AD-778 688

A MODEL-DEBUGGING SYSTEM

William Scott Mark ,

Massachusetts Institute of Technology

mmm%

Prepared for:

Office of Naval Research

April 1974

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

i

e ...iLJ

BIBLIOGRAPHIC DATA |1 Ituporr N, 1 2

3. Recipent’s Agpeession No.
SHEET MAC TR- 125 / A\D”"%j\g 6?8 |

4. il and alael S. Reporr Dates Issued

April 1974
A Model-Debugging System 6.
7. Aathor(-) 8. Pertormmg Organization Rept.
William Scott Mark N MAC TR-125
9. Pertormeng Urgamizatron Name and Adudre - 10. Projecc/Task/Work Unit No,

Pi.OJECT MAC; MASSACHUSETTS INSTITUTE OF TECHNOLOGY :

11, Contract ‘Grant No.

545 Technology Square, Cambridge, Massachusetts 02139
NO0014-70-A-0362-0006
E 12, Sporsoring trcantzation Name .ond Addee o 13. Iypo of Repurt & Period

Office of Naval Research sordvcs plomerin
Department of the Navy i S e
Information Systems Program 14.

Arlington, Va 22217

15, Supplementary Notes

S.B. and S.M. Thesis, Department of Electrical Engineering, January 23, 1974
16. Abstracts
; This research discusses a program which aids the user of an automatic programming
' system (APS) in the "debugying" of his model of his problem situation. In essence,
the user nust make sure that he and the APS mean the same thing by the description
of the problem which the APS is to solve. The problem domain considered in this
thesis is that of "business games" (i.e., the management simulation games which are
used as a learning tool in the study of management). A lauguage for describing
models of these games is presented. The paper then describes the program's methods -
of simulating and finding bugs in models written in this language. Important aspects
of the program's problem-solving approach to debugging are its intevnal knowledge
of "bugs" and of user intention within the model. This internal knowledge stresses
the importance of bugs arising from the interaction of submodels within Li.e model.
Some details of the program's implementation (in “he Conniver language) are discussed,

The necessity of '"model-debugging' in automatic prgramming is emphasized.
17. Kew Words and Document Anadvaas, 17a0 Desenprors

o Db sdid &

model-debugging
debugging
model-verification |

automatic programming

17b. Jacnrfe to Open-laded Torms
!
|
17¢. COSNATL i dd /Group
18. Avalabuhity Stateme nt 19. Sevaniy Class (This 21. Nogof Pages
Report) 143
Approved for public release; 5 '?&ﬁ“ﬂﬁ“}ﬁfi TR
i .] . connty AsS S . fiee
Distribution Unlimited Py
NG ASSIEGD

Rt SE st ey g 2

THIS FORM MAY BE REPRODEC D ki ST HOLEERL

CAMBRIDGE

MAC TR-125

A MODEL-DEBUGGING SYSTEM

William S. Mark

This research was supported by the Advanced
Research Projects Agency of the Department
of Defense under ARPA Order No. 2095 which
was monitored by ONR Contract No. N0O0014-70-

A-0362-0005. {:} D C

R
4 4Ll

ﬂ

3 LAY 14 1974

WJET@LE‘B" Ul
MASSACHUSETTS INSTITUTE OF TECHNOLOGY D
PROJECT MAC

MASSACHUSETTS 02139

DISTRIBJTION STATEMENT A

Approved for public release;
Distribution Unlimited

Page 2

A MODEL-DEBUGGING SYSTEM
by

Willlam Scott Mark

Submitted to the Department of Electrical Engineering on
January 23, 1974 in partial fulfillmert of the requirements
for the Degrees of Bachelor of Science and Master of
Science,

: T N WS CHoh e mpmm— O

ABSTRALT

This research discusses a program which alds the
user of an automatic programming system (APS) 1in the
"debugging" of his mocdel of his problem situation. In
essence, the user must make sure that he and the APS mean
the same thing by the description of the problem which the
APS is to solve. The problem domain considered 1in this
thesis 1Is that of 'business games" (i.e., the management
simulation games which are used as a learning tool 1In the
study of management). A language for describing models of
these games Is presented. The paper then describes the
program's methods of simulating and finding bugs in models
written in this language. Important aspects of the program's
problem-solving approach to debugging are 1its Internal
knowledge of "bugs' and of user intention within the model.
This internal knowledge stresses the importance of bugs
arising from the interaction of submodels within the model.
Some detalls of the program's Implementation (in the
Conniver language) are discussed, The necessity of
"model -debugging'" in automatic programming is emphasized.

THESIS SUPERVISOR: William A, Martin
TITLE: Associate Professor of Electrical Engineering

T T B T T L R e . ol o i B2 Ahan il e ca T T .

il | oo il o e e
T YT e L | g

ACKNOWLEDGEMENTS

I would 1like to acknowledge the key
Ideas and useful criticism of Prof. Martin which were SO

Important to thls thesis, | would a'so like to thank Mark
Laventhal for providing criticlsm in the later phases of

thls research ard for taking the trouble to proofread the
entire document.

BT (0 N SIS Wy

Page 4

Contents

1 IntroductionN..ee.ceeoee PSRN RN o 1O
1.1 Define "define"!..vouvu--. B ST O
1.1.1 What is a model:...............................6
1.1.2 What 15 debUgging?..ceeeeeececcscsosaassasassoesl

1.2 The importance of model- debugglng...................8
1.2.1 Model-debugging as a universal concept.........8
1.2.2 Model-debugging in automatic programming.......9

1.3 Details, detalls...... oo ol ale’s ematei s e istle smsl 5 s okuma e 5okl s el LIbY
1.3.1 Restiction to the WOBG P N
1.3.2 Role of the program in the thesis ceeesesssessl8

2 Just to Five you an 1d€a@..eeeceesscscccaseasss2l
3 Bugs00..0.000...00......00..0...35
3.1 Bugs In mode]s................0..00..0...0..0.36

3.1.1 What did | dO WrONE?...eeeeeeesscaossssssssseedrb
3.1.2 INteraction DUES. . veeeevessesssssscsssasssnssedl
3.2 Interaction in management SYStEMS.....coeeosonacresdd
3.3 Bugs in VWOBG MOCR T S v oveeeeononnsssnscessssscsensssldd

L Hovi the Program WOrKS...eeeeeoecesossssssnsssslt?
b,1 The model specification 1anguage....cceeeoeess 8
4,2 Simulation as a way of doing things...ccceeee..58

%.2.1 The simulator finessed...ceveeeecscassssesssssbl
4.2.2 Simulation history and SIMULATION-HISTORY.....62
3 Goals and envVironmeNntS....eeeeecescccacasassssbd

L Debugging by problem=solvVing...cceeeeseesansess83

L. h.1l The GttaCK..eeeeeoeeesoososeosssossssassssssesedd

b.4.2 The volce of REASON...vveveeeoscsanasnsssassssdl

4, 4,.2,1 GOOD REASON'S..........................92
4.4.2.2 Rasic BAD REASON's...96
4.4.2.3 Higher-order BAD REASON's.....00000-..103

4.4.3 The post-mortem recriminations...cc.oeeeeeeesss1ll

4.5 Don't confuse me with the facts...ceeeeesess.120

5 CONCTUSTONS . o oveeeeeesosossssosasessssssnsssssl23
Blbllography...126
Appendix A......- et e s eeesceeesseasssnesesnsesesacansesl8

Appendix B.'.......II.....................l010000000000138

Ty R R

T S o 7 f. i

Page 5

1 Jntroductlon

The purpose of thls research 1Is to

explore a methodology for debugging certain models of real

world situations, The models considered here consist of
groups of well-defined submodels. The submodels themselves
are fairly structured; the interaction between submodels Is
not. in this paper | will discuss a program which uses the
techniques of goal-programming to explore the interactive
behavior of a given model. The basic idea is that a bug In

the model will give rise to a "problem". . The program then

tries to solve this problem in an environment defined and
constrained bty the model. Those steps at which the
program's problem~-solving process encounters constraints
caused by unintended Interaction of submodels suggest
possible lucations of bugs within the model. ;

To a large extent, the problems of this
research are "artificial intelligence" problems. That is, {
the research protlems involve representation of knowledge In
a form which useful to the problem~-solver, and
representation f the problem~solving process as a computer
program, The remainder of this paper will deal with one
solution of these problems for a program which debugs models

of management situations. This section will present a more

Page 6

complete explanation of the area of model=-debuggling as | see
it. The next section rrov.des an overview of the whole
deburzing process In the context of a detalled example.
Later sectlions develo; some ldeas about bugs,

problem-solving, goal-programming, and the program Itself.

1.1 Deflne "define"

1.1.1 UWhat is a model?

Marvin Minsky describes the concept of a
"mocel” as follows:

If a creature can answer a aquestlon
about a hypothetical experiment without actually
performing it, then It has demonstrated some
knowledge about the world. For hls answer to the
questlon must bhe an encoded description of the
behavior (Inside the creature) of a sub-machlne or
"model" responding to an encoded description of
the world situation described by the quiestion.

We use the term "model" in the followine
sense: to an observer B, an asbject A* Is a model
of an object A to the extent that B can use A* to
answer questions that Interest him about A, |12}

For the purpose of this research, the term "model" wil) be
used In a much less general and more concrete way.
Speclfic2lly, the program discussed here requires that the
"encoded description" be of a particular pre-defined type,
that the kinds of world-objects "A™ to he modelled belong to

a very limited class of things, and that "R"'s questions of

Interest be sharply restricted.

After this section, the term "“model"
will be used to refer to a user-deflined collection of
constructs In a model speclificatlion languarge (MSL)
(presented In section 4.1) which describes a "real-world"
management system, (1) For now, suffice !t to say that a
"mode!" Is a user's description of his system of Interest.
That Is, the wuser thinks that the model describes hls

system=-actually, the model contalns bugs.

1.1.2 What js debugging?

When a model's performance Is not what
the user expects, we say that the model has a "bug" (see
sectlon 3), Ti.e process of findineg what gcayuyses the
discrepancy between performance and expectation Is called
"debugging". It Is the nature of complex processes that the
cause of a discrepancy may be related to the manifestation
of the discrepancy only through a seemingly Intricate chain
of reasoning. The purpose of thls resear:zh Is tc write a
program which knows the necessary kind of reasoning to go

from the manifestation to the cause of a bug.,

i e

(1)
Actually, a real-world business game.

. o R i e b Tl e s e s, s e L)

i B e D e P LT e——— e - e i e

Pare 8

In order to Incorporate this reasoning
process, the program must have knowledge about MSL models
(see U4,1), the kinds of bugs that occur In MSL models (see
3,3), how these bugs manifest themselves (see U4.4,2), and
how the causes are related to the manifestations (see
4.4,3), Of course, thls Is In scme sense the '"whole story";
before launching into it, It mieht be a good Idea to examine
our reasons for worrying about model-debugging in the first

place.

1.2 The lmportance of model-debugzing

1.2.1 Model-debursipz as a unlversal congept

The process of gaining knowledge about
the world Is a process of model formation and debuggling,
The progress of all organlzed thought, especlally sclence,
has often been described in this way, More recently, work
by psycholorists such as Plaget and artificlal Intelligence
researchers such as Seymour Papert has brought this model
formation/debuggling view tc bear on the entire learning
process, Certalnly, no one can doubt the Importance of
studying so fundamental a process.

of course, in this research, the

viewpolInt must be strictly limited, The followlng sections

Page 9

will describe a process which seems only barely related to
the grandlose exaltations of the previous paragraph. For

one thing, the extremely close Interactlon between model

debuggling and formatlion will be greatly restricted to allow

) examination of the debugglng process ftself, Also, the
restrictions inherent (1) In the "show a working progran®
approach of this research make the class of problems seem
trivial when compared to the overall problem of
model ~debugging,

Although | could now <clalm that the
valldity of this research effort 1Is that It provides an
InlTtlal Investigation into a very hairy area (the usual
Inductlion step in artificlial Intelligence theses), | will]
move {n more practical dlirections, (Of course, | hope for
the higher parallels all alone.) Specifically, | consider
the Importance of the kind of model~-debuggling actually

presented here for the new fleld of automatic programming,

1.2.2 Model-debugging In automatic programming

(1) These restrictlions are "inherent" at this stage of our
knowledge, at thls stage of my knowledee, and In the
exirencles of churning out a Master's thecis, Certalinly,

there are no inherent restrictlions In the capablility of i
computers to Incorporate the process,

i aal

=

Page 10

Automatlic programming 1Is the art of
provliding a computer program (an "automatic programming
system' (APS)) which takes as Input some user-amenable
descriptlon of a task and produces as output computer
programs to accompllsh that task, The user's description of
hls task Is hls "model" in the sense described In 1.1.1.
This 1Is the "model" which the proeram described in this
thesls must debur,

But why worry about model-debugglng?
Why not 1let the user speclify something, let the system
renerate a solutlon program, and simply leave it to the user
to respeclfy the problem If he doesn't 1like the results?
There are several answers to thls questlion, some obvlous,
others not so obvlious. Baslcally, the reasons for providing
sophisticated model-debugging alds revolve around
considerations of efflcient use of the APS, ease of use of
the APS, ease of constructlon of the APS, and "safety" In
the use of the APS.

The most obvlous reason for
model-debugglng 1Is that since code-generatlon (i.e.,
actually writing the solutlon program after the task
descriptlon Is In) 1Is a rather arduous process, It s
worthwhlle maklng sure that the user and the APS agree on

what the problem Is before the APS actually writes programs

Page 11

to solve the problem. This 1idea of pre-code-zeneration
debugging Is as old as compllers, ard 1is fairly well

understood. (1)

A related but not quite so obvious
reason for providing model-debussing alids In an APS is to
make the system easier to use. This Is especlally necessary
In an APS like Protosystem | {9| which atterpts to provide
problem=-solving expertise to aid the user. The point Is
that the APS is designed to provide prcblem=-solving
knowledge for a wuser who Is not at all adept In computer
problem=solving. To help him design a description of his
task and then not to aid him in debugging that description
seems like providing not much help at all: descriptions of
complex problems "always" have bugs, and finding them is
usually as sophisticated a task as writing the description
In the first place. (2) Thus, | beleve that an APS that
does not provide model-debugging aid would be difficult, |If
not impossible, to use.

Supposing, then, that some kind of

(1) The actual debugging of models may be quite different
from the debugging of source code, but the reason for doing
so Is the same In this case,.

(2) Statistics have shown that about 50% of the time In
large system development Is spent in debugeing |2].

W TR — piliactl guilines S -~

Page 12

debugging ald is necessary, how should It be iInterfaced with
the user and with the APS? The answer, | think, Is that
debugpirg should occur when the system's knowledge of the
user's problem 1Is still at a high level of symbolic
description, That Is, prior to code generation. This
leaves the debugginy effort In the realm of
mode | =debugging. The reason that It Is important to keep
debugging at a high symbolic level Is to keep the deslign of
the APS as simple as possible. It Is quite difficult to
maintain the 1inks between mistakes which occur at 1ow
levels of description (e.g., programs) and their high-level
causes, Certalnly the wuser cannot be responsible for
maintaining these 1inks, If the APS tells him that "an
i1legal reference was generated from location 11437", we
cannot expect him to have any notion of what went wrong with
his model description, In fact, the construction of an APS
which could make this connection between the bug's
manifestation and Its cause would be extremely difficult,
It seems much more reasonable to carry on debugging at a
high level of symbollc description which both the user and

the APS can understand In terms of the user's model.

Finally, there is a very special protlem

vhich arises In connection with the use of the APS., The

user begins to develon a dependency on the APS and to trust

Page 13

the results of the solution programs. When the system is
more expert then the user (as Is the case in Protosystem iY;
the user may even trust results which "common sense" (t.e.,
previous experience, educated guesses, etc.) tells him are
wrong. In these clircumstances, it is of paramount
importance that the user be sure that the APS has a correct
understanding of his model. Other than the mode l-debugging
subsystem within the APS, there may be no source of feedback
which enables the wuser to find out that there Is anything
wrong at all . (1)

The model-debugging facility has sole
responsibility for helping the user to understand what is
wrong with his model in terms of the model--i.e., iIn the
only terms the user understands. An APS which does not
provide a facillity for Interactive discussion of the model's
assumptions and their ramifications is a dangerous tool
Iindeed. Thus, the wuser must always have some means of
observing the effects of the assumptions In the model and
for making sure that the APS "knows what he means", The
mode l-debugging subsystem of the APS provides the necessary
mechanlism,

Therefore, for reasons of efficlency,

(1) The output code and, In many cases, the assumptlons
underlying Its generation wlii be incomprehensible to the
average user.

Page 14

usablility, and safety, a model-debugging faclility 1Is a
necessary part of an automatlic programming system, Still,
the general problem of model-debugging In automatic
programming 1Is much too Tarre to be considered here. In
the next sectlion, | will explain the particular subdomain of
automatic programming | will attack, and my reasons for

choosing fit.

1.3 Detalls, detalls

1.3.1 Restriction to the WOBG

The program described In this thesis Is
speclialized to work on models chosen from the '"world of
business rames" (WOBG). By this | mean an environment In
which the concepts cormmon to buslﬁess games are the stock
knowledge. There are several reasons for choosing this
domain of Interest: (1) the models are surficliently
structured to be formally expressible, but are not so
structured that they are susceptible to mathematical
analyslis; (2) the 1Interactlion of submodels Is the most
interesting and complex aspect of the model; (3) this Is one
of the few domains which 1Is both reasonable-sized and

"roaal-=world" (in the sense that there Is a pgreat deal of

interest In It Independent of this research); (4) it 1Is a

Lo e Jh ol o i o by At b e adiith b dante | oINPTl B il

Page 15

natural subdomain of the "world of business" (WOB) of

Protosystem | 19].

Models in various domains differ greatly
in the amount of "structure" present in the description of
the model,. By "structure" | mean clearly defined :ules of
construction and constraints on elements, The methods used
In this research require well-defined models., However, If
the model s "too well-defined", debugging becomes
uninteresting, or Is more easily accompl ished by
mathematical tools, The “CPG seems to have just the right
level of structure, Since the idea of modelling business
systems is well estabiished, there exist a variety of
formalisms for expressing business models, These modelling
formalisms are even more clearly deflned for business games,
The very idea of a game is to have a preclise set of elements
and rules for manipulating them, Nonetheless, understanding
and debugging models of business games is by no means
trivial, There 1ic good evide ice that users of even the
simplest of business games have very poor and "buggy" models
of what Is going on 131,161,18). The main reason for this
Is the complexity of the Interaction between submodels in

business games,

[am particularly interested In

debugging models in which iInteraction of subparts Is a major

Page 16

factor In model complexity. Most model=-worlds which have
been investigated In artificial intellisence research (e.g.,
the "blocks world" 121]) have few complex Interdependencies.

Existing Interaction problems tend to be downplayed in order

to emphasize other aspects of the models. (For example,
see Vlinograd's '"solution" to the "findspace problem" In
1211; cf. |17].) | wish to explore the other end of <(he
Iinterdependency scale; l.,e., hirhly Interactive models. (1)
The kind of models which the program described 1in this

research 1Is designed to debug are those in which the user :

has a good understanding of the various parts of the model,
but does not understand how these parts (which | will call
"submodels") interact with each other. (2)

in fact, all of the bugs which the i
prosram 1|Is designed to <ind arise fron Interaction of

submodels (see section 3.3). Pusiness games have very

(1) Real world situations presumably fall somewhere In
between these two extremes. However, | wlll devote a
considerable amounct of space (all of section 3) to an
examination of how Interaction of submodels is tha major
comple::ity factor in real world situvations (in particular,
in large business organizations), and how these reai world
Iinterdependency problems form the "semantic roots" of
similar problems in the toy=-world used in this research. |
am hoping to motivate an iaterest in the "interaction bugs"
which will preoccupy the remainder of the thesis.

(2) | belleve that this is a large and Iimportant class of
models, including models of "systems" with well=-understood
elements (see |3]).

UV N T S———

Pape 17

preclsely deflned elements {see the example game in Appendix
A). However, the:re elements Interact with each other to
the extent that understanding how the '"whole system'" (l.e.,
all of the Interacting parts) works Is a major challenge to
the players, Thus, since poorly understood interactlon of
submodels 1is the major source of hurs In this domain, the
WOBRG forms an excellent testing esround for mv proeram.

Buslness games also have the I[Important
property of being Interesting in thelr own rirht. Playing
and understanding business games 1Is considered to be an
Important activity at many schools of management throughout
the world. There 1Is therefore 1little danger of beling
accused of desliening a program which works only In an ad hoc
problem domain, Furthermore, since people are used to
trying to model business games for themselves, they can
appreclate the efforts of a progsram which aids In the
debuggling of such models, This "real world" flavor of
business ganes Is one of their most iwportant properties for
this research.

Finally, the VOGG is a natural subdomaln
of the WOB of Protosystem |, This Is useful, first of all,
because It allows a certaln Inheritance of philosophy and
technliqgue from the larger project, More Importantly,

though, It enables the model-deburger presented here to be

Page 18

seen In the context of a large automat!c programming system.
Since the ralson'd'etre of my program Is use in an APS, this
connectlon with Protosystem | is an important aspact of the
research. o

Therefore, the basic phllosophy of
model ~debugging presented here will be applled to models
chosén from the world of business games. In order to show
that my basic Ideas about debugging are Indeed "working
ideas", | have written a program which uses these concepts

to debug actual models of business games.

1.5.2 The role of the program in the thesis

The program presented In this thesis
serves several purposes: illustration of Important methods,
demonstration of the workability of the technliques, and
discussion of desisn issues for model-debugging programs.
Certalnly, the major use of the program in the thesis Is to
provide exampies for the debugging theory developed In the
research, A1l the major debugging Ideas are [llustrated by
a scenarlio from the working program, As for the second use
of the program, a little care Is necessary In explaining the

"proof" value of the program In the thesis. it Is often

contended that working programs prove the utllity of the

Page 19

theorles that they represent. This Is true, so long as the
reader Is careful not to use some sort of false Induction
principle to Infer too much from what the program actually .
does. As is almost always the case, the program In this
thesis can actually do only a subset of what Is talked
about. I will always make It clear what the program can
and cannot do, how the program can be extended to do more,
etc. The reader should draw any general
concluslons--carefully--from this informatlon.

Using this "program-as-illustrator"
philosophy of presentation, | wlll now 1launch Into a
detalled example of program operation on a simple model.
This will hopefully give the reader a good baslic idea of
what the rest of the thesis has to say. The issues ralsed
In the example and the example itself will be discussed at
length in the rest of the thesls, each aspect of the problem

appearing In Its loglcal section (see table of contents).

' ™ I < ol ol o o k) s T T L Tp—

Page 20

2 Just to glve you an ldea...

The Important thing to keep In mind
about thls proeram Is that it finds the causes of bugs In
much the same way that people (or Sussman's HACKER |18]) do:
by trying to solve problems--and falling. In this section |
will present the complete works of my program in connection
with a very simple example. A lot of new notatfon Is
presented here; please don't get bogged down Iin It. !
present it here only to avold vagueness In showing what the
program actually works with, More complete explanations of
all the notation (and indeed, the entlre example) appear In
the approprliate sectlons later on. This discussion focuses
on what the program means by a "bug" and on some of the
procedures used to 7o from the manlifestatlion to the cause of
a bug. Neither the procedures nor the descriptive
mechanlisms used by the program are discussed In detail here.
Philosophical Issues about representation of kiowledge In
the program and goal-programming are eschewed completely.
This 1is a quick "introduction by doing" to the methodology
of the program,

Suppose the user presents the program

vwith the following (tiny) model:

e i o g

e

P T Y 1)

Page 21

Consider the followlng model
of sales. A sale 1Is 3 probabilistic occurence
which depends only on the amount of advertising
done. Advertising costs $3000 per page and s

good for one quarter, I buy three pages of
advertising per quarter, If the money to do so Is
avallable. Sales take place during sales calls,

There Is one call per salesman per quarter,. A
customer never buys more than one unit. If a unit
Is sold, the company records $5000 In accounts
receivable (A-R), which 1Is not collectable for
another two quarters. At any time, a salesman has
a 5% chance of quitting., If a salesman quits, a
new man 1is hired, After three months of
training, this man becomes a salesman and may
start making calls. Both salesmen and trainees
are pald $1000 per quarter,. Tralnees also have a
5% chance of quitting at any time.

The user would Input this model Into the program with the
model specificatlion language presented In sectlon 4.1, In
these MSL terms, the model looks like: p

(*ACTIVITY HIRING
(#*PREREQUISITES (*PRESENT (1000 CASH)))
(*SCHEDULE ON QUIT)
(*PRIORITY 2)
(*OQUTPUT (SOME TRAINEE))
(*TAKES 0)
)

(*ACTIVITY ADVERTISING
(#PREREQUISITES (*PRESENT (3000 CASH)))
(*SCHEDULE 3)
(*TAKES 1)
(*PRIORITY 3)
(*OUTPUT (1 PAGE-OF-ADVERTISING))
)

(*ACTIVITY TRAINING
(*PREREQUISITES
(AND

(*PRESENT (1000 CASH))
(*PRESENT (SOME TRAINEE))

Page 22

)

(*TAKES 3)

(*QUTPUT (SOME SALESMAN))
)

(«ACTIVITY SALES-CALL
(*PREREQUISITES
(AND
(*PRESENT (1000 CASH))
(*PRESENT (1 UNIT))
(*PRESENT (SOME SALESMAN))

)
(«TAKES 1)
)

(+*ACTIVITY COLLECTION
(*PREREQUISITES (*PRESENT (5000 A-R)))
(+«TAKES 2)
(*OUTPUT (5000 CASH))

)

(*EVENT SALE
(*CONDITIONS SALES-PROBABILITY)
(«ACTIVITIES (SALES-CALL)
(*OUTPUT (5000 A-R))
)

)

(*EVENT QUITTING
(*CONDITIONS QUITTING-PROBABILITY)
(*ACTIVITIES (SALES-CALL)
(*CANCEL) :
(*REMOVE (THAT SALESMAN)) |

)
(*ACTIVITIES (TRAINING)

(*CANCEL)

(*REMOVE (THAT TRAINEE))

)
(*FUNCTION SALES-PROBABILITY

(*ARGUMENTS (PAGE-OF-ADVERTISING))
(*RETURN ad-function))

(1 will not show the exact nature of ;
"ad-function", as it Is a *TABLE construct (see 4,1)-- L

N

Page 23

Just a bunch of numbers that we shouldn't worry about
here (see Appendix B).)

Now suppose the user glves the program
the following:
(«*SIMULATE 4 3

((30000 CASH)

(50 UNIT)

(DON SALESMAN)

(MARK SALESMAN)

(STEVE SALESMAN)

(BiLL SALESMAN)

(.05 QUITTING-PROBABILITY)))
or, In words, simulate the model for 4 quarters, showing a
tine~slice every quarter, and with the zlven Inttial values,
Before consldering the actions of the Program, It s
worthwhile to nnte a few things.

First, observe that the the user has

given the model (50 UNIT) as an Initlal resource. This Is a
typlcal example of a model-testlng technlique: adding slack
to decouple submodels, Presumably, UNIT s something
created by another submodel! which the user does not wish to
conslider at tnis time, The user effectively removes thls
"other submodel" by making sure that the submodel Is npever
limited by the amount of UNIT avalilable. (The PRODUCTION

submodel which creates LNIT's Is shown In Appendix B.))

Second, note that we are making an

Implicit assumption about what the user will do with the

Page 24

simulatlon after It Is presented by the program, We are
assuming that he will be elther satisfled or dissatisflied
with the result (1) . If he Is dissatisfled, he will express
his expectatlion to the system in the form of a goal, This
Infticiezs the debugging process. At this time, let us
rejoin our example, In progress,

The flrst actlion of the program Is to
simulate the model as the user requests, |f the user's
expectation Is fulfilled, no further actlion wlill be taken
untll the wuser's nex: request for simulation, If his
expectatlion Is not met, the program will help him find the
bug in the model.

The requested simulation Is shown below.
The representation used here (and throughout the thesls)
should he seen as a graphical description of the complex of
1ist structure which the program ures to describe simulation
historles, Every part of the diagram has an analog In the

Conniver {20} representation of the program (see sectlon

4.2),

(1) We are also assuming that the user is a good judge of
the overall performance of the system he |Is trylng to model,
This 1Is of course not Inconsistent with our baslc premise
that the user does not fully understand the workings of the
system (and therefore has bugs In his model), Rather, we
are sayling that the user knows pretty well what the model

should do, but is having trouble making the model do what It
should.

Page 25

SIMULATION=-HISTORY

*TIME~SLICE 0=

i RESOURCES:
CASH: 30000
UNITS: 50

; 'SALESMEN: DON, STEVE,MARK, BILL
!

*TIME-SLICE 1«

RESOQURCES:
SALESMEN: DPON, STEVE, MARK, BILL
CASH: 17000
UNITS: 48
A-R: 10000

SCHEDULED *ACTIVITY's:
SALES-CALL (DON)
SALES~-CALL (STEVE)
SALES~CALL (MARK)
SALES-CALL (BILL)
ADVERTISING
ADVERTISING
ADVERTISING
COLLECTION (TIME~LEFT = 2)
COLLECTION (TIME-LEFT = 2)

SALE (BILL)
SALE (DON)

*TIME-SLICE 2+

RESOURCES:
SALESMEN: DON,MARK,BILL
CASH: 5000
UNITS: L7
A-R: 15000
TRAINEE: GO0001

SCHEDULED *ACTIVITY's:

SALES-CALL (DON)

SALES-CALL {MARK)
SALES-CALL (BILL)
ADVERTISING

ADVERTISING

ADVERTISING

COLLECTION (TIME-LEFT = 1)
COLLECTION (TIME-LEFT = 1)
COLLECTION (TIME-LEFT = 2)
HIRING

TRAINING (TIME-LEFT = 3)

*EVENT's:
SALE (MARK)
QU!TTING (STEVE)

*TIME-SLICE 3«

RRESOURCES:
SALESMEN: DON, MARK, BILL
CASH: 2000
UNITS: L6
A-R: 10000

TRAINEE: G000l

SCHEDVLED +ACTIVITY's:
SALES~-CALL (DON)
SALES-CALL (MARK)
SALES-CALL (BILL)
ADVERTISING
ADVERTISING
ADVERTISING
COLLECTIOM (TIME-LEFT = 2)
COLLECTIOM (TIME-LEFT = 1)
TRAINING (TIME-LEFT = 2)

SALE (BILL)

*TIME-SLICE U=

RESOURCES:
SALESMEN: DON, MARK, BILL
CASH: 1000
UNITS: u5

A-R: 10000

Page 27

TRAINEE: G000l

SCHEDULED *ACTIVITY's:
SALES-CALL (DON)
SALES-CALL (MARK)
SALES-CALL (BILL)
ADVERTISING
COLLECTON (TIME-LEFT = 2)
COLLECTION (TIME-LEFT = 1)
TRAINING (TIME~LEFT = 1)

*EVENT's:
SALE (MARK)

The simulation has resulted in 5 SALE's.
Suppose that the user expected 6. There is a bug in the
model--but where? Note that the model runs out of CASH in
the last quarter (and therefore cannot schcdule ail three
ADVERTISING *ACTIVITY's). However, the bug 1is not "NOT
ENOUGH CASH", Rather, this effect is symptomatic of the
bug. Most of the effort of the program 1is to point out
bugs, not their symptoms., But this requires problem-solving
in the context of tne simulation history. Back to the
actual action of the pregram...

The user notes that there were only 5
SALE's rather than the expected 6. In order to try to
rectify things, the user gives the system

(*GOAL (INCREASE SALE 1))

The program Is now in the debuggling business, It must try

hat dntae T o ol e

Page 28

to solve the problem of Increasing the number of SALE's in
the context of the given simulation history. The places at
which 1t encounters dubious constraints in the simulation
environment are its possible locations for bugs.

The program uses the model and the
simulation history to perform the requisite problem-solving
actlivity for each goal as it Is presented. This may be
thought of as asking two questions of the model and the
simulation:

(1) Why didn't you do this before?
and, !f there Is no good reason,

(2) How could we do this?

The method of asking and receiving answers to these
questlions Is best explained by continuation of the example.
The first goal (glven by the user) Is

(*GOAL (INCREASE SALE 1))

Since this goal was given by the user, the first question is
not asked. However, the second question is asked. How can
we increase the number of SALE's? By examining the model
and using the 1logic «f INCREASE (explained in section
L.4.1), we see that one way to Increase SALE's iIs to
increase the probability of a SALE occuring, Thus, the

system generates a new goal

- . b e e PO R S AT TR B S Ll S & ik il s st i A s L S i U G

it b ok Rl L T i alsbii b

—r

Page 29
(*GOAL (INCREASE SALES-PROBABILITY))

Now the program asks question number one: why wasn't
SALES~PROBABILITY higher In the first place? The program
looks &t the simulation history and notes that the
SALES-PROBABIL'TY was at a low In time-sllice 4. Why iIs [t
so low? There was not enough ADVERTISING, the program
determines, This I's a BAD REASON: the model was
RESOURCE~LIMITED, Okay, how can we get the necessary
ADVERTISING? In order to Investigate this question, the
pProgram generates a new goal

(*GOAL (SCHEDULE 2 ADVERTISING &4))

which meains "try to schedule 2 ADVERTISING =*ACTIVITY's in
time=-slice 4", (The fact that we need 2 ADVERTISING

*ACTIVITY's s presumably due to the exact nature of

"ad-functlon", and will not be discussed here.) Agaln, the

program asks why the ADVERTISING #*ACTIVITY's were not
scheduled in the first place. The answer Is that there was
not enough CASH; still RESOURCE-LIMITED, so we pursue this
line with:

(*GOAL (INCREASE CASH 6000 4))

By agaln asking the questions and forming new goals, the
program forms the following *GOAL 1line:

(*GOAL (INCREASE CASH 6000 4))

(*GOAL (SCHEDULE 2 COLLECTION &4))
(*GOAL {ALLOW 2 SALE 2))
(*GOAL (SCHEDULE 3 ADVERT!UING 2))

1 ("ALLOW" rather than "SCHEDULE" because SALE Is an «EVENT.)
Note that we are back to SCHEDULIng ADVERTISING, Are we in

some kind of 1loop? No, we are moving back In time.

Furthermore, this time, when we ask why we didn't schedule

three more ADVERTISING «*ACTIVITY's in time~slice 2, we find

that the .reason 1Is that the user told us not to (via his
¥

*SCHEDULE speciflication in the ADVERTISING +~ACTIVITY (see

Thus, ADVERTISING 1Is SCHEDULE-LIMITED !n

page 17)).

time-sliice 2. This 1Is a GOOD REASON, and the program

action on this line of thought. HNonetheless, It

terminates

saves informat /on about the terminated 1line. If no more

"1ikely" bug |Is found, the program will tell the user that

his *SCHEDULE specification for ADVERTISING is insufficient

the mode! to meet his expectations. in the

to allow

meantime, however, the program explores the model for more

Yhe program does this by "backing up" (1) some

1ikely bugs.

(1) This is not automatic backup In the PLANNER sense, The
program backs up only In certain cases, and only under
program control, More Importantly, the effects of the
"acked-over" *GOAL's are "undone" only Ir the context of
the simulation history. The terminated 1lines must be saved
for later examination by the program, This Is essentlial for
handling the *GROUP constructs discussed later in the

e — U S L e PR [S T OIS vy —
ol " R T T e . - a8 o - — J
rv—_!-x o T el — - _—

Pige 31

and trying a different line of attack.

T T T I, <3

In this case, the program checks to see

If there Is another way to accomplish

(*GOAL (ALLOW 2 SALE 2))

Using Its usual question-asking procedure, the program finds
the alternate 1l!ne
(*GOAL (ALLOW 2 SALE 2))
(*GOAL (INCREASE SALES-CALL 2 2))
(*GOAL (INCREASE SALESMAN 2 2))

(*GOAL (SCHEDULE 2 TRAINING -1)) 2??

(Note that CASH does not have to be INCREASEd In this 1line
because there Is already a sufficlent amount to support the
new INCREASEs,) The program Immediately notes that It Is
trylng to schedule In negatlve time, and terminates the
line.

This finishes off the entire

(*GOAL (INCREASE SALES-PROBABILITY))

Idea. But there Is stlill another way for the program to try
to pet that extra SALE It s looking for: by trylng to

Increase the number of SALES-CALL's, Thus,

(*GOAL (INCREASE SALE 1))

thesls, and for making flnal debuggling recommendations (see
sectlion 4.4),

(»GOAL (INCREASE SALES-CALL 2 4))

(#GOAL (INCREASE SALESMAN 2 4))

(*GOAL (SCHEDULE 2 TRAINING 1))

(*GOAL (INCREASE TRAINING 2 1))
(»GOAL (INCREASE HIRING 2 1))

(The choice of time=slice 4 for INCREASing SALES-CALL was
not arbitrary: the program chooses a slice where it thinks
it can do the most good.) But the program cannot accomplish
this last goal, Why not? The user specifically said not to
hire until someone quits. The program then checks to see
if HIRING did in fact occur. Yes--one time-slice later.
This particular set of circumstances suggests a common
timing bug 1In the manager’s "“fire-fighting" approach to
problem solvirg--no action was taken until it was too late
for it to do any good (the solution 1Is to anticipate
problems; more details about managers' bugs in section 3).
Since this bug arises from so specific a group of events,
the program thinks i't is a rather probable bug and gets
ready to suggest it first. It then checks to see if there
are any other ways of |[INCREASing the number of SALE's.
Since there are not, It is finished looking for bugs, and is
now ready to suggest the bugs [t knows.

As advertised, the first bug suggested

to the user is:

B N e < ——— e
R r

N T W i (Tt TP I T | aueeegr e
L\ A PO PP A, i oo - S A g T)

e

T R T N T = . e
L o b il o b g i) 1pa m-in s mo g ulebeyls

Page 33

=~BAD *SCHEDULE FOR HIRING: DEPENDENT ON QUIT; HIRING
TOO LATE
The user may agree that thils is the bug (! think it is),
or ask the program to try again. The next bug suggested

Is

=~BAD SENSE OF PRIORITIES: HIRING AND ADVERTISING

Essenttally, the prograrm suggests that It could have
gotten more ADVERTISING if HIRING did not have higher
priority. If the wuser doesn't buy this, the program
suggests that ne simply blew the *SCHEDULE specification
on ADVERTISING:

=-BAD #SCHEDULE FOR ADVERTISING: NOT ENOUGH

If the wuser stil1 doesn't 1ike what's happening (and
since the program has sugrested all of the bugs It
found), the program decides to see If the user might have
mis-specifled or completely omitted a relevant part of
his model (this happens more often than you might think)
It then uses its access to WOBG knowledge to suggest

==MISSING ~ACTIVITY: FACTORING

(the wuser may factor accounts-recelvable to provide

Instant cash) ard

=~MISSING *ACTIVITY: RESEARCH AND DEVELOPMENT

Page 34

(the user may Increase the probabllity of a sale by
improving his product).

The program goes out of the debugging
business whenever the user takes a suggestion, or, of
course, when Its bag of tricks Is exhausted. The user
can now fix his model or change his expectations and
re-simulate. Eventually, thls process of simulatlion and
debugging wlll converge to a model that the user Is
conflident that he and the APS both understand
sufficlently,

In thls section | have tried to show
a complete example of what this thesls Is about. | wlll
now go Into an examlinatlion of the foundatlions of thls
approach, and the techniques that allow Its

Implementation. | begin with a philosophical discusslion

of bugs (yech).

A bug 1Is something that prevents
something from behaving the way someone expects it to.
This section particularizes the notion of '"bug" to a
concept which Is useful for this research. As usuai, the
program only knows abtout a narrowed-down version of
"bug".

We will be Interested here only in
"understanding-bugs"--1.e., bugs that exist only in the
user's understanding of the system he wishes to model
(cf. Goldsteln's "semantic bugs" |5]). This immediately
removes from consideration "parenthesis errors" and other
"syntactic bugs" (of course, trivial syntax bugs
sometimes arise from a basic misunderstanding). Thus,
there will be no interest whatsoever in finding bugs due
to MSL errors. 1In fact, no attention Is given to bugs of
any kind that arise from careless expression of the
user's knowledge In the modelling formalism,

The kinds of bugs with which the
program Is concerned are those that seem to be "inherent"
in the way people understand (or misunderstand) systems.
The rest of this section will be devoted to an

examination of bugs that occur in the modelling process

i e

Page 36

3 and the features of the problem domain that cause them to

occur,
1 3.1 Bugs In models

5 3.1.1 What did | do wrong?

What happens when people try to model
systems? They usually do some mumbling and
head-scratching and come out with some sort of expression
of their ideas. Iin this research, the "expression" is
required to be rather formal, but this doesn't matter
much. Next, the modeller somehow tests his .iodel to see
how it performs under various conditions (just as my
system uses simulation, see section 4.,2). Most of the
time, the model does not perform as the modeller expects
it to--"something goes wrong".

Actually, "something went wrong" at
define-time: there is something in the definition of the
model which 1is causing the unexpected behavior. | have
already mentioned the hypothesis that the user has a good
understanding of each submodel. (1) Thus, the part of

the model definition which 1Is in error must be a

(1) The notion of "submodel" will become much more precise 1
when | discuss MSL in section 4,1,

VL it M S NP e e i e et

Page 37

specliflication of submodel Iinteraction. The
manifestation of such a bug varies widely with the
particular bug 1involved, and tends to be a detail~d
matter (l.e., highly dependent on the actual
representation formalism), Therefcre, | will postpone
(th discussion of this problem until after | have
described the formalism (4.4,2), and go on to an
examination of the "semantic roots" of these "interaction

bugs".

3.1.2 Interaction bugs

In order to understand the Idea of
interaction between submodels, it is helpful to view the
model as a process which defines the action of the
modelled system, Thus, the models we will examine here
all "do something'". The model can be seen as a syster
which converts some sort of Input resources Into some
predefined outputs., (This is, Ir fact, a very popular
view of management systems.) For the model to "do"
anything, Its submodels must Interact with each other.
That 1|Is, the 1Inputs to the entire model are actually
inputs to certain submodels which convert them Into

Intermediate quantities which are in turn Inputs to other

Page 38

submcdels--and so on until the desired outputs are

|
|
4
:
;
E
:
E
:

obtalined.

Via this Interaction, varlious
dependencles between submodels arise. The most common
is that one submodel must walt for the completion of
another before it can begin action. (See section 4.4 for
a detalled account of different kinds of interaction
between MSL submodels.) Also, submodels often share
basic resources, giving rise to conflicts between

submodels,

These dependencies and conflicts
between submodels provide the environment for the
following basic "interaction bugs":

(1) Unexpected conflict arising from competition for
shared resources

(2) Weak performance due to poor perception of
time-phased occurences

(3) Speclal complexity problems arising from the
concentration of (1) and (2) in “tight systems" bound
by higher-order constraints
Although | believe that these bugs have considerable
generality, 1| will not discuss them 1In the abstract.

Instead, | will move Immediately Iinto the domain of

management systems to provide a framework for discussion.

Page 39

3.2 Interaction In manasement systems

The bugs catalogued in the above

subsection arise from poor understanding of complexity.
This "complexity" |Is directly inherited by the models from
the modelled domain. As an introduction to the interaction
complexity of organizations in the world of business (which
form the basis for business games, the '"modelled domain" of

this thesis), | will quote in full an [llustrative passage

from Galbraith |u4l.

There is considerable variation in the
amount of interdependence In organizations. The
kinds of wvariation can be fl1lustrated by
considering a larsge research and development
laboratory employing some 500 scientists who are
pursuing the state-of-the-art. Thus we have a
large number of elements and high task
uncertainty. However, there 1Is little need for
communication. All the projects are small and not
directly connected to other projects. Therefore a
schedule detlay or a design change does not
directly affect other design groups. The only
source of interdependence is that the design
groups share the same pool of resources--men,
faclilitles, 1ideas, and money. But once the
initial resource allocations are made, the only
necessary communication between desisn groups Is
to pass on new ideas (Allen, 1969). This type cf
interdependence has been termed as
(Thompson, 1966, Pp. 54-=5).

1f the nature of the projects
is changed from 250 small independent ones to two J
large ones, a different pattern of interdependence
arlises. The large projects will require
sequential designs. That Is, a device 1is first
designed to determine how much power It will
require. After it is complete, then the design of
the power source can take place. Under these
conditions, a problem encountered in the design of

Page 40

the device will directly affect the group working
on the power souce. The greater the number of
problems, the greater the amount of comunication
that must take place to jointly resolve problems,

The second example describes a
situation which 1Is more complex and requlres
greater amounts of information processing. 1he
second example has &all the problems that were
described in the first example. There must be
budget and facilities allocations made under
conditions of wuncertainty. There must be a flow
of new 1ideas among the technical specialties,
But, in addition, the second example requires
Iinformation preccessing and decision making to
regulate the schedule of sequential activities.
This is because there is greater interdependence
in the second example,

The Interdependence or
interrelatedness of the design groups can be
increased above what is described in the second
example by the degree to which "deslign
optimization" is pursued. Optimization means that
a highly efficient device 1is desired and any
change in the desien of one of the components
requlres redesign of some others.

This can be 1{llustrated by an
automobllie engine and body. The handling
qualities of a car depend on the welght of
the engine. The engine compartment can hold
only a certain size of englne wirh 1its

accessories, The drive shaft and
differential can handle only a limlted
amount of torque, Changes In the welght,

size, or output of the engine may
necessitate changes Iin the body of the
automobile. These interrelations and many
others must be taken Into account In the
design of an automobile,

Actually, in the case of a
passenger automobile there is a good deal of
flexibility with regard to body-engine
match., The engine compartment 1is usually
large, the parts of the suspension are
easily changed, and the drive shaft probably
has plenty of excess torque-carrying
capabilty, Engines of a varlety of shapes
and sizes are frequently placed in the same
bady. But this need not be the case. In

Page 41

high=-performance automobiles, the size of
the engine compartment is frequently sharply
constrained by aerodynamics considerations,
There may be efforts to lighten the whole
automoblile by makling parts of the drive
system and body as light as possible; glven
the required strengths, In such a
slituatlion, the flexibillity 1In the size,
shape and performance of the engine placed
In the body Is sharply reduced or
eliminated. (Glennan, 1967)
Thus the high performance :auto 1Is a highly
Interrelated syster while the passenger car is a
flexible, loosely coupled system. The same Is
true of organizational subunits which must design
these systems. Any change In the engline design
for the high performance car must be communicated
tc the group designing the body so that an optimal
fit is still achieved after the chanre. This 1Is
less true for a passenger car. Therefore, the
organization desligning the high performance car
must be capable of handling the information flows
described in examples one and two for budgets,
ldeas, and schedules and also these for all
design-redesign declsions deriving from the
interrelated design, The amount of information
that must be processed increases as the amount of
Interdependence Increases.

Each of Galbraith's examples illustrates
a kind of interdependency between subunits of an
organlzation, The first kind, pooled linterdependency ,
glves rise to interaction bug (1) of the previous
subsection., That Is, when resource sharing is present, there

Is 1iable to be unexpected conflict betweer subunits trying

to use the same resources (These are the PRIORITY bugs of

the example In section 2). Galbraith next cites an example

of seauentlal Jinterdependency, 1.e., interaction over time

B S ———e o

Page 42

as well as resources, Again, this second kind of
Interdependency provides an environment for the second kind
of iInteraction bug: when subunits Interact over time, the
modeller is liable to mis-estimate time-effects, thus
causing degraded performance (these are the SCHEDULE bugs of
the example In section 2),. Finally, Galbraith mentions
hligher-order constraint JInterdependency. (1) Essentially,
this means that a higher-order objective, shared by a group
of subunits, has forced a need for greater Interdependency
among the subunits of the group. What has happened is that
in the new "“tighter" =system, the pooled and sequential
interdependency has been spread to more (sometimes all)
members of the Interactlve group. This kind of
interdependency has a direct interpretation 1in the WOBG
which will be discussed in the next subsection. The third
kind of interaction bug from section 3.1.2 of course arises
from the higher-order constralint environment. (There are no
examples of this kind of bug In the example of section 2;

higher-order constraints were deliberately kept out for the

(1)

I think that the introduction of the 'design
optimization" term here Is very unfortunate. The point Is
that the subunits have become more interactive due to the
presence of a higher-order constraint, ln this case, the
constraint happens to be that the units must Interact in
order to achleve an optimal design. However, in the next
subsection | will discuss other higher-order constraints
which cause ithe same increase in interaction.

——"

o maiis bl

R R TR

Page 43

sake of simplicity., There will be examples of this kind of
bug later iIn the thesis.)

These three types of Interdependency
form the semantic roots of the bugs considered by my
program. In the following subsection we will examine the
way these real world organizational dependencies are

modelled In the world of busines games.

5.3 Bugs In WOBG models

Business games provide a laboratory for

teachling managerial declsion-making., Since most Important

management decisions involve resoliving conflicts (or
possible confllcts, In the case of planning) arlising from
subunlit interdependency, the three kinds of

Interdependencies discussed 1In the previous sectlion are
emphasized In many business games. And, of course, with the
three interdependencies come the three interactlion bugs.
Pooled Interdependency arises from a
natural sharing of resources by different parts of the
game-player's "busliness". The business game contains a
very well-defined set of “resources" (cash, salesmen,
production-lines, etc.) which the player must manipulate

accord ng to certain specified rules of play. (1) The baslic

Page 44

idea is to accumulate certaln resources which are designated
as "assets". There are a variety of strategies for
accumulating assets (e.g., use research, do some
advertising, learn about market trends, etc.). The
Important point for us 1is that the inplementation of any
stratery requires manipulation of various subunits of the
player's '"business". These subunits share the pooled
resource of cash. Since cash is In 1limited supply, an
interdependency is set up, and conflicts arise. Poor
understanding of this pooled interdependency gives rise to
section 3.1.2's bug type (1): "unexpected conflijct arising
from competition for shared resources."

A much more interesting aspect of the
particular game | have selected 1Is the sequential
interdependency among subunits. First of all, note that
some of the activities of the subunits are "long-term"
(research and development, training sales personnel,
constructing additional production capacity, etc.), while
others are 'short-term" (advertising, factoring accounts
receivable, hiring, etc.). Second, there is considerable

linkage between the requirements of some activities and the

(1) This discussion is hased on the actual business game
presented 1In Appendix A--it might be a good idea to glance
over the description of the game to give yourself the flavor
of what's going on.

Page 45

"outputs" of others (production provides wunits to sell,
hiring provides employees to train, etc.). Finally, the
game contains a rather rich "possibility space" for any
given strategy if the time-scale is long enough. That is,
there are a variety of non-independent ways of going about
achieving a given task over time. All of this (plus the
additlon of probabilistic occurences over time) adds up to a
complex patterr of sequential dependecies, which in turn
gives rise to bug (2), "weak performance due to poor
perception of time-phased occurences".

It Is cliaracteristic of the game used
here (and of most other business games) that the pooled and
sequential interdependencies are frequently made more
intense by "higher-order constraints". These constraints
arise from the activity structure of the game. The key
factor is that wvarious activities and functions of the
organization depend on the outputs of more than one prior
activity (note that this was not the case in the example of
section 2, and thus this problem was avoided). | can
present a detalled account of these mutual interdependency
relationships only after | discuss the way the game is
modelled in MSL (| will do this in 4.4). For now, It will
suffice to say that two kinds of higher-order constraints

are distinguished: the kind in which several activities (or,

Page L6

more usually, chains of activities) must combine to provide
resources for ‘another activity, and the kind in which a
number of activities can combine 1In various unstructured
ways to achieve a functionally-determined goal.

This section has been devoted to filling
in rather general background Information about the kind of
bugs the program knows about and how these arise naturally
in real world systems. We now go on to an examination of
how the program Incorporates some knowledge about these

bugs, and how It goes about using this knowledge to debug

models,

his oo

e

Page 47
4 How the program works
; in this section | will present a program

which finds the kind of interaction bugs discussed above.

An example of program operation has already been shown in

section 2. From this example, the following pattern of
program operation 's evident: the proeram starts with a
model represented in a special formal language; it takes

this model and produces a simulation of it; |If the user
finds a discrepancy between his expectations of model
performance and the results of the simulation, he presents
the program with the goal cf eliminating the discrepancy.
The program then attempts, using both the model as

originally stated by the user and the results of the model's

simulation, to achlieve that goal: in the course of falling
to achieve that goal (1) , the program finds features of the
model which 1[It considers to be unintended causes of the
failure--bugs. It then suggesits these bugs (in order of
"ikelihood") to the user, leaving him to take the next step
(and perhaps re-initiate the process).

This section considers each aspect of

(1) The program] fail to achieve almost all user
goals! (The ‘almost" Is due to probabilistic
considerations,) Otherwise, there was not a bug and the

simulation would have achieved the zoal in the first place.

Page 48

this process in turn. It begins (4.,1) with an examination
of the model specification language, providing a firm basls
for understanding what the program does and does not know
about the wuser's model. Next (4.,2), 1t describes the
simulation of the model and the way the results of the
simulation are presented to the debugger, Contlnulng along
the debugging process, section 4.3 deals with the way user
goals are formed and the way in which the system handles
goals, Section 4.4 can then talk about how the program's
deductive mechanisms pursue goals and locate bugs--the real
guts of the debugging problem. Finally, there is a short
section (4.5) on the way the program uses real-world
knowledge in the debugging process.

into the heart of darkness...

4.1 The model specivication langyage

In order for the program to use the
simulate-and-investigate method for debugging models, the

models must be represented in a form that Is executable (by

the slmulatcer) and a form that 1is examlnable (by the
problem=scly ing routines). The mode i specificatlion

language (MSL) is an attempt to comblne these two necessary

forms In a s ngle language (which also purports to be falrly

piadiis Ll ool Ll B S e o

Page 49

user-oriented!).

MSL is a set of simple primitives which
can be used to describe models--especially business game
models (1) : An MSL specification consists of an
(unordered) collection of the three basic primitives
*ACTIVITY, +EVENT, and *FUNCTINN, The basic primitives are
further described by modifying constructs. The model
manipulates user-defined value/term pairs called "resource
variables" (e.g. (1000 CASH), (SAM SALESMAN), etc.). An
example of MSL speciflcations appear on pares 17-18, and In
Appendix B. This sectlion contains a brief description of
the syntax and semantics of these MSL primitives.

The basic MSL construct s the
*ACTIVITY. The concept of "activity" used here is precisely
similar to the wusual business sense of the word: a
well~defined organizational task which processes some
commodities or informatlion that is used by the organization
(see sectlion 3.1.2; see also the WOB |9] for ‘its Information
on activities). An *ACTIVITY also corresponds to a submodel

(2) --that thing that the user Is supposed to have a good

(1) No claim Is made for any "completeness" or “sufficiency"
of this set of primitives. These are simply constructs
which can be used to express my game models.

(2) We wlill see In a few mlnutes that +*EVENT's and
*FUNCTION's are also submodels.

Page 50

grasp of (see 3.1.1).The *ACTIVITY specificatlion looks like

(*ACTIVITY <*ACTIVITY-name> <{modifiers>)
(1)

As is usually the case, the modifiers are the most
interesting part of the specificatlon,

One modifler which 1Is almost always
present s the *PREREQUISITES speclflcation. This
construct expresses the necessary inputs of an *ACTIVITY.

The *PREREQUISITES speclification

contains an arhitrary number of

(*PRESENT <resource varlable>)

forms grouped (impllicitly) by OR or (explicitly) by AND,
The basic interpretation is that the named <resource
variable> must be present (2) for the *ACTIVITY to be
initiated. If there ic an AND specification, then (as one
would expect) all of the "AND'ed" resource varlables must be

*PRESENT. Thus, In

(1) | will use the following notatlon: "<" and "y are
metalingulstic brackets which surrcund metalingulstic
statements. Everything else belongs there.

(2) Clearly, there are the obvlious extenslons
"«MAY-BE~PRESENT'", "MUST-BE-PRESENT", etc. | have not found
these concepts necessary to express the models i have used.
Therefore, they are not included In the MSL, even though
their introduction would be straightforward.

. L . T TR]

e TP P —

E,
;
{

e —————

5 e adhi

Page 51

(*ACTIVITY SALES-CALL
(*PREREQUISITES
(AND

(*PRESENT (1000 CASH))
(*PRESENT (1 UNIT))

(*PRESENT (SOME SALESMAN))
)

))

there must be (1000 CASH), (1 UNIT), and (SOME SALESMAN) for
SALES-CALL to be iInitiated.

Some further comment isg necessary on the
quantificatlion mechanism of *PRESENT. The "SOME"™ in (SOME

SALESMAN) represents any name of a SALESMAN

in the
model,That 1Is,
(*PRESENT (SOME SALESMAN))

will be satisfied with

(MARK SALESMAN) or

(DON SALESMAN) or

(STEVE SALESMAN)
Numerical quantifications carry an Implicit "at least"

modifier. That s,

(*PRESENT (1000 CASH))

Page 52

will be satisfied with
(10000 CASH) or
(1000 CASH)
but not (999 CASH)

The "at least" modifier may be explicitly stated, or may be

changed to AT-MOST, as In
(»PRESENT (1000 CASH) AT-LEAST)

(«PRESENT (5 ERRORS) AT-MOST)
The "outputs" of an *ACTIVITY are

expressed by the *QUTPUT and #*REMOVE constructs:
(*OQUTPUT <resource varlable))
(*REMOVE <resource variable))

which add or delete the named resource variable from the

model's resources.

An *ACTIVITY construct may be further

described by:
(*TAKES <number))

to indicate that iIf the *ACTIVITY is Initlated in time-slice

n, lts outputs do not become available until time-slice

Page 53

n+ 2y & The Purpose of thig is, of course, to allow
the modell fng of *ACTIVITY'g which take an appreciable

amount of time ¢to be completed, Another important

modlfier,
{*PRIORITY <number>)

allows the user to indlcate Preference in allocatlon of
resources to *ACTiVITY's. Thus, |f several *ACTIVITY's are
vying for the same resource, the one with the lowest
*PRICRITY {number> has first crack at it (1)

*SCHEDULE Specificatinng Allow the yser
to give explicit schedul Ing information to the simulator ip
order to 1imit the use of an *ACTIVITY. The Speclficationg

that have been found useful so far are

(*SCHEDULE <number>)

to limit the number of times an *ACTIVITY can be scheduled

in any time-siice,

(*SCHEDULE (ON <*EVENT-name>))

to allow the scheduling of an *ACTIVITY only in the same

»

(1) Again, obviously, this simpla mechanism could be greatly
€Xpanded, More comp’ex models would requijre time-varying
and other computed *PRIOR|ITY specifications. These have not
been Included in MSL.

Page 54

time-slice as the occurence of the named *EVENT, and
(*SCHEDULE (EVERY <number)))

to 1imit the scheduling of the =*ACTIVITY to time-slice
{number>, 2x<{number>,3x<{numberd ,etc.

The above modiflers, along with the
user's ability to create resource varlables and provide
arbitrary =*ACTIVITY structures, allow enough flexibility to
express all of the *ACTIVITY's necessary to model the game
in Appendix A (see the model in Appendix B). There are,
however, other kinds of submodels to be considered.

Another basic construct (l.e.,
submodel-specifler) available to the modeller Is the *EVENT.
This Is used to express parts of the model which are
"outside of the system"--beyond the organization's direct
control, These outside Influences are often modelled as
probabilistic occurences, so that +*EVENT's are usually
associated with the probabilistic parts of the model.

*EVENT is very similar to *ACTIVITY in basic syntax:
(*EVENT <*EVENT-name)> <modifiers))

but the modiflers are somewhat different,

Instead of the *PREREQUISITES

speclfication, a ~CONDITIONS 1ist Is stated:

;
E_,
E
|

Page 55

(*CONDITIONS <boonlean expresslon))

That Is, the simulator expects the body of a *CONDITIONS
llst to evaluate to "true" or "“false". Usually, the body
contalns some comblnation (perhaps related by AND or OR) of
*FUNCTION names (1) (see below). The intent 1is that the
*EVENT may not be Inltlated unless the <boolean expresslon)
evaluates to "true'".

Usually *EVENT's affect particular
*ACTIVITY's.The suscteptlble *ACTIVITY's and the actlons to
be taken by the *EVEMNT are expressed within the *EVENT by

the *ACTIVITIES modifler:

(*ACTIVITIES (<1list of *ACTIVITY-names>) <actlons))

If an *EVENT contalns an *ACTIVITIES construct, it can be
initlated only in a tIime-slice in which at least one of the
named *ACTIVITY's Is scheduled.

One rather unusual <action> which can be

taken by an *EVENT Is

(1) These *FUNCTION's usually express a probability with
which the *EVENT occurs in a glven time-slice. The
slmulator sets up a probablllistic event (no confusion,
please!) on the related sample space to express the
*FUNCTION. It then calls a random number generator. I|f the
value returned by the RNG falls withln the deflned event, the
sIimulator assligns "true'" to the value of that *FUNCTION.

(*CANCEL)

This means that the Interrupted +*ACTIVITY has been
permanently disrupted, and 1Is to be unscheduled. (of
course, it can be rescheduled 1later.) In all other
respects, *EVENT's are treated just like *ACTIVITY's,

The final basic construct in MSL s
*FUNCTION. It expresses a functional relationship between
variables in the model, and, 1in general, accounts for
information flow within the model. It is thus slightly
different In spirit from the resource-handling +ACTIVITY's
and *EVENT's, Nonetheless, it shares submodel status (1)

’

and Is similar in syntax to the other two basic constructs:
(*FUNCTION <*FUNCTION-name> <modifiers))

*FUNCTION's are not "scheduled"; rather, they are invoked by
being mentioned in other constructs (just as In programring
language function calls). Thus, whenever SALES-PROBABILITY
(see section 2) appears In the model (except In the

*FUNCTION definition, of course), the *FUNCTION

(1) It Is important to recognize that information-handling
activities are submodels at the same 1level as other
organizational actlivities. Forrester stresses this point
in 13|, and seems to use the homogenelity of basic submodels
successfully, Of course, the uniform submodel constructs
also lead to a gain In modelling efficliency and a lessening
of the cognitive load of the MSL user.

- - T L SO T p— e T P AT R R T T "
T T T T T T B R e e par i —— . TS P e T T L

SALES-PROBABILITY will be Invcked.

The anaiogous construct to

*PREREQUISITES and *CONDITIONS in *FUNCTION is

(*ARGUMENTS <argumentl) {argument2) ...)

which behaves 1ike the usual argument-list 1In programming

language functlions. Missing arguments cause an "error"

which stops the simulation (1)

The analogy to *OUTPUT is
(*RETURN <expression))

where <{expression> can be a combination of *FUNCTION names

and the special functlon-representing constructs

(*TABLE (<*ARGUMENT-name> {*RESULT-name>)

{argument/result palrs))

(*SUM~UP (<vartab'e range>) <lirear factors))

This is about all there is to the MSL.
The semantics of *ACTIVITY's and *EVENT's are developed a

bit further in the noxt section., *FUNCTIOMN's are dealt with

In 4.4,2.1, However, no really detajled descriptions are

presented anywhere. There is little point In It. The only

(1) This Is, of course, the kind of bus we're not interested
In here.

Page 58

purpose of presenting MSL 1is to allow the reader to
understand the examples and judge what the program does and
does not know about a particular model.

Almost all of what the program knows
about any given model is in the MSL specification. (1t
knows a few other things discussed in 4.,5.) MSL can be
simple because the models considered are quite simple. As
the modeis become rore complex we expect (by conservation of
complexity) that MSL will become more complex. The hope iIs
that MSL contains something general enough to handle some
kinds of additional model complexity without additional
language complexity. This '"something" is the basic
philosophy of submodel structuring which is reflected in the
MSL. Thus, | have tried to emphasize this basic structure
ratiier the details., In the next section we follow the
course of thke program's debugging process and examine the

simulation of MSL models,

4.2 Simulatjon as a wav of doing things

Simulation is a technique for observing
the behavior o»f models. In the absence of analytical and

other "high-level" toocls (like educated guesses), simulation

Is the only way to find out wha a model "does" in any given

oy adedaii o o o s Tl e e L [Ly

T . QI o N T I PN TN I I P o ¥ [L sl ae L B

Page 59

situation, In the model-debugging system presented In this
thesls, the simulator sets up the baslic feedback mechanism
between user and APS,

At the very least, any APS should
provide a facility for checking out model behavior with
simulation. That Is, the user formulates his model, tests
it wvia simulation, changes it If he doesn't 1lke what he
sees, and resimulates, For reasons discussed in the
Introductory section, It Is necessary to go a step further,
The program described here attempts to aid the user In
discovering why the model does not perform as he expects it
to .

Therefore, this section will concentrate
on simulation as a way of Initiating ihe debugging process.
This emphasis lgnores very important issues of presenting
simulation results to the user. In fact, It completely
downplays the Importance of the simulator Itself,
concentrating only on the Interaction of the simulator and
the deductive mechanisms of the debugging program. Thus,
In this section | will proceed to finesse the simulator and
move on to the more relevant problems of representing the
knowledge galned by the simulation In such a way that It can

be used by the debugger.

4.2.1 The simulator finessed

In this section | will very briefly
describe the simulation scheme used in the program. The
whole simulation philosophy presented here 1is kind of
strange as viewed from the standpoint of "normal®™ simulation
programs. This 1Is due to the presence of two major design
criteria not wusually found 1in the area of simulation

programming:

(1) Adherence to the "user only knows local submode!

information'" canon ennunciated earlier (sections 1.3.1

and 3,1.1)

(2) The goal of representing knowledge found by the
simulation In such a way thac it can be used by the

debugger

The first criterfion gives rise to those funny MSL constructs
which mysteriously appeared in the previous discussion,
it also motivates the style of simulation described In the
rest of this secticn, The second criterion determines the
actual implementation of the algorithm, and is dealt with in

the following subsectlion.

in MSL, the information pertalning to a

B & sat andme b Lo o e S

Page 61

particular submodel is found only in that submodel. The

kind of "informatlion" varies from submodel to submodel (as

described in 4.1), but basically, the following

specificatlions are necessary:

==resources needed by the submodel

=-resources produced by the submodel, and the length of

time necessary to produce them

=-explicit policy for the conditions under which the

submodel should be activated

The basic operation of the simulator is

then straightforward.Each submodel s activated when its

(user-speciflied) explicit pre-conditions are satisfied,

provided that all of its necessary resources are avallable.

If the user does not specify pre-conditions (via *SCHEDULE

and +*CONDITIONS--see 4.1), the submodel is activated

when r its necessary resources are avallable (subject to

*PRIORITY restrictions, of course). When the time

(specified by *TAKES) for submodel actlivity has elapsed, the

output resources of the submodel (if any) be-ome available

to the whole model. This process of cycling through

submodels activating “ready" ones, continuing "running"

Page 62

ones, cleaning up finished ones, and augmenting and
depleting resources all along contlnues for the duration of
the user-specified run-length,

Mow anyone who has ever glanced at the
guts of a simulator knows that | have Jjust flinessed
Inumerahble details (as well as a few Important Polints). The
algorithm used In the program 1Is actually a bit more
sophisticated and a great deal halrier than the one
"descrlbed" above. For example, | have not even mentioned
the rather ticklish problem of handling probabilistic
occurences In this context, nor the design decisions for
priority-scheduling of already-running submodels. U am
deliberately sluffing the detalls here because the simulator
itself is not very important to the thesis as a whole. It
is its output, the SIMULATION-HISTORY context, that | wish

to emphasize here.

4,2.2 Simulation history and SIMULAT|ON-H|STORY

The form of the output of a simulation

program Is always a key factor In its usefulness. In the

debugging system presented here, it 1Is an essential 1ink

between the model and the deductive mechanisms of the

Page 63

debugger. As discussed above, much of the task of the
simulator 1Is to present the knowledge gained by simulating
the model In a form that can be used by the rest of the
program, This Is of course the old artificial intelligence
task of representing knowledge In a form that can be used by
procedural deductive mechanisms.

The style of representation | have
chosen for the simulatlon knowledge Is the simuylation
history. Now thls I's hardly startling--simulation
histories are frequently used to describe the behavior of
systems. But here | wish to extend the concept somewhat.
In my program, the simulator constructs a simulation history
(called SIMULATION-HISTORY) which then becomes the
problem-solving environment of the debugger. By this 1
mean that from the point of view of the deductive mechanisms
In the debugser, the "world" is a simulatlion history; i.e.,
a sequence of facts about the model which are true at
varlous tlmes determined by the simulation. The debugger
lives inslde this simulation history. The things that It
knows about the "world"--the kinds of knowledge found, the
way events are related, etc.-- are the facts and rules of

the slimulatlon history world (1) . In thinking about the

(1) Except for, as we shall see later, the facts It knows
about the "real world" of business games.

Page 64

debugger, It Is well to keep in mind that It is a citlzen of
the simulation history world,

Well then, let's go slumming and 1look
around the simulation history world ourselves for a few
rollicking moments. Consider some set of observational
varlobles on a simulation model. Then a simulation history
can be thought of as a recording of the '"values" of these
variables at varlous Instants of simulation-time. The
Interesting questions are what observational varlables
should be wused and how the record should be organized. We
will see that these questions are important with respect to
the usefulness of the simulator to the debugger.

For the simulation to progress from one
time instant to the next, the simulator must have a record
of the state of the simulation. The simulation state of
these simple MSL models consists of four main pleces of

information:

(1) the value of each "“resource variable" (see 4.1) at

the end of each time-slice (1)

(2) a record of the *ACTIVITY's which were initlated In

the time=-slice

(1) A time=slice Is one ker-chunk of the simulator.

PR Ta——-

Page 65

(3) a record of the *EVENT's which occur and the

*ACTIVITY's they affect

(4) an iIndication of the stage of completion of each
"running" (i.e., previously Initiated and not vyet

complete) *ACTIVITY and *EVENT

Therefore, the simulator needs these four pleces of
information at the end of each time-slice In order to go on

to the next time-slire,

But what does this have to do with the
"observational variables" for the simulation history? First,
remember that the "observer" in this case 1Is the deductive
mechanism of the debugger. MNow, harking back to =il that
was sald iIn sections 1 and 2 about debugging by
problem=-solving, we can see that the debugger Is usually in
the position of trying to change the course of the
simulation 1In some way (to cause some desired outcome which
causes another desired outcome, etc... which eventually
causes the wuser's desired outcome). !In order to decide

whether It can make the change (1) it must know something

(1) Of course, It must also decide whether the user wants
the change to be made. This part of the problem iIs
discussed In 4.4,2,

A a—— . A — R E——

e Y

Page 66

about the simulation. Specifically, it must know the state
of the simulation and ways to change that state (1) . The
ways to change the state are encoded in procedural deductive
mechanisms to be described later (4.4,1), The state of the
simulation can be provided by the simulation history.
Therefore, the observational variables for the simulation
history are just the state variables discussed above (2)

Well, since the simulatcr needs the
values of the state variables at the end of each time-sllice,
the program need only keep track of these values In some
useful fashion, The problem now becomes one of organizing
the simulation history. In order ot think about such an
organization, we can look back to section 2 and remember 2
bit more about what the deductive meckanisms do with the
simulation history.

The deductive mechanisms usually find

themselves piaying around In their little simulation history

world In two ways:

(1) examining a single time-slice to see whether a

change can te made at that time

(1) This 1Is its "world knowledge" of the simulation history
world.

(2) A schematic representation of these state variables as
they appear in the simulation hictory Is found on pp. 21-23.

Page 67

(2) examining a large segment of the simulation to
choose a likely time-slice for scheduling something
new, to follow the course of an *ACTIVITY or *EVENT, to
pursue the consequences of a proposed change, or (as we
shall see later in this section) to handle higher-order

constraints

What we need is a good representation for facile handl ing of
time=-sllces and (usually contiguous) groups of time-slices.
The representation should also allow ease in the building-up
and manipulation of the whole history.

Such a representation is the Conniver
context]20]. The simulation history is implemented as a

Conniver context with the unlikely moniker of

SIMULATION=-HISTORY. Each time-slice is a layer !20] of the
context. This Conniver Implementation Implies the following
relation between time-slices: the simulator ‘'‘grows"

SIMULATION-HISTORY by adding on new time-slices; changes
made to the data in a new time-slice are invisible to
earlier time-slices, however, the status of any datum can be
determined In any time-slice. This certainly gives us the
record of the simulatic’. history that we want. Conniver
also allows any part of the context to be regarded a:s a

separate context. The importance of this 1Is that the

context can then be used as the database, or, more

Page 68

precisely, as the working environment, for some set of

programs. That Is, the programs In a glven context work

only with that context as a knowledge base. Thus, we can

see that the deductive mechanisms of the debugger can "ive

inside" the simulation history by simply using

STMULATION-HISTORY as their context.

Furthermore, the

deductive mechanisms can 1ive inside any part of the

simulation history which they must examline,

Thelr world can

be a single time-slice or a large, program-edited plece of

the history.

We will see that this abllity to 1live

inside arbitrary pieces of SIMULATION-HISTORY 1Is a

key

requistite for the deductive mechanlsms of the debugger.

For the deductive mechanlsms to work, they must apply their

rrocedurally~embedded

knowledge of how to change the course

of the simulation to carefully chosen parts of the

simulation, This 1Is why the simulation history and its

Implementation as SIMULATION-HISTORY form such an

Important
part of the program.

In the next section, we will find that
the SIMULATION=HISTORY representation

galns further

Importance when the debugger generates hypothetical states

of the simulation.

4.3 Goals and environments

e e ke Y i e R R b e

Page 69

Throughout the thesis | have been using
the word "goal" to describe a variety of phenomena. | have
spoken of user goals, system goals, and submodel goals, |In
section 2 | introduced another construct containing the word

Weoal":

(*GOAL <{strange words> <numbers> <lots of parentheses>)

which purported to represent the various other kinds of
goals to the program. In this section | will discuss what
these parenthetical thingees meapn to the program. In the
next section 1 will talk about how they are created and
manipulated. Here | describe only goais gua *GOAL's-~i.e.,
the common structural aspects of *GOAL's.,

A goal expresses a desired state. In a
debugging context this desired state is almost always
inconsistent with the actual state. This is because the
user has found a discrepancy between reallity and expectation
and has thought of a desired state in which the discrepancy
is resolved. Thus, the desired state, reflectingz the fixed
discrepancy, Is inconsistent with the actual state., |In the
program presented here, the wuser can ask the program to
produce this desired state (given the model and the

simulation history--see section 2). (1) The request is made

(1) As discussed elsewhere, the program fails in its attempt

T

T LR R e T A

Page 70

via a *GOAL statement:
(*GOAL <achleve desired state))

What does It mean to '"achieve the
desired state"? The user Is asking the program to change
the course of the simulation. The program goes about this
by first creating a hypothetical simulation state
(time-slice) which 1includes the deslred state., Then It
attempts to make the rest of the simulatlion history (i.e.,
the previous time-sllices) consistent with the new
hypothetical time-slice. (1) This Is done by the creation

of a new *GOAL
(*GOAL <make previous time-slice consistent with new one))
This new *GOAL Is clearly of the form
(*GOAL <achieve deslired state))

and can thus be handled exactly like the user goal. The
program can thus recurse merrily along wuntil It cannot
achieve a deslred state--l.e., until it fails,

Now then, let's take a closer 1look at

to produce the desired state, but this Is not Important to
the discussion of this section.

(1) This "“work backwards" methodology Is due to the
debugging phiiosophy of tracing a bug from its manifestation
back to Its cause.

g -

e ot B

ol S bl ol LM b

L s i ot el i s el i e b e

Page 71

this process. Each *GOAL requests a speciflic change to a
specific local environment (the time-slice). Thus, each
*GOAL Is attempted In the context of a local constraint
environment represented by a single time-slice of the
simulation history. (1) |If the *GOAL is achieved, it will
define a new environment which Is Inconsistert with the old
time-slice (because of the changes wrought by achleving the
*GOAL) . This new environment Is then consistent with the
user's deslired state, but inconsistent with the old
simulation history. The program will then use this new
local environment as a basis for defining the next desired
state along the 1line toward making the whole simulation
history consistent with the wuser's desired state. The
program 1Is, 1In effect, constructing a new hypothetical
simulation history which results 1in the user's desired
state. (2)

Thus, environmenrts are intimately
related to the semantics of *GOAL's, Each *GOAL Is

constralned by a pre-specified part of the simulation

(1) Not quite. As we shall see in a second, multiple goals
are achleved with respect to a local constraint environment
consisting of several time-slices.

(2) The next section deals with the problem of how the
program constructs this simulation without destroying the
original intent of the model. Specifically, section 4.4.2.1
gives a better picture of what 1Is "constraining" about a
"local constraint environment".

|
i

Page 72

environment-~that part which it g supposed to change, The

achievement of a +GOAL

can therefore be seen as g

transformation:

e

N

nitia environment | new env\vonment

This transformation Is a 1local phenomenon., However the

effects of the transformation are non-local, The *GOAL has

perturbed the local environment and made it inconsistent

with the global environment, Since the eventual goal of the

problem solver Is to create a consistent simulation history

which results in the user's desjired state, the global

environment must be made consistent with this new

lnconsistent piece:

desired shafe

P T

Page 73

In order to make the global environment
consistent, the program must trace down the effects of
changing that local piece. In other words, It must examine

the way .hat local piece interacts with other pieces of the

global environment:

envirotment o {texr one *GOAL efuwonment abfer el geored
L's 1n ofe |me state,
But this is exactly what we want., The user is incapable of

following the interactions of the model, If the program 1is
to help the user find the "interaction bugs" thus created,
it must nhave some mechanism for tracing interactions. This
mechanism is the problem-solver.

The problem-solver wuses a *GOAL to
express a global environment perturbation. It then uses the
deductive mechanisms described in the next section to follow
that perturbation throughout the 1local environment, the

local change at each point being determined by a *GOAL,

Bl i

Lt s b i R o i i

Page 74

When the program comes to a point where the perturbation
cannot te continued (l.e., where a *GOAL falls), It has, in
effect, discovered a part of the environment which cannot be
made to conform to the user's desired environment. It has
traced the Interaction path to Its roots--it has bracketed
the bug location between the user's desired simulatlion state
and the user's desired constraint which gave rise to the
interaction (see 4.4,3).

Thus, *GOAL's are the vehlcle for
exploring the interactive behavior of the model. As we have
seen above, the use of *GOAL's In this way requlires
sophlsticated manipulations of local environments. In
order to tie down some of the concepts dlscussed In the
previous paragraphs, | will row discuss some of the problems
the program faces with respect to thls environment-handling.

Flrst, each *GOAL must be achleved with
respect to a local environment. That 1Is, the =*GOAL must
only "see" the constralnts of a local environment (not the
whole thing) (1) , and must directly affect only that local
environment. Otherwise, the distinction between 1locai and

Interactive behavior Is 1lost--there ls no such thing as a

(1) This Is cdue flirst to the nature of the problem=-scliving
process=--""'set up a local environment and then make the next
local envirorment up the 1ine conslistent with 1It"--and
second to the debugging phllosophy espoused In 4.,4,2.1.

R s~ o i L e, e e

Page 75

"perturbation",

Fortunately, the environment to be
examined 's the SIMULATION-HISTORY context. We will see in
4.4.2.1 that the required 1local environment Is (usually)
just a TIME-SLICE of the SIMULATION-HISTORY, The *GOAL can
thus be made to "see" only a local environment by making the
required TIME-SLICE its working environment (as in 4,2) (1)

The coptext structure makes the relation be tween
TIME-SLICE's evident (l.e., because each is a Conniver
laver), so that the distinction hbetween local and
interactive constraints I's explicit In the built-in
(Conniver) semantics of SIMULATION=HISTORY,

Now the #GOAL must also be made to
affect only a local environment if the semantics discussed
earlier are to be preserved. It would seem that this s
just as easy: simply keep the TIME-SLICE In quest'!on as the
*GOAL's working environment, and all changes will explicitly
have the required locality. However, there is a2
complicating factor found in all searching problem-solvers:
the problem-solver must make provisions for discarding an
old line of attack and beginning a new one. This is the old

problem of backup which has been discussed extensively In

(1) This Isn't quite so simple for multiple *GOAL's, as
we'll see In a second.

i ol e

. . T e w—

B e

Page 76

|71 and |19],

The backup problem 1Is germane to the
debugging process because the debugger usually attempts to
find all pcssible causes of a particular discrepancy (in the
hope that one of them Is the actual bug). Thus, 1t will
follow down one line of attack, fail, and try another. It
must therefore be ready to erase the consequences of the
line to be discarded, But this 1[Is a particularly hard
problem for the debugger. Here, the tracks leading to
fallures are the key to the rest of the process. They
cannot be simple "erased", but must be preserved in some
form which the program can use to suggest bugs and to
explain its actions to the user see L4.4.,3),

Furthermore, while the effects of each
*GOAL must be resticted to a local environmet, the effects
of all the *GOAL's must create a new consistent environment
(1) . Thus, the program mucst maintain some new environment
which localizes the effects of the *GOAL's, allows a
controlled backup with preservation of the backed-over
Information, and which forces consistency of all affected
environments. Certainly, SIMULATION-H!STORY will not do.

But something like it will, The program

agaln wuses a Jayered-context structure. 1In each layer it

(1) They must, In fact, create a new simulation history.

PR

L e h e o b il e Bt Al ikt e I e o] Tl

Page 77

records the changes made by a *GOAL to the particular
TIME-SLICE Involved. It then appends this new laver to
SIMULATION-HISTORY and uses this new augmented context as
the working environment of the debugger. MNow, remembering
the little discussion of g¢ontext semantics in 4.2 (or,

referring to [|20]), we see that this causes the following

effects:

(1) The effects of a +*GOAL are certainly localized

since they occur only in a single Jayer which

corresponds to a slingle TiME~SLICE.

(2) The debugger can always see a conslistent
environment by looking up the augmented
SIMULATION-HISTORY as far as the last affected
TIME-SLICE; the semantics of context then say that
the data seen by the debugger 1is just what was in
SIMULATION-HISTORY before (which is consistent via the
simulator) except where contradicted by the parts that
were changed by #GOAL's (which are consistent (up to

that polint) via the deductive mechanisms).

Perhaps it Is well to interrupt here with an explanatory

dliagram...

this s a

wﬂfeﬂ; as it
appears fo e progran
abter Hhvee ‘{7’0413 have

1oecf), executed succe&S\C‘A”j
(M\fj,_gomplefc version, ,,
b(;'r\nf Z){ +o'u'a f)aum

1:1591‘5

/
y
/ consi SJFE-M'

\

SIMULATION-HISTORY

Page 78

TIME-SLICE 4

TIHE-SLICE)

sedf-cong
\i nconsis;1<";)£ey\t';JE)L»:’f

|

N\

B e T~ o . S e

R RIS

Page 79

which is, due to the semantics of context, equivalent to:

SIMULATION-HISTORY

| |
w|f- consisbﬁ ald l
(&Z‘%b”‘%ﬁ"ﬁc ftmow
_HISTORY) e e N S ———
sl = congtent TIME-SLICE, s
%&&er&?m sl altored by #ia
mept I WL)on vF-
(congistent with
user deived jc e comlo\n&l
ofade) «ewwﬁ
' ﬁ'ﬁ)(vnothol’l i
o TIME-SLICE)
users desired —z |
end dule .

which 1Is certainly an easler conceptualization of what has
gone on so far. However, the first picture is necessary to

explain

Page 80

(3) The lavers which record the changes made by a *GOAL

(the dashed parts of the first picture) can be peeled

off and saved at any time, thus restoring the context

to its original condition and saving the effects of the

*GOAL (the track toward falure) for further use

This methodology fills the bill so far, Unfortunately,

there Is one final problem which complicates this little

Picture (you just knew there would be),

This complication comes from an as yet

unseen aspect of the Problem~-solver: multiple goals, |

mentioned earller (section 3) the existence of "higher-order

constralnt interdependencies" in the model. (This

weird-sounding effect was conveniently kept out of the

example In section 2.) e will see in section 4.4,2,3 that

higher-order interdependency leads to multiple goals, That

Is, iInstead of simple goals, the program must deal with

constructs like:

(*GOAL (*AND

(*GOAL .,.)
(*GOAL .,.)
(*GOAL ...)))

and

T —

D TP T T S L W g . P N s T

S e e

P T s R mmm—— < —

S Lo oL 3

Page 81

(*GOAL (*GROUP
(*GOAL ...)
(«GOAL ...)
(*GOAL ...)))

We'll see more about multiple goals later. For now we need
only examine one aspect of thejr behavior,

The raison d'etre of *AND and *GROUP is
the expression of the fact that thelr component *GOAL's are
not Independent. That Is, the *GOAL's they contain share
common resources and cannot be achieved at each other's
expense. (This Is how they model interdependency.) Thus,
the notion of a "local constraint environment'" varies from
the one bandied about earlier. Here we must have several
*GOAL's sharing a single local environment. Furthermore,
because of the Interdependence of the *GOAL's, a component
*GOAL that has not yet bheen completed must '"see" the
constraints posed by the completion of other component
*GOAL's, Thus, the local constraint environment might
cover several TIME-SLICE's,

Clearly this halrs things up a bit.
Nonetheless, the program mist preserve the semantics of
these constructs because they are Important effects of the
model which give rise to their own special bugs (see

b.4.2.3), Actually, given the flexibility of contexts, the

Page 82

implementation s rather stralightforward. The 1little

schematic of environments now looks 1lke:

SIMULATION-HI STORY

r ords changes \irouaht
CC 3oqs j Seg
oW O«G[fc

iowne i E—ngC E, the Hrick
3 m e shar |rﬁ agen Hese
recovc i &Eﬂfe/mmeg

N and FGROUP inferdepend-
€4¢Cj\\?z [
[

goa| l

| l
Y / N o/
t Kl' *AUD or
* OUP eavifon-
orfex f;sf/ ment (anedya
linki nmmf lager

T T I L e —

Page 83

In terms of the previous discussion of
perturbations, local and global environments, etc., nothing
has changed eéxcept that the "1oca™ environments now may

have a halry mlcrostructure of local environments:

alveady -
?rooe‘sse;afj
hijher-ovdw

Uninterested readers may squint at the above picture (and
concept), leaving everything as before,

Thus, 3 *GOAL indlcates a local
perturbation, The deductive mechanisms of the
problem-solver follow through the Interactions deflned by
the mode to carry the perturhation throughout the
simulation history 1In order to produce a consistent
environment . The next section considers these deductive

mechanisms and thelr interaction (via fallure) with the

bug-finders,

4.4 Debugging by problem-solvi g

FPTAVI L S, Ty e T ST R LAy T
PR TN Y L N PO Ry L S G [e T

Page 84

The basic task of the program Is to
trace a bug from its manifestation to its source. This s
done by taklng 1in the manifestation as a *GOAL to be
achleved (as discussed earliler). The process of achleving
such a #*GOAL Is usually called "problem-solving". But this
Is a rather special use of problem-solving: the program
eéxpects to fall 1In the attempt. In fact, it Is not untii
after a 1line of attack has falled that It becomes
interesting to the debugger. In this section we see how
lines of attack are formed, how they fall, and how they are
used after they fail.

The mos t Iimportant part of any
problem-solving process Is the formation of subgoals (1) .
Section L4, 1 considers the methods (those deductive
mechanisms we've heard so much about) for devising new
subgoals In order to achlieve a goal,. This corresponds to
asking the "how could we do this 2" question of section 2.
But In this program, the object of the problem-solver is not
this ‘rect attack on the problem. Instead, the
problem-solver must make certain It does not change the
Intent of the user's model In trying to debu= It.

Thus, the process of attacking the

(1) Especlally in this problem-solver. Since subgoals are
rarely achieved, the whole process turns Into
subgoal-formation.

Page 85

user's goal leads directly into the problem of separating
the constraints which are in the simulation history because
of user intent from those which are artifacts of unintended
model operation. At certain key points in the deduction
process, the program determines whether or not it should (in
terms of user intentions) make the changes required by the
deduction. This process of assigning GOOD and BAD REASON's
to model action corresponds to asking the "why didn't you do
this before?" questicn of section 2., In L4.4.2 we examine
this REASONing process in terms of the philosophy of bugs
presented in section 3.

The REASONing process leaves the program
with a failed line of attack. This appears as a stream of
*GOAL's, annotated at each point with the BAD REASON that
triggered further program action, The program must then
examine the record of the pronlem-solver to attach blame to
the proper offending model part; i.e., to find the bug.

This task of post-morten recrimination 1is the subject of

L.4.3,

b.4.1 The attack

Here we examine the problem-solving

phase of the debugging process. The key problem-solving

. T N L N SRR Vi TH q V! N WA

T T T P v ———

Fage 86

3 task of the program 1is to find the proper local changes

throughout the global environment which will Jead to the

1 desired change. Since each desired change is represented by
]

1 a *GOAL, the problem-solver Proceeds by subgoal formation.

The subgoal-formation parts of the

program (the "deductive mechanisms'" mentioned earlier) are

responsible for flguring out how one 1ocal change can be

brought about by another. As an exampie of the way this

cause-effect knowledge 1is procedurally represented In the
problem-solver, the INCREASE function Is presented here,
The explanation of how INCREASE works will lead us directly

Into the REASONing methods of 4.2, f

The program's main vekicle for asking

the "how?" question is the INCREASE *GOAL:

e

(*GOAL (INCREASE {resource variabln or submodel>

{amount> <time-s]jced (1)))

That is, Mpoal: Increase the resource variable or submodel

by the specified amount in the specified time-slice," The

T kS arhR L o =

user's Initial =*G0AL Is usually of the !NCREASE type (see

section 2)., This Just means that the user's dlscrepancy Is

usually g defficlency of Some resource varjiable (or lack of

(1) 1f a {(time-slice) Is not gliven, the

program
heurlsticaliy chooses one,

C T —— bl s b e e e i
TR T e T - P

i . i TR

PR Vi S an——_

Page 87

the appearance of some submcdel) which he 1Is askling the
program to fix up.

As we saw in section 4.3, the program
immediately sets up a hypothetical local environment in
which the defficlency has been rectified. Then it tries to
deduce an earlier environment which would cause the new
destred simulation state. It does this deduction via the
"loglc of INCREASE" mentionea in section 2. The "logic",

briefly stated, runs as follows:
(1) Constant quantities cannot be IMCREASE'd

(2) In order to INCREASE a quantity that is a3 resource
variable which Is *QUTPUT (*REMOVE'd} by an *ACTIVITY
or *EVENT, set wup a new *GOAL to INCREASE (DECREASE)

the number of occurences of that *ACTIVITY or *EVENT
(3) !'n order to INCREASE a3 quantity that is *RETURN'ed
by & *FUNCTION, set up a new INCREASE-FUNCTION *GOAL (1)

(4) In order to INCREASE the number of occurences of an

*ACTIVITY, set up (Iif necessary (2)) a new *GOAL to

(1) INCREASE-FUNCTION's major cialm to fame is that it sets
up *GROUP *GOAL's. | will therefore discuss it when | talk
about *GROUP in b4,4.2.3 rather than here. For now It's okay

to view 'NCREASE -TUNCTION as analogous to INCREASE applied
to *ACTIVITY's.

e e

Page 88

INCREASE the resources needed by that =*=ACTIVITY

(5) In order to INCREASE the number of occurences of an
*EVENT, set up a new *GOAL to INCREASE the frequency
with which its =*COMDITIONS are valid (which might
Include a *GOAL to INCREASE the number of occurences of

the *ACTIVITY's which the *EVENT affects)

Clearly, the Intent of thls list Is to cover anything which
the wuser or another part of the program (1) might ask to
INCREASE. However, the rules n the list are by no mesns of
uniform character; they differ greatly in their 1loglcal
bases.

The flrst rule can be viewed as a
"fact", or, if vyou will, a property of the concept
"Increase." That Is, the flrst rule depends only on the
concept of "lIncrease'"--not on MSL, models, etc. The second
rule expresses a deflnite property of MSL rooted in the
semantics of *OUTPUT. It therefore depa=nds not only on
"Increase", but also on the definlition of MSL., The third
rule, which will be dlscussed later, depends on "increase",

the definition of MSL, and the rules of mathematics (since

(2) Some necessary resources may already be present in
sufficlent quantity.

(1) Since INCREASE Is defined recursively, the "other part
of the program" might be INCREASE itself,

Page 89

mathematical functlons are being Increased), Again, It Is
valld for any MSL model, The fourth and flifth rules are
dlifferent In a very Important way. They depend not only on
the definition of MSL and other "givens", but also on the
particular model deflned by the user.

The reason for this is that the
occurence of *ACTIVITY's (and thus *EVENT's via the
*ACTIVITIES construct (see 4.1)) can be directly determined
by user Intentlons. These intentions are expressed by the
*SCHEDULE modifiewr (see 4.1). =*SCHEDULE is used whenever
the modeller wishes to override the "always schedule when
possible" default of the simulator. It therefore determlines
the pattern of *ACTIVITY and *EVENT activation throughout
the simulation., #*SCHEDULE is thus the primary expresslion of
the user's policy for directing the dynamics of hls model,

lhe fact that the "logic of INCREASE"
must take Into account user Intention provides the key 1ink
be tween the "how?" and "why not?" quesilons. In the case
of the first three rules of INCREASE, the "how?" questlion Is
perfectly well-formed. The program need only look at what
is to be INCREASE'd without worrying about reasons why It
shouldn't be done. There are no reasons, because the rules
are valld for any case the program can encounter, Thus,

the program can always go ahead and try the |INCREASE, It

70 T CEe——— e v O S I Rp———

Page 90

can either fall (1) (as 1in the case of |[INCREASing a
constant, for example) or it can set up the next subgoal
(usually another INCREASE *GOAL)--all wlthout worrylng about
"should" and "shouldn't".

On the other hand, rules (4) and (5)
must worry about "should" and "shou!dn't" before setting up
the next subgoal. Perhaps the user does not intend for the
INCREASE to take place. Thus, INCREASE must ask the "why

not?" question before it proceeds.

b.4.2 The volce of REASON

We saw in the previous sectlon that the
use of INCREASE to ask the "how?" question leads dlrectly
to the need for the '"why not?" question. As usual, the
program frames thls question as a *GOAL. That Is, glven the
*GOAL of INCREASing an *ACTIVITY "A" by "m" occurences in
TIME-SLICE "n":

(*GOAL (INCREASE A m n))

(1) A failuie of this kind 1Is automatically for a "GOOD
REASON"--see sectlons 2 and 4.4.,2.1.

Page 91

the program immediately forms the *GOAL

(*GOAL (SCHLDULE m A n))
to ascertain whether or not INCREASE should proceed.

SCHEDULE's job is to examine
SIMULATION-HISTORY and the user's model to determine why the
change suggested by INCREASE was not originally part of
SIMULATION-HISTORY. After all, since it presumably leads fo
the desired state, why didn't the user cause the state
suggested by INCREASE in the first place?

There are two kinds of reasons for the
user's not causing the suggested state to occur initially,
A GOOD REASON is that he deliberately intends (for reasons
best known to himself) the model not to allow that state.
A BAD REASON is that the interaction of the submodels has
caused a constraint which disallows the state, A BAD REASON
Is pot a bug. It simply implies that a constraint is due to
submodel interaction and not user intention, However, glven
the bug philosophy of section 3, the program treats a BAD
REASON as "suspicious'"--a cause for further investigation.

In this section we examlne the way the
program distinguishes GOOD R_ASON's from RAD REASON's (and
the way It classifies BAD REASON's), The nex* subsection

discusses the program's model of user intent--i.e., Its

i 5 n k e 2 & e il - e T 7y
ol e i i i e e e e s s i’ e S ot R, 1 1 e SRR U s R £ S - .

Page 92

method for discerning GOOD REASON's, After this, we
classify BAD REASON's along the 1lines of the three

"interaction bugs" presented in sectior 3.

4b.4,2.1 GOOD REASON'

At each stage of the debugging process,
the program is trying to change an environment...by using a
resource, Inserting a new submodel,etc. In order to do
this, the program must face the question of whether or not
the change should (in terms of user intentions) be made.
Of course, it is unreasonable to expect the user to have to
tell the program at each step what should and should not be
changed. In fact, given the philosophy of section 3, it |is
very unlikely that the user could provide this information
if he wanted to. Thus, the program needs some sort of
theory of which of the constraints found in
SIMULATION-HISTORY are user-intended and which are there
because of a possible bug in the model.

Going back to sections 1.3.1 and 3, we
recall the previous assumptions about user Iintentions: the
user has a good understanding of each submodel, but only a
very weak understanding of how submodels interact to achleve

an overall goal, Thus, the program can assume, at least

Page 953

temporarily, that all irformation In the simulation history
which Is derived directly from wuser statements about an
individual submodel Is user~intended. All other information
Is necessarily the result of submodel interaction and Is
therefore suspect. The programming task is to Interpret
this simple theory (1) of user intention In terms of the
deductive mechanisms and SIMULATION-HISTORY.

Everything 1In an MSL speciflication
pertains only to a specific submodel; this, in fact, was a
deslign criterion (see 4.1). Thus, everything so far 1is
user-intended, by our principle of locality. But this Is
only static Information, Once the model 15 simuiated, some
of this static local information gives rise to Interaction
between submodels. The question then becomes one of
determing how locality is preserved in the dynamic behavior
of the model. That is, what's local about

SIMULATION=HISTORY?

According to 4.3, the answer seems to be

that the TIME-SLICE 1Is used bhy the program as a "local

(1) This theory Is of course quite liberal in its suggestion
of "suspect" constraints. At this stage, thls seems to be
the best strategy. The deductive mechanisms are capable of
eliminating non-bugs rather easily so thzt things don't blow
up (see section 2). However, If really large models were
used, a better theory would be necessary to avold smothering
the program with possible leads (see section 4.5).

L T Sl Tl P mg | L e . L e L v—?

Y

Page 94

environment"., .but why? The TIME-SLiCE preserves locality
because direct wuser policy 1Is at the TIME-SLICE level,
Schedul ing decislons set certain *ACTIViITY's to occur in
certain TIME-SLICE's (see description of *SCHEDULE in 4.1).
*PREREQUISITES are checked at the TIME-SLICE level, *QUTPUT
occurs at the TIME-SLICE 1level, «FUNCTION's are called,
*EVENT's triggered,etc.--all at the TIME-SLICE level, Al
of the direct wuser decisions, as specified bv the static
information In the MSL, affect the simulation at the
TIME-SLICE level. Therefore, the program takes a constraint
to be local (and thus user-intended) if It depends only on
what happens in a single TIME-SLIiCE.

Now | mentioned in 1.3.1 that the models
used in this thesis are especially interactive.
Furthermore, as 1| said above, the criteria for suggesting
unintended constraints can afford to be 1liberal--we would
rather suggest wrong bugs than miss a possible bug. Thus,
we would expect there to be few local "user-intended"
constraints and many non-local "suspect" constraints. This
Is Indeed the case. The resources present in any TIME-SLICE
are dependent on the action of the model over many
TIME-SLICE's and are thus non-local. SIimilarly, the timing
of *ACTIVITY's which do not contaln *SCHEDULE specifications

becomes resource-dependent and thus non-local. *EVENT

Page 95

occurences are specliflied by probabilistic functlons of

resources and are thus non-local. Finally, higher-order

constralints 1like colncident presence of several resources

span several TIME-SLICE's (see 4.3) and are, almost by

definition, non-local,. These non-local constraints give

rise to the BAD-REASON's discussed in the next two

subsectlions. For now, let's mention the few GOOD REASON's

that exlist.
Most GOOD REASON's concern constraints

that arise from «SCHEDULE constructs. If the change
requested by INCREASE would violate the *ACTIVITY's
+SCHEDULE for that TIME-SLICE, SCHEDULE denlies the request
for GOOD-REASON (1) . Thus, if, as in section 2, there are
three ADVERTISING #ACTIVITY's already in a TIME-SLICE and

ADVERTISING contains the modifier

(*SCHEDULE 3)

STHEDULE will deny aay request to up the amount of
ADVERTISING in that TIME-SLICE. Similarly, SCHEDULE views

the other avatars of «*SCHEDULE (see 4.1) as

GOOD-REASON-generators.
The other kinds of GOOD REASON's are

be dlscussed

(1) There Is one excestion to this which will
in the next subsectl!on.

Page 96

those that are based on "fact" or are "true by definition"
(see the first three rules of |[INCREASE in 4.4.1), Thus,
SCHEDULE wil) deny attempts to schedule Iin negative time,
Increase constants, etc. for GOND REASON, Actually, these
REASON's can be viewed as being based on the "common sense
knowledge" the user has In addition to his knowledge about
submodels, That Is, the user directly intends nls model to
be "sensible'" as well as to be In accordance with known
subrrodel constraints.

Thus, GOOD REA3ON's apply to constraints
which depend only on single TIME-SLICE Informaticn, f.e.,
which reflect the locality which Is characteristic of user
Intention., We now go on to Investigate the way In which the

program deals with non~local constvalnts.

4.4.2.2 Basic BAD REASON's

If the program cannot find a GOOD REASON
for a constraint, it must attribute Its existence to a BAD
REASON., From the "interaction bug" philosophy of section 3
we see that the user's understanding of his model falters in
the three critical areas mentioned at the beginning of this

section:

Page 97

(1) the effects of resource competition among submodels

(2) timing effects of submodels

(3) the effects of higher-order constraints

If a constraint is there for no GOOD REASON, the program
considers the possibility that the constraint arose
unintentionally from one of these three misunderstandings.
It will therefore try to come up with a BAD REASON ‘or the
constralnt's existence so that it can inform the debugger of
the possible anomaly (see section 4.4.3). This section
will consider the BAD REASOM's related to the first two
kinds of Interaction. These BAD REASON's form the basis for
BAD REASON's arising from higher-order interdependencies--as
discussed in 4.4,2.3, Mow, to continue with our favorite
process, the SCHEDULE *GOAL was just seeing why the desired
*ACTIVITY wasn't scheduled in that TIME-SLICE in the first
place...

Since the wuser didn't specifically ask
for the *ACTIVITY not to be scheduled, there can be only two

reasons why the *ACTIVITY wasn't there:

(1) some of its prerequisite resources weren't present

— e il — L " - Dl s i il B

Page 98

(2) It iIs dependent on an *EVENT that didn't occur

Thus, the pregram first checks out the resource sltuation In
the TIME-SLICE., |If the resources are not sufficlent to

support the *ACTIVITY, there can be two reasons why:

(1) the resources were avallable in the TIME-SLICE but
were used-up by higher-priority *ACTIVITY's before the

*ACTIVITY In question got a chance at them

(2) the resources just ain't there

To check out the first possibility, the program looks at the
status of the higher-priority *ACTIVITY's in the TIME-SLICE,
If any of these *ACTIVITY's indeed "stole" resources which
would have allowed schedullng of the deslred =ACTIVITY,

thelir names are collected and the BAD REASON

(PRIORITY-RESOURCE-BOUND (<names of offending *ACTIVITY's>))
Is recorded.

If no higher-priority *ACTIVITY's stole
the resources, then the resources must just have been absent
from the TIME-SLICE In the first place. The wubiquitous

two possible reasons:

Page 99

(1) The *ACTIVITY's which *QUTPUT the desired resources
weren't scheduled wuntil It was too late for the

resources to be avallable In the TIME-SLICE

(2) The *ACTIVITY's which *OUTPUT the desired resources

were scheduled too early aid the resources were

gobbled up by higher-priority =*ACTIVITY's 1In the

intervening TIME-SLICE's

Of conurse, In elther Instance, the user may have ntende

this to be the case (well we know how to check that out...).
On the other hand, the *OUTPUT *ACTIVITY's may have ended up
in the wrong place because of the user's poor understanding
of timing effects (1) --a BAD REASON. To determine which |s
the case, the program proceeds as follows. It first finds
out what *ACTIVITY's +#0QUTPUT the desired resources and
checks to see if they were scheduled too late to do the
desired «ACTIVITY any good. Then, [t sees whether the
*QUTPUT #ACTIVITY's were "late" for GOOD REASON., If not, It
notes a BAD REASON:

(1) Note that the "interaction Information'" about timing |Is
implicit 1In the resources. That s, there are no explicit
timer-alarms to say when something s too late or too early.
The only evidence of a timing error in the model will be
found In the levels of particular resources over time.

Page 100

{RESOURCE-BOUND (T00 LATE (<names
of offending *ACTIVITY's>)))

If there are no "late" *ACTIVITY's, or If the *#ACTIVITY's
were late for GOOD REASON, the program Jlooks back up the
SIMULATION=-HISTORY for two things: «ACTIVITY's which *OUTPUT
the needed resources scheduled '"too early" for no GOOD
REASON and "interloping'" *ACTIVITY's of higher opriority
which stole the needed resources. |f both of these things

exist, the program notes:

(RESOURCE-BOUND (TOO-EARLY (<names of offending *ACTIVITY's)

(<names of Interlopling *ACTIVITY's>)))

Thirs, the PRIORITY-RESOURCE-BOUND and
RESOURCE-BOUND BAD REASON's take care of the case in which
the *ACTIVITY cannot be scheduled because of a lack of
prerequlisite resources (1) . Thils leaves the o‘her case In

which the *ACTIVITY could not be scheduled because it Is

(1) As discussed previously, the prograr. would try to
alleviate this def.iclency with an appropriate INCREASE
*GOAL. The reason for this Is to make sure that the program
traces through the entire interaction path: after all, this
resource defficiency couid just be the result of an earlier
decision which reflects the actual bug. More on this In
u.u.s.

Page 101

dependent on an *EVENT that didn't occur.

The program can easily vrecognize this

second case because it can only arlse from the

(*SCHEDULE (ON <+EVENT-name>))

specification (see 4.1). If the specifled *EVENT did not
occur in the TIME-SLICE, the desired *ACTIVITY could not be
scheduled. Now, if the program were acting like it did
before, It wou'd try to find out "why" the *EVENT didn't
take place In the TIME-SL!CE, However, this s
inappropriate for *EVENT's, which, after all, mode 1
occurences which are beyond the modeller's direct control.,
Of course, this ralses the question of why a modeller would
make an *ACTIVITY dependent on ar *EVENT in the first place.
Indeed, the program becomes suspiclous: It Is possible that
because of the user's poor understanding of timing effects,
the *EVENT dependency (plus the time needed by the
*ACTIVITY) will cause the *ACTIVITY to take effect at the

wrong time- sually too late (1) . The rrogram checks out

(1) The most common cause of this +EVENT-dependency Is the
“"fire-filghti: g" approach to solving problems: when the event
occurs, start doing something ubout It. (This is, Iin fact,
the problem in the example of section 2: HIRING is dependent
on QUITTING.) Note that this BAD REASON Is the exception
to the "if #SCHEDULE says It's okay, it's okay" dictum
referred to earlier,

Page 102

this possibllity by looking up and down SIMULATION-HISTORY
to see if the *ACTiViITY was scheduled '"too 1late" or "too
early”. |If either of these is "he case, the program notes a

BAD RCASON:

(*EVENT-TRIGGERED-SCH{ DULE <offending *ACTIVITY>
<"TOO LATE" or "TOO EARLY'">)

If nelther of these 1is the case, the program simply

terminates Its line of attack (1) on

(*EVFENT-TRIGGERED-SCHEDULE)

ard goes away mumbling to itself (actually, this would be
the first "GOOD REASON" it 1looks at after all the BAD
REASON's were checked by the debugger).

Well, this wraps up the "basic BAD
REASON's" arising from poor wunderstanding of resource
conflict and timing effects. Now we go on to see how
misunderstanding of higher-order constraints leads to the

use of these same BAD REASON's in an expanded context.,

(1) Note that unlike the other BAL REASON's, this one causes
the line of attack to terminate--no further Investigation is
possible (see 4,4,3),

[r,____f,_r T —— b —

Page 103

b.4.2.3 Higher-order BAD REASON's

Up uatil now (except for part of 4.3), |
have over-simplified the interactive behavior of submodels
i fcr the purposes of dliscussion. Specifically, | have
pretended that a submodel can depend on only one other
' submode! for 1Its sources of input. Thus, my *ACTIVITY's
& have had only one unfilled *PREREQUISITE, my *FUNCTION's

only one *ARCUMENT. This Is of course quite unrealistic,

and not a3 real restriction of MSL. In this section | remove

this artificial restriction.
The introduction of multiple dependency

brings up the issue of higher-order constraints. As we saw

in 4.3, when submodels depend on several other submodels for 1
input, the problem-solver must take Into account the f
lnterrelationship of the Input #*ACTIVITY's, The Input

*ACTIVITY's are in fact operating under a “higher-order

Pa—

constraint" (see section 3,2)--they must combine to provide

resources for a single *ACTIVITY (or *FUNCT.UN) at a certain
time . This higher-order constraint Is modelled by forcing
the input *ACTIVITY's to share a Jlocal constraint
environment (see 4,3), That is, all *ACTIVITY's sharing a
higher-order constraint must be scheduled not only in

accordance with their own neads, but also with the needs of

Page 104

the *ACTIVITY or *FUNCTION that depends on them, There are
two tvpes of environment-sharing, reflected by two types of
*GOAL's to handle the higher-order dependencies. The first
of these Is *AND, the expression of the way *ACTIVITY's
depend on each other when their higher-order constraint is
another *ACTIVITY, The second is *GROUP, which medels the
*ACTIVITY-*FUNCTICN dependency.
*AND dependency arises from *ACTIVITY's
that look 1like
(*ACTIVITY SALES-CALL
(+PREREQUISITES

(*/IND

(*PRESENT (1000 CASH))
(«PRESENT (1 UNIT))

(*PRESENT (SOME
SALESMAN))))

That 1Is, SALES-CALL depends on the submodels which =CUTPUT
CASH,UNIT, and SALESMAN, All of these *OUTPUT's must be
present at once (i.e., In the same TIME-SLICE)., Thus, any
*GOAL which tries to schedule a new SALES-CALL +*ACTIVITY
must take this into account. Specifically, If the resources

are not avallahle, all of the *OUTPUT *ACTIVITY's involved
must be scheduled. That is, given the *=GOAL

(*GOAL (INCREASE SALES-CALL m n))

Lt s

Uy aac e GHEE . o SN

Page 105

and assuming none of the necessary resources are on hand (1)
, the program must generate the subgnal
(«GOAL
(«AND
(*GOAL (INCREASE CASH j n)?’

(*GOAL (INCREASE UNIT k n))
(#GOAL (INCREASE SALESMAN 1 n))

))

Now, just as before, the program must be
careful not to INCREASE things contrary to the intentions of
the user. Again, It uses the SCHEDULE *GOAL to find out the
REASON for constraints. However, the SCHEDULE *GOAL cannot
simpiy check out each INCREASE +*GOAL independently as

before. The INCREASE *GOAL's are now interdependent and

r
l must be treated as such. So now, flnding GOOD and BAD
REASON's is a whole new game.

' Not really. Fortunately, the process
isn't very different, especlally in the case of *AND. First
of all, examlnation of the whole GOOD REASON-finding
philosophy and implementation will show that 1t s
completely unaffected by higher-order Interdependencies.
This Is almost by definition: GOOD REASON's pertain to

individual submodels and TIME-SLICE's, while higher-order

)

(1) In section 2 | kept higher-order constraints out of the

picture by buffering away dependencies. Thus, In the case
of SALES-CALL, all resources except SALESMAN were avallable |
already (see section 2).

Page 106

Interdependenclies transcend these boundaries of locality.
Thus, SCHEDULE's GOOD REASONIng processes are still the
same, Certalnly, however, the BAD REASONIng 1Is different.
But most of the differecnces have been taken care of already
by the environment-sharing discussed In 4,3, That Is, the
effects of higher-order constrailnts on resource confllicts
and time deperdencies are already reflected In the way *AND
*GOAL's are set up and processed=~the higher-order
Iinterdependency Is already modelled. For example, if
satlsfylng one component *GOAL steals resources from another
or disturbs the timing of another, the shared environment
will make thls Interaction explicit: the resources needed by
each *GOAL are recorded separately so that the effects of
everything done in the *AND environment can be traced to the
proper source.

A1l this 1Is saying that all SCHEDULE has
to do about *AND's Is to reallize that !t s In a shared
environment and attribute BAD REASON's to the effects of
sharing. Thus, the searches for higher-priority *ACTIVITY!'s
and timing problems whleh were previously carrlied out only
In a single TIME-SLICE are now carrled out in the whole *AND
environment. The "new'" BAD REASON's they generate l1ook 1ike

(PRIORITY-RESOURCE-BOUND (<names of of fending
*ACTIVITY's>) «AND-MODE)

(RESOURCE-BOUND (TOO-EARLY (<names
of offending *ACTIVITY's))

Page 107

*AND-MODE (<names of Interloping *ACTIVITY's
in the *AND environment>) (<{names of other
interloping *ACTIVITY's>))

etc.

The theme here | that most of the work
for finding higher-order BAD-REASON's in the *AND case was
done by setting up the *AND environment in the first place.
That is, the interdependency Is already explicitly modelled
by the way +~AND +GOAL's work, and need only be checked
through by SCHEDULE to find the appropriate BAD REASON's.
This theme is elaborated for the *GROUP case.

in &4.4,1 I postponed the (Issue of
INCREASIng +FUNCTION's by attributing this task to a
separate INCREASE-FUNCTION *GOAL-type. The job of
INCREASE=-FUNCTION Is to figui'e out a way to increase the
value +*RETURN'ed by a *FUNCTION by changing the values of
its *ARGUMENTS (thus, It 1Is completely analogous to
INCREASE). Obviously, this problem is extremely difficult
for a large class of functions. Fortunately, the functions
needed in business games, and, indeed, in most of business

processing, are of a very simple nature (1) . MSL currently

(1) The mathematics of management sclence--l.e., mathematics
meant to model systems and decislons--can be quite
sophisticated, but thls Is not business processing. Indeed,
even In a business game, the probabhility-handling can get
tricky. But all of thls is built into MSL--the wuser can

|

Page 108

allows the representation of only two kinds of functional
dependencies: tables and linear functlions of a few
varlables. The mathematical techniques for Increasing these
*FUNCTION's are simple and are not of Interest here. The
interesting part of *FUNCTION's for this discussion is they
are responsible for the second kind- of higher-order
interdependency.

e just saw how the relation between
*PREREQUISITES and *OUTPUT's causes *AND interdependency.
Sinitlarly, the relation between *ARGUMENTS and *RETURN'ed
value causes *GRCUP interdepency. In the *AND case, the
Interdependency was that all *PREREQUISITES must be present

In the proper quantities In a single TIME-SLICE for the

*ACTIVITY to be initiated. *GROUP Interdependency Is
weaker., We know only that some combination of changes to j
the components will bring about the desired change to the
higher-order constraint. Thet 1Is, each subgoal can
contribute an wunspecified amount to the success of the

overall *GOAL. Perhaps the Increase of only one of the

*ARGUMENT resources will suffice to increase the *RETURN'ed
value. Or, all may be necessary=--making the *GROUP an *AND

at the extreme.

Now the program must model this kind of

only define simple functions which use the probability
machinery.

Page 109

interdependency when it tries to |INCREASE +FUNCTION's.
Furthermore, in trying to solve the INCREASE-FUNCTION
problem, it must go about the task pretty much the same way
organizations do In order .o run Into the same kind of
interactive behavlor. That Is, th2 Interaction involved in
a kind of breadth-first approach to the problem (increase
each *ARGUMENT resource a little iIn turn wuntil the
*RETURN'ed value has been |INCREASE'd the desired amount)
causes very different subgoal Iinteraction than, say, a
depthr-first approach (increase each +*ARGUMENT as much as
possible separately to see how much it helps to INCREASE the
*FUNCTION) ., The differences are in which subgoals are
allowed to be achieved at the expense of others (1) , the
range of subgoals tried, and the extent to which each
subgoal Is exercised (2) . Clearly, different
Interdependencies are tapped by different subgoal attack
methods.

So the program must try to overcome the

(1) Unlike *AND, this is allowed because not all +«GROUP'ed
subgoals must be achieved. The only requirement Is that all
of the subgoals which eventually succeed must share the same
local constraint environment (otherwise the ccnstruct
doesn't model higher-order interdependency).

(2) Note that this need to model the organlization's
problem-solving method was not present in the *AND case.
Since all subgoals must be achieved as stated, no
"resource-stealing" 1is allowed among them and all of them
must be fully trled and executed.

Page 110

higher-order constraint of increasing a
functionally-determined value the same way organizations do.
Obviously, this is a tall order. First of all, functional
relationships are usually implicit 1in organizations, not
explicit as in MSL--so it's hard to see what organizations
do about them, Second, it is reasonable to assume that
different organizations attack different functional probiems
Iin different ways at different times. Finally, it s
possible that the actual process Is not pre-defined at all
in many cases, but Is Instead made-up and modified during
the course of each problem's solution. vvhat | am trying to
say by all of this Is that i'm not about to solve the whole
problem or even a very big part of it...

vhat | have done [s to program a single,
sltghtly sophisticated method of attacking higher-order
functional constraints which attempts to model one way In
which an organization might do it. it should be seen as an
experiment for demonstrating the approach of the program In
dealing with this kind of constraint, not a fully developed
piece of the system. This part of the program, incorporated
in INCREASE-FUNCTION, works as follows: given a +GOAL of the
form

(«GOAL
(*GROUP

(«GOAL (INCREASE argumentl timel))
(*GOAL (INCREASE argument2 time2))

Page 111

))
the program takes the first *GOAL
(*GOAL (INCREASE argumentl timel))

and tries to INCREASE argumentl the minimum possible amount
as a "feasibllity study". It carrles the *GOAL a!}} the way
to completion, If it can. If the +*GOAL 1is unsuccessful
(for GOOD REASON), it Is withdrwan from the *GROUP and the
program does a '"feasibility study" on the next *GOAL in the
*GROUP, If no "feasibility study" Is successful, the whole
*GROUP naturally falls. Now, if any of the "studies" are
successful, the program will keep attacking the studied iine
until it falls., When this happens, 1i.e., when the
particular +«ARGUMENT has been INCREASE'd as much as
possible, the program considers itself to have a "partial
success", That is, the effect of the INCREASE'd *ARGUMENT
Is now calculated into the overall *GROUP *GOAL, so that a

new *GROUP *GOAL is formed such that

(1) The fully INCREASE'd *GOAL s no longer in the
*GROUP

(2) The overall +«GOAL is reduced by the amount

contributed by the successfully INCREASE'd *GOAL

Page 112

in this pew *GROYP environment, the other *GOAL's are

similarly processed unt il success (or failure) occurs,

Al of this hopefully goes toward
modelling the way an organization attacks this kind of
problem: by checking out and eliminating possibilities one
by one, and pushing winning lines as far as possible to
achieve the overall *GOAL., As Intimated in 4.3, the process
Is mode1led (Vike *AND) by the proper sharing of
environments. Obviously, the environment-hackery for
+GROUP's is a bit more complicated than for *AND (for
example, it must Incorprorate the notion of "partial success"
and the fact that all the eventually successful *GOAL's and
only the eventually successful *GOAL's share the same 1ocal
constraint environment). The question for us here 1Is how
this affects the GOOD and BAD REASONing process.

Again, the answer 1is '"not all that
much"™. As with the *AND case, the only difference 1is that
the BAD REASON's differentiate between constraints caused by
higher-order Interaction and those caused by other kinds of
Interaction. This !s again just a matter of tracing through
the explicit relationships set up In the *GOAL's environment
structure. As far as actual BAD REASON's for constraints
go, #*GROUP only adds twc (minor} new wrinkles. First of

all, it will make a special notation if the constraint comes

Page 113

up durlng o feasibility trlal. Second, it carefully notes
which *GROUP +GOAL's have already succeeded when the
constralnt comes up. These are just convenience factors
which the buz-finder uses when suggesting *GROUP bugs to the
user; It wants to make clear exactly what the program was
doing when It ran into the const:raint, This is Important,
because, as mentioned above, different interaction occurs
depending on exactly what the program does,

This brings up a final Important point.
*GROUP BAD REASON's are perhaps the weakest in the REASON
repertolre because they depend directly on the actual
exploration methods wused. That |Is, the program might
suggest a BAD REASON which the wuser may never really
encounter because of the way hls organization handles
functional dependenciles. Thus, the debugger saves
*GROUP-type bugs for last. Nonetheless, | think that it Is
very Important to Include this kind of REASONIng in the
debugger: +*GROUP-style dependencies are pervasive in
organizations. Furthermore, they point the way toward
modelling more sophisticated kinds of submodel-submodel
Interactions . The weakness of the *GROUP method In this
program is Its Incompleteness, not l.s basic concept.

This sectlon has catalogued all of the

BAD REASON's generated by the program. Now we finally get

Page 114

around to fin!shing the bug story by showing how the BAD

REASON's are used to suggest the actual model bugs.

4.4.3 The post-mortem recriminations

So far, the debugger hacs been left with
a bunch of GOOD and BAD REASON's for constralnts., It is now
time to turn these Into bug suggestions. So, let's see what
the REASON's mean to the debusger. If the problem-solver Is
faced with a B8AD REASON for a constraint, It knows that the
constralnt |Is based on submodel Interaction. 1Its job Is to
explore that Interaction. Therefore, when SCHEDULE returns
a BAD REASON, the problem-solver considers It a cause for
further investigation. In this way, It carries the
perturbation as far as It can--tracing the Inceraction
patterns to their roots.

GOOD REASON's are the "roots" that stop
this searck through the interaction path., They Imply that
the constraint blocking the path is not due to Interaction,
but rather to direct user intent. The program should not
disturb user Intent, since its only purpose In changing the
environment Is to debug the exlisting model. It now has a

COOD REASON to stop changing the environment, so It stops.

Page 115

Its current line of attack Is sald to "fall" (In its attempt
to bring about the deslired change). Thus, the
problem-solver's activities leave a l1ine of *GOAL's attached
to BAD REASON's ending In a *GOAL attached to a GOOD REASON
(1) . Now what does all of this have to do with debuggling?
Simply this: the program has now tried to overcome every
Interaction-based constraint In the way of producing the
user's desired state. It has reached a user-desired
constraint which 1is the root cause of all of the
Interaction-based constraints, Therefore, It has reached
the end of the 1line and gannot produce the wuser's desired
state. There can be three reasons for thls state of
affairs:

(1) The user's desired state is off-base: he has set
the model an impossible task

(2) One of the user's original Intentions Is wrong;
l.e., one of the root constraints Is the bug

(3) One or more of the Interaction-based constratnts
between the root constralints and the desired state are
Incorrect: the model has an interaction bug
It is obvious from what has been sald before that the
program thinks that possibility (3) is the most likely. It

therefore suggests that one or more of the Interactlive

constraints (noted by BAD REASON's) are caused by the bug.

(1) Except for the *EVENT-TRIGGERED=-SCHEDULE case discussed
in 4,4,2,3.

N

Page 116

That is, given that the interaction constraints are wrongly
causing the discrepancy, the debugger's job is to find the
part of the model which gives rise to the faulty
constraints, This 1Is then suggested as the "bug" in the
user's model., If the user doesn't agree with any of the
program's suggestions based on possibility (3), the program
falls back on (2), and finally (1), Anyway, let‘s pick wup
the process again at the possiblity (3) suggestion phase.
The program now has the location of the
bug bracketed between the beginning and end of a "line of
attack". Furthermore, the submodels which could have caused
the bug have been narrowed down to a relatlively smalll
"interaction group" (the union of all submodels mentioned In

the bracket) (1) . The program must now pick out the

(1) The size of the "bracket" and "Interaction group" of
course depends on the modei, However, in the experience |
have had, the relevant groups have been small: a few BAD
REASON's and thus slightly more possible submodels. In the
case of higher-order stuff, the pgroup gets somewhat larger.
There 1Is no reason to expect brackets or Interaction groups
to get much larger for larger models: the key factor 1in
determining their size 1Is the amcunt of control the user
exercises over his model (in MSL, the extent to which things
are determined by *SCHEDULE's)., Control means GOOD REASON's
and thus short paths hetween Initial manifestations of a
discrepancy and GOOD REASON's to close the bracket. Control
also means smaller groups of submodels which can affect the
timing and resource-allocation of other submodels, Since
managers (and modellers) exert considerable control over
their systems, the amount of uncontrolled interaction
possible in any realistic model Is probably quite
reasonable-<lized. This in turn means that brackets and
Interacticn groups should also stay reasonable-slzed.

Page 117

submodels !n the "group" which gcauysed the BAD constraints in
the "bracket".

Sometimes this is quite easy: all of the
BAD REASON's are traceable to a single submodel interaction.
Examples of this are the *EVENT which triggers an *ACTIVITY
at the wrong time, the +*ACTIVITY which constantly steals
resources from other necessary *ACTIVITY's, and the
*ACTIVITY which Is always too 1late (too early) to allow
another +*ACTIVITY to be 1Initiated on time. The program
looks for these single-cause interactions by scanning the
BAD REASON's in the bracket, looking for "glve-away' BAD
REASON's 1ike *EVENT-DEPEMDENT-SCHEDULE or consistencies In
the "offending +*ACTIVITY's" and "interloping *ACTIVITY's"
listings. |If, In the process of examining the bracket, the
debugger finds a single such cause for the BAD REASON's of
the bracket, It Immediately labels the faulty Interaction
(i.e., the submodels Involved In the interaction) as the bug
for that bracket, and files it away. Often, however, In
looking at the BAD REASOM's of a bracket, the program flinds
that a partlicular BAD REASON could have been caused by any
of several Iinteractions. For example, *ACTIVITY A couldn't
be scheduled because B stole Its resources, or because C
caused D to be late so that D couldn't provide the necessary

resources for A. The program handles this by noting each

Page 113

causc sep-rately as a bug.

Sometimes thi., straightforward process
vreaks down: the program is unable to pick out the cause for
the BAD constraints of a bracket (this happens mostly In
*AND's and (especially) *GROUP's). Currently, the program
simply presents the troublesome bracket to the user telling
him that "there's something wrong In there". | consider
this an Incomplete part cf the program (see 4.,5),

When the program has fournd the bug (or
the few bugs) for each bracket, it presents them to the user
in order of '"likellhood". The debugger's model of the
likelihood that a suggested bug is actually a bug In the

model 1Is

(1) The more speciflc the suggested bug, the more
likely it 1is that it |Is genulne; thus, bugs 1like
+«EVENT-DEPENDENT-SCHEDULE which correspond to a single

BAD Interaction are suggested first,

(2) The more definite a suggested bug, the more likely
it is; l.e., brackets which contaln a single possible
bug are suggested before those with multiple bugs,
which are In turn before those which are just brackets

with the "something's wrong'" tag.

P>ge 119

(3) The mecre Interactions encompassed by a single bug,
the more 1llkely it 1Is; ¢this 1Is Jjust a recursive
acpllcation of Murphy's law...the more interactlion
decisions a user has to make, the more he'll blow=--thus
*AND bugs (1) and long timing chaln bugs (A was late

for B was late for C was...) come early,

(4) Timing bugs are more 1lkely than resource-corfiict
bugs; PRIORITY determinations are much closer to local
specifications, and are thus more 1likely to be
user-intended than the multi-TIME-SLICE mactinations of

a timing bug.

(5) *GROUP bugs are saved for last.

(6) After all of the bugs due to interactior are gone,
the program works on the second possibility stated
above--i.e., It starts suggesting that the GOOD
constraints are faulty (i.e., wrong *SCHEDULE
specification, etc.); it starts with the
*EVENT-DEPENDENT-+SCHEDULE GOOD REASON If it's

cround--it's suspiclous.

(1) *GROUP bugs would be here too, except, as | mentioned in
4.4.2.3, for the fact the mechanism for handling them Is
rather dublious.

Page 120
(7) The program suggests missing submodels (see 4.5).

Thus, the program goes through its suggestion reperto:re bug
by bug, providing the user with an orderly statement of what
the program thinks might be wrong with the model (see
section 2 for the format of the suggestions). The user can
always ask to see the interaction path leading to a bug, the
bracket of a bug, and any other bugs which pertain to a
particular bracket.

If the wuser does not agree with ary of
the bugs suggested, the program will suggest possibility
(1): ihat his original =*GOAL was wrong. |If the user Is
still unsatisfied after all this work, the program informs

him as to the location of his head and logs him out.

4.5 Don't confuse me with the f:cts

Most of the program's knowledge about
models is contained In its conceptions of MSL (including,
for example, 1Its Ideas of how to INCREASE MSL quantities)
and Its notions of user Intention--as discussed in 4.4,
However, as | mentioned in section 2, it Is useful from a
debugging point of view to include actual "world" knowledge

of business games. Clearly, this knowledge can be used to

suggest bugs which transcend the MSL specification.

-

e

—— - VI . a—— T —

Page 121

This is, 1In fact, the only use the
current program has for WOBG knowledge. As shown in section
2, the program has a facllity for suggesting "missing" parts
of an MSL specification. This comes from a (very simple)
model of what an MSL model of a business game (1) could
contaln, The program simply checks at various points to
see whether the addition of an *ACTIVITY could solve some
problem (usually alleviate some defficlency) in the user's
mode Thus, when there is a lack of CASH In the sample run
in section 2, the program notes that the addition of a
FACTORING +ACTIVITY (see description 1in Appendix A and
specification in Appendix B) could solve the problem.

While this sort of thing 1Is certainly
useful, It Is only a "zeroceth order" attempt at using world
knowledge in debugging. A more Iimportant usc of WOBG
knowledge would be to aid in finding bugs within the MSL
specification (i.e., the same kind of bugs the program now
finds). As | mentioned in 4.4, a major determiner of the
efficacy of the debugging program is the number and size of
the '"brackets" which enclose possible bugs. 1in the current
program, brackets are determined by the amount of
uncontrolled interaction--1i.e., a purely MSL-level

criterion. in a more thorough-going approach, WOBG

(1> In fact, it Is based entirely on the game in Appendix A.

Page 122

knowledge could be used to determine which interactions are
reaily natural and which are possible bugs (1) --thus
limiting or even eliminating brackets, Also, WOBG knowledge
could be used to suggest suspiciously specified *ACTIVITY's,
etc,

The main reason that | have not
exploited VWOBG knowledge in these more sophisticated ways |s
that It has not been necessary for the models | have
investigated so far. Furthermore, it is interesting to see
how far a “domain-independent" (2) debugger can go toward
finding bugs in MSL models. Thus, WOBG knowledge does not
enter into the maln bug-finding process at all. |Its sole
use is In suggesting the additlion of *ACTIVITY's to the

current model (3)

(1) This sort of thing Is actually found to some degree In
the programs of Sussman 118] and Goldstein |5].

(2) See Sussman's discussion of the domain-independence of
HACKER |18].

(3) It operates off a WOBG database which will not be
described here. It works a 1ot 1ike MAPL 110], and was in
fact designed to be compatible with the larger MAPL database
of Prctosystem | (the VOB |9]).

Page 123

5 Concluslons

| would 1lke to wuse this concluding
section to flt my model-debugging system into the "big
picture”, viewing It First as a debugging tool, and second
as part of an automatic programming system.

The approach of my debugging system
should be seen as one method of the several which can be
used by the human or machine problem-solver. The
simulate-and-Investigate technique shown here Is useful for
debugging poorly understood but easily modelled systems. It
requires the modeller's knowledge and lack of knowledge to
be of a certaln character, as outlined earlier. It Is also
most useful for handling highly Interactive systems. |If the
problem domaln Is very well understood, or If actions in It
are baslcally Independent, other technlques are simpler and
much better.

Furhtermore, It should be stressed that
the debugging methods of the program are qulite nalve In the
context of a real (l.e., non-game) Interactive system. It
Is almost certaln that all of the technlques described here
would have to be shored up with procedures based on

knowledge of the problem domain (see L,5). Remember that

P R & e T————r

Page 124

the basic "smarts" of my system is In the exploration of the
simulation history. 1In real life, this exploration phase is
usually preceded by some knowldgable guess work on the part
of the debugger: almost all expert human debuggers
(programmers, consultants,etc.) star: thelr exploration for
a bug with a good preconcelived notion of the nature of the
bug. This "notion" comes from the wutilization of long
experience about what kind of bugs are attached to what kind
of problems; most debuggers know that only one or two things
could possibly cause a bug at any given time In their
exploration. No one vyet knows how to encode this key
experiential knowledge into a computer program. Certainly,
no attempt has been made in this theslis,

Thus, the program presented here, when
viewed only as a general debugging technique, should be seen
as part of a larger system: it fits 1in after an Initial
"guesswork" phase (as one of several possibly applicable
techniques) and just before a '"weeding out" phasse which
makes thorough use of knowledge in the problem domain to
narrow down the cholice of possible bugs.

The model ~-debugging needs of an
automatic programming system are somewhat different. Here

the user is Interested in expressing a model of his problem

to the machine in such a way that he can be sure that the

Page 125

machine understands it properly, Thus, after a phase of
mode specliflcation ald at deflne-time (1) 3 a
model-debugging system 1lilke the one here can come In and
demonstrate the APS's 1idea of the model to the user's
satisfaction (and help the user overcome any dicrepancys).
The simulate~-and-investigate and domain-independence
philosophies of my system are well-adapted to this purpose:
the system can afford to be an expert In its own modelling
language and do a great deal of exploration work In finding
bugs. Furthermore, the user can tolerate a reasonable
number of program-generated cholces of bugs In his model If
he can be certain of eventual understanding by the APS,
Therefore, | think that the techniaues used here might find
direct application In automatic programming.

Nonetheless, for a debugger to be truly
useful, whether 1In an automatic programming or general
artificial Intelligence environment, It must Incorporate the
same kind of experlentlial debugging knowledge found In the
human expert. This kind of stuff will surely be the basis
of the next generation of debuggers which are now on the

horizon.

(1) See |9] for Protosystem I's "activity expert modules".

Page 126

Biblliograpty

'1) Balzer, Robert, "Automatic Programming", Institute
Technical Memorandum 1, University of Southern
California Information Sclences Institute,
Sept., 1972,

12| Boehm, Barry W., "Software and its Impact: A
Quantitative Assessment", RAND Study P-4997,
Dec., 1972,

13] Forrester, Jay W., Principles of Systems, Wright-
Allen, Cambridge, Mass., 1968,

4| Galbraith, Jay R., "Organization Design: An
Information Processing View", unpublished
Sloan School of Management working paper
No. 425-69, MIT, Cambridge, Mass., Oct.,1969.

151 Goldstein, Ira, Understanding Elxed Instruction Turtle
Programs, PhD Thesis, MIT, Cambridge, Mass., Sept.,
1973.

16 Gorry, G.A., "The Development of Managerial Models",

iLJ.ﬂo wm: Vol, 12, No. 2, w'nterl
1971.

171 Hewitt, Carl, Description and Theoretical Apalvsis
(Using Schemata) of PLANNER: A Language for
Proving Models In a
Robot, PhD Thesis, MIT, Cambridge, Mass., April,
1972,

| 8] Little, John D.C., "Models and Managers: The Concept
~f a Decislion Calculus", unpublished Sloan School
of Management working paper No, 403-69, MIT,
Cambridge, Mass,, June, 1969,

191 Martin, William A., "Interactive Design in Proto-
system 1", Project MAC Automatic Programming
Group Internal Memo No. L, MIT, Cambridge, Mass.,,
August, 1972,

1101

1111

112]

1151

1161

1171

1181

119]

120]

121

Page 127

Martin, Wiltllam A. and Pand B. Krumland, "MAPL, A
Language for Describling Models of the World",
Project MAC Automatlic Programming Group Internal
Memo No. 6, MIT, Cambridge, Mass., Oct., 1972.

McKenney, James L., Slmulation Gaming for Management
Levelopment, Harvard Division of Research, Boston,
Mass., 1972,

Minsky, Marvin L., "Matter, Mind, and Models", In

Information Processing (Minsky,ed.),
MIT Press, Cambridge, Mass., 1968, pp.425- 432,

Reltman, Jullan, Computer Simulation Applications,
Wiley-Intersclence, New York, N.Y,, 1971,

Rockart, John F., "Model-Based Systems
Analysis--A Methodology and Cass Study",
unpublished Sltoan School of Management working
paper No. 415-69, MIT, Cambridge, Mass., Sept.,1969.

Rustin, Randall (ed.), pebugglne Techniques In Large
Systems, Prentice-Hall, Inc., Englewood Cliffs,
N.J., 1971,

Stogdill, Ralph M, (ed.), IThe Process of Model-
Bullding In the Behavioral Sclences, Ohlo State
University Press, 1970,

Sussman, Gerald J., "The FINDSPACE Problem", VISION
FLASH No. 18, Al Lab Vislon froup, MIT, Cambridge,
Mass., Aug., 1972,

Sussman, Gerald J., A Corpytational Model of Skill
Acaulsitlion, PhD Thesls, MIT, Cambrldge, Mass.,
Aug., 1973,

Sussman, Gerald J. and Drew V., McDermott, "Why Connliving
Is better than PLANNING", Al Memo No. 255A, Al Lab,
MIT, Cambridge, Mass., April, 1972,

Sussman, Gerald J. and Drew V. McDermott, "The Conniver
Reference Manual", Al Memo No. 259, Al Lab, MIT,
Cambridge, Mass., May, 1972,

Winograd, Terry, Procedurcs as a Representation for Data

ln a Computer Program for Understanding Natural
Language, PhD Thesis, MIT, Cambridge, Mass,, Feb.,
1971,

Page 128

Appendix A

The following 1Is excerpted from the
artilcle "Buslness Games--Play One!" by G.R. Andlinger In the
Harvard Business Review for March-April, 1958 (The
President and Fellows of Harvard University)-=it s
reprinted by permisslon,

It serves as an example of the kiInd of
buslness games at whlch the program (and MSL) are directed.

An MSL model of the game described here appears in Appendix
B.

- - AT R SRR T — - - ——

Page 129

Buslness Games--Play One!

Baslc Objectlves

Games are as old as man. Usually, thelr
basic objectlve |Is entertalnment. The Business Management
Game, however, alms not at entertalnment, but at learning.
Other differences between It and a game 11lke Monopoly, for
example, are:

--The degree to which It approaches reallty.

-=-The degree to whlich the players'
experlence, judgment, and sklill--as opposed to luck--
Influence the outcome.

If any business game Is to serve a puroose beyond
that of a fasclnatling toy , there must be some transfer of
learning from the game sltuation to reality. While there
probably 1Is some such transfer from playlng a generallzed
business game that mirrors "any company" and not a
particular firm, an executilve could derive Infinitely
greater beneflt from a game that permits him to practice
gulding the destiny of hls own company or one In his own
industry--which unfortunately, Is unavallable at this early
stuze of business gaming. The success of specliflc war
games, which the military has been using for vyears to
simulate combat sltuatlons for tralning officers, however,
holds great promise for similar applications In business In
due course,

The Business Management Game s a case
In point, We started It In 1956 with the idea of applying
war-gaming techniques to busliness. In the course of the
year we tested, modifled, and retested the game many tlimes
to develop a flne balance between reallism and playablility.
The more closely a game resembles reallty, the more
cumbersome It becomes--untll It Is no longer playable.
Hence, there 1Is a need to compromlse. Also, we deslgned
the game to be relatively stable. No extreme strategy can
result In sudden success; yet players can galn outstanding
success |f they are good enough=--or bankruptcy If they are
not careful.

The game 1Is partly deterministic and
partly probablilistlic. Some results are determined directly
by the action of the players; others are, to varying
degrees, subject to chance or probabllity. The welght of
the elements of the game [s such that the longer the game,

the smalller the Influence of luck,

Rules of Play

In this section 1 shall give a brief
general description of each game element and the speciflic
values, rules and probabilities that define each element In
quantitative terms, Instructions for the umpires are
included at each polint; but remember that they should not be
given to the players.

The Market

The market 1Is made up of 24 customers. Each
customer's potential Is different; In any one time period, a
few customers are not buying any units, while others may buy
four or five units (at $10,000 per unit) 1f a salesman is
2ble tn make a sale.

The market 1Is dynamic, so the customer
potentials change. |f the market Is growing, they change
upward; should the market be hit by a recession, however,
they may drop drastically. The long-term trend of the
market 1Is announced to the players; short term fluctuations
are not. 1f a company Is Interested in finding out what the
total market potential 1is In any time period, a $2000
expenditure for market research will buy this Information
from the umplires.

The 24 customers divide geographically
into four reglons on the game board, each region contalining
six accounts. This geographical division allows the company
to do local advertising (see the section on "Advertising the
Product") and conduct market research In only one region at
a time, Such market research, which tells a company the
potential of each customer in the region and permits the
pinpointing of the direct selling effort (see the section on
"Marketing the Product"), may be obtained by paying the
umplires $30,000 for “staff work."

in addition to the separation into
geographical reglons, the market breaks down iInto one rural
and two urban markets. The significance of this distinction
is that In an urban market, where a salesman can make more
calls per day, he has two chances of making a sale during
each time period, while in the rural market he has only one
chance.

I1f at the end of a year a company
desires to find out what portion of the total market it has
been able to capture, It may but a share-of-market

Iinformation from the umpires for $2000.
The umplire should:

(1) Keep a 1ist of all current account potentials.

(2) Distribute a total customer potential, which
comes to $360,000 at the beginning of the game, at random to
the 24 customers as follows:

1 account $40,000
3 accounts 30,000
5 accounts 20,000
13 accounts 10,000
2 accounts 0

(3) Depending on the economic climate determined
in advance, change these starting potentlals as the game
progresses as follows:

--For slow growth, chane one account each quarter
at random. Move ahead on the random number table
untl! a number between 01 and 24 appears, then add
$10,000 to the potential of that account number.

--For faster market growth, change two or three
accounts In the same mannner as above for each
quarter.

--For a depression, change half or all of the
accounts to zero for one or more quarters.

(4) If a company decldes to buy market informatlon
(tota) potentia), market research, or share of market),
write the Information on a slip of paper and pass It to the
company.

Marketing the Product

Units are sold by salesmen, who call on
the 2& accounts 1In the market, iIn an urban market a
salesman may make two calls per quarter; and In a rural
market, only one.

in the presence of an umpire, the sales
manager of a company polnts to the accounts he wants to call
on. The umpire will tel)l him, after examining the random
number table, whether a sale 1Is made or not. How many

e

Page 132

units are sold to a customer will depend on competitive
action. The completed decision form, returned to the
company at the end of the particular period, contains the
actual sales results by accounts,

Whenever a salesman has two calls, he
must make the second call on a any of the three to elight
accounts adjacent to the firsc square called on; that Is, he
may not jump accross territories. If no sale is made on the
first call, he may, of course, call on the same account
again during the same quarter, Furthermore, there 1Is no
limit to the number of salesmen who may cali on the same
account In one time period. Between quarters, saiesmen may
be moved to any accounts that the company wishes to zover
during the next quarter.

Each time a salesman makes a call, he
has a certain fixed probability of making a sale. This
chance of making a sale may be increased In one of three
ways or a combination thereof:

--A company may Intensify 1its direct selling
effort by having more than one salesman cover one
account as described above. In such a case, If
the first salesman makes a sale, the second one
may move to any adjoining account for his calls.

--A company may support the salesman's effort by
advertising (see '"Advertising the Product").

-=-A company may attempt to improve its product by
spending more money for a research &nd development
effort (see "Research and Development"),

Every salesman costs $10,000 to hire and
then $1000 per quarter in slary. (Since the product he will
be selling 1Is a high-price, complicated unit, It takes one
year to train a salesman before he can be sent out into the

field.) There 1Is a possibility that a salesman will
resign, In which case the umpire informs the company of this
loss.

The umpire should have the following
instructions for marketing:

(1) Each period there Is a 5% chance of loss for
each salesman, Move ahead on the random number table as
many numbers as the company has salesmen; If one or more of
these numbers is .05 or less, the company loses one or more
salesmen.

(2) In an wurban market, allow two calls per

N LY

Page 133

quarter; In a rural market, only one call,.

(3) A salesman always has a 25% chance of making a
sale. For each call, examine the next number on the random
number table. |If the number Is 25 or less, then a sale has
been made; If It Is 26 or more, no sale |s made.

Advertising the Product

Product advertising In any quarter
Increases the salesmen's chances of amklng a sale. It
covers only the region or regions (I,11,111, and IV on the
game board) that the company deslignates, and Is effective In
the current quarter only. Advertising costs $3000 per
page, and a company may buy up to flve pages of advertising
In any reglion In any quarter.

Here are the umplire's Instructions:

For each sales call within the region(s) In which
the company has advertised, go to the next number In the
random number table and determine whether or not there Is a
sale according to the probablilities In the following table.
If the number 1Is the same or below the probablility
percentage, a sale Is made.

Pages Amount Probability of a sale
0 0 25%
1 $¢3,000 29
2 6,000 35
3 9,000 42
L 12,000 48
5 15,000 52

Research and Development

If a company can develop a superlor
product, It galins a competitive advantage. Usually,
research and development have to be falrly contlinuous to
achleve a product Improvement, but a '“crash program" may
yleld results In a relatively short time. The minimum
research effort per quarter costs $10,000, but a company may
Invest more than that In multiples of $10,000.

The umplire notifies the company
Immediately when Its research and development program has
produced results, and all units scheduled for production In
that quarter are conslidered to be equipped with the
Improvement. To find out the extent to which customers wl) ’

Page 134

prefer an Iimproved product, $5,000 of market research
(obtalned from the umpires) is needed.

Of course, these ground rules can be
altered to fit a company's situation more closely--just as
the ground rules for other aspects of the Business
Management Game can. A company manufacturing equlipment for
rallroads may well want to use different units of research
expenditure than would a company making dies for plastic
products. The length of time necessary to get results from
research also varies greatly from company to company, as
does the cost of research to measure customer reactlons to
new products. These and other rules can--and In many cases
should--be tailored to the realities of the industry.

The umpires will tell a company as soon
as a competing team introduces an Iimproved product 1In the
market, The players can then counter with a stepped-up
marketing effort or a crash research and development
program.

If a company Is Interested Iin finding
out the total industry research and development expenditures
for the past year, such information Is available from the
umpires for $1,000,

In addition, the umpires should:

(1) Maintalin a cumulative account of each
company's expenses., After each break In continuity (a
quarter without any R & D expenditures) and after each
product improvement, start the accumulation over again.

(2) Make appropriate revisions of the probabllity
of Improvement, The cumrulative dollar amount spent on
research and development determines the chaices a company
has for obtaining a product Innovation, Examine the random
number table; if the next number is the same as or below the
probability percentage, an Improvement is achleved.

Cumulative amount Probabllity of improvement

$10,000 0%
20,000 0
30,000 0
40,000 2
50,000 4
60,000 7
70,000 11
80,000 15
90,000 18

100,000 and over 20

Page 135

(3) Whenever a company achleves an Improved
product, Increase all Its sales probabllity percentages by
10. For example, If Company A has an Improved product, thls
Is the result:

Probabllity of sale
01d product
Improved product +

- N
owwm
N

W
S,]
N

If Company A spends $6000 on advertising In one
reglon and has an Improved product, this Is the result In
that reglon:

Probablllty of sale
01d product wlith

two pages of advertlising 35%
Improved product +10
459

(4) As soon as all three companles have Improved
products on the market, cancel the premium of 10 for al
three.

(5) If one company achleves two product
Improvements before one or both of Its competltors have
achieved any, Increase all Its sales probabllity percentages
by 20.

Increasing Productlon

The Inltlal plant whlich each company
must bulld costs $150,000, and has a maxImum throughput of
5 unlts each quarter. From then on a company may add other
productlon 1lnes for $30,000 each. But each such $30,000
Increment will Increase the maximum throughput by 5 .

A company must pay for Increased
capaclty as soon as It decldes to start construction,
Constructlion time Is nine months (three time perlods), and
only after completion may the flrst unlt be put Into "work
In progress" for the new production 1lne. The companles
are not allowed to sell or otherwise dispose of excess
capaclty.

The total lead time In produclng unlts
In a company's plant Is six months. Flirst, production Is
scheduled, and thils Involves no flnanclal outlay. Then In
the next quarter unlits are put Into "work In progress" and

Page 136

must be pald for. In the subsequent quarter these unlts
come off the productlion line , are added to Inventory, and
may be sold.

Total productlion cost contalns a flixed
cost and a variable element, The flxed cost l< Incurred
each quarter, regardless of how many units are produced. At
a maximum capaclty of flve unlits per quarter, the flxed cost
Is $6000, and the variable cost per unit 1Is $3000. As
capaclty 1Is Increased by additional production llines, flxed
costs rise and the variable cost per unit decreases. If a
company, prior to adding a llne, wants to know the exact
costs It will Incur at the next level of capaclty, It can
get that Informatlon from the umplres for $2000, but
otherwise the umplres will Inform the company what
production costs are when the new line goes Into productlon.

Unlits are added to Inventory at actual
cost. When a unit Is sold, however, It |Is deducted from
inventory at the average cost (total inventory Investment
divided by number of units In Inventory).

The umplires should calculate the
production costs at varlous capaclty levels as follows:

Max. capaclity Total unit cost Flixed cost Varlable cost

per quarter per unlt
5 $4,200 $6,000 $3,000
10 3,600 14,400 2,200
15 3,000 22,500 1,500
20 2,400 28,800 1,000
25 1,800 31,500 600

Financlial Management

The m: agement of a company's avallable
capltal 1Is of <critical Importance. Each company starts
with $400,000 capital and grow only through relnvested
earnlings. Profitablility will be In dlirect relation to the
skl11 with which the varlous parts of the business are kept
In harmony with each other to achlieve sound growth,

The price per unit of product Is fixed
at $10,000, When a sale Is made, accounts recelvable are
Increased by the total amount of the sale, and on the game
board an accounts recelivable symbol Is placed on the flfth
space In the "accounts receivabie" column., Every quarter
thls symbol |s moved up one space untll after four quarters
It reaches the top space and becomes cash., Competitlive
pressure In the Industry forces the extenslion of credlit;
hence the one year collectlion lag.

If a company Is short of cash, accounts
recelvable may be factored to get cash I[mmedlately. The

Page 137

cost of dolng thls Is 20% of the amount factored.

Page 138

Appendix B

The following 1Is an MSL model of parts

of the game (for one "reglon") described In Appendix A--as

seen from the polnt of view of a player wishing to
investizate the game and see the effects of varlous
strategies, It Is presented here as an lllustration of the

use of MSL.

(«ACTIVITY HIRING
(«PREREQUISTITES (*PRESENT (1000 CASH)))
(*SCHEDULE ON CALL)
(*PRICRITY 2)
(*OUTPUT (SOME TRAINEE))
(«TAKES 0)
)

(«ACTIVITY TRAINING
(*PREREQUISITES
(AND (+PRESENT (1000 CASH))
(«PRESENT (SOME TRAINEE))))
(*TAKES 3)
(*OUTPUT (SOME SALESMAN))

(«ACTIVITY URBAN-CALL
(«PREREQUISITES
(AND (+«PRESENT (ASSIGNED
(SOME SALESMAN)
(SOME URBAN-CUSTOMER))
(«PRESENT (500 CASH))))
(*TAKES .5)
)

(«ACTIVITY RURAL-CALL
(=PREREQUISITES
(AND (+«PRESENT (ASSIGNED
(SOME SALESMAN)

Page 139

(SOME RURAL-CUSTOMER)))
(*PRESENT (1000 CASH))))
(«TAKES 1)
)

(+=EVENT QUITTING
(=CONDITIONS QUITTING-PROBABILITY)
(*ACTIVITIES (SALES-CALL)
(*CANCEL)
(*REMOVE (THAT SALESMAN)))
(*ACTIVITIiES (TRAINING)
(*CANCEL)
(*REMOVE (THAT TRAINEE)))
)

(=«ACTIVITY ADVERTISING
(*PREREQUISITES (+PRESENT (3000 CASH)))
(«SCHEDULE ON CALL)
(#QUTPUT (1 PAGE-OF-ADVERTISING))
(«PRIORITY 3)
(«TAKES 1)

)

(*ACTIVITY R&D
(*PREREQUISITES (*PRESENT (10000 CASH)))
(+TAKES 0)
(«SCHEDVULE ON CALL)
(«QUTPUT (10000 R&D))

(*EVENT PRODUCT-IMPROVEMENT
(+«CONDITIONS P-1-PROBABILITY)
(*ACTIVITIES (R2D)
(«QUTPUT (1 PRODUCT-IMPROVEMENT)))
)

(*ACTIVITY PRODUCT-INITIATION
(*PREREQUISITES (*PRESENT
(1 PRODUCTION-LINE)))
(=TAKES 1)
(+OQUTPUT (5 UMITS-IN-PROGRESS))
)

(*ACTIVITY PRODUCTION-COMPLETION
(*PREREQUISITES (*PRESENT
(5 UNITS-INM-PROGRESS)))
(*TAKES 1)
(*OUTPUT (5 UNITS))

Page 140

)

(*ACTIVITY PRODUCT ION-LINE-CONSTRUCTION
(«PREREQUISITES (*PRESENT (30000 CASH)))
(*TAKES 3)
(«*OUTPUT (1 PRODUCTION-LINE))

)

(+ACTIVITY FACTOR
(«*PREREQUISITES (*PRESENT (5000 A-<R)))
(*TAKES 0)
(*OUTPUT (4900 CASH))
(*SCHEDULE ON CALL)
)

(*EVENT SALE
(«CONDITIONS SALES-PROBABILITY)
(*ACTIVITIES (SALES-CALL)
(+*OUTPUT (10000 A-R)))
)

(*FUNCTION SALES-PROBABILITY
(*ARGUMENTS (PAGE-OF-ADVERTIS ING))
(PRODUCT~IMPROVEMENT))
(*RETURN
(*SUM=-UP
.25
(AD-FUNCTION
PAGE-OF-ADVERTISING)
(TIMES .10
PRODUCT-IMPROVEMENT)
))
)

(*FUNCTION AD-FUNCTION
(*ARGUMENTS (PAGE-OF-ADVERTIS ING))
(*RETURN
(«*TABLE (PAGE-OF-ADVERTISING
*RESULT)
(0 0) (1 .04) (2 ,10) (3 .17)
(4 .23) (5 .27)))
)

(*FUNCTION P-! PROBABILITY
(*ARGUMENTS (R&D))
(*RETURN (+TABLE (R&D #*RESULT)
(CLESSP R&D 40000) 0) (40000 .02)
(50000 ,04) (60000 .07) (70000 .11)
(80000 .15) (90000 .18} (100000 .20)

Page 141

((GREATERP R&D 100000) .20%))

