  N,   required 

to normalize the peak value of  f(t)   to unity   is given  in Figure 3-5 where 

N   is plotted as a function of ß/a.     After determining N from Figure 3"5. 

and P from the experimental  data  record, one  finds 

A = PN (Eq.   3-100) 

Note that A has the same units as the ordinate of the experimental data 

record (i.e., volts/meter, etc.). 
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Figure 3-5.   Normalization Factor, N, for Double Exponential 
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3.3'6.1.2  Fourier Transform 

The Fourier transform of Equation 3"9^» 

the double exponential, without the scale factor A is given by Equation 

3-73-  The most common way of displaying Fourier transform data is with a 

"log-log" plot. This type of plot has two advantages: One is that 

exponential or power law dependence of the transform is readily apparent, 

and the second is that the data can be plotted by hand rather simply. 

The logarithm of the transform is best 

obtained if it is first written in the following form 

G(a)) =  A ^-2- /. ^ . y }/, ^ . /Qi     (Eq. 3-101) 
ßa  (1 + jcü/a)(l + Jü)/B)    v M -» 

Then  the   logarithm  (base 10) of the magnitude of G(ü))   is 

login|G{(o)|  = logjA ^-^|   -  log.Jl  + ja>/a|  - log.Jl  + ja,/ß| ■ "»10I-V/I   -^QI" ßa  i   ■"3]0r  J«'«I  ■^10i 

(Eq. 3-102) 

where the vertical bars indicate the absolute value of the quantity. A 

plot of Equation 3~102 versus the independent variable, log a), is shown 

in Figure 3"6. 

Several features of this type of plot should 

be indicated. One is that the resultant amplitude is the sum of three 

factors rather than the multiplicative relationship given by Equation 3-101. 

The second factor is that the amplitude 

factors In Equation 3"102 vary with frequency in a relatively simple 

manner. The first factor in Equation 3-102 is constant with frequency. 

The second and third factors have the form 
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Asymptote 

Slope = -1 

-2 

,log.0(u/a) 

.01 1.0 

-90°    • 
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o 
•e- 

180' 

log10{iü/a) 

Figure 3-6.    Transform Magnitude and Phase for a Double  Exponential 
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F(u)) = "log    |l  + jui/w   1  = -log     ^1  +  {u/uQ)2 (Eq.  3-103) 
•lO1'       JU"   o' '^lO 

This equation has the asymptotic values 

F(u) =a 0 a)   <<  ü) o 
(Eq.   3-10*0 

F((i))a'-log.Q(ü)/ü) ), (ii » u 

Furthermore, on a   log-log plot, the slope of  F((i))   IS -1.     This can be seen 

by letting F(u))  = y and  log  (u) = x such thet 

-x + log oi (Eq.   3-105) 

The derivative of this equation with respect to x is then equal to -1. 

i 
The third feature of this log-log plot of 

the transform of a double exponential is that the magnitude of the trans- 

form is well approximated by its asymptotic values. The first factor in 

Equation 3-102 is constant with frequency.  The second factor in Equation 

3*102 can be approximated as having zero magnitude with 0 < u < a. For 
i 

u > a,  the second  term will  have a slope equal   to -I.    The third factor 
1 

varies  in a similar manner except  the characteristic frequency, called the 

corner or break frequency,   is 3  instead of a.    Therefore, the magnitude of 

Equation 3"102 can  be approximated as the sum of straight line segments. 

These asymptotic values of Equation 3-102 are  indicated  in Figure 3-6 by 

dotted lines. 

The fourth feature of the log-log plot   is 

that the amplitude can be expressed  in common engineering units, decibels 

(dB),  by multiplying Equation 3-102 by the factor 20.    Thus,  the slope of 

the asymptotic values of  1og1Q|G(a>)| are 
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d|log10|G(u))|} 
d {1og(a))} 

-20 dB/decade for o < u < ß (Eq.  3-106) 

■ -^»0 dB/decade for  u > ß 

where the term, decade,   refers to a factor of 10  In frequency.     It should 

be noted that the asymptotic values of 1og..|G(u>)|  are approximate and 

have their greatest error   in the vicinity of the corner or break frequency. 

When using asymptotic values to approximate factors of the form, 

-log.Q»/l  +  U/u» )   ,  the error  (error • (true-asymptote)/true)   in terms 

of u/u    is given by the following table: 

TABLE 3-1 

RELATIVE DIFFERENCE BETWEEN ACTUAL AND ASYMPTOTIC 

VALUES OF -20  log  ^1  +   U/UJ )Z  (dB) 

Relative Frequency 
(u)/u)o) 

1 .25 .50 .76 1.00 1.31 2.00 4.00 10.00 

Error (Decibels) -   0^4 -.26 -.97 -2.00 -3.00 -2.00 -.97 -.26 -.OA| 

Thus, one would adjust the asymptotic magnitude values by the error terms 

in Table 3-1  to obtain the true magnitude.     In the event that one had a 

transform with a term (1  + ju/a)   In the numerator, the slope of the 

logarithmic amplitude versus logarithmic frequency would be +1 and the 

error terms  in Table 3"! would be positive. 

The fifth and final  feature of the log-log 

plot of the double exponential  transform is that the effect of varying the 

risetime  (ß) or the decay time (a)   is readily determined.    The effect of 

these variations  is shown  in Figure 3-7. 
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This corresponds   to the waveform with slowest decay. 

-This corresponds   to the waveform with  the most 
rapid decay. 

/-This  corresponds  to the wave- 
{   form with  the  slowest   risetime. 
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I    \t     ,     .     ... 

'3  al   u2 
log)0(u) 

Figure 3-7. Relative Variation of the Transform Magnitude with 
Risetime and Falltime of a Double Exponential 
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It should  be noted that  the abscissa  in a 

plot of  |G((jj)|  versus u has units equal  to those corresponding to g(t) 

divided by radians/second.     Thus,   if g(t)   has units of volt/meter,  then 

|G(ü))|   has units of   (vol ts/meter)/(radians/second). 

A plot of the amplitude of G(a)) versus 

frequency provides one half of the  information available about G(a)).    The 

other half of the   Information   is the phase of G(ü)).     It   is customary to 

plot  the phase  (not  the  logarithm of the phase),  versus  log(u)).    The 

phase of G(a)), $|G(ü>)},   is 

* { G(ü)) | = -tan"1 (u/cO-tan"1 (u/ß) (Eq.  3-107) 

A plot of Equation 3-107 versus  log(u))   is  shown   in Figure 3-6.     Note 

that the net phase  is the arithmetic sum of the phase of each term 

comprising Equation  3-112.     A term of the  form  (1  + joj/u )"1  has the 
o 

following phase variation as a function of frequency: 

TABLE 3-2 

PHASE VARIATION OF THE TERM   (1  + jWco ) 

Relative Frequency (u/w ) 1 .5 1 2 10  i 

Phase (Degrees) -5.7 -26.6 -i»5 0 -63 h -8'». 3 1 

In the event that one had a transform with a term (1  + ju/u) )   in the 

numerator,  the sign of the phase terms  in Table 3-2 would be positive. 
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3.3«6.1.3  Summary 

Given an experimental waveform that 

approximates a double exponential, an estimate of its Fourier transform is 

obtained in the following meiner: 

(t)  Obtain estimates of the parameters A, a, and 3 in 

g(t) = A(e"at - e"et)        (Eq. 3-108) 

The parameter, a, is determined from the late-time 

behavior of the waveform.  If t» is the time from 

the beginning of the waveform until it equals 10 

percent of its peak, then 

a = 2.3/tD (Eq. 3-109) 

The parameter, ß, is determined from the early-time 

behavior of g(t).  If tR equals the 10 to 90 per- 

cent risetime of the waveform, then 

ß - 2.2/tR (Eq. 3-110) 

The parameter. A, is equal to the product of the 

normalizing factor, N, given by Figure 3-5 and 

the peak amplitude of the experimental waveform, 

P. Thus 

A * PN (Eq. 3-111) 
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(2) Plot the logarithmic magnitude of 

ß - a \ (Eq.   3-112) 
GM = lA ""BS^ITI + I^TTi + WnT 

For frequencies in the range, u. < <x. log,0lG(u.)| is 

log10lG(u))l«log10 (A ^ 
aj, a, < a   (Eq.  3-112a) 

It ß » a,  then 

login|G(u))h1og10(A/oi), 
MO1 

For frequencies   i 

< a, a «  ß 

n the range, a < u < B, 

(Eq.   3-112b) 

log1JG(u.)hlog10(A/a)  -  log^W«) 
a  < a, <  ß (Eq.   3-112c) 

For  frequencies   in the range, CD > ß 

log1JGU>)!-1og(A/.)   -  1og10U/a)   - 1og10(a./ß). 
a, >  B (Eq.   3-112(0 

'10 

l(t)/g log,0|G(w)| ^log10(A/«)-log,0(u./a) 

loS^AM^r'^w^-'0^^^-109^^ 
MO   , , 

I       log10(a)     log10(e)     logl0W 
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Corrections  for the error   in the asymptotic 

magnitude values are given   in Table  3"1. 

(3)    Obtain the phase variation of G^) 

JIG^U -tan     (u/a)-tan~   (w/ß) (Eq.  3-107) 

Table 3_2 gives the phase variation of each term 

in Equation 3-107. 

(t){G(a))} 
0 

-90' 

-180' 

log(a)       log(ß) •-log(ü)) 

Note that for a double exponential , the phase 

varies between 0 > $ > -180° as the frequency 

varies between 0 < u < «>~- 

3.3.6.2    Damped  Sinusoid 

3.3-6.2.1      Parameter Estimation 

Assume you have an experimental  data record 

that resembles a damped sinusoid and you want to obtain an estimate of its 

Fourier transform.     The first  step   is to estimate the parameters, A, a,  and 

3,   in 

at 
g(t-) = Ae UL sin(ßt) (Eq.  3-113) 
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The parameter, ß, is related to the oscillation period, T, of the experi- 

mental data record 

ß = 2Tr/T (Eq. 3-nM 

The parameter,  a,   is related to the  rate of decay of the oscillation. 

However,   the most meaningful  way of characterizing a  is   in terms of Q, 

the usual   radio engineering measure of the "sharpness" of the resonance 

of a  system.     In  terms of Q,   the relation between a and ß  is 

ß/2Q (Eq.   3-115) 

A convenient way of determining Q from an experimental  data record   is pre- 

sented   in Figure 3"8.     In this figure, Q is  related to the ratio of the 

peak amplitudes of adjacent half cycles of the oscillatory waveform.     Once 

ß and Q are determined from the data  record, a is computed from  Equation 

3-115. 

The parameter. A,   is not equal   to the 

experimentally determined peak, P, of the data record since the peak of 

f(t) = e"at sin(ßt) (Eq.  3-116) 
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Figure 3-8- Q.  Versus Damping Rate for a Damped Sinusoid 
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is not,   in general, equal   to unity.    The multiplicative factor,  N,  causing 

the peak of  Equation 3"ll6 to have a value of unity is given  in Figure 3"9. 

in this figure,  N is plotted as a function of Q.     Once the normalizing 

factor,  N,  and the experimentally determined peak amplitude,  P, are deter- 

mined,   the parameter. A,   is given by 

A = PN (Eq.   3-117) 

3.3<6.2.2      Fourier Transform 

The Fourier transform of a damped sinusoid, 

without the multiplicative constant    A,   is given by Equation 3-76.    Once 

again,  the transform data are generally displayed on a  log-log plot.    When 

obtaining the  logarithm of   |G(üJ)1,   it  is best to write Equation 3-76, with 

the scaling factor A, as 

GW - | 1 

1     + Jy^j (Eq.   3-118) 

1   + {k+ jlJ 
Obtaining the logarithm of both sides of this equation, one finds 

1og10|GU)i - log10(A/ß) - log10|l +(^+ jf)2 |     (Eq. 3-119) 

A plot of Equation 3"!19 as a function of log.0(w/ß) is shown in Figure 

3-10. 

Rules for obtaining estimates of the magni 

tude of G(UJ) are not as simple to state for a damped sinusoid waveform as 

compared to a double exponential. However, a few simple asymptotic forms 
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Figure 3-10. Transform Magnitude and Phase for a Damped Sinusoid 
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will   be given.    At  low frequencies,  where w << 3,  Equation 3"'19 reduces to 

log10|G(u)|   =  log]0(A/ß)   -   log]0(l  + -V\        (Eq.   3-120) 
'(' + ^ 

^log|0(A/ß), (D << ß,  Q > 2. 

At high frequencies, where u >> ß,   Equation 3"119 reduces to 

log10|G((o)|Älog10(A/ß)   -  21og10(a)/ß) , u »  ß. (Eq.   3-12!) 

Note that  the second term has a slope of -2 or -40 dB/decade  if  |G(ü))|   is 

expressed   in decibels.     Equations  3-120 and 3-121  describe  the asymptotic 

form of   |G((Jü)|.     In this case,  the amplitude  is constant with a value given 

by Equation  3-120 until OJ = ß.    Then  the magnitude decreases with a  slope 

of -2 or  -kO dB/decade.    These straight   line asymptotic forms are   indicated 

with dotted   lines   in Figure 3-10.     Note that there  is considerable error 

in  the asymptotic values when u^ß.     A simple correction to these 

asmptotic values   is obtained by computing   |G{OJ)|  when OJ s ß. 

log     |G(u))|  - log    (QA/ß)   -  log •10 10' '10 f^f 
(Eq.   3-122) 

Älog10(QA/ß), ü) = ß, Q > 2. 

Note the peak of   |G(a))|   is a factor of Q greater than  its  low frequency 

asymptote.     An   improved estimate of   |G(ü))|   is now obtained by drawing a 

smooth curve between its value at ui = ß and  its  low and high frequency 

asymptotes. 

Additional points to improve the estimate 

of |G(ü))| can be obtained by noting the relation between the Q of a system 

and the bandwidth of the resonant peak at   Its 3 dB point.    Thus 
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wu " "L 

and 

"ü - UL " J:'  "' = u)/ß (Eq' 3"123) 

where the subscripts, U and L, refer to the frequencies above and below 

the resonant frequency, ß.  Equation 3"123 indicates t^e frequencies 

where the amplitude is approximately 3 dB below its maximum. Normalized 
I 

upper and lower frequencies (w' and m!)  where the amplitude is 3. 6, 12, 

and 20 dB below the peak are shown in Table 3-3. 

\ 

The phase variation of the transform of 

a typical damped sinusoid is shown in Figure 3"10.  In general, the^hase 

is a function of Q. as well as frequency. However, simple estimates of 

the phase can be obtained at three points, the low frequency asymptote 

(a) « 3), the high frequency asymptote (u » ß), and at resonance (u » ß). 

3.3.6.2.3  Summary 

Given an experimental waveform that 

approximates a damped sinusoid, an estimate of its Fourier transform 

can be obtained in the following manner. 

(l) Obtain estimates of A, a, and B for 

g(t) - Ac"01 sin(Bt) (Eq. 3-124) 

The parameter, B, is related to the 

period, T, of the oscillation 

B - 2Tr/T (Eq. 3-125) 
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TABLE 3-3 

RELATIVE  FREQUENCY WHERE  |G(ü))|   ATTAINS SPECIFIED RELATIVE MAGNITUDES 

0, 3 dB 6 dB 12 dB 20 dB 

"L 
wu WL ^ »L "Ü "L »u 

2 

3 

4 

5 

7 

10 

20 

.656 

.798 

.856 

.888 

• 923 

.94? 

.974 

1.202 

1.144 

1.111 

1.09 

1.067 

1.047 

1.024 

.267 

.626 

.742 

.802 

.864 

.908 

.955 

1.347 

1.246 

1.191 

1.156 

1.115 

1.082 

1.042 

.120 

.463 

.664 

.781 

.897 

1.700 

1.506 

1.398 

1.329 

1.245 

1.177 

1.092 

.040 

.708 

2.440 1 

2.070 

1.860 

1.727 

1.555 

1.4 2 

1.223 

^G(üJ)| = 0 tu « 

= -90°        u) = f 

= -180°,    ai » 

(Eq.  3-126) 

1   / 
"air 

The magnitude of  the phase of G((i)) as a function of normalized  frequency, 

a)1   « 0)/$,   is given  in Table  3*4. 

TABLE 3-4 

RELATIVE FREQUENCY WHERE *|G(a))| ATTAINS SPECIFIED VALUES 

Q 
-30° -60° -120° -150° 

ü)' w' U)' 0)'        | 

2 .685 .897 1.185 1.551    | 

3 .765 .922 1.115 1.342 

4 .814 • 938 1.083 1.248 

5 .847 .949 1.064 1.193   ! 

7 .887 • 962 1.044 1.134 

1    10 
.915 • 973 1.030 1.092 

20 .958 .986 1.015 1.045   1 

a6 
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The parameter, a,  is related  to the Q of 

the  resonant system.    Data  Indicating Q 

as  a function of the relative amplitudes 

of adjacent half cycles are given by 

Figure 3"8.     Then 

a = ß/2Q (Eq.   3-127) 

The parameter, A,   is equal   to the product 

of  the normalizing factor,  N, given  in 

Figure 3"9 and the measured peak amplitude, I 
P, of the experimental  data  record.    Thus 

A = PN (Eq.  3-128) 

(2)    Plot the  logarithmic magnitude of 

GU)   = ~ TT TT^T (Eq-   3-129) 
ß 1  + /-L+JüV 

Estimates of 1G(ü))1 are obtained by noting 

its asymptotic values.    When OJ « (5, 

Equation  3"128 reduces to 

log10lG(a>)l  =«1og10(A/ß), u)  « ß,  Q > 2. (Eq.  3-130) 

When (u » fj, Equation 3"129 is approximately 

equal   to 

1og10lG((ü)lÄlog10(A/B)  - 2\og]Q{u/&), u » ß (Eq. 3-131) 
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The second term in this equation has a slope 

of -2 or -40 dB/decade when the magnitude is 

expressed in decibels.  At resonance, the 

magnitude of G(üJ) is 

log^JGU)! =. log10(QA/ß),       u = 3. Q > 2    (Eq. 3-132) 

Note that the amplitude at resonance is a 

factor of Q higher than its low frequency 

asymptote. A smooth curve drawn between 

these three values will yield an estimate 

of |G(a))|.  Improved estimates are 

obtained by using additional data given 

in Table 3-3- 

(3) Plot the phase of GU).  Estimates of the 

phase when u « fj, and w » ß are 

«MG(ü))j- 0     a) « ß (Eq. 3-133) 

= -90°   u) = ß 

- -180°, ü) » ß 

Additional values of phase versus frequency 

for various values of Q are given by Table 

3^. 

(4) Procedure for composite waveforms. Some 

experimentally obtained EMP waveforms 

resemble the sum of two or more damped 

sinusoids. If the parameters, A, a, and ß, 
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associated with each component can be estimated, 

then the  resultant transform Is the sum of the 

transforms associated with each damped sinusoid 

component.    The laws of addition of complex 

numbers must be used  in combining transforms 

since G(üJ)   is a complex quantity. 

3.3-7      Special   Functions 

3.3.7.1       Introduction 

The waveforms Introduced  specifically in the pre- 

vious section were bounded functions that had finite energy.    Furthermore, 

these functions have Fourier transforms and their associated  inverse trans- 

forms as described  by Equations 3~19 and 3-20.     In  this section, a class of 

special  functions will  be introduced that are either not bounded or do not 

possess finite energy.     In addition, the Fourier transform of these 

functions cannot necessarily be obtained by straightforward application of 

the'defining equations given  in Equations 3-19 and 3-20. 

A valid question on the part of an  tMP data analyst 

concerning these special  functions could be the justification fo." studying 

functions that are obviously a mathematical abstraction.    After all, CMP 

testing  involves the excitation of real  physical  systems with physically 

realizable electromagnetic fields.    The resulting data analysis must  involve 

these physically realizable excitation and response waveforms.    Thus,there 

is apparently no direct application for these special  functions.    However, 

the EMP analyst will  profit   in two ways by mastering these functions.    One 

is that the special  functions often provide a  reasonab e approximation to 

some physical phenomena.     In this case, use of special  functions will 

generally simplify the analysis.    However, the second and most important 

reason for using these special  functions  is that they provide a powerful 

tool for the derivation and  interpretation of transform relations.    Deriva- 

tions that are extremely tedious can be greatly simplified with the aid of 

these special  functions. 
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This section will   begin with a discussion on the 

delta function,   6(t).     A thorough definition will   be presented.     Then  6(t) 

will   be  shown  to be a   limiting form of a  simple analytic function.     Finally 

the Fourier transform of the delta function will   be presented.    A second 

special   function,  namely the step function,  U(t), will  be treated next. 

A definition and derivation of  its Fourier transform wPl  be given. 

Various applications of these special   functions will   be given  in Section 

3.3.11. 

3.3.7.2      The Delta Function 

3.3.7.2.1       Definition 

The delta  function, 6(t),   is the most 

poorly understood of all  the special  functions.    The reason  is probably 

that   insufficient emphasis  is placed on   its definition.    One of  the common 

definitions 

6(t - t  ) = » t = t o o 
(Eq.   3-13^) 

= 0 t t t 
o 

is useful for conceptually visualizing the function and checking that 

approximations of the delta function approach the properties given by 

Equation 3"13i» in some limiting process. However, any application of the 

delta function requires use of the following definition 

/ 
f(t) 6(t - t ) dt - f(t )      a < t < b 
00 0 

t < a or t > b 
o      0 

(Eq. 3-135) 
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A special  form of this equation   is 

/ 
6(t  -  t  )   dt =   1 a < t    <  b 

o o 

= 0 t<aort>b 
o o 

(Eq.  3-136) 

A qualitative  interpretation of  Equation 3-136  is that the net area of the 

delta function   is unity.     In Equation 3-135,   the net area   is unity times 

the we^^King factor,   the value of f(t) at t = t  . 

It must be emphasized  strongly that 

Equation 3"101   is the only valid and basic definition of the delta < 

function.     It must be employed   in all occasions when using these functions. 

The delta function  is defined only  indirectly  in terms of an  integral. 

Furthermore,  the delta function  has absolutely no   interpretation except as to 

its properties upon   integration.     These concepts may seem strange at first. 

However,  the delta function   is no ordinary function.     If these conceprs are 

accepted without  reservation,  then application of the delta function  is 

straightforward.    Many simple applications of this function will   be seen 

in  subsequent sections. 

3.3.7.2.2      Derivation of Delta  Function 

The delta  function can  be shown to be 

a  limiting form of several   common analytic functions.    A demonstration 

of this correspondence provides a tie to more familiar  functions, 

illustrates the  limiting processes used in the application of  special 

functions, and provides an example of a familiar function that can be 

used to form a delta  function,       Several  familiar  functions can be used 
i 

to provide this demonstration.     However,   in this section a variation of 
I 

the Sine function will   be used 
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sin(u)t)       /  / \P•     / ^ /  \ 
TTt 

(Eq. 3-137) 

The choice of this  function was based on the fact that  it   illustrates the 

basic properties of the delta function as well   as providing a reader with 

an  illustration of one of the most important functions  in  Fourier trans- 

form theory,  namely the Fourier kernel. 

in this demonstration,   it will  be shown 

1 im(ü)/Tv)Sinc(ut/Tr)  -*■ 6(t) 
or»« 

(Eq. 3-138) 

The true test of the limit  in Equation 3-138  is whether  it  satisfies the 

integral  definition given by Equation 3-135.     In addition,   it will  be 

shown that  Equation 3~138 qualitatively approaches  the definitions given 

in Equation  3-13^ 

The function,  Sinc(ü)t/ir), has  its 

maximum value of unity when the variable,  time, approaches zero.    Thus 

the maximum value of Equation 3-138 is given by 

1 lm(u/Tr)Sinc(ü)t/ir) * lim(ü)/Tr) 
a)-*» Ol-Ko 

(Eq.  3-139) 

In addition,  the function Sinc(wt/ir)  has zeros when 

ut/iT ■ +n 

or n  is an   integer. (Eq.   3-\k0) 

t ■ + mr 
(ji 
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In the limit where u approaches   infinity, the width of Sinc(ü)t/iT) becomes 

arbitrarily smal 1. 

U.MSincK.t/i.) 

^"T X- 

(,..2/")Sinc(.2t/r (uy-OSincU-t/t) 

Ji >u:    '3 

Thus the limiting form of Equation S'lO1» exhibits the properties stated 

by Equation 3"13'*. namely that  the delta function,  in the  limit, has 

"infinite amplitude and zero width." 

The previous paragraph showed that 

Equation 3"138 has the qualitative properties of a delta function as 

stated by Equation B'U'*-     However, the important and quantitative test 

is given by Equation 3"135.    To verify l:hat Equation 3-]0k satisfies 

Equation 3"!35, one forms 

iit) ■I 
— 00 

■/ 

f(t)  sinicotl^ 
irt 

f(t)   U/ir) Sinc(u)t/iT) dt 

(Eq.  3-li.l) 

and will  show that 

lim x(t) - f{0) (Eq.  3-U2) 

the value of f(t)  at t - 0 
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Equation 3-142 can be written as the 

sum of 

X(t) Jf (t) li^il dt.Aoi^ dt + 

-oo J-t 

/ 

(Eq.   3-1^3) 

f(t)   llüfcO     dt 
irt 

three  integrals where  e   is an arbitrarily small  number.     Now  it will  be 

shown  that the contributions  to x(t)  from the  first and  third   integral 

approach zero as w approaches  infinity.    To show this fact, evaluate 

y(t) = -/sM»t,(^t (Eq.   3-1^) 

in  the limit as u approaches  infinity.     Integrating Equation  3-1^ by 

parts, one finds 

y(t).l /    xf(a) , . vf{b) 
cos(ü)a) - cos(ü)b)     . 

ira 

ifLu^m-)« 
(Eq.   3-U5) 

where the prime on  (f (t)/Trt)  signifies the derivative with respect to 

time.     If (F(t)/irt and   (f(t)/Trt)'   have a finite magnitude for every value 

of t,  then 

1 im y(t)  ■+■ 0 (Eq.  3-146) 

Therefore the first and third  integrals of Equation 3-1^3 approach zero 

and 
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x(t) =ff(t)  iJ£MI   dt (Eq.  3-1^7) 

-e 

Since the limits of this   integral are arbitrarily small, x(t)  can  be 

approximated as 

x(t)^f(0) 

■e 

) r'si^o dt (Eq> ym 

J-z 

and Equation 3"138 can  be shown to satisfy Equation 3~135 by showing 

^-   dt ^ 1 (Eq.  3-149) im /sin (cot] 

(jJ-XJO     f « 

■e 

if you substitute the variable z for (ut/ir in the above equation,  you find 

,  Z  •   i    \ r^^ 
lim/     siinUtj     dt=lim/ Sinc(z)dz (Eq.  3-150) HUM}    dt =  lim / 

ÜJ-t<» 

-e 

Recall   from Equation 3"60 that this last  integral  approaches unity so 

that 

Um /'f(t) llüMI   dt = f(0) (Eq.  3-151) im I       ,, 
I TTt ■x» / 

•'-a a)-x» 

Therefore the expression given by Equation 3"138 satisfies the properties 

of the delta function given  by Equation 3-135. 

3.3.7»2.3      Transform of a Delta Function 

The Fourier transform of the delta 

function is given straightforwardly by application of Equations 3-1 and 

3-101. 
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F|6(t)}    - I 6 (t)  e'^1 dt (Eq.   3-152) 

Therefore 

6(t) ^ I (Eq.  3-153J 

In a similar manner, it can be shown 

that the inverse Fourier transform of a delta function in the frequency 

dome in   is 

i/ 

Therefore 

It should be noted that the factor 2ir  in the above equation signifies the 

area of this delta function upon  integration.     For a delta function, the 

concept of amplitude has no precise meaning. 

Equations 3-153 and 3-155 can be 

generalized for any shift   in the argument by use of Equations 3-59 and 

3-61.    Thus 

-jut 
6(t - t  )  -^ e        0 (Eq.  3-156) 
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1  -w 2Tr6(a)) (Eq.   3-155) 

i 

J/ 
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and 

jül   t 
»    "    *-+ 2TT6 (U - ü) ) 

o (Eq.  3-157) 

The reader can obtain some feeling for the 

meaning of the Fourier transform of a delta function by plotting the Fourier 

transform pairs given by Equations 3-85 and 3-87. 

RectT{t) <-* T Sinc{fT) (Eq.   3-85) 

RectT(t) 

■T2/2     'Tl/2    0        Tl/2    T2/2 

T2Sinc(fT2) 

T1Sinc(fT]) 

/^ 

In the limit where the width of RectT(t) becomes large  (T -► «), the 

amplitude of T Sine (fT) approaches  infinity and  its width becomes 

arbitrarily small.    In a similar manner examine 

f   Sinc(f t) +-► Pcct    (u) 
O O b) 

o 
(Eq.  3-87) 

J 

\. 
\. 
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f,Sinc(f0t) 

f.Sinc(f.t) 

Rect  (w) 

■f2/2  "fl/2 0  f1/2  f2/2 

In the limit where the width of Rect  (u) becomes large (oi •*  >»), the 
WQ O 

amplitude of f    Sinc(f t)  approaches   infinity and  its width becomes 

arbitrarily small.    Note that  this  last example  is similar to the demon- 

stration given L,y Equations 3~139 to 3-152. 

3.3.7.3  Step Function 

The step function, U(t), is defined as 

u(t - to) - 1 t > t 

t < t. 

(Eq. 3-158) 

and is particularly useful in the study of transient phenomena. Multi- 

plication of a bounded function by u(t - t ) is a means of causing the 

resultant function to have a definite starting time at t ■ to.  If U{t) 

is used in data analysis work, one must know the properties of U(t) as 

well as Its transform. A derivation of the transform of the step function 

is given below. However, the transform of the "sgn" function will be 

presented first since it is required In the definition of the transform of 

U(t). 
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The sgn function is defined as 

sgn(t) =1      t > 0 

(Eq. 3-159) 

= -1      t < 0 

The derivation of the transform of this  function using Equation 3-1   is not 

straightforward.    Therefore the transform of sgn(t) will  be presented with- 

out proof 

F| sgn(t)|   = -||- (Eq.   3-160) 

and  it will   be shown that the  inverse transform of Equation 3-I6O yields 

sgn(t).     Thus 

v jü)'     a-»«        J   J 

■a 

a 
1    / 

=  li 
CJ-X» 

■a 

mi-   f cos (0*) ^ j  sin(a.t)    ^    ( 6l) 

Noting that (cos((ji)t)/ju) is odd and that there is no contribution to the 

integral of an odd function between the limits (-a, a), one finds 

F-WfL nml /  imUti  du (Eq>  3.162) /fl. nml /"li^M 
v J '    a-x»     y 

-CT 

This equation can be experessed  in terms of the Sine function by using 

üj = 2iTf.     Thus 

/a/2-n 

Sinc(2ft) df (Eq.  3-I63) 

-a 
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Now consider the case where t is positive and the substitution, x = 2 ft, 

is made in the above equation. Then 

at/ir 

and 

-at/ir 

Sinc(x) dx (Eq. 3-l6'l) 

m-f' nc (x) dx (Eq. 3-165) 

= 1,     t > 0 

When t is negative, the signs of the limits of the integral in Equation 

3-1S1» change and 

(^ / 

a/2-n 

Sinc(x)  dx 

O/2TI 

a/2TT 
-lim 

/■ 
Sinc(x) dx (Eq.   3-166) 

-a/2ir 

-1, t < 0 

Thus the frequency domain function, 2/j(ü,  has an  inverse transform that 

has the properties of the sgn function as described  in Equation 3"159' 

The step function, U(t),  can be considered as the 

result of the sum of a constant,   independent of time, and the sgn function 

U(t) - j+ y sgn(t) (Eq.  3-167) 

.J 
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U(t) = j + jsgn(t) 

constant = 1/2 

sgn(t) 

sgn(t) 

Then the transform of U(t) is given by the sum of the transform of the 

constant and the sgn function. Using Equations 3"155 and 3-l60, one obtains 

F{u(t)}4(2.6(t))+i(j^ (Eq. 3-168) 

Thus 

U(t) *-* TTSU) + ^j- (Eq. 3-169) 

3.3.8    Product of Two Functions 

3.3.8.1     Introduction 

In a previous section, the conceptual experiment of 

injecting a signal  at a given frequency Into the  input of a system and 

measuring the magnitude and phase of the output  relative to the  input was 

Introduced.    This experiment can be repeated at every frequency of  interest, 
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If the system is linear and does not change as a function of time (time 

'nvariant) then the magnitude of the output is some multiplicative constant, 

A, times the magnitude of the input.  In general, this multiplicative con- 

stant will be a function of the frequency used to excite the system. Thus 

A = A(ü)). One can also designate the phase of the output relative to the 

input as (|i(u)).  Note that, in general, the phase of the output relative 

to the input is a function of frequency. The functions, A(ü)) and (|>(ü)), 

can be combined in a single complex function, H(ü)). 

A(a>) = |H(ü))| 

(Eq. 3-170) 

e(w) = (t){HU)} 

This conceptual  experiment can be extended by sim- 

ultaneously applying signals from two separate generators,  F.(u.)  and F 

(tu.), operating on different frequencies.    Once again, the magnitude and 

phase of the output, G(a)), will   be measured.     If the system  is  linear and 

time  invariant,   then the principal of superposition  is valid and the  input 

and output are  related as 

0(0)) « [F,^,) + FgSM   H(ül) (Eq"  3"171) 

Now consider extending the conceptual  experiment even further by applying 

a transient time domain  signal,  f(t),  to the  input of the system.    The 

Fourier   integral   transform shows that  this transient signal   is composed of 

contributions of an  infinite number of frequencies,  F(ü).),   1-1,2  

Thus a transient signal  can be considered, conceptually, as the resultant 

output of an   infinite number of single frequency signal  generators applied 

simultaneously.    Once again,  if the system is  linear and time  invariant, 

the output, 6(ü)), of the system is expressed symbolically as 

GU)  »  F(u))   H(ü)) (Eq.   3-172) 
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Equation 3"172 applies, in general, to EMP testing. 

The transient electromagnetic fields are considered as the input function. 

The measured response at some point on the test object is consiuered the 

output. The test object is considered as the system.  In a large percentage 

of actual cases with EMP testing, the system is sufficiently linear and 

time invariant so that the relationship given by Equation 3"172 is valid. 

In the frequency domain, the output simply equals the product of the input 

or excitation and the system transfer function. On many occasions, it is 

desired to find the relationship between the input and output in the time 

domain. Of course, if any two of the functions in Equation 3~172 can be 

determined, the third can be computed and the inverse Fourier transform 

will yield the resultant time domain signal. However, there is a strictly 

time domain procedure of relating the input and output of ä  system. This 

procedure is called convolution. 

The following paragraphs will discuss the convolution 

technique.  It will be shown that the product of two functions in the 

frequency domain corresponds to the convolution of the inverse of each 

function in the time domain. The concept of convolution will be extended 

to show that the product of two functions in the time domain implies con- 

volution in the frequency domain. Finally some of the concepts and 

definitions applicable to systems, their inputs, and their outputs will be 

presented. 

The author feels that these concepts relating to 

linear systems and the product and convolution of two functions to be 

^solutely indlspensible in EMP data analysis.  If these concepts are not 

mastered, then there is hardly any reason for an analyst to invest the 

effort of obtaining Fourier transforms of transient data in the first 

place. 
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3.3.8,2    Convolution 

3.3-8.2.1      Time Domain 

Given two functions   (f(t) and  h(t))  and 

their associated transforms   (F(Iü) and H(u))), now the product of the two 

frequency domain functions will  yield 

G(u))-  F(a)) H(ü)) (Eq.   3-173) 

It will be shown that G(ü)) is the Fourier transform of g(t) which equals 

the convolution of f(t) with h(t). Noting that 

■/ 

FU) = ff{t)   e'jut dt'. 2TTf (Eq. 3-19) 

one finds Equation 3-173 can be rewritten as 

G(ui) =/ f(t') e"jü)t H(a.) dt' 

However, according to Equations 3-58 and 3-59 

(Eq. 3-17^) 

H(u.) e"jü)t - F{h(t - t'j (Eq. 3-175) 

so that 

00 '    I 

I fit) j\ G(u)) -/ f(t ) h(t - t') e'Jü)t dt }  öt (Eq. 3-176) 
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If the functions,  r(t)  and h(t), correspond to finite energy processes, 

then the order of the  integrals  in Equation 3-176 can be rearranged to 

yield 

G(u) ■/I/ 
I I 

f(t  ) h(t - t ) dt e J      dt (Eq.  3-177) 

However, this equation states that  G(ü)) is the Fourier transform of the 

quantity inside the brackets.     Since G((JD)   is the Fourier transform of 

g(t),  then 

g(t) » /   f(t ) h(t - t ) dt (Eq. 3-178) 

This equation states that g(t) is the result of convolution of f(t) with 

h(t). 

There are three general comments 

applicable to convolution. One is that Equation 3-178 is commonly written 

as 

g(t) - f(t) * h(t) (Eq. 3-179) 

where the asterisk indicates the convolution process. A second comment 

is that it is immaterial which function, f(t) or h(t), has the time 
i 

shifted argument. Substituting T » t - t in Equation 3-178, one finds 

I fU') h(t - t') dt' « / f(t - T) h(T) dt (Eq. 3-180) 
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FuthernxDre, inspection of this equation shows that convolution is a 

commutative process 

f(t) * h(t) = h(t) * r(t) (Eq. 3-181) 

The final  comment  is that  the convolution  process can be  repeated with 

another function k(t).    This   implies that 

F'^FCUI) H(ü))   K(ü))1= f(t)   * h(t)  * k{t) (Eq.  3-182) 

Furthermore, it is immaterial which two functions are convolved first 

f(t) * [h(t) *  k(t)] = [f(t) * h(t) 1 * k(t)       (Eq. 3-183) 

This last property implies that convolution is an associative process. 

3.3.8.2.2 Frequency Domain 

Convolution is not restricted to the time 

domain.  Indeed,given three functions, p(t), r(t), and s(t) related as 

follows 

p(t) - r(t) s(t) (Eq. l-m) 

Then the Fourier transform of p(t) in terms of the transform of r(t) and 

s(t) is 

PM " ^T / R(<y) S(a)-a) da (Eq. 3-185) 

\ 
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Equation 3-185 can be verified  in a manner almost  identical  to that 

exhibited by Equations 3-173 to 3-178.    Furthermore,  the properties given 

by  Equations 3~180 to 3"183 apply to frequency domain convolution also. 

3.3.8.2.3    Graphical   InterpretdMon 

Convolution is basically a simple mathemat- 

ical   function.    However,  the instructions contained  in Equation 3-178 are 

subtle, and  it  is highly recommended that the steps  involved  in computing 

the  convolution  integral  be sketched in a manner similar to the  following. 

If  the reader repeats  these symbolic sketches for his particular problem, 

then there will  be no confusion   in applying convolution techniques. 

Assume one has two functions,  g(t<) and 

f^t'), such as those  illustrated  below. 

gCt') 

and 

Note in Equation 3-]k\  that t is a variable and t is a parameter. To 

emphasize that t is a parameter, let t ■ T . Now one forms the function 
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h(t-f)-h(To-t'). This function can be derived in tv« 

the axis of h(t') is reversed to yield 

steps.     First 

Then  the argument 
is shifted by  the amount, V to form 

MT  -1    ) 

"jd a rlsuUant ?unction wh,ch can be 9lven the ne^. ^  ). 

desired. 

Yields 

•If 
area -  F(T  ) 
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Then $   (t1) is integrated with respect to the variable, t', to yield 

f(T ).  it is important to realize that the process of axis reversal, 

time shifting, multiplying two functions,and integrating the resultant 

function will yield only one value for f(t) which in this case equals 

f (T ).  To obtain f(t) at other values of time, T-, then the whole 

process must be repeated for each additional value of f(T.). 

Two features of convolution are immediately 

evident by inspection of these sketches. One is the choice of the proper 

limits for the integral in Equation 3"178. They are stated, generally, 

as (-», »). However, inspection of the above sketch shows the actual 

limits need only be (0,T ) since the product of the two functions is zero 

outside this interval. A long list of rules could be stated for deter- 

mining the limits of the integral in the convolution process. However, 

these rules would probably be poorly understood and promptly forgotten. 

On the other hand, producing a rough sketch of the product of the two 

functions being convolved will yield these integral limits by inspection. 

Another feature evident from sketches of 

convolution is that the duration of f (t) is longer than that of either 

g(t) or h(t). Assume that g(t) and h(t) have nor.-zero values in the 

ranges (0,t ) and (0,t.). Then f(t) has non-zero values in the range 

(0,t + t.). Note the two sketches shown below.  In these sketches, e is 
9   h 

a small positive number. 

hU-f) 
will yield f(e) 

h[(t +t.-e)-t
,l 

q h 

t^.e     win yield f(yth-e) 
9 h 
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Graphical   techniques can be used  to 

illustrate convolution  in  the frequency domain also.    However,  the fact 

that  the frequency domain functions are generally complex tends  to obscur- 

the graphical   image that   is quite obvious with convolution  in the time 

domain.    Nevertheless, crude sketches of the function do provide   insight 

in establishing  integral   limits and distinguishing between parameters 

and variables of  integration. 

3.3.8.2.^    Parseval's Theorem 

If one has some time domain signal, g(t), 

that   is proportional  to either voltage or current  (electric or magnetic 
2 

fields),  then the power   is proportional  to g  (t).    Furthermore,the 
2 

integral of g  (t)  with respect to time  is proportional   to the total 

energy  !n that signal.    Using the convolution theorem, one can  find a 

correspondence between the expression for energy  in the time domain and 

that  for energy  in the frequency domain. 

2 
The integral of g (t) with respect to time 

can be written in terms of Equation 3"19 as u approaches zero.  Denoting 
2 

the transform of g (t) by S((i)), one finds 

00 

im /g2(t) e"ja)t dt - 1 im S(ai) 
■►0 J a)-K) 

1 
UJ-K) 

(Eq. 3-186) 

= S(0) 

Thus,the energy  is proportional   to the zero frequency component of the 
2 

Fourier transform of g   (t).     It  has been demonstrated previously that 

the transform of the product of two functions  In the time domain  implies 

convolution of the separate transforms  in ehe frequency domain.    Thus 

CO 

27   /G{«) G(a u)  du = F|g2(t)| (Eq.   3-18?) 

- S(o) 

2k0 
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Equating the zero frequency component of Equation 3~l87 to Equation 3"186, 

one finds 

00 

/g2(t)  dt - —■    / G(ü))  G(-a))   dco 

= 2iri 
(Eq.  3-188) 

|G(w)|2 aw 

J^ X o 

since G(-ü))  « G'(u)  and G(ü))" G((I))  =  |G(üJ)|   .    Note that the superscript 

asterisk  implies the complex conjugate of a complex function. 

Equation 3-188  is known as Parseval's Theorem.     It 

shows  that  the total  energy of a function can be computed   in either the 

time or the frequency domain.    Furthermore,   if one is given a function 

g(t)  and then computes G(u)),  then use of  Equation 3"188 serves as a check 

on the accuracy of the computation of G(a)). 

3.3.8.3   System Definitions 

The previous paragraphs describing the relationship 

between multiplication of two functions and convolution has  introduced the 

concept of a system with an input and an output.     In the following para- 

graphs,  system related definitions and notations used elsewhere  in this 

document will   be summarized. 

(1)     Input 

The input to a system will be designated by the letter 

f. 
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(2) Output 

The system output will be signified by use of the letter g. 

(3) Frequency Domain 

Frequency domain functions will  be   indicated with capital 

letters. 

C»)     Time Domain 

Time domain functions will   be designated with lower case 

letters. 

(5) Transfer Function 

If a system is linear and time invariant, then H(ü)) is 

called the system transfer function.  If F(ai) and G(a)) are 

available, then H(ü)) is computed as H(Cü) " G(ü))/F(ü)) 

(Eq. 3-189) 

(6) Linear System 

If the input is changed from F(oi)) to AF(a)), then the output 

is changed from F(u)) to AG(ü)). A is «in arbitrary constant. 

This same proportionality relationship must also hold for 

time domain input and output functions. 

(7) Time Invariant System 

A system is time invariant if H(a)) is a function of w only. 

H(ü); T) is an example of a time varying linear system. 

2h2 / 



(8)  Impulse Response 

The function h(t) is called the impulse response of a 

system.  It is equal to the inverse Fourier transform 

of HU). The name, impulse, refers to the system output 

when excited by a delta function input. Thus 

g(t) = 27 JHU) F{6(0}ejü,t d 
•'-00 

= ±[ H{*) ejü)t da, 
2V 

(Eq.   3-190) 

h(t) 

(9)    Causal  System 

A system is causal   if the output follows,   in time, the 

input.    All  physical  systems are causal.     If the system 

input/output relationship is written as 

•/_ 
g(t) - / h(T) f(t - T) dt 

•'-oo 

and f(t) - 0 for t < 0,  then (Eq.  3-191) 

h(t)s 0 for t < 0 

and 

;,'jfh' g(t) -/ h(T) f(t - T) dT 

'0 
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3•3•9  Transform Theory Summary 

A variety of results on Fourier transform theory have been 

presented in the previous sections.  As a matter of convenience, some of 

the major results will be summarized here. 

3.3-9.1  Definition 

Basic: GU)=/g^e^""- dt,   u = 2TTf    (Eq. 3-19) U)=/,g(t)e--iü)t 

w  -oo 

g(t) -^Z G(«)eJ,i,!' dc (Eq. 3-20) i-Au)«-^ do) 
-CD 

'4 g(t) real: g{t) = - / [R {G} cos ut - I {G} sin (ut)] dw •" '  e m 

(Eq. 3-3A) 

g(t) real and: g(t) = r / R ^G^ cos ^^  d(Jl) '4: 
(Eq. 3-38) 

g(t) = 0, t < 0 

■ 
- - / I {G} sin (ut) do) 

3.3.9.2  Asymptotic Solutions 

1'^ g(t): g(0+) -I/R {G} dw     g(t) real 
V e        g(t) - 0. t < 0 t-vO * J      e 

0 
(Eq. 3-Al) 

^J G(w): G(0+) -fg(t) dt (Eq. 3-1*2) 

0 
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1 im 
üH-00 GU):     0(0,) - —^ 

(n) 

Ijü)) 
e J     o (Eq.   3-50) 

where  the  first n - 1  derivatives  are continuous and 

nth derivative has a discontinuity at t =  t    equal 

to Ag (n) 

3.3-9-3 Waveform Modifications 

Assume one  has the following  transform pair:    g(t) +-*■ G(ü)).     Then 

Similarity:     G(t) ■<-* 2TTg(-ü)) (Eq.   3-53) 

Linearity:     Aq(t) +->-AG(a));   A  is a  constant 

Ordinate Scaling:    g(at) "^ "] n"   G(ü)/a) 

-jut 
Time Shift:     g(t - t  ) -»-> e        0 G (oi) 

Frequency Shift: g(t) e^ o  ■<-> G(a) - w ) 

Time Differentiation: g  (t) +-> (jw)  G(üJ) 

Frequency Differentiation:  g(t)(-jt)n -^ G^n'(u)   (Eq. 3-6?) 

3.3.S.k  Simple Transforms 

-at 
Exponential : e   ■»-»■ 1 

a + jo) 
; a > 0, t > 0. 

(Eq.   3-5^) 
i 

(Eq.   3-57) 
i 

(Eq.  3-59) 

(Eq.   3-61) 

(Eq.  3-65) ; 

(Eq. 3-70) 

Double Exponential: e  -e 6 - a 
(a + jü)){e + jw) ' 

ß > a > 0, t > 0. 
(Eq. 3-73) 
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TV 1" ß 
Damped öinusoid:    e      sinßt +-+  x—-; 

(a + ju))  +BZ 

ß>a>0,  t>0 (Eq.   3-76) 

Rect and Sine:    Rect  (x) «I,     |x|  < T/2 

(Eq.  3-77) 

= 0       |x|   > T/2 

Sinc(x)  = Sin(irx) (Eq.   3-79) 
TTX 

RectT(t) *-v T Sinc(fT),   f = u)/2Tt (Eq.   3-85) 

f    Slnc(f  t)  *-»■ Rect     (u), w    = 2Trf     (Eq.   3-87) 
o o wo o 

o 

-at fT  \ka/ „ :   e ■+-> *|— e^ < a > Gaussian:   e    l   ^- J-e^a< a > 0 (Eq.  3-92) 

I 3.3.9.5 Special  Functions 

x Delta Function:/ f(t)  6  (t  - to)  dt - f(to)      a < to < b 

t    < a or  t    >  b 
o o 

6(t -  to)  - «      t - to 

0      t * t o 

(Eq.   3-135) 

(Eq.   3-134) 

6(t)  *-> 1 (Eq.   3-153) 

1  -w- 2ir6(ü)) (Eq.   3-155) 
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Sgn  Function:     sgn(t) =1       t > 0 (Eq.   3-159) 

4 =-1     t<0 

sgn{t) «--i- (Eq.   3-160) 

Step Function:  U (t-to) = 1       t > ^ (E{1-  3-158) 

= 0     t < t o 

U(t) ■* irfiU)  + T- (Eq.   3-169) 
Jo) 

3.3.9.6  Product of Two Functions 

Time Domain Convolution: 6(0)) = F((i))H((jj)  (Eq. 3-172) 

00 

g(t)  =/  f(T)h(t-T)dT (Eq.   3-178) 7 
Frequency Domain Convolution:    p(t)   = r(t)s(t) 

(Eq.   3-184) 

•^-00 

p(u))  = ^:/R(a)S(u)-o)da 

(Eq.  3-185) 

n:/,g2(t)dt . -L/*|G(a.) 

W-OO ^ —00 

Parseval's Theorem:/ g£(t)dt = r1-/ |G(ü))|  dw 

(Eq.  3-188) 

3.3>lO    Laplace Transforms 

The previous  sections have discussed,   in some detail,  selected 

topics on the theory of Fourier integral   transforms   (FIT).     It   is felt that 

this attention  is justified since the FIT is generally given only cursory 

treatment   in university engineering and physics programs.    A transform 

which  is given  reasonable attention  is the Laplace transform.    In order to 

provide a tie to this existing body of experience, criteria for interchange 

of Laplace and FIT results are presented below.    Also presented is the 

2U7 
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rationale on why the FIT is used in preference to the Laplace transform in 

EMP data analysis. 

The Laplace transform of g(t), L{g(t)}, is defined as 

L{g(t)} = /g(t)e"Stdt,    s = a+jü) (Eq. 3-192) = /'g(t)e-st 

0 

There are two major differences between the definition of the Laplace 

transform and that of the Fourier transform given by Equation 3_19.     One 

is that  the   limits of the  integral  are from  (0,°°)   instead of  (-00,00).    The 

second   is that the  function, g(t),   is  transformed with  respect to the 

complex variable,   s - a+ju),   instead of the   imaginary variable,  ju,   in 

Equation 3"19. 

An   important question   is when do the results of Laplace trans- 

form theory apply  to someone using Fourier  transforms.     The answer   is when 

the two formal  differences between Laplace or  Fourier  transforms   indicated 

above result   in no difference in practice.     For example,  the effect of the 

difference   in  the   integral   limits  is   immaterial   if g(t)   is defined only 

for positive values of  time.    Since EMP signals are transient  in nature 

with a well-defined starting time,   it   is always  possible to shift  the 

waveform along the  time axis until  g(t)   is defined  for positive values of 

time only.     Thus either  Fourier or Laplace transforms can be used with 

transient signals characteristic of EMP data. 

Use of the variable s  instead of jw widens the class of 

functions whe-e the transform integral  converges.     Equation 3-155 can be 

written as 

/ g(t)e'ctdt =/ [g(t)e"at]e'jü,tdt (Eq.  3-193) 
^o JQ 
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This equation shows  that when g{t)  = 0 for t  < 0,  the Laplace transform is 

equivalent to the Fourier  transform of g(t)e       .    The primary criteria for 

either Equation 3"19 or Equation  3"192 to exist  is  that  the  integrals 

converge or that they be absolutely  integrable   (reference Equation 3"22). 

It   is possible for the  integral  of g(t)e    * to converge while that for 

g(t)  does not.     However,   if a  is  set equal  to zero and one still  has the 

defining integrals of both the Fourier and the Laplace transforms converge, 

then the Laplace and  Fourier transforms are essentially   identical. 

The above discussion   indicates  the conditions where the 

Laplace transform is   identical   in form to the Fourier transform.    The two 

conditions are 

g(t) =0, t < 0 

oo 

J   |g(t)|dt < » 
(Eq.   3-19*0 

If  these two conditions are valid,  then Laplace transforms can be con- 

verted to Fourier transforms by  the substitution of ju for s.     Similarly 

Fourier transforms can be converted to Laplace transforms by the sub- 

stitution of s for jui. 

The previous paragraph has shown that either Laplace or 

Fourier transforms can be used with transient signals characteristic of 

EMP data.     However,   the Fourier transform is the preferred technique for 

use with experimental   data.    The  reason for  this choice   is one of 

practicality. 

Laplace transforms are defined   in terms of a complex fre- 

quency variable,  s.     Knowledge of the specific values of s,  s., where 

the Laplace transform either goes to zero or to infinity  (pole),  is all 

that  is required to characterize, except for a scale factor,  a Laplace 

transform. 
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x     A J GO 

Ü 

S    =    G   +    JO) 

o -  zero 

x -  pole 

These poles and zeros can generally be found when using  theoretical 

relations.    However,   locating these poles and zeros  is not straightforward 

when using experimental  data. 

Fourier transforms, on the other hand, are defined only on 

the jo) axis.     The magnitude and phase of the Fourier transform is 

obtained by straightforward numerical  evaluation of Equation 3"19 using 

an experimental  time domain data record.     Furthermore,   instrumentation 

calibration data are given   in terms of the magnitude and phase of the 

instrumentation transfer  function.    This transfer function  is measured 

directly using a tuneable frequency signal   generator and a phase and amplr 

tude sensitive detector.     Therefore Fourier transform theory is directly 

compatible with the  form of  instrumentation calibration  data and numerical 

transforms of experimental  transient waveforms. 

250 

. iWwi.TWUVw aöwyftiff 



3.3-11      Examples 

3.3.11.1 Introduction 

The previous subsections  have presented the basic 

definitions and theorems of Fourier transform theory as well  as transforms 

of simple functions.    This material   is sufficient to give a  reader the basic 

tools  required for the analysis and   interpretation of EMP data.     However, 

facility in using transform theory only comes with practice.     In order to 

bridge  the gap between  theory and practical application,  several  examples 

are presented.    These examples not only provide demonstrations on the 

application of Fourier transform theory,but also  introduce new results 

that might be useful  to the  reader.     Many of these examples emphasize use 

of the delta function and the convolution theorem as facility  in us'ng 

these techniques  is mandatory for efficient use of transform theory. 

3.3.11.2 Convergence and Gibb's Phenomena 

The basic definition of the Fourier transform given 

by Equations 3"19 and 3_20  implies  that if one obtains the transform of 

g(t) according to Equation 3"19 and  then obtains the  inverse transform of 

G(u))  using Equation 3~20,  the resultant function should equal  the original. 

F"1{F{g(t)}} - g(t) (Eq.  3-195) 

This  result is true if g(t)   Is continuous.    However,  the reader may recall 

from undergraduate electronics, that a Fourier series does not converge at 

a discontinuity.     Indeed there are oscillations   in the vicinity of the 

discontinuity called Gibb's  phenomena.    The same phenomena occurs with the 

FIT.    The following paragraphs will  demonstrate Gibb's   phenomena and the 

convergence of the FIT  In the vicinity of a discontinuity. 
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The simplest function to demonstrate the convergence 

of the FIT is the unit  step function, U(t).    The demonstration begins by 

obtaining the Fourier transform of U(t).    Then the  inverse transform of the 

result will   be obtained.     Thus 

g(t) = u(t) 

and 

(Eq.  3-196) 

■/■ 
0(0))  =/U(T)e'JÜ)Tdi 

Let us first examine the case where only the transform data   in the range 

(-w , w )  are used to obtain the inverse transform.     Then 
o     o 

/a) m 

T r0OU(T)e"ja)TdTleJU)tda) 

*fHf Ü) ju)(t-T) 
o eJ 'du    dt •1 

(Eq.  3-197) 

■/ 

»       sin ID (t-x) 
dx 

■/ 

00    sin w (t-x) o 
■^TPTl— dx 
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Substituting x for w (t-t), one finds 

F'MGU)} =/* V Üilü HX m l '     I irx o * 

I       sm x 
irx dx + 

/ÜJ   T       . 
o    sin 

TTX 
dx (Eq.  3-198) 

Sinc{x)dx + i       0    SliLi 
IT X 

0 

dx 

Equation 3-8O shows that the first   integral equals 1/2 while Equation 3-8I 

indicates that the second   integral   is the Si  function.     Thus 

o 
(Eq.   3-199) 

A sketch of this function is shown below. 
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There are three  important points  to note about 

this  result.    One  is that as  t ->• 0,  Equation 3"199 equals  1/2.    Therefore 

the Fourier transform converges to the mean value of the discontinuity. 

The second point to note  is  that as u   ■*■ «,  the period of the oscillation 

decreases but the oscillation magnitude remains constant.     The final  point 

is  that the maximum overshoot exceeds the desired value by nine percent. 

3.3.11.3    Triangular Functions 

A triangular function with ramp type  increases 

and decreases from its peak can be constructed from the convolution of 

two Rect functions.     In this example,  f. (t)  and f2(t)  are convoluted to 

obtain f,(t). 

*- t 

2T 
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Application of Equation 3-178 yields 

■f f3(t) -I     dx =  t 0 <  t  < T 

■c 
= I    dx 

dx « T T < t < 2T 

dr        = 2T-t      2T < t < 3T 

=0 3T < t 

(Eq.   3-200) 

f,(t) 

0 T 2T 3T 

The  reader  should graphically construct  the convolution process used   in 

this example to verify the limits used  in the above equation. 
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An interesting variation of this example occurs 

when f, (t) is convolved with itself to yield fAt). 

fkM 
■/: 

OT. -    t 0 < t < T 

■/ 

dx  = 2T-t   T < t < 2T 

■/ 

T-t 

T 
dx  =0 

(Eq. 3"201) 

2T < t 

Now obtain the Fourier transform of fr(t). This transform can be obtained 

from the transform of f.U).  Note that f, (t) is just RectT(t) shifted by 

the amount T/2. Use of Equations 3"85 and 3_59 provides the transform 

of fjCt). 

F|f1(t)f = T Sinc(fT) 
-j a)T/2 

(Eq. 3-202) 

Noting that the convolution of two functions  in the time domain  implies 

the product of their transforms  in the frequency domain, one finds 

F|Mt)|-  (T Sinc(fT))2e"jü)T (Eq.   3-203) 

1 Mt) 
T.. 

2T u) = 2irf 
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3.3.11-'» Delta Functions and Convolution 

Delta functions and the convolution theorem, or a 

combination of both, can be used to provide simple derivations of the 

Fourier transform of a variety of functions. The following paragraphs 

present a few examples of this application. 

3.3.11.'».l  sin(üj t) 

Equation 3"i»0 shows that 

s,nuiot = 2lLe "e J 

However Equation 3-157 indicates 

(Eq.   3-204) 

o   «-♦• 2ir fi (u - ü> ) e o 
(Eq.   3-157) 

Therefore the Fourier transform of sin w t  is o 

s 1 nu t 

^Vc 

]-n \i sin(a) t) ■♦-*■ IK I 6(0 + u )  - 6(a) -w 
o o 

JIT 

■(JÜ 

•'] (Eq.   3-205) 

F{sinü) t} 
o 

a) 

-jir 
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In the previous figure, the arrows located at +(ü symbolically represent 

6 (a) + a) ).  The factors, ji;, represent the weight of the delta functions. 

3.3.11 .k.2      cos(a) t) 
o 

The Fourier transform of cos(w t) 
o 

can be derived by use of Equations 3-40 and 3-157 also. The result is 

77  6 cos (u! t )•«->■ tr 6 (ü) + u) ) + 6 (a) - a) ) 
o       I       O     "     o 

(Eq. 206) 

COSü) t 
o 

1: 
FkosCü) t)} 

L -*■ U) 

"(D      0 
o 

ax 
3-3.11.4.3  e " sinßt 

Use of Equation 3-^0 shows that 

e"atsin(ßt) i[ at jBt e      e        - e •ate-jßtj 

The transform of the product of the two exponentials in this equation can 

be obtained by the convolution theorem. 
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F^*'). !{,-"}*!{*><*) 

1 * 2TT  5(U)  -  6) (Eq.   3-207) a + jü) 

1 
a + jü) - jß 

In a similar manner, one finds 

F <e"aVjfJtl =      ,  J   ,  .fl (Eq.   3-208) 
\ J      a + Jü) + jß 

Combining Equations 3*207 and 3-208 according to Equation 3-205, one finds 

e'atsin(0t) -* ^ 2 fo-  3"209) v (a + jü)) + ß 

This result should be compared to Equation 3"75. 

3.3-H.^.^  Burst CW 

defined as follows; 

Given a burst CW waveform, b(t). 

b(t) = cos ü) t    |t| < T/2 | 
0 (Eq. 3-210) 

0      |t| > T/2 

This function is equal to the product of Rect-U) and the sinusoidal 

function with infinite duration.  Thus 

b(t) = RectT(t) cos(ü) t) (Eq. 3-211) 
I       o 
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The transform of b(t) is given by the convolution theorer 

= IT N B{(D) = IT I 6(u) + üJ ) + 6(10 - ü)J I * T Sinc(fT) •o']* 

'l[f'^(ß)^ a + u ) da + 
o J     sinc(f7)ö(u) " a ' "o^0! 

-oo ' -J 

= y Sine [(f + f )T] + I Sine [ (f - f )T] (Eq. 3-212) 

Thus the transform of a burst CW wave is just the Sine function shifted to 

+ to (+ f ). 
- o - o 

-T/2 

b(t) 

/L-t T/2 

3.3.11.5 Notches 

The presence of notches in the magnitude of the 

Fourier transform sometimes causes concern with EMP data analysis.  It is 

a prominent feature that begs explanation. There are a variety of causes 

for these notches.  For instance, inspection of Equations 3-8'» and 3-203 

shows that the Rect and the triangular functions have transforms with 

notches.  Another cause is described below. 
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A spectral notch can occur when two frequency 

dependent functions interfere destructively.  Destructive interference 

implies the magnitudes of the two functions are equal and the phases differ 

by 180 degrees. Now consider a specific example of a damped sinusoid. 

For u) much greater than resonance, the phase is approximately -ISO degrees. 

Now consider a specific example of a damped sinusoid.  For u well below 

resonance, the phase is close to zero degrees.  For w much greater than 

resonance, the phase is approximately -ISO degrees.  If one has two 

damped sinusoids resonant at ß. and ß?, then the phase difference between 

the Fourier transforms of the two functions is approximately 180 degrees 

for ß,<(jj< ß«.  If the magnitudes are approximately equal in this range, 

then there will be a notch or a relative null. 

MF2(oJ)} 

F2U) 

180° -- 

F^w) + F2M\ 
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S-S.M.ß Periodicities 

Many signals observed in EMP teoting exhibit some 

type of periodic or repetitive behavior.  The periodicity in the time 

domain waveform results in an interesting pe^od''- thavior in the Fourier 

transform data.  Repetitive nulls or peaks -ire K   . ie. The following 

paragraphs present four interesting examples. 

g(t) 
l 

p 

Consider a signal  of  the  form 

g(t)  = RectT(t - T/2)  + p  RectT(t  -  3T/2)  + p2 RectT(t  - 5T/2)t, 

0 < p <  1 

(Eq.  3-213) 

I 

2T 

1 

3T        kl 5T 6T 

This waveform Is characteristic of the ARES electromagnetic field environ- 

ment In that It has a periodic structure and that It approximates an 

exponential decay.  Using Equations 3-85 and 3-59, one finds the Fourier 

transform of g(t) equal to 

G(a.) -IT Slnc(fT)e"ja)T/2ll 1 + p e 

T Slnc(fT)e' 

1 I", .   -juT A 2 -ju)2T _.    j 
|l+peJ  +pe-'   +... 

J"T/2][77^r] 
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Note that  1 + x + x    +  ...  =  1/(1  - x) where  |x|  <  1.     Thus G(w)   is the 

product of two functions,  one of which  (Sinc(fT))  has notches  (zeros). 

Therefore,  the resultant function has notches at f = +n/T or w = +2Tm/T 

where n is an  integer. 

Now consider a waveform similar to the above 

except that each Rect function  is passed through an RC network 

Rect-U) O-VW^ -r. nRectMt) 

The resultant  function,  g^t),   is sketched  below 

TTTk 
K. k. 

i^.— 

2T        3T        ^T 5T        6T 
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This waveform  is a closer approximation  to  the ARES environment waveshape 

than the previous one.     The transform of the modified  Rect pulse  is given 

by the product of  the  transform of RectT(t)  and  the transfer  function of 

the RC network. 

HRC(ui)   =   RF~! 

RC 
+ ju 

CO      +   Jü) 
o 

w    =  1/RC 
o 

(Eq.   3-215) 

Thus 

F(ReCt|(t)} = [TSinc(fT)][I^-j (Eq.   3-216) 

Finally the Fourier transform of g1(t)   is 

G'M -[ T Sinc(fT)e 
■jwT/2 

Ü)      +   jü) 
O JU  - Pe -jwT 

(Eq.  3-217) 

The general  conclusion that can be drawn from this 

example   is  that any waveform with notches   in  the  frequency domain  that   is 

passed through a  linear network still  has notches.     One can  find a more 

complex network to filter g(t)  such that  the output,  very closely resembles 

the ARES environment.     However, as  long as G(ü))  has  notches and the net- 

work  is  linear,  then  the  resultant output must  have notches also. 

A common occurrence  in EMP data analysis  is to 

obtain an experimental   data record,  digitize  it at equally spaced   intervals, 

fit straight  line segments between the digitized points, and finally obtain 

a Fourier transform of  the piecewise  linear approximation of the experi- 

mental  data  record. 
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Experimental data record 

0         21         kl 6T 
i     o    o 

0 

0 

jS-H ■          .          ■ 
0  ^. 

Digitized points 

0   21        M 61 

piecewise linear approximation 

0   2T   ^T   6T 

The periodicity  in the sampling results  in notches   iii the  resultant 

Fourier transform.    To see  this fact, we will   reduce the piecewise  linear 

approximation to a series of  triangles. 

0 21        i» 1       61 

a3- i   m   — 

V a2 7VY 
V z N\n A\ 

0        2T        kl        61 

Piecewise  linear approximation 

Triangular equivalent 
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The  reader can easily convince himself by either graphical  or analytic 

techniques  that the polygon approximation  is equivalent  to a sum of 

triangles.     Let a triangular function of base with 2T,  centered at t = 0, 

and unity height be designated as A?_(t).    Then the triangular  representa- 

tion, g(t), can be written as 

g(t)  = a1   A2T(t - T)  + a2 &2T(t - 2T)  +  ... (Eq.   3-218) 

The Fourier transform may be obtained by use of Equations 3"203 and 3~59. 

The result  is 

6(0)) - FT Sinc2(fT)e'-ili)Tl[a1  + af^1 + af^21   i- .. .1       (Eq.   3-219) 
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The first bracketed term has notches at f = +n/T where n   is an  integer. 

Therefore G(ü)) will  have notches at these frequencies  independent of the 

contribution of the second  bracket term. 

The three previous examples of waveforms with 

periodic structure show that  if the transform of the building block wave- 

form has notches  ir   its spectrum,  then so does the complete waveform. 

In this last example  a building block waveform without  frequency domain 

notches  is used. 

Conr'der an  infinite  replication of a waveform 

without spectral  notches 

g(t) - f^t)  - p  f^t  - T) + p2f,(t - 2T)  - p^U  - 3T) + ... 

0 < p <  I 

(Eq.   3-220) 

..-•■ 
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This  type of signal  could be produced by multiple reflections on a cable 

inside an EMP excited system.     Then to consider a specific case,   let 

f, (t) - e-»1  - e"31   , 

= 0 

t > 0 

t < 0 

pMt  - T) 

g(t) 4 

o 21        3T       kl       5T 

(Eq.   3-221) 

The  Fourier transform of g(t)   is obtained  in a manner  similar  to the pre- 

vious examples. 

i  ^     f. 6-a L1 Tl   - pe'ja)T + p2e"ju2T -  ...1 (Eq- 

-     ß - a    i r___L__ 
-[(a + RTi + i^JLi +pe"jü,T, 

3-222) 
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The second bracketed term has  relative minimums  located at  f = +n/T where 

n  is an  integer.     Peaks are equally spaced between  these minimums and can 

be quite  large  if p   is close to unity.     Estimates of  the  resultant 

spectral magnitude can be obtained by graphical  sketches. 

ß-g 

(a+ja))(ß+ja)) 

ll+pe J    ] 
-1 

(1-p) 

O+p) 

-1 

-1 

.0) 

G(w) 

•-0] 

Thus the resultant spectral amplitude exhibits periodic peaks and valleys. 

The structure is determined by the second bracketed term in Equation 

3-222. The spectral magnitude of the building block waveform forms the 

envelope of the resultant amplitude. 
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3.3•11•7  Integration 

Given a waveform f(t) and its transform F(ü)), now 

obtain the integral of f(t), namely g(t).  The integral of f(t) can be 

written as 

■/■ 
g(t) =/    f(T) U (t - T) dx (Eq.   3-223) 

where U(t)   is  the step function.     Noting  the convolution process   in  this 

equation,  one can write G(ü)) as 

G(u)) = FCw)^^)  +  l/jJ (Eq.   3-224) 

Finally g(t)  can be obtained as  the   inverse transform of GU).     This 

roundabout  procedure  is actually convenient,  at times,   in EMP data analysis. 

However,   in many cases  the factor,  TT6(U)),   is neglected.    The reason   is 

probably  that the analyst  recalls  that   the Laplace transform of a  step 

function   is  1/s.    Then he substitutes jw for s which,   in this case,   is not 

valid.      In  the following paragraphs,   the   impact of neglecting  the delta 

function  term will  be  investigated. 

The contribution  to the  inverse transform from the 

factor containing 6(00)  will   be obtained  first. 

{.6(0))   F  {*)]*—[ F(u))  iTÖ   (ijj)e        du 

=^F(0) 

269 

(Eq.   3-225) 
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From Equation  "i-kl,  one notes  that  F(0)  equals the net area under the 

curve of f (t).     Thus 

F(0)   =/   f(t)dt (Eq.   3-226) = f f{t)dt 

To examine the effect of neglecting the contri- 

bution from the delta function, consider a specific example.  Let 

f(t) = e'at     ,       t > 0 (Eq. 3-227) 

Straightforward  integration  shows 

9,t,.l[,.e-] 

and (Eq.   3-228) 

F(0) . i 

If the delta function contribution is neglected, the resultant waveform, 

g(t), is 

g(t) - g(t) - |-F(0) (Eq. 3-229)    I 

1 fl   -atl 
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1/a   !: 

0 

V-g(t) 
x-9(t) 

-l/a 

In this  particular case, neglect of the Jelta function contribution  is 

significant. 

Now consider the case where f(t)   is the derivation 

of some function,  say e(t).    The transform of f (t)   is given by Equation 

3-65 as 

F(ü)) = ju E(ü)) (Eq.   3-230) 

When this result is substituted into Equation 3-221», one finds 

G(ü)) = E(ü)) + jü) E(w) iTÖ (u») (Eq. 3-231) 

The inverse transform of this equation is 

G(t) =1. I  [EU) + jü)E(ü)) TV6 (ü))]eJÜ)t: du 

-00 

- l-fl^e^  do) 

e(t) 
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In  this  case,   there   is no contribution  from the delta function  since the 

term,  ja)E((jj),   provides zero weight  to  the delta function  upon   integration. 

The conclusion from this example  is  that  the 

integral   of  f (t)  ecjuals the   inverse  transform of F((ü)/ju)   if and only   if 

f (t)   is  the derivative of some other  function.    Otherwise the contribution 

from the delta  function must be   included. 

3.3.11.8      Filters 

Filters are  a generic name for a system that 

selectively  transmits or attenuates  selected  portions of the   input  signal 

speci-rum.     In  general,  any  system can   be considered as a filter.     However, 

some systems  have a simple  form of transfer  function  that permits   sim- 

plified analysis of the output.     Examples of simple systems are  low pass, 

bandpass,  and  high pass filters.     A brief sample of the  use of  Fourier 

transform theory to analyze filter  response   is presented  below.     The pur- 

pose of  these examples   is  to demonstrate use of convolution,   impulse 

functions,  and   linear systems concepts   in  reducing complex problems to 

seve-al   simple exercises.     Further examples are given  in Papoulis 

[Reference 23]. 

3.3.11.8.1       Low Pass 

Consider first a  low pass filter 

with a  transfer function given   in terms of   its magnitude, M((jj), and phase 

HM = MM  e"J*(w) (Eq.   3-233) 

If the  filter output  is real when the   input  signal   is  real,  then M(ü)) and 

(t)(ü))  must be even and odd functions of w respectively. 
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Now consi 

M(-a))     =     M(a)) 

(j)(-u)     =     -<t>U) 

der a specific example where 

M^)    =     l  + a cosOWu.) |w|  < wc 

-    0 l^1  > ^c 

^(w)    =    ü)T + b sin{mTiy/u)c) 

(Eq. 3-23^) 

(Eq. 3-235) 

(Eq. 3-236) 

. b. m. n, and T are consents and ^ Is the cutoff frequency of 
where a 

the  low pass f11ter 

2a 

T 

M(u) 

Ml/Uil^ 7o 

"u)     -2a)       2(jj    a) c      c     c    c 
n n 

-OJT 

/ 

 1- 4_^ 

Zu 

^f 
2b 
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This  transfer function  is representative of many systems that have a 

frequency dependent ripple  in the magnitude and phase.    The output of 

this  filter will   be obtained by treating effects of the magnitude and 

phase separately. 

The  influence of MU)  on the filter output can 

be examined  by reducing Equation 3~235 to an  ideal  low pass  filter.     Define 

the transfer function magnitude of an  ideal   low pass filter, M  (w),  such 

that 

M. (u)     =     1 |u)|   < ü) 

=    0 |ü)|   > ü) 

(Eq.   3-237) 

Note that  the first term of Equation 3-235 is   identical  to the definition 

of M.Cw).     Furthermore, the second  term of Equation 3"235  is equivalent 

to the sum of two functions of constant magnitude, a/2, and a frequency 

dependent  phase equal  to + niroi/oi .     The  following flow diagram shows 

that  the steps one should use to compute the output of a filter with a 

transfer function givan by Equation  3-235' 

fit) I deal   Low Pass 

MjU) 
P4> 

gn(t) 
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According to Equation  3"87,  the  impulse response,  h^t), of M  (t)   is 

hjU)    =     2fcSinc(2fct), fc - oi^TT (Eq.   3-238) 

Note that h   (t)   is an even function.     This   is no coincidence.    Since  if 

Mfoj) of a  low pass filter  is real  and even,   then   its   inverse Fourier 

transform must also be  real and even.     By the convolution theorem,  the out- 

put of an   ideal   low pass  filter  is 

gni(t)     =    f(t)    *    2fcSinc(2fct) 

If  f(t)   is  a  unit  step  function,  L)(t),  then  g...(t)   is  given by Equation 

3-83. 

The effects of the terms given by  (a/2)e--in™/ü)c are 

simply determined by  referencing Equations 3-5'* and 3-59.    For example 

g.?(t)   in  terms of f(t)   is 

g12(t)     =    f(t)    *    afc Sinc[2fc(t   - £-)] (Eq.   3-239) 
c 

and g. (t)   is 

g^t)   -  f(t) * 2fc|sinc[2fet]+ |Usinc[2fc(t - £-)] 

(Eq.   3-2 40) 

+ I Sinc[2fc(t + 2f 
c    ' 
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The term enclosed   in  the  brackets,!   I,   is  the   impulse  respo.ii.e of Equation 

3-235 und   is   illustrated  below. 

af 

v^—'—Vz^f/^ 
-n 

2f 

Note that  the term,   (a)cos (mraj/u ),  causes  the   resultant output  to have 

"echoes" centered at  t = + n/2f   . 

The  influence of  the phase  tern,  <t)((D),  can  be 

determined   in a  similar manner.     Consider  first,   the  sinusoidal   term in 

Equation 3"236.     When  b  <<  1, one can approximate  the  phase as 

-jb 
e sin(mTü)/ci) ) ^ 1   ~ jb s i n (mrui/ü)  ) (Eq.   3-2M) 

Expanding  the sin  term,  one finds 

■jb     .   /       ,    \       .   .   b    -imWcü        b    -imfu/u (Eq.   3"2^2) 
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Note the similarity of this expansion to that of Equation 3"235- Therefore 

a flow diagram can be formed similar to the previous one to demonstrate the 

effects of phase,   (J)(a)),  of the overall   transfer  function,  H(u)). 

g2](t) 

„   1 *-\ 

k— 
/     \ /          X g]it) 

— e  J           c 
2 

q22U;    f2[t) . T gjit) 

i 
9 1 r i 

-b      jnmno/ü) 
—   e             c 

2 

■'23(t) 

Note that g, (t)   refers   to the output of the previous calculation.    Once 

again, use of Equations 3-5^ and 3~59 allows the computation of 9^2^ 

and g7n(t)   in terms of g.U). 

g22(t)   =   b-9]{t -£-) 
c 

g23(t)    =   ^g,(t +£-) 
2 ^V"      2f 

(Eq.   3-2^3) 

Furthermore,  Equation  3"59 shows that the function,   e Ja>  ,  will contribute 

an additional  time delay equal  to T.    Therefore,  g,(t)   in  terms of g,(t) 

is 

g,(t)     =    g^t  -  T)  t^-g^t -^--  T)   - Ig^t + 27-- T)     (Eq.   3-2U) 
3 c c 
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With sufficient effort, g-(t)  could be formulated   in terms of f(t).    The 

resultant expression would have nine terms.     In many practical cases, 

treatment of the  largest  ripple contributor,  either amplitude or phase, 

is adequate for the  required analysis.     If consideration of both phase 

and amplitude  ripple   is  required, then numerical  evaluation should be 

used to obtain quantitative dr.ta, and the material   in this section will 

provide quantitative validation of the  results. 

3.3.11.8.2      High Pass 

Discussion of high pass filters will 

be limited to   introducing  the complementary principle.     Given a hig^i pass 

filter with a  transfer function, H^U), and normalize the peak amtlitude 
n 

of HU(ü)) to unity.  Define a complementary low pass filter, H. (u), as 
n L 

HL(ui) = 1 " HH(u)) (Eq. 3-2i»5) 

Then the output of a high pass filter is given in terms of the input 

function and the low pass response to the input function. 

GHU) = FU) HHU) 

= F(UJ) - F(a)) H U) (Eq. 3-2^6) 

gH(t) = f(t) - f(t) * hL(t)       (Eq. 3-247) 

3.3.11.8.3  Bandpass 

On many occasions,  the response of a 

bandpass filter can be simply described  in  terms of an equivalent  low pass 

filter.    A method of analysis useful   in many practical   applications  is 

illustrated below.     Consider the transfer function of a low pass filter, 

H. (u)),   in terms of M(ü))  and 41 (w). 
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M(a)) 

Then shift  the  transfer function to the  frequencies  + w 

M    (w   +  U   ) ( 

-üJ 

M   (a))       M(a) -  u)o) 

0) 
0) 

4>{ü) + wo)^ (D'M^^oK 
w 
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Finally shift the magnitude of the phase by + (|) (Iü ). 

UU + O) )+ (f) (w )] 
o   o o 

$     (w) 

CO 

[(j)(tü-C0 )-(() (co ) ] 

The  functions,  M   (u)   and  <(>     (u),   are characteristic of  the magnitude and 

phase of many practical   narrow bandwidth systems. 

Now consider  the   impulse  response, 

ht.(t), of a  bandpass   system with a transfer function,   iiD(ü)),  given by 

11 
H»     =    M'U)  e-j*     (o,) (Eq.   3-2k8) 

The  function,  H   (tj),   can  be expressed  in  terms of  H. (w) 
D L 

H,,^)   = H. (a) + to  )   ej*o(<Jo)  + H, (a) - a) )   e'^o^ 
B L O L O 

(Eq.   3-249) 
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Note that the  impulse  response of H. (u)   is h   (t)  and  that according  to 

Equation  3"6l,  frequency  shifting by  the amount + Au   implies  that  the 

associated time domain function   is multiplied by e- .     Thus 

hB(t)  = hL(t) e"
jV e^o^ + hL(t) eJV e"j*o(ü)o) 

= hL(t) [e"j(V  ' W* + e^V " ^oK^] 

= 2  h. (t)   cos [co t - *  (u) )1 
L |_   o        To    o J (Eq.   3-250) 

A typical  example of the  resultant   impulse response,  h   (t) ,   is shown below. 

h      (t) Z] 

I 
V 

y UV u- u^ 
Sfijfc * t 

hL(t) 

hB(t) 

The function, hD(t), oscillates at a frequency equal   to the center fre- 
D 

quency of the bandpass  system, to  .     The phase of the oscillating factor, 
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cos (ü) t),   is shifted  by the amount,  (j)   (u ).     The envelope of the  resultant 

function  is equal   to the   impulse  response,  h.U),  of the equivalent  low 

pass  system. 

Before one considers  this  result 

characteristic of all   bandpass systems, two limitations   in the development 

must  be emphasized.    One  limitation  is that the transfer  function magni- 

tude, M(u) + a) ), must  be an even function of frequency centered at + u  . 
' -    o 11 "    0 

The second limitation   is  that  the phase difference,   6     (w) + 4   (w ). must ■       -    o    o 
be an odd function of  frequency centered at + w  .     Expressions  for tlie 

impulse response when  these  two assumptions are not  valid are available. 

However,  they are generally very complex.     Further details are contained 

in  Reference   [23]. 

3.^    SAMPLED  FOURIER TRANSFORMS 

3.'».1     Introduction 

The previous chapter has developed  some of the   important 

properties of the Fourier   Integral   Transform  (FIT).     In  principle, a 

thorough knowledge of  this  technique would allow complete analysis of 

EMP data.    However,   there are many occasions where   it   is neither con- 

venient nor practical   to use the FIT.    Then cousins of the FIT such as 

the Fourier Series Transform   (FST),   the Time Sampled Fourier Transform 

(TSFT), or the Discrete Fourier Transform (DFT)  could be employed.     It 

should be noted that  the  DFT  is  generally used   in   the efficient  Fast 

Fourier Transform  (FFT)  algorithm. 

The fundamental  difference between  the  FIT and  it's cousin 

transforms  is that the FIT  is formulated for use with continuous time 

and frequency domain  functions.     Discontinuities are treated as exceptions 

and do not occur  in a  regular pattern.    On the other hand,  transforms 

such as the FST,  the TSFT,  and  the DFT are fundamentally discontinuous. 
I 
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Specifically,  the time domain,   the frequency domain,  or both  functions are 

defined only at equally  spaced discrete points.     For   instance,   the FST has 

frequency domain components defined at  discrete frequencies.     As will   be 

shown  later,   this discrete  frequency domain property   is a  natural  con- 

sequence of a  repetitive time domain  function.    The TSFT   is a  natural   anal- 

ysis  technique  to employ when  the experimental data are available only at 

equally spaced  intervals   in   the  time domain.    The DFT has  both   the time 

and   frequency domain functions defined at equally spaced  points.     Its 

principal   advantage occurs when   it   is  formulated as an FFT where significant 

savings of computing time are possible.     Any of these transform techniques 

can  be used   in the analysis of  EMP experimental  data.     The only   implicit 

requirement   is   that  the user  understand  the similarities -^id differences 

among  the various techniques.     The  final   choice of the transform technique 

will  depend on  the form of  the data,   the availability of --.omputer software, 

and  computing time economics. 

Casual  examination of  the various Fourier  transform techniques 

presented   in  the technical   literature shows  little commonality.     Excluding 

differences   in notation employed  by different authors,  the primary cause 

of  the apparent differences   is  that a common method of treating  continuous 

and discrete distributions   is  rarely presented.    Perhaps   it   is   felt  that 

these general   techniques might confuse the presentation.     However,   it   is 

the opinion of the author that  the majority of the misunderstanding,  mis- 

takes,  and misuse of transform theory stems  from confusing concepts of 

continuous and discrete distributions.     This confusion   is  unfortunatt 

since the material  presented   in  the previous section on use of  the delta 

function and the convolution  theorem will   unify the derivation of the 

continuous   (FIT) and sampled  Fourier transforms. 

The purpose of  this  section   is  to show that the FST,  the 

TSFT,  and   the DFT are special   cases of the FIT.    Then, with proper  inter- 

pretation,  all  the material   presented  in  the previous  section   is applicable. 

The  result of employing  thir  approach  is  that the analyst's mind   is not 

cluttered with a collection of apparently unrelated formulas.     All   results 
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necessary for the analysis of  EMP data can be derived from a  few concepts. 

The common denominator   in  these derivations   is  the use of  the delta 

function and the convolution  theorem. 

The presentation  begins with the development  of   the Fourier 

transform of a train of delta  functions.    This transform pair will   allow 

simple analysis of all   sampled  transforms.    This transform pair will   then 

be extended  to define a pair of operators,  "Comb and  Rep." which will 

allow efficient manipulation of the mathematical  expressions.     Finally, 

specific treatment of  the FST,   the TSFT and the DFT will   be  presented. 

3.4.2    Sampling Functions 

Given a function,  g(t),  and a pulse approximation of g(t), 

namely g(t),   it will   be shown  that  the  Fourier  transform of g(t)   is 

equivalent  to the  Fourier   transform of g(t)   sampled at equally  spaced 

intervals.     Define a set of equally spaced points,  t   ,  such  that 

t     = nAt,  n = 0, +1,  +2  ...   .     Let each pulse be centered at   t    and define 
n -       - n 

the magnitude of each pulse as g(t  ),  n = 0, +1, +2  

** 

/ 
/ 
/ 

f \ 

\ 
N- 

V 

' 

\ 
/ 
/ 
/ 

N 

i 1 

g(t) 

g(t) 

-fa^ t 

t    1  t n-1     n 
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The  Fourier transform of g(t)  can be  simplified considerably   if e J       is 

approximately constant over a pulse width.     Thus,   if u)At<<l 

{au)}-]; ■Jüjt 
Fiq(t)>=lg(t)  e JÜ,L dt 

0 
t +At/2 

00 y.    n 

£/ g(t) e 
•jut 

dt 

n=l   t  -At/2 
n 

=t>n) 
-jut 

e        n At 

n=l 

(Eq.   3-251) 

-^9(tn) e 

n=l 

■jut 

Since  the pulse amplitude  is determined by the magnitude of g(t)  at t 

only,   then g(t)   is effectively sampled at  t  .    Therefore Equation 3-251 

gives  the Fourier transform of g(t)   sampled at equally spaced points,  t 

Except for the  scale factor,  At,  Equation 3-251  can  be derived 

with the aid of delta       ictions.     Define a train of delta functions, 

DM(t),as 

D&t(t) »y^  6(t-nAt) (Eq.   3-252) 

n"-oo 

Now obtain the Fourier transform of g'Ct)  ■ g(t)  D    (t). 

00 
/DO 

6(t-nAt) e"jü)t dt (Eq.   3-253) 

n=-oo 

Use of Equation 3-13'» shows that 
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F{g'(t)}^g(tn) 
n-l 

-jut 
(Eq.   3-25M 

Equation 3-25'» Indicates that the Fourier transform of a function,  g(t), 

sampled at t * t    is equivalent  to the Fourier transform of the product 

of g(t)  and DAt(t).     From the convolution theorem, one will   recall   that 

F{g(t)DAt(t)J.    F|g(t)}*    F|D&t(t)| (Eq>   ^ 

Therefore, determination of the Fourier transform of DA1.(t)  will  provide a 

convenient means of exploring  the properties of sampled Fourier transforms. 

In the following material,   it will  be shown that the  Fourier 

transform of an  infinite train of delta functions  in the time domain 

corresponds to an  infinite train of delta functions  In  the frequency 

domain.     In particular 

D^U)    ■*-+    Au)DA   (u),      Äü)»27r/At 
At Aid 

(Eq. 3-256) 

and 

D. (w) «y  6 (ürnAu)) 

n=-oo 

(Eq. 3-237) 

To take maximum advantage of existing material (i.e., Equation 3-138), it 

wil 1 be shown that 

DAt(t) - F-'lA^M} (Eq. 3-258) 
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Since the Fourier transform is a  reversible mathematical operation,  veri- 

fication of Equation 3"258 is equivalent to the proof of Equation 3~256. 

Verifying Equation 3"258 Is somewhat tedious.    However, a proof similar to 

that given   in Reference [ 23 1 will  be presented to provide reader con- 

fidence  in the result.    Once the  result  is established,   it can be used  in 

mathematical derivations rather simply. 

Using the basic definition of the  inverse Fourier transform. 

one finds 

{4"vw}- £/!>«'-'«») ejut d. 

-o»  d"—**> 

oo oo 

rr y      I  6 (u-n&u) eJ      da) 

n"-» -oo 

ir2>J n&wt (Eq.   3-259) 

n»-oo 

One method of evaluating this  infinite series  is to form the partial  sum, 

on(t). 

'n") ' ÄF£ ' jnAut 

n—N 

and obtain its limit as the integer, N, approaches infinity, 

following algebraic identities 

(Eq.   3-260) 

Noting the 

1 + x + x   +•••+ x   - '  ~ x 
N+l 

1   - x lx|< 1       (Eq.   3-261) 

x-i + x-2 +...+ X-N ta -   1 I x 

1 - x 

.J 

V 
\ 
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one  finds 

aN(t) 
, j(N +   l)Aü)t      -jNAwt 
I       eJ -e J 

At jAu)t     . eJ -1 

_L    sin[ (N +  1/2)Aüit] 
At sin[Aü)t/2] 

(Eq.   3-262) 

The function,  aN't),   can  be  shown to approach an   infinite 

train of  delta functions   if one can  show  it   is periodic and   it   satisfies 

Equation  3"'35,  the fundamental   definition of a delta function.     Period- 

icity   is  established  by substituting  t + At  for t   in  Equation  3-262 and 

noting  that  At = In/hu. 

If  .. A^   =   '       sin[(N +  l/2)Aa)(t  -t- At)] 
lU       At;   ~ At sin[Aa.{t + At)/2] 

_1_    sin[(N +  l/2)Aü)t  +  (N +  1/2)2Tr ] 
At ~~   sin[Aü)t/2 + TT]   ~~~~ 

(Eq.   3-263) 

aN(t) 

Since a.-Ct)   is periodic, one needs  to show only that a.At)  approaches a 
N N 

delta function in any arbitrary interval. For convenience, choose the 

interval centered at t = 0. 

It is instructive to determine the peak amplitude of oN(t) 

as N approaches infinity.  If this amplitude approaches infinity, then, 

in the limit, au(t) satisfies the minimum requirement for a delta N 
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function  described by Equation 3"13i»-     Equation 3"262 can  be approximated, 

for smal1   t, as 

, >        1      sm[(N +  1/2)Au)t] 
0N(t)«  ^     TTTTÖ  Au)t/2 

(Eq.   3-26'*) 

_ 2(N + 1/2)     sint(N -I- ]/2)Aa)t] 
At (N +  1/2)Aut 

At  t = 0 

u\      2N + 
öN(t) = -AT (Eq.   3-265) 

It   is clear that oAt)  satisfies  Equation 3-13^ as N approaches  infinity. 

Now determine  if oN(t),   In  the  limit,  satisfies Equation 

3-135,  the strict requirement for a delta function.    Write Equation 

3-262 as 

aN(t) 
j_   [ sin[(N + 1/2)Aü)t] I _^ 
At irt   """ sinlA 

t 
ültTIT (Eq.   3-266) 

According to Equation 3"138,  the bracketed term in this expression 

approaches 6(t)  as N approaches   infinity.    Thus 

llm aN(t) fw t 1 
I At slnlAüJt/2J 

[Au t 
2 sinlAü)t/2]J 

6(t) 

Sit) 

(Eq.   3-267) 

289 



Since this fjnction  is defined only at t - 0, one has the bracketed term 

equal   to unity  (see Equation 3-80) and 

1 im aN(0) 6(0 (Eq.   3-268) 

Therefore Equation 3"256   is verified and one has 

»■„(" 

J_±., 
-2ftt -fit 0 fit 2fit 

i^V-' 

4.        ftoi        fiu. 

ULI 
AUJ Au» Aw 

L_L±- 
-3i.    -2A.     -&»       0        4»        2Au      3fiu 

where the arrows symbolically represent delta functions and  the factor, 

Aw, over the delta functions  in the  frequency domain represent the "weight" 

of  the delta  function.    Note that as At  is   increased, Au  is decreased and 

vice versa.    Thus, the spacing of the delta functions  in one domain  (time 

or frequency)   is inversely proportional  to  its spacing  in the opposite 

doma! n. 
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3.^.3    Comb and Rep* 

Equation 3"256 can  be used to derive most of the properties of 

sampled  Fourier transforms.     Indeed direct use of the infinite train of 

delta functions,  D(t) or Ddu),   is a common way of treating the TSFT or the 

FST.    However,  a more powerful  means of treating sampled Fourier transforms 

can be obtained by generalizing the application of D(t) or D(ü))   into a pair 

of operators called "Comb and Rep."    Use of these operators will  permit one 

to obtain the  relationship between sampled functions and their Fourier 

transforms by  inspection.    The  resulting  simplification will  allow the 

reader  to easily derive all  necessary resul'.s and gain  insight  into sampled 

Fourier transforms without getting trapped  in the  intricate details of a 

straightforward mathematical  derivation. 

Prior to presenting the operators.  Comb and Rep,   it  is useful 

to review the application of D(t) or D(u))   in sampled Fourier transforms. 

Suppose one has a function, g(t), with a continuous variable, t.     Let g(t) 

be sampled at equally spaced time  intervals. At,  to obtain g(nAt).    Then 

obtain  the Fourier transform of g(nAt).     Equation 3"254 shows that the 

Fourier transform of the sampled function   is equivalent to the Fourier 

transform of the product of g(t) and D(t). 

F | g(nAt) } -  F {g(t)DAt(t)J (Eq.   3-254) 

ft 
These operators were first  introduced by Woodward in Reference [2^]. 
Although the terms are not widely used,   it  is  felt that the descriptive 
form of their names provides a simple means of remembering the  important 
results. 
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Use of the convolution theorem shows that the Fourier transform of the 

product is equivalent to the convolution of the transforms of the 

individual functions. Thus 

■{g(nAt)| = F{g(t)} * F^U)} (Eq. 3-255) 

= G(ü))   * Aü)DA   (w), Aw = 2Tr/At 

Substituting the expression for  D.   (u)   into the above equation, one  finds 

oo 

F|g(nAt)| = G((iü)   * Aü)/J  6 (u-nAw) (Eq.   3-269) 

n=-oo 

Now note  that any function,  g(x),  convolved with a shifted delta function, 

6(x-e),  equals  the original   function shifted by 6.    Thus 

(x-9)  =j g(x)   * 6(x-e) = 1    g(y)  ö(y-(x-e))  dy 

-00 

- g(x-e) (Eq. 3-270) 

Therefore Equation  3"269 can  be written as 

F^g(nAt)|  ■    Ao) VG (w-nAu), Lu*2-n/M (Eq.   3-271) 

n=-oo 

( 
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Note that this  result  is merely an  Infinite  repetition of the original 

function,  G(ü)),  shifted  to frequencies equal   to +nAü). 

♦ g(t) 

i 

9 
Q i 

(nAt) 

19 
! io 

At 

^rnlllrw 

F(u.) 

G{f(nAt)] 

1. A-.. 
Au  =  2-n/At 

The process of repeating a Fourier transform, G(u)), to obtain 

the transform of a sampled function, g(nAt), can be generalized. Given a 

function, g(t), with its associated Fourier transform, G((i)). Then define 

g(t)  sampled every At seconds as 

Combat{g(t)} - g(nAt), n - 0, +1, +2, ... (Eq. 3-272) 

The Comb operation must be interpreted carefully. For the time domain, it 

says that g(t) is defined at discrete points, nAt, with a resulting magnitude 
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of g(nAt).  When considering a transform of sampled data, it implies the 

product of g(t) and DAt(t). The term, g(nAt), In this case, Is merely the 

weight of each delta function component.  Furthermore, define an infinite 

repetition of G(u) centered at frequencies equal to +n&u as 

OP 

RepA  {G((o)} -y^(i(tü-nA(ü), Aü)-2ir/At (Eq.   3-273) 

Then, one has the following Fourier transform pair 

Comb.^{g(t)}    ++    (Aä))RepA  {G(ü))}, Aa)-2ir/At (Eq.   3-274) 
AC Ab) 

A similar  relationship  is obtained  if G (u)   Is sampled rather than g(t).     In 

this case 

where 

(AuKomb. {G(ü))} 
Ad) 

RepAt[g(t)], Aa)-2Tr/At 

Comb.   {G(a))} » G(nAü)), n » 0, +1, +2,... Au) 

(Eq.   3-275) 

(Eq.   3-276) 

and 

Rep&t{g(t)} -^ji(t-nAt) 
n»-«» 

29^ 

(Eq.   3-277) 
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Sometimes one might L -  f = u/Zir instead of u.     In this case, Aw  in 

Equations 3-274 and 3-275  is replaced by Af - 1/At. 

Equations 3-274 and 3-275 will  be used  in the subsequent 

sections to derive  results for the sampled Fourier transforms.    These 

operators provide a particularly simple means of obtaining results on 

sampled functions and their corresponding transforms.     Furthermore,  the 

names. Comb and Rep, provide a picturesque means of describing the 

mathematical   processes such that the results are easily remembered. 

3.'».'»    The Fourier Series Transform 

3.'4.'».1    Definition 

The  Fourier Series Transform (FST)  can be defined as 

follows 

At/2 

n'±\       g(t)e-jn/Wt dt (Eq.  3-278) 

-At/2 

-jnAwt 
g(t)  -^ Cne"jnAü)t, Au,- 2Tr/At 

n=-oo 

These equations can be written  in a more conventional   form by noting that 

g(t)   is  real wl- 

following form. 

g(t)   is  real  which  implies that the complex coefficient,  C  , must have the 
n 

C   - A    + jB 
n        no 

C     - A    - jB 
-n        n      J  n 

(Eq.   3-279) 
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Then Equation 3~278 can be written as 

g(t)  - V22^VA 2+b 2 cos[nAa)t-4>(nAu))] 
,       n      n 

nH 

(j.(nAü))  » tan'^B /A ) (Eq.   3-280) 
n    n 

At/2 

An = IF '  9^ cos(nAtot) dt 

-At/2 

At/2 i rßt/z 
B
n = Ät" I  9^ sin(n&wt) dt 

J-K^ It -At/2 

This transforip is probably more widely known than any other. The reason 

is that many practical waveforms used in the analysis of electronics and 

communication systems are approximated rather well by summing only the 

first few terms of the series. Thus this form of the Fourier transform 

is suitable for hand analysis. The FST can be used for the analysis of 

transient waveforms characteristic of EMP data.  To do so, one must under- 

stand the similarities and differences between the FST and the more basic 

FIT. 

3.^.4.2 Relation to the FIT 

Consider a function, h(t), composed of an element, 

g(t), repeated every At seconds such that 

h(t) 2P g(t-nAt) (Eq. 3-281) 
n»-» 
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Use of Equation 3~275  shows that h(t) has the Fourier transform 

RepAt{g(t)}    ^)     (Aa))Comb&u{G(ü))} (Eq. 3-282) 

The frequency domain portion of this relation consists of G(üji the Fourier 

transform of g(t), sampled at Aw intervals. Thus the n frequency domaih 

component, d , equals 

d = Au G(nAu)) (Eq. 3-283) n 

-At/2 
= 2iy  g(t)e-jnAu,t dt>      tM'2-n/Lt 

Note that this equation differs from the term, C , given by Equation 3"278 

by the factor 2IT.  NOW expand the frequency domain portion of Equation 

3-282 into an infinite train of delta functions and obtain its inverse 

Fourier transform. 
GO 

h(t) = T- /    [(Aw)  CombA {G(w)} ejult dw 
£TT     I AW 

>• 00    00 . 

Itlyi   &^-nh^ G(w)eJa,t dw 
— oo   pas-oo 

na-oo 

(Eq.   3-284) 

.£   (dn/21r)e
jnAut, 

Aw 
n=-oo 

• 
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This demonstration has shown that the FIT of a repetitive function has 

frequency components defined only where (D = nAw. 

EMP time domain data are usually not  repetitive. 

Therefore one could ask  if the FST can  be used and what are   its advcntages, 

The answer  is  that the FST can be used with nonrepetitive data if  inter- 

preted properly.     In particular, note the following  section on non- 

repetitive waveforms.     One apparent advantage of using the  FST is that 

frequency domain components are  required only at discrete points  instead 

of a continuous  range.     This fact could potentially  reduce the computing 

load.    Another possible advantage is software «vallability.    Almost any 

computer center has software to compute the FST.    The following paragraphs 

will   illustrata the use of the FST with EMP data. 

I'b'b.'i    Nonrepet 111ve Waveforms 

Given a repetitive waveform,  h(t), with a period At, 

multiplication of h(t)  by RectAt(t) will yield the transient nonrepetltive 

waveform g(t). 

^ t 

-*- t 
■At/2    0 At/2 
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Note that the g(t) illustrated above Is centered at the origin.  This 

centering was done for the mathematical convenience of the analysis to 

follow and in no way affects the generability of the results. Most 

transient data have the beginning of the waveform at the origin.  If one 

wants to move the beginning from -At/2 to zero, then all frequency domain 

results should be multiplied by the factor e 

The Fourier transform pair associated with this non- 

repetitive waveform can be symbolically written as 

Rect.JRep (g(t)}} ■*-+  At Sinc(fat) * AuiComb. {G(ü))} 
At   At Aw 

(Eq. 3-285) 

Note that the convolution theorem was used where  the product of  two 

functions  In the time domain  implies the convolution of the transforms 

of the two functions  In the frequency domain.    Now note that the Comb 

operation   implies the following when dealing with a Fourier transform 

AuComb.   {G(ü>)} - AoiV* G(nAu))  «(u-nAu) (Eq.  3-286) 
Ab) Xa^ 

ns-oo 

Therefore,  the frequency domain portion of Equation 3"285 can be written 

as 

(At)Sinc(fAt) * Au>Comb.   {G(u))} « 2iTSinc(fAt) *£ G(nAu)  6  (w-nAu)     (Eq.  3-287) 
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Writing the Sine function   in terms of sin(u)At/2)  and noting Equation 3-270 

and 3"l85i  one finds the Fourier  transfom of g(t)  equal   to 

F{g(t)} Er/   .   \ [ sin[(ü)-nAa))At/2] 1 

na-oo L -I 

(Eq.   3-288) 

There are  three very  important  facts given  by this 

equation.     One is  that g(t)   is nonrepetitive.    Therefore,   its  transform 

must be a  function of a continuous variable, ui.     Reference to the above 

equation verifies  this statement.    A second fac*   is that  the transform of 

9(t)   is uniquely specified by  Its values at nAw,  namely G(nAüL)), where 

Aü) - 2'ir/At.    The third fact is that the value of the transform of g(t) 

at  frequencies not equal   to nAu)   and the sin(x)/x interpolation  formula. 

The following sketch Indicates  the interpolation process. 

G(u)) 

Sin   [ü)At/2-nAa)] 
IwAt/2-nAüjJ 

G (nAu) 
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Equation 3"288 shows that the FST can be used to com- 

pute the Fourier transform of a transient waveform characteristic of EMP 

data.  One computes the Fourier series coefficients at frequencies equal 

to nAu).  Then one uses the sin(x)/x interpolation formula to obtain the 

frequency domain function at other frequencies. A very common mistake in 

the use of the FST is to use linear interpolation between the discrete 

frequency points. Linear interpolation is convenient, but reference to 

Equation 3_288 shows that it is totally wrong. A suitable compromise 

between the convenience of linear interpolation and the proper formulation 

is to decrease the Au spacing.- Then the error in using linear inter- 

polation can be reduced to an acceptable level. 

3.^.4.^ Time Domain Aliasing 

An interesting feature of sampled Fourier transforms 

can be illustrated by the following example. Consider a triangular function 

of unit height and a base width equal to 2T.  Equations 3-201 and 3"203 

state that this function and its associated Fourier transform are 

g(t) » (t/T)      0 < t < T 

- (2T-t)/T    T < t < 2T (Eq. 3-289) 

=0 2T < t 

and 

F{g(t)} - T Sine (fT) e 
2,m  -jZTtfT (Eq. 3-290) 

301 

.J 



^ 

Now suppose one scales Equation  3-290 by Af and evaluates  it at f » +nAf. 

Finally  suppose Equation 3-284  is used  to compute the time domain  function 

associated with these previously computed frequency domain  samples.     Thus 

oo 

i/»\       .rT\ S   c-     2,   ,-_»     -j2TrnAft    j2'rrnAft /c       ,  _Q1\ g'lt) = AfT/      Sine   (nAfT)  e J e (Eq.   3-291) 

n=-cx) 

where g'(t) indicates the time aliased waveform. 

Now consider a specific example where Af ■ 1/1.5T. 

The expression for the resulting time domain function becomes 

00 

g'(t) -  2/3 + ^^Tsinc2^ cosl"^. (t/T-l)"l    (Eq. 3-292] 

Plots of the original function g(t), and the resultant function due to 

sampling in the frequency domain, g'Ct), are shown below. 

M-sM 
■ - - g(t) 

  g^t) 

Af = 1/1.5T 
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There are three important facts illustrated by these plots and by Equation 

3-292. The first two facts are a verification of features of the FST 

stated previously.  One is that obtaining an inverse Fourier transform 

(i.e., g1(t)) using only sampled frequency domain dato yields a repetitive 

time domain function. The second is that the time domain waveform has a 

period equal to 1/Af.  In the case illustrated above, the period was 

forced to be 1.5T. 

The third and most interesting fact about this 

example is that the time domain data are aliased. That is, the repetitive 

functions, g(t), overlap to form g'U).  Thus, at a given time t, the 

resultant function equals the sum of the basic repetitive function, g(t), 

and portions of g(t) shifted by the repetition period.  Note that in this 

example, the sampling frequency, Af, was greater than the inverse of the 

duration of g(t) or Af>l/2T.  In order to avoid time domain aliasing, one 

must use a sampling frequency that Is less than the inverse of the duration 

of the time domain function. Thus 

Af<1/D (Eq. 3-293) 

where D is the waveform duration. 

3.'».'♦.5 Convolution 

I 
An interesting example of potential time domain aliasing 

occurs when one samples the product of two functions in the time domain 

and obtains the inverse transform by FST techniques using Equation 3-284. 

This problem may be stated in two ways. The first is to assume one has 

two frequency domain functions, F(a)) and H((o), of a continuous variable, 

w. Then one forms the product of these two functions, G(ü)) ■ F(a))H(ü)), 

samples the resultant function at Am intervals, and obtains the inverse 
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transform.     The second way of stating the problem is to assume that one has 

the FST of a nonrepetitive function.     By nonrepetitive,   it   is meant  that 

the actual   signal   is nonrepetitive.    Use of FST techniques,  however,  makes 

the time domain mathematically repetitive.    Now assume one passes this 

signal   through a  linear system with a transfer  function,  H(ü)), and com- 

putes the  resultant output function  In  the time domain.     Except  for 

amplitude  scale factors,  both problems are mathematically  identical. 

The convolution theorem and Equation 3-275 will   be 

used to predict  the resultant  time domain output.    Designate the FIT 

transform pairs of the functions as 

f(t)    ^    F(u)) 

g(t)    -M.    G(ü)) (Eq.   3-294) 

n(t)    -^    H(ü)) 

i 

The convolution theorem shows that if G (u) ■ F(iij)H(u), then 
i 
i 
i 

g(t)  - f(t)  * h(t) 

Finally Equation 3-275  indicates 

(Au)CombÄuj{F((ü)H(ü))}    -    RepAt{f(t)  * h(t)} (Eq.   3-295) 

The essential  features of this equation can be 

determined by the following sketches.     Let f(t) and h(t)  have durations 
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of T and 2T respectively. Then the convolution of these two functions 

yields g(t) which has a duration equal to the sum of the durations of f (t) 

and h(t) which, in this case, equals 3T. 

f(t) 

A 

h(t) 

r z 
2T  t 

'  \   which yields g(3T-e) e « T 

21        3T t 

In order to avoid time domain aliasing, the repetition period must be 

At>3T. Therefore, the frequency domain data must be sampled at Intervals 

Aü)>2Tr/3T. 

Now consider how this situation might occur in 

practice.  Suppose one has an experimental data record given by the f(t) 

illustrated above. The natural tendency in this case would be to compute 

the FST coefficients based on Aui ■ 2ir/T.  However, time domain aliasing 

would occur when computing a resultant g(t) using Hfu) corresponding to 

the h(t) illustrated above.  If, however, one artificially extends the 

repetition period to 3T when computing the FST coefficients or, 

X 
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equivalently reduces the frequency sampling interval, then aliasing wili 

be avoided.  The equivalent mathematically repetitive input signal pro- 

duced by FST techniques, that is minimally acceptable for this example, 

is shown below. 

It is clear that convolution of this signal with h(t) will avoid time 

domain aliasing. Therefore, if g(t) is computed using FST techniques, 

the frequency sampling interval for G(a)) must satisfy Aü)<2Tr/3T. 

The previous example has used functions that were 

strictly time limited. However, many functions used in EMP data analysis 

extend indefinitely. A good example is e 
-at 

When using these functions. 

the reader must use some criteria to select a maximum time duration, T , 
o 

such that errors due to time domain aliasing are reduced to an acceptable 

level. 
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3.^4.5 The Time Sampled Fourier Transform (TSFT) 

3.^.5.1  Definition 

Assume a time domain signal g(t) with its associated 

transform 6(0)), and assume that g(t) is sampled every At seconds to pro- 

duce f(nAt). Then according to Equation 3"274, the Fourier transform of 

the sampled data is 

Comb, (g(t)} *-> (Aü))RepA {G(u))},      Aw « 2Tr/At   (Eq. 3-296) 
At A(JO 

Note that sampling a function in the time domain results in a repetition 

of the spectrum of the original continuous function in the frequency 

domain. The transform associated with time domain sampling will be 

designated as the TSFT. 

There is ^«ften confusion as to when to apply the 

results of the TSFT. Many modern digitizers that convert a representation 

of an analog signal into digital coordinate pairs are capable of pro- 

ducing data at constant intervals along the time axis. Thus the signal 

is effectively sampled at At intervals.  Now if the transform of this 

set of points produced by sampling g(t) at At intervals is desired, then 

Equation 3"296 is applicable.  If, however, this set of points is fitted 

with line segments to produce a continuous function f(t), that 

approximates g(t), then FIT techniques are applicable. 
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g(nAt) 

09 

?! I'     9 
use  the      TSFT 

use the      FIT 

For example,   it  is common practice  in EMP data reduction to fit a set of 

points with  linear segments and obtain the  FIT of this approximation of 

g(t). 

3.4.5.2 Aliasing and the Nyquist Frequency 

The primary consideration in using the TSFT is that 

of aliasing.  Note that time domain sampling results in a repetition 

of the transform of the original waveform.  If the sampling interval, 

At, is improperly chosen, then the repetitive frequency domain functions 

will overlap. 
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G(2nf) F{g(n&t)} 

— f 

max max 

REGION WHERE ALIASING OCCURS 

2At At 

In the frequency range where this overlap occurs,  the resultant fre- 

quency domain data will  be  in error.    This overlap  is a clear illustra- 

tion of the effect of  frequency domain aliasing. 

Aliasing is avoided by choosing At  such that 

l/2&t<f 
max 

(Eq.  3-297) 

where f        is  the highest frequency component of G(2irf)  associated with 

the unsampled time waveform.    The frequency equal   to l/2At  is called the 

Nyquist frequency,  fN.    Note that f..  is a function of the sampling rate 

and  is  independent of the data.     Successful  application of TSFT tech- 

niques requires  that  f.. be adjusted such that  it   is greater than f N max 

Definition of f        is  sometimes difficult.    For 
max 

example,  the transforms of common waveforms such as e        and e      sin(3t) 

have frequency domain components at all  frequencies.    Therefore,  the 
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analyst has two options; one is to select an f   such that the aliasing 
' r max 

error is reduced to some acceptable level; and the second is to pass the 

original function, g(t), through a low pass filter before it is sampled. 

The cutoff frequency of the filter establishes f  . Then the sampling i i max 

interval   is chosen such that f., > f      •     It   is   important  to note that 
N       max 

filtding must be done before sampling occurs.    Aliased data cannot be 

unscrambled without  prior   <nowledge of G(ü)).     If this knowledge existed, 

then  there would  be no point   in computing the TSFT. 

3.'».S.S    Computation of Transforms 

Equation 3"296 presents  the  basic  features of the 

transform pair associated with the T..FT.    The specific computational 

formulae for the transforms are  implied but not stated explicitly. 

In this section,  the specific transform relations will   be given.    These 

transform relations are formulated  in a manner analogous to the FIT. 

The variable,  f, will  be used  instead of u.     This change of variable 

will  simplify the notation somewhat and help familiarize the reader 

with the variety of notation used  in the  literature. 

Reference to Equation 3"286 shows that the trans- 

form of a sampled  time domain function  is given by 

GA(2uf) ■£ 
n=-oo 

g(nAt)  e 
-j2Trnf/F 

F =  l/At (Eq.   3-298) 

The significance of  the subscript, A, will   be developed  later.    The 

frequency to time transform is similar to the time to frequency trans- 

form used   In  the FIT.     In both of these cases,  the transform  is given 

by the    integration of the basic element of a repetitive function over 

its period.    Then the  integration  is divided by the period.    For the 

TSFT,  the  inverse transform is given by 
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(nAt)  =lj   GA(21Tf)e-i?1Tnf/Fdf 

-F/2 

(Eq.   3-299) 

The significance of G.Uirf) will   be explained nov. 

Note that Equation 3-296  indicates that   the transform of a time sampled 

function  is equal  to an   infinite repetition of the transform of the 

unsampled function,  G(2irf),  times the repetition period,  F.    Therefore 

GA(2Trf)  =  Fy\[2TT(f-pF)] 
p=-oo 

(Eq.   3-300) 

In the frequency range  (-F/2,  F/2), G.Uirf) consists of the basic 

function, G(2Trf), centered at f = 0 plus the overlap of all   repetitions 

of G(2Trf) centered at multiples of F. 

G[2TT(f+F)] 

r
A(27Tf)/F 

G(2TTf) 

G[2iT(f-F)] 

1 ^ f 
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Thus G  (2Trf)   is an aliased version of GUirf), and  the   Inverse  transform 

requires  integration of GA(2Trf)   between the Nyquist frequencies, +f.     In 

most cases,   the difference  between GA(27rf)  and G(2TTf)   is due  to the two 

adjacent repetitions of G(2Trf)   centered at +F.    Thus 

^GA   (2iTf)   -  G(2Trf) 2: G[2Ti(f  -  F)]  + G[2Tr(f  + F)] (Eq.   3-301) 

and  if the sampling  rate   is properly chosen,  this difference can be made 

arbitrarily smal1. 

It should be apparent now that  the frequency domain 

function obtained from a  time sampled function  is not equal   to that from 

the FIT.    The transforms  from the TSFT and the FIT can  be compared  in the 

range  ("fN,  fN)   If the transform given by the TSFT  is multiplied by 

At = 1/F.    Any remaining difference in the range   ("f...   fN)   is  then due to 

al iasing. 

I l.k.S.b Frequency Limited Signals 
■ r 

Assume one has a function, g(t),  and   its associated 

FIT of G(2Trf).     If g(t)   is sampled at At  intervals,   its TSFT   is given by 

Equation 3"296.     Furthermore,   If 

G(2Trf)  - 0 for  f >   I/2At - fN (Eq.  3-302) 

then g(t)  can be completely reconstructed at every value of time by use of 

the values of g(t)  at the sample points   (i.e., g(nAt)). 

This  reconstruction can be demonstrated by the following 

argument.    By definition,   the   Inverse Fourier transform of G (Zirf)   is equal 
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to g(t).    Now note that   if Equation  3-302  is  true,  then the  transform of 

g(t)   is equal  to the transform of tht   sampled function,  g(nAt),   in  the 

frequency range where  |f|   <  fN.    Therefore, obtaining  the   inverse  transform 

of the  sampled spectrum using only the data where  |f|   <  fN will  produce 

g(t).     It will  now be shown that g(t)  can be constructed from the values 

of g(nAt). 

i   FJf(nAt)( 

• • • 

2  f. 

' Rect.   f  (f) 

► f 

• • • 

3 f. 

Multiplication of F{g(nAt)} by Rect2f   (f) will   yield 

transform of this  resultant function   is given 

Equation 3-262,  the convolution theorem and Equation 3-87.     Thus 

(2f..)  G(2irf).    The transform of this  resultant function   is given  by use of 
N 

(2fN) Sinc(2fNt)  * CombAt{g(t)} *-* Rect2f   (f) (2fN)  Rep2f {G(2Trf)} 
N N 

(Eq.  3-303) 
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Again note that  the Comb operation  implies 

Comb    {g(t)} =^\(nAt)  6(t-nAt) (Eq.   3-304) 

n=-oo 

Therefore,  the  time domain portion of Equation 3_303 can be written as 

OD 

(2fN)  Slnc(2fNt)  * Comb&t{g(t)}  =  (2fN)  Sinc(2fN)   *^g(nAt)   6(t-nAt) 

(Eq.   3-305) 

tern 

on   both sides of Equation   3"303 and noting  Equation 3-270,  one finds 

n=-oo 

Writing the Sine function in terms of sin(2TrfNt), cancelling the term, 2fN, 

OD 

g(t) "/,  g(nAt) 

n=-oo 

sin[2iTf.1(t-nAt)]  N  
2irfN(t-nAt) 

(Eq. 3-306) 

The comnents on this  interpolation function that were given under the 

previous section on  the FST apply here also. 

3.'».5.5    Product of Two Functions 

There are many occasions when one desires to multiply 

the TSFT of a function,   F{f(nAt)}, by some other frequency domain function 

and obtain the  inverse transform of the resultant.    The considerations 

involved  in this operation are outlined below. 

The   Important criteria   in forming  the product of two 

TSFT functions are to avoid aliasing.    Given the functions f(t) and h(t) 

with TSFT's of F{f(nAt)}  and F^nAt')},  then define the product of these 

two frequency domain functions as G(2irf ;At ^t1). 
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iF{f(nAt)} 

r/TVAA:-,/ A,AT,f 

F{h(n&t,)l 

G((D;  At, At') 

-1 
2&t 

1 1 3 
2At      At        2At 

-1     w     J__     1      3 
ZAt' ZAt'   ÄflÄT1 

Assume that neither F{f(nAt)} nor F{h(nAt,)} are aliased.     Then the product, 

G(2irf ;At .At') will not be aliased  if both functions,  f(t) and h(t), are 

sampled at the same interval, At", and At" is selected to be the smaller 

of At and At'.    The common sampling   interval will  now be written as At  for 

convenience. 

The inverse transform of G(2irf ;At)   is computed  in a 

manner similar but not  identical   to Equation 3-299.    Let the transforms 

of f(nAt)  and h(nAt)  be given by  (F)RepF{F(2iTf)} and  (F)RepF{H(2Trf)}. 

Furthermore let F « 1/At be chosen to avoid aliasing of either function. 

Then the  Inverse transform  is given b/ 

g(nAt) - T f      [(F)RepF(F(ü))}   (F)RepF{H(u))}]ej2,mf/Fdf 

I    F(U)H(W)ej2imf/,rdf (Eq.   3-307) 

.-2 Note that the scaling factor, F    , was required  in the above equation.     If 

F     had been used in a manner similar to Equation 3-299, the resultant time 

domain function would be  (F)g(nAt). 
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The resultant  time domain function,  g(nAt), may also 

be obtained from the convolution of f(nAt) and h(nAt).    The  relation  is 

best derived by starting with functions of the continuous variable,  t. 

Then the time sampled version   is obtained  in a pulse approximation  to the 

integrand.    Let 

nAt 

g(nAt)   = I     f(T)h(nAt-T)dT (Eq.  3-308) 

■'o 
■/ 

Then  let  the function,  r(T)  = f (T)h(nAt-T),  be approximated   in a small 

interval  of width At,  by  its value at  the center of the   interval.    Thus 

n 

g(nAt)  =2^   ''(mAt)At (Eq.  3-309) 

n 

= AtV^ f (mAt)h(nAt-mAt) 

m=0 

finally the resultant  time domain  function  is expressed as the convolution 

of  two time domain functions 

g(nAt)   =   (At)f(nAt)  * h(nAt) (Eq.   3-3IO) 

Note that  scaling   is an  important   issue and a common 

pitfall  when using sampled  Fourier transforms.    Equations 3"307 and 3-310 

were scaled such that g(nAt)  would  have  Identical  amplitudes.     Furthermore 

g(nAt)   has the same amplitude as g(t)   in Equation 3-308 when  t = nAt. 
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The convolution of two time sampled functions can be 

interpreted simply.     Let  the functions,  f(nAt), be written as sequences on 

strips of paper 

f(nAt): 

h(nAt) : 

3 

where f and hn signify the value of f(t) and h(t) at times equal to nAt. 

The convolution of the sequences, f and h , is equal to the summation 
n n 

f    * h 
n 

11 

f    h 
m   n-m (Eq.   3-311) 

mFO 

and can be computed by the following artifice.    Let the paper strip repre- 

senting hm be reversed and shifted n columns to the right.    Then form the 

product of the sequence values  in  the same vertical column and  sum the 

results.     Finally g(nAt) equals 
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f   : m 
fi 

w 
g(^At): 

3 1 

flh^ + f2h3 + f3h2 + fkh] 

In  this example, n = 4.     If  the preceding sum is scaled by At, one obtains 

Equation 3-309. 

3.4.6    Discrete Fourier Transform 

3.4.6.1     Introduction 

The most popular and  least understood Fourier trans- 

form  is the Discrete Fourier Transform  (OFT).    The popularity stems from 

the  fact  that the DFT has an efficient means of computation called the Fast 

Fourier Transform (FFT).    The FFT offers dramatic computational  economies 

when compared to a conventional   DFT or other Fourier transforms.    The mis- 

understanding of the DFT  (or the  FFT)   is directly attributable to the fact 

that many   if not most users do not understand sampled Fourier transforms 

when confined to either the  time or frequency domain   (TSFT or FST).     There- 

fore  it   is no surprise that  problems arise when there  is  sampling  in .both 

the  time and frequency domain as   is the case with the DFT. 
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The DFT (FFT) can be used profitably in the analysis 

of EMP data.  It is capable of any operation that can be performed with the 

FIT.  Furthermore the FFT offers good computational economy. However, 

the special properties of the DFT must be thoroughly understood before it 

can be properly used. The following paragraphs present some of the 

important properties of the DFT. Fortunately most of the concepts have 

already been introduced when discussing the FST and the TSFT. Therefore 

this discussion can be limited to a consolidation of previously introduced 

properties of sampled transforms. 

l.k.b.l    Derivation 

The DFT has both time and frequency domain data 

sampled at equally spaced intervals. Therefore one would anticipate that 

the data in both domains would exhibit a combination of aliasing and 

repetition. These properties will be developed in detail in the following 

paragraphs. 

The fundamental properties of the DFT, except for a 

multiplicative constant, can be determined by use of the Comb and Rep func- 

tions. Assume one has an FIT pair given by g(t) and G(2iTf).  Note that the 

frequency variable, f, is being used instead of u in order to conform with 

the notation used in the majority of the technical literature on the DFT. 

Then sampling g(t) at equally spaced intervals, At, yields the transform 

pal r 

| CombJnMl Proportional Rft^ {G(2lTf)}>    F = 1Mt 

(Eq. 3-312) 
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The  term,   proportional,  used   in  the above  relation   indicates   that  the two 

functions  differ from being an exact   transform pair by a multiplicative 

constant.     Then sampling  the  repetitive  frequency domain function at 

equally  spaced   increments,  Af = F/N where  N   is an   integer,  yields 

RepT{CombÄt{g(t)}}    proportional - CombAf{RepF{G(2Tf)}} 

Af =  1/T (Eq.   3-313) 

In words,   this equation   indicates  that a  sequence of time domain  samples 

with a  spacing of At and a period of T has a Fourier transform that  con- 

sists of a sequence of frequency domain  samples with a spacing of   1/T and 

a period of  1/At.    Also note that  there are N samples within each period 

of both  the time and the frequency domain  functions. 

Formulas for the computation of the DFT are essentially 

the same as  the summations given   in  Equations 3_278 and  3-298 for  the FIT 

and the TSFT respectively.    However,  special  care must  be used   in   inter- 

preting the  resulting summation for the DFT because of aliasing and the 

choice of origin. 

Consider first  the transformation from the frequency 

to the time domain.    The frequency domain portion of the DFT  Is a  sampled 

version of the frequency domain function  for a TSFT.    Therefore one can 

define an aliased periodic function over the period,  F,   in a manner similar 

to G   (2Trf)   In Equation 3-300.     Thus 

GA(21rnÄf) - J^     G[2Tr(mAf-pF)] (Eq.   3-3U) 
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The transform of this aliased periodic function   is obtained  in a manner 

analogous  to Equation 3"299 where the periodic function  is evaluated over 

the range of one period.    Substituting a  summation for the sampled data 

in place of  the   integral   in Equation  3"299 and deleting the scale  factor 

for now, one obtains 

(N/2)-l 

F"1{GA(21rnAf)}^     GA(21TmAf)ej2irnmAf/F (Eq.   3-315) 

m=-N/2 

Note that  the  limits of the sum are centered about m = 0 and  imply the 

summation of exactly N terms.     The  range of the  index, m,   in the above 

equation  is a natural  selection since a frequency domain function  is an 

even  function with resoect  to the origin.     However,   it  is convenient   in 

the computation of DFT's to use only a positive  index, m.     If one notes 

that GA(2TTmAf)   is  periodic with a period of  F,   then one finds 

GA(2TrmAf) =  G^irnAf), -N/2  > m < 0 (Eq.   3-316) 

N/2 > n < N-l 

Therefore,   Equation 3-315 can be expressed as 

F"1   {GA(27rmAf)} =£] GA(27rmAf)ej2irmn/N (Eq.   3-317) 

m=0 

where Af/F -  l/N. 

j    I 321 



^ 

Now consider the nature of the time domain function 
.-1 

given by F    {G. (27rmAf)}.    According to the time domain portion of Equation 

3~313,   thf  transform associated with GA(2TrmAf)   is a sampled periodic 

function.    The basic time domain function  is g(t).    A repetitive function 

is obtained  by the summation of all   replicas of g(t)  displaced by multiples 

of the period T.    Finally a sampled version  is obtained by substitution of 

hAt  for t   in  the repetitive function.     Now  in a manner similar to Equation 

3-314 one can define a sampled aliased time domain function as 

gA(nAt) -jP  g(nAt-qT) (Eq.  3-318) 

Then the  inverse transform of GA(2irmAf)   is proportional   to 

N-l 

g. (nAt) '^/J   G   (2TrmAf)eJ 2Trmn/N 
(Eq.   3-319) 

m=0 

The proportionality constant  in the above equation can 

be found  in the following manner.     Define the time to frequency domain DFT 

as 

N-l 

GA(27rmAf) "^ 9A(nAt)e"J -j2Trmn/N 
(Eq.   3-320) 

n-0 
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Substitution of this equation into Equation 3-318 yields 

N-l    I   N-l 

m=0   I   n=0 

3AU&t) ~^ | 2^ 9A(f'At)e"-i Zirmn/N  (    jZirmi/N 
(Eq.   3-321) 

N-1 N-l 

^   9A(nAt)  Z 
j27rmU-n)/N 

ITFO m=0 

Now when  £ = n + pN,  p = 0, + 1...,  then  the second sum in the above 

equation   is equal  to N and Equation 3"3<9 yields 

gAUAt)~NgAUAt) (Eq.   3-322) 

Thus,  successive application of the DFT and   its   inverse scales  the original 

function  by N.     Furthermore,  a consistent   DFT pair   is given by 

N-l 

GA(2TrmAf)  =^ gA(nAf)e'j 2irnm/N 
(Eq.   3-323) 

n^O 

N-l 

gA(nAf)  = jry^GA(2TTmAf) j2iTmn/N 

ITFO 

The   indices   in the  time and frequency domain functions are often denoted as 

subscripts  to simplify the notation.     Using  this  convention,  the DFT pair 

is given by 
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G -V   gne-J2™n/N (Eq.   3-324) 
m 

n=0 

3n=S 
N-l 

-    J27rmn/N 
m 

It   is understood that G    and g    can potentially be aliased. 
m 3n r ' 

In many cases one  is only  interested  in analyzing 

data  in  the  frequency domain.     Furthermore   if absolute values are required, 

this transform data  should be  independent of the sampling  interval,  At, 

the summation  for GM   in Equation  3-32A can  be scaled such that   it   is 

approximately equal   to G(2Trf),  the FIT of g(t),  by multiplying G    by At. 

Care must be  used to remove this factor before  inverse transforms are used. 

3.4.6.3    Aliasing 

The DFT can have aliasing  in  both the time and  fre- 

quency domains.    Special  notation, g.(nAt)  and G.(27rmAf), was used to 

indicate this  potential  aliasing and to show that the aliased waveforms 

constitute a  transform pair 

gA(nAt) -M- GA(2TrmAf) (Eq.   3-325) 

The above relation shows that the DFT  is mathematically valid  in the 

presence of aliasing.    However, aliasing can make the data worthless for 

the user's applications.    With proper selection of time and frequency 

domain sampling  intervals. At and Af, aliasing can be minimized or avoided. 

Except for the obvious differences between  sampled data and continuous 

waveforms, aliasing   in the DFT  is the same as aliasing in the TSFT or the 
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FST.    Therefore,  Subsections l.k.S.2 and B^-S-S on the TSFT should be 

consulted for a discussion of frequency domain aliasing, choice of At, 

and the Nyquist frequency.    Subsection 3.'♦.3-'» on the FIT should be 

referenced for a discussion of time domain aliasing and the choice of Af. 

l.k.S.h    Graphical   Interpretation 

The usual method of displaying data with the DFT is 

sometimes confusing and needs clarification.     Consider first the frequency 

domain data.    Assume one has a waveform, g(t),  and  its associated FIT of 

G(2iTf).    Then  sampling g(t) at At  intervals will  yield a transform 

proportional   to Rep_{G(2,iTf)} where F ■ 1/At.    This transform extends over 

all  frequencies.     However when using the TSFT,  only the data at frequencies 

less than the Nyquist  frequency,  f.. ■ F/2,  are displayed. 

TSFT 
DISPLAY 

In the case of the DFT,  data  in the range  (0,F) are 

displayed.    There are two ways of  interpreting this display.    One is that 

a viewing window, open between  (0,F),   is placed over the display of 

Rep-{G(2Ttf)}.    Therefore, one views the right half of the basic periodic 

waveform centered at f ■ 0 and the left half of the basic waveform that 

is centered at f « F.    Another interpretation  is based on the periodicity of 

the data.    One will note that data in the range (-fN,0) are identically 

equal  to that  in the range (f^, 2fM).    Therefore, a display of frequency 
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domain data can be considered as a decomposition of a similar display for 

the TSFT. Data in the range (0, fj are identical in both displays. 

However data in the range (-fu, 0) of the TSFT display are transferred to 

the range (fM> 2fM) to form the DFT display 

RepF{G(2TTf)}: 

TSFT  DISPLAY: 

G[2n(f-F)] 

Note that data for the DFT are shown by lines rather than points for 

graphical  clarity. 

It  is  Interesting to note that  If g(t)   Is  real, then 

the magnitude of G(2irf)   is an odd function of frequency.    The same symmetry 

holds for the DFT.    Also, the DFT data  in the range (fN, 2fN) are equal 

to that In the range  ("f«. 0).    However data  in the range ("f..» 0) are the 

complex conjugate of that  in the range  (0, f..).    Furthermore,  OFT data  in 

the range  (fMS 2fu) are the complex conjugate of that  In the range (0, fN). 
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Therefore, one only needs one half the available DFT data,  N/2 data points, 

to uniquely specify the frequency domain results. 

Time domain data for the DFT are displayed in the 

range  (0, T) where T - NAt  regardless of the actual  origin of the wave- 

form.     Consider a basic waveform that extends over positive and negative 

time, and  is repetitive with a period of T.    The basic waveform,  the 

result of  its repetition, and the associated DFT display are  illustrated 

below. 

BASIC WAVEFORM: 

REPETITIVE WAVEFORM: 

DFT DISPLAY 

k   gA(nAt) 

*-   t 

Note that the DFT data are shown by lines rather than points for 

graphical clarity.    Also note that there Is no time domain aliasing  in 

this particular example. 
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3. *». 6.5    Convolution 

The  DFT Is often used to obtain  the convolution of 

two functions.    The basic procedure is to multiply the transforms of the 

two functions to be convolved and then obtain  the  inverse transform of 

the product.    The considerations   In using this procedure have been  intro- 

duced  in the section on  the FST.     These considerations will   be applied 

to the OFT  In the following paragraphs. 

The basic problem  In multiplying two frequency 

domain functions and obtaining  the  Inverse transform with a  DFT is that 

the convolved  product has a length greater than either of the original 

functions.     If one has  two functions sampled at equal   Intervals, At, 

with lengths of MAt and  NAt, then Equation 3-311  shows that the con- 

volution will  have a  length of   (M+N-l)At.    To allow sufficient  space to 

contain the entire convolved function and to avoid overlap problems,  each 

of the original   functions must  have suffic'ent zeros appended to the 

sampled data to  Increase   Its length to   (M+N-l)At. 

Reference to the sketch shown  below Indicates that 

the modified sampled data sequences will   result  In  the desired con- 

volution. 

-(M+N) 

i f(nAt) 

0 M        M+N 

i h[(p-n)At] 

0    p-N 

A, A 
2  M+N 2(M+N) 
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The error resulting from the failure to add sufficient 

zeros can be determined by the following derivation. Assume that one has 

two time domain functions, f(t) and h(t), that are sampled N times at an 

increment, At, that Is chosen to avoid aliasing. Then one has the DFT 

pairs 

f(nAt) ■»-*■ F(2irmAf) Af - 1/NAt (Eq. 3-326) 

h(nAt) -M- HUirmAf) 

The inverse transform of the product of these functions is given by 

N-l 

g(nAt) - - V* F(2irmAf)H(2iTmAf)e 
J2irmn/N 

m^O 

N-l 

N 2-f 
m-0 

N-l N-l 

N-l 

Vl f(pAt)e' 

p-0 

J2irpm/N 

N-l 

N-l 

7lh(qAt)e' 

q-0 

J2imi(n-p-q)/N 

J2iiom/N 

" ^Z) S f (pAt)h(qAt) Y. 
p-0 q-0 m-0 

N-l 

■y^f(pAt)h[(p-q+N)Atl 

p»0 

n N-l 

"S f^At^h^n"P)AtJ +5^f(p&t)h[(N+n-p)at] 

p»0 p-n+I 

J2irmn/N 

(Eq. 3-327) 

This complex looking expresston has a simple interpretation. The first 

sum on the last line of Equation 3-327 results in the desired con- 

volution which is similar to Equation 3-311. The second sum is an error 
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term due to the overlap of f(nAt) and h[(n+N)At].    The second sum will 

equal  zero when sufficient zeros are added. 

The sketch on p.   3-192 shows a simple semfgraphical  method 

of computing discrete convolutions for the TSFT.    The technique  is also 

applicable to convolutions   involving the DFT.    There are only two 

modifications required.    One  is that the sequences must be made periodic. 

The second  is applicable  if frequency domain convolution   is required. 

In this case, each sequence  location must contain two numbers  in order 

to specify the real  and the   imaginary parts of the data. 

3.5    IMPLEMENTING TRANSFORMS  FOR DATA ANALYSIS 

3.5.1     Introduction 

The previous material  contains the theory associated with 

the transforms used  in  EMP data reduction.    Knowledge of this theory 

is a prerequisite to the proper use and understanding of the results 

available from the use of transforms.    However, there are a variety of 

practical details that must be considered  in the actual  computation of 

transforms.    These details are associated with limitations  in the raw 

data, data handling techniques, and data processing procedures.    The 

effect of these limitations must also be understood before any reduced 

data can be successfully  interpreted. 

The following paragraphs present a brief discussion of some 

of the  important considerations  involved  in  implementing transforms and 

in accounting for limitations  in the raw data and data processing 

techniques.    The first topic discussed  is data flow analysis.    Data flow 

analysis is a systematic method of tracing the limitations  imposed on 

the information content of data from the point of monitoring all  the way 

to the final  computer processed results.    The next topic  is called 

transform methodology.    Some of the approaches used to compute transforms 

330 

.J 



^ 

are presented.    This section also  includes a discussion of the proper 

selection of time and frequency domain  sampling  intervals and of computer 

running time economy.    The next topic  is the  influence of noise on  Fourier 

transform data.    Then a discussion of truncation of time domain data and 

its effects on frequency domain transforms   is presented.    Next a presenta- 

tion on  practical means of numerically  integrating EMP test data  is given. 

Finally,  methods of computing transfer functions are presented. 

3.5.2    Data Flow Analysis 

One of the most  important tasks  in planning an EMP test program 

is to prepare a data flow analysis.    The data flow analysis begins with the 

induced response signal  that one desires to monitor during some test. 

Then the signal   is traced through every stage of monitoring,  recording, 

analog-to-digital conversion, and mathematical data reduction.    At each 

step,  the "distortions" of the desired signal  are evaluated.    Finally, one 

compares the desired signal  to the resultant signal after all  stages of 

instrumentation and data  processing.    The objective of this analysis  is to 

insure that the desired features of the response signal  are preserved 

during this multistage process.     If the distortions are unacceptable, one 

has two options.    One  is to improve the  instrumentation and/or data 

processing procedures,   if possible.    The second  is  to accept the degraded 

test data and ask oneself whether there  is sufficient  information to achieve 

the test objectives. 

An  important feature obtained by the preparation of a data 

flow analysis  !s that the  instrumentation and data  processing tasks of a 

test program will be united.    Data processing personnel will get a  realistic 

assessment of the instrumentation  imposed limitations on the data with the 

result that they will  not try to derive more information from the raw data 

than  is potentially available.    Furthermore, the Instrumentation personnel 

will  appreciate the limitations  imposed by their instrumentation group as 
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well as the data processing techniques. Therefore, the instrumentation 

group should not demand information from the processed data that is not 

potentially available. 

The elements of a data flow analysis are illustrated in the 

simplified schematic shown in Figure 3~11. The excitation, f(t), Induces 

a response, g(t), into the system under test. The excitation is generally 

the simulated EMP fields. The response generally constitutes a current 

flowing on a metal conductor, and it provides information about the system 

characterized by the impulse response, h(t). Sometimes inspection of g(t) 

will provide the desired information such as peak amplitude, resonant 

frequency, or signal duration. On other occasions, a Fourier transform 

of g(t) may be required to obtain the desired information. Furthermore, 

one might try to obtain quantitative information about the system impulse 

response, h(t), or its associated transfer function, H(u)), by use of f(t), 

g(t), and transform techniques. 

Unfortunately the desired signals, f(t) and g(t), are usually 

not available. Figure 3~11 shows the sources of distortion associated with 

g(t).  The first source Is denoted by the additive term, n (t). This term 

could represent the effect of nonl inearities in the system, the response 

of the system due to inputs other than f(t), or to system/instrumentation 

interaction. This term is minimized or accounted for by careful study of 

the systems composition and electromagnetic coupling modes. Identification 

and characterization of this term is not the direct responsibility of the 

data processing personnel. However, all parties should realize it is 

potentially present. It should be noted that n (t) is indicated as an 

additive term. This desgination was done for graphical simplicity. 

However, this type of error could be related to g(t) or h(t) in almost 

any manner. 

332 

J 



f(t) 
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n   (t) 
5 

EMP Excitation/Response 

h^t) 

0,(1) 

gjU) 

nAD(t) 

Signal  modification  due  to 
monitorinq and  recording 
instrumentation. 

Signal  modification  due to 
data handling and analog-to- 
digital  conversion processes, 

hA(t) 
g^t) 

Signal  modification  due to 
computer analysis  techniques. 

Resultant Signal 

Figure 3-11.       Data Flow Analysis 
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The second and third sources of error are denoted by h.(t) and 

n.U). These terms represent, the combined effects of all instrumentation 

including sensors, data links, interface electronics, and recording equip- 

ment.  Ideally the instrumentation would have h.(t) equal to a delta func- 

tion so that the output would be identically equal to the input.  In 

practice, the instrumentation generally consists of some sort of low pass 

filter.  Important parameters in specifying the filter characteristics are 

the bandwidth and deviations from ideal response in the pass band.  Band- 

width, in this case, is deflnec as the frequency range from essentially 

zero frequency to the cutoff frequency. The cutoff frequency is the high- 

est frequency the instrumentation system will propagate and is usually 

defined at a point where the output is 3 dB less than its magnitude at lower 

frequencies. An example of pass band deviations was treated in Section 

3.3*8.11 where the effects of amplitude and phase ripple in an ideal low 

pass filter were evaluated.  In most EMP tests, the instrumentation has 

sufficient bandwidth and fidelity in the pass band that there is only 

minimal distortion of the data. Nevertheless, the effects of the avail- 

able instrumentation bandwidth on test data must be evaluated at some 

stage during a test program. 

The additive term, n (t), Is noise. There are two possible 

sources of this noise. One is thermal noise, shot noise, etc., associated 

with the electronics of the instrumentation. The second source is the 

unwanted response of the instrumentation (rather than the test object) to 

the exciting fields. Once again. Figure 3-11 displays this noise term 

as an additive function although it is not necessarily of that form. 

The noise sets the lower limit of the desired signal that can 

be detected unambiguously. An upper signal level also exists. This upper 

limit is the signal level where saturation, voltage breakdown, or other 

nonlinear effects begin to occur. The ratio between the maximum and 

minimum signal level is called the dynamic range. A closely related para- 

meter is the signal-to-noise ratio which is defined as the ratio of 
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signal amplitude to noise amplitude. In practical applications, the 

signal-to-noise ratio is less than the dynamic range. There are a multi- 

tude of precise definitions for the signal and noise amplitudes and their 

various ratios. Those definitions need not be developed here. The impor- 

tant point is that these parameters establish the amplitude range and the 

uncertainty of the time domain signal. The effect of a finite signal-to- 

noise ratio on Fourier transforms is established in a later section. 

Another important specification of an instrumentation system is 

the minimum resolvable time, tR, and the maximum recording time, t-. 

Since oscilloscopes are usually used to record transient EMP data, the 

specification of the tR and t« is especially important . The minimum 

resolvable time is limited by the trace width displayed on the face of the 

oscilloscope. A general rule of thumb is that a well focused oscilloscope 

has a trace width of 0.1 major divisions or squares on an oscilloscope 

graticule. Therefore, the period of a high frequency oscillation can be 

distinguished If adjacent nearly vertical trace segments are separated by 

at least 0.1 divisions. Thus, if a division corresponds to 100 nano- 

seconds (100 nanoseconds/division), the minimum resolvable time is 10 

nanoseconds. 

It should be noted that tR and t» are analogous to n't) and 

the maximum signal amplitude discussed previously. Each of these pairs 

establishes the minimum resolution and the maximum extent of the variable, 

t and g(t). One can define a time dynamic range as the ratio, t-/tR. 

For an oscilloscope, the time dynamic range is equal to 100 or 'tO dB If 

one uses the definition of the dB loosely.  In many cases the time dynamic 

range can be extended by using two or more oscilloscopes with differing 

sweep speeds to record the data. Finally, it should be noted that the 

finite time dynamic range places constraints on the use of transform data 

Just as the finite signal-to-noise ratio. A further discussion of these 

transform limitations will be presented in a later subsection. 

J 
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The fourth and fifth source of error or distortion are the 

data handling and the analog-to-digital  conversion processes.    These 

sources are denoted as ^.-(t) and "«[»(t)«     ^e system function,  hAD(t), 

is used to signify any systematic error that could occur  in the data at 

this stage.     Typical   systematic errors are optical  distortion when 

photographing the data and errors  in locating the origin, baseline, and 

rotation angle when digitizing an oscillograph or  its analog facsimile. 

In some cases,  small   systematic errors   introduced by data handling or 

digitization  result   In large errors  n the transform data.    The term, 

nAD(t),  signifies noise resulting from loss of resolution  In a photo- 

graphic copying process or the small   random errors  in time and amplitude 

introduced by digitization.     It should be noted that the digitization 

noise  is not  totally  independent of the  instrumentation noise.    The finite 

trace width present on an oscillograph and caused by Instrumentation noise 

accentuates the noise introduced by digitization.    Needless to say,  these 

systematic and  random errors affect the resulting transform data.    Some 

of these error effects will  be discussed   In a later subsection. 

The final  source of error or distortion  in the processed data, 

hA(t),   Is attributable to the Fourier transform algorithms.     It should be 

mentioned that algorithm type errors are usually not associated with any 

lack of accuracy or precision  In  the numerics.    The actual  problem lies 

in fie misuse or misapplication of the particular algorithm.    These type 

errors can either be eliminated or accounted for by a thorough understand- 

ing of the material  presented  in Subsections 3-3 and S^-    Additional 

material  on the use of Fourier transforms   is also presented  in  the 

following subsection. 

3.5.3    Transform Methodology 

3.5.3.1     Introduction 

The Fourier transform  is the basic analysis tool  used 

In the study of EMP test data.    Previous sections have presented the basic 
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theory on these transforms.  In this subsection some practical features 

of implementing and using transforms are given. The discussion will be 

limited to the FIT and the FFT as these are the most common types of 

transforms used for EMP data analysis. The first two topics presented 

are a brief discussion of the algorithms used to compute the FIT and the 

FFT. The next two topics are selected guidelines for usiny the FIT and 

the FFT. Finally a discussion of the relative advantages of the FIT 

versus the FFT is given. 

3.5.3.2 FIT Algorithm 

The defining equations for the FIT are 

GM 
•/ 

g(t)e-ja)tdt 

g(t) =+-(  G(a))eja)tda. (Eq. 3-328) 

In practice, the integrals in the above equations are evaluated by some 

approximate technique to obtain numbers instead of functional relation- 

ships. A large variety of approximate techniques have been used in the 

past to approximate these integrals. One specific technique, called the 

piecewise linear approximation, will be presented here. This technique 

illustrates the basic approach for obtaining a numerical algorithm for 

computing an FIT. Furthermore, this technique is the most commonly used 

approach for computing the FIT of EMP test data. 

Assure one has a function, g(t), available in some 

form such as an analog trace on an oscillograph or an analytic expression. 
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The piecewise  linear approach  is to approximate g(t)  with a finite number 

of  linear  line segments to yield g(t).     Then an analytic transform of 

g(t)   is obtained. 

3 

Note that  tPie spacing between points on  the time axis need not be equal. 

Also note that  the waveform  is approximated over a finite  length  interval, 

tN-t  , where N  is the total  number of segments used. 

The formulation of the algorithm begins by forming the 

equation for each of the segments,  £  . 

i   « a t + b 
n        n n (Eq.   3-329) 
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g(t ) -g(t ,) n n i 
an ^    t - t , 

n   n-l 

b = J] OIL DJ Q_ (Eq. 3-330) 

Then the resulting FIT at a given frequency, w , is expressed as 

N   „t 

GK) J] j  " (ant + bn)e'
ja,otn dt (Eq. 3-331) 

n-l t 
n-l 

where N is the total number of line segments used to approximate g(t). 

After integrating the above equation, one obtains 

Re{GK>» -Lf   K'n + bn)  sln(Vn)   "   K^-l  + bn)  sln(Vn-r) 

n-l -I 

+ a    [cos(a> t )  - cos(ü) t    ,)]/u n on o n-l        o 

(Gd.) )} -y^-Mte t   + b) cos(a) t )  -  (at. ii       o x .«iii    inn        n on n n* 
n-l    0 ( 

lm{G(a) )} ->   77-{(ant   + b ) cosU t )  -  (antn_1 + b ) cos(ü) t    ,) m       o £, ■• '■'    inn        n on n n  l        n o n-l 

a    [sin((D t )  - slnUt    ,)]/u , 
n on o n-l        o^ 

ü)0 »« 0 (Eq.  3-332) 
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When ü)    = 0,   the transform is equal   to 

N        -*- n       r n 

G(0) -^  J     (ant + bj  dt, CA^ = 0 :- 
n n        ' o 

n=l    t. 

Finally the magnitude and phase of the transform are given by 

|G(V I  = >/Re{GK)} +  'm^K^ 

<|.{G(u )} = .   n-l| I  {G(a)n)}/R (0(0) )} J (Eq.  3-33^) 
o tan   im       o       e        0     l 

These equations are evaluated for each value of OJ   desired. 
o 

The inverse transform is obtained by a similar pro- 

cedure. Assuming that g(t) is real, then the inverse transform is given 

by Equation  3-3'» 

eo 

if    [* ■n J € 9(t)  = ± I       [Re{G(a))} cos(a)t)   -   IJGdü)}   sin(ut)]da) (Eq.   3'^) 

0 

Considerable simplification is obtained if it is assumed that g(t) is 

causal as well as real.  In this context, causal means that g(t) ■ 0 for 

t < 0. Then the inverse transform is given by Equation 3-38. 

GO 

ir f  e 9(t) - r I ^■fG(u)} cosdut) dm (Eq. 3-38) 

0 
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This equation is the one most commonly used. The algorithm uses linear 

segments, m = c w + 

form is expressed as 

segments, m = c w + d , to approximate R {G(üI))}.  Then the inverse trans- a    ' n   n    n'    rr       e 

N  -^ 

g(t ) = iy^ I (c w + d ) cos (cot ) du (Eq. 3-335) 

n=l (D , 
n-1 

Once again,  note that  the spacing between points on the frequency axis 

need not be equal  and that R {G(ü))}  is approximated over a finite interval, 
WN " "n*    Further details on this procedure are given   in   Reference  [25]. 

A formulation for the  inverse transform based on  Equation 3~3'» when g(t) 

is not causal   is given by Reference [26]. 

There are other methods of approximating the integrals 

in the FIT.    For  instance,  some parties approximate the function, g(t), 

by a finite number of triangles.    Then the resulting  transform is the sum 

of the analytic transforms of the  individual  triangles.    However, 

Equation 3-218 shows that a triangular approximation   is  identical  to a 

piecewise linear fit.    Therefore, there  is no fundamental  difference  in 

the two approaches.     Other methods of approximating the  integral are based 

on fitting the coordinates of the waveform,   t    and g(.t  )  to a polynomial. 

One would think that this "smoother" fit would provide more accurate 

transform results.    However,  Reference  [27]  shows these higher order 

approximations actually provide poorer results. 
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"« 

lit)   * 

Original   Function 

Piecewise Linear Fit 

Polynomial  Fit  No.   1 

Polynomial   Fit No.   2 

4, 

The reason  is that polynomial   fits are sometimes unstable to small  errors 

in the coordinate points.    For  instance,   the sketch above shows g  . (t)   to 

be a well  behaved fit   to g(t).    However, a slight change  in the coordinates 

(near the first peak  in this example)  to yield  t    + e and g(t   + e)   is 

arbitrarily small,  can  produce the polynomial   fit  indicated as g -(t).     Note 

the large error   in g ?(t).    A similar change  in coordinates when using a 

piecewise linear fit would result in a very small  change  in g(t). 
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G 
m 

N-l 

OC gne"J2lrmn/N (Eq. 3-324) 

ymn „  (e-j21r/N)mn „ ^JZ^mn/N ^ ym 

Then  Equation 3*324 becomes 

N-l 

G    > 
m 

n-0 

^g^" (Eq. 3-337) 

The FFT is derived from the DFT by noting the synmetry in w .  One 

approach used in this derivation is indicated below. 
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3.5.3-3 FFT Algorithm 

It was mentioned previously that the FFT was an 
j 

efficient means of computing a DFT.  A short and admittedly incomplete 

introduction to the method used to compute the FFT will be presented in 

the following paragraphs.  It is hoped that this material will give 

those who use the FFT a small understanding of the method, and stimu- 

late those who want to write their version of the algorithm to refer 

to the many good references available [28, 29, 30]. 

If one Has  an N point time domain sequence, g , 

then its DFT is given by Equation 3-324. 1 

N-l 

I 
n»0 

It is convenient as well as conventional to write the exponential as 



"9 

A concept called "decimation   In time" can  be used 

to obtain the FFT.     Suppose that  the N point  sequence  introduced above, 

g   ,   is divided  into two sequences.    Let one of the  sequences,   k  , con- 
n n 

sist of the even numbered po'nts of g   and the other sequence,  £  , con- 

sist of the odd numbered points.     Thus 

kn = 92n 

£n = 92n+l n=0,   I, 2 N/2-1 (Eq. 3-338) 

The transform of these two N/2 point sequences  is given  by 

N/2-1 

K  =y^ k w: 
m     4 *    n 

2nm 

n-0 

N/2-1 

L    -V   £ W(2n+1)m. m=0.   1.  2 N/2-1 
m    A^     n 

n=0 
(Eq.  3-339) 

Since a Fourier transform  is a  linear process where superposition  is 

valid, one can express G     in  terms of K   and  L .     Thus 
m mm 

N/2-1 
^nm G    -V   [k    + W2^  ]  W2 

m     S J      n m 
n=0 

K    + V^L   , m-0,   1,  2 N/2-1     (Eq.  3-3i»0) mm 
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where 

^ = w"1 - e-J27rm/N 
(Eq.   3-3^1) 

Equation 3-3i«0 is defined for frequencies 'ess than N/2-1.  The frequency 

components in the range between N/2-1 and N-l are determined in the follow- 

ing manner. First note that K and L were derived from N/2 point 3 mm 
sequences.    Therefore,  they are periodic with a period of N/2.    Thus 

Kni + N/2 " Km 

L 4. M/9 a L« m-0,   1, 2 N/2-1 (Eq.   3-3«) m + N//        m 

Also note that 

ym + N/2 = e-j2Tr(m + N/2)/N 

■vT. «0,   1, 2,   ....  N/2-1 

Therefore 

(Eq. 3~yky) 

VN/2 - Km " ^m'      n"0•,•2 N/2-1 (Eq-  3-3^) 

Thus,  Equations 3-340 and 3-3M yield the transform of an N point sequence 

in the  range (0,  N-l). 
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The significant feature of this development   is that 

the number of computations   is  reduced.     Inspection of Equation 3*324 shows 

that  N multiplications are  required at each frequency.    Since there are N 
2 

frequency components,  a  total  of N    multiplications are required.    However, 

Equations 3-3^0 and 3-3M state that G    can be obtained from two N/2 point 
- 2 m 

sequences.    Therefore,  N /2 multiplications are required.     The development 

of the FFT algorithm continues to extend this principle.     The two N/2 point 

sequences are divided  Into four U/k point sequences  and transform relations 
2 

are established similar to Equations l-lkO and  3-344.     In  this case N /4 

multiplications arc required.    The process  is continued until  each sequence 

has one point.    Then the number of multiplications   is equal  to N  log.N. 

The number of points,  N, does not  have to be very  large before  the number 

of multiplications  required  for the FFT is significantly   less  than those 

associated with the DFT.     Therefore,  the FFT will   require much  less com- 

puter  time than  the DFT for   the same number of points.     It  should be noted 

that approximations to the  FIT require approximately the same number of 

multiplications as  the DFT when the number of points are  the same.    There- 

fore,  the FFT has  the same speed advantage over the approximations to the 

FIT as  it has over the DFT.     One final  point must be made.    The number of 

points must be a power of two  In order to achieve the maximum speed 

advantage.    There are FFT algorithms that can process any number of points. 

However,  if N  is not highly composite In factors of  two,   then the running 

time approaches that of a DFT.    Obtaining N points  that are exactly some 

power of two is no problem  In practice.    All one needs to do is  add zeros 

to the original  sequence until   the sum of the number of original   points 

and the number of zeros equals some power of two. 

3.5.3.4    Use of  the FIT 

3.5.3.4.1  Introduction 

Successful use of the FIT requires a 

thorough knowledge of Its basic properties as described In Section 3.3. 
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However,  there are additional  considerations when using the FIT with 

experimental data.    These include the selection of raw data and  the choice 

of time and frequency arrays.    Some of  the  important considerations  are 

described   in the following paragraphs. 

Perhaps  the most important decision  in the 

use of the FIT to help analyze experimental  data is whether to use  it at 

all.    Too many  low quality experimental  data have been transformed  in past 

EMP test  programs.    These transform data are  incapable of yielding the 

desired  information.    Furthermore,  they often provide misleading results 

to the unwary.    Therefore,  the user must ask himself exactly what  infor- 

mation he wants to obtain from a transform.     Then he must examine each 

particular data record to see if  it can potentially yield that  information. 

If the data record is  incapable of yielding the desired  information,  then 

the user must either do without or request that the experiment be repeated 

such that adequate data are obtained.     This  last option points out  the 

advantage of performing the data  processing and analysis concurrent with 

the test.     If some of the data  is  inadequate for the analysis objectives, 

then there  is the option of  repeating  the experiment.    After the test  is 

over,  the option usually doesn't exist. 

l.S.i.h.l    Methodology 

There are several features of the raw data 

that the user should examine before requesting a transform.    These   include 

the contrast,  signal-to-noise ratio,  minimum resolution time, and maximum 

time duration.    A data record with poor contrast,  improperly focused trace, 

or writing dropouts will  be  impossible to digitize accurately, and  the 

resulting transform wi 11  be meaningless.    The Fourier transform is a  linear 

mathematical operation.    Therefore, additive noise In the time domain will 

transform to additive noise  in the frequency domain.    This noise can oblit- 

erate the desired information in both the time and frequency domains.    More 

will be said about noise in Subsection 3.5.^.    The minimum time resolution 
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establishes a bound on the highest  frequency data that can be obtained. 

If a high  frequency component with a very short time period cannot be 

resolved   in the time domain,  then   it certainly cannot be computed accurately 

in  the frequency domain.    The maximum time duration of the data  record must 

be compared to the signal  duration,     if the time duration of the data  record 

is much  less than the signal  duration,  there will  be two penalties.     One is 

that there  is  insufficient   information  to characterize low frequency com- 

ponents with their corresponding  long time periods.    The second  is  that the 

so called  truncation error will   be  introduced  (see Subsection  3-5.5) • 

This  type of error affects  the transform data at all   frequencies. 

After selecting suitable data  for transform 

analysis,  the user should personally familiarize himself with  the computer 

algorithms that will  be used to perform the calculations.    The detailed 

coding  is not  important.    However, what   is significant  is  that  the user 

thoroughly understand  the capabilities of the particular algorithm to be 

used.    The best way to obtain this  familiarity is to utilize  simple 

analytic  functions with known characteristics.    Typical   functions  that 

could be used are e        and e      sin(ßt).    The user should  first examine the 

numerical   transform of the function used.    The most  important  feature to 

examine  is  the scaling.    The user should note whether the data are being 

plotted as  functions of f or of w = 2Trf.    He should also note the amplitude 

and ask whether it corresponds  to the known analytic results.     If the 

amplitude  is off by a factor equal   to the inverse of the data  record 

duration,   then the particular algorithm  is probably based on  the FST.    Also 

note whether the amplitude  is off by a factor of 2ii.    The natural  units for 

transform quantities  is  [  ]/(rad ian/second) where  I  ]  signifies the units 

of the time domain function.     If  the time domain data have units of amps, 

then  their transform will   have units of amps/(radian/second).     Sometimes 

the amplitude is multiplied by a factor of 2ir to yield data  In terms of 

[  ]/(cycle/second) or  [  1/Hz.     If  the amplitude  is off by a factor of  10 

or  10  ,  then the user should determine whether the algorithm  is  inter- 

preting the amplitude data  in terms of milli[ ] or ki1o[  ] or the time in 
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terms of milliseconds or microseconds.    After this examination  is complete, 

the user should obtain an  inverse transform to verify  it the original  wave- 

form   is obtained.     Finally,  he  should multiply  the  transforms of  two known 

functions and obtain the inverse of  the product.     If the user  is confident 

that  he understands the idiosyncrasies of  the particular algorithm he  is 

using,   then he  is  ready to process  test  data. 

Once  the user obtains his processed trans- 

form data,  he should  immediately examine  some of   its features.     For 

instance,  he should check to see  if known  resonances are occurring at  the 

proper  frequency.     The resonant  frequency of a time domain oscillation can 

be estimated by noting the period of the osculation.     If there  is not a 

prominent  peak at  this frequency  in  the  transform data,  then the scaling 

procedures  employed during the digitization process are probably  in error. 

The user  should also check the amplitude of the  transform data at prominent 

locations  such as at. a resonant  peak.     Estimates of the amplitude can be 

obtained  by comparini the transform of the experimental data to that of 

some  simple function that closely resembles  it.     Other features  that  the 

user should check are the low and high frequency  regions.    Excess amplitude 

at  low frequencies could mean  that  there was baseline offset or baseline  rota- 

tion error  introduced during digitization   (see Subsection 3.5.6).    Excess  ampli- 

tude at high frequencies could be due to noise  (see Subsection  3.5.iO  or  trun- 

cation error  (see Subsection  3.5.5).     If  the transform data have periodic 

oscillations with a period equal  to the  inverse of the data  record duration, 

then  this   is a system of truncation error  (see Subsection 3.5.5).     If the data 

have notches,  that could  imply  that  the original   data record consisted of  the 

superposition of  two or more signals   (see Subsection 3'3«11-5).     If the  transform 

data have  periodic notches or peaks,  then  the original  data  record was produced 

by a multiple  reflection process  (see Subsection  3.},]].6).    The notches   in  the 

ARES environment spectrum are due to multiple  reflections   inside the pulser. 
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S.S^'^.S Time Domain Sampling 

The sampling used to characterize an 

experimental time domain record is an important consideration in the use 

of the FIT. Common sense says that there should be a sufficient density 

of samples such that a piecewise linear fit closely approximates the 

original data. However, the minimum spacing between samples is determined 

from two criteria. One is that the highest frequency component that one 

might have confidence in is inversely proportional to the minimum distance 

between samples of the time domain record. 

max  At . 
mm 

(Eq. 3-3k5) 

This criterion is not as precise as the Nyquist criteria used with the 

TSFT or the DFT(FFT) since samples for the FIT usually don't have constant 

spacing. However, it does constitute an engineering guide to the highest 

possible credible frequency. The second criterion is the minimum time 

resolution available from an oscillograph. The minimum time resolution, 

(tR), fixes the minimum sample internal and, hence, the maximum frequency 

for the transform data. 

max 

If one has an oscillograph recorded at 100 nanoseconds/division, then the 

minimum time resolution will be about 10 nanoseconds and the maximum fre- 

quency will be about 100 MHz. 

A damped sinusoid is characteristic of most 

EMP response data. Therefore it is interesting to investigate the effect 
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of sampling  rate on the resultant transform data.    Figure 3"12 shows the 

waveform that will   be used for this example.    Figures 3"13 and B"!^ show 

the transform of this function when  it  is sampled at equal  increments at 

a  rate of four and eight samples per cycle.    The transform was calculated 

by evaluating the analytic form of the time domain function at the desired 

values of time.    Then a FIT algorithm was used to compute the transform 

using  the values of the sampled analytic  function.     Inspection of Figures 

3-13 and 3-1^ shows large errors occurring at multiples of the inverse of 

the sampling  interval.     In this example,  a period is equal  to 0.1  seconds. 

A sampling  rate of four samples per cycle implies At ■ 0.025 seconds.     The 

largest error occurs at a frequency equal   to 1/.025 = ^0 Hz and  its 

harmonics   in Figure 3~13.    The  large error  is centered at 80 Hz  in the 

example shown  in  Figure lm\k,    THese errors are due to use of equally 

spaced samples and are predicted by use of Equation 3~218. 

Three conclusions can be obtained by 

inspecting Figures 3"13 and l-]k.    One  is that the error at every frequency 

is greater when using a smaller number of samples.    Another  is that the 

error becomes quite  large at a frequency approximately equal  to one half 

of the inverse of the sampling  interval.     However, this frequency  is  the 

same as the Nyquist frequency.    Therefore, the Nyquist criteria   is a use- 

ful  guide  in choosing sampling rates to use with the FIT.    The final   con- 

clusion  is  that  the waveform should be sampled from eight to 10 times per 

cycle.    Then the "Nyquist frequency" will  be four to five times higher 

than  the center  frequency of the resonant peak,     in this case,  the Q of 

the 1 esonance can be determined accurately.    Higher sampling rates would 

be desirable, but they would be impractical  to achieve  in most cases. 

Although the FIT usually does not employ 

equally spaced data, these examples  illustrate limitations that are 

pa^ticily true when using unequally spaced data.    This fact is demonstrated 

in Figure 3"15 which shows the transform of the same time domain function 

when using unequally spaced  Intervals typical  of those produced by most 
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digitizer systems.    The time  increments were generated  in the following 

way.    A copy of Figure 3"12 was placed on the digitizer surface and the 

waveform was digitized  in a standard manner.    That   is,  points were obtained 

at peaks,  zero crossings, and  regions of high curvature.    An average of 

eight samples per  cycle was obtained.    Then these values of time obtained 

by the digitizing process were used to evaluate the analytic function. 

Finally the FIT algorithm was used to calculate the transform using the 

unequally sampled data from the analytic function. 

Inspection of  Figure 3~15 shows two 

interesting features.    One  is  the large error  in the vicinity of 20-25 Hz 

which  is similar to that  in Figure 3-13.    This error  is due to the nearly 

periodic sampling at  the peaks and zero crossings.    The second feature  is 

that the transform has a noise-like appearance and  large fluctuating 

errors at frequencies greater than the "Nyquist frequency."    In this case, 

the "Nyquist frequency"  Is equal  to one half the  inverse of the average 

sample  interval.    Therefore,  the conclusions presented above for equally 

spaced sampling are valid for   unequally spaced sampling.    Two additional 

conclusions are also evident.    One is that equally spaced sampling should 

be used,   if practical, with the FIT since the errors are more predictable. 

The second conclusion   is that Equation 3~3'»5 presents an overly optimistic 

mersure of the highest credible frequency.    A more useful  definition  is 

given by 

< f        < 
T*Kt~ 'max      2At 

ave ave 
(Eq. 3-3'»7) 

where At   is the average sampling interval when using unequally spaced 

samples. 
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When using the FIT, the choice of fre- 

quencies to be computed are left to the discretion of the user. The 

previous discussion shows that it is meaningful to restrict the frequency 

range to (0, f  ). Then the only decision is the choice of the fre- 3     ' max ' 
quency increments. Reference to the FST or DFT would indicate that the 

frequency increments should be equally spaced with a value equal to the 

inverse of the data record length. However, one rarely has a data record 

length that spans the entire duration of the signal. Therefore, use of 

the criteria could provide poor resolution, especially for narrow resonant 

peaks. A more useful criterion that is a compromise between resolution 

and running time economy is the following 

&f = 1/3T (Eq. 3-3kB) 

This is the criterion that has been used at ARES. 

LS.^.^.k    Inverse Transforms 

When computing inverse transforms, the 

criteria for specifying a frequency array are slightly different than 

those presented previously. An FIT of a time domain function has frequency 

domain components at all frequencies regardless of whether they are 

accurate or erroneous.  Furthermore, all of these components are required 

to exactly reproduce the original function when an inverse transform is 

calculated. The practical problem is to obtain some useful criteria for 

defining an upper frequency such that the error in performing an inverse 

transform is minimized. One will note that truncating a frequency domain 

function above some frequency, f  , yields a resultant function, 6(2irf), 

equal to G(2irf) Rect-,  (f). Reference to Equation 3-67 shows the trans- 
max 

form of G(2iTf) is equal to 
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F'1{G(27rf)} = g(t) * 2fmax Sinc(2fmaxt) (Eq. 3-3^) 

The effect of this convolution Is to reduce the time resolution of g(t) to 

a time approximately equal to the width of the central peak of the Sine 

function. Thus the minimum time resolution, t . , would equal f  . Now mm max 
one defines the upper cutoff frequency by specifying the desired value of 

t . . Then mm 

Uv = ]/t
m\n (Et1- 3-350) max    mm 

Now one must choose a sampling interval, 

Af, for the frequency domain function. Common sense says that the fre- 

quency domain function must be sampled sufficiently to produce a good 

piecewise linear fit to the original function.  In most cases the Af 

defined by Equation S^S will suffice.  However, one must note that 

G(2iTf) Is a complex quantity that is specified in terms of its magnitude 

and phase. Adequate sampling of the magnitude is not sufficient. The 

phase must also be considered. One will note that any trigonometric 

function is periodic with a period of 2T\  radians. Therefore, the phase 

difference, A(|i(2irf), between adjacent sample points must be less than 2Tr 

to avoid ambiguity. 

)(2uf) < 2TT (Eq. 3-351) 

Once again Equation 3*3^8 provides useful criteria in most cases. How- 

ever, if the time domain function is shifted from the origin by an amount., 

t , then the phase of the transform will contain an additive term equal 

to 2TrfT . When obtaining an inverse transform, the total phase change, 
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including this additive term, must be less than 2TT, Figure 3~16 shows 

an example where these phase sampling criteria are violated. 

3.5.3.5  Use of the FFT 

Most of the material presented in Subsection 3.5.3.^ 

on the FIT is applicable to the FFT. That is, one must use high quality 

experimental data, evaluate whether the raw data have the potential infor- 

mation content desired, familiarize oneself with the particular algorithm 

being used, and perform spot checks on the processed results. The 

rationale in setting At, Af, etc. is essentially the same for the FFT 

as for the FIT. The only major difference is the aliasing criteria and 

the fact that At, Af, f  , and t   are not independent of each other. 
max     max r 

Subsection 3.'4.6 on the DFT should be consulted for the details on aliasing 

and the interrelationship of the time and frequency domain parameters. 

In fact, all the material in Subsection "i.k.b  is applicable to the FFT. 

There is, however, one major difference between the DFT and some 

particular algorithms for the FFT. This difference involves the method 

of displaying inverse transform data and emphasizes the importance of 

familiarizing oneself with the specific algorithm being used. 

The following example shows some typical results that 

can be obtained from some FFT algorithms. The user must be alert for 

those characteristics so that he can choose the number of sample points, 

N, properly. Assume one has two time domain functions, g.(nA) and g-(nAt). 

Then obtain the FFT of these two functions. Finally, obtain the inverse 

of the two frequency domain functions to yield g.(nAt) and g9(nAt). 
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g,(nAt)  | 

Flg^nAt)} 

g^nAt)} 

N 

g9{nAt)  A 

F{g (nAt)}  A 

 \ \ \  I i 1 MH—I- 
0 

g2(nAt) } 

Note that the resultant time domain data are symmetric c'bout the midpoint 

of the interval in a manner similar to the frequency domain data. Also 

note that the resultant time domain data are one half the magnitude of 

the original function and that g.(nAt) is aliased in the time domain. Now 

assume one adds N zeros to the two original functions and repeats the 

transform and its inverse. The resulting waveforms are sketched below. 
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g^nAt)   t 

i1 (nAt) 
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N 2N 
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N 

In this case, aliasing of g.(nAt)   is eliminated and the amplitudes are 

correct.    Now assume one multiplies the transforms o;   g^n&t)  and g  (nAt) 

defined over an  interval  2N and  then computes the averse transform of the 

product.    This procedure  is equivalent  to convolving gAt) and g,(t)  to 

yield g-(t).    The result obtained by the above procedure, g   (nAt),  is 

sketched below. 

g3(nAt) 

0 N 2N 
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Note that  the resultant convolution is aliased.    Now assume one adds suf- 

ficient zeros to g.(n&t)  and g-(nAt)  such that these functions are defined 

over an   interval  of size '»N.    Then repeating the transform, product, and 

inverse transform process as described above, one obtains the convolution 

sketched below. 

g^(nAt)     ^ 

In this case, the resultant time domain data are not aliased. However, 

the amplitude Is a factor of two too large. The above example can be 

generalized. Assume one has two time domain sequences of length M and N 

and one wants to affect their convolution using the FFT. To avoid 

aliasing, one must first add sufficient zeros to each sequence such that 

the total length is 2(M+N). Then the transform, product, and inverse 

transform procedure is performed.  If the resulting function is divided by 

two, then the correct result will be obtained. 
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3.5-3.6    Comparison of  the FIT and the FFT 

The FFT and the FIT are both acceptable transforms to 

use for  the analysis of EMP data.    The choice of one transform versus 

another depends on  three factors which the user must evaluate for  his 

particular case.    One factor  is availability.     It  is expedient  to use 

existing computer codes rather than write new software.    The second factor 

is ease of understanding.    Most engineers find the FIT easier to understand 

than the FFT.    Therefore,  there is a higher probability that the FIT will 

be used properly.    The final  factor   is economy.    The FFT runs considerably 

faster  than the DFT for the same number of samples.    The following table 

compares central  processor running time on a CDC 6600 for the two trans- 

forms. 

TABLE 3-5 

COMPARISON OF RUNNING TIME OF THE FIT AND THE  FFT 

i   NUMBER OF 
|    POINTS 

RUNNING TIME (SECONDS)      | 

FIT FFT      1 

256 

512 

1024 

7.778 

30.965 

122.966 

0.040     | 

0.085    | 

U.176    | 

It should be noted that  in practical  applications,  the running  time advan- 

tage of the FFT over the FIT  is not  likely to be as great as that shown 

above.    The  reason  is that fewer points are required to characterize a wave- 

form with unequally spaced points.    Therefore,  the FIT will  use,   in general, 

fewer points than the FFT which requires equally spaced points. 
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3'5.'*    Truncation Errors 

3.5.'*.l     Introduction 

So called truncation error results  in a Fourier trans- 

form whenever an  Incomplete or truncated time function  is used  in the 

transform.    As discussed  in Paragraph 3«2.3  (Time Tying),  truncated EMP 

transient waveforms result when only the early portion of a total   response 

waveform is  recorded on the oscillograph.     This partial  recording technique 

is necessary to expand the early portion of the response to obtain suffi- 

cient oscillograph resolution of high frequency data which often occur  in 

the initial  portion of the response. 

As  indicated  in Paragraph 3.2.3.  time tying of wave- 

forms  is the  Ideal method of eliminating undesired truncation effects  In 

transforms.     However,  It was also Indicated that time tying techniques are 

not widely used because of apparent  implementation difficulties.    Therefore, 

truncated time waveforms are often used   In EMP data analysis. 

J.S.k.2   Manifestation of Error in the Frequency Domain 

In the material  that follows, the effect of trunca- 

tion on transforms will  be considered  In some detail  and techniques to 

minimize the effects without using time tying will also be considered. 

For casual time functions, the FIT has been defined 

as  (Equation 3-19) 

/09 

g(t)e"jutdt (Eq. 3-352) 
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If g(t) Is truncated, then Equation 3-352 becomes 

T 

G(a)) »f  g(t)e"jüJtdt (Eq. 3-353) 

o 

where truncation of g(t) is assumed to occur at t = T. The effect of 

truncation on a Fourier transform can be conveniently analyzed by recog- 

nizing that truncation of g(t) is mathematically equivalent to multiplying 

g(t) by a rectangular function of unit amplitude and range t = 0 to t = T. 

A function which closely resembles this rectangular function has been 

previously defined in Equation 3-77 as 

KectT(t) =1,   |t| < T/2 

= 0,   |t| > T/2 (Eq. 3-35^0 

Note that Rect_(t) is not exactly what is needed since it is centered on 

the origin. However, it can be conveniently shifted to the right by T/2, 

RectT(t - T/2) ■ 1, 0 < t < T 

- C, t < 0 and t > T    (Eq. 3-355) 

The transform pair for RectT(t) is given in Equation 3"85 as 

RectT(t) *-*■ T Sinc(fT) (Eq. 3-356) 

* 

; 
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The shift to the right of T/2 modifies the transform pair as follows. 

RectT(t - T/2) *-► e"J'uT/2T Sinc(fT)     (Eq. 3-357) 

The effect of multiplying g(t) and RectT(t - T/2) is shown below. 

g(t) 

A 
RectT(t-T/2) i(t) 

\A—T 

Next, if one recognizes that multiplication of two 

functions in the time domain results in the convolution of the transforms in 

the frequency (see Equation 3-l8'4 and 3-185), the following relationship 

can be wri tten 

-jwT/2. 
g(t) • RectT(t - T/2) *+  GU) * e JU,,"tT Sinc(fT)  (Eq. 3-358) 

Therefore, any time a time function is truncated,  its transform is convolved 

with a Sine function. 
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At this point  in the analysis difficulties arise. 

Unless g(t)   (and hence G(u))   is known  in closed form, the convolution 

cannot be computed.    Also if G(ü))   is mathematically complicated,  the con- 

volution may be very difficult to perform.    One can, however, analyze the 

general  effects of the truncation by considering certain properties of 

convolution and  the Sine function. 

First,  the convolution of any two functions tends to 

have a smearing effect on the result.    As a very simple example, assume 

G(u))   is the transform of a pure cosinusoid  (i.e.,  two impulses). 

* 

0) 0) 

Then convolving G(tü) with T SlncCfT)  results  In 
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Thus, if G((i)) has resonant peaks, which is characteristic of EMP response 

data, these peaks wiil be smeared or broadened if g(t) is truncated. 

The amount of smearing or broadening is a function 

of how severely g(t) is truncated. For example, as T ->■ " in RectT(t), 

then Sinc(fT) approaches a delta function arid there is no error in G((i)). 

This is, or course, expected since T -> "o implies no truncation. On the 

other hand, as T ->■ 0 in Rect_(t), then T Sinc(fT) broadens with its 

first zeros approaching infinity, and severe smearing occurs. 

A second viewpoint for considering the effects of 

truncation is to look at a specific function such as the double exponential, 

which is characteristic of the EMP simulator forcing function. 

g(t) = e'at-e~ßt,      t > 0 (Eq. 3-359) 

Rather than performing the frequency domain convolution of G(a)) and 

T e J   Sinc(fT), the effects of truncation can be more conveniently 

handled by evaluating the Fourier integral between limits of t = 0 and 

t = T (see Equation 3-353). First, the transform of the double exponential 

is repeated (see Equations 3-72 and 3-73) so that it can be used for com- 

parison. 

-at -ßt     1       1  
e  -e   -^- —T—! ., T . 

a + jo)  f5 + jo) 

b * >)<;* ia       (^3-360' 

! 
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Now the truncated  function  is evaluated  as, 

T 

(  (e^-e-^e-^dt =-^ e"(a + jü))t 

J    v a + JüJ 
j    "(6 + jw)t 

ß + jw 
T— e 

1 1 -(a + ju))T -(ß + ju))T 
+ e 

a + j'jj      ß + jo) a + JüJ 6 + ja) 

(Eq.  3-361) 

At>   is common   in  EMP functions,  ß >> a.     Therefore,   Equation  3-361 can  be 

simpli fied  to 

ß - a 
-(a +  j(u)T 

G("' ■ gTjfmVu -   E . ra   ■   (E'- 3-362) 

where: ß   -  a /     .   •   \ 7o  .   • A = GU),  the untruncated function (a + JCJ) (ß + ju) 

-(a + ju))T 
—7—;—.   \    = E(ü)),  the truncation error function, 

(a  + jw) 

it can be seen  that  the untruncated function  G(ii))   rolls off at '♦O dB/decade, 

whereas the error term,  E(ui)  rolls off at only 20 dB/decade. 
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G(w) 

-20 dB 

-^40  dB 

a ß 

Elu)) 

X -20  dB 

a w 

The effect of the error term E(u))   is to cause GM  to roll off at -20 

dB/decade instead of -'»O dB/decade.    This can be seen by modifying 

Equation 3*362 as follows 

G(ü)) 
1 ß 

a + ja) j ß + ju) 
a -aT  -j uT 
 e      e (Eq.   3-363) 

The —r-r— term causes a -20 dB/decade roll-off.    The first term in the 
a + jo) 

brackets would tend to cause G(u))to roll  off at -40 dB/decade after 

to > ß.    However,  the second term in the biacktts becomes predominant 

for  large values of w and causes the total   expressiun   to roll  off at 

-20 dB/decade.    The exact point at which this occurs  is dependent on  the 

values of o,  ß,  and T. 

This decrease  in roll-off rate by -20 dB/decade  is 

characteristic of truncation which causes amplitude discontinuity*  in 

See Paragraph 3.3.3.5 for a thorough discussion of discontinuities on 
transforms. 
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g(t)  which   is  the case  for the double exponential   function. Now consider a 

function which can be  truncated such that  there   is either an amplitude 

discontinuity or  slope discontinuity when  truncated.     Such a function   is 

the damped  sinusoid, 

at 
g(t) = e      sinßt (Eq.   3-364) 

The following two plots   illustrate first  how amplitude discontinuity and 

slope discontinuity occur depending on the truncation  point. 

g(t) 
Amplitude  Discontinuity 

Slope   Discontinuity 

The Fourier  transforms   for the amplitude and  slope discontinuous damped 

sinusoid are shown   in   Figures 3-17 and 3-18 respectively.    Each overlays 

the transform of   the untruncated  function.     Note that   in the case of the 

amplitude discontinuous   function,  the transform  rolls  off at a slower  rate 

(-20 d8/decade as opposed  to -^»0 dB/decade)   than  the  true transform.     In 

the case of  slope discontinuity,   the  roll-off   rate   is  unaffected.     This 

suggests  that   if  truncation must occur,   less error will   result   in  the 

transform  if  the  truncation causes only slope discontinuity  in  the time 

function. 
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Ideal Transform 

Transform for Slope 

Discontinuous Function 

Figure 3-18.     Fourier Transforms  for  Ideal   g(t) 
and Slope Discontinuous  g(t) 
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Note also the ripple In the transforms.    This is 

characteristic in transforms of truncated functions.     Referring back to 

Equation 3"363. one can see how ripple would result  In the transform of 

the truncated double exponential  function.    The second term in the 

brackets contain-: a multiplicative factor of e ■'     .     This factor can be 

expressed as 

e Ja>    ■»    cosuT + j  sinuT (Eq.  3"365) 

which explains the oscillatory nature of the transform. 

The characteristic ripple in the transforms of 

Figures 3" 17 and 3" 18  is caused by the same type of terms  in the transfer 

equation of the truncated damped sinusoid.    This equation  is given below 

without derivation. 

G(ü)) 
Ca + j(ü) 

 _ | ,  + /«e'^sinßT  X-juTT + 

(Eq.  3-366) 

Note also from Figures 3'"17 and 3~18 that the ripple is much less severe 

for slope discontinuity.    This further suggests that  if truncation must 

occur, slope discontinuity causes less error  in the transform than 

amplitude discontinuity.     The point at which truncation occurs can be 

controlled in the digitizing process. 
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3»5.'».3    Methods for Minimizing Errors 

Now,  what can be done to minimize  truncation effects 

beyond time tying or selection of the truncation  point   to force only slope 

discontinuity?    Two techniques  have been tried with some success.    The 

first technique amounts  to artificially extending the truncated time 

function g(t).     The second amounts to passing g(t)   through a window or 

filter.    Note    that  the general   effect of truncation   is  to create a time 

function with higher  frequency   information  than  the untruncated time 

function.    The effect of  a given  type of truncation   (amplitude,  slope, 

second derivative)   can  be  formally stated as  follows:      If the Mth deriva- 
-M 

tive of g(t)   is   impulsive,  then   its transform G(ü))  dies away  as f    .     In 

the case of amplitude discontinuity,  the first derivative of g(t)   is 

impulsive and  therefore G(Cü)  dies away as 1/f.     For slope discontinuity, 

the second derivative  is   impulse, and thus G(a))   dies  away as   1/f . 

The  first  technique for reducing  truncation effects, 

artificial  extension of g(t), works only for amplitude discontinuities. 

It  is typical   to assume  that g(t), the EMP  response waveform,  has the 

form of the sum of damped  sinusoids 

g(t)  =y%~0'it sin((5. + *.)t (Eq.   3-367) 

i=0 

One could attempt  to somehow estimate the values of a.,   3.»   and $.  and 

extend the truncated function based on these parameters.     However,  such 

estimation tends  to be a very complex and  time consuming problem.    The 

most common approach to artificial  extension  is  to use an exponential 

function which will  be denoted a(t). 

37^ 



so 

g(t) sinßt a(t) 

Extending g(t) with the exponential eliminates the rmplitude discontinuity. 

However, a slope discontinuity can result. The slope discontinuity can 

also be eliminated if the slope of a(t) is forced to equal that of g(t) at 

khe tie point. The slope of a(t) at its initial value is 

da(0) 
dt 

de ■at 

dt 
= -a (Eq. 3-368) 

If g(t) is truncated so that its slope at t = T is close to zero, then a 

for a(t) must be chosen very near zero to effect a slope match.  However, 

when a.  is close to zero, the exponential decays very slowly and g(t) + a(t) 

must be allowed to extend a significant length beyond t = T if truncation 

is not to occur again.  Therefore, it is desirable to have the slope of 

g(t) at t = T somewhere on the order of -1 which should keep the artificial 

extension from becoming too long. 

One must keep in mind that any type of artificial 

extension of g(t) adds information to g(t) which may be quite different 

from the information in g(t) which has been lost. Therefore, artificial 

extension does not in any way guarantee that g(t) extended is closer to 

g(t) than g(t). The only guarantee is that extension will help minimize 

truncation effects. 

The second technique for minimizing truncation 

errors is to pass the truncated time function through a special window. By 
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passing 'g{t)   through a  special  window,   it   is meant  that  i(t)   is multiplied 

by a  function   (W(t)) which  tends  to minimize the truncatio.: effects  in the 

transform.    Several   such  functions  have been evaluated.     Each  function has 

the same general  characteristics   (i.e.. at  t = 0, W(t)  =  1 . and at t = T, 

W(t)  = 0).    Examples of such  functions are: 

(2)       W(t)   =  cos 

=  0, 

(if), o : t  i T 

,   t  < 0,   t  >  T 

(3)      w(t) i[,+cos(f)].01t< 

=  0. ,   t  < 0,   t  >  T 
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Experimental   results  for the application of windows  (1) and   (3)  are shown 

in  Figures  3-19 and 3"20  respectively.     For each case,   the upper  curves 

show the window shape and g(t)  after  it was passed through  the window. 

The  lower curves show the resulting  transform compared with the transform 

of g(t),  the untruncated  function.     Of all  windows evaluated  in  this 

experiment,   the window defined  in   (1)  tended to give the best  rasults. 

"Best"  is defined as most closely matching the true transform.     All windows 

tended  to decrease the amplitude of  the  transform at  the  resonant  peak 

(i.e.,  g(t)  = e a sinfJt).    Again,   the least decrease  in this  peak resulted 

from the use of window  (1).     The evaluation of such windows   is  still   in 

the experimental stages.    What  is  needed  for their practical  use  is 

relationships which predict  how much spectral  peaks or resonances are 

decreased when g(t)   is passed  through a  given window type.     If experi- 

mentat.on  continues  to show promise,  this method of minimizing  truncation 

effects  represents a very simple,   practical method. 

3.5-5    Numerical   Integration 

There are occasions where derivative type data are recorded 

directly on an oscilloscope.     This direct  recording   is the only alternative 

when  the signal amplitude is  low.    Another case occurs when the voltage 

across a capacitive type element   is desired and the current  through the 

element   is  monitored and  recorded.     In either case,  the derivative data 

are digitized and  integrated by  some digital computer technique.    A  large 

list of pitfalls exist when  using  these  numerical   techniques.     The follow- 

ing subsections describe two of  the more common errors when using numerical 

integration techniques. 

3.5.5.1    Time Domain   Integration 

A straightforward means of  integrating  transient data 

recorded on Polaroid film records   is to digitize the analog  trace and 

operate on  the digital  coordinate pairs   in the time domain with some 

377 



*v 

f renuency    (iit) 

Figure 3-19. Illustration of Time Window Technique for Truncation 
Error Reduction Using Window Shape   (1) 
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Figure 3-20.       Illustration of Time Window Technique for Truncation 
Error  Reduction  Using Window Sh.ipe   (3) 
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integration algorithm.    The resultant accuracy depends on factors  such as 

the particular algorithm employed and the digitizing process.     Proper 

selection of an  integration algorithm  is widely discussed  in standard 

references on numerical  analysis and will   not be repeated here.    The 

sensitivity of any integration  technique to certain small  systematic 

errors   in the digitization process  is not widely appreciated,  and  this 

topic will  be discussed  in  the following paragraphs.    Also discussed   is 

a means of minimizing these error contributions to the integrated data. 

Any digitization process converts a  recording of the 

analog waveform into a series of coordinate pairs based on the coordinate 

system of the  instrument.    These coordinate pairs are calibrated by 

digitizing additional points to define the coordinate system of the analog 

waveform relative to the coordinates of the digitizer.    The calibration 

data are used  to scale the amplitude and time axes,  to locate the coordi- 

nate system origin, and to define the rotation angle of the analog  record 

coordinate system relative to that of the digitizer reference plane or 

working surface. 

Small   errors  in calibration occur even when using 

the best procedures and equipment.    These errors are primarily due to the 

limited quality of the analog data record.    The finite trace width of 

both the waveform and the gridlines cause uncertainty in defining the 

precise coordinates of the data.    Additional  difficulties  in defining 

precisely the data coordinates are due to the limited writing speed of 

the oscilloscope, poorly developed film resulting in  low or uneven con- 

trast,  poor or uneven  illumination of the gridlines, and  the  inability 

to distinguish waveform, gridline, and calibration pulse data  in  the 

neighborhood where these traces  intersect. 

The impact of these small errors depends on  the 

application of the calibration data.     Errors  in scaling result  in the 

same relative error for both the original  and the integrated waveforms. 
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On the other hand,  small  errors  in deftntng the rotation angle or the 

zero amplitude baseline result  in  relatively large errors  in the 

integrated waveforms. 

The impact of small  errors  in rotation angle or  in 

the baseline will  be demonstrated  in the following example.    The resultant 

waveform consisting of a derivative signal,  f'U), with baseline offset 

and rotation angle errors is expressed as 

eb f'R(t)  = f'U)  + ea +^t (Eq.   3-369) 

where T is the duration of the analog data record. Consider two repre- 

sentative examples of f'Ct), namely 

f. (t) * -jL (e-at-e-ßt) 
(Eq. 3-370) 

f,|i(t) =^-Ce"Yt Sin6t) 

It  is  realistic to assume that the error terms, e    and e. , will  equal   a 

given percentage of the full  scale defle    ion of the record of Equation 

An extremely small estimate for b^th these error terms is 1/2 

percent of the peak deflection. Therefore, the resultant derivative 

waveform for the two examples  becomes 

f R|(t) = ^ (e"at -e"8t)  + .005(fJ - a)(l  + t/T) (Eq.   3-371) 

f,R||(t) = ^e"Yt sinöt + .005 5(1  + t/T)   . 

381 



"S 
"« 

Upon   integration,  these equations become 

fR|(t) -   (e"at  -e"ßt)  + .005   (ß " a) (t + t2/2T) 

fR||(t)  - e"Yt  sinfit + .005 6(t + t2/2T) 

(Eq. 3-372) 

Plots of Equation 3-372 for  representative values of a,  fj, Yi  and "5 are 

shown  in Figure 3-21.    Note the divergent character of the resultant wave- 

form at late times.    Also,  note that errors  in the derivative data 

equaling 1/2 percent of peak can  result in  integrated results with error 

terms exceeding  100 percent of the peak of the true signal. 

The detection of these offset and rotation angle 

errors is a prerequisite to any corrective procedure.    The detection is 

best done by  inspecting the  integrated time domain waveforms since the 

presence of the small  errors may not be evident  in the derivative data 

record.    Transient waveforms encountered in EMP tests eventually decay to 

zero amplitude at late times.      Therefore,  the detection of a  late time 

divergent trend   in the data   is an   indication of the existence of baseline 

offset or rotation angle errors.     This observation can be confirmed, at 

times, by the inspection of a Fourier transform of the derivative data. 

The  Fourier transform of the dc offset and  ramp type errors over the time 

from 0 to T are given by 

_,    , _ fsinmT/Z 1   -jü)T/2 
F{ea}"eaT 1-W2-Je 

c/ek    \      ebrsinü)T/2      -ju)T/2l    -j (ü)T/2 + Tr/2) F{^t}"~L—Tz"-6 Je 

(Eq.  3-373) 
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6/21.  -   10' 

Time - u«c 

Figure 3-21 Integral  of Typical  Derivative Waveforms 
with Ramp and dc Offset Errors 
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Both of these terms have significant amplitude at  low frequencies.    There- 

fore,   the existence of excess amplitude or negative slopes   In  the low 

frequency portions of a Fourier transform of the derivative data   is another 

Indication of these errors.     Figures 3"22 and 3"23 show Fourier  transforms 

of  the resultant derivative wjveforms given by Equation  3~371»     Note the 

excess amplitude and negative  slopes at low frequencies as well   as the 

notch and fine structure that almost  Inevitably accompanies  the Fourier 

transform of the sum of two waveforms  (in this case,   f'(t)  and  the error 

terms). 

3.5.5.2    Correction of Time Domain   integration  Error 

There  Is no foolproof or complete way of eliminating 

these error contributions.    Therefore,  the analyst must use judgment  in 

adjusting and  interpreting the data.    The first step   in a corrective pro- 

cedure  is to redigltize the analog data record   if offset or ramp type 

errors are evident   In  the digitized derivative data.     Since there  is a 

practical   limit  In the amount  this error can be reduced by careful 

digitization,  the analyst must decide whether there are any  Improvements 
\ 

that can be obtained by this  reprocessing.    The second  step  in a corrective 

procedure is to find some means of  treating the digitized data with 

existIng errors. 

Simple criteria for correcting the data are based on 

the observation that the  Integral  of the derivative data record  should 

equal   zero at  late times.    This  statement  is based on the fact  that the 

physical observable  is a  transient waveform that decays  to zero at  late 

times,  and that  the recorded data are the derivative of this physical 

observable.     If the  integral  does  not equal  zero,  then a constant   is sub- 

tracted from the derivative data  such that the  integral   Is   Identically 

equal   to zero.    Let us examine the consequence of applying these criteria 

to Equation 3-370.    The definite  integral of Equation 3-369  is 
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fR(t)dt f(T) f(0) + (ea + e./2)T. a   D 
(Eq. 3-374) 

In this case, f(0) ■ 0 since f(t) has no impulses at the origin.  Equating 

Equation 3-374 to a constant, 9, times the time duration of the data record, 

we find 

81 - [f(T)/T + e + ek/2]T 3     D 
(Eq. 3-375) 

If 6 is subtracted from Equation 3-369, a corrected data record for the 

derivative waveform is obtained 

f'RC(t) = f'U) - f(T)/T + eb (t/T - 1/2) (Eq. 3-376) 

Integration of Equation 3*374 yields 

/' 
f'RC(Odt = f(t)  - f(T)(t/T)  + (eb/2) t (t/T-1). (Eq.  3-377) 

A plot of Equation 3-377 for the two analytic examples shown in Figure 3"17 

is presented  in Figure 3-2'4.    Note that the resultant error is reduced con- 

siderably,  but it is not eliminated.    This procedure has been applied to 

experimental  data records.     Figure 3-25 shows an example of a numerically 

integrated waveform before and after applying the correction.    Although the 

true version of this waveform is unknown,   the corrected data appear much 

more credible than the uncorrected version. 
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1.0 

Ideal  Waveform, e      -e 

Equation 3-377 -  Integral  of Corrected Data 

—Equation 3-377 -   Integral  of Corrected Data 

' Ideal Waveform,  e      sin(6t) 

"tl !i $ ^— :s       -.6       .7 

Time - ysec 

Figure 3-2'».  Integral of Typical Analytic Derivative Waveforms with 
Ramp and dc Offset Errors Using Total Area Correction 
Technique 
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There are several  observations to be made concerning 

this error  reduction procedure.    One  Is  that the contribution of  the offset 

error,  e.,   remains.    No practical  method of eliminating E.   has been 
b o 

demonstrated  to date.    The second observation  is that the data acquisition 

personnel   should strive to record adequate  late time data  in order  to 

insure that  f(T) approaches zero.     The term,  f(T),  is a bias error  intro- 

duced   in the correction procedure.     A third observation   is that   if f(T)   is 

approximately equal  to zero,  then  the maximum error occurs at T/2.    The 

error at the beginning and end of  the record  is zero.    The final  observa- 

tion   is that the analyst must use some caution and judgment  in  interpreting 

the corrected results because of  the residual error terms. 

3.5.5.3    Frequency Domain   Integration 

Another method of numerically  integrating a derivative 

data  record   is by use of Fourier  transforms.    The common procedure  is  to 

obtain a  Fourier transform of the derivative data record, multiply  this 

complex array by  (ju)     , and obtain  the  Inverse transform of the  resultant. 

This procedure  is not generally valid.    However, use of this  Invalid  pro- 

cedure can be part of a technique  to reduce the effects of offset and  ramp 

type errors previously discussed.     The reader  is referred to Paragraph 

3.3.11.7 for a thorough discussion of the time domain - frequency domain 

relationships for time domain  Integration. 

3.5.5.'»   Correction of Frequency Domain  Integration Errors 

Now consider the special case where the  Integral  of a 

derivative  Is desired 

/'■ 
f(t) -   I    f Ct)dt CEq. 3-373) 

o 
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If f{o+) = 0,  a condition that is always true with practical experimental 

data, then the Fourier transform of Equation 3-378  Is given by 

L w ^    J 
(Eq. 3-379) 

F(ui). 

The interpretation of this result is that the Integral of the derivative 

response of an experimental  transient process can be obtained by dividing 

the Fourier transform of the derivative data record by jui and obtaining 

the inverse transform.    However,  If there are error terms corresponding to 

the Fourier transform of 

EI(U)-FM 

E2(a.)  - F{^ t2| 

(Eq.   3-380) 

Then their dc contribution to the inverse transform should be considered 

according to Equation 3-379. 

It should be noted that the proper inverse transform 

of the error terms is not necessarily desired. What is desired Is to 

eliminate all contributions of the error terms to the integrated time 

domain result. Therefore, elimination of the R(o)/2 term in Equation 3-379 

will help to reduce the effects of the error since there is no contribution 

to the separate R(o)/2 term from the desired signal. This thinking can be 

extended by noting that the low frequency portions of Figures 3-22 and 3"23 

are primarily the result of the error terms. Therefore, the qualitative 

conclusion Is that the estimate of f(t), f (t), would be improved if the 
e 

low frequency portions of the resultant transform are eliminated. Thus 
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fe(t) [FU) + E(a))] 
jut . 

eJ  du» (Eq. 3-381) 

where E (u) Is the abbreviation for the error terms in Equation 3-379.  If 

the low frequency portions of F(ü)) are small compared to the peak of F(a)) and 

negligible compared to E(b)), then it is possible to select a cutoff fre- 

quency, (o , such that f (t)-f(f). 

The Fourier transform of the derivative data record 

used to obtain Figure 3-25 is shown in Figure 3-26. The low frequency 

error contributions are evident. Choosing u lit  to be 2x10 Hz and obtaining 

the inverse transform results in an estimate of f(t) as shown in Figure 

3-27. Compare Figure 3-25 with Figure 3"27. The frequency domain tech- 

nique results in some improvement over the uncorrected case. Note the 

frequency domain technique for minimizing errors results in an apparently 

better looking result in this example. The analyst should consider using 

both time and frequency domain techniques. Neither is strictly accurate. 

However, one may be superior to the other in a specific case. 

3.5.6 Transfer Function Estimation 

3.5.6.1 The Transform Approach 

Determination, or more correctly estimation, of 

transfer functions is a common objective of EMP test data assessment. The 

use of the transfer function in assessment Is covered In ceneral in Sub- 

section 3>1. The material presented in this paragraph covers the subject 

of how transfer function estimates are made from pulse test data. 
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The transfer function  is defined  in the following way. 

Assume a linear system with forcing function,  f(t),  system response function, 

g(t),  and system impulse response,  h(t). 

f(t) g(t) 

The three functions are related by the convolution integral   (Equation 3-178) 

as follows: 

/ 
g(t)    -    I  h(t   -   T)f(T)dT (Eq. 3-382) 

It has also been shown  (Equation 3-173) that the Fourier Transform of g(t) 

is given by 

G(tü)  - H(U))F(ü)) (Eq.  3-383) 

In Equation 3-383, the function, H(u)), is defined as the transfer function 

of the linear system. 

For pulse testing, f(t) and g(t) are often recorded 

test variables (e.g., f(t) may be Induced current at some point on the test 

object and g(t) Is the measured response at another point.) Then f(t) and 

g(t) are used to estimate H(u)). Equation 3-383 indicates a very convenient 
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method to estimate H(u).  If F(u)) and G(a)) are generated from f(t) and 

g(t), then H(tü) is computed by, 

H(w) 
G(u 
FTü (Eq. 3-384) 

This procedure for computing H(u)  which amounts to deconvolution  in the 

frequency domain,   is deceivingly simple.    The functions f(t)  and g(t) are 

typically contaminated with noise during the data recording and digitizing 

processes.    Now assume  that ail   the noise contamination occurs   in g(t)  and 

the contamiiated functions are defined as, 

d(t)  » g(t)  + noise(t) (Eq.  3-385) 

which imp!ies that. 

D(a>)  - G(w)   + NOISE(u). (Eq.   3-386) 

If the transfer function   is now estimated with D(u),   instead of G(u) one 

has 
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G(ü)) . NOISE(ü)) 

(Eq. 3-387) 

ui  \   ■ NOISE(ü)) H(ül) + Al) 
Inspection of Equation 3~387 shows that the transfer function estimate 

generated equals the sum of the true transfer function, H(u), and an error 

term. Now consider the behavior of this error term. F(üJ) is typically a 

band limited function and tends to zero at high frequencies (e.g., F(u) 

often approximates the transform of a double exponential function). The 

noise term, N0ISE((ü), on the other hand, can exhibit considerable spectral 

energy in the region where F-(u) Is very small. Thus, the division of 

NOISE(u) by F(u) in this region can cause large spectral noise spikes In 

H(u)). 

One can also consider what happens when the noise is 

assumed to occur only in F(u>). The estimate, H(a)), Is given by 

H{tü) 
GU) 

F(ü)} + NOISE(a)) 
(Eq. 3-388) 

Now again assume that F(u) approximates the transform of a double exponential 

forcing function (I.e., F(u)) is positive over most of Its range of interest). 

NOISE(u) is the transform of a random noise signal, and, therefore, can be 

expected to have random phase, as well as random amplitude.  If NOISE(u) is 

approximately equal in magnitude but opposite in phase to F(u), the 
A 

denominator of Equation 3-388 can approach zero and H(u)) approaches 

Infinity. In practice, very large noise spikes can occur In H(u)). The 

same sort of arguments can be made If noise is assumed to contaminate both 

f(t) and g(t). 
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Thus, one can see that the simple estimation method 

of Equation 3"38'» can produce very unreliable transfer function e'itimates. 

Figure 3-28 illustrates the effects of noise contamination on spectral 

estimates. The system transfer function shown has resonant peaks at 1, 5» 

and 25 MHz. A continuous wave (CW) transfer function estimate (assumed 

to be very close to tho true transfer function) is shown for comparison. 

The curve labeled "unflltered" was generated by the technique of Equation 

3-330 (the curve labeled "filtered" will be discussed in a subsequent 

paragraph). Note the noise spikes beyond 25 MHz. With no a priori 

knowledge of H(ü)) before the unflltered estimate was generated, the 

analyst may be very tempted to assume that these noise spikes are real 

system resonances in addition to those at I, 5, and 25 MHz. 

3.5.6.2 Methods for Improving Transfer Function Estimates 

Referring again to Figure 3-28, one can see that the 

noise in the unflltered transfer function estimates is concentrated in the 

high frequency portion of the displayed spectra. The complete reason for 

this behavior is not entirely understood. But it Is strongly believed that 

the contaminating noise In f(t) and g(t) was caused mainly in the digitizing 

process and this noise tends to be high frequency relative to the sampling 

rate for f(t) and g(t). Thus, if one has some idea at what frequencies 

the significant spectra energy in H(u}) will occur, he can sample f(t) and 

g(t) so that the significant spectra energy is in the lower portion of the 

total generated spectrum. The high frequency portion of the spectra would 

be ignored as noise contaminated and thus useless, but it would presumably 

contain no useful informat-or anyway. 

A second method, which has been evaluated with 

reasonable success. Is the Hunt Algorithm . The Hunt Algorithm is a fre- 

quency domain implementation of a time domain deconvolution algorithm 

developed by Phillips and Twomey for application to numerical data. Hunt1*: 
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algorithm is basically a digital  filter method  for generating smoothed 

estimates of H(u)  based on constrained regression.    The constraint  is to 

pick the solution for h(t)   (thus, H(ui)) which minimizes  the second 

derivative of h(t)   (or second differences of h(t)   in the case of sampled 

data)).    The result of applying the algorithm to an estimation problem  Is 

shown  in Figure 3~28 as the filtered curve.    Note that the algorithm 

acts to low-pass filter H(w).    Note also,  that  the algorithm has caused 

the filtering action to occur Just  beyond the 25 MHz peak,  which  is where 

the noise problems begin. 

So far,   the Hunt Algorithm technique has only been 

evaluated on somewhat  Idealized test data and must be extended to more 

realistic test data before  It   Is considered a proven technique.     It  is 

also somewhat time consuming   In the preparation of test data required and 

in computer time for execution.    However,   it appears to be  the most 

promising technique so far available. 

The final   technique which  is discussed   Is the coherence 

function approach.     Reliable  transfer function estimates can be generated 

if  the time domain data are statistically stationary.    This approach has 

been extended to nonstationary data  (note that EMP transient  test wave- 

forms are nonstationary) with only very limited success.    Thus;  the only 

remark that can be made about  the technique  is that the utility of the 

technique for transient data   Is still   In  its very early stages of evalu- 

ation. 
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