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DISCLAIMERS

The findings in this report are not to be construed as an official
Department of the Army position unless so designated by other authorized
documents.

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely related Government
procurement operation, the United States Government thereby incurs no
responsibility nor any obligation whatsoever; and the fact that the
Government may have formulated, furnished, or in any way supplied the
sald drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any
other person or corporation, or conveying any rights or permission, to
manufacture, use, or sell any patented invention that may in any way be
related thereto.

Trade names cited in this report do not constitute an official endorse-
ment or approval of the use of such commercial hardware or software,

DISPOSITION INSTRUCTIONS

Destroy this report when no longer needed. Do not return it to the
originator.
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obtain a sample of emission data on the T53-L-13A

and the T55-L-11A engines. A prior emission
characterization program was run with the Navy to
measure the gaseous emissions of the T63, T53, and

T55 engines; however, a second sample was deemed
necessary due to the wide engine-to-engine variations
that occur in emission levels for a particular engine
model. Tests were also planned to establish the
correlaticns between (1) component and engine emission
data and (2) data taken with averaging and single-point
probes. The effort performed here is part of an overall
plan to establish the base-line emission levels of
present high-inventory Avmy aircraft engines.

Appropriate technical personnel of this directorate
have reviewed this report and concur with the conclusions
contained herein.

The findings and recommendations outlined herein will be
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SUMMARY

This report is concerned with exhaust gas emission tests of Lycoming
‘T53-L-13 and T55-L-11 engines and combustors. These engines were
- designed in the 1960's, and exhaust emission was not a design criterion
at that time.» The purpose of the present tests was to evaluate the’-
engines and combustors from a pollutant standpoint and conipare the
results with the current state of the art. Extensive tests were made
to determine the gaseous exhaust emission characteristics of both a
T53-L-13A and a T55-L-11A Lycoming gas turbine engine. In addition,
the combustor for each engine was tested separately under laboratory
conditions simulating engine operation, with similar measurements of
gaseous emissions, —Engines were selected from those available which
performed within the guaranteed range: - Data were analyzed for the \
full range of engine power operation for CO, hydrocarbons, NO, NOx,
and COZ, and for smcke., Samples were taken with six-point traversing
probes, with a single-point traversing probe, and with multiorifice
averaging-type probes. -Approximately 1500 data points were recorded.

Results demonstrated that: S ' ~

1, Laboratory emission measurements are representative of engine
exhaust measurements,

2. Single-point probe, multiorifice probe, and single-point probe
measurements in the same pattern configuration as the multiorifice
probe produce similar results within 5 tc 10 percent of each other,

3, By comparing the engine or test rig fuel-air ratio with the gas
sample determined fuel-air ratio, we found the samnple to be
"representative' because the agreement was within 10 percent,
This is within the accuracy recommended by SAE-ARP 1256
(specified 15 percent tolerance). .

4. Emission characteristics of the engines show:

a, Neither engine produces visible smoke, except when there
is an obvious oil seal failure,

b. Trends of emittants CO, hydrocarbons, NO, and Nox are
as expected, Comparisons with Navy test data on these
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engines show some differences. However, considering
that the test differences included engine, instrumentation,
time, place, and personnel, agreement is considered to be
quite good.

L~ ~Extensive pfofile data plotted along diameters of the engine exhaust,
around the circumference of the combustor exit plane, and as isopleth
maps are presented. oo

e e e,
g u,

Exhaust profiles for these engines were found to be uniform enough {
i go that an averaging-type probe of cruciform configuration will ;
~ ingest ""representative' samples; that is, within 3 percent of the more A\
detailed and extensive single-point probe average. The averaging
prob: also has the advantage of sampling over a short time interval,
as compared with lengthy single-point traverses. Small variations ;
over a long test period reduced some of the precision of multipoint
sampling,

Although not a specific objective of this program, the measurements
provide (1) an insight into the combustion processes and (2) indications
of ways in which the exhaust emissions of the engine can be reduced,

iv




FOREWORD

The work was performed by AVCO Lycoming for the Eustis Directorate,
U.S. Army Air Mobility Research and Development Laboratory
under Contract DAAJ02-72-C-0102, Task 1G162207AA7102, as a
part of evaluation of emission properties of gas turbine engines used
by the U.S. Army. The program monitor was Sp4 Charles R. Roehrig,
The authors acknowledge the significant contributions to this report
made by the following members of Lycoming's Engineering Staff:

Messrs., J. Sweet and S. Osborn, who mauaged the test phase

Mr. J. Knight, who worked on the gas analyzer instrumentation

Mr. A. Myers, who performed the engine analysis work

Mr. G. Panas, who supervised the engine operation
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INTRODUCTION

The control of exhaust gas emissions is a new requirement for aircraft
powerplants. Although these pollutants can be classed in various ways,
those which have been identified as important for gas turbines are
carbon monoxide (CO), the nitric oxides (usually designated as NO,),
and the unburned hydrocarbons (C H,,). To asséss the total pollutants
produced from an engine and aircratt system, data is needed over the
range of engine operation from idle to maximum power. Total cyclic
emissions for an engine in one aircraft may be quite different from

the total in another aircraft using that same engine.

An item requiring consideration is the designation of the 'idle' power.
This is important because the total emissions of a helicopter over a
specified operational cycle are strongly a function of the time spent

in a cycle at "idle'". The "idle" power produces the largest quantity

of unburned hydrocarbons (HC) and carbon monoxide (CO). In addition,
"idle'" power varies between aircraft, depending on the specific
requirements for the aircraft, Because emissions are a function of
the engine power output, it follows that "idle' is not a precisely defined
term, but must be espncially specified for each engine in each aircraft
inatallatmn.

Part of the problem of measurements is the taking of exhaust gas
samples that are representative of the average exhaust gas composition,
Measurements in the JT 8D, reported in Reference 1, indicate that
large numbers of data points are required in order to obtain representa-
‘tive sampling. Since these data were recorded for large fan engines,
the obvious question is, do the same criteria apply to small turboshaft
enginel?

This report is concerned with exhaust gas emission measurements in

the Lycoming T53 and T55 gas turbine engines (Figures 1 and 2).

_A single sample of exhaust emissions for the Lycoming T53-L-13A
and T55-L-11A engines has been mcusured by the U, S, Naval Air
Propulsion Test Center, and is reported in References 2 and 3. The tests -
described in this report were of similar nature, but inclnded additional
experimental and analytlcal evaluation, as discussed in the "Objectivea"

 subsection, :

OBJECTIVES

One of the principal objectives of the present work was to test T53
and T55 cambustors under laboratory test conditions, with controlled

1
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Figure l. Lycoming T53-L-~13A Engine Cutaway,
Showing Combustor Arrangement.

: Figure 2, Lycoming T55-L~11A Engine Cutaway,
? " Showing Combustor Arrangement,




air inlet pressure and temperature, and then to compare the results
with data from these same combustors in their respective engines.

A second important objective was to sample the exhaust of both engine
and combustor at 60 single points and with averaging (manifolded)
sample probes, An analysis of these data will be used to evaluate

the effectiveness of the averaging probe, A third objective was to
compare the emission measurement results with those obtained on
the same model engineg at the Naval Air Propulsion Test Center
(References 2 and 3) and with results from other gas turbine engines
reported in Reference 4.

TEST APPROACH

The concept of evaluating emissions in the engines and combustors
was put into practice by:

1. Laboratory combustor tests under simulated engine operating
conditions, with "average'' sampling from multiorifice
probes.-

2, Laboratory combustor tests at the same engine-simulated
operating conditions, during whzch time 60-point gas sample
data were recorded,

3. Engine tests at a specified range of operating conditions, with
"average' samples recorded with a cruciform probe. Smoke
‘sampling was also recorded with an alternate cruciform probe.

ok ‘4, Engine tests at specific operating conditions, during which
i time a single-point sampling probe ‘was traversed to cover
a predesignated aampling pattern,.

The data points tested are shown in Table':l. Note that combustor
inlet prassure for some high-power engine test conditions could not
be simulated in the laboratory tests. Therefore, temperature and
fuel-air ratio simulation was correct, but not inlet pressure.
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TABLE I - Continued
Actual Engine and Combustor Rig Test Conditions
T53-1-13A
AiroTemp Air Press. Fuel Flow FiA
Test R __ __f{psia) {b/hr) Engine N1 % SHP
Condition Engine Rig Engine Rig Engine Rig Combustor Speed % SHP
1 198 - 28.2 - 150 - L0123 58 3 42
2 278 - 3.7 - 220 - .0130 70 7 98
3 300 292 39 41 222 226 L0136 5 10 140
4 410 415 64.5 65 380 s . 0147 83 30 420
5 480 487 85.7 84 570 580 . 0169 92 54 755
6 490 - 90.2 - 625 - , 0177 93.6 63 880
7 545 547 106 84 800 670 . 0203 99.6 96 1340
Air Temp Air Prass. Fuel Flow F/A
Test _CE) lpsia) —ib/hy) Engine Ny %  SHP
Condition Fngine Rig Engine Rig Engine  Rig Combustor Speed % SHP
1 305 30 42,7 43 475 481 .0110 68 7 263
2 156 . 52.7 - 625 . J0l122 75 13 487
3 392 - 58.7 - 716 . +0128 78 1?7 638
4 430 426 69 72 830 840 + 0128 82. % 27 1013
5 500 498 91 82 1320 1170 . 0166 90.8 56 2100
6 526 B 99,7 - 1545 . ,0183 9.0 70 2630
7 587 563 1137 82 1960 1372 . 0209 96. 5 93 3490
Note: Operational and flight idle for the T53 is at
Condition 2, Operational idle for the T55 is
at Condition 4, approximately.
T ————————




EXPECTED RESULTS

It was expected that several types of information could be obtained
from the laboratory and engine tests:

1.

2,

3.

4,

5.

1.

The emissgion levels of each combustor independent of the
engine

The emission level of the combustor installed in the engine

A comparison of the combustor laboratory and engine test
results

Calculations of combustion efficiency for both engine and
laboratory combustor

Determination of emission profiles, and a correlation between
the combustor and the engine and between various probe
position samples and the averaging probe

A comparison of the data with results from previous tests
(References 2 and 3) and with other engine data (Reference 4)

A measure of any change in oil leakage from bearing seals
by monitoring hydrocarbons in the engine exhaust




DESCRIPTION OF TEST EQUIPMENT

LABORATORY COMBUSTOR EQUIPMENT

The laboratory test equipment was installed in the Lycoming Building
19 complex, shown in Figure 3. A T55 compressor was used to
produce airflow for the lower power conditions. A combination of
two T55 compressors was used for pressure to simulate the higher
power conditions, The compressor control panel is shown in Figure
4. As noted on Table I, pressure was not available for the peak

. power conditions, but fuel-air ratio and air temperature were correctly
simulated.

The combustors for both the T53-L-13A and the T55-1L-11A engines
were production configurations used with these engines and contained
no special modifications for these tests.

The combustor laboratory test rig for the T53 combustor consisted

of the combustor liner, the engine housing, and the engine fuel

manifold agsembly, These parts were installed in the test way

ducting with inlet and exhaust transition sections, as shown in

Figure 5, Interior thermocouples and gas sampling, with the 360=degree
rotating actuator mechanism, are shown in Figures 6 through 8,

The arrangement of the probes in the annular exhaust is shown in

Figure 9,

The T55 combustor test rig installed in the same test way is shown

in Figure 10, This rig also consisted of a combustor liner, engine
housing, and engine fuel manifold assembly, all installed with inlet

and exhaust transition sections, Interior fixed probes are shown in Figure
11, The 360-degree rotating thermocouples and gas sampling probe
installation are shown in Figure 12, The dimensional arrangement

of the probes is shown in Figure 13,

The 360-degree rotating drum assembly containing the five thermo-
couples and the gas sampling probe was installed in the plane of the firat
turbine nozzle inlet for both T53 and T55 combustors. The five
thermocouples were installed at different radii, so that, when the

probe is rotated, a radial profile can be measured around the
combustor exhaust annulus (Figures 9 and 13), '
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Figure 5. T53 Laboratory Combustor Y'est Rig in Test Way 1.




Figure 6, T53 Combustor Test Rig. Curl and Rotating
Drum Assembly, Showing Thermocouple Leads
and Flexible Gas Sampling Lines.

Figure 7. T53 Combustor Rig Gas Sampling Line for
Rotating Probe.
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Figure 11, TS5 Combustor Test Rig Hot End Assembly,
Showing Curl, Combustor Exit Gas Sampling
Probes, and Pressure Probes.

| Figure 12. T55 Combustor Test Rig Curl and Rotating
| Drum Assembly, Showing Thermocouples
| - _ and Flexible Gas Sampling Lines.
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Additional instrumentation in the combustor rig measured combustor
inlet air pressure and temperature, and exhaust pressure.

The 360-degree rotating mechanism five-port gas sampling probes for

the T53 and T55 combustors were water-cooled (Figures 14 and 15),
Water-cooling was specified because of the possibility of probe damage

in the hot gases and to better ensure that the chemical reactions in

the gases would be quenched on entering the probe. A coiled-tube

method was used to allow the probe to be rotated without damaging :
the sampling line (Figures 6, 7, and 12),

The four fixed gas-sampling probes used in the T53 combustor test
are shown in Figure 16, They were uncooled and were spaced as _
shown in Figure 9, They consist of five-port sampling which averages ¥
the gas sample at one circumferential position. The four probes were
manifolded together.

Mounted near the T55 rig traversing probe were four fixed five-port
averaging-type probes, water-cooled (Figure 17). The outlets of
these probes were manifolded together for zone averaging, As seen
in Figure 13, the probes are installed in the lower half of the combus-
tor exit and are sloped slightly downward, Thus, if any fuel or water
condensation occurs in the water=-cooled section, it will run "downhill"
until it reaches the heated section of the sample line, At this point,
the temperature is high enough that the liquids will revaporize.

Gas samples are passed from the probe to an electrically heated
"Dekoron' 3/8-inch stainless steel tube for transport to the detector
S I console, DS-16A (Figures 4 and 18), An elactric controller regulates
{ the tube temperature at approximately 300° +10°F. A pressure drop
| across the sampling probe inlet was deeigned into the system to
‘ obtain an equal flow into each of the probe sampling ports.

-Other instrum -ats included temperature and pressure measurements )
<  to determine airflow and monitor the test rig, plus fuel meters,
.3 All measurements, sxcept the gas analysis, were recorded on the
o DS-5 data system on punched tape (Figure 19), Tape was later
i converted to punched cards, and complete calculations were made
' on the central computer system (IBM 370/155),
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ENCINE TEST EQUIPMENT

To conduct exhaust gas analysis tests on T53-L-13A and T55-L-11A
engines, an outdoor, mobile test stand was used in close proximity
to the gas analysis equipment. The test stand with the necessary
test equipment is shown in position in Figures 20 and 21, Control
of the engine was maintained from the control room on the trailer,
Further details of the installation are discussed in Reference 5.

Engine Instrumentation

For both the T53-L-13A and T55-1L-11A engines, power was absorbed
by a Lycoming water brake (Figures 20 and 21), A strain-gaged torque
element mounted between the water brake and the engine inlet housing
wasg used to measure output shaft torque in both instances.

Engine airflow was measured with a calibrated inlet bellmouth set
consisting of an inner and outer bellmouth providing an inlet area
of 95,16 square inches for the T53 and 141,20 square inches for the
T55 engine, Static and total pressures in the bellmouth were used
to determine referred engine airflow.

Compressor speed was measured by a Hewlett- Packard digital counter
(Model No. 5214L), and power turbine speed was measured by a
Standard Electric Time Tachometer (Model No. SG-6),

Fuel and oil flows were measured by the use of Cox turbine elements
in conjunction with a Hewlett- Packard digital counter (Model No.
5214L), ‘

Hydraulic and pneumatic pressures were measured by calibrated
pressure gages.

Temperatures were measured with thermocouples in conjunction
with self-balancing potentiometers.

Engine Exhaust Gas Measurements Equipment

Exhaust gas samples were acquired by both fixed and traversing
probes positioned in the exhaust gas stream, The gas samples were
fed directly to the analysis equipment in the control room through
lines between the test stand and the building (Figure 3). The fixed
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Figure 20, Intake End of T53-L-13A Engine Mounted
on Portable Test Stand, Showing Water
Brake and Control Ruom.
|
,'
Figure 21, T55 Engine Installed on Portable Test Stand, :
o Showing Inlet and Wator Brake, (Power’
Supply Trailer Is in the Background.)
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probe design for the T53 and 1’55 engines is shown in Figure 22,

The dimensions of the tubes and sampling ports were based on a

similar design used at the Naval Air Propulsion Test Center (References
2 and 3. A second cruciform probe was installed in tandem ‘
approximately 3 inches downstream of the gas sampler and at

an angle of 45 degre=ss to it for taking smoke samples. The

design dimensions for this probe are also shown in Figure 22,

A photograph of the T55 fixed probe is shown in Figure 23, Installa-
tion of this probe in the engine is shown in Figure 24, and the installa-
tion of a similar probe in the T53 engine is shown in Figure 25,

A second probe with actuator (Figure 26 and 27) was used in the engine
exhaust to measure gas composition over a multipoint zone (Figure

28) during steady-state operation, This probe was designed in
accordance with SAE-ARP 1179 specifications for smoke sampling
(Reference 6). The probe positicn (angle and diameter location) was
controlled from the engire trailer control room. Tiie probe with
actuator is shown installed in the T55 engine in Figure 27. The probe
actuator installed in the T53 engine is shown in Figure 25,

A pattern for single-point gas analysis was developed to provide a
large variety of data with a limitation of 60 sample points (Figure
28), The center point was added. The criteria for this pattern were:

1. Radial point location on''equal area' lines

2. Sufficient points for obtaining several diametric profiles

3. Circumferential points for a centroid trave.ae

4, In-between points for determining area concentration profiles

GAS ANALYSIS EQUIPMENT

The Lycoming on-line exhaust gas analysis system consists of

detectors for measuring O,, CO, CO,, HC, and NO. In addition,

an NO_ analyzer was added to this system. The oxygen analyzer
was ndt used in these tests. The system schematically shown in

22
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Figure 23. Dual Exhauat Averaging Gas Sampling Probe for
T55 Engine.
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- Figure 24, T55 Enginé on Test Stand With Averaging
Gas Sampling Probe in Place.
Figure 25. T53 Engine Installed on Portable Test Stand i
With Averaging Dual Gas Sampling Probe,
(Actuator for Travarsing Probe Is in Place.)
| 25
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Figure 26, Single-Point Gas Sampling Probe Used With
Traversing Mechaniam for T53 and T55
Exhaust Sampling.

Figure 27, Single-Point Exhaust Gas Sampling Probe ' i
Installed on Actuator in T55 Engine Exhaust. f
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Figure 29 (Reference 7), consists of the following:

l. A high-speed pumping system to transport the sample from
test rig to analyzer

2. A '"hot" sampling leg for HC analysis, in order to prevent
water and HC condensation

3. A 'cold" sampling leg for the COZ' CO, NO, and NO
analyzers x
4. Calibration valving for a wide range of gas compositions ‘

and ranges of measurement

Data are recorded both on strip chart recorders and on punched tape.
The punched tape data are converted to cards, and these are used in
a program to calculate all desirable paramcters and plot some of

the data.

Specific instruments in the system, their ranges, accuracy, and
response time are listed in Table II. In addition, a TECO chemi-
luminescance NO-NOx analyzer was used for two tests to check

the various NO-NOZ-NOx values,

A heated sample transport system is coniained in the Lycoming
Building 19 complex such that any test way can be ccnnected to the

gas analyzer console in a few minutes, Thus,ona detector system

can be used for several test rigs without moving it. The sample

lines are made of 3/8-inch stainless steel tubing, electrically

heated, and insulated with layers of fiberglass and asbestos wool.

3 . A controller is installed for 60 fect ¢ r lgaa of heated sample line,

/ Temperature coatrol is set at about 300 F. A 60-foot heated

extension section was run from test way 12 to the outdoor tra..sportable
engine tast stand in order to connect to the zas analyzer console.

Fa

The velocity of gas in the sampling line was calculated to be 50 to 75 :
ft/sec under conditions of atmosgheric inlet pressure, such as would ?
be found with engine exhaust sampling, For thia calculation, a
12-point sampling probe was used as shown in Figure 22. Sample

preasure drop to the gas analysis console in this calculation was -

assumed to be 5 psi, which was the normal operating condition,

The method of calculation included Fanno line calculations of

o compressible gus {riction pressure drop in a . 25-in, ID tube 150
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TABLE II. GAS ANALYSIS DETECTOR COMPONENTS

Full-Scale Response
Gas Model Ranges Accuracy® Time¥*
Nitric Oxide MSA-2008 0-30¢ ppm +1% 90% in 5 sec
(NO) Infrared detector 0-1500 ppm
Carbon Monoxide  MSA-200 Tube No. 1 +1% 90% in 5 sec
Dual tube infrared 0-200 ppm
detector 0-800
0-3200
Tube No. 2 *1%
0-5%
Carbon Dioxide MSA-300 0-8% 1% 90% in 5 sec
Infrared detector 0-40%
Oxygen Beckman 715 0-5% +1% 90% in 20 sec
Polarographic
detactor \ 0-25% (at constant
Lt temperature)
™
4
Hydrocarbons Varian'] 400 0-100 ppm +2% Approximately
Flame ii_:ﬁ&zat.'m © to approx. in low range 90% in 10 sec

detector

0-20, 000 ppm

+1% in high

; range
Nitrogen Oxides EnviroMetrics 0450 ppm +2% 90% in 5 to 10 sec
N§-200 to

(NOx)

~0-10, 000 ppm

*Per manufacturer's apecmcationa
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~ feet long, with temperature held at 300°F (Reference 35),

SMOKE ANALYZER EQUIPMENT

The Lycoming smoke analyzer was designed to conform to SAE-ARP
1179 (Reference 6). It is shown in Figures 30 and 31, The analyzer
consists of a pumping system which pulls 2 sample through heated

lines, meters the flow, and passes the gas through a standardized

filter paper. The sample lines are heated to prevent water condensation,
The reflectance of the smoke deposit on the filter paper is measured
with a McBeth model RD-400 reflection densitometer. ARP 1179
procedures are followed to determine the AIA smoke number,

The system was pressure-checked before each test to ensure that the
sample lines did not leak. '

AR BT A St v e



)
PO ©

SAMPLE .

HEATED LINE
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Figure 30, Schematic of the Lycoming Steined Filter Paper Smoke AR
Analyzer, R
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PROCEDURES

EXHAUST GAS ANALYSIS CHEMISTRY

The chemical reaction for a typical hydrocarbon fuel that is not
completely reacted is assumed to be as follows (Reference 7):

@ CH +(0,+3.73N, +.044) (n + m/4) —
nQ@ [(1 -a-b) CO, +aCO+ bCHm/n]jl- @ (m/2) (1 - b) H,0

+ [(n+rn/4)- @ (n [1 -al2 -b] + [m/4] [1 - b] )]O2

+ [.OflA + 3,73 NZ] (n + m/4) (1)
where |
CO
@ * Co.+CO+cCH 2)
2 m/n
CHm/n
b = (3)

CO,+CQO+CH
2 m/n

and CO, COZ’ and CHrn/n are measgured volume fractions on a dry
basis. '

The hydrocarbon product, CH o’ is used because the flame ionization
detector measures effective carbon atoms,

It is assumed that unburned hydrocarbons remain as a combination of
C-H atoms, and that the only other unburned component is CO, Smoke
or carbon particles are not considered, Hydrogen is present in such
small quantities at high combuxtion efficiency levels that its effect

on combustion efficiency is assutned to be negligible (Reference 8).

The hydrocarbon component (CH_ , ) is actually measured within

a heated gas stream in order to prevent condensation of hydrocarbons;
hence the gas is not cried, and the m2asurement is on a '""wet'' basis.
For a typical engine fuel rate at @ = , 25, the equilibrium water vapor
is about 3. 5 percent, Therefore, the maximum error by considering
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1 CHp, /p to be "dry" is about 3.5 percent, Fora typical 10 ppmC at
g a high power point, 3,5 percent error is negligible. For a typical
100 ppmC at a low power point (F/A =, 01), the possible error is

1 percent, also negligible, The effect on calculated equivalence
ratio is negligible.

Point equivalence ratio can then be calculated from Equation (1) from
a knowledge of the CO, CO,, and unburned hydrocarbons (CH )

) 2 m/n
on a dry basis:

@ - 4,77 (1 + m/4n)

T 1/(cO+ COZ + CHm/n) -af2-b(l +m/4n)+ m/4n (4)

The stoichiometric F/A for any hydrocarbon fuel may be calcu-
lated from Equation (1): ' ’

(F/A) g (Wf/W )

a’stoich. T

_ (12) n+m (5)
T (n+ m/4)(32 + 3,73 x 28 + . 04 x 40)

stoich.

where

approximate molecular weights of C, O, Nz. and A are 12, 32,

- 28, and 40, respectively, For a JP-4 tzuel used at Lycoming
(Table IV), n=7.24; m = 14.07; and (F/A) p, can be calculated
to be 0,0679, For the JP-4R (referee gradscat)omel used in these
tests, with 15 percent aromatics, (F/4) toich, 18 0.0692, an
appreciable difference. The atomic prsolgogpfons of hydrogen and
carbon are average values from an analysis of the fuel, The F/A

- can then be calculated from equivalence ratio:

F/A = (F/A) Q (6)

stoich,
Combustion efficiency for fuel can be determined.from equivalence
ratio and a measure of the total unburned components, CO and CHm /a*
This equation is valid for all lean mixtures and rich mixtures at

low values of n b where some oxygen is still unused:

H (CO
(wcn *[ﬁ'x-:"%?&ﬁ)] Wc:o) / (wa * wg
m/n_L d I

(7)
wfl(wa + wf)

b fuel ° 1 "
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where

WCH

n
W___________+rrV1V/ = Mass concentration of unburned fuel in the exhaust
a

f gas

[‘A H(CO)

w
Lofi(fuel)] CO = Mass CO equivalent to heating value of fuel

Wa * Wf in the exhaust gas

Wf/(Wa + Wf) = Total fuel/gas ratio = 1/(Wa/Wf + 1)

For the fuels used in these tests, a mean value of AH (CO).

AH (fuel)
4,343 _ ~

- 18’ 702 0232¢

For best results, a fuel heating value determination should be made
for the specific fuel used,

Carbon (n) and hydrogen (m) content and molecular weights are shown
in Table I for a group of gas turbine fuels used at Lycoming,

For the data reduction used in the work reported here, Equation(4)

was used to calculate equivalence ratio, Equations (5)and(6)to calculate
F/A, and Equation (7)to calculate combustion efficiency. A chemical
analysis was made of typical fuel samples to determine mean molecular
weight and C-H ratio, Bomb calorimeter heat of combustion measure-
ments were made to determine the fuel lower heating value used in
Equation (7)., The heat of combustion of CO was obtained f{rom
Reference 9.

CALCULATION PROGRAMS

Calculation programs were available for:

1. Laboratory combustor rig data, where data input into the
DS-5 data system are converted to pressures, temperatures,
fuel flow, and airflow. Also, temperature traverse data
were programmed so that a plot of temperature profile can
be made (Reference 10),
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2, Engine data, where data recorded from instruments during
the test are used to calculate fuel flow, airflow, and other
engine parameters (Reference 11). Inlet bellmouth airflow
was measured, and bleed flows were calculated to determine
combustor airflow,

3. Gas analysis data, where instrument calibration and output
signals are converted to ppm, 1b/1000 1b fuel, F/A, and
combustion efficiency (Reference 12). In addition, emission
traverses were plotted with the ""Calcomp" plotter.

CALIBRATION OF INSTRUMENTATION

Laboratory Instruments

All laboratory instrumentation outputs were fed to the DS-5 data system
described in Reference 13. This system contains calibration standards,

The calibration method complies with MIL-C-45662A (Reference 14),

Engine Test Instrument Calibrations

Instrumentation used to measure the engine performance was calibrated

per "Measurements and Test Equipment Calibration Systems" standard
(Reference 15). This standard operating procedure for instrument
calibrations was also written to conform to MIL-45662-A (Reference
14),

Gas Analyzer Calibration

The Lycoming gae analyzer system is comprised of the detectors
listed in Table II. Calibration curves were supplied by the manufac-
turer for the infrared analyzers (CO, CO,, and NO). In this case,
an initial check was made with various gas bottle calibration compo-
sitions as a check on the manufacturer's calibration curve. The
checks were within the combined instrument accuracy and the
guaranteed (2%) accuracy of the calibration gas sample, For each
test, a calibration gas was used to set the electrical output for each
instrument at a range convenient to read on the chart recorder.

The flame ionization detector (FID), used to measure total hydro-
carbons, was calibrated on two ranges, a factor of 10 apart. ‘i'he
calibration curve of this instrument appeara linear, Data in suports
from the manufacturer also show linearity (Reference 16),
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::Bécause the FID flow quantity is a function of temperature and

i ‘_";'{'pressure at the metering orifice, it was deemed appropriate to

"" * -control these two factors. Temperature was controlled by a very
- -7 precise oven temperature control inside the instrument case

. through which the gas passed. Pressure was controlled by an

" exterior located precision ""Wintec'" back pressure regulator. In
addition, the pressure was recorded to within 0,1 inch of water,
and a calibration curve was made of pressure versus percent of
"gtandard" reading (Figure 32). This correction was put into the
computer program so that any pressure deviation from the standard
value was compensated in the data calculations., The instrument
operating standard pressure was set at 30 inches of water gage,

The polarographic NO_ detector was operated with an activated
charcoal absorber in the sample train to absorb aldehydes, because
the instrument is sensitive to aldehydes. However, the charcoal
may also absorb some NO, Therefore, the calibration gas was

set up to pass through the charcoal. It was assumed that the same
fraction of NO is absorbed in the charcoal as during a test, so that
the charcoal absorption of NO is effectively cancelled out. Most

of the measurements were made in the range of 0 to 100 ppm, and the
calibration gas was normally approximately 60 ppm. Linearity in
this range was assumed,

A chemiluminescence analyzer (NO and NO,) was used on one test a#
a check on the infrared and polarographic instruments. It was
calibrated hy using the same sample bottle mixture of NO and N

that was used on the other NO and NO instruments. The manuéctur-
er (Thermal Electron Corporation) maintains that this instrument
response is linear, and our tests did not indicate otherwise,

The calibration procedures recommended in ARP-1256 (Reference 17)
were followed as closely as practicable,

Typical calibration curvee are shown in Figure 33 for CO,, in
Figure 34 for NO (infrared) and hydrocarbons, in Figure 35 for CO,
and in Figure 36 for NO__ (polarographic). Electrical noise levels
are within the manufacturer's specifications.
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COMBUSTOR TEST PROCEDURES

The combustor assembly, arbitrarily selected for both the T53-L-13A
and T55-L=11A engine, could be tested in both an engine and the
laboratory test rig, The test conditions included a specified idle
power point, 30, 60, and 100 percent (Reference 18), Sixty-point
traverses were run at idle, 30, 60, and 100 percent power (Table I},
A sixty-first point was recorded as a check on the first point,

The conditions to simulate engine operation were taken from engine
measurements and cycle calculations. The 100 percent power simula-
tion pressure could not be met; therefore, the test was run at engine
cycle specified temperature and F/A but not the specified

pressure. The attainment of design pressure for the 60 percent
power point for the T55 was also found to be marginal and was

run at the highest attainable pressure, as shown in Table I,

The desired operating conditions of air pressure, airflow rate, air
temperature, and fuel flow were controlled and allowed to stabilize
before test data were recorded, Precautions were taken to maintain
test conditions unchanged during the long single-point traverse,

However, steady flow is only maintained in any systera within some

limit of both precision of control and precision of de’ecting any
change. A check procedure was used to detect any appreciable
changes in operating conditions, including:

l. For each 10 single-point samplings, &n average sample was
takon, Thus, if the overall conditions were changed, the
‘average aample would show it,

2, For each 10 to 20 aample points, the gas analyzer was
recalibrated. ‘

3. Fuel-air ratio from the test rig data was used to check
against F/A from the average gas sample. Disagreement
larger than the expected experimental error would indicate
either a leak, an error in measurement, or a nonrepreaen-
tative sample,
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Traverse survey data points were recorded after moving the probe

to the next position and allowing the sample line to purge, When

the compositions reached a steady level on the recorder, the data
were then electrically recorded and punched into the tape. Average
time per data point was 2 minutes during traversing, Additional

time was required for switching to the averaging probe, for recording
the data, and for calibrating periodically.

At each point where the averaging probe was sampled, a thermo-
couple temperature profile traverse was also recorded in the combusg-
tor exit. These temperature data were used for comparison with exit
profiles calculated from gas sampling, such as F/A., Adiabatic

flame temperature can also be calculated from F/A and combus-

tion efficiency (determined from gas analysis); however, this informa-
tion was not considered to be needed for the analysis.

ENGINE TEST PROCEDURES

Initial engine tests were made for calibration purposes and to check
out the installatioa and eauipment.

For power performance tests, the engine was operated from

the specified idle condition, increasing the power in steps up to full
power, then back down to idle. '‘'his was repeated., Approximately

5 minutes was required to stabilize the engine operation at each power
level before recording data, Both gas sampl:s and smoke samples
were recorded simultaneously on the double cruciform probe (Figure
22), as shown on Table I, '

Gas samples were recorded when composition was observed to
stabilize on the chart recorders. The punched tape system was used,
Stable composition level was the signal to record the data. Two to
four minutes were required per data point to move the probe, purge
the lines, and obtain a stabilized reading. Calibration checke were
recorded normally after 20 data points. The whole T53 traverse was
done with one setting of the actuator position, Center points were
repeated as each diameter was traversed as a check of operating
stability; i. e,, to determine if there were substantial changes in

gas analysis determined F/A or any gaus component with respect

to time,
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For the T55 engine, the exhaust traverse was performed in two
halves of 40 points each. The center points were repeated on each
diameter traverse, as with the T53, to check on stability and continu-
ity of the engine operation. Also, the centerline diameter traverse
was repeated on the second half of the traverse as a check of any
change in operation from the first half.

DATA CALCULATION AND INITIAL DATA PLOTS

Laboratory test data were processed on an IBM 370/155 computer, The
output of these computations include all the test rig conditions and

flows of fuel and air, temperature (thermocouple) traverse data and
plotted profiles, and gas analysis data, including F/A and

combustion efficiency. )

Engine operating data were manually recnrded and processed for
computer input, Gas analysis data from the engine employed

the same system for readout and.calcalation as in laboratory combus-
tor tests. Gas analysis profile data recorded in the engine exhaust
were manually plotted.

GAS ANALYSIS PROBLEMS

Two problems in obtaining accurate gas analysis data were possibly
significant, and sufficient information was not immediately available
on them. These are the problems of (1) the required temperature of
gas sampling lines to prevent hydrocarbon condensation and fouling
of the sampling lines and (2) reliability of measurement of NOx.

Hydrocarbon Condgensation in Sampling Lines

Since we have been analyzing engine and combustor exhaust gases,
there has been the probiem of how hot the sampling line has to be to
prevent unburned fuel condensation, The SAE-ARP-1256 (Reference
17) prescribes a sample line temperature of 302°F (150°C) as

" gatisfactory. However, the 10 percent distillation point of a typical

JP-4 fuel occurs at about 210°F and the 90 percent point at 410°F. For
JP-4R, the initial point is less than 200°F and the 90 percent point is
between 325° and 370°F. Does this mean that 302°F in the sampling
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line is completely unsatisfactory if there are appreciable quantities of
unburned fuel? What concentrations of fuel can be tolerated without
problems? An analysis was made to find answers to these questions.

The factors influencing fuel condensation in the sampling lines are:

1, The molecular weight and vapor pressure of the heaviest
molecular components of the fuel

2, The combustion efficiency, which determines approximately
what fraction of raw and cracked fuel is present

3. The temperature of the sampling line

The mean molecular compositions of JP-4 and JP-4R fuels used at
Lycoming are shown in Table III, Buth higher and lower molecular
weights are included in the average, but the exact range and concen-
trations are both unknown and quite variable within each fuel specifica-
tion. A detailed analysis of all the componeats of the fuel would be
costly, and probably worthless, because of the wide tolerable
composition variability for each Military Specification, The original
crude oil and the refining processes would also affect the type and
concentration of the fuel components. Some indication of the range
of component molecular weights was obtained at Lycoming through
use of chromatographic analysis. The results of a JP-4 fuel analysia
show components from C5 to C15. which was the highest weight
detected (Figure 37).

Vapor presgure data (Reference 9) for various pure hydrocarbon
compounds were plotted to determine the range of concentrations
that might be expected in a sampling line at various line temperatures
without getting condensation (Figure 38), However, the vapor pressure
of mixtures is not the sum of vapor pressure of the components,
Heavy molecules will reduce the vapor pressure of light molecules,
and vice versa, In Figure 38, a range of poscsible saturated
hydrocarbon fuel components is plotted against vapor pressure,

‘The components were chosen to cover a range of molecular weights.
that might be found in the fuels, as noted in Table III and analyzed

on Figure 37, This plot shows that a heavy fuel,  such as Navy
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Vapor Pressure of Various Hydrocarbous Versus Tempera-

ture and Concentration.
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Figure 38.
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distillate, may produce condensation that is a problem in the sampling
lines if the 400°F temperature cannot be held, or if raw fuel of the
order of .005 to .010 F/A is present even at 400°F. This assumes
that some of the distillate components are C.,, or heavier. The com~
position of JP=4R fuel contains fewer heavy molecules than Navy
distillate, and has a high probability of remaining gaseous at 300°F,

. In addition, 'chromatographic' effect may be present. This effect
is caused by absorption of components onto the wall for short periods
as the sample moves down the sample line and is evidenced in the
results by a longer period of time being required to purge the sample
line than would normally be expected. This condition can be
experienced even though the sample line is hot enough to keep all
components in a vapor state, but does not present a serious problem.

A It only increases the time required to purge an old sample and obtain

'. ' an equilibrium -sample at a new test condition,

{ 1 “F From an inspection of Figure 38, we find that:

; ‘ \ -1, Condensation of hydrocarbons smaller than C,, is not a
problem, even with a line temperature of 300]’}‘, as long

as the concentration is not above 5000 ppm at 300°F, or
130, 000 ppm at 400°F, Since the average carbon content

hf j for JP-4 or JP-4R is about 14, it would be expected that

v there should be few condensation problems with either JP-4
K : or JP-4R at 300°F,

2, A 400°F, C ¢ 30 be vaporized to about 1300 ppm (or 33, 800
ppmC). Th%s would represent about 80 percent of the fuel
at a total F/A of ,020 or about 20 percent combustion

" o efficiency from hydrocarbons alone. (CO may add some
‘ additional inefficiency.) This concentration would never be
e} encountered in an engine exhaust, but might be found in a

primary zone., Therefore, it appears that the major components
of a fuel even as heavy as Navy distillate would have a gocd
chance to remain {h a vapor state at 400 F,

The foregoing analysis was purposely general to include a wide range ]
of fuel gas analysis problems, However, from the results we conclude ,
that JP-4 fuels should not cause a gas sampling line problem if the

sampling line and adjacent parts are held in the 300°F range and if

the combustion efliciency is reasonable {85 percent or higher),
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Reliability of Measurements of NO;;

The nitrogen oxide emissions are of particular interest because of
the gradual atmospheric conversion to NO_, which isaneye, nose,
and lung irritant. However, only the formation of NO can be justified
from chemical kinetic considerations., The more important reactions
are those proposed by Zeldovich in 1946 (Reference 19):

O+N2 —=NO+ N (8)

N+0, —_NO+O (9)

Other reactions proposed by Newhall and Starkman (1968) and Lavoie,
et al (1970), include (Reference 19):

I+ N T=NO+H (10)
N, + O, ;:?N20+o (11)
N, + OH :NZO+H (12)
N,0 + O = NO + NO (13)
N+O+MZT=NO+M (14)
N2+O+M:N20+M (15)

The Zeldovich mechanism is generally sufficient to account for NO
formation under conditions present in spark ignition engines. The
entire set of equations can be used for NO prediction for any combus-
tion process. The process is limited by the presence of O radical, -
The usual method of calculation is to assume equilibrium composition
of O radical before the NO formation becomes important. At any
rate, neither Reference 19 nor References 20-29 indicate any
mechanism for the formation of NO_ in the combustion chambexr.

A chemical kineticist working on thtzi problem suggested that an
investigation of some NO, formation possibilities revealed that if

O radical was present in relatively large quantities at 1200° to 1400°F,
NO, could be formed. However, the chemical kinetic probability of
large O concentrations is very low, Therefore, in view of the
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available evidence, we cannot explain or justify measurable quantities
of NO2 formed in the combustor.

Nevertheless, the literature is replete with gas turbine exhaust data
showing appreciable or even large quantities of NO_, Typical are
data from References 27 and 30. In Reference 30, we find that the
NO,/NO_ ratio is as large as 40 percent in an engine test, Data
from the U, S. Bureau of Mines (Reference 27) indicate large
percentages of NO,, but the actual value of NO, is only in the range of
5to 10 ppm. Analysis of NC and NO2 data from Reference 4

shows that there is a wide range of variation of NO, measurements.
Contrarywise, the NO data all point in the same diréection, but not

the NO,, The conclusion reached is that NO, can vary between

5 and 20 ppm, and is sometimes a little more, and that it is

almost independent of engine configuration or percent power,

The presence of this NO_ (not theoretically explainable) is a topic for
investigation, but not the principal purpose of this report. However,
some evidence suggests that the sample probing system may permit
conversion of NO to NOZ'

Thus, it is possible that the only reason for measuring NOx or NO,_,
in addition to NO, is that some of the NO may have converted to N 2
between combustor and detector, Of course, the total of NO
and NO,_ is the toxic pollutant of interest. We can see that if
the exhaust gas could be analyzed without any ""en route' conversion
to NO,, the analysis of NO only should be quite satisfactory

from available knowledge of chemical kinetics, So it is only to
make sure that we know this converted quality, that NO;, or

NOx measurement is needed.

The next problem we encounter in our measurement of NOx is the
precision of the measurement. Presently, the methods uséd for
NOx measurement are:

1. Polarographic for NOx

2. Nondispersive infrared (NDIR) for NO

3. Nondispersive ultraviolet (NDUV) for NOx (not used in these
tests)

4, Chemiluminescence for NO and Nox

51




Good comparison of NDIR, chemiluminescence and polarographic
methods was obtained by Shaw in Reference 31, where he reports
agreement within 5 percent, In the present work, agreement was
within 10 percent for NO measurement, and within 10 to 15 percent
for most NO measurements. Chase* reports less than 1 percent
difference between chemiluminescence and NDIR and nondisper-
sive ultraviolet (NDUV), when calibrated carefully and known
corrections are applied. He used special processing to obtain

NO gas without NO2 contamination, and N2 zero gas without NO,

The initial problem in NO measurement precision is the calibration
gas itself, Calibration ga’ges can be purchased with a 1 or 2 percent
""guaranteed' accuracy. Information from vendors indicates that

at least two methods of filling the bottle and analyzing it are used.

In one case, the bottle is filled and analyzed quickly, and sent to the
customer, In this case, some of the calibration gas (NO) may
absorb into the bottle walls over a time period. But, as the gas is
used, the absorbed gas is released. The question of the composition
versus time is a moot one. In the other method, the gas is allowed
to stay in the bottle for a period of time before the analysis is made.
It is assumed that the gases are in equilibrium with the bottle at

the time of analysis, and normally will hold their composition until
the bottle pressure becomes quite low. At this time, the absorbed
gas re-emits, Calibrated gases for these testa were analyzed by

the second method,

| Other problems are the deterioration of the sample in the bottle.
. Any traces of O, wiil react with NO to form: NC,. The excellent
agreement between three methods of measurement at the Bureau

of Mines was obtained by careful mixing of calibration gases to
remove Oz from the Nz and remove NOz from the NO, .

Storage at low temperature will cause striation of the gases, a
result of condensation or partial condensation of the heavier gases
in the bottle. This is characteristic of all mixed gas bottles, and
a possible cause of poor refereince calibrations.

Next are problems of measuremeat in the specific instruments.

~ #Chase, J. (U.S. Bur, Mines), CORRELATION OF NDIR, NDUYV,

AND CHEMILUMINESCENCE NO-NO, DETECTORS, Private
Communication, 10 December 1972,

52




[

Nondispersive Infrared (NDIR) for NO

The main problem with this instrument is its sensitivity to water
vapor, The NO infrared absorption band is so close to the water
vapor band, that two precautions are required:

1, A special narrow band-pass filter is used to reduce (but not
eliminate) water vapor effects.

2. The sample must be thoroughly dried.

In the process of drying the sample, the efficiency of the drying
compound enters into the picture., ''Drierite' was used in the
present work, There are disagreements among various investi-
gators as to which driers are effective without absorbing the
measured component. The consensus appears about 50-50 for
"Drierite",

Sensitivity of this instrument is obtained by using a longer optical
absorption tube, which adds to the bulk and complexity of the
instrument.

Polarographic

This detector was capable of measuring either NO or NO_;
however, only NOx was measured. The problemu’%ound with
the NOx detector were:

1, Zero drift, probably caused by aldehyde interference. This
was nearly eliminated by using an activated charconal filter
in line with the detector. Because the charcoal absorbs
some NO , the unit was calibrated with the charcoal in the
sample 1fhe. It was then assumed that the percentage of
NO_ abeorbed during calibration was the same as during
testing. It was also found that the duration of use oi the
-charcoal affected response. This effect was thought to ke

. caused by saturation of the charcoal, -

2. Nonuniformity of reaponu.” The NO rosults appeared to be

~ more variable over a period of time?_&mn- the NDIR or
- chemiluminescence data. o
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3. Carbon monoxide interference. This was checked and was
found to be appreciable only when CO was present in large
quantitites; i.e., percent concentrations, rather than ppm.

Chemiluminescence

This detector was used on one test to check the NDIR and the
polarographic detectors. The detection of NO appeared stable
and showed agreement with the NDIR and polarographic (NO }
within about 10 percent. However, the NO values were all
lower than the NO values, a physical impogtsibility. Chase
indicated that this phenomenon is not unusual, and that it is
agsociated with the converter unit efficiency in the instrument.
Chemical equilibrium is established between NO and NO,,
thus:

NO, —— NO+O (16)

This reaction is sensitive to temperature and pressure, and
the percent of conversion calculated from chemical equilibrium
agreed quite well with the measurements. Conclusions reached
on NC)x measurements are:

1, NO measurements with NDIR and chemiluminescence

instruments are reliable and agree within 5 to 10 ppm
normally.

2, NO, measurements are not as reliable because of possible
water vapor absorption of NO,, inefficiency of thermal
converters, and interferences in polarographic detectors.

3, Calibration gases for NO, NO_, and zero references may;
be contributors to measurement errora. o

4. The principal concern in measurement of nitrogen oxides
is the total NO plus NO,, or NOx. If NO, formation can
be controlled to a negligible amount, then NO measurement
only is necessary, Otherwise, a reliable measurement of
NO_ is satisfactory. At present, NO measurements appear
to Be more reliable than NOx or NOZ measurements.
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5.

A solution is suggested in the use of a thermal converter

with all NO measurements, Its efficiency would be
determinedxby calibration. NO would be the primary
measurement, This procedure would be applicable for

engine or combustor testing, and obviously, not applicable

to atmospheric measurements. With this approach, any
formation of NO2 in the sample system would be of no concern,
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'DISCUSSION OF DATA AND RESULTS

ANALYSIS OF PRECISION OF THE MEASUREMENTS

Before discussing the test :csults, an explanation of the precision
of our measurements is ‘ustificd in order to judge the valug of the
results, Later, compar.sons will be made with data from other
sources as a further evaluation of our overall methods, procedures,
and accuracy.

- Precision of results can be divided as follows:
1. Measurement precision of the instruments onlv

2, Correlation of gas analysis measurement with fuel-air
calculations by other means (fuel and airflow measurements)

3. Effect of sampling probe position on the measured average
4, Effect of measurement precision on emission determination

5, Characteristics of tested sngin.s compared with a statistical
group

Instrument Precision ' !

Ingtrument precigion specified by the manufacturers is shown in
Table IV, The specifications here can be judged to be as close to
reality as is poseible if the instruments are carefully maintained,
calibrated, and checked, and if calibration curves are correct.
However, the accuracy propounded by the manufacturer cannot always
be maintained. In one case, minor malfunction of the CO analyzer
caused error in the CO analysis that was not discovered until some
obviouely unreasonable data were recorded. After servicing, the
unit operated satisfactorily. In another case, the CO, calibration
curve apparently shifted slightly, Data were recalculated after
determining a new calibration curve. The new calibration curve was

' generaied by plotting instrument response for several CO, calibration
gas concentrations., As a result of these experiences, it would seem
more reasonable to expect dependable accuracies of the order of

+3 to 4 percent of full scale rather than 1 parcent. In addition,

the guaranteed accuracy of the calibration botile is +2 percent.
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TABLE IV, OPTIMUM AND PROBABLE GAS SAMPLE
ANALYSIS PRECISION

More
Manufacturer's Probable
Specification Accuracy ‘
| Kuil Scale
] :
Instrument Accuracy +1% +3%
Calibration Bottle Accuracy +1%* +2%
Total Full-Scale Accuracy +2% +5%
At 30% of Full Scale
Instrument Accuracy +3% +10%
Calibration Bottle +0. 3% %k 1, 4%k
Total for 30% of Full Scale +3.3% +11, 4%

It is assumed here that no error is present f{rom poor calibration
curves,

%  Calibration bottles are obtainable guaranteed for 1% accuracy.
%k Assumes calibration gas for full.scale deflection.

%k Agssumes calibration gas for 1/2 of full scale, which is much more#
likely to occur than when full-scale calibration gas is obtainable.
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Considering that precision values are usually specified at full-scale
deflection, if the same variation is applied at 30 percent of full
scale (where readings are often made), then accuracy is further
affected (Table IV)., These values of accuracy (Table IV) represent
a '"best'" and a "conservative' view of accuracy of gas analysis.

Now let us look at the effect of these error quantities on the emission

measuremeaents.

Correlation of F/A (Gas Analysis) with F/A (Measurements)

The correlation of F/A determined by gas analysis from the engine
or test rig with F/A from the fuel and air measurement tells us two
things: (1) whether the sample 15 representative of the average gas
composition, and (2) whether there are leaks in the system which

would dilute the sample. This F/A correlation is, of course, subject

to the accuracy of both the gas analysis and the engine or combustor
fuel and air rneasurements.

In the laboratory combustor tests, fuel flow and airflow can be quite
precisely measured with calibrated fuel flow meters and precision-
made orifice plates for airflow., Calculations of the flows include
temperature corrections. Pressure and temperature instruments
are calibrated at regular intervals. Estimated accuracy is 11
percent for each measuremeant.

Engine F/A is also determined by meusured fuel flow rite, and
airflow measurement at a calibrated bellmouth at the engine inlet,
The precision of this measurement is not quite as good as in the
laboratory test for these reasons:

1. At low power settings, the pressure drop at the bellmouth
inlet is low, and accuracy suffers.

2. The precise quantity of air entering the combustor is
determined from bellmouth measured airflow and from

calculated engine cooling and internal airflow network.

3. Low-power interstage compressor bleed is reproducible
within +2% of the total airflow.

Considering all of the foregoing problems of calibration, accuracy,
and precision, we then look at a comparison of the two completely
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independent methods of F/A measurement: (1) gas analysis and

(2) fuel and air metering, The comparison tells something about
both measurements, and also tells whether the gas analysis sample
is representative of the overall gas composition. F/A can be taken

as a measure of just how representative are the emission concentrations

if we can assume that the gases are all mixed in the same proportion

and that

there is no selective separation of exhaust gas cornponents.

These are thought to be reasonable assumptions.

Fuel-air correlation data for combustors and engine are plotted in

Figures
margin,
percent.
percent.

1.

24

39 through 41. Most of the data lie within the 10 percent

and all of it well within the ARP-1256 specification of 15
The T53 engine "traverse average' data lie within 3 to 4
Some detailed explanations are:

Figure 39 shows the F/A correlation for the T53 and T55
laboratory combustor measurements. Here the "idle' point
gas analysis for both T53 and T55 combustors seems to be
low, as does the maximum power T55 point. For the idle
point, one possible explanation iy that a high concentration of
fuel exists near the wall at the measuring station caused

by fuel vaporizing off the wall in the upstream end of the
combustor, As for the maximum power point in the T55
combustor, the explanation lies in damaged sampling probe.
This probe is water-cooled (Figure 15) and contains five
sample ports across the height of the combustor exit annulus.
At some point in the test, the water was turned off. Over-
heating occurred at the peak of the temperature profile

(2/3 of the channel height) where the F/A was maximum.
Thus, the probe selectively sampled the leanest part of the
flow and gave the low reading shown. The traversing probes
taken from the T53 and T55 rigs after the completion of
testing are shown in Figure 42,

Figure 40 shows F/A correlation data for the T53 engine.

"Traverse average'' data correlations are exceptionally close.
The averaging probe correlations deviate as much as 10
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Figure 39, Correlation of Rig Fuel-Air Ratio With Gas Analysis
Fuel-Air Ratio for Laboratory T53 and T55 Combustor.
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Figure 40, Correlation of T53 Engine Fuel-Air Ratio With Gas
Analysis Fuel-Air Ratio for T53 Engine.
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Figure 41, Correlation of T55 Sngine ."uel-Air Ratio With Gas Analysis
Fuel- Air Ratio.
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Water-Cooled Movable Gas Sampling Probes for T53 and T55

Figure 42.

(Overheating of the T55

Combustor Test After Test Completion,
probe (left) caused damage to the sampling ports.)
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percent. The larger deviations of the fixed probe are caused
in part by (1) the probing location, which may not be as
representative as the ''traverse average', and (2) the short
time duration of the measurement, where reading errors
cannot be "averaged out'.

3. Figure 41 shows the T55 engine F/A correlations. Except
for one point, the 'traverse average' correlations are
within 2 to 3 percent. ''Cruciform-probe average' data
produce consistently high F/A values, with a 10 to 12 percent
band scatter. These high values cannot be explained by
the shape of the exhaust concentration profile with respect
to the location of points sampled by the cruciform probe.
It is likely that the problem resulis from calibration proce-
dure. Actual CO, concentrations for these points lie between
2.6 and 4, 5 percent. The data with the largest differences
were recorded with 1, 6 percent CO_ calibration gas, whereas
the remaining data were recorded 2ii:h 2.5 percent calibra-
tion gas., One '"traverse average' point at high power
deviated from the 1:1 line by 12 percent. This point repre-
sents a 40-point (1/2) traverse perf ormed at a later date
to fill in missing emissions data. Again, the use of a 1.6
percent calibration gas is the probable cause cf the greater-
than-usual deviation,

The variation of concentrations was plotted versus time to provide a
graphical illustration of engine variables during a steady-state operation
(Figure 43). A method of compensation for this time variable was

used in order to compare concentration on a common or ""normalized"
basis, Variability may be caused by changes in ambient temperature
and pressure, small engine control variables, and characteristias of

the operator, plus human interpretation of the readings,

Effect of Exhaust Duct Sampling Probe Position on Measured Average

The data taken in this program have provided detailed exhaust traverses
for two engines and two laboratory combustor rigs. From the 60-point
traverses taken on each combustor or engine, we can select the type

of multiport probe to obtain an average ¢mission accuracy within a
specified percent. Probe sampling type and probe location, all
averages, are compared in Table V,
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The traverses in the engine exhaust duct provide both circum-
ferential and radial prefiles. However, slight variation in the control
of the engine and ambient conditions causes shifts in measured
concentrations. The changes in exhaust composition between traverse
and cruciform probe tests make a direct comparison of the accuracy
of the cruciform probe impractical, Even the variations observed
during the course of a single traverse indicate that some of the

fluctuations are spatial and some are a function of time. The diametral

profiles show some random variations which may be more representa-
tive of the time at which the poin. was taken rather than the position
cf the probe. At higher power levels, where emicsions tend to be
steadier, many of the profiles show a clear radial variation which

corresponds to the hub to tip temperature profile built into the
combustor,

Effect of Precision on Emissions Measurement and Determination

The effect of gas analysis on F/A can be determined from

Equations 2, 3, and 4. The predominant effect is the CO, concentra~
tion, normally one of the most reliable measurements, Errors in
F/A are nearly directly proportional to errors in the CO, measure-
ment¥*. The terms "a" and "b" are normally quite small, as is CO
and CHy, /,, compared to CO;, By using an approximate value of
m/n = 2 and setting a = b = P, equivalencu r~'io (@) can be calculated:

@ : 4,77 (1.5)
1/(CO+COZ+CH ) + m/én
m/n

or

7 CO
o 2 7 _ 2

1/coz+o.5 T 1+,5C0

2

. It can be secn from this equation that a 10 percent error in CO will

have an effect of about 10 percent on @ and F/A, ¥

*Leak checks were made periodically during the tests by changing the
sample line pressure, Any substantizl change in concentrations
would indicate a change in leak rate, if a leak existed.
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With the foregoing considerations of accuracy and precision, we may
conclude that +10 percent is a conservative estimate of accuracy that
can be expected for most cases, and with careful work., It is obvious
that much better precision than this is possible, and also that 10
percent may be too low when measuring low concentrations. An
error analysis is shown in Table IV, Here a small error is a large
percentage, and it may be asking too much of any instrument to
measure reliably anything closer than +5 ppm for CO or HC and

+5 to 10 ppm for NO, The principal question is, "How does this relative-

ly easily obtained 10% precision affect the determination of emission
measurements ?" If we examine the objective of "measuring and
reducing poliutants' in perspective, we find that the real objectives
are: :

1. Determining the quantity of pollutants within a reasonable
accuracy

2. Reducing the pollutants by a large amount (Reference 33)

In view of the present EPA proposed requirement of reductions of the
order of 90 percent of some pollutants, the +10 percent in emission
measuring accuracy is judged to be ''reasonable', It may also be
pointed out that in measurements in the exhausts of many engines,

as reported in Reference 4, the variations in measurements obtained
by different agencies on the same model engine are considerably
greater than 10 percent.

Therefore, the specification of EPA (Reference 33) that precision of
measurement be set at +1 to 2 percent appears difficult, and may

not be necessary in order to meet measurement objectives. The
percentages specified appear to be instraument manufacturer's specifi-
cations under ideal conditions, for full-scale deflection only, and

for calibration gases with zero error. A more realistic calibration
and precision determination should be established by setting standards
for calibration and supplying known sample mixtares to users to
determine their instrument precision, The efforts of the National
Bureau of Standards, or other agencies, would be needed for this
procedure,

Comparison of T53 and T35 Test Engine Performance With a Statistical

Group Performance

Because this program of emission testing of T53 and T55 engines was
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limited to one engine only of each type, it was considered important
to analyze the performance of each engine and determine whether it
was typical of performance for that engine model,

Test engines used in the exhaust emissions program were chosen from
Lycoming's "house engine' resources based on considerations of con-
figuration and availability, A performance analysis was made to estab-
lish these engines as representative of a group of engines by comparing
their performance with production engine performance available from

an extensive data bank, The data bank includes statistical treatment

of data to estimate sample population limits on various performance
parameters, This comparison is made to ensure that both rig and engine
combustor inlet parameters are representative of typical engine opera-
tion, particularly as regards possible extraneous combustor bypass

airflow caused by overboard leakage, or by nontypical internal cooling
ard/or seal pressurization flows,

T583=L=13 Engine K-121J

Performance data from T53-L-13A engine K~121J taken during
initial checkout and emission testing are shown in Figures 44 and
45 for comparison with performance of over 7400 T53~1,~13 engines,
“"Time since new" (TSN) on this engine prior to test was approxi=-
mately 140 hours, The tolerance band shown is derived from
statistical analysis of this engine population by utilizing computer
curve fitting techniques and conventional data reduction practice

to normalize data to ''standard day' conditions, Available data are
limited to the power levels required for production acceptance of the
engine; i, e,, 75 percent normal rated power to military rated
power. The range of the data is sufficient to indicate the K=121J

is not untypical of T53 engine pexformance in the high power
{interstage bleed closed regime) with respect to level and slope

of the aerothermodynamic naraineters., A review of the buildup
records of the engine and visual examination of hardware, come=
bined with the measured performance, support a conclusion that
engine internal airflows and leakage are within acceptable limits,

Data in the ground a=? flight idle regime from a sample of 15
T53«L~13 engincs are shown in Figures 46 and 47 for coraparison
with K=121J performance; they indicate typical part-specd inter=
stage bleed-opened operation, Flight idle operation is specified
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at a maximum fuel flow of 220 lb/hr, corresponding to a gas
producer speed of approximately 71 percent for engine K-1217J,
Power under this condition may vary from zero, at twice optimum
free power turbine speed (approximately 80 percent), to a maximum
of approximately 120 horsepower, when the power turbine is running
at optimum speed (approzimately 40 percent), Based on input
from Lycoming's flight test and field service operations, the
T53-L-13 engine, as used in the Bell UH-1 aircraft, utilizes the
preceding "'flight idle' setting as 'operational idle" for ground
running prior to lift-off. The relationship between free power
turbine speed and output power, at constant gas generator speed,

is shown in Figure 47, where optimum free turbine speed was
maintained for the 15-engine sample.

T55-L-11A Engine B-19Q

Data from T'55-L-11A engine B-19Q are compared with T55-L-11
production engine population limits in Figures 48 and 49, and
indicate acceptable limits of performance, with all aerothermo-
dynamic parameters within normal velues. The engine had
acquired approximately 235 hours TSN, The T55-L-11A engine
incorporates modifications to the hot-end; this resulted in minor
changes to the T55-L~11 model specification as indicated by the

~ acceptance limits per MCR 2108, dated 21 September 1972,

Low-speed, interstage bleed-open data from a sample of T55-
L-11A engines (Figures 50 and 51), when compared with B-19Q
performance, indicate that bleed and turbine cooling airflows

are within acceptable limits. Flight idle operation is specified 2t
a maximum fuel flow of 505 lb/hr for the T53-L-11A, which would
correspond to a gas generator speed of approximately 70 percent
compressor speed for engine B-19Q, Power turbine speed was
set close to optimum values for this test series, as can be seen
in Figure 51. :

"Operational idle'" as applied to the Vertol CH-47C is set at
approximately 82 percent compressor speed (slightly above the
interstage bleed steady-state closure point). Data from B-19Q

at this condition are shown in Figures 50 and 51, This cormpressor
specd meets the engine-airframe systems integration require-
ments,
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Conclusion

Both engines selected for these emission tests meet their specific
performance requirements, "Operational idle" used in the aircraft
application should be the idle used for reporting emissions., The
power used to describe this condition should be assumed to be opti~-
mum Ny rather than the measured power resulting from real Nyt
used in the aircraft, Combustor operating conditions are the same
in both cases,

TEST RESULTS

The

data will be discussed in groupings to better correlate the results,

in this order 7or each engine:

T53

1, Combustor rosults

2, Engine results

3. A comparison of combustor and engine data
4, Comparison of Lycoming and Navy data

5 Other comparisons

Combustor Results

The

combustor tests were performed to simulate engine operating con=

ditions as closely as possible, but, obviously, there are limitaticns,
Known differences between engine and labcratory combustor operation

ares

The

1, Turbulence level and velocity profiles that enter the combustor
from the compressor

2. - Pressure level in cases where cambustor preysure was not
exactly duplicated

3. Effect of the first turbine nozzle

4. Compressor interstage bleed and turbine cooling air bypass,
\_nhich was allowed for in setting the test point, '

bleed air quantities were inciuded in calculations. Turbulence factors,

however, were not included, but are not known to be of significance.
Pressure level effacts were found to be negligible, The effect of the
first turbine nozzle was not determined. '
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In some cases, the engine combustor operating pressure could not be
reached in the laboratory combustor because of facility limitations,

The T53 combustor data consist of:

1, Combustor test rig operating data (fuel, air, etc, )
2, Averaging probe gas sample data
3. Traversing probe gas sample data

The combustor was operated at conditions simulating idle to full power
as shown on Table I, During the 60-point probe traversing operations,
averaging probe data were recorded after each 10 or 15 points, The
gaseous components output was converted to ppm and Emission Index
(EI, 1b/1000 1b fuel), A plot of CO, hydrocarbons {HC), NO, and

NO, as a function of F'/A is shown in Figure 52. Some observations
from these data are:

1, Trends of HC and CO are as expected, with large decreases
as simulation of high power is approached,

2. NO and NOy increases as expected as simulated power
increases

3 The difference in idle F'/A seen by the traverse average and

the four~point averaging probes can be traced directly to the

location of the four averaging probes, By selectively aver=

aging traverse probe data for locations identical to the fixed

probes only, identical F/A's were obtained,

Concurrent with the 60=point gas analysis profiles in the combustor
exit (6-degree rotation angle interval), temperature profiles were re=
corded with 5 thermocouples, spaced as shown in Figure 9, If we
assume that combustion efficiency is constant around the combustoz,
then average thermocouple temperature at a point on the combustor
circumference should be proportional to average fuel=air ratio from
the gas analysis, This is exactly what happena, Results of tests at
simulated idle, 30, 60, and 100 percent of full power are shown in
Figures 53 through 56, respectively, The significance of the close
correlation between the two plots is that two entirely different types
of measurement produce very similar results, The absolute thermo=
couple temperature measurement is low because of radiation and con«
duction losses, but the perturbations of temperature in traversing the
circuit arve valid,
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The "'cold" spot in the combustor exit for "idle! power (Figure 53) was
found to correlate precisely with a lack of fuel in that area, This was
later found to be caused by malfunctioning fuel nozzles.

The level of concentrations of each pollutant has been measured in the
T53 combustor with good precision and repeatability.

A complete set of detailed concentration plots of the T53 laboratory rig
traverse data recorded at 6-degree intervals is presented in Appendix
II. The preceding comparison in this report shows the close corre-
spondence between the F /A profile and the temperature profile,

Other aspects of the traverse data from Appendix II which can be
utilized for improvement of combustor design are:

1, If one compares the F/A traces of the T53 with those of the

- T55 (Appendix IV), a significant difference appears, At idle,
both show large random variations due to the poor mixing
which is characteristic of low=pressure operation, At the
three higher power settings, the T53 traverses show larger
variations than the T55, and these variations are of larger
spatial extent, The T55 profile is characterized by sharp,
short fluctuations that diminish as the simulated power
level increnses, while the iarge, emooth variations of the T53
do not vanish at high power. This indicates that the large
scale (or circumferential) stirrine of the T55 is superior to
the T53,

2, A comparison of the T53 F/A traverse at the 3U, 60, and 100
percent power levels shows that most of the characteristics
of the traverse carry through from one simulated power
setting to the next. This is also true of the NO and NOy
profiles, At the higher power settinge,the incompletely re-
acted species (CO and HC) tend to vanish, and the profiles
lose meaning, Hence, the only similarity that carries
through is for the CO betweon 30 and 60 percent,

3 Comparative study of the EI and ppm plots for CC, HC,
NO,and NO, will chow that the EI plots are considurably
smoother than ppm, Since the EI is the ratio of pollutant
to fuel=air ratio, this smoothing means that each of these
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pollutants is partially proportional to fuel-air ratio, One
would expect this for NO,, but the fact that it is also true
for HC and CO must mean that the primary zone is on the
rich side and that the richer regions tend to be quenched
before combustion is completed,

4, The correspondence in detail of the NOy profile to the F/A
profile is so strong that one could infer the shape of the NO,
profile from a simple temperature traverse, While there is
some coupling between the HC and CO and the F/A, the rel-
ative magnitude of the fluctuations is very different and the
form of the profile could not be determined from a tempera-
ture traverse. However, there'is a correspondence between
CO and HC. As combustion efficiency increases, both CO and
HC decrease,with CO decreasing at a slower rate than HC.
The trends are similar to those shown in Reference 8, and
the ratio of CO/HC is a function of combustion efficiency and
combustor style.

T63 Engri_ne» Data and Results

T53 engine data consist of:
1, Engine operating performance data (fuel flow, airflow, etc, )

2 Cruciform (averaging) probe exhaust measurements for gas
composition and smoke

3 Single «point traversing probe measurements for gas compo=
sition

Engine operation performance data were recorded for each data point
where the engine power was changed, as in a performance power test,
For the long=term steady=-state tests, during which time the single=
point gas analysis probe was traversed, engine data were recorded at
15-minute intervals in order to establish that operations wexre

steady, Engine data are listed in Reference 5,

Cruciform probe data included average CO, NO, NO,, and hydrcsarbon
pollutant data, shown plotted versus percent power in Figure 57, A
discontinuity is shown between "bleed open" and "bleed closed! to de=
note the bleed closure, The changes in pollutant concentrations are

as expected, CO and hydrocarbons rise steeply at low power; NO,
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increases with increasing power. Carbon monoxide concentrations
at low power are high, and are shown as a discontinuity on the upper
part of the CO plot.

Single-point probe data were recorded for 73 data points (61 positions)
for determining the exhaust gas profiles and correlating the results
with cruciform probe data. Data were recorded at idle, 30, 60, and
100 percent of full power. The average of the single-point concentra-
tions and the cruciform probe data are compared in Figure 58.

The single-point probe data were used to plot the concentration grad-
ients on three diameters for NOx, NO, CO, HC, and F/A for the

four test conditions: idle, 30%, 60%, and full power. These are shown
on Figures 59 through 62, The general trend is an increase in the
gradient of each component as the absolute concentration increases.

We note.also that somewhat higher concentrations of hydrocarbons,

and CO to same extent, exist near the tailpipe walls at low power,
although the F'/A does not show a particular wall increase. At high
power and high F/A, the NO and NOx gradients tend to correspond

to that of F/A, with higher values near the wall,

Some irregularities and discontinuities are noted on the diametral pro-
file data. In many cases, these ave a result of glight variation in
operation, The test time covered a period of about 3 hours. Dnuring
this time, the ambient air pressure, temperature, wind velocity, and
direction could change. To determine the extent of these effects, plus
those associated with changes in engine airflow, fuel flow, etc., the
center point was ugsed as a reference level and was sampled on each
diameter sweep of the probe. The time average center point concen-
trations were used to correct or "normalize" the surrounding data
point position concentrations, The results have been plotted in Appen-
dix II for the four power settings and components CO, HC, NO, NOy.
In addition, com.bustion efficiency and F/A were plotted. For most

of these plots, the exhaust gas is quite uniform. Nonuniformities that
were measured in the combustor exhaust in the laboratory combustor
are not pronounced in the engine exhaust, The large gradieit: of con-
centration reported in the exhaust of large fan jet engines (JT9D)
(Reference 34) are not observed in the T53 exhaust, There are
noticeable similarities between F/A profile gradients and NO (or NO,)
gradients for the higher power points, as might be expected. ”'
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In addition to the contour plots of combustion efficiency at each power
rating, a plot was made of combustion efficiency versus percent rated
power (Figure 63), Both of the two ascending and descending power
tests are plotted, Divergence and data scatter at the low power end is
as much as +,5 percent at 98 percent. At high power, scatter is of the
order of 0, 05 percent or +, 025 percent, An interesting aspect of these
"up and d~wn'" performance tests is that there appears to be some ‘
hysteresis on the return. Those data will be compared in a later section
of this report with respect to NO formation

These data lead to the following conclusions regarding the design of
average sampling probes for Lycoming engines:

1. Probes should be designed for a systematic variation in the
radial direction; i, e., the equal area design concept is
correct.

2, The maximum number of major circumferenti. | vaiations
observed indicates that the cruciform probe with four radial
bars is adequate to obtain a representative sample, I one
uses the isopleth plots to calculate the value that a cruci=
form probe would read, they agree, in all cases, within
about 3 percent of the traverse average.

3. The random spatial variations are probably no larger than
the time variationsy this means that the cruciform probe
with a sample time of 2 minutes is preferable to the
traverse that takes several hours,

Smoke measurements, recorded concurrently with the gas analysis,
were converted to AIA smoke number per Reference 6. The results
are plotted versus power in Figure 64, The peak smoke number mea=
sured is 15, which is well below the visible limit of 30 to 35,

Comparison of T53 Combustor and Engine Emissions

Data from the T53 combustor and engine were examined to learn
whether laboratory combustor exhaust gas data could be used to cor=
relate with the engine exhaust gas profiles, The laboratory combustor
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probe contains 5 ports (Figure 13) which ingest the gas and arrive at an
average mixture for a sector of the exhaust, This composition was
compared with an engine traverse of gas composition along a radial cir-
cumference that corresponds tov the geometric centroid, The two are
plotted in Figure 65, An examination of the two profiles reveals no
similarities, although the average F/A values are similar, as would be
expected, The conclusions are:

1, Any small circumferential concentration profile that is present.
at the combustor exit is essentially wiped out by mixing in the
turbines and exhaust ducting,

2. Aerodynamic flow in the laboratory test may be different enough
from the engine flow so that a comparison of profile detail
may be meaningless,

Emission level from the combustor test was compared with emissions
from the engine. Because the engine F/A is not the combustor F/A,
comparison of the two requires adjustments. Engine horsepower was
plotted against both engine F/A and combustor F/A (Figure 66). The
airflow adjustments included compressor bleed and cocl.ng air for

the turbine, as discussed previously in this report, With his correc-
tion applied to the engine data, a plot was made of pollutants versas
combustor F/A (Figure 67), Agreement between cruciform (averaging)
probe, engine traverse average, and laboratory traverse average is
excellent for nearly all components. (The NO values frorm the engine
traverse average are higher than the other two values.)

The good agreement between the three measurements in the laboratory
and on the engine demonstrates that:

1 The measurements in the laboratory can be used to predict
engine emiesions.

2, Conditions of test in the laboratory closely approximate engine
. operation from an emissions point of view,

3 The precision of the measurements is obviously satisfactory
and reproducible over a period of several weeks and under
~varied testing conditions.
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4, The preponderance of evidence from the three measurements
provides solid ground for a statement on emissiorn level for

this engine,

T55 Combustor Data and Results

As with the T53 combustor, the T55 data consiust of combustor test
rig operating data, averaging probe data, and traversing probe data.

The combustor was operated at conditions simulating engine idle to
full power (Table I). Maximum power and 60 percent power conditions
were simulated with temperature, but not with pressure, because of
compressor facility limitations, During 60-point traverses, averaging
probe data were recorded for each 15 data points. This served the
purpose of checking the combustor operation for possible variations

as time progressed, and for obtaining averaging probe data. Gaseous
component output was converted to ppm and to Emission Index (EI).

A plot of emittants CO, HC, NO, and NOx is shown in Figure 68 as a
function of F/A, Obseivations from these plots show that:

1. Trends of CO and HC are similar to those from the T53
combustor; there are large reductions in concentration as
power is increased from simulated idle to full,

2. Increases in NO and NO, occur, as expected, as simulated
power increases,

3,- The "traverse average'' compares closely to the value read
by the four averaging probes, Differences can be
traced to the location of the four probes with respect to
_the shape of the emission profiles; i. 2., the four probes
were not at representative locations in the traverse.

As with the T53, the T55 temperature profiles were recorded with a
5-thermocouple rotating prode (Figures 12 and 13) while the gas sample
traverse was being made, and similar results were obtained. Tempera-
ture peaks and valleys correspond almost exactly with /A peaks and
valleys at all flow test conditions (idle, 30, 60, and 100 percent power)
(Figures 69 through 72)., These results again substantiate the correla-
tion between thermocouple gas measurement and gas analysis.
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Complete plots of the T55 rig traverse gas composition data are
presented in Appendix III. The T55 F/A traverses show variations
over short distances which diminish to a steady value at higher simu-
lated power. From a combustor deaign viewpoint, this indicates good
circumferential mixing, As with the T53, the characte.istics of the
traverses tend to recur at each successive power se.ting. This holds
for all the pollutants, as well as F/A, except at high power simulation
where HC becomes minute, and traverse detail vanishes.

During the T55 '"idle' traverse, a valve was left open in the sample line
for the central one-third of the traverse; this resulted in sample
dilution with ambient air. As one may estimate from the F/A profile,
this resulted in roughly 1,5 parts of air to each part of exhaust gas.
This dilution does not affect the calculated value of EI or combustor
efficiency because these are evaluated frora a ratio of exhaust gas
component concentrations rather than an absolute value. Notice that
the EI's for CO, HC and NO are not significantly shifted in this section
of the traverse. Such is not the case for NO , which shifts downward
to just above the level of NO., Apparently thé disturbing effects of the
other exhaust components were eliminated by the heavy dilution. This
effect may be an instrument phenomenon, because the NO level does
not change as it would if NO:K were being created in the sample line,

When one compares the plots of EI with those of ppm, the NO and NO,
are substantially smoother for the EI traverse, which once again
demonstrates the substantial relationship between NO and F/A. For
the T55, a similar conclusion cannot he drawn for the"CO and HC as

it was for the T53, Here the amount of unburned species is quite
independent of the local F/A, Apparently the mixing is good, and the
primary zone is lean enough so that the richest zones of the combustor
have no more tendency to leave unburned components than do the
leaner zones,

The correspondence of the NO and F/A profiles is sufficiently good

to permit the shape, but not the level, of the NO profile to be estimated
from a simple temperature traverse, CO and HE show no detailed
coupling to the F/A, but are coupled to each other up to the point

where the HC reaches a negligible concentration at or below 60 percent
power, The ratio, CO/HC, is once again a reasonably consistent
function of efficiency, although it is not the samo dependeunce observed
for the T53 data,
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T55 Engine Data and Results

T55 engine data, similar to the T53 data, consist of:

1. Engine operating performance

2. Exhaust gas measurements from the cruciform (averaging)
probe

3. Exhaust gas measurements from the single-point probe

As with the T53, both engine data and gas analysis data were recorded
at each power setting as the engine operation was increased from idle
to full power and down again. For the steady-state operation required
for single-point probe traversing, engine operation data were recorded
at 15-minute intervals. Engine data are tabulated in Reference 5,

The T55 engine emission levels from cruciform probe '"performance"
tests are shown in Figure 73 for idle through full power. The discon-
tinuity at bleed closure is obvious. NO, NO , and HC emissions
repeat within the experimental error for two tests., For CO, two
levels of concentration result from two tests. The reason for the
CO level difference is not obvious. Agreement of concentrations of
other constituents for the two tests is within the experimental error.
Trends of NO, NO , HC, and CO are similar to those from the T53

x .
. engine, as expected, Comparisons of values with other engines will
be made later in this report.

Data from the single-point probe were used to plot the concentration
gradients for NO, NO_, CO, HC, and F/A for four test conditions

idle, 30 percent, 60 p’c‘arcent. and full power., These are shown in
Figures 74 through 77 as profiles at three diameters across the exhaust.
General trends oi the profiles are similar to those of the T53, Again,
some discontinuity is noted for two halves of the traverse, a function

of slight changes in operation and ambient conditions, NO measure-
ments exhibit more variability than the others, and, in gerferal. indicate
10 to 20 ppm more than NO, These characteristics will be discussed

in more detail later in this report. Some erratic behavior is displayed
by the CO measurement at 30 percent power, and the level of CO
appears to be low, It is suspected that the detector may have been
somewhat out of adjustment during this test.
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As with the T53, the center-point gas cornposition in the T55 exhaust
was used as a reference level to correct other point samples to the
'""normalized' level, Contour plots of concentrations could then be
made, as shown in Appendix 1V, The profiles for the most part
indicate nearly complete combustion at high power, and relatively
flat profiles, indicating good mixing.

After one test at 60 percent power, it was found that the engine oil
seals had deteriorated (Reference 5),* This test was rerun. To
compare the effect of oil seal leakage, the data were plotted (Figure 79)
and compared with a similar test when the seals had been replaced
(Figure 78). A marked increase in hydrocarbons is shown for the

oil leakage case. The amount of leakage measured on a short test
the next day was 2 quarts per hour +15 percent. If uniform leakage
can be assumed, this would amount tc 88 ppmC, as compared with the
measured value of 30 to 40 ppmC. The difference between these two
values can be explained if we assume that the leaking oil was not
distributed uniformly in the airstream, and that some of it made

its exit by other means, There was no indication of hydrocarbon
saturation or chromatographic effects in the sampling lines from high
concentrations of heavy hydrocarbons. ""Normal' oil consumption has
been measured at 0, 25 gqnart per hour.

A plot of HC concentration versus point sequence (or time) at 60 percent
power shows HC increasing, as time progressed and the oil seal
deteriorated (Figure 80), Also shown is the small HC concentration
when the test was rerun after the seal was repaired. The reduction

in HC with the new seal is dramatic.

Combustion efficiency was calculated from gas analysis and plotted

as a function of engine combustor F/A in Figure 81, Three

tests were made, operating the engine from idle to full power and
back. (Two tests were made on one day and one on the second day.)
The significance of the three tests is that the combustion efficiency
calculations are very close, even overlapping, indicating repeatable
results from run-to-run and day-to-day. An examination of Figure 81
for hysteresis shows only u hint of this type of nonreproducibility, aad
nothing conclusive,

*Smoke was visible in the engine exhaust during the seal failure. No
smoke measurements were made during this period.
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Smoke emission data for the T55 engine are shown on Figure 82, Two
tests were made, and the agreement between them is excellent in

light of the AIA smoke number accuracy specification of +3 (Refer-
ence 6). A marked increase in smoke concentration is shown as power
increases, with a full powei reading of slightly greater than 45, Smoke
was not vigible in this engine exhaust except when there was an oil seal
failure. There was no known oil leakage during the testing portrayed
in Figure 82, V

Comparison of T55 Combustor and Engine Emissions

Similar comparisons of '"combustor exit F/A" and "engine exit F/A"
profile were made for T55 data, as was done for T53 data. A typical
example is shown in Figure 83, Combustor sample data were taken

at 6 degree rotation intervals with the 5-port averaging probe. Engine
data were those from a single-point probe sampling path with the

radius at the ceatroid position. Again, no similarities in the profiles
were found. The conclusion reached is that the engine exhaust gas
composition profile cannot be predicted from combustor exit composition
profile,

To further evaluate the engine exhaust as compared with the combustor
exhaust data, we performed a similar procedure as for the T53 engine.
A plot of engine horsepower versus F/A of the engine and of the
combustor was made from engine performance data (Figure 84).
Compressor bypass bleed and turbine cooling air were included in
calculating F/A, By using this information, pollutants for both
combustor and engine could be plotted as a function of combustor

F/A as shown in Figure 85, With three measurements, cruci-

form probe in the engine, engine traverse average, and laboratory
traverse average, we find agreement close to within the experimental
error of any one of these measurements, Since these tests were
recorded over several teat periods and with two separate pieces of
equipment (laboratory rig and engine), the agreement is very good.
The large spread in CO data appeara to repeat for the three measure-
ments--ai indication that it is not fortuitous, even though the reason
is not perceived.

‘Again, the good agreement between laboratory and engine measurements

demonstrates that:

1. Laboratory measurements can be used to predict engine
emissions.
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2. Laboratory test conditions producing emissions closely
approximate engine operation, even though the pressure
cannot be exactly reproduced.

3. Tests produced over a period of time can reproduce similar
results,

4. A good basis for engine emissions levels has been established.

CORRELATIONS

Correlations of T53 and T55 NOy Data

The scatter of some of the T53 NO, data was analyzed by investigating
the poasibility of hysteresis in the combustor performance with
increasing or decreasing power, This was first found in T53 combustion
efficiency, as shown on Figure 63. Two tests were made on successive
days with an inlet ambient temperature change of about 10°F, The
higher combustion efficiency occurred at the higher inlet air tempera-
ture, as might be expected. The major point is that after a "warming-
up'' period, combustion improves somewhat. Likewise, NOy products
increase, The effect of this NOx increase in the T53 engine is shown
in Figure 86 for the same tests. There appears to be some correlation
between combustion efficiency and NO produced.

It is interesting to note that the engine exhaust ''traverse average"
data pointe (Figure 86) of four tests on different days over a period

of 12 days all lie in and around the data from the engine '"up and down"
performance test run, Ambient temperature during this period was
40° to 50°F, and specific humidity varied from . 0034 to . 0044 pound
of water per pound of air.

A similar plot of combustion efficiency (Figure 81) and an analysis

of T55-L-11 nitric oxide data were made (Figure 87). The data scatter
is not quite so pronounced as for the T53 engine. If hysteresis exists,

it is hidden by data scatter, The change in concentration between

the two test runs is small, of the order of 5 percent (Figure 87).
Traverse tests, recorded on 6 different days over a period of 18 days,
show scatter of the same order as the scatter from a single performance
test.
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The T53 and T55 engine NO_ data were compared with each other and
also with a group of engine &ta from Reference 28. The results are
gshown in Figure 88. Both T53 and T55 data bands lie mostly within i(
. the data band spread of Reference 28, The T55 NOx is about 30 3
percent less than that of the T53. The combustor residence time in ,
the T55 is approximately cne-half that in the T53, Because NO,
formation is a time function, the difference is reasonable.

Lipfert's compiled data (Reference 28) are for many different gas
turbine engines, and obviously, they do not all have the same combustion
chamber residence *ime. Most of the T53 and T55 NO,, data
lie within this band., It can be logically assumed that different
combustor residence time could account for the major portion of
data spread. However, a differeuce in slope for both T53 and T55

- is noted on Figure 88.

Other Correlations and Comparisons

The three measurements, (1) engine cruciform probe, (2) engine
traverse average, and (3) laboratory traverse average,were used to
calculate combustion efficiency for the T53 and T55 engines. The
variation in the calculated combustion efficiency is in nearly all
cases less than 0.5 percent (Figures 89 and 90). At the upper power
range, agreement is of the order of 0.1 percent for nearly all cases,

This agreernent exists in spite of the time, operating conditions, test

‘ rig versus engine, and measurement variables, Both exhaust gas

‘ S composition and measurement precision for both combustor and engine
|- . tests were in close agreement.

/ ' Another comparison of combustion efficieacy in both Lycoming T53
_ and T55 engines with a group of gas turbine results {rom Reference 4
b is shown in Figure 91. The Lycoming engines are grouped neax the :

, upper portion of the combustion efficiency band, Because pollutant
CO and HC are directly responsible for loss in combustion efficiency,
thie infers that these two engines are among the better gas turbines
from the standpoint of CO and HC pollution,

Summazry of T53 and T55 Gas Analysis

A brief suammary of the gaseous emission resuits from these tests

ia shown in Table VI. The emission values listed are average numbers
to provide the reader with a quick comparison. More precise values
and their range must be obtained by closer examinaiion of the data.
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COMPARISON O LYCOMING AND NAVY EMISSIONS
DATA FROM THE T53 AND T55

GAS ANALYSIS

To further evaluate the results of the emission measurements on the
T53 and T55 engines, we considered the results from Navy tests on
other units of the same model engine as reported in References 2

and 3, and compared these data with those of the present tests.

The eraission levels versus power for Navy tests are shown for the
two engines in Figures 92 and 93. These data are plotted on the same
chart with Lycoming data, shown as bands with a distribution spread
(Figures 94 and 95). For the T53 comparison (Figure 94), agreement
is quite good for hydrocarbons and CO, There was less spread in the
Navy data, mostly because fewer data points were recorded. NO,
concentration was somewhat higher in Lycoming measured data, and is
certainly explainable in terms of expected measurement precision
and engine variations.

For the T55, agreement was better for hydrocarbons and NO_ and
for CO at low power., The more pronounced higher concentration
of CO from Navy data at the higher power settings is not serious;
however, a good explanation is not obvious.

If we congtruct an "average' curve of concentration of each pollutant
for each engine, then comparisons are more obvious (Figures 96
and 97). The confidence level for Lycoming data is high because:

1. Many data points were recorded.

2, Sample validity was checked by constant F/A calcula-
tions and compared with the engine input F/A ,

3. Frequent checks were made on instrument accuracy.

4. Emission correlation comparisons between engine and
combustor rig teasts all show agreement within the data
band spread (usually 10 percent or less). If we assume
that Navy data are equally valid, then the only measurements
that appear conflicting are the CO data for the T55 engine.
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This being the case, we cannot explain the differences with the Navy
test data on the basis of errors in measuremant for the T55, since |
there is good agreement for CO for the T53 engine. Therefore,

the difference must be the result of a real difference in gas composition,

or a difference in methods or techniques of measurement for the Navy

tests.,

COMPARISON OF SMOKE DATA FROM LYCOMING AND NAVY TESTS

Smoke data from the Lycoming tests were plotted and compared with
smoke data from the Navy tests (References 2 and 3), as shown on
Figure 98 for the T53 engine. Although the slopes of the curves are
similar, the peak value of the smoke number is about 9 units higher
from Navy data. In Reference 2, it is stated the SAE-ARP 1179 was
followed in measuring the smoke. Th2 same procedures were followed
at Lycoming, If we assume that the numbers obtained are equally
valid within + 3 smoke numbers, then obviously one of these engines
produces more smoke than the other, However, smoke should not

be vigible in either case.

A similar correlation of curve shape for both Lycoming and Navy data }
is noted for smoke comparisons in the T55 engine (Figure 99). Again,
Navy data show smoke numbers about 10 units higher, The reasons
could be the inherent differences between the two engines, the differences
in measurement equipment, or both, It is not possible to state which

i of these effects are present,
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CONCLUSIONS AND RECOMMENDATIONS

Conclusions

1.

2,

3.

4,

5.

The emissions data obtained in these tests of T53 and T55 engines
is in reasonable agreement with previous data taken on these
engines.

Two engine exhaust gas probe configurations were tested:
a. Single-point probe used in a traverse of thc exhaust
b. Cruciform ormultipoint averaging probe

Analyzed gas samples from the two measurements agreed within
5 to 10 percent of each other, This establishes the cruciform
averaging type of probe as a satisfactory method of sampling
the exhaust gas in these engines. The cruciform probe is by
far the simplest probe in use.

Th: laboratory combustor tests provided excellent means of
measuring gaseous composition and pollutants, and these data
could be used to predict engine emissions. This was true even
though laboratory rig operating pressure was less than the
maximum engine design operating pressure. Temperature
simulation was more important and was duplicated in the
laboratory tests,

The criteria used for determining whether the gas sample is
representative of the stream were as recommended by the
SAE-ARP 1256, The ARP specifies that engine (or combustor)
independent F'/A measurement shall agree with the gas analysis
calculated F/A within 15 percent. In these tests, agreement
was within 5 to 10 percent, or better than required.

There was no apparent corrclation of tha circumferential traverse
shape between engine and laboratory, nor was there a significant
correlation in either case to the mechanical structure of the rig

or engine, However, the engine exhaust profiles of all constituents

were smoother than the profiles observed in the combustor rig
due to the smoothing action of the turbine and exhaust diffuser.

Smoke is invisible in the exhaust of both of these engines at all
operating conditious. The one exception cccurred when a T55
oil seal failed.
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7. NO, measurements were in nearly all cases approximately 10
to 20 ppm higher than NO measurements.

Recommendations

1. The "Cruciform" or averaging-type probe is recommended as
satisfactory for emission measurements on T53 and T55 engines.
Further investigations are needed to establish the advisability
of using this type of sampling probe on other gas turbine exhausts.

2, Questions of NO; formation and measurement need further
investigation to improve the reliability of the NO, measurement.

3, A standard calibration gas checking system should be developed
so that all agencies engaged in engine emission analysis have
the opportunity to check their analyzer equipment against
established gas sample bottles.
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APPENDIX I
T53 LABORATORY COMBUSTOR RIG TRAVERSE DATA

This appendix presents computer '""Calcomp' plots (Figures 100 through
111) of all the emission traverse data taken in the T53 combustor test
rigs only. Each simulated power condition (idle, 30, 60, and 100
percent) is represented by three separate plots:

1, Performance summary plot showing fuel-2ir ratio,
combustion efficiency, and the separate component
contribution to combustion inefficiency

2. Emissions in ppm volume for CQ, HC, NO, and NOx
" (hydrocarbons are ppmC)

3. Emissions index (EI)in pounds per 1000 pounds of fuel
for each component

Scales for the performance summary plotare constant, but the scale
for each of the emission plots is computer-selected to attain the
largest value on the scale. Traverse position is in degrees from

the rig starting point; the T53 rig starts at 180° (bottom center).
This is significant in comparing results from the rig with engine data
or with rig temperatuve traverses which start at top dead-center.
Symbols on the plots have the following meaning:

A Net combustor efficiency

o g Fuel-air ratio

€

- CO (inefficiency, emissgion index or ppm)

Y HC (inefficiency, emission index, or ppmC)
X NO (einission index or ppm)

b4 NOx (emission index or ppm)

A study of this data will reveal several irregularities that require
explanation. The most significant of these are:

1, Traverse data ol the T53 combustor during the idle run
showed a low fuel-air ratio zone between 300 and 20 degrees.
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A posttest examination of the fuel manifold showed several
blocked or partially blocked fuel nozzles in the same region.

S e e S 'c’%q:%

2. The indicated CO during the first T53 30-percent power
point does not appear consistent with previous measurements,
although the fluctuations appear to be similar to the fluctua-
tions of other components. Instrument malfunction is
suspected. This traverse was repeated. A second set of
data shcewn is more reasonable.

SR

. 3. NO* data for several runs are not as precise as might be
3 desired. Interference of other gaseous components with the
; polarographic sensor is a suggested cause.

TR T L e

145

T TR R 1 e B 8w




*31P] je 918Uy 2SIIAEIJ, SNSIDA
Aousrd1yyd pue onjey A1y-1ond ‘roisnquo) Aiojeroqe] ¢GL ‘00T aand1 g

NOI11S0d 3SuIAbul
{37362

Q0088 00 0N 2002 00°00% d0'oee 20°092 30°082 ooz co oag 03°09: foo e M IS frastes 4 fopo oy § uD.n.O s - Lo ﬁ..&l - o
N A il
- - S — % 515 -
. \\T Wl \\%H J LS ﬂ\\\r/ﬂk\ \ ,u, 21a
K = ¢
_ \ < 7./.,/ / / . = S\JI( \ .
A\.\/J\IIVN /.i\.\.l . B
v/4 _ LY B ]
R Ve |
[ NEER
—— N/ | _mmmxn“m .
\ < T TT TSI M m m
A \/fn//.\.\-// y . - : )
2|3 |=
RIEERP NN NS EEANi w
/ ﬂ <_Szu_w__tm _mo:ma_:.__u /1 *rE .

0
[} ]
(13 ]

e




*a1p] 3t 218uy 98aaaea],
snsaxop uvolssiwuy wdd ‘rojsnquuo) AiojeroqeT €51 [0 @andi g

NQILISOd 3SHIAYML
c-0SE  00°ONE  00°02C  O6°90€ COToBE  J0°092 J0°0WZ  88°0Zz 23789z I3TIer  C3NI9T oGRS 3GTgRr e3odr

\\4/4/1 —t .&m-Jﬂhmﬂﬂj

T il M il
N A P / \ff/\\ v
\J

©

I,

- o—er” / N\

7 A, < .
/ 3

<L=5- EXIEE b Y ESS

T |
M\_7
s
ol g “q. “H ‘!#\Vssuﬁ' w ™
147




. *21p] 3® 218uy 2saaaer]
ENSI9 A X2pul UolssIWy ‘I03STNqUIOD AiojeroqeT €61 °201 @andi1 g

NOILESOd ISHIANEL
23-3sr  go-oer

0387298 [ 2002t £3308 o0 o8 coo8e 00 an2 20702 ¢c-oge

Hl&zaaz /

dl //]
/

/

2

v
(

\\G..;H
\ M r\\;/ac.i\ //

L5 3Ty

—
)

..T A ..T ﬁ.gr“qh“#;& st
148

s




‘Tamed %0€ : n
je 918Uy 9S8J9aBIJ SNSIIA A>ua1d1jJ ©OoIISNqUIO))
pue -omey ITy-jond ‘Ioisnquo) Arojeroqz] €51 “t01 daudr g !

NO111S0d 3SHIALHL
00'09¢  00°0RE  00°02C  00°COC  00°CS2  00°092  00ONZ  00°022  03°002  00°03t  00°OSt  Co-OMt 32702t g0sger 3G G3eue oo e9s? o9 a2 &
by | o IVI!/!\.Q\.Q|1 HI - T IJI\I“ 3 13
“ffo\"u;iﬁ\od ‘:‘I"\Q\Lﬁl‘lox } - P
s |% ]2
Ji N
z |2 |2
1..:..1\.\// e 2 A . PPFF
T Y fl/\\ 7/\.
el 5 9N
nl Tf —
2l =l =
I :
= P —
=13 °
1 P PR
g s z
(@ E m luuﬂ._nnwduiagnwn 2 1z I3
2 3 =
z I8 |2 !
- -— [ - - S
_'1 - .- I.I.Il.r‘ll\‘|v|.l. " ;
3 3 3 :
¢
i
4
&
&
e
* - . »\,s
A




*1amod %0¢E 3 273Uy 9srIaasei]
snsxap suorsstwy wdd ‘rojsnquio) Arojeroqe] €SI “¥O1 aznd g

NOILISOd 3SuIAULL

20008 O00°ONC  00°02f  00°00€  00°C6Z  00°092  00°ORZ  00°022 097092 | 40°38 cocam:  02"G21  govE8r  COUG8 3098 ongh oGk X
3 H
r/IA)\}/»\ ~ .!J.\.tl/.\,\lv/)/r P St N\ \\\Icl!.j
vV ~ 3
.\\l!.-./l.\t\t/iL iF\f k}\ I‘l.l.\.a
oy = /N/ff\\fi\XITfM\\n —— .\./\,/../,\.\.\..\\./Lvm4 . .
3
iz
> @ o
Z | 8 |
VA : _M
_M, = :
LIRS ¢ / s
/] |




*xamod %Q¢ 32 213uy IsIdaexr],
msmu0>xwvcHdowmmwﬁm.uo.mman&onuhuo“duonddmmh..mo.—ouawm.m

NOILISQd ISYIABML
00°09€  00°OME (002 00°0GC  00°0R2  00°092  09°0MZ 30702 00°00Z  G0°Ce:  JCTO8I  CITORT  OSTO21  Ghteor G308 o3-c8 a3-cr 0832 29

3
IOIL N
—~— e-jo—a—t— Syt la—— 4 H\~|t\tlx fx”lll!lf\hli\..

e ] \ -
A , \ //ﬂ N a
r A AA Y

T ajlﬂzﬂ..ﬂu.ﬂu.rﬂdqgu@ 379

é
!
~
S8 I B L Y 's% :
151




e - o . e b b L iy s s wo s an e b it e Mot e e oot e+ o+

*iamod %09
je 918uy osaasea], snsasp LAouaidijiF UVOIISNqUIOD)
pue orjey A1y -19ng ‘rojsnquo) LIojeroqeT €SI °90f 2andig

NQI1i50¢ 35H3ALL:

087056 000N £0°D% 337098 32°ORI iiSse  Q6TIN 33T 23°532 | 2i-ok R O T o s3ois Ea] T3-3 2932 E
* v Jﬂ‘ ~ 1T 1ﬁ1 . 3 13 |8
s |3 18
3 {2 {3
B
3 |3 IS
-
j\ﬁ\f-!\ o \/ll/ \\.-/)/.1 \ﬂ \\\/Yll{ \?lv\h// m 5
W A snig_ iz
/ \ 1 ] e E
o 5= B —
1 3 d
Sl .
3 13 X
-4 .,muﬂlﬂ#mu‘uc R3T T3 g Fﬂﬂdﬂdﬂg 117 2 Iz I3
3 |3 j= b
3 i3 I8 *

S TR Lot s 20




R e e I e b e e e

*Tamod %09 38 918Uy 9s5IdsvaA]
snsiop suorssturyg wdd ‘zojsnquo) LiojeroqerT €55 °LOT 2andrd

NOTLISOd 3SHIABHL .
00°09E  CO'URE  00°02¢  DO'00C 087362 0DC'042 D302 £O'0E2  oo'ed2 2070k 00Tagr cotomr  ¢0tgzt eo°oo! 00°08 £0°99 cegr 00°02 o0

N 0 B S NV ND ZaN 9l 1 0 DA PN
VEMEAAA:

co{d

~N
oot

153

\,
N\
T T T R AT L

N r/if./.I[lk\ ,rl-zu\ N V1 <

{L

o
oo'qr 1} 00w oo [+11) 1] 00 1S 00 1% 1R |3 002
J Qi SNQISSIRI Mdd

»

e VO S A el o o a3 te Eut b AR e il il BT Rt A0 T




*IamM0g %09 3e 918Uy IsIvARIT
SNSI?A XopUJ uolssiwy ‘Iojsnquio) LAIojeroqeT ¢GJ, °g0f 2andig

NQTLiSdd 3SWIAbLL
o3 N 55098 S350 Sergne 2t 3TN 3308 Irts3e B A S50yl 25°0M3 357328 £2°332 gU3E 23739 29°0 $9°92 £o"

TS T | R ~ —

AT TN AT,
ST

oo ¥

ool

oo fr
pot ¥3diet

154

TIAX)

13

113 3

1
N
)?
J
L
X‘)
\J
)
N
A
{
/
J
0
Y

iy T AN30 93d [T b Y udﬂ.ﬂwmn /\u\l
TN \1\

[

[k 3

00"




‘Iamod %001
je w.mwdéﬂ 95Jd9AeI], SNSIOA %UGOMU._”.H_.MMH GOmuw.Dn—dﬂOU
pu®e o1jey hm&xlﬁ@ﬂ.h nHOumﬂn—EOU %hOudhOn—.mWH [ A omvo.n QHSM.—.W
oty s stem somr iesr evame ey oo NITIISOS 3563MmLE .
2e pit S 13T50 3o 230762 J3Tame 133 2 ..u~w 1Tt AN T RN 27591 23ce ca°ng 390 26°02 WY g o
0 ERER ]
L] = 2
‘ s |§ 12
(] k-3
2 |2 i8
n - C-3
g |8 |
-l |2
Pl
\_/ \/.. sT1e— MU
ol Zf =
A\ /M, = . AN A A B 0
= \ N, / / A \L\ X k % = e T wn
\ —~< o, L fe
A — 1 A ~F V[ \AANEEE | -
] r/uln\\ ' = &
. - " I.A =
2 |5 122
IAN IS8T TE5P0a TN B33 0T 30 I8 RS {09 T 5T a1
pou b 17
o ~
% 8 k=3
g |8 (=
g < &




xomod %001 3e 218Uy 9sIvsavi],
snsxap suorsstwayg uwzdd ‘rojsnquic) Aiojexoqer] ¢GJ ‘O11 @Indig

NOI11S0d ammcu\—,cr._.

1o 111 4 op-onE oot o0 008 00°082 00°092 0p°one 00°0e2 80°002 0508 otost co‘ont o0° 021 go-oot fel13g+:-3 [131 085 co°gn 0s 02 as6°q,
R e s e e 3
-2 \'/‘l‘\?l‘L‘\'lfIl\\'/l.’ \\L-l-
e i /)ﬂ\.’x ‘/‘/ b \o/.\..‘.’\.l.l.. ~ s
-
4
s
2, F.N al N\v\), X X .\m %
%k \ N \\ w//ﬂ \4 / .\ /\ /\ 3= —
L il N A , y =
|
i =] q}\ I/<>< z

00"




RTINS N T T S AP I e oy g e Ay AR 4 - - - ey e~ = = Teowee: g 2 E S

cxamod %GOl 32 3{8uy osacsea],
snsIs A Xapu] uolssiwyg ‘xogsnquo) Axojeroqe] €51 Il @andig

NJTLISOd ISH3IALLL
gaz It 33090

cénne SUCONE [ S2°08e J¢ShHe 33068 £9°0he £370Ee 22763 TR

£3°0nC £5702t S2°GBE I3°se 2073y 2G3% 9738 374,

elololo\blolo;?ﬁ\ol.fl)/\\i -— {Z\IIIQIOIQEIII\\[}OIQ\IK}TM

00 P

gt

0N

)
N
/

nw
d3d|g!

[ R P e e e L
n/&\rf././.\/\\\

g

157

304 a1 opot

00!

3L Io € [6IPJs 1437 ©3d nﬂ._lalﬂ‘ TFIT L[99 T E5L

LUR 00§t 00'|) OD‘T

e A TIN i  TELTE r t3  ( e Yd AT t MLAS t HA




APPENDIX II
T53 ENGINFE ISOPLETH EXHAUST CONTOUR PLOTS

The engine exhaust gas sampling traverse was made with the single-
point probe to determine CO, HC, CO,, NO, and NO_ at four power
conditions, including idle, 30, 60, anc% 100 percent of full power.

With center-point repetition, 71 data points were recorded. From
these data, calculations were made for F/A and combustion efficiency.
In order to plot the isopleth concentration (or combustion efficiency)
lines, all values were normalized to an average reference value at

the duct center. This reduces any time variation of the concentrations
to a very small amount. Plotted for each power setting are isopleths
for CO, HC, NO, NOx, fuel-air ratio, and combustion efficiency.

See Figures 112 through 135,
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Figure 112. T53 Engine Isopleth of CO (ppm)
at Idle Power,
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Figure 113. T53 Engine Isopleth of HC (ppmnC)
at Idle Power.
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Figure 114, T53 Engine Isopleth of NO (ppm)
at Idle Power,
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Figure 115, T53 Engine Isopleth of NOx (ppm)
at Idle Power,
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Figure 116, T53 Engine Isopleth of Fuel-Air
Ratio at Idle Power.
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Figure 117. T53 Engine Isopleth of Combustion
Efficiency at Idle Power,
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Figure 118. T53 Engine Isopleth of CO (ppm)
at 30% Power,
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Figure 119, T53 Engine Isopleth of HC (ppmC)
' at 30% Power,
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Figure 120. T53 Engine Isopleth of NO (ppm)
at 30% Power,
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Figure 121, T53 Engine Isopleth of NOx (ppm)
. at 30% Power.
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Figure 122, T53 Engine Isopleth of Fuel-Air
Ratio at 30% Power.
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Figure i23, T53 Engine Isopleth of Combustion
Efficiency at 30% Power,
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Figure 124, T53 Engine Isopleth of CO (ppm)
at 60% Power.
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Figure 125, T53 Engine leopleth of HC (ppmC)
at 60% Power.
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Figure 126, T53 Engine Isopleth of NO (ppm)
at 60% Power,
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Figure 127. T53 Engine lsopleth of NOx (ppm)
at 60% Power.
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Figure 128, T53 Engine Isopleth of Fuel-Air
Ratio at 60% Power,
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Figure 129.

T53 Engine Isopleth of Combustion
Efficiency at 60% Power.
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Figure 130,
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T53 Engine Isopleth of CO (ppm)
at 100% Power.
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Figure 131,
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T53 Engine Isopleth of HC (ppmC)

at 100% Power,
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Figure 132, T53 Engine Isopleth of NO (ppm)
at 100% Power.
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Figure 133. T5) Engine lsopleth of Nox (ppm)
at 10'0% Power.
169

RV




1e0°/0*

165°

Figure 134. T53 Engine Isopleth of Fuel-Air
Ratio at 100% Power.
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Figure 135, T53 Engine Isopleth of Combustion
Efficiency at 100% Power.
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APPENDIX III
T55 ENGINE LABORATORY COMBUSTOR RIG TRAVERSE DATA

This appendix presents computer '"Calcomp' plots (Figures 136 through
147) of all the emission traverse data taken in the T55 combustor

test rigs only., Each simulated power condition (idle, 30, 60 and 100
percent) is represented by three separate plots:

. Perforinance summary plot showing fuel-air ratio, combus-
tion efficiency, and the separate component contribution
to combustion inefficiency

2. Emissgions in ppm volume for CO, HC, NO, and NOx
(hydrocarbons are in ppmC)

3. Emission index, in pounds per 1000 pounds of fuel for-
each composnent E

Scales for the performance summary plot are constant, but the scale
for each of the emission plots is computer-selected to attain the
largest value on the scale. Traverse position is in degrces from
the rig starting point; the T55 rig starts at 300 degrees, This is
*significant in comparing results from the rig with engine data or with
. rig temperature traverses which start at top dead-center. Symbols

/*-" on the plots have the following meaning:

* Net combustor efficiency

o Fuel-air ratio

o CO (inefficiency, emission index or ppm) -
Y HC (inefficiency, emission index, or ppmC)
X NO (emission index or ppm)

X NOx (emission index or ppm)

A study of this data will reveal several irregularities that require
sxplanation.. The most significant of these are:

1, During the T55 idle traverse, a valve in the sample line
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was left open for 20 of the 60 traverse points. As a result,
the absolute concentrations for the central 1/3 of the traverse
are low by approximately 60 percent.

2. During the T55 30-percent traverse, the NO instrument
malfunctioned, and no data are reported.

3. NO_data for several runs are not as precise as might be
des’fz'ed. Interference of other gasecus components with the
polarographic sensor is a suggested cause.

ey
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APPENDIX IV
T55 ENGINE ISOPLETH EXHAUST CONTOUR PLOTS

Engine exhaust gas sample traverses were made with the single-point
probe to determine CO, HC, CO,, NO, and NO_ at four power
conditions, including idle, 30, 68 and 100 percent of full power,

The traverses were completed on one-half of the exhaust, reoriented,
and then the second half finished. Including a repeat of the dividing-
line diameter between halves and repeats of the centerpoint, 80 data
points were recorded per traverse. From these data, calculations
were completed for F/A and combustion efficiency, by use of the
equations in this report.

In order to plot the isopleth concentratisn {or combustion efficiency)
lines, all values were normalized to an average reference value at
the exhaust duct centerpoint, This reduces any time variation of
the concentrations to a very small amount, Plotted for each power
getting are igopleths for CO, CH, NO, NO .’ fuel-air ratio, and
combustion efficiency, See Figures 148 through 171,
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o*/im- lese
Figure 148, TS5 Engine Isopleth of CO (ppm)
at Idle Power.
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Figure 149, TS5 Engine Isopleth of HC (ppmC)
' at idle Power,
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Figure 150. T55 Engine Isopleth of NO (ppm)
at Idle Power.
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Figure 151, T55 Engine Isopleth of NOx (ppm)
at Idle Power.
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Figure 152. T55 Engine Izopleth of Fuel-Air
Ratio at Idle Power,
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Figure 153, T55 Engine Isopleth of Combustion
Efficiency at ldle Power,
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Figure 154, T55 Engine Isopleth of CO (ppm)
at 30% Power.

Figure 155, T55 Engine Isopleth of HC (ppmC)
at 30% Power.
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Figure 156. T55 Engine Isopleth of NO (ppm)
at 30% Power.
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Figure 157, T55 Engine Isopleth of NO_ (ppm)
at 30% Power. x
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Figure 158, T55 Engine Isopleth of Fuel- Air b
. Ratio at 30% Power. o
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; Figure 159. T55 Engine Isopleth of Combustion
Efficiency at 30% Power.
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Figure 160. T55 Engine Isoplethk of HC (ppmC)
‘ at 60% Power.
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Figure 161. T55 Engine lsopleth of HC (ppmC) -

at 60% Power During an Oil Seal
Failure.
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- Figure 162, T55 Engune Isopleth of CO (ppm)

at 60% PQWe r.
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Figure 183, T55 Engine lsopleth of NO (ppm)
at 60% Power.
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Figure 164. T55 Engine Isopleth of NO (ppm)
at 60% Power.
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Figure 165, T55 Engine Isopleth of Fuel-Air
Ratio at 60% Power.
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Figure 166, T55 Engine Isopleth of Combustion
Efficiency at 60% Power,
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~ Figure 167. T55 Engine Isopleth of CO (ppm)
at 100% Power. :

195




180¢/0°

165°¢ 1s*

1soi \ / 300

Figure 168. T55 Engine Isopleth of NO (ppm)
at 100% Power.
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! _ Figure 169, T55 Engine Isopleth of NO_ (ppm) ) B
at 100% Power, ) : R
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Figure 170. T55 Engine Isopleth of Fuel-Air
Ratio at 100% Power.
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Figure 171. T55 Engine Isopleth of Combustion
Efficiency at 100% Power,
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