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FOREWORD

This report describes a computer program developed at the Douglas
Aircraft Division of the McDonnell Douglas Corporation, l.ong Beach,
California. The development of the Douglas Arbitrary-Body Aero-~
dynamic Computer Program was started in 1964 and greatly expanded
in subaequent years under sponsorship of the Douglas lndependent
Research and Development Program (IRAD). From August 1966 to
May 19907 the program developinent was continued under Air Force
Contract No. F3361567-C-1008. The product of this work was the
Mark II version of the program as reieased for use by government
agencies in May 1967, Between 1967 and 1968 further Douglas IRAD
work and another Air Force Contract (F33615-67-C1602) produced the
Mark III Hypersonic Arbitrary-Body Program. The latest version of
the program as Dresented in this report is identified as the Mark IV
Supersonic-Hypersonic Arbitrary-~-Body Computer Program and was
prepared in the pcriod of 1972-73 under Air Force Contract F33615-
72-C-1675. This contract was adaministered by the Air Force Flight
Dynamics laboratory, Fiighi Mechanics vision, High Speed Aero
Performance Braach, The Air Force Project Engineers for this study
were Verle V. Bland Jr., and Captain Hugh Wilbanks, AFFDL/¥FXG.

At the Douglas Aircraft Company, this work was conducted under the
direction of Mr. Arvel 1i. Geatry as Principal Investigator. A number
of major parts of the ncw program were prepared by Mr. Douglas N.
Smyth. Mr. Wayre R. Oliver's work in applying the various versions
of this program to practical design problems contributed both in pro-
gram design and in program validation. A number of other people
contributed to the varioue phases of this work for which the authors
are grateful.

This report was submitted by the authors in November 1973.

This technical reporxt h~s been reviewed and is approved.
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Chief,

Flight Mechanics Division
Air Force Flight Dynamics Laboratosy
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ABSTRACT

This report describes a digital computer program system that is
capable of calculating the superso :ic and hypersonic aerodynamic
characteristics of complex arbitrary three-dimensional shapes.
This program is identified as the Mark IV Supersonic-Hypersonic
Arbiti.ry-Body Computer Program. This pregram is a com-
plete reovgucication and expansion of the old Mark III Hypersonic
Arbitrary-Body Program. The Mark IV program has a number
of new capabilities that extend its applicability down into the
supersonic speed range.

The outstanding features of this program are its flexibility in
covering a very wide variety of problems and the multitude of
program options available. The pregram is a combination of
techniques and capabilities necessary in performing a com-
plate aerodynamic analysis of supersonic and hypersonic shapes.
These include: vehicle geometry | "eparation; computer graphics |
to check out the geomeélry; analysis technigues for defining
vehicle component flow field effects; surface streamline computa-
ticns; the shielding of one part of a vehicle by another; calculation
of surface pressures using a great varietyof pressure calculation
methods including emitedded flow field effects; and computation
of skin friction forces and wall temperature.

e

Although the program primarily uses local-slope pregsure calcu-
lation rnethods that are most accurate at hypersonic speeds, its
capabilities have been extended down into the supersonic speed
range by the use of embedded flow field concepts. This permits
the first order effects of component interference to be accounted
for.

The program is written in FCRTRAN for use on CDC or IBM
type computers.

The program is documented in three volumes. Volume I is pri-
matrily a Users Manual, Volume [I gives the Prograin Formulation,
and Volume III contains the Program Listit; s.
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SECTION 1

INTRODUCTION

The basic objective of this work was to provide a thecoretical analysis tool
for use in studying the acrodyramic characteristics of vehicles operating
at spceds from about Mach 2 on up into the hypersonic range. This pro-
gram was to be capavle of predicting the acrodynamic chavacteristics of
arbitrary wing-body-fin configuraticns including the determination of em-
bedded flow region effects, the effects ot wing-body and wing-fin interfer-
ence, and give improved viscous flow results. Onc key requirement was
that the geometry data input be ccmpatible with the Mark ill Hypersonic
Arbitrary-Body Acrodynamic Computer Program.

The basic tenet of this project was that it employ "engineering methods"
that represent a realistic modeling of the actual flow about 2 shape. The
baeic guide line was that the program produced should be a flexible engi-
aeering tool, usable by the designer in day-to-day de.ign and development
work, rather than a specialized resea.ch program 1equiri) g extensgive
knowledge for successful operation and large amounts of computer time.

In addition to the above it was desirable that the new pregram retain as
many of the capabilities of the old Mark Il Hypersonic Arbiirary-Dody
Program as possible. This would make the program equally applicable
to interceptors and fighters and to space shuttle vehicles.

The result of this work in response to these objectives is the Mark IV
Supersonic-Hypersonic Arbitrary-Body Picgram. To a certain extent,
the Mark IV program is a re-structuring of the old Mark II program. It
does, of course, make extensive use of tode from the Mark III program.
Moreover, the geometry decks prepared for the Mark III program are
still directly usable on the new program, However the framework for
the Mark IV program differs from the old program in that each basic type
of analyeis is accomplished in a separate program component. Xach of
the major program functions are placed in separate components with the
interface between components provided by an executive routine and access
to appropriately stored and saved data.

The executive routine controls the order of calls to the Geometry, Aero,
Graphics, and Auxiliary Routines. The Gecmetry component has all of
the capabilitics of the Mark II Mod 3 Hypersonic Arbitrary-Body Pro-
gram. These include input element, ellipse generation, parametric
cubic, and the Aircraft Geometry Option.

The Aero part of the program contains six major independent components:
Flow Field Analysia, Shielding, Inviscid Pressures, Streamline Analysis,
Viscous Methods, aad Special Routines. Each of these components
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generates data that is saved on storage units ‘or subsequent use by other
comiponents. Because of this new {iamcwork jor the program all of the
input data to the program (except fer the paca.etry data) is different
from that uscd on the Mark I program.

The Flow Ficld Analysis component is onc of the kev new capabilitics of
the program. With it we can generate and storc the external flow field
of a vehizle component. This flow ficld can then be retrieved by the
force pait of the program and used to define the incident flow conditions
for another component. in this way we can account for the first order
interfevence eftects between different parts of a vchicle. A surface
spline method is used to interpolate data within the flow field and fer
sevcral other purposes within the program.

The Shielding comporent also provides a new capability ir the Mark IV
program. This option may be used to account for the shielding from the
external impact flow of one part of a vchicle by another part.

The new viscous parts of the program provide the capability of calcu-
lating skin fiction properties using an integral boundary layer program.
These computations are performed using external flow properties along
. the program calculated surface streamlines,

.

h

~ €3 TYA. . R T R
i 1

irst Douglas arbitravy body programn was siarted in July 1964,
almost ten years agn, The objiective of the program at that time was to
fill the aerodynamic analysis gap that existed between the linear theory
methods (for simple shapes and lov supersonic specds), and the detailed
gas dynamic solutions using the method of characteristics or finite
diffcrence techniques (simple shapcs and very long computer times).
Linear theory methods have been improved considerably in the past ten
ycars, but they still cannot handle complectely arbitrary shapes and they
do not account for the non-linear effects as Mach number increases.
Also, the detailcd gas dynamic solutions still require too much machine
time for them to be c¢lassificd as tools useful in the many day-to-day
studies in most vehicle design and evaluation efforts.

The Mark IV Supersonic-hypersonic Arbitrary-Body Program is pro-
vided as an enginecring rather than a rescarch toel. As such, the
accuracy of its results should not be expected to be as good as some of
the morve exact methods (when applied to shapes and conditions where
they are specifically designed for). However, when solving problems
outside the range of the linear or more exact methods, or vhen studying
complex arbitrary shapes, the Mark IV program should produce very
useful results.

o -

Throughout this report it will be assumed that the reader is f:miliar
! with the contents of Volume I, the Uscr's Manual, Discussicr's of
i carlier versions of this program are given in References 1 and 2,

PR

This report contains descriptions of the analysis techniques used within '
the program. Throughout thesce discussions an atternpt has been made




- to maintain mathematical notaiions consistent with the appropriate

reference involved. This will assist the reader in comparing the

apprcaches with the original reference material at some slight loss in
continuity within the present report. This policy has alsc been used
in the gelection of many of the program variable names.

Volume 1 of this report contains the input instructions for this program,
Volume 1II contains the source language listings. The program will
run on CDC types of computers using the CDC FTN compiler. The
program also contains all the code necessary for operation on IBM
computers, except that in the listed decks the "IBM only'" cards are
made inactive with a C in column 1 and identified with an [ in card
coluirin 80, A small converter program is furnished to convert the
program form opne machine to the other.
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SECTION 11

PROGRAM FRAMEWORK

The major features desired in this program were:

1. Provide the ability to analyze completely arbitrary three-dimensional
shapes.

2. Provide a component build-ug capability where each vehicle component
may be of arbitrary shape.

3. Include a number of force analysis methods so that the program would
have the widest possible application to various vehicle shapes and
flight conditions,

4., Provide the capability tc use the best force calculation method for each
vehicle component but leave the actuai method selection up to the user.

5. Provide engireering methods to account for the effect of the flow field

generated by one component on the characteristics of another component.

6, Provide for convenient storage of data between program components,

7. Develop a total :inalysis system framewoerk that is adaptable tc con-
tinued improvement and expansion.

8. Keep the program as small and as fast as possible consistent with the
above goale and requirements.

9. Prepare the program decks so that they will run either on CDC or IBM
computers with a minimum of effort required to convert from one to the
other,

10. Keep the program input data as simple as possible consistent with the
requirements of program flexibility,

1t is felt that the new Mirk IV program meets each of these requirements
(although some new users may take exception to Item 10 above).

The Mark IV program is a meodularized computer program designed to
handle a varicty of high speed vehicle analysis problems. Mathematically,
the methods used in each program component are not what one would call
complex or sophisticated. However, when all of these capabiiities are
tied together in one place, the result is a very large program with, in
many cases, some rather compiex code. The functional organization of
the program :s shown in Figure 1.

The detailed description of the various theoretical meihods used in the
program are presented on the following pages.
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SECTION III

GEOMETRY

The new Mark IV Arbitrary-Bedy Program maintains all of the
geometry capabilities of the old Mark Il program. However, in
the new program these capabilities are combined within a gingle
program component that can, if required, operate as a stand-alone
program, The basic capabilities of the new program include (})
input elements, (2) ellipse generation, (3) parametric cubic, aad
(4) the complete Aircraft Geometry Option of the Mark III Mod 3
program. These methods provide the flexibility required to
aralyze a variety of shapes ranging from very simple surfacee to
the most complex forms. 1f desired, all of these methods could
be used in describing a single vehicle shape. This general
process is illustrated in the diagram below,

Program :
Generated rarametric Aircraft | JUser Supgplied
IHand Input] { Elliptical Cubic Geometry Shape
Elements Arcs _Patches Option Generation

d

%
e

Arbitrary Shape
(Surface Elements)

The use of 2 basically simple geomeiry representation concept
has been a key feature in the development and success of the
Mark III Hypersonic Arbitrary-Body Program. Many of the
capabilities and options that were added to the procgram during
its years of development would not have been possible (or very
difficult to incorporate at best) if a more complicated basic
geometry approach had been used originally.

The piinciples involved in the application of each of these
geometry methods are discussed in detail ip the User's Manual
and nieed not be covered here. The principal mathematical
techaiques, however, are important from the programming
stardpoint and will be discussed on the following pages.




The Surface Element Geometry Method

The basic geometry method used by this program is the surface

element or quadrilateral method. This method was developed by

J. L. Hesg and A, M, O. Smith fcr the Douglas Thrve-Dimensionai - -—— _
Potential Flow Program (Reference 3). For completeness, certain

parts of this report will be included in the following discussicons.

: The coordinate system used for this analysis is a right-handed
i Cartesian system as shown in the figure below.

OIAGONAL VECTORS T, and T,
Tu=X-X) Y=Yy ¥, Tu=2-2)
TaazXe=Xo Tp=Ve-Yr Trpz23-22
UNIT NORMAL N=T,xT,

N‘ s Tz,Tu - T|,T;, n, = N./N
z “) = T!lTh - Tthx n, = N,/N
r N, = T?lTlv - Tlxr?y n, = NN ’ ;

N=W7+ K7+ N7
AVERAGE PCINT
i:K(X,¢X21 X30 XQ)
IR (LA PR P B
i=5(2102262302|)
CORNER POINT PROJECTION DISTANCE

(IEEREES SRR FOIER AR FHE |
/ k<1234
X

COSNER POINT COORDINATES i

Y XL = X, [
Yi= Yu + nydy

i = 2 + 0.0,

In the conventional use of this program the vehicle is usually positioned
with its nose at the coordinate system origin and with the length of the
body stretching in the negative X direction. The slight inconvenience of
this negative sign on the body stations has been accepted so that the
geometric data will be compatible with the Douglas potential flow pro-
gram (Neumann FProgram).

The body surface is represented by a set of points in space, These
points are selected on tne body surface and are used by the method t>
obtain an approximation to this surface that is used in subsequent cal-
culations. If the four related points of each set are connected by o
straight lin:s we may obtain a picture of how the input surface points x
are organized to describe a given shape. This has been done in Fig- =
ure 2. The input scheme has been designed so that each point need
only be input once even though it may be a member of as many as
foar adjacent sets of points. This is accomplished by the use of an
additional parameter fcr each point besides the X, Y, and Z values.
This parameter {(known as the status flag) indicates whether a point is
a continuation of a column of points (STATUS = 0}, the beginning of a




s - .y

oy ey -

————— . .

Enaixnaekam 4 N

Figure 2. Output from Perspective Drawing Program

new column of points {=1), the first point ot a2 new section of elements
(=2), or the last point input for the shape (=3).

As may be seen {rom the drawings made by the Picture Drawing Pro-
gram, the different areas of a vehicle may require a different organiza-
tion and spacing of surface points for accurate representation. Each
such area or organization of elements is called a section and each sec-
tion is independent of all other sections. The division of 2 vehicle into
a given set of sections may also be influenced by another consideration
since the force calculation program may be made to calculate the force
contributions of each section separately, using different calculation
methods,

The input surface points are not sufficient in themselves for the force
calculations. Each set of four related points which form an individual
element must be converted into quantities useful to the program. This

is accomplished by approximating each eiement area of the vehicle by

a plane quadrilateral surface. Since we are using four surface points

to fo»m an element, no single surface will contain the points themselves.
Also, adjacent plane quadrilateral edges will not necessarily be co-
incident. With a sufficiently small size of the surface elements this will
he of no consequence in the end results.

The mathematical technique used in converting an input set of four
points into a plane quadrilateral element is described below. The
figure below gives a representation of the input element points with
each point identified consecutively around the element by the sub-
scripte 1, 2, 3, and 4, respectively.
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The superscript i icentifies the coordinates as input coordinates.
next form the two diagonal vectors T] and T;. The cornponents of
these vectors are

i i i T S
Tix = X3-% Ty = V3V Tz = 23- 3
_i_i =i_i .
Tox = %% Ty = Y4-VY2 Tea=24° 7%

We may now obtain a new vector N (and its components) by taking
the cross product of the diagonal vectors.

N = T2 bd Tl
Nx TZy le. T Tly TZz
Ny = Tlx TZz - TZx Tiz
Nz = TZx ly - Tlx TZy

We
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The unit normal vector, T, to the plane cf the element is taken as N
divided by its own length N (direction cosines of outward unit normal).

N

n = =X

x N

N!
vy TN .
N
- -2
n, =N
N

where
N -

\/N?'+N2+N2
x y A 4

The plane of the element is now completely determined if a point in
this plane is specified. This pcint is taken as the point whose co-

ordinates, X, y, Z are the averages of the coordinates of the four
input points.

X = -1- A + i + + x
S s U TR 4

= - l_ i i .i i "“

b - 4 yl + yZ + y 3 + Y4

- _ 1 i i

z = a zl + =z, + z3 + 24

Now the input peoints will be proje :ted into the plane of the element
along the normal vector. The resulting points are the corner points
of the quadrilateral element. The signed distance of the k-th input
points (k= 1, 2, 3, 4) from the planeis

) i B . _ .
dk nx("x - xk) + ny(y - y;() + nz(z - z:() k=1, 2, 3, 4

It turns out that, due to the way in which the plane was generated from
the input points, all the dk's have the same magnitude, those for poinis

} and 3 having one sign and those for poin.s 2 and 4 having the opposite
sign. Symbolically,

q = (-1 4, k=1, 2, 3, 4
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The magnitude of the common projection distance is called g, i.e.,
a = |4

The coordinates of the corner points ir the reference coordinate system
are given by

- b
X = X + n dk
] 1 —
yk = yk ¥ ny dk k = 1, 2, 3, 4
o= 2+ a4
Zk - Zk n Kk

Now the element coordinate system must be conntructed. This
requires the components of three mutually perpendicular unit
vectors, one of which points along each of the coordinate axes of

the system, and also the ccordinates of the origin of the coordinate
systemy. All these quantities must be given in terms of ithe reierence
coordinate system. The unit normal vector is taken as one of the
unit vectors, so two perpendicular unit vectors in the plane of the
element are needed. Denote these unit vectors ty and t,. The

vector ?1 is taken as i"l divided by its own length T,, i.e.,

T
t - _._L

Ix Tl

!

b-:'
<

n
!

=

Y-
N
ml

et

where
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The vector t2 is defined by ?2 = nXx f;, so that its componentg are

tax T rlyt'lz - nztly

. tZy = Ahx - ™ .
t = t t ;
2z 1y T yhix :

The vector?] is the unit vector parallel to the x or £ axis of the i
element coordinate system, while I; is parallel to the y or n axis,
and n is parallel to the z or §{ axis of this coordinate system.

To transform the coordinates of points and the components of vectors
between the reference coordinate system and the elemeat coordinate
system, the transformation matrix is required. The elements of this
matrix are the components of the three basic unit vectors, _t.l’ —t°2, and
g n. Tc make the notation uniform define

v
]
-

By T hix %1z T Ny

[\
1t
o

321 Tt 32 T oYy 23 22

‘ a3y T on, a3 = Ny 333 - 0,

The transformation matrix is thus the array

a

.-
o

—

p—ry

12

O I

221 322 323
431 232 933
To transform the coordinates of points from one system to the other,

the coordinates of the origin of the element coordinate system in the
reference ccordinate system are required. Let these be denoted x_,

Yor %o Then if a point has coordinates x!, y', 2' in the reference

coordinate system and coordinates x, y, z in the element coordinate




system, the transformation from the reference t¢ the element system

is
x = apbdtex ) toanLly-y) +oag(et-2)
y = ayx'-x ) +oajoly' -y )+ oaE-z)
z = a31(x' - xo) + a32(y' - yo) + a33(z' - zo)

whiie the transformation from the element to the reference system is

V. | ] |
x x, 1 a5, + ayY + 24,2 i
i

' = . :
y yo + ale + azzy + a3zz |
2! = z + a 5

o 13 ¥ a3y toagsz

The corner points are now transformed into the element coordinate
system based cn the average point as origin. These points have co-

ordinates xk, yk, zi( in the reference coordinate system. Their co-

ordinates in the element coordinate system with this origin are de-

v %

noted by E.V '\k, 0. Because they lie in the plane of the element, |
they have a zero z or [ coordinate in the element coordinate system.
Also, because the vector tl’ which defines the x or § axis of the

element coordinate system, is a multiple of the '"diagonal' vector
* *
from pcint 1 to point 3, the coordinate 1, and the coordinate Ny

are equal. This is illustrated in the figure below. Using the
above transformation these coordinates are explicitly




a— — ey G «r— — -xe

* — - -

€ = anbq - Fapnlyy -9 tagslz - 2)
k =3, 2, 3, 4

* _ - -

nk = aZI(x;( - %)+ azz(xi( -y) + 323(21'( - z)

These corner points are taken as the corners of a2 plane quadrilateral.

The origin of the element coordinate systern is now transferred to the i &
centroid of the area of the quadrilateral. With the average point as .
origin the coordinates of the centroid in the element coordinate sys-

tem are:

e
"
W=
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Thesc are subtracted from the coordinates of the corner points in the
element <oordinate sys‘em based on the average point as origin to
obtain the coordinates of the corner points in the elernent coordinate
system based on the centroid as origin. Accordingly, these latter
coordinates are

*
b = RN
k=1, 2, 3, 4
k-4
Tk = %~ "

Since the centroid is to be used as the origin of the element coordinate
system, its coordinates in the reference coordinate system are required
for use with the transformation matrix. These coordinates are

x, = Xta,{ ta, N,
Yo = Ytap, g tay,n
Zo ° 2t a3 §0+a23 LS

Since in all subsequent transformations between the refecrence coordinaze
system and the element coordinate system the centroid is used as origin
of the latter, its coordinates are denoted X0 Yo T The coordinates

of the aveirage point are no longer needed. The chaunge in origin of the
element coordinate system, of course, has no effect on the coordinates
of the ccrner points in the reference coordinate system,

The lengths of the two diagonals of the quadrilateral, t; and t;, are com-
ruted from

6 = (& - &2
128 = (k4 - £)% + (g - 2

The larger of these is selected and designated the maximum diagonal t.

The body surface arca and enclosed volume are decermined by summing
up the contributions of each element. In terms of the coorainates of the
corner points, the arca of the quadrilateral is

A =3 (f3-E)(Mz -0y

The incremental volume is given by the volume of the parallepepiped
formed by the clement and its projection onto the x -z plane (the x-y
or y -z planes would have served equally well).

VvV = yoAn'y
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Summary
The foregoing procedure may be briefly summarized as follows:

Each set of four points is converted into a plane-quadrilateral element
by the procedure shown in the sketch on page 7. The normal to the
quadrilateral is taken as the cross product of two diagonal vectors
formed between opposite element points, The order of the input points
and the manner of defining the diagonal vectors is used to ensure that
the cross product gives an outward normal to the body surface, The
next step is to define the plane of the element by dutermining the
averages of the coordinates of the original four corner points. Thesec
points are then projected parallel to the rormal vector into the plane of
the element to give the corners of the plane quadrilateral, The corner
points of the quadrilateral are equidistant from the four points uscd to
form the element, Additional purameters required for subscyuent force
calculations, quadriiateral area and centroid, inay now be calculated.

The snacing and orientation of the elements is varied in such a way that
they describe the vehicle shape accurately. Since four peints are used

to define the plane quadrilateral, the edges of adjacent elements are not
coincident. This is not important, since the pressure is calculated only
at the quadrilateral centroid. This pressure is then assumed to he con-
stant over thce surface of the element,

The plane-quadrilateral surface description methed is not as elaborate
as some of the other methods. It is important, however, to note that
the simplicity of the method permits the use of conveniional cross-
sectional drawings in data preparation (no surface slopes required) and
the use of semiautomatic data-reading techniques. Also, as has been
illustrated in Volume I, computer-generated pictures are used in check-
ing the geometric data for errors,

Pararmetric Cubic

A second technique for describing three-dimensional curved surfaces is
also provided within the program, This is a mathematical surface-{it
technique and is identified as the Parametric Cubic Method because of
the general type of equations usecd.

Several different mathematical surface-{it techniques are described in
the literature. 7The one used in this program was adopted from the
formulation given ty Coons of MIT (Reference 4 ). In this mcthod a
vehicle shape is also divided into a number of seciions or patches.
The size and location of each pat ‘h depends upon the shape of the
surface.

The basic feature of this method is that only the surface conditions at the
patch corner points are required to completely describe the surface en-
closed by the boundary curves of the patch, The basic prcbiem, how-
ever, is the determination of all the information required at these corner
pvints, i.e., the surface equation requires corner point surface deriva-
tives with respect to the parametric variables rather than the X, Y, Z
coordinates, This has been solved by the use of additional points along
the boundary curves as will be described later,
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In the following discussions we will use the geometrical representation
of a surface patch as illustrated in the figure below,

BOUNDARY CURVE (FOR u = 0)
an XA0,w) = Aw® + Bu2 4+ Cw + D
A = 20X40.0) - X40,1)] .:_’Q(o.o) R "’"(o n

=3t - 2000 -29% g - 3K
8 = 3!X401) - X;0,00) 23' [(1)] T {©.0)

= "x' 0.0) D = X40,0)
%%gﬁ i=1,23FORKY,2
BLENDING FUNCTIONS
Fiu) = Tu? - 20? Fow) = 3m? - 2w}
Foli) = 1 - Fy(w) Fiw) =1 - Fy(w)
SURFACE FORM

Kfu,w) = X (0w F o) + XALw)Falu) ¢ X,(u,0)Ffw)
¢ Xdu,1)F s(w) = X£0,0)F fu) F (=)
= X(0,1)F J(UIF (w) « X{1,0)F y(u)F fw)
« ALDF 1 (0)Fy(w)

w‘.

Since the basic surface-fit 2quations and their d rivatives are presented i
o R W

: - A o POt T WU, D .
T ACLerCiile T, tUCYy llctu DO vty 1CSVIEWEQ

<
"
i
o

Yo +L - d
‘1LY L-l 5“‘b t--yux».

The X, Y, Z coordinates of a point an the surface are related t the two _
parametric variables u and w. Tt us, a surface in space is . .apped i
into the u, w unit square. The basic pfoblem is to find the position

(X, Y, Z) of a point (u, w) in the interior of the section surface. The

general procedure is to first find relationships for the four bourdary

curves. These are defined as third-order polynomials in terms of the

parametric variables, The points on the boundary curves correspond-

ingtc u and w (0, w and u, 0, etc.) are then calculated. A general

surface equation is used to calculate the properties at the point u, w.

This equation uses biending or weighting functions to properly introduce

the influence of earh of the related boundary-curve points and the four

corner points. The blending functions also ensure the continuity of the

slopes across the boundaries between adjacent sections,

There are several methods for calculating the direction cosines of the
tangent vertors required in the calculation ¢f the corner-point deriva-
tives. Most require the specificalion of additional surface~boundary
peoints, some of which may lie on the extensions of the boundary curves,
T! e derivatives must be calculated, since it would net be practical tc
measure them directly from drawings, The method in this program in-
volves the use of circular arcs through three boundary-curve points, the
middle one being a corner point.

The first step in the computational procedure is to determine the egqua-~
tions for the cubic boundary curves. The equatiorn. used is givea by the
following relationship for u = 0,

i
§
1
7
3
|
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Xi(O,W) Aw™ + sz + Cw+ D

where

ax. ax,
A= 2 [xi (0,0) - X, (0,1)] +52 0,00+ 52 (0,1)

aX, oX,
B =3 [x 01-X% 00 -25200- 5500

BXi
C = W(O'O)

D = Xi (9, 0)
Similar equations are needed for the other three boundary curves with v = 1,
w = 0, and w = 1.

The missing items required for the solution of the above equations are the
derivalives

~m

2 axi
-5;(0.0). W(O'l)’ etc

Jn the Arbitrary-Body Program these are determined by passing a cir-
cular arc through three poirts, the middle point being the corner point

itself. For completeness, the development of this method is presented
and the sketch below is useful in fcllowing the derivation,




This sketch ig 2 view of the plane of the circle withUl as the base cocrdinate.
The vectors Tl’ TZ’ and T3 are tangents to the curve %t the points i, ¢, and 3.

The tangents make the angles 6,, 62. and 63 with respeact to 513. The chord
lengths make the angles € and €, with respect to the vector t’13'

One of the properiies of circular arcs is that the chord angle is the average
of the two tangent angles.

e L até e %t% e o hte,

1 2 2 2 3 2
For the coordinate base selected (Ul3), € 0, therefore,

61 = -63 and 62 = €l + fz

The tangent vector at point 2 is then given by
T = cos 6, U,. + sin 0,0

13 N

L -
3 = '=I.;l3i » Lj3is chord vector between points 1 and 3.

To determine -GN’ the binormal ﬁBN must first be found

Upn = L3 ®Ly,
U

EBN = BN (unit vector}
lUBNl

Uv = UpnXUYps

The radius vectore (X, Y, Z) for the three points are

r, = X+ Y5+ ZIF

- T < -3
T, sz + YZJ + ZZK

Ty X31+ Y+ Z3k

2/

I TP ———



The chord vectors between the points arz i
Ln:rz-rl=(Xz-Al)i+(Y2-Yl)j+(Zz+Zl)k
Lz3=r3-r2=(X3-Xz)i+(Y3-Y2)j+(23-ZZ)k
L13=r3-rl-(X3-Xl)i+(Y3-Yl)j+(Z3-Zl)k

and the chord angles

| le . Lla L, L

A

| (o]} €l = F—'lzl |i‘13! COo8 CZ = 'L23| |L13

For convenience we will use the shortened notation: i

L]Z = J.alzl, etc.

Xy X\ L (Y m Y\ A5 2\
LIES v R (s sy R R vy
’ 13 13/ 13

= 8, T+m J+n k
Similarly
U, = !21+m2_]+n2k
i j k
U.
., = N - § x0T, = |[h ™M™
BN BN| 137 "12

{m n, - m nl)i-(!lnz- Cznl)j+(1l m, - 12 ml)k

1 2

ik
' Uy = Ugn XUy = |0 -0 )
|
' "'l m, n
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= [~ 4 o, - fymy) - m (fy m, -2, "‘1)' i

- ny (myn, - myn) -4 4y m, - £, ml)i j

+ im, (:‘nl v, - m, nl) T ([l n, - [z nl) lk
Uy - lNi+mNj+nNk
And finally we obtain the tangent vector

TZ = (‘tl co8 62+’N sin 62)3 + (m; cos 82 + my sin 82)3

+ (nl CCS8 82 + [lN sin 62) k

where
B P S P
1 L, i L, 1 L,
1/2
2 2 2
L, = [(xz-x!) s, - Y P+ (2, - 2,) l
tN = -lnl ([i nz- 12 nl)+ ml (ll mZ- [2 ml)]
my T 'l“l (my n, -m, n))+ L) (£ m, - o, ml)]

ny = Iml (m.l n, - m, nl) + ll (ll nZ - 12 nl)l

and
, =X2-Xl _ :YZ-YI . =ZZ-ZI
2 le 2 le 2 le
1/2
_ - 2 . 2 - Zi
le = (XZ Xl) + (Y2 Yl) + (ZZ Zl)

The final end point derivativee are then found frem

ox, Xy oz

——

Z ———— = T. 85; i1i=1,2,3 for X,Y, Z.
dw as aw !




where

g‘% = the boundary length since Aw ~ 1 on the unit square patch
B el 2 2 2|1/2
as = [‘x1+1'x1) Pt Y2 -2y
I=2
1 = 2 at the starting cornexr point
I = NB -1 at the final point on the boundary curve

NB = number of points input cn the boundary with one point
extending off each end of the boundary curve,

Once the boundary curves are found the values required for the general
surface equation can be calculated. This equation is given below.

Xi(u' w) Xi(O, w)Fo(u) + Xi(l, W)Fi(u) + Xi(u’ O)Fo(w)
+ Xi(u, l)Fl(w) - Xi(O, O)Fo(u)Fc(w)
- xi<o, l)Fo(u)Fl(w) - Xi(l' O)F'l(u)Fo(w)
- X1, DF, (@)F | (w)

where the terms Fo and Fl are blending functions given by

3u2 - Zu3 Fl(u) = 3wZ - Zw3

Fi(v)

Fo(u) 1- Fl(u) Fo(w) =1- Fl(w)

The program does not use the parameiric cubic geometry data directly in
the pressure calculations. Instead, the parametric cubic data are used in

creating surface elements by a systematic variation of the parametric
variables w, and u.

One advantage of the mathematical surface-fit technique over the plane-
distributed-elemn.:ni method is the smaller number of surface points re-
quired to describe a shape. However, additional points are requircd on
the boundaries to determine the required corner derivatives. This method
is not as adaptable to semiautomatic data-reading techniques, since the
organization of the required input datd is more complex, The accuracy

of this method depends upon the distribution and orientation of the surface

sections, just as the plane-distributed-element method depends upon the
distribution of the elements.




Aircraft Geometry Option

The primary purpose of the Aircraft Geometry Option ig to provide a
convenient means for generating detailed element geometry :lata for con-
ventional airplane types of configurations that are made up of a fuselage,
wings, horizontal tails, canards, fins, and nacelles or pods. The input
to the Aircraft Geometry Option is in the form of fuselage coordinate data,
airfoil ordinates and general planforin shape, and element increment
control data. The output consists of the standard surface element data
(TYPE 3 data cards) in the format required by the components of the pro-
gram. The configurations that may be generated with this option are
verv general in nature 3ng¢ﬂclude such capabilities as an arbitrarily
shaped fuselage with camiber, cambered wings defined by a number of
airfoils, nacelles and external stores with circular cross sections, and
vertical fins. The capabilities provided by the Aircraft Geometry Option
may also be used in conjunction with all the other geomeatry generation
and input features of the program tc form a single vehicle shape. For
example, it i3 possible to generate the wing and tail of 2 configuration
using the Aircraft Geometry Option, to input a portion of the fuselage
using input elements, and to cornplete the configuration using ellipse and
parametric cubic gererated data,

As a spccial note it should be peointed cut that the Aircraft Geometry Option
was originally prepared as a tool in checking out the geometry data for the
NASA Harris Wave Drag Program. This capability has een maintained

as a sub-set within the Aircraft Geornetry Option in its present form.
However, an additicnal aircraft surface type has been added that permits
the use of arbitrarily oriented airfoils in describing wing and tail types

of surfaces., Also. the Aircraft Geometry Option permits the use of
artitrarily orientated pods or n.celles.

The input requirements and capabilities of the Aircraf. Geemetry Option
are discussed in sufficient detail in Volume I. However, there are two
parts of the Aircraft Geometry gencration process, that of pods or
nacelles and the general airfoil surfaces, that do neced a bit more on
the mathematical development. This information is given in the
following discussion.

Pods or Nacelles

A pod or nacelle is a body of revolution with its axis arbitrarily located
with reference to the vehicle axis system. This increased capability
hae beer added without affecting the NASA Wave Drag Program input
format (the NASA program is limited to having the pod axis parallel to
the vehicle X-axis). The pod is defined with respect to its own coordi-
nate system (X'-Y'-Z'), the orientation of which iz considered to have
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bezen achieved through a yaw-piich sejuence of rotations. The para-
meters uged in deiiring the pod and the formation of surface elements
are illustrated in Figure 3.

Figure 3, Pod or Nacelle Geometry.

The yaw angle ¥ and the pitch angle @ are derived by the program from
ut coordinates of the pod origin and end point;

8in 8 = (ZE - ZO)/IJ

sin w = (Yo - YF;)/L * co8 0)

where L is the length of the pod,

2 2 2)1/2 '
L = [(Xg -Xg)© + (Yo - Yg)° + (Zg - Z)°] !




The surface coordinates in the vehicle axis system are given by

X - jXg -X!

- -1 '
Y—YO = (E )(p:o Y
Z - ZO zZ'

where (E'l)(p___o is the rotation matrix l‘.‘fl derived in Section XII !
with ¢ set equal to zero, and {
|

+1 for arbitrary-body program input coordinates !
-1 for NASA Wave Drag Program ianput coordinates

—
n

Carrying out the multiplication the surface coordinates become

X =jX5-X"cos @ cos ¢ -Y'sind + Z' sin @ cos ¢ |
Y=Yy-X cos @ sin ¥ + Y' cos ¥ + Z' sin # 8in ¢

=Z~5+ X' sin & + Z'¢cos & |

In the pod coordinate system, a *1'
radius distribution, R, is specified
as a function of X'. Therefore,

Y' = Rcos w

2' = R sinw

The meridian angle w is taken to have
zero value along the Y'-axis to auto-
matically account for the sign of Z°',

The final expressions for the surface points in the vehicle axis aystem
are thus given by

X =jXy - X'cos 0 cos ¥ + R(sin w sin @ cos ¥ - cos w sin ¢)
Y=Y, - X'cos 6 sin ¥ + R(sin w sin 4 sin ¥ + cos w cos @)

Z =2

w+)('sin0 + R sin @ cos ¢




The input information required to define a pod or nacelle is as follows.
1. Number of pods (uvp to 9).

2. Number of stations to be used in the pod radii distribution
input (2 to 30), This is the same for all pods.

3. The X-Y-2Z coordinates of the crigin and end of each pod
in the vehicle coordinate aystem.

4. A table of X-ordinates (relative to pod origin} for the pod
radii distribution,

5. Paoad radii distribution for each pod.

The order of the generated surface points is from the bottom around to
the top. The first point of each pod has a Status of 2, each new station
starts with a Status of 1, and all other points have Status = 0. If the last
point for a station fills only the left half of the Type 3 Element Data Card,
a dummy point 18 generated to fill the right half of the card. Whea the
pod axis lies in the X-Z origin plane, only half the pod is generated
(90°% < w = +90°). Otherwise elements for the complete pod are
determined.

In addition to specifying the axis orientation, the number of elements in
180° may also be specified. If this expanded capability is not used and
the input fields are left blank, the program assumes the pod axis is
parallel to the vehicle axis, and elements are geneczated every 15% in w.

General Airfoil Surfaces

This geometry surface type may bc used to generate surfaces that are
defined by airfoil sections having arbitrary orientations in space. The
airfoils are not confined to fixed planes. This more general approach
permits the use of non-streamwise airfoil sections and is useful in
describing intersecting components such as the wing and tail fuselage
junctures. Input cards for this surface type cannot be used in input
to the NASA Wave Drag Program.

The general airfoil surface is defined by connecting two or more airfoil
sections with straight lines. The orientation of each airfoil is given by
coordinates of the leading and trailing edges and an airfoil rotaticn angle.
The techniques used in defining these airfoils and in performing the
necessary transforrnation to cobtain the required Z-Y-Z coordinates in
the vehicle coordinate system are discussed below.
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Each airfoil section is defined relative to a coordinate system fixed
within the airfoil. The airfoil thickneus displacements may be measured
either from thec mean-camber line aiong a line perpendicular to the air-
foil axis or ou a line that is normal to the mean camber line. This latter
method is used in some of the early NASA airfoil documents. All airfoil
section paramecters are expressed as a percent of the airfoii chord. The
parameters used in defining an airfoil are illustrated in Figure 4. In
this illustration the airfoil lies in the 7-£ plane,

»

+2Z

)

Figure 4. General Airfoil Coordinate Syst._m.

The coordinates of a point on the surface o! the airfoil are given by
the following relationships.

=3
I

I+ DZ *7T % cos

£ - DZ ¥ T * gin §

™
©
i

Where

[ = , the mean camber line distribution

-.

]

-
5

, the thickness distribution
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tan § = %% , the slope of the mean camber line
DZ = +1.0 for the upper surface (thickness

measured in the +7 direction)

-1.0 for the lower surface (thickness
measured in the -7 direction)

in the above general equaticns the point W_, £ on the airfoil is derived

by using a thickness distribution measured along a line normal to the

mean camber line. If the surface point is to be on a line normal to the
airfoil chord line, the parameter § is set equal to zero. Both options

are available in the program. The upper surface of the airfeil is generated
first and followed by the lower surface.

The airfoil coordinates (£,7) are next transformed to the vehicle axis
systemm. The {-7 plane orientation is considered to have been achieved
through a yaw-pitch-roll sequence cf rotations. The yaw angle Y and
pitch angle @ (and also the chord length C) are derived by the program
from the input coordinates cf the airfoil leading and trailing edges.

sin § = (ZTE - ZLE)/C

sin ¢ (Yir - YTR)/C * cos 8)

The roll angle ¢ is input explicitly and together with y and @ are
positive in the right-handed sense of the reference system.

Zero values for the rotation angles indicate the airfoil is orientated
parallel to the X-Z plane. Zero yaw and pitch angles and a +90°
degree roll angle gives an airfoil in the X-Y plane (such as a vertical
tail root airfoil).

The surface coordinates in the vehicle-axis system are given by

X - XpE ¢
-1
Y-Yp = E 0o | crioo

The rotation matrix E"l is derived in Section XII. Therefore, the
desired airfoil surface coordinates are
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X=jXpg- [£cos 8 cos ¥ + 7 (sin 6 cos ¥ cos ¢ +sin ¢ sin¢)]*C/100
Y=Y - [£cos @ sin ¥ + 7 (sin @ 8in Y cos ¢ - coB ¢ sin )] *C/100

Z=2Zy g +[¢&sin @ + M cos 0‘ cos ¢ ] *C/100

+! for Arbitrary-Body Program input coordinates (-X)
-1 for NASA Wave Drag Program input coordinates (+X)

The input information required by the Aircraft Geometry Option to define
a general airfoil surface is as follows.

1. MNumber of airfoils.

2. Number of airfoil percent-chord points used to
define the airfoils.

3, Flags to control the thickness distribution type,
generation of tip and root closure elements, and
repetitive use of mean camber line and thickness
distributions.

4, A tabie of percent chord locations that are to be used
for the airfoil thickness and camber distributions.

5. The X-Y-Z coordinates of the leading and trailing
edge of each airfoil section,

6. The roll angle « of each airtoil section.

7. The mean camber linc ordinates in percent-chord
at each percent chord locaticn for each airfoil,

8. Thickness distribution in percent chord at cach
percent-chord position for each airfoil.

This surface type differs from those previously described in that repeti-
tive use may be made of the arbitrary airfoil option on a single pass
into the Aircraft Geomeiry Option. This stacking option allows wings,
fins, etc., to be generated on a single pase into the Aircraft Geometry
Option. A contraol flag also permits repetitive use of airfoil data for
subsequent airfoils to save input time when all the surface airfoils are
identical., Tip 2nd root clcsure elements may also be generated to give
a completely enclosed surface.
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Control Surface Geometry ¥

The geometry data for a control surface flap are input to the program in the
undeflected position, The methods used in transforming these data to the re-
quired deflected position are octlined in the following discussion,

The coordinate system used in these derivations is shown in Figure 5.

Figure 5. Control Surface Angle Definitions.

The general procedure involves a coordinate shift and an appropriate rota-
tion to a hinge-line centered coordinate system such that the new Y-axis
(Y,) lies along the hinge lire. For ¢ and ¢ equal 10 zero and with the flap
surface normal in the negative z-direction, the hinge-line centered coordi-
nate system has the same directions as the body-~axis system. The corner
oints, centroid, and normal vector (direction cosines) for cach element
of the flap are transformed into this system, Since the flap is a rigid body
this information i3 independent cf flap deflection and the hinge moment
factor {moment per unit normal force) need only be determined once. How- \
eve:, the force magnitude is a function of the deflection angle and requires '
Laving the geometry of the deflected flap in the vehicle-centered coordinates.

*
Note: Control surface deflection is not in tne Mark IV Mod O release
dbut will be added at a later date.




! The coordinate system shift is given by

X = X-X

HL4
Y' = Y-Y
}-IL4
Z' = Z -2
HL4
where

( )y, is to point 4 on the hinge line \

4
~he new coordinates of the flap in the shifted and transformed coordinate
system are given by
r . b - O
X0 X
] - t
vy | = [E] e
1 !
| %o | | 27
where
J
cosy sin J 0
[q,] = }-siny cosy 0
0 0 1
W = rotation about the Z'-axis '
1 0 0
[q') ] = 0 cos¢ gin ¢ '
0 -sin¢ cos¢d ‘
¢ = rotation about the X'O-axis
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The final rotation to the deflected position (8 is the control surface
deflection) is given by

1 1
Xop, Xo 1 X ]

’<—
=)
&
L1}
(]
1)
e
v
=)
n
| e |
(DOv
| — ]
~
o
)
.-4-
S

lsir. be 0 cos Ge

The coordinates of the deflected fiap are then transformed back to
vehicle centered coordinate system, first through the inverse rotation

X e " Xbée
' 1
Y 68 = [E ] Yobe
Zl Z‘
v éeJ L oécJ

and then by the coordinate shift

' ]

Xée = X Se + XHL4
Yée = Y Se + YHL4
Zbe = Z &e + ZHL4

The rotation angles are defined for a right-handed system and aze
found from the relationships

o o1 [ ¥*HL; - XHLg ) a1 <ZHL1 - ZHL4\
Y = 8in and ¢ = - s8in
Lxy Lyz
; where ~ - 1/2 i
| 2 2
Lxy = [{XHL) - XHL4) t+ (YHL,) 4
and _1',_‘
- 2 Z pA
Lyz = [Lxy  + (Zur, - ZHLg4)

A check is made in the program and if YHLI < YHL4 then the yaw

rotation angle is set to ¢ = @ - ¢ to position the hinge line in the
proper quadrant,
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The third rotation angle &, 18, of course, spacified for a givea prob-
lem. It should be rnoted in the present approach, that the « :ordinate
svetem is rotated through th: angle §,, positive in the right handed
sense for the system deiined. Relative to the physical prot »m, posi-
tive 5. corresponds ¢o a flap deflection into the flow.

The hinge moment factor (HMFCT) is simply a function of the element
geometry and location, and is defined ae follows. The total moment
of an element is (considering only inviscid forces)

ﬁb = - (Rgx F) = P(Rgx Ny)AREA
where

flb is the radius vector to the element centroid,

P is the net surface pressure,

and AREA is the element area.

The hinge line moment is just the T'o- ccmponent of the total moment;

Mg, = MY'O = _,: '0 o M :0 = P (HMFCT}
where
HMFCT

R | '
(Zo Nx'o - XO NZ '0) AREA

Once the deflected flap is properly oriented in the vehicle centered co-

ordinates, the force on each element and hinge moment are determined.
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SECTION 1V
GENERAL INTERPOLATION METHOD

The extension of the Arbitrary-Body Program to lower Mach numbers
will require greater use of the Second-Order Shock-Expansion method
in calculating surface pressures and flow fields. This requires that
streamlines be defined prior to the start of tha pressure calculaticns.
These same strcamlines may alsc be used in the viscous calculations
and in these applications it is necessary that the number of streamlines
be kept reasonably small, It would be Lmpractical to expect that a
streamline would pass through every surface element, let alone through
the actual centroid of the element. It will therefore be necessary to
calculate surface properties (both pressures and skin friction) along a
number of streamlines, and to then use some interpolation scheme to
arrive at the properties at each element centroid for use in the force
integration.

Briefly, the problem may be etited as follows:

The flow properties are calculated on a grid of points defined by stream-
lines. The vehicle forces will be surmuned cver a grid of points defined
by the element centroids. The problem, then, is to cetermine the flow
properties at the centroids by interpolation.

There are two general classes of interpolation, These are "interpolation
in the small" or local fit and "interpolation-in-the-large' in which an
entire surface or section is fit, Harder and Desmarais have presented a
method, the Surface Spline, which is an ingenious resolution of the clas-
sical problem of two-dimensional interpolation. It is an "interpolation-
in-the-large'" scheme with all the associated convenience (irregular grids)
and with accuracy rivalling the local fits.

The Surface Spline Method is the basis for the general interpolation pro-

cedure used throughout the Mark IV program, It is used for interpolating SEEN
flow fields to determine interference effects, for interpolating surface :
velocities to calculate streamlines, and for interpolating surface proper-

ties to calculate forces (inviscid and viscous).

Surface Spline

The surface spline is based on the small deflection equation of an infinite
plate that deforms in bending only. The procedure is to represent a

given deflecticn as a symmetric deflection duc to a point load at the origin.
The entire surface is then taken as the sum of all the point load distribu-
tions, subject to the boundary condition that the surface becomes flat at
large distances from the origin. This results in a system of linear
equations which is solved for the required loads or in the prescnt applica-
tion, for the spline coefficients. The final system of equations is
presented below (details of the derivation are given in Reference 5 ).
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A function W; is specified at n independent points (x;, y;)i=1, n.
A system of n+ 3 equations rnust be solved for the n+3 unknowns a_,

a), ap and F; {(i=1, n). °

Fj+ Fp+...+ F

(I}
(=]

n

xlFl + szZ + ... %+ annT- 0

ylFl+ y2F2+. ..+ ynFn--O
30“’3131 +yla2+A11Fl +A12F2+ « e s + AlnFnz Wl
a, t X3, + Y23y + AZIFI + A22F2 +.. .+ AZnFn = WZ
ao + xJal + y_]az + AJZ Fl + k]z Fz +. e » + AjnFn = W. '

3

-

ag t xpa, typa,d Anl Fl + AnZFZ too s tA B S Wa :
. .2 2 |
where Aij = 1y In rij
2 _ . 2 2
and Ty T (%; - xj) + (Yi S Yy)

It is ccnvenient to express these equations in matrix form as follows:

— - -
0o 0 o i 11 1 ... 1 2, | 0
0o 0 9 : X} Xz X3 ... X a) 0

0 G ¢ : Y, Y2 Y3 -+ Yq a, 0

----- -r g S CEES D RS SEu e iy RS S AAN =D -

Lxpoyy A A B3 - - A (R0 51

1 oxp yp | A21 Ayp a3 - - Ay F, w,




Using the partitions indicated for the system coefficient matrix and
compacting the notation, this may be rewritten

~

B i Xy
s Crt] 7| P
Vo Ay
where

i = 1,n
j = 1I,n
k = 1,n+3
! = 1, M

These equaticns are to be solved for the spline coefficients, [Cy 4]
[Hkl ] represents the known functions at the given points:

Hyy =0, Hp; =0, Hyp =0, Hyy =W, Hyy =W, etc.

The additional parameter £ refers to the number of functions to be inter-
nolaved. Far example, the flow field data are interpclated for six functions;
Mach number, the three-direction cosines of the velocity vector, pressure,
and temperature. In this case M=6 and the spline cocificients are found
for all six functions with one calculation of the coefficient matrix. The
matrix eolution is obtained using the Douglas SOLVIT Routine, details of
which are given in Reference 6. The method is simply Gausian triangu-
larization adapted to the requirements of the computer for the c.se where
the coefficient matrix is too large to fit into core.

Lincar Spline

The same approach could he taken to define a one dimensional or linear
spline. Consider a function dependent on y only. Terms involving x |
would be removed and the systermn reduced to order n+2. This would ?
involve changes in the coding logic. However, the above equations are '
readily adapted to a function of one¢ variable. A functicon independent of
x is equivalent to putting x equal to @ constant, say Xx.. The second
equatiorn of the system becomes
X (Fy + F, +Fg b0 0 + F ) =0
This is a multiple of the first equation and the system is indcterminant.
Also, since the function is independent of x then a, should be equal to
zero. This is easily accomplished by setting the texm B(2,2) = 1. The
second equation now becomes

a1+xc(Fl+F2+F3+..-+Fn)=0




The term in brackets is zero by the first equation and thus a; = 0. The
systemn is no longer indeterminant and the solution of n+3 system procesds
as before.

The values of the B matrix are summarized as follows: ;

1. Surface Spline

W; = function of both x and y :

o
[H

0 0 O |
6 0 O |
0 0 o i

2. Linear Spline, Independent of x

W; = function of y only

x = constant = xc i
ro ¢ o ‘| .
B = | 0 1 © ' .
. .

3. Lipear Spline, Indepencent of y

W; = function of x only 5
y = constant = y. ‘."_
0 0 O
B = 0 0 O
¢ 0

Symmetry

1f the function being interpolated has a plane of symmmeiry, then use can
be made of images to Lmprove the accuracy of the {it. Consider Wj
epecified at n points (x;, y:) in the range x| = x; = x, and also W; éym-
metrical about x,. Thé sw,)stem of equations codld be written incl’uding
n images in the range x, < x; = (2x, - ¥1). Transforming the x
coordinate to

and using -i notation to represent the images the 2n + 3 system of
equations is
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., -

Fi = 0
iz -n
n
E §iF; = 0
-n
n
2 ViFi = 0
-n

n
[ao+€jal+yjaz+ ZAj.iFi= Wj] j =-n,n

1= -n

Adding symmetric pairs of equations

Zao + al(fJ + 5-3) + a'Z (YJ +Y_j) + (Aj’-n + A.j,-n) F-n+ e

+ (‘A'j.-i +A_J-'_1.'r‘_1 + (Aj’1+ A_j'l)}-l + . .
>
] _
+ (Aj,n+ A-j,n) F, = (Wj + WJ)
1 Using the deiinition of symmetry
, §.i = -8y
1
3 Yoi S Yj
E W-i = Wi
" and also, that A.. = r2 In r..2
: ’ ij ij i}
B
2 2 2
where T ® (ﬁi - éj) + (y; - yj)
|

; ‘ ic 18 . wosuy shown that
' 2 2 _ 2 Y-
: lzi,] - ri"j - (fi + EJI + (Yl YJ)

and 2 2 %
3 - . = ) o -
. =) 1,) ’
: Therefore,
3 'i'j - 1.’] '




and the system becomes

i=1
where
— _2 - 2
Al.] Ty In Ti5
-~ 2 ' 2
ri,j = (xi + xj -Zxo) + y; - yj)

The order is reduced to n+2 and a; = 0. Ae was the case for a linear
spline, the n+3 systern can be solvéd by changing the B matrix and
setting x = x. in the [xy] and [»ytf] matrices.

Sunilay results can be chtained for v symmetry and for both x and y
symmetry.

Application of the Surface Spline for Interpolation

The surface spline, or any other interpolation scheme, needs tv be
specified in appropriate coordinates to do the job correctly. For example,
consider the flow over a swept wing. Interpolation relative to the space
coordipates used to define the quadrilateral elements will produce
erronecus results. The interpolation must be done in coordirates consist-
ent with the physics of the problem and for flow on a swept wing, distance
from the leading edge and distance along the span would be proper.

The surface spline, due to the nature of the basic solution (symmetric
point load) works best in a one-tc-one domain of the independent vari-
ables. That is, for the swepi wing, coordinates of relative chord and
relative span would be used defining a range of both x and y from 0.0 to
1.0.

The process of selecting and scaling the appropriate coordinates is
referred to ag normalization ia the Mark IV program. Two different
categories of data normalizalion are used in the Mark IV program. TlLese
are surface data and flow field data. The normalization procedures for
each are described in the fnllowing sections.
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Surface Data Normalization

Interpolation of surface data is involved in the Surface Streamline Ogtion,
in the Input Pressure Option, and in the Viscous Program Option. The
surface geometry, input in body reference coordinates (xr, yr, zr) is
first transformed to the required local reference system., The local sys-
tem is defined by the orientation parameters x5 Y5, 2o ¥or 050 and &,
The local coordinates (x, y, z) are given by

(%, ve 2] = [T] [xx, vy, 22]

where

(cosﬂocos%) (cosOosin!ho) {-sinf,)
(-coa¢osin¢u+six.ﬁ%sinoocosillo) (cos¢°cos¢°+s in%sineosimbo) (sinq&ocosd:o)

(sin%sin%+cos¢osin00cos 0) (—sin¢ocos%+cos%sineos inyy) (cos¢oc 0300)

and XX = Xr = X,
YY = yr - yg :
zz = zr - z,

Also calculated are the axial, radial, and meridian coordinates:

A = x

- . 2.1/2

K = (y= +z7)

¢ = ARCTAN (y/-z)

Six coordinates (x, vy, z, A, R, ¢) are now available in the local reference
system and the pair of independent variables to be used for interpolation
are selected by the input flag INOCRM. The five options available are;

INORM = 0, ¢ = f(A,R)
INORM = 1, z = {(x, v)
INORM = 2, y = f{x, z)
INORM = 3, x = f(y, 2z)
INORM = 4, R = {(A, ¢)

To scale the data, the surfaces are grcuped into two typee: bodies and
lifting surfaces (indicated by the input flag ISURF = 0 and 1, respectively).
More compiex surfaces may be composed from combinations of these two
types. In addition, four boundary points must be input to scale the data.
These points are iuput in the body reference system and transformed to

the six local coordinates. The boundary data are used differently for each
surface type.

An example of the use of the boundary data for each of the two surface
types is discussed in detail.




1. Bodies (ISURF = 0}

Consider a fuselage with approximately an axially-symmetric croes-
section shape about the x-axis.

z
]

XN

i /\

The flow field is calculated using the Second-Order Shock-Expaasion
Method iz a number of meridian planes, say five.

Z
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Having done this, the tlow properties at the centroide of the elements are
required in order to calculate the forces or streamlines on the body. The
meridian flow data haas been stored on Unit 10 and will be recalled for
use in the surface interpolation routine.

For this case the oovious choice of independent variables is the axial
coordinate (A) and the meridian angle (¢) (i.e., INORM = 4).

The following boundary data are input:

XB(l) = X1  XB{2) = XN
YB(1) = 0.0 YB(2) = 0.0
ZB(1) = 0.6  ZB(2) = 0.0

1S
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XB(3} = 0.0 XB(4) = 0.0
YB(3) = 0.0 YB{4) = 0.0
ZB(3) = -1.0 Z2B(4) = 1.0

The interpolation will be performed over the length of the body (X1=X=XN)
and for (0 = ¢ < ).

1f there happen to be large variations in flow properties between ¢ = 0 and
¢ = 7 (because of large a, or My,), then the interpolation could be seg-
mented. For example, use three segments with ranges (0.0 = ¢, < 60°),
(60° = ¢, <120°) and (120° < ¢, = 180°). Since the surface spline is a
global fi?E. segmenting will relax the constraints that must be met.

II. Lifting Surface (ISURF = 1)

Consider 3 wing whose leading edge and trailing edge are approximately in
the x,y plane. The flow properties on 2 lifting surface vary essentially

with relative chord (x/c) and relative span (y/b) and the surface should be
normalized with respect to these parameters. Therefore, use INORM= 1.




The four boundaries are input as indicated on the sketch. They are first
transformed to local coordinates and the following parameters calculated:

Root Chord, CR
Tip Chord, CT
Local Span, B

XB(2) - XB(1)
XB(4) - XB(3)
YB(3) - YB(1)

The normalized coordinates (x/c, y/b) for a given point on the surfacse
(x,y,z) are

x/c = (x - XLE)/CY

y/b = (y - YB(1)/B
. where XLE = XB(1) + (XB(3) - XB(1)) * y/c
; and CY = CR + (CT - CR) * y/c

Flow Field Data Normalization

The flow field about a component is made up of various flow regions. In
the previous example of flow on a body, each meridian plane would be
designated a flow regicn. Each region is specified by two boundary curves
{the body surface and the shock wave) and, if desired, by poinis within the

field.
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A typical flow region is shown in the sketch in the form of radial versus
axial distance. The nose station is Ay, and the body length ie shown
at Ay, . Proper normalization is obtained using a relative axial distance
and the shock-layer distance.

hade a4 s
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For 2 point located at Ai, R;, the normalized coordinates are

£ . h_- AN
i XZ - AN
Ry - Rp;

R,
' Re; - Ry

Curves of body radius (RB) and shock radius (Rg) as a function of axial
distance A are obtained using the lincar spline.

As an example of the appropriatencss of the normalization and the accuracy
of the surface spline, a conical flow ficld is shown in Figure 6. While
this is a particularly eimple ~ase, exact anzlytical results are available
for definition and comparicon. The flow region was defined by six points
on each boundary curve (at stations A = 1.0, 2.0, 4.0, 6.0, 8.0 and 10.0)
and five interior points we: e specified at each of three stations (A = 1.0,
6.0 and 10.0). Figure 6 presents results for speed of sound ratio,
pressure ratio, and radial velocity component interpolated at A =4.0, and
clearly show the accuracy of the method,




M = 4.0

6 = 10° A= 4.0
c

Exuact {AGARDOGRAPH 137)
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Figure 6. Conical Flow Ficld
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SECTION V

FLOW FIELD ANALYSIS METHQODS

At very high hypersonic Mach numbers the vehicle generated flow sys-
tem is relatively close to each vehicle component. For these types of
f! ww aystems the importance of component interference is diminished
and component build-up methods may be used with considerable success.
However, as the flight Mach number is redvced down into the supersonic
speed range interference effects bccome very significant. Interference
effects also may he important even at the hyperscnic Mach numbers if
the vehicle is composed of discrete components such as is the case for
airplane type wing-body-fin configurations, Past experience has also
indicated that even the blended or all body shapes may have significant
interference-type effccts when analyzed in yaw,

A really accurate analysis of this problem including interference effects
would require a threc-dimensional meathod of characteristics solution.
However, present mathematical and programming techniques and digital
computer size and speed limitations preclude the applica.ion of the
method of characteristics to typical preliminary design problerms.

Prior to the advent of the large scale digital computer a number of
approaches were used in the analysis of interference effects on wing-
body-~fin cenfiguratione at sunersonic sneeds. These methods, for
example the work of Kaatiari in Reference 7, have since been replaced
by the linear theory finite -elernent computer programs. However, these
early hand computational methods did do a pretty good job in the low
supersonic Mach number range and for the simple wing-body-fin con-
figurations for which they were derived. The general approach in thesge
methods was to look at each aspect of the flow and, with appropriate
assumptione and simplifications of the vehicle shape, to approximate
the overall effect of the flow on downsiream components, These
methods usually did not give detailed pressure distributions, but instead
only accounted for the interference effects in a gross way on the final
vehicle aerodynamic coefficienis. Of course, significont changes in
vehicle shape (such as body cross-section) were not always reflected in
answers. Also, frequent use of slender body theory meant that the
results could not be extended up into the hypersonic speed region.

The use of the digital computer has led to methods that largely replace
these older hand, "engineering' methoeds of solution (the one notable
exception being the USAF DATCOM). These computerized methods,
which are usually based on linearized thecry, have been summarized

by Carmichael in Referencc 8 , and by Bradley and Miller in Reference
9 One method in wide use today is the one of Woodward (Reference

10} that uses finite elements or boxes to which potential methods are
applied. However, the computer programs based on these methods are
preseatly restricted to simple body-of-revolution and wing combinations,
Even with the addition of dihedral pancls,as has been recentiy achieved,




the representation of a shape is far from what could be called'arbitrary".
This fact, coupled with the inkerent limitations of lirear theory, means
that it has limited direct use on the more general problems involving
complex shapes arnd a wide Mach number range.

The interference problem, therefore, resclves intc one that (1) deman:s
the ability to handle arbitrary shapes from the geomsetry standpoint, and
{2) accounts for interference effects using engineering metheds, yet
retains all basic features of the true flow fields,

The fundamental approach taken in the Mark IV program is one of flex-
ibility. It was desired that ‘he surface pressure method used for one
component not be inherently related or dependent on the flow field method
used on another. The vehicle is represented by a number of components
and the most appropriate flow field method is used depending upon the
component shape and fiight condition. This analogous appreach was a
large factor in the success of the Mark 1lII program.

The Mark III program, which already does a pretty good job of predicting
the vehicle characteristics, may be looked upon as the first order eolu-
tion. Its weaknesses can ke mainly attributed to certain regions (e.g.,
vertical fin, wing carryover to fuseiage) associated with particular con-
ditions (e.g., high angle of attack or yaw) and shielding effects. It thus
seemns logical to build up the vehicle flow field in a step-by-step or

Aw o~ wwnla  tha «

conponeint~-by-component fashicn. For cxample, the «ertical would he
analyzed in the symmelry plane subject only to the body flow field. Next,
the effect of the wing field alone, then the sum of bedy and wing. Finally,
the combinaticn of the wing {analyzed subject to the body field) and the
body field, In the last case the complete body flow field is not required
to define the wing field, but just the body flow field properties in the
vicinity of the wing leading edge a1rc¢ sufficient,

The framework of the Mark IV program is designed to facilitate just this
type of operation. The flow field data of 2 component can be saved and
then interrogated during subsequent calculations or future runs. In the
pressure calculations, a given component is identified by the user as
possibly being influenced by up to four flow regions. The local properties
in each flow region must have been previously generated or input and
stored un the flow field direct access data unit 10, In the analysis, each
element is first checked to see what flow region it is in. The appropriate
flow tabie is then selected and the local properties deterrnined using the
surface spline method.

AR~ e S e ,, .
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Component Flow Field Analysis

The Mark IV program is structured so that a variety of flow

field methods can be employed. A proper perspective of the
program capabilities is obtained by an examination of methods
listed in the accompanying table. The solutions have been

separated into four main categories with selected individual
methods appropriately listed. Those enclosed in iBOXESI

are methods incorporated in the Mark IV program. Those
marked with an asterik (*) are availabie and could be added
a2t some future time. The remaining methods are consider-
ably more involved with regard to both complexity and
increased run time and far exceced the requirement of 'engi-
neer methods''. In principle, however, they could be added
to the basic framework of the new program for special

y purposes or final design point analysis.

Ta obtain this flexibility of choice, a common interface
between the flow field methods and the rest of the program

was established. The flow field data about a given compon-
ent are specified i a number of planes. For example, the

flow field about a body of revolution would te defined in
meridian planes. This concept of flow planes was arrived at
by consideration of (1) the shock-expansion method as a
primary means of generating the data, and (2) the Surface
Spline Methed as primary user of tho data, All the flow
data are stored on a direct access unit (10) in a standard
format and are readily accessible by other options of the
program, For example, the flow field about a body is gene-
rated using the second-order shock-expansion method™if the
Flow Field Option of the program. This data may then be
accessed by other oj:ions of the program to calculate the
following:

1. Forces on the wing subject to the body field.

2. Forces on the body.

3. Streamlines c¢on the body and the viscous
forces on these streamlines,




TABLE OF FLOW FIELD ANALYSIS METHQODS

1 INPUT FLOW FIELD

Tabular Distributions of Quantities
Throughout the Flow Field

11 EMPIRICAL APPROACHES

Shock Shape Correlations

Surface Pressure Correlations

Local Correlation Factors

11 APPROXIMATE ANALYTICAL APPROACHES

Generalized Shock Expansion

Secord-Crder Shock Expaasion

Conical Shock Expansion

*Two-Dimensional and Axially Symmetric
Method of Chara-teristics

*Linear Theory (Potential Sclutions) l
*Linear Theory (Wave Drag)
Linearized Method of Characteristics l

Iterative Schemaes

Iv EXACT ANALYTICAL APPROACHES

*Conical Method of Characteristics

Integral Methods

Three-Dimensional Method of Characteristics




Shock-Expansion Method

The concept of shack-expansion was first introduced by Epstein in 1931
for calculating airfoil pressures and was extensively developed by the
NACA in the early 1950's. Br.efly, it was extended by Eggers,
Syvertson, ana Kraue (Reference !1) to include the determination of
the shock shape and thus the entire flow field, and further by Eggers
and Savin (Refevences 12 and 13) as the "Generalized Shock Expansion
Method' to include three-dimensional hypersonic {lows. A sc-called
cecond-order term in surface pressure was later added by Syvertson
and Dennis (Reference 14). The generalized method was derived from
consideration of the full three-dimensional characteristics theory.
Through an order-of-magnitude analysis based on the hypersonic
similarity parameter, it was shown that dieturbances associated with
givergence of stieamlines in planes tangent to the surface are of
secondary importance compared to those associated with the curvature
of streamlines in planes normal to the surface. It was further shown,
consistent with the above ~esult, that the streamlines may be taken as
g:odesics. For a body of revolution then, the flow may be analyzed in
meridian planes; a result exactly true at zero angle of actack and oaly
approximate if the body it inclined to the flow.

The basic premise underlying the shock expansion procedurec is that
only the principal characteristics in the flow need be considered, with
reflections from the shock wave and from vortex lines being negligibie,
Development of the theory is presented in most texts on high speed flow
(e.g., Hayes and Probsiecin, Refercnce 15) and the detailed equatiang
are presented in the aforementioned NACA publications. In the follow-
ing discussions on the application of the method in the Mark IV program,
only those equations vital to the presention are given. The shock- ‘
expansion methods are coliectively referred to as the Shock-Expansion
Method. The specific forms of two-dimensional, three-dimensional, or
second-order are accessed via input flags which simply include or
delete terms as requiredqd.

The starting point for the Shock-Expansion Method was a program
developcd in Reference 16, and was very helptul on getting a 'quick
jump'' on the problem. The final form is highly modified, incorporating
for example, the Mark IV oblique shock and cone solutions. The
experimental data of NASA TN D-6480 (Reference 17) were uscd exten-
sively as a guide in the exploration of various alternatives.

To use the shock-expansion method it is first necessary to define the
flow line or path along which the calculations are to be made. Ideally,
such a path should be a streamline but generally this is not known. The
true path is approximated by a flow line defined as the intersection of
the flow plane and the surface geometry. The flow plane (also referred
to as the cutting plane) may be specified with arbitrary orientation and
the profile shape is automatically obtained from the quadrilateral
elements,




Surface FPressure

The profile ehape is represented by a series of wedge or cone frustums
as shown schematically in Figure 7 . The flow on the first segment is
given by the oblique shock or cone solution ang the pressure on the
downstream frustums is given by

: P = P, - (P, -~ Py e

where .
P. is the pressure on a cone of

the same angle as the frustum

P, is the pressure resulting from
a two dimensional expansion
between successive frustums

n is preoportional to the pressure
gradient and distance down-
stream of the corner

If the surface is two dimensional or only first order expansion is desired,
then %7 = 0 and the pressure is simply

= D.
. P = P,

The relationship betwe=n the first and second order pressure are also
shown on Figure 7,

Calculations were made for the configuration of NASA TN D-6480 (Refer-
ence 17) which is shown in Figure 8 as loaded using the Ellipse
Ge:neration and Aircraft Geometry Options. Coraparisons of the first
and second order shock expansion methods with the experimental data at
zero angle of attack are presented in Figures 9 anda '0. Alsc shown
are rcsults from a Method of Characteristics Program (based on the
supersonic flow field programs developed at NASA by Inouye, Rakich,
and Lomax, Reference 18). The data aft of x/L = 0.5 are influenced by
the wing and should not be considered in the present comparisons as this
effect is not accounted for in the calculations. All three methods uaed
conical flow starting conditions. The agreement between the second order
expansion and the method of characteristics is good at Mach = 2.3

(Figure 9 ) and excellent at Mach = 4.63 (Figure 10). Both are in far

. Letter agreement with experiment than the {irst order shock expansion,

] especially at the iower Mach number. The first order method is very
sensitive to the starting cone solution. The second order method does
not have this difficiency as the pressure is continually adjusted by the

1 limiting cone value, P

c*

i. Since thcae reeults are at zero angle of attack, P, was obtained using
the tangent-cone method.* Attenticn ic now directed to the angle of attack

! *See Saction VIII, Inviscid Pressure Mcthods
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cases and, in view of the results just given, only the second-order
shock-expansion method was used in the analysis. The first attempt
used the local impact angle to define the tangent-cone limitiag condi-
tion. Typical results at Mach = 2.3 on the windward centerline (¢=0)
are shown in Figure 11 and the predicted pressures weare too large.
It was then decided to use the inclined cone method* to define the
limiting conditisns and the results at the same conditions are shown
in Figure 12, The agreement of the calculated and experimental
pressure coefficients is good and very much better than the simple
tangent-cone approach.

Coranparison of the circumferential pressure distributions are given
for the Mach=4.63 case in Figures 13 through 17. The ¢= 0 results
are in very good agreement whereas the ¢= 60 and $= 120 results

are only in fair agreement. The data along the leeward centerline
(¢ = 180) showed higher C.'s than the ¢= 120 meridian data. This
was felt to be the result of a viscous induced recompression and
these data have been left off the figures for clarity. Also, only those
data not influenced by the presence of the wing have been included on
the plots. To check the method at stations aft of the maximum dia-
meter, the body-alone configuration of Reference 19 was also
analyzed. This is a body of revolution symmetrical about x/L=0.57
and truncated with a finite hage diamefer. Pressure distributions are
compared at Mach = 2.5 at zero angle of attack (Figure 18}, 2° angie
of attack (Figure 19), and 4° angle of attack (Figure 20). Both the
windward (¢ = 0) and leeward (¢ = 180) centerline data are shown for the
angle of attack cases. The windward data are in good agreement over
the length of the body except at the very aft locations. These discre-
pancies are probably a result of sting interference. The leeward
data show the recompression effect previously mentioned, being more
pronounced on the aft portions of the body where the viscous effects
become dominant.

Shock Wave Shapes

At zero angle-of-attack, the Douglas develop=d tangent-cone method
provides excellent results for both the surface pressure and shock wave
angle. At angle of attack, the inclined -one method provides two means
of predicting surface pressure. However, no similar method for pre-
dicting shock wave angle is available. What is neceded is a relationship
for shock angle analogous to Jones' pressure coefficient formula. Lack-
ing this, an empirical solution has been devised which follows the trend
of exact results. In summary, the tangent-cone impact method is used
to calculate the Mach number normal to the shock wave, which in turn
is used to calculate the pressure ratio across the shock. This pressure
ratio is then modified by a factor to provide agreeme:nt with the zero
angle of attack results,

*See Section VIII, Inviscid Pressure Methods
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The shock normal Mach number, M4, as given by the tangent-cone
impact method is

M,, = K¢ Mp sin §; + EXP (-K_ Mp sin §;)
wheve

Mp is the Mach number in a particular ¢ -plane,

3; is the impact angle Mp makes with the surface,

and
K. = 2(Y + 1Y/ (Y +3)

The pressure ratio across the shock wave, Pg, is then calculated
as
Pg
P, = P, (—vl
® 81 \Pyil=0

where Pg; is the impact pressure ratio across the shock

= [Z)’an - (7+1)]/(7+1).

(I—’s)o[__0 is obtained from the zero angle of attack cone
B results
and
(Psi)a:O is the impact pressure ratio across the shock

at zero angle of attack

Calculations using this method have been compared with the exact
solutions tabulated in Reference 20. The cases selected were for a
10-degree semi-apex cone at angles of atiack of ¢, 5, 10, and 11
degrces. Results for freestream Mach numbers equal te 2, 5, and
10 are shown in Figures 21, 22, and23 , respectively. The method
has also been compared with the experimental data given in Refer-
ence !3. These data are for Mach = 5.05 at angles of attack of 0, 5,
10, and 15 degrees. The results for a cone semi-apex angle of 11.42

degrees are presented in Figure 24 and for 18.92 degrees in Figure
25,

B A K
Y
N

P S B P T

Gk In summarizing the data comparison presented, the rnethod devised
for calculating shock shapes does closely follow the exact and

g experirental results. In view of the approximate solution used, the
results are in fact remarkable. Noteworthy in this respect are the
10-degree cone results at Mach = 5.0 and the 11.42-degree cone
results at Mach = 5.05,

P il




O Cone tables (AGARDOGRAPH 137}
———~— Mark IV

(a) a: 0

Figure 21. Shock Wave Shape Comparison for
a Cone; M_ =2.0, 6.~ 10°
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O Cone tables (AGARDOGRAPH 137)
Mark 1V

(b) a=5°

Figure 21. - Continued




O Cone tables (AGARDOGRAPH 137)
Mark IV

() a = 10°

Figure 21. - Continued
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(d) a=11°

Figure 21. - Concluded
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! O Cone tables (AGARDOGRAPH 137}

Mark 1V

a = 10,0° a=11.0°

Figure 22. Shock Wave Shape Comparison for
a Conve; M()o_' 5.0, 6(‘ = 10"
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Figure 23. Shock Wave Uhape Comparison for
a Cone; M, =10, §. =10°
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(@) Exparinent (NACA TR-3349)
Mark 1V

o= — = — Generalized shock expansion ( a = 15° only)
(NACA TH~3349)

a=0,0°
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P e A

a = 10.0° a = 15.0°
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Figur - 24. Slock Wave Shape Comparison for
a Cone; My, =5.05, 0.= 11.429
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- — — ~ Generalized shock expansion ( a = 15° only)
(NACA TN-3349)
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Figure 25. Shock Wave
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A basic condition in constructing the flow field about a twe-dimensional
body using the shock expansion method is that the pressure is constant
along Mach lines emanating from the surface. In the case of flow about
a three-dimensicnal body, this condition is modified to account for the
conical flow at the nose. In the conical region there is a pressure
difference, AP,, between the surface and the shock wave

APy = Poy - Py

where P_, is the cone surface pressure ratio at the nose

and P_, is the cone shock pressure ratio at the nose

It was suggested in Reference 12 that this AF be used to represent the
net pressure change between the body surfac: and the shock along ecach
Mach line emanating from the surface downstream of the nose.

‘That is,

P s = Pb - Apn

where P, i< the shock pressure ratio

and Py is the body pressure ratio

It has been found that this expression permits too fast a decay in the
shock pressure. To compensate for this, a damping factor, f{, is
introduced;

Ps = Pb-APn°f

The form used for f is suinply the ratio of the local surface deflection
angle to the nose conec angle and the value of Py is limitedto 1.0 as a
minimum value.

Comparison of the shock shape calculated by this procedure and the
method of characteristics is shou in Figure 26 for the body of NASA
TN D-6480. Calculations are also compared with the expcrimental
data of Reference 13 in Figure 27, The body is a fineness ratio 3
ogive and test conditions are 10-degrees angle of attack at Mach =5.05,
The results are very good at the nose but tend to deteriorate down-
stream. This points out an additional problem which will be encoun-
tered in calculating shock shapes on bodies. Namely,, the errors are
accuraulative., Thus it will be difficult to accuralely predict the

extent or breadth of the shock field. This is compensated for sorne-
what in that the pressure progressively weakens downstream.
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M_ = 5.05 &= 10°
Ogive nose angle = 18.92°

O  Experiment (NACA TN-3349)
Mark 1V

—
0]
¢ = ~30° 0]

180°

/,f’T‘~\\ ©

- 1 T
-90° +90°
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Cross-section
looking att

¢ = 0°

Figure 27. Shock Wave Shape Comparison fcr Fineness
Ratio 3 Ogive; MOO:S.OS, a=10°




Flow Field Calculation

The complete shock expansion flow field analysis method is demon-
strated on the contiguration of NASA TN D-6480. The methods for _
surface pressure, shock wave shape, and the Surface Spline inter- '\
polation are combined to calculate the wing pressure distribution N
subject to the body flow ficld. The Mach = 4,63 data at zero angle of
attack are uzed for comparison. While this angle cf attack is not the
mosl representative from the standpoint of force calculations, it
permits parallel calculations u1sing the method of characteristics to
further assess the method.

The configuration planform and flow region are shown in Figure 28 .
Figures 29, 30, and 31 present the Mach number, pressure ratio,
and flow angle, respectively, behind the body shock wave. Figure 32 :
gives the Mach number along the body surface. (The pressure distri- N
bution on the body was previously przsented in Figure 10). The shock
wave and the body comprise the two boundary curves used in the
Surface Spline. The locations at which the data were stored on the flow
field unit (10) are indicated on the x-scales of the plots. Figure 33 N
shows the location of a right-running characteristics i1long which the '
flow was interrogated. Results of the Surface Spline interpolation for

local Mach nuruber, pressure ratio, and flow angle are compared with

the :aethod of characteristics calculation in Figures 34, 35, and 36,

respecitvely, The differeuces due o the dificreni boundary condiiions :
at the shock wave are to be expected. The generai character of the 3
flow is fairly well maintained., Most remarkable in this respect is the
B curve (Figure 356). It should be reemphasized that only values along
the boundary curves have been used - that is along curves through the
points labeled "shock' and "body''.

o~

. vy

Finally, the pressure distributions on the wing at four span locations
are shown in Figure 37 and 38. Both flow fields have been used in

! conjunction with the tangent-wedge and tangent-cone pressure methods.
: These two pressure methods were alco run without the body flow and 3
: all are compared to the experimental data. A firsi observation ef the 3
t figures show the tangent-wedge method more appropriate for the con-

dition run. A second and more subtle sbservation is that the body flow !
field causes a concavity to the pressure distribution on the forward {
half of the wing. This 1s best seen on the inboard station (y/(b/2) =

0.258} and is consistent with the experimental data. 7Thirdly, the 5
outboard station (v/(b/2) = 0.815) clearly shows the effect of the body e
shock crossing the wing section (at ~ x/¢ = 0.25).
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SECT{ON VI

SHIELDING EFFECTS .

In the conventional Newtonian forrnulation of hyperzome flow the pressure
coefficient is zero un these portions of the bady that are invisible to a
distant observer who vicewe the bcdy {rom whe direction of the onceming
freestream. That is, the pressare cocfficient is 7-:ro on portions of the
body that are hidden u shieldeid by upstveam portions of the ody surface. _
: To obtain accurate forcce and menen?! calculations, such shielded surfaces -
! mus:. be identif.ed ard climinated trom the computation. A procedure for .
accomplishing this is presented in the foliowing discussion®. A general

summary cf the approach will be prescnted first followed by a more

i detailed description of the theory.

With respect to any given direction of the ‘reestyeam every portion of the
uvodv may be classificed as cither forward-facing or rear-facing. On a

forward-facing portion of the surface the dot product of the local outer

norm-1 vector with *he freestream velocily vector is ncrative. On a rear- ol
facing particn of the surface th: zcrresponding dot producl 138 positive

Rear-facing portioci: are always snileided from the freesireemn ditection,

and acrordingly they do not contribrte o the force or mome s integrals, S
The 1dentification of rear-facing surfaces may be performed castly o B
terms of the atgve -mentioned de! produci. On a convex bodv, such as an

ellipecid, rear-iacing portions of the surface are the only portions that

are shielded, aud no problems ar:se. Noairivial ideatification problems

arise for partially concave bodies or fo rnultipic bodics, where some
fcivard-facing suifaces may U shiclded by upsiream forward-facing

surfaces.

: A typical example of shiclding on 2 vechicle in both piich and yaw 15 shown .
in Figure 39. Note that the lower part of the tail and the 24 5ide of the e
t fusclape is shielded from the freestream ag is 3 patt of the canopy. Since

| the basic pressure and force calculationas are very rapid, the grocedurce
for identiiying shicided guadrilateral clements must aiso be fasi to avoid
subsiinuaial increasces in overall computing time. For some applications
1lat portizns of the body are represcaicd by very large clements, having
daimension: that are not small compared to the body aimensions. Thus, 1t
is not sufficient to consider elements as cither complately shielded or not
shiclded at all, but the case of a partially shielded clement must be
accounted for. Also, the procedurce must handle the situation where an s
element is shiclded by an clement that is itself shiclded by a third element. ]
Firaily, the direction of the freestream velesity must be arbiieary. Con- o
siderations of a gencral {recstream and a sinall computing vime eliminate '
a procedure like that of Reference 39, Thas laiter procedure cannot handle
a freestrean: normal to the body axis and is very tune consuming becaunce :
it musi caloulate a very large numbcer of incremental angles, which pre- \
sumably must be obtained by micans of inverse trigenometric functions.

The low compuring time of the Mark IV Prograrn in cascs of true hyper- -\
sonic flow arc wue te the fact that fiow cunditions un cach surface clemeat
are independent -.f condit:ans on the other eizmenws. Thus, the flow

i * The shielding analystis method Guscribed here was derived
by J. L. Fzss,
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Figure 3¢. Piciure of Veracle {a Pitch and Yaw Illusirating
the Shielding Problea.




T WA T TRERERS N R T RS YT e s e e o

&______J

calculation n2ed be done only N titmes, where N is the total number of
cictents on the body. A pencral routine for identifying shielded el -
ments musat allow the possihility trat any element inay shield any other
clement, Thus, the test for the shielding of one clam: cnt by another
must be performed a number v.f titne3 of the order of NZ. (Th: actual
nuraber of tests s approximacely 1/2 ne.If the clenﬂents are crdered
ir s sequenive, fuch elemes: need be iested for shieidi 3 only aith suc-
cruding clements of the scaeenc:, because precearng clemente will
aircady have b2en sested.) Thus, for N of the order of 1000 the shield-
ing ‘est may require Mmoare time than the flow calculation. On the othor
hand. each clemes® is shiclded by 2t n ost a few rlem-aty, so the total
number of shicldings is of the order of N. (There would be N2 shicldings
only if every eiement shieclded all other clements.? Thas, the key to a
rapid procedure is a very siniple test that can be applicd to two elements
and that will quickly indicaie the impossibil:ty «i shiclding for most pairs
of eclements, Then the cascs of ncar or ac! ‘ual shiciding can be treated
more elaborately, because their total nuniber is ef arder N. Any geo-
metric quantitics connected with an element that can 21d the cemputation
should be calculated once a2ad for all at the outset 1nd stared, because
again only N such calculations arc required. Accordingly, the projec-
tions of the clomunts i a plane nermal to the fre sl velocity are
nbtained. For each projected elemernt the ma-amum and the munamwun
values of the coordinates of the four corner peints of the element in this
plane are recordsd once and for all. Now for the larfe majority of
clement pairs the rnazimum valur of a coordinate ior one clement is

ivs= than the minimum vailue of thal coordinate for the otber ciemenr,
and thus no shiclding is possible. This is the required test, which

could hardly be sisnpier.

Additional simohification and computing-time reduc?ion ar: obtzined by
having the uscr of the pregram inpu' the clements group.-d into “simplie
scciions’, such that no forward-facing clement ai a section shiclds any
othcr. This climinates the nced for testing within a sestion and
simplifics the Fandlirpg of the case when ar ¢lemon? 1s shiclded by an
clement that is itscli shiclded by a third ciement. Merecver, the group-
ing tiito scections should be casy for the user to aciomplish. Fer examiple,
any ccnvex portion of 4 configuration is inpat 35 one sect:on.  The organ-
tzation of surface elements 1nto pzncic exasts in the AMark IV Program.
The shislding procedure simayiy u itizes this jeatuze,

if a pair of elemcnts {avi the canple shiciding tost, one elemnent noy ur
may not shizld the oithzr, As nicationed akave, the projections of the
cleinents into a nlan: normal 2o the freestream velocity are abtained
cnce and for all. Tha required calvulation deiermines whether or not
the two projected ciements overlap and determanes the commoun regios,
#f they do overlap. The projected elem :nts overlap if and cnly of at

least one side of the first elen-ent intersccets 2t least oae side of the
sccond. [t 1s not sufficicent 1o test whether or niot the coract pownts of
one projected clement lic inside the other element, becausce the preswecied
clements may overlap cven if all coracrs of cach clement lie outside the

AT b . 1a e
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owner, as illustratcg in the skotch below. For convex elemants a sids:
of on« can intersect at most tv/o sides of the other. The region common
to two quadrilatevral elements is 3 polygen with at most cight sides ({sce
sketch). The computational task is to determine the vertices of this

/18t element

r— 20d element ind element

let element

T-~0 Psssible Iatersections

polygon. As shown in thr gsketch, each vertex is cither an intersection
of two sides, cne beionging to cach projected civinent, or a corner of
onc projected element that lics inside the other. Once the polygon is
known, it is divided into irom one to three quadrilatcrals, oz of which
may have three sides (a spccial case of a quadrilaicral with one sid: of
zero length). This is dounec so that in subsequent operations all elenicnts
are quadrilaterass.

If the projections of two ¢lements overlap, the more downsircam cle-
mezn: of the two 18 determined by considering the distances of the two
elcments from the planc norma: to the freestrean velocity. The more
downstream of the two is the shielded element. It is a si™mple matter
to project the above-described region of overlap (a polygon divided into
quadrilaterals) onto the shielded clement. This projecction ix denoted
a ncgative clement (or clements).

Finally, all negative elements are known, together wich thei. projections
on the planc normal to the freestream velocity. The next stage of the
calculation determines the c¢ffects of multiple shielding where an  element
is shicided by an upstream element, which is in turr shielded by a third
element. ‘This situation 2rises when an element is shiclded by two (or
more) elements, and the two shiclded purticas cverlap. In the present
framcwork the condition is that two negative elements overlap, which

is a special casc cf shieldilig. Thus, the negative clements arc examined
Jor shiziding in a manner roughly similar to that outlined above.
However, there are somce simplifying conditions that ensurc that the
proccss of accounting for multiple shiclding requircs very littlc computing




time campared to the basic shiclding pracedure describea above. The
principal simplification arises from the 1act that the only acgative ele-
ments that can over.ap are those tha! ccrircapond to ihe same shicided
elemert. Since all negative eciements for eacn shielded ciement are
caiculated sequentially and stored ogether, the scarching procedure 1s
very short. A frequeatly occurring situation coaeists of two adjacent
clements of a section both shiclding the same iement of another section,
In this case it is known in advance that the two shielded pcriions cannot
overlap. The area common to two negative clements is again a polygon
that is deterimined in the above -mentioned way and divided into gaadri-
laterais. The resulting element is a positive element like the original
clements.

The multiple shiclding process can Le carried on 1ndetiniieiy tn a~count
for an element that is shiclded by many others. However, the first
application descrived above appears to cover all cases of practical
intercst. Simple shielding corresponds (o the case where two {orward-
facing ¢lements lie on a line parallel to the freestream velocity. The
first application of multiple shielding covers the case where two forward-
facing elements are on a l'ne parallel to the freestream. It s planned

to restrict attention to this case nitially. This does not restrict the
number of sections inte which the body may be divided.

Aficr the above s lements have becen generated, forces and momernts on
tte body 27e talculated in the ugual wav by summing the contributions ot
ali rhe wicmeni:. The contributions of the negative elements are rrulte -
pliz.i by minus one before summingz. The positive elemients arising. from
the overlap of two negative elements are summed 2s they stand. Thus,
for example, ir. the case of sin:ple shielding the contributions of ail the
origina! elements arc first added, and the contributions of the shieided
puitivns of the elements are later subiracted to give the desired ne:
forces aad moments.

With this gencral approach description as background, the failowing
ciscussion provides the detaiied procedurces used in the shiclding
computations.

‘Given a body reprevented by plane quadiilateral surface elements and
given a dircction, determine what element: and/or parts of clements

arc visible to a far-distant vbserver in the givven direction. For a com-
pletely general procedure all combinations of si.:elding elements must

be considered. Thus, every elem.nu has a potentiel effect on every

othe ¢ and the "'calcuiation' involves aa effost of order NZ, where N is
the number of elements. For the large majority of element combinations
the “calculation’ consists of a test whose result is negative. Thus the

basic ‘‘computational operation’ is very fast, Howewver, a calculation of
the order N¢ can be expected to be tirne-consuming comparcd to a much
more complicated calculation of order N, such as is accomphishad 1n
other parts of the Mark IV program. The principal criterion for
formulating a calculation procedurc is computation spced.
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Division of the Bodyv 1o Simple Sections

To reduce computing time and simpliiy the programmang luaic an assump-
tior is made that somoewhat restricts gencrality of the method and relies
on the user to furnish some judgment in inputing 3 body. However, the
scheme adopted appears to apply tou all bodies of practical interest for all
abservation (freestream) directions. Morcover, the judgnient Tequered
of the user appears reasanable.

First forward-facing and rear-facing clemoents mus: be defined. Sugposc
there 1s a vecior along the obscerver's line of sight., Take the dot product
of this vector with the unit normal to the clement. The dut product is
negative for a forward-facing clement and pusitive fur a rear-facing
element. (Sec sketchl)

n -
.
\
rear-facing forwarc-facing
s element lement
s
N

observatiorn direction
(freescream)

Revar-Facing and Forward-Facing Elements

The inprt clements are organized into sections as described in Suc-
‘ion 111, However, it is assumed for the presen! that the user dicides
the bocy into scctions tn a way that aids the program.  Specifically, it
1s assuncd that the tody 1s divided into sumple scections. A scecticn is
defined as simpie if and only if any line paratiel to the obscervation
direction intersects no more than one forward-facing clement of the
scction. For example, any cntircly convex or entirely concave section
is a simgple section for all obs«rvation directions.  Scoe parts (a) and
(b) of the sketch beiow.

A mixed concave-convex scction 1s not a simple sccticn for all obser-
vation dircet-nas, but it may be for some directions. Usually 1t is
possible to divide the concave-convex section into two simpi: scections
along an infiection line as showr in (<) 1n the sketzh, At worst it maght
be necessary to run two cases, onc divided one way for cortain
dircctions and one divided another way for other dicections.,
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(a) Convex Section (b} Concave Section (¢} Convex-Concave Sectian

Element Formation

The proccdure for forming clements it W +light addition to the present
prccediure, and several additional guant.tirw are storcd. The present
proredure first calculated the coordinate .~ of the {our corner points of
the quadrila® 1l element in the reference coovdinate system in vwhich
the body 18 input. These are transformed into coordinates bas (- on the
element, and the reference coordinaies are presencly discarded. 1n the
new scheme the reference cocrdinates of the cornov pouints must alsoe be
stored with the geom:tric quantities that define an element.

Body Rotatioa

The body is roteted to make the observation {(freestream) direction iie
along the negatiwe x-axis, Standard rotiticn formulas are applied.

Rear-Facing Elewmenls

Each e¢lement whose normal vector has a negatwve x-componcent is

eliminatead frorn consideration. This ca2n be done cither at this stag-
or as the e¢lement occurs in the procedure below.

Maux-Min Coordinate Computatio..
for Each Forward-Facing Element

Let the zy-coordinates of the corner points of an elemend be denoted
Yk 2k whese k=1, 2, 3, 4. Determine

Ymax = ™MeX (¥}, ¥i.o ¥3. ¥y)
Ymin - ™0 (¥} ¥2. ¥3. vy)

{A-1}
Zinax - max (7.1, z, 23. 24)

Zmin = mMin (zl, 75, 23, z,.}

These must he recorded either logicaily by integer designation or
physicaliy by storirg the selecied max-min coordinates an additional
time. This las® would add four additional storage quantities for cach
forward-facing ¢lement.

97
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Section Urdering

Whide the computaticn (A1) above 1 procecding, the roaximiwn saiue of
» for cach clvment s tomipured but not storad. It e conmarcd with the
larg. st mavumum of previvgsly conziaerted cdemeat«.  The Gnal result s
the largest value of x of any forwaid-facing clement in the section. Cail
this x{Me X)) Tie gections are ordered an ancreasing 20dor oF ¥iagA X)
stairang with the smallcsr, Wath this defirstioa. cach scction s behand
all suuscyuint sections as viewe ¢ frors the observativn shirection,

Basic Proulem. Elenent Overiap

The basic problem of this comyputation conmists of deteerimining what
clements are bloucked or shiieldd by others as scen frain the vbservaiion
dircction and of determining the geometry of the shiclded recron. All
calculation up to here has been preparatory and has been done essentially
once for cach element or N tuncs - aot N*.

Since the obscervation dirccuion s p2.ailel to the s-axis, the questiorn of
whether or not one element shields ancther 1s cguivaleat to whethor o1
not their projections i the yvr-plaad intersect ot overiap. Thos ts the
tes! that mus! be made ar osder of N2 timoes.  Some informat:on s
already available before any tegtiag:

a. Elements in the same simpl. scction cannro! shicia the
oth.-z.

b. M two or m1ore ciemmeals &7 ON¢ 5 Cre N Shie!

d nne ol ment
of anotact scvction, the various skeeldo d Lorticns cannot

themscelves overlap.

it

' the ve-projections of two ¢lements overiap, it s the
clemoent of vh: lagher-ordered seciton anat shaclad il
clement of lower-orcdered sec ion - not the oppos:re,

Prejecied Elements

An clitment as projected into the vz-planc oy simply ignaring the
x-coordinates and considering only the yz-reterence coordina’ss of the
corner points.  The clemoent in the yz-plane that 1s obtained this way s
denoted a projected element. It as the projected clements thar are
tested for overlap.

Dircct Coordinate Test

The sections are considered in order beginnine with the towest orsd-red.
Each projected element of a scition is *ested for overlap with all ele-
ments of all subsequent sections.  This test 1s done 12 more than one
way to minimiize computing tumie o comgaring two clements; one s



called the first clement and the other the second element. It is natural
to detrt: the eleirent that is being tested for overlap with all otliers (of
subsequent sections) as the first elemens. Thus, if there is ave flap, it
is the first element that 18 shiclded by the second.

P Most element pairs are '3ufliciently disj-int’' sc that their nonoverlap »
can be revealed by tli¢ very sample dircct courdinate l-n &x?? se the o
first projected elemaat has corner point coordinates yk ', and 0
the second has corner point coordinates Yl:( , “) whcre ln otk -
cases F =1, 2, 3, 4, Maxirnum #nd minimum v and z arc known fur .Y
1 cach element from (A-1)

£ sufficient con 't‘ion for ronov._rlap ie tha* all y,‘(z) are grcaler (or
icss! than all Yk A similar statement holds {sr the z's, Tlese
cond.tions arc equivalent to the following inequalitiec

2y (1)) (2) {1)

(ym‘dx - mm’ ( min = Ymax ) >0 (A -2) L

; (2) (1) {2) (1) - -
! (zrnax T Zmin ("‘mm B lm‘u) >0 aC
. ‘pw

i If the y inequality is satisfied, tae 'wo projected elernentes do not overlap,

! and the z inequality necd not be perigrmed, 4
i

To see the mcanirng of the in2qualitice (A-2), let the t projectec ecle- ‘

3 men bc' as show 1n the sketch below. The y inequa ! \; 1s gatiglied for o

l :
! )« .
4 (2 23" )>
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all sccond ciements that liec entirely 10 region R or entiiddy in regon L.
Prabably most elements do so and thus, onc test s requivcad.  The
incqualily 1s not satisficd for sccond <lements that intersect or he
between the solid vertical lines. Howcever, the z-anceguality 1= saiisficd
for all nuch clements that hie entirely above or below both dotte-d hor: -
zontal hines. Probably most sccond clements that do not satisé- ihe

Yy -incquality do satisfy the z-ircguality.

The very simple _inequahitics (A-2) reveal nonoverlap for meit clemeni

pairs and the N¢ part of the calculation consisis wmainly of these
*wou tests (only onc 'n a majority of caces),

Left-Right Test
This is applied ic a pair of clements that fai! (o satisfy incgualitics ‘A -2,
The “side vectors™ of the first pro ~cted quadrilaterai «lemond are recdad

2nd probably those of the sccond. Vhese are to be compu.-d ahead of
time for all elements ard stored. Ti.c zide veclors arc

P TR TR R A
: =y WYENT: Yk
§23 7 W3ty h (25 -2,

(A-3)

2

834 7 g - v3))t {2y - 250k

n.“ - (yl - y_‘\; * (z| -z )k
Superscripts 1 and 2 will be uscd to denote quantities associated wath
the first and the sciond projected clements, respectinaelv. Now two
projected clements overlap 7 and only if one of the icllowing conditions
1t satisfied. Either- (1) at lcast one side of the first intersects at lesst
on: siGge of the second, or (2) one element completely contains che othes,
This iast occurs infrequently and s handled scparately. Thus, the biasac
cperation here is to dr .comine f a particuiar side of the first elerment
and a particular side of th- sccond clement ainterscct, Conside s the side
12 of tr2 first el=ment {the procedare 18 wderticzal fur the other sides ).

A point (y.z} 1s sard to hie to the Jeft of this sade if 1t s e ft with respect

- 1Y)

to the siude vector s,. . Form the guan‘tity
- {}) » .
r,, y.2) = (y - v.‘":; + (= - zm)k (A -4
12 ' |
No‘ - .I) - -
.;2 x l’lz(y.‘:? ) [l'iz(y-l” 1 (A-5%
wherce

1 ‘1 i
L-‘z(y.t) = (z - r(l l)(v1 ', \"l ’

[

(ll‘hl!\ ) lll\

) -y -y, 5 ) (A-L)
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20d four ditferences 1n L), have already beea computed. Lyalv,.2) e

the perpendicular distunce that the point (y,z) lics to the tcft of the
extension of side 12 (scc sketch below).  Ia particelar, Loy, z) is

Now sice 12 of the firs! preojected clement und 4 side of the second
projected element intersect if and only if the end points of ezch are in
opposite direclions with respect to the other. This raquires that one
endpownt of the side of the second clement Lics 1o the left of side 12 of
the firs: elerneat znd the other end point of the side of the second el:-
ment lies to the right of side 12 of the first clement. A sumilar stale-
meunt 1::%8t hold for the end points of side 12 of the first elemeat with
respe -t to the side of the seccnd element.

Q(y.2)
\
\ . -
‘ \\Lu(y R ,)/ -
\ e
i
7’
PRy
) ()
(yz 2y )
) ar1y
8 g P
*12
(1 _)
(Yy %y i
Thus, first consider side 12 of the first clement and comipute left
distances for all four corne: points of the mccond ~2ement
2} _(2)
2 2
) (A-7)
&Y _(2)
LlZ‘)} e 2y )
(2 )
Liatvg » 2400
If all four ar.e of the same si1gn, no intereccticns with side 12 are
possibic. f two consccutive iy, arc of oppusite sign (counting the
first and las. ar consccutive}, an intersection of side 12 with the side
between the two points 1n question is possible. For cxample, f
4
101

positive if (y,z) is to the left of 12 and negative if it is 20 the right.




ng(ygz)- l:u’ and l.'z(y:,'z). L‘ZZ’I arc of oppasite sign, an intcrrection

of side 12 of the first element and side 12 of the sccond element is possible,
To verify the possible interzection ,take the pertinent side of the second
clement (12 in the example) and rompuic L's for the two end points of

side 12 of the first element. There is an interscct:on af and only if bere
are of opposite sign. Such a check ig necessary only for the "sign ~hzeges™
of the aeguence (A-7), If:wo consccuave L., of (A -7) have the same sign,
the szide of the second element between the points in question cannot inter-
sect side 12 of the first element. For convex clements, 2 side of the fust
element can intersect no more than two sides of the eecond element.

The above procedure is repeated for all four sides of the first elentent.
The results determine which sides ot the first intersect which sides of
the second. Also calculated arx tiwe sixteen L.'s of the four corner points
of the second clement with respect to all four sides of the first element
and the L's with respect to the sides of the sccond fur cases of possible
or actual intersection,

Final Elemcent Classification

The procedure above determines whether any of the sides of the two
projected cltements intersect. If there are intersccticns, the two ele -
ments oveviap. If th:ve are not, there are three possibilities.  Either:
(1) the elements do not overlap, or (2} the first clement campleiely
contains the second, or (3) the srcond eclement completely containg the
farst. I there is 0o overlap, this phase of caleulation ie complete ang
logic procecds to the next clement paar.

The first element completely containg the second if and only if all sixteen
of the L's of the corner points of the second clement with respect te the
sules of the first element are acgative.

The first clemer! is completiely contained in the sccond if and only if the
L's tcsi showe that cach side ¢f the first clement had cxactly two pos-
siblc interscctious with sides of the sccond clement and all cight turned
out not to be interscctions

Generai Handling of Overlapping Projccted Elements

The barsic calculational task for rwerlapplag prujccted clemen  consists
of determining the polygonal arca common 10 the two viefuent: projecting
the golygon cato the shiclded clament (the first clement in th:s scheme),
and treating the result as a acgative clemert in force ana mament calcu-
iatioas. That is: (1) generate all necessasy geometric guantities
gescribing the shiclded poriion, and (2} put them arnide for later usc as

& negative ciement.

Completely Contained Pres-sted Elements

1f the projection into the yz-plane of onc ciement complcetely contains
the othzr, there arce two possabilitics which arce treated ae described
below.




P
.

The fivst possibility 1s that the contained element is shiclded. This means
the firet clement is contained. In this casc a duplicate of the first element
is added to the negauve clements and no additional averlap comparisons
are made with that particular ¢lement as first element. Howev-r, the eic-
ment 18 maintained among the normal positive ¢clements and ar;, urevious
int. rsections are left undisturbed. This last considzration is the reason
for this unusual treatment. If the first clement were o e simply eluni- |
ated, a scarch for previous iatersections would have to be made, and trey -
would have to be chiminzted aiso. However, there is Re point in locking

for sub3scquent overlaps.

The second possibility 1s that the contained vlement shiclds the other, e,
sccond clem *nt is contained. In this case the negative clemant is the pro- >,
: jection of the ccataineg (second) clement onto the containing (first) elemient.

Overlapping Frojected Elements with Interscecting Sides

: The usaal case of overlap 1s that fur which one or more sides of the pro-

{ jeoted elements intersect. For convex clement:, a s.-de of one element

| mtersects: (1} ne sides nf the other clement, (2) one side of the other

: clemont, or (3} two sidvs of the other cleznent. The first clement is the

| one taal 1s shiclded. The negative cle ~.ent is the projection on the first
elenme it of the common arez of the projected clements in the yr-plane.
The paincipal task i to deternune the common arca of the elements in
the yz-plane and to divide this arca into quadrilaterals and/or triangles,

! ]
3 : Ovrv.rtinn Af th. avr.a antn th, fiecr . lianman? ic thin esathar vas=a- Tha :
P Projection of the area ente the first clement s then rather 23y, The —
; con.men arca is a pelygon. Ali verstices of the polygon are dectermined .
: in ciockwis¢ order about the perimeter. (Pecall that the four coruner points : {
| of any forward-facing quadrilateral elemz=nt arc 1r. cleckwise ovdev in the "
] - B
vz-planc.) The vertices of the desired polygon cansist of: (1) points oy
intersection of the stdes of the two quadrilaterals, (2) corner points of

the first clement that lic inside the sccond.

’ The yr-coordiaates of the interscections can be written down casily in ,[
terrns of the L's calculated as in cquation {A-06). Basically, a4 Z2x2 sal '
1 of iiacar cquations is solved, but some of the work has alivcady been donc _‘-J

in calculating L.'s. Thus, for cach interscciion psint its yz-coordinates T
and a deeignation of which sides of the two ciecments intersect at that puint

arc avatiable., A corncer point of the sccond clement lies inside the {irst \
if and oniyv if all foar of the L'e that apply to that poin® arc negastive, A
Thea, the information for tagging cach corner poimt of the sccond as lying .
:nside or outside the farst is alr:ady available. Goe:acrally, the same /?"
[ information i1s not a ailable for all wour corners of the first element, .

becausce all saxteen I.'s of the corners of the first element with respert
to the sccond have not been calculated by the preacedure. :

Two cascs will b considered separately: (1) at lcast one corner of the

r § sccond projected clement 1s inside the first, and (2) no corner of the '
Pt srcond 15 inside the tirst. The difference between these two cases lics o
I ! solcy 1n the rule for inttiating the vestex scarch, Oace the process has i
: begun, it is identical in both cascs. *
b .
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If 2 nunzer « number of corners ot the sccond hhe inside the first case 1},
start with the Jowest numbered cornsv (1, 2, 3, or 4). The first vertex
of th. commson «rea polyeon is simply (hat corper poin?. Now consider
the sude of which the cicen corner 17 the inmitial pownt.  For exanmiple, of
the first vertex s coreer pount v, conzider sade 34, Now check tac
iniasmation on ntersections 1o aetermiae how many times thas side
intersccts sides of the firs: clement. There are only two possibihities:
Zerou .0 Oee. il a sace has twe intersceciions, both of wts ¢end points must
b outside e other clement). I thervs are seroantersections, the other
vnd poirt of the side (corner asint 4 :° the examc') is also insade, and

1t s the next veriex of the commion are2 poiyegon. In this casce the calcu-
lation prececds to the acsxt side 13l 10 the cramipled. I there as ene
interscction, 1t as the next vertex of the common arca polygon. in this
cas., deternine whicl shid- of the firs: clement bas been antersected;

thcn d-terinane whether o not there is arnother intersection on this siude
of the firs' clement. I there as, 1t s the reqt vertex. If aot, the ter-
manal point of the sidd, . u. . corner point 3 on side 23, 1s the next veriex,
Ir. the tatter case the next stage of the calculation s ik the original stage.
inth- forn- r case, the next stage i3 hke that following the first intaersec-
tion wiith a side of the veement. [t ¢can be scen that thero ase only four
truly distinct operations a the above - cheme corresponding vo the fact
that ta:re are only foar cssentially diftereat starting points. The
opcrations of the procoder.: for desermining veritces of the common arca
polyion may be divided nio four catceypories, associated watl, the jour
kinds of starting points, as toliouws.

i. interior correr paint, Hirst dement,
2. Internior corner point, sccond cleraent,
.. Sidy mntersection - contuinue first clement,

3. Side interscection - continu. scecond clement.,

The thard catcgory reders to the tact that af previously an nterscction
with a sid.- of the [.rst clement has been dotermained by exteading a side
of the: = cond clement from wathia, then the next vertex 1s to be sought
on tha' same side of the first clement. Category 4 refers to an
analogous situaties for a side of the sccend clement. Obvisously, cate -
gortes 1Y and 12) and catvgories 13) and (1) are syTameotric and only two
algorichms are needed. For cach zatepaory there are exactly twa
possibilitie s far the next vertex deounding on whether or not there 13
(additionalt 1adccrsection en the side an question. The possibalitwes ar.
1illustrar.-d i the sheich below, where sulid hines ar- used to denote the
first ¢iment and dottes hnes asce used for the second clement,
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Detecminet fon of Vertices of the Common Ares Polygon
Category ¥ Interssctiocn intersection

The bacic procedure can be summarized by the table below:

Catcgory Category (1) Category (&) Category (3) Catcgory (4)
Interige Interior Intersection Intersection
Sta rting Corner Caurner Con’inue Continue

Poin: First Scecond First Second
Eicment Elcment Element Element

Docas side have
an {add.tional)
intersection? Yeo No Yoz No Yes No Yeo No

Next vertex 1 T(1) | T(2) | T{1} 1 T(2)
Next category (4 i) {3) (2) 4 (1 (3) 2)
1

T(1)
T(2)

the interscction poin?
terminal point of th- nide of the tirst elemant
terminal poini 2f wic s1de of (te second element

N - / \\‘-
\"\ N\\~ \\
- T
- -
- /
() h /
7/
\
L

S .
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As moentioncd above, there are tno cases as far as starting the above
procedure: (i} siarl at a corner of the sccond clement that is its:d - the
fyrst featagory (2)), or (2) there ace no cuck cornern. The scoeond case
;e further divided into two parts so that altogether thers: are three
starcing coadil’ions.

If no corner of the second clemert e nside the first, consid-r first
the Jowcest ranking side of the iirst civnicat that has two intersections
(if there is onc). Determnine which ante “scection 1s nearer the anitial
point of the sid>.  Take that interscctica as the first v -riex of the
common area polvgoa and the other as recond vertex. Thrn coranuc
the above procedur: commencing with th: sccond intersecrron as
starting point wath the category (4) procedure.

If no side has two interscction paints, take the lowest ren ang side ¢f the
farst clement thrt has an intersectinon and teet the two endpoinis o the
s:idc onc by anc to determine whi:ch anc is inturior to the scecond alement,
(One must be becaute there is jJust onc intersectwn. ) This involves ox-
aminiay the signs of some L's, some of which may alrcady be computed
from cquation (A 6). If one end point is interior, thic other cannot be, and
there i3 nc need to test it. There are iwo possibilities.  If the initial
point of the side is iaterior, take it as the first vertex, the intersection
a8 the sccond vertex, and initiate the: above procedure starting with the
ictersection and category (4). 1' the terminal point is interior, take the
interrection as farst vertex, the terminal poirt as scecond vertex, and
initiate the above procscdure with the terminal point as starting ncint 2nd
P YT ¥ 5!}.

1o all cases the aber ¢ procetdure 18 constinued until the aext vertex deter -
mined 1y the Lirst v rtex. That is, continue until it “comes back viaere
1t ntar.ed”’. Now all vertices of the common arca poalygon arc known in
clockwise ovder in the yz-pline.

Division of the Ccanmon Arca Polygen Into Quadrilaverals

It would be possible t0 dceal wwith the commeon srea polygorn directly as a
polygon, but it appears more cificient to subdivide 12, The polygon has
cither 3, 4, 5, 6, 7T or 8 sides. Associate the vortices 1n corsecutive
groups of four with possibiy three in the kast grou,.. The groupings arc
as follows (other groupings are possible):

No. of
Vertices

Groupings of Yerlices
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Thus the polygon is divided into cither one, two or three elements.
Eitheo ali of theve elements are quadrilaterals or al) but oae are. The
remainirg clement (if any) is a triangle, which is a spelial care ofa
quadrilalzral. These arc the projecticns of the ncgative ciements
associated with the intersection of the two original elements.

“armation of the Negative Elements

The yz-prujections of the negative elements that are obraiacd above must
be projccted oato the shicided clemeni, which is the firat clement of the
two original clements. The mast efficiant way to do this is to compute
geom:tric quantities for the negitive <lements o the yi-plane 20d ther
adjust thcse quantitics by mueane of the x-compoac2t of the normal vector
of the sticlded clemepi. Thiz is a well-kacwn procedurce. 1In typical
cvases the cumber of element shicldings thould be of the same order or
lvse than \he number of clemante, Thus, the computing time fer forming
the negative clernents should S nn greater than that for the original cle-
ment formation. Also recorded are the shielded and the shielding element
for each negative clement.

Multiple Intersections

dhe

Th. neacard;e. 1a nna finiaha,
AT ProCegue s oW Iumsae

These cccur when the t-pro;ccnoas of two or more ncgatlve clemeats
overlap. Thus situauon arises coly when at least three torward-facing
elements are intersected by & line parallel 1o the observation directiua,
¥or a zloscd body. this means that some line paraliel to the observation
dircction must interscct the bocy at lcast six times. These conaidera-
tions ar~ illustrated in the sketoh below. The case wher some hire
piralicl to the obgervation dirccticn itlersects exactly three forvward-
facing elements aud r.o lin~ interscects niore than three is dennted simple
wultiple intersection, because only two (po! morey nega-ive elernents
overlap in their yz-projections. 1t app-irs that all bodies of praciical
interest are included 1n the case of siniple multiple intersection, and
attention will be restricted to hat cose.

unldces there are mnl! nle interavctions

o< sl s T L stnim Al SIS ETTLILGES.

obssrvetion observatioa
directiion “Atectiom
- ———— . R e e e
(frecstresw) (freestream)

Y A
g \,/“ NZN

(s} Ro multiple {ntersection (b) Sirple multiple frtersection
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Pressure and Moment Calculation 1n the
Casc of No Multiple Intersccticns

These ar- dooe exzctily as they are in the existing Hypersonic Arbitrary-
Bedy Aerodynamic Caomip er Program. Pressures and moments are
compuied for all cleincnts. When they are added togetnsr, the contribue-
tions of the ncgative cluments are revers-d in sign. Thus, the contribu-
tion of a shiclded porticn ot an clemen: is added positively with the
clement itacli and then canceiled by adding the negative cfiect of the
corresponding nugative clemeant.

Dectermination of Simple Muldiple Iniersection

Ncegative elements are stored according (o the {i18. or shielded eleinent
and are labeled with what ciement did the shiclding and to what section
the latter belangs. It is cas~ then o scarch for cases where one element
is shiclded by more than once other clement, becausc the corresponding
ncgdative elements are stored together. 1 ihis occurs, the 2rea cornmon
to the negative elements must be determined so that it will ne? be aub-
tracted more than once.

1 an element is shicided by two or more elements of the sarne simpie
scction, the resulling ncgative elements cannot overlap. Thu:, the
condition for multiple intersecticn is that an clement is shiclded by

Determination of the overlap of negative clements is ¢ssentially the same
as the originai clement-overlap calculation. 1'irst, rotice that all ele-
moents are in the same plane, namecely the plane »f the shielded elernent.
Thus, al! caiculaticns arc carried out in this pl pe 2ncd no projection is
subsegucntly necessary.

Thwe logic of the calcuilation 18 ag dbefore. The ni gative elements for cach
s ttion arc tested for overlag with those of each succeeding section and
cnotnmeoen arca polygur.s computed. Now, howev .-, the "unit calculatica
consis’'s of sceveral comparisons betause cac'. negrtive elemes: may con-
818t o' scveral quadrilateral elements. The resulting common arca
poiyeons arc associated with the lower (thicided) scction. The resulting
“megitive clements™ are positive clements and arc treated as such in the

force and mement c2itulations. Thus, the fact that two negative elements
overlap means that sy subtrazcting the contributions of both of thesn in the
force and momeni corfr.putations, too much has been substracied. This is
corrected oy addition of a positive clemeat identical to the commor urea
of the two negative clements.
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SECTION VII

COMPUTATION OF VEHICLE FORCES

Calculation of Locai Flow Conditions

in the geomsetry part of the program the wnput eiement is converted into
a2 plane quadrilateral element. The quadrilateral is described by its
avea, the coordinates of the centroid of the element and by the d:rec-
tion cosines of the surface unit norraal. ’n the {.rcc calculation
methods we must also know the angle that the elernent makes with the
freestream velocity vector (the impact angle). 'This angle changes as
the vehicle atisiude (a.gke of attack, yaw, ara rol! angle) clianges. The
impact angle may be found {rom the following relatior.ship:

& =m/2 -6
n -V
cos @ = "'_ —
|ni !Vl
where
n it the “unit normal outward from the surface with
Jlirection conrines n, "y' n,
v 18 the local velocity vector with direction cozines in
the vehicle coordinate system given by Voo Yoo \.fz

M

The direction cosines of the uni! surface norrnal .3re givex by the
quadrilateral calculations. The value of the local velacity vector V
depends uoon the vehicle attitude with respect to the ¢ cestream direc-
tion and its 2agular rctation rates, aad is derived in the ditcussion
below. The rotatioa directions 2re consistent with he conventicnal
stability body-axis system. The coordinate systern, however, is
changed to be consistent with the geome.ric description system

discussed previcusly.
V4

K

o
Ja
A\

\
|

where > (S o)

rolling velocity
pitching velocity
yawing velocity

‘otal angular velocity

2L

[0
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The movement of a given element of the vehicle with respect t: the

freestream depends upor the vehicle rotation rate and the positior of the

element relativ: to the rciation center. The radius vector from an

arbitrary ireterence point cn the vehicle to a point on the surface is
et by

ros (x-x )i+ ly -y )y o+ (z-2)k
Zor Yor 2o is the momeat reference poinct (center of gravity).

total angular velocity is given Ly

9= Pi-Q)-RKk
The freestream velocity vector is giver by

- = 14 .' r
Vm = 'mx.l + \wy’* "a)zk

The total velocity vector relative to the surface element obtained by
cornbdining the abcve relationships as follows:

V-V, -9xr

The lccal velocity vector therefore becomes

v = Vv r’Q(z- - R (y-y -“,’
? ox i ZO) () )O)J‘ 1
{ - | . I -
+ ’me . .R (x-xo) o = (z-zo)]‘- J
+ \Wv o IPevy . _ | -
.. ﬂ (v-y ) * Q (x xo)]‘k
or T = v v jev i
where
Vx = \rwx - [Q (z-zo) - W (.}.__.’o',]
v,, = V::-)_? [R(x-xo)- pgz-zo)]
Vv S v - . . N .
2 s (P o)+ Qix-x i)

The total local velocity 18 given by

\’2

. . 2
\local - \, x

-
+ V e, v
y z
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The counventioral surface impact angle 18 then given by

a V- Vo-n_ Vo e
X %X Yy y _z .z ..
v )

fecal

& =m/j2 - co».l (

shere n..n_.n, , are the outward sv.-face ynit narmal direction cosines

To complete the preceeding compulations e rust «tain the frecatream -
velocity componants; me » Voo, » and Vg, . Thes: equations ite derived .
below by using ‘he convcncional right-handd coordinz = system and apply- <"
ing the necessar: rotation matrices using & yaw-pitciz-roll s=quence. '
4
Rotation abowut x-ax»is, yaw .
5
cosy sin gy ¢ .
[¢) = |-sin¢ cos ¥ 9
0 o 1 .
> \
Rotation akout y-axis, pitch 3
R

rcosa N -sin @

lo} = o i ¢
sin 8 0 coséd

Rotation about x-ax:s, roll

1 0 (M) 7
(&) = 0 cosd sin$ I
.0 -sinég cus o

The complete rotation matrix is as foliowse

(Al= [4][6) (o) |
. 'W‘J
cosfcosPd cosGsing - 8iné
[A] = | sindsin@cosy - cordpsing sindsin@sin¥+ cosdccs¥y sindcosl
cospsinb cos¥ + sindsing cosdPsinfsing - sindcosd cosdcosh \




= e ar e oy

r\{;;1 f-\:,, ] r ~V__cos8 coz iy

- s

‘(‘x’y = [A) 0 = -Vp 8ind #1nf cosg + V. cosp sind
Va'): 0 Vo cosd sin@ cosyy - LA 810 siny

To be consistent with the coordinatc and sign :onventions used in the
prugram we musi now apply the following relationships

e " ver
f". r

o, \GO). = 'me g Vm: = '\mz._

\;"x

n

a = 6 . B=-¢ ¢ =9

where
a = angle of attack {+ with vehicic nose ud)

™
"

sideslip angle (+ with 1 ¢picle nose left)

& = -oll angle (+ with right wirng dowrjy

The freestream: velocity components are, therefore, given by

Vo, = -V _cosacusB Y
% =

"{Dy =V, sind sina cos B + Vo cosd sinf - -:~_

Yo, ® Vp ceséd sina ces 8 -V sing san g8 ¥

{Joefficient Transformaticns

The conversion of the ax_al for¢s and normal ferce coefflicients o 1:ft
and drag coelficients requires the followiig matrix opvration.

' -
CD -LA N
-1
' - 1
C Y Cy
where
\ cosfcos¥ singsinlicosPp - cosdsiny cosdsinbcos¥ » sindsind
[A] = cosfsiny sinésinlsing: cosPpcosy coushsind sind- sandcosy

-sind sindcosd cosd crsl
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A

CD = - CD . CL = - CL . C) = Cx

6 . &

Since

- . $ = +

«

the finai force coefiicient transformation equations become

Cp = Cp cosacusg - Cy swé sina cosf - Cy cosé¢ sing

+ CN cosé sina cosf -~ Cp niagd sinf

Cy = Cpcosasiaf -CysindsinasinB+ Cy cospcosh
+ Cp co3¢ sina s1cf€ + Cp; sind cus
Cy; = -Cp sina - CY ~rinéd cos a + CN co3¢ casa

In somie parts of t',e program it is nececsnry to xro¥ e directioa in
which a=a elerrent gshear force is acting (i.e.. Jree molecular flow, skin
friction). Ty derection 18 ansumed to Ye in the plane of the 3urface
outward norinal and the {sial incident velocity vector, and is detern.ined
by taking successive vector products as foilows.

Sarfacs Velocity Vecator

The pracedure is illus’rated in the

accampaning sketch were the in-

cidert velouity vector :is defined

as _ . - -
- PR Y

Vs veis Vgt vk

and the surface normal ac

Nznxi+uyj+nlk

First, a rurface tangent vector (T) is defined by the cross p:aduct ci the
normai and veloucity vectors;

T = T,i+Tj+T,k

where

iy ny \’z - n, Vy




Then the directicn of the shear force (S) is given by the crosa prodact
of the “.stace tvagsol and normal vectors;

T - s i &Sy?i*szl-:

'v._ x
wherc
‘_' z ’."yn.l_ - 'I‘z ""y
Sy = Tz o, - 'l’,l o,
Sz = Tx ny - T’, a,

Pressure Coefficient icrrectiocas

In the zrogram force calculaticns the pressyre on exch element is calcu-
lated complet=ly indepcndent of ali other elemcnts {except the shock-
exprasion methog). If the vehicie ic rotating the local gressure cocfficient
must be corrected back to freestream conditious. This is accomplished
by the fciiowing relationship.

. Vlocal)z
C = C ) (-—--—-
P2 Plocal Vm

Cp = pressure <oefficient based Hn
1 local conditione and inctuding
vehicle rotation iare corre.ction

where

.
Plocat = local preasure coefficient without
e local roiation rate velocity

correcrion

When interference cffects are heing accounted for, the precsere coefficient
is determinced on the basis of a "local” freestream condition a8 interpolated
from the flow field data. This couflicient is ¢oarrected to the real freestream
conditions by the =quation below.

C, = Y z
e 2 Mm
where
CI’ = pressure coueificient based on !recetream
conditions
C. = pressure cocfficient kzscd on local

pl intecference flow ficld

Mf = Mach nwmnuver based on laczlanterference
fiow field, FSin)




three force coefiicients and three momnent cocfficients are calculated.
The basic relationships to accomplish this are as follows:

A
(Cp n’ - C‘ S’.’ ?‘-

axial force ACA
ref

AA

ref

side force 4Cy = (C,, n -C‘S_y\

> W

A

ref

normal force aC,,

>
"
'
—
(]
©
=}

+ C‘ Sl‘

W

rolling farce AC‘ = 4C

<
TN
-
[+ 3
0O
7
[~

LXRE
ap
(1%
O

[a N R1{]

]
(S
0

»
o

yawing moment A4C_ = AC_

oI

where L

LA 'z eclemont arex

Cq = surfice skin friciion shear .
force coc’iicient .

S .sS.,S5 = direction cosine components
of surface velocity vector

-
E-
74
— = ratio of local intericrence flow field !
Foo pressure to freestream pressure, |
DINFL(5) Oy
g
M, - frcestream Mach number o
Vehicle Force Coefficients
In th~ arbitrary-body program, ihe contribution of eac’s element to
!
b = reference span (lateral and :‘
directicnal moment roefficient S
reference length)
' < = 1ir-ean acrcdynamic chord (for ‘.
loacitudinel momeoat referenze) ’

X, Yy, T = distance: from the center of
gravity
= Xcentroid - Xeg o €lC. s

s
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The minus signs in the above cquations are required because of the eign
coaveanlicze on x and 7 in the body coordinate system (x posilive

fur=ard, and z pcsitive upward).

The toiwal iorce and moment coeffizcints are obtained by summing the
contributions of all the elements:
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SECTION V111

INVISCID PRESSURE METHCDS

Many oi the pressure calculation methodr us -2 in the analysis of high-
speed shapes are listed in Figurs 40 2 avompr has been made ia the
preparation of this figure to indicate the interrclationshins of the
tnethods (the information c2e, of course, be orgamzed in mary different
ways). Some of these methods are move applicable t3 the arbitrary -

body prablem than others.

The method of characteristics is the eventual idcal approach for the
calculation of forces on three-dimensional shapes at high speeds. It
will require starting solutions for three-dimensional biunt bodies of
arbitrary shape. The deveclopment of a method of ~alculating three-
dumensional toundary layers would permit the use of an iterative
pPirocess to account for the viscous-inviscid interaction. Although this
approach has been used for some very simple shapes, the complste
solutiorn for arbitrary shapes is some time away. Significant progress
iz also beig made i the so’ .ion of the inviscid flow field by finite
difte; e nie mcethods. However, present mathematical techniques and
digital-compu‘er sizc and speed capability mast be rescerved for simple
shapes o umportant detail design applications where very large com-
puter times might be acceptabie.

Many of (he other methods shown in Figure 0 wouid be useful force-
calculaticn methods for inclusicn in an arbiivary-bodv system. The
selection of the proper methed in a given application depends upon
the vehicle-comporent shape and flight condition and must be selected
by the engincer on the basis of his knowlcdge and exp. rience in the use
of _ach method.

Three bas:. paths of obtainiag the inviscid nressurc in the Mari IV
program exist, The first paih is the most frequently used and is the
calculation of pressures by one of the simple impact or expansion
pressure mcthods., These methods require impact angle, or a change

e | 2 [Vt.-_k _“V.::l_.-:_
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Figure 40. Pressure Calculzticn Methods
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in 2aglc of an element frum a previcus goint and in some casce the free-
stream Mach aumiber (hig). These metinods, in thie mode, are used
without any interference cffects as in previous HABS programs.  The
nert scction presents a discussion of these simple impact type pressure
calculation techniques.

The sccond cath to obtaining pressures includes the calculaticu of inter-
ference cffects from one component on another. This ~apability us=s
same« of the simple impact methods but with local conditisas determined
from the flow ficld of another component. This method of obtaining
inviscid pressures with corrections for these interference cffecta is
discussed on page 115,

The final path for determining the inviscid presaurcs on the quadrilaterals
o” a shape is by mecans of interrogation of previcusly stored pressure data,
Tanis stored data may be either calculated or cxperimiental results. The
stored pressure information is not requirea at the quadrilateral centroids
gincve interpolation of pressures can be accomplished. Pressures, once
obtained at the centroid of cach quadrilateral, are summed i1n the same
manner as the previous two approaches tn obtain final vehicie forces. A
discussion of this method is presented as the last section.,

BASIC PRESSURE CALCULATION METHODS

The arvitrary body torce computer program coentains a number of optionai
imcthods {or calculaiing the pressure coefficienl. in ¢cach method the only
geometric parameter required is the element umpact angle, 8 , or the
change in the angle frcm a previous element,

Before the program calculates iiv Sressure on each surface element, 1t
checks to sec if the element is iacing the flow (in an impact region) or
facing avay trom the flow (in a shadow region)., The methods tc be used
in calculating the pressure ‘n impac! and shadow regiony may be specified
independently. A summmary of the program pressure options is pre: ented
beiow,

Basic Pressu:e Calculation Methoda

Mark IV Mod G Program

Impact Flow Shadow Fiow
Modified Newtonian Newtonian (C, = 0)
Modified NewtonidantPrandtl-Meyer
Tangent wedge
Tangent-wedge empirical
Tangent-cone
Inclinca cone
Van Pyke Unified
Blunt -body sficat force
Sheck--expansion
Free molecutar ilow
11. laput presrsure coefficient
{. Hankey ilat-surfacc empirical
13. Dclta wing empirical
14. Modificd Dahlem.Buck
15. Blast wave

Prandil-Meyer from free -stream
Inclincd cone

Van Dyke Unified

High Mach base pressurc
Shock-cxpansion

Input pressure coefficient

Frce molcecular flow

.
.

.
.

.
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Modificd Newtonian+Prandil-Meyer
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Since mest of thesc methods arc adejuately discu3seed in the litccature
ther will be reviewed oanly briefly in this document. The biuan-body
shear force and the boundary-layer induced pressure methode ave
discussed in detail in the section cescribing Viscous Force Mitheds,

Modiriied *ewtonian

This miethoid is probably the most v idely rszc of all the hyperisooic
force analvsis techniques. The ma)ur re.ron tur this e its ramplicity.
Like all the force calculation methods, however, its vahidity in any
particular apglication depends upon the fligh. coadition ind ae shape
of the vehicle or compcnent being cunsidered. Its imest peieral ap-
plication is for blunt shapes at high hypersonic speed. Th. usual
form of the modified Newtonian pressure coefficient is

2
C = Ks
P in" §

In true Newtcrian flow (M =2, Y= 1) the pararicter K is taken as 2.
Iit the various forms ol modified INewicaian theory, s given values
other than 2 depend rg on the type of madified Newtoman iheory used.
K is frequently taken as being equal to the stagnatior pressure co-
cificiznt. In oiher jorms it i1s deterrmned by the fcllcwing relaiion-
skip (Reference 36).

C

nos
- - L
K - —— e

T

. 2
sin
anose
where
C = the exact value of the presszure
nose coefficient ai the nose or leading
edge

= impact angle at the nose or leiding

]
nose cdge

In other work K is determined purely on an empirical bas;s.

K

fn (M, . shape)

When madified Newtonian thecry is uscd, the pressure coefficient it
shadow regions (6 is negative) is usually set equal to zerc.




Mcodafizd Newtonian Plus Prandti-Meyer

This » rethod, described 33 the bluni hody Newtonian + Prandtl-Meyer
te-hnique, is based on the analysis prcsented by Kaufman in Peference
21. The flow model used in this method assumes a tlunt body with a
detached shock, foilowed by an expansion around the bady to supersonic
conditions. Thir method uses a combination of modified Newtonian and
Prandil-Mcyer expansion theory. Modified Newtonian theory is used
along the body until a2 point i¢ reached where both the pressure and the
pressure gradients match those that would be calculai»d by a continuing
Prandil-Mcver expansion.

The calculation procedure derived for deterrmining the pressuie co-
efficient using the biunt body Newtonian + Prandtl-Meycr technique
is outlined below.

1. Calculate freestream static to staguation pressure ratio
LI ]
Y- ' -
p s A :.MZ-(\-l)]"
P - =. = —_——— < —
P, (O + 1) McZ.J Y o+ J
2. Assum- a starting value of the matching Mach number, M
(for Y= 1.4 assume M_ = 1.35) q
3. Calcu'~%e maiching point (0 free-stream static pressure ratio
Y- 1
p 2 -
Q . = 3
Po 2+ (Y - 1) M
q
4. Talculate new free-stream static 10 stagnation pressure ratio
2 4 1
vim Yo |
P = Qli- 1

P
4,(Mq - 0O -Q

Assunme a new matching point Mach nun.ber (1.7%) and repeat
the at ¢ steps o obtain a second set of data.

0. With the above two tries use a linrar interpolation equation te

estimate a new matching paint Mach nimber. This process is
rupeatecd uutil the solution converges.
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Calculate the sarface slope at the matching point

2 - Q-P
an’ b, =y

Use the Prandtl-Meyer expansion equations to {ind ths Mach
number on the suriace element, Mé

v. Cal:ulate the surface pressure ratio

¥

P T |
b - Y- 1 2
po "cllf 2 Mé

where

e is provided as an empirical correction factor
vy i3 the pressure on ti.c eleme:t of interest

10.  Calculate the surface to freest=e2m presture ratic

P, .
)

2
[}

11. Calculate the surface pressure cnefficient
, 2 Pe.
o, i ()

The results of tyvical calcuiatiens using the above procedure are
shown in Figure 41 Note that the calculations give a positive pres-
sure coefficient at a zero in.pact angle. As pcinted out in several
reterences these results correlate well with test data for dlunt
shapes. However, if the surface curvature changes gradually to

ze 10 slope some distance from the bLlunt stagnation point the pres-
sur¢ calculated by this method will be too high. This is caused by
characteristics near the nose intersecting the curved shock system
and being reflected back onto the body. 'fthe 2ero slope 1s reached
near the nose (such as in a hemisphere or a cylinder) this effect has
rot had time to occur.

Tangent -1 cAge

The tangent-wedge and tangent-conc theorizs are froquently used o
calculate the pressures on two-dimensional bodies and bodies ol




Figure 41. Biunt Body Newtorian + Prandtl-Meyer
Pressure Results
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revolution, respectively. These methods are really empirical in
nature since they have no firm thecoretical basis. They are suggested,
however, by the results of mora exact theories that zhow that the
pressure on a surface in impact flow is primarily 2 function of the
local impact angle. In this program the tangent-wedge pressures are
calculated using the oblique shock relationships of NACA TR~1)35%
{Reference 22). The basic equation used is the cub:c given by

(sinz 9s )3 + b(:inz 0.)2 T (sin'z 6, ) +d

= 0 or
R> + bRZ + ¢ R + 4 =0
where
0‘ = shock angle
3 = wedge angle
Z
M~ + 2 2
b = -— - Ysin ¢
M
<
< = ZM +1 flnfl) f‘!'zll'smzé
M* 4 YL
2
d - _cos b
M

The roo!s of the above cubic cauation may t+ obtained by using ihe
trigonometric solut.on procedure {(ree Reler *nee 64) 25 indicated

below.
Y] = 2 m cos (~/3) - b/3
v, = =2 J-pl3 cos («/3+60°) - b/3
Y3 = -2 J-Pp/3 cos (-/3-60%) - b/3
R, = y, - b/3
R, = y, - b/3

R = yS-bB



where

Y, = rocots of the reduced cubic equation 4
2
P = o <
]
. 3
a = amn-%ea .
LOo8 o = -~ 71"'-‘-'«'
3
2 V-{pr M) ™
- .2 _ ) . .
R, = gin” @, = rocts of the cubic equation ‘
The smaliest of the three roots cosrespoinds to a decrease in entropy
and is 2'sregarded. The largest roo: is also disregirded since it
never appears in physical actuality.
For small deilections, the cubic solution becomes very sensitive to
rumerical accuracy; that is, to the number of significant digits car-
ried, Since this is dependent on the particular machine emplo ed,
an alternate proccdure is usec.

When the flow deflectioi. angle is cqual to or less than 2.0 degrees,
the following equation is used instead of the above cubic relationzhips
{(Reference 23):

Y . s
‘ s g ==l oy
s | X - ATV RS |

Dace Gire shock angle is abtained the remaining flow properlies may
be found from the relationships of Reference 22,

[ 2 .2
(Y +1) M sin Os

L,
(y+1)° a2 sin” @_ J

L

124

P—
density = P, = p -_— |
(y - 1)712 ain2 0s i
[Z')'Mzsinzea-(r~l}][()'-l}MZsinza + Z]
temperature = T, T -
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pressure 4(M2 »inZ 0' -1)
coefficient = C_. =
p (y+1) MZ
where
( ) s cor.ditions behind the shock

Obiique shock detachment conditions are reached v hen no solution

may be found to the above cubic relationships. Uncer these conditions
the program uses the liewtonian + Prandtl-Meyer method for continued
calculations.

Tangent-Wedge and Delta Wing Newtonian Empirical Method

The tangent wedge Newtonian empirical method and the tangent -cone
method uted in the Delta Wing empirical method are based on the
enipirical relationships below.

M
9
]
“la
For wedge flow
sin b
w

sin 9= (1 - «) cos (6‘ - 53




For zone fiow (thin shock laycr assumption)

sin b _ .
< e

. X
""0, <

(l-z\cos(ﬂs-b)

In the limit as M-~ =, aaf cos (68 -8) =1
Ther-cfore

wedge cone

R 2(Y ¢ 1)

s:nﬁs =z —3~ sin¢ sin as = 573 sin bc

Thevc limating expressions for ¢ may now be compared with the
data of TR-1135 (Referernce 225 at v = 7¢5 ussng the fcilowing
similarity parameters. The exact equitions contain iree vari-

r.J
"
-~
b
-
=
=
1l
- i
i
)
.
/
-

ables ~ 84, b, and «. Noting that for Y = constant, « = fn(Myg) 23
only. the preceding cqualicns may te sewnitten in the following e
form:: "
wedge cone
Msin b M sin &
M., T T ‘(‘0 5 M= v -
e - ¢ -
8 cos s v.-) ns O - :é) cos (85 - i)

<

The parameter (8 - §) is approximaiely coneiant and independent o
M except near the shock detachment zonditionr. The cquations es-~

sentially contain only two var:abtes, M and M s3in 8. These are

used as coordinates to piot the data [orn\i'-cdgc flow shownrn in Figure
42, A similar piot could be obtained for cone flow. From the figure )
tt 18 Secu that the data are neiarly normalized wath the use of these '

coardinates.

For rapid calculations we¢ nred relationshins for M , @8 a function of
M sin 0 that satisty the fcllowing requicemants: N )

1. The effect of shock detachment is neglected
<. At M sing =0, M =3
ns
3. The solution asymptoiically apovroaches the M =3 hine
) 3
d Mns
4. Have tne correct slope, ;!_RT.sy_nr-\a‘ Msind =¢C T

o
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Figu-c 42. Wedge Flow Shock Angie




These condition: lead to equations of the following form

T
wedge M o = Y M +e
y+ 1
K, = Li...
cone Mns = K(_M' + o KeM
where M = Msind
K. = 287 + 1)/ (y + 3)

These =#xpressions arc comparad with the data oi TR-)135 ia Figures
43 and 54, The cone data are also shown in Figure 45 v ith the same
scales as in Figure 42,

The pressure coefficieut may now be obtained by thie following relat.cn-
ahips for a wcdge and core respectively.

N . 2 2

Co = (541 M2~ 1M
,F ay-nm fez)
Cp = 2 8in“d [( - nsz :
av e

Experimental results have shown the pressure on the centerline of a
delta wing to be in agreement with two-dimensicaal theory at smali
values of the similarity parameter (M' < 3.0) and the coiacal flow theory
at higher values. The previous cxproszions derived for wedge 2nd cone
flows have been cainbined to give these festures. The rusulling
relationships 2re given below. Kw

- (K - 5% )

M., = KM
-0.49 M sind

For ¥ =17/% Mpg © 1.09 Msind ¢

The similzrity parame’>r relationship for pressure ic
2 4 e 2
Mo = (557 ) (Mag - 1)

The shock angle and pressurce ~oefficient calculated from the abov-
equati. 16 are comparec with the experimental jestlts (Reference 24)
in Fagures 46 and 47, respectively.
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Taogent Cone

An approxiumate solution for predicting the furtace flow condivions on a
cone ia supersoni: flow has been Jdevised ~pplicable o the entire Mach
number - cone angle regime for an attachca bow-wave. Dctai! :d com-
parison with exac: results show~ improved accuracy over cu -ently
available apprroximations. This is a new cone method and should not be
confused with the empiricai tangent cone mcthod just discussed on the
orevious pages and which was usced in the old Mark Il program.

Basis for this new method is the combining of two approximate techniques,
une yielding accurate results in the low sipersonic range and the other

in the high supersonic range, by the uvse of transition functions dclined

in terms of the appropriate similarity variables to provide uniformiy
valid solutions over the entire spozd range. Specifically, second-order
siender-body theory (Reference 5) is used for small values of the
unified similarity parameter and the approxiraate solution of Harmmitt

and Murthy (Recference 26} for large valucs.

The suriace pressure and conical shouck-wave angle are determinad
which, together with the assumption of an idcal gas with constant ratio
of specific heats, are sufficicnt to calculate all the sarface flow vari-
ables. It should also be mentioned that the presen: solution do °s not
require multiple integraiion of the dificrentiai cquatious ac~cs. the flew
ficld, but iz ohtaincd by Jdivedi algebraic solution provading results

rapidly.

The gquantities of direct umportance to the Supersonic-iypersonic
Arbdbitrary-Body Acrodynamic Computer Program arc the surface pressurc
cocfticient and Mach numbe:  The calculated pressure confficients have
been compared to exact results and, for Mach numters greater than 2, the
mezximum error is less than | percent and in the hypersanic speed
range the average error is of the order of 0.252. The accuracy of the pre-
dicted surface Mach numbers is exiremely good (the order of 0.30 percent
maximum zrror) throughout the speed range, cxcept as bow -wave detach-
ment is reached. For the present purposes, the extreme conditions
correspond to surface Mach number equal to 1.0 and a comparison with
exact resuits showed gecod agreement.

For reference, the prese . ... .ithod ... been compared with Schwartz's
formula for pressure cocfficient (Reference 7). The porcent relative
errcr in C, is given in Tahle ! using Schwartz's formula and in
Table 2 wsing the Douglas mcthod (the tabulated values have been
rounded to the nearest integer percent). For completencss, the rela-
tive error ia surface Mach number an”  ne shock angle using the
Douglas mecthod are shown in Tables .nd 4, respectively (the Schwartz
formula is only for Cp). The exact values (subscript ¢x) were oblained
from Reference 20.
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Table 1

Percent Relative Error in Cp (Schwartz)

C -C
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100 x [u]
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Table 2

Percent Relative Error in C[, (Douglas)
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5 0 0 0 0 -1 0
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Tablec 3

Percunt Reirative Error in Suirface Mach Number

L cK
Cone |Frecstream Mach Number
Angle [ 15[ 2| ¢« T ¢ Thoa20
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10 ol o] ofoaejol e
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Table 4

Percent Relative Error In Shock Angle

'00 x 0———-—"’" ~ %
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Cone :Eiestream Mzch Number
Angle| 2 4 10 20
< < -2 -3 -1
10 -1 -3 -1 ¢
20 -2 -1 0 ¢
3¢ =) -1 0 0
40 - 0 (¢ 0
50 - -1 0 0




Inclined Carne

+. vaethod for predicting the pressure distribustions on circular cones at
sanglc-of -attack has beeua put together based on the Bricish work of
Reference 28. For coovenience, this will be referred to as the CP#792
method. The cited reference preegents the development of this method
in ample detail zand only tiic essential features will be described he mein,
along with several modifications that have been made. The original
method was compared with experimcotai results for (en diffcrent cases
and have been rearun using the Douglas version. In additicn, Jones'
pressury formula (Refcrence 29) hae been cotapar~d with thesc cascs.
Both methods arc in good agreement with the data.

Method of CP ¢792

Briefly, the CP 792 mcthod is an ingenivus cxtensian of sumple impact
theory:

. W ainl$
Cp-h sin“ b

where K is a suitable impact coeff:uient and 8 is the impact angie. The
impact angle for a conce is easily txporessed 1n terms of the cone angic
6, angle of attack a, and circumferential angle ¢ (mcsisvured from most
windward gewerator):

s8in & = 8in @ cosa + cos¥ sina cos®

Substituting this into th. C, cquation, the pressure cocfiicient may b
cxpressed as the sum of three terms:

where -
CPA : K sin8 cosla
Cp‘\. = K cos?'O sina cosz‘b
Cpx ° ¥ (28in0 cos b sinx coex cos )

These three terinsg lend themscelves to the foliowing physical interprets-
tion. Cp  is that part of the total which can be regarded as being
genzrated by the axial flow component, Ma) cos Q. CPN is that part of
the total which can be considered cs being gencrated by the normal or
transverse flow component, Mg, sina. Finally, Cpx is a cross-product
term which can be regarded as arizing {rom the interaction octween tice

axial and normal flow components.




The authors of CP #792 make the assump:ion that the thre: components
can at all times be treated indepundenily of each other and then proceed
to develope coefficients Ka, Ky, and Ky suitable for cach flow. This
is the crux of the wholc method. The Mark IV application retains only
the Kx term and calculates the axial and normal componenis dircctly.

Axiai Compornent Cpa

At a=0, Cp, =K sinl8 which is sumply the pressure coeflfi-ient for a
cone (Cp-) at My = Mg cos @. Sincc the total Cp is based on frec-

siream dyaamic pressure, the cone value rnust he adyusted by the
q-ratio:

. ) 2
Cppu * Coc qA/qm = CP(; cos @

Where Cpc = f(Mp) ani is obtained by use of the previously discussed
tangent cone method.

Normal Camprncai Cpw

The development of Cp,. is analogaus to Cpyp- Namely, when the flow
is 31l normal (@ = 90°) the preseurc coefficient on the windward gener-
ato:> is simply the stagnation value CPS 2t My = M stna. The

circwnferential variation i1s simply taken as coal up to 4 - 0% and

zero thereaffer.

>

. 2 ;
(”PN = CPS cos’ 4 qN/q = CPS cos” ¢ sinla
where

Cross-Product Cormnponent CPX

This term is used in the original form
Cpx = Kx* 236 cos® sina cav cos ¢

A correlativa curve for Ky was derived in CP' 8792 by consideration of
the results abtaned from small incidence theory. This curve is appro-
imated in the Mak IV application as

Ky = 1.95 + 0.07 - cos (X)
where

m
28 sin 6 cosb

andg

g - Vv MZ oo
@
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Jones' Formula

An aliermate mcthod for obtawring C,, on circular cones at angle-
ci-attack hae been precenicd by Jones (Reference 29). It is basea on a
least squarcs curve fit 20 the cxtensive tabulation of exact numerical
solution® which werze also compiled by Jones {Reference 20). This
method is ewsy to use and has been shown to have acceptable accurany
reiative 20 the cxact solutions.

[ A’ Ay
Cp = CPa:O + AMT ¢ —— Mmz (a/8)
AT A
5 6
+ A T i - + — (al/@)?
4 "‘2 )
{ Mas Mo;'
where
T = (sion B8) (cos @)
and
A= a_. ta), ros ¢ 1+ a2, cos 2é

The coefficients B and a
Jeast squarcs fat.

» have Leen determitned by & parametric

Cpy -0 18 obtained using th: targent cone method (unpact method No. §).

Comparisor with Experimern!

Both the Douglas version of the CP $79¢ n:iethod and Jones' formula
have been compared with the ten experviiental cases given in Reference
28. Foar of theae cases (two plots cait) are included a8 representative
of the scsults obtained. On Figures +3 to 51, a and » =ach, com-
parison between predicted and experimental pressure cocfficients are
gwven. Each figure shows, for parricular values of cone angle and
Mach number, pressurc coefficient versus circumference angle for a
range of angles of attack. [he predicted results of CP 8792 are indr-
cated by full lines on the a-s=t of figures. Jones' results are given

by broken lines on the o-sct of faigures.

Both mechods are in guod agreement with the data. Jones' fermula is
much betier on the leeward side (e.g., Figure 79 (b); and CR#792 is
better oa the windward side, 'ones’ formula 'w?2s derived for € < 259
and relative inciden.ec @/ < 1.0 and in the precseat comparisons

appcars to exirapalate recasonably well for a/8 > 1.0, The CP 0792

method was rot intended to work on the lecwara suatface, but the
results arc nat

1! that bad.
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Use as an Element Impaot Method

As an uiemout itapact method, the cone angio, meridiun angle, and
angle of -.itacy arc detined by the clement normal and the velocity
vector a: izilows (sce sketch).

The cone semi-vertex angle, 8, is defined as the angle between the
surface and the x axis.

6 = arcsin (N-3) = arcsin (Ny)

The meridian angle and angle of attack have to be defined relative to
the windward plane. The meridian angle location of the windward plane

A8
z

é, - arctanm (-Vy/\'z) f v
Y

éow x

The nieridicn angle of the element is
$, = arclan (-N,/N)

The mer’ juwn angle of the cone relative to the windward plane is then
& = ¢ - by

The angle of attack of the cune in the windward plane is

@ = arc:os (-Vx)
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The Mark iV program uses Jones' Fermula as the inclined cone method
for both impact and .hadow flows. For the Second-Order Shock, Expan-
sion flow field and pressure option, either the CP 4792 or Jones method
can be vied by use of an input flag.

Van Uyke Unified Method

This force calculation method i3 basci on the unified supersonic-hyper-
sonic small disturbance theory proposed by Van Dyke in Referenrnce 30
a3 applied to basic hypersonic similarity results. The method is useful
for thin profile shapes and as the name implies exiends down tc the
supersonic speed region.

The similarity equations that form the basis of this method =re derived
by manipulating the oblique shock relations for hypersonic flow. The
basic derivations are showi on pages 753 and 754 of Referenc~ 31

The result obtained for a compression surface under the assumption of

a small deflcctioa angle and large Mach nunber is (hypersoni~ similarity
equati-on\\.

¥ ——e e
2
- 2 Y4+ {Y+1 4
vp = 8 [ z ! \/\“i“‘. ) + ‘H"zl

whaere of *s the hypervonic sumilasily paramater given hy M§. The
contribut:n by Van Dyke in Refercnce ¢ suggests that this relationship
: will also ' ¢ valid in the realm of supersonic linear theory if the hyper-

i sonic simusrity paramecer M§ is replaced by the unified supersonic-

: hyperegonic arameter (v M2 -1 )5. This latter paramezer is uied in
! the calculatwns for this force option in the arbitrary body program.

A similar merhad may also be obtained for a surface in expansion flow
with no leading :1ge shock such as on the upper side of an airfoil. The
Tesulting equati»: is

2 2 ?._7
C = § — (- Y-i r-1 .

where again H 18 taken to bc( A Y )8 in the unified theory approach.

Shock-Expansion Method

This furce calculation method is based on classical shock-expansion
theory (see Reference 31). In this method the surface elements are
handled in a "strip-theory” manner. The characteristice of she first
element of cach longitudinal strip of elements may be calculated by
oblique shock theory, by coaical flow theory, the dulta wing empirical
method or by a Prandil-Meyer expansicn. Downstream of this initial
element the forces are cilrulated by a Prandtl-Meyer expansicn.
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By a proper selection of the clement oricntation the method may be
used for both wing-like shapes and for more comiplex Lody chapes.
In this latter case the method opera’es in a hypereonic shock-
expansion thcory mode.

Free Molecular Flow Method

At very high altitudes conventional continuumn flow theories fail and
one must begin to consider the geneal macroscopic mass, force, and
energy transfer problem at the body surface. Thia condition occurs
when the air is sufficiently rarcfied so that the mcan Irce path of
the molecules is much grcater than a characteristic body dimension.
This condition is known as free molecular flow and the method of
analysis seclected for this prograrm is described in Reference 32.
This method was also used in Reference 33, The equations used
were taken from thesc refercences and are presented below,

Pressure Coefficient

S | EE fn b | -(5 sin 52
(,p = gz-'[\/;r SS"’IS\"T\J Tm [V

£

‘n

2 .2, .1 [Ty . . |
+ (2 - 1) (S” sin© 8 +-z-)+~z-Vr:,f—Ssm6 gl&er((SsmB)]‘
©

Shear Force Coefficient

(cos d)M, ‘ c~:S sin 5)2 + -,/; Ssin & [l+erl((S sin b)) :

- Jrs |

where o
S = speciratio = ¥z M
fn = norinal momentum accommodatiorn cocfficient (=0.0
for Newtonian 2ad = 1.0 for completely diffuse reflection)
& = impact angle
Ty = body temperature, oK
Ty © frecsiream tempcerature, %K
2 % -x?¢
er{ = error function ecrf(x) = - [ € dx
v o o

{i = tangential momentum accomm.dation coefficient (=0.0
for N=wtonian flow and 1.0 for completely diffuse
reflection)

The analysis to determinc the direction of the shear force is discussed
in Section VIIL.
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The final componernts of the shear force in the vehicle axis system are

given by
SHEAR., = (SMEAR':(S )/STOTAL
¥ X
SHEAR, = (SHEAR)(S,)/$TOTAL
‘ SHEAR, - (SHEAR) (SZ)/STOTAL
where

SHEAR is the shear force as calculated by the fre~ molecular flow
equations.
s 172
_ 2 2 2
STOTAL = (Sx +15,%+5s, )

In using the free molecular flow method the above analysis must be
carried out over the entire surface oi the shapc including the base,
shadow regions, etc. When the free molecuiar flow method is
selectad, it is used for both impact and shadow region.

This method of determining the shear direction is also used for the

continuum viscous forces discussed in Section X. The pline formed

by the velocily veciur and ihe suriace normai is referred tc as the

velocity plane, since both the incident and surface velocity are in th:s

plane. This definition is correct for two-dimensional flow, however,

. it is only an approximation to the shear direction in the general
arbitrary-body case.

Hankey Flat-Surface Empirical Mcethod

This method uses an en.pirical corrclation for lower aurfac - pressures
on blunted flat nlates. The method, derived in Reference 34, approxi-
mates tangent-wedge at low impact angles and approaches Newtonian at
high impact angles. The pressure cocfficient 18 given by

Cp :1.95 sin? g + .21 cos &sin B

Modificd Dahiem-Buck

This is an extended form of the Dahlem - Buck method derived in Reler-
ence 39. The origina: mcthod uses an empirical relationrhip which
approximates tangent cone pressurces at low impact angles and approaches
Newtonian valucs at the large impact angi:s. The original equations arc

1.0
L osin (4 9)

2

for 8 < 22.5¢ Tt l.O] 8in‘§

CppB

for &> 22.5° - 2 .in?5

Cepsp
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11, at emall valnes of 8, the bracketed term exceeds 5.0 it is set at 5.0

The ociginal Dahlein-Buck method has been shown to yield good agrce-
ment for highly swep: shapes at large hypersonic Mach numbers.

The modified Dahlem -Buck thethod is an extension by its originators to
lower Mach numbers (see Reference 37), }t was aseumed that the
empiricil pressure cocfficient would be affected by a change i Mach
number in the samc way as the preszure cocfficient on the rurface of a
right ci>cular cane is affected by Mach number. Thus,

Chcone (M < 20}

cpconc {M = 20)

Cemps © CPpp -

]
l ~vhere CPMDB is the modified tablam-Buck pressure coefficient.

The date of Reference 37 for cone half apgle” trom 10 to 3C degrees was
analyzed and it was found that the quantity (Cpcone (M<20)’Cpcooe(M=ZO\)"l‘o

could be graphed as a traight line on a logarithmic scale for the mentioned
cone angles. A curve fu allowed the cone pressure coeificient fraction to
bc analylically defined such that,

Cpcone(M <20)
“Peone(M: 20}

1.0 = a&"

‘ahere B is umpact angle in degrees and
([n(M xn) - 0.588 )
1.20 ¥
{niMy) - 0.91¢
3.29 ")

a = {60 - 0.3M_) + sin

-0 = 1.154+ 0.5 sin (

Blast Wave Pressure Increments

Th:s ncthod uscs onventional blast-wave parameters to calculate the
ve-pressare due to bluntness effects. Contributions determined

! by this procedure must be added o the regular inviscid preisure forces
{ {tangent ~-wedge, tangent-cone, Newtoman, etc.) calculated over the

! same vehicle geometry. The specific blast wave soluticns used ip the
Program were derived by Lukasiewicz in Reference 38;

1
P ‘ (Cp S )
T AMZ 16\'—'—73‘ - B

whera
Cp 1s the nose drag cocllicient

d is the nose diameter or thickacss

X, 1s a coordinate refercace poant
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and the coefficients A, B are

Flow |5 | o | s
Two-Dimeansional i 0 ) o.121 | 0.5¢
Asisymmetric | 1 | 0.067 | 0.44

THE STORED PRESSURE OPTION

The Stured Pressure Option Cards are used when the vehizle component
forces are to be calculated using pressure data previously stored on the
flow field data unit 1G. This option may be used in several ways, For
example, the forces on a particular component may be calculated using
experimental resulis which have been previously stored on unit 10 by
use oi the Fiow Field Data Hand-Load Option. More directly. forces
may te determined using the data generated by the Shock-Expansion
Flow Field Option and stc:ed on unit 10.

ln either case, pressure data is available at « limited numbe ' of dis-
crete locations on the coinponent. The function of the Input Pressure
Option is to oLtair the value of pressure at the centroid of each element,
This is accomplished by interpolation using the Svrface Spline Method
and, a¢ in the other spplications of this method, proper norrralization of
the coordinates 18 required to obtain meaningful results. The forces are
calculated by sumuning the contributions of aii th=: eiernents ihat make up
the component. A detailed discusiion of the Surface Spline and the
related normaliration procedure can be fouand in Section IV.

Whon the Sicred Pressure Option is used in connection with experimental
pressure data any wncorrcect or spursous data should be removed before-
hand. Data of this type, when the Su-face Spline is used, can yield faulty
pressure interpolations. The resulting errors in the curve fit may not
he coinfined to the local region of the juestionabl: data points. Ancther
important point to be considered when utilizirg this option is that of em-
bedded shocks, Interpolation across strong shock baundarie:: by use of
the Surface Spline is not recoainmended. Each major flow field contaied
on a surface should be split into primary and secondary (embedded flows).
Output from the Sk ck Expansion Flow Field Option is in the required
form. Any experimental data inpuls must also be of the same form if
meaningful interpolations of surface data arc to be obtained.




SECTION IX

STREAMLINE CALCULATIONS

In steady flow, & streamline is a path or trajectory of a fluid particle.
The calculaticn of a strcamline is then a trajectory problem and the
classical Runge-Kutta rmethod may be used {0 sclve the defining daf-
ferentia. equaticns. What is nceded are defiuitions of the body and its
velocity ficld and ir. the present application 1o arbitrary bodies no
convenient analytical forms exist,

The approach taken in tive Mark IV program is i0 use the Surface Spline
to define the body and the velocity field. This is the key to the whole
method and in effect provides the necegsary analytical forms. The
Surface Spline is an "iLaterpolation-in-the-large' scheme and should not
be applied indiscriminantly to an arbitrary body. Rather, it should be
used 11: separate applications to the various components and ganels that
mike up the vehicle. This is analogous with the basic philoscphy cf
using the best pressure method suitable to a particular panel. In adaition,
meaningful results from the Surface Spline can only be obtained by using
aporopriate cocrdinates with suitable normalization. These statements,
while distinctly restrictive in tone, are .ntended only to cobvey a realistic
perspective of the program capabilities,

In practice the calculations arc not nea:vy so restrictive, as several
modes of ccorainate selection and normnalization are automaticaiiy
available thrcugh input flags. The following parzgraphs discuss the basic
equations and present results verifying the general approach taken in the
solutice.

| Mathematically, the strcamline may be defined as {ollows:

) dz _ | g
= V. gz -

dx

i a - Vx»

2o

where V; is the surface velocity component in the i-direction. These
4are normally calculated in the FORCE routine and assume a Newtoniap
impact type of surface velociiy (see the Surface Velocity Veclor dis-
cussion on page 11.,). Using rhe definition of the total velacity, Vy= ds /4,

3

the above equations may be re-written iz. terras of the particie path: .
dx _ dy _ dz
3  Cx- ds = Gy ds - Cz

where C; ig the direction cosinc 5f the i-th velocity component. .

The streamlines are calculated by specifying an increment in path, A4s,

and marching along using a icarth-order Runge-Kutta scheme to sclve the
diiferentisl equations. At this stage, several options are available which
are more or ieas dependent on the forin of both the body definition and the

et }
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C; field. For example, all three coordinatee ccuid be solved for
indesendently. While a streamline will be found, tuere is nc guarantee
that is will be on the surface. Thia problem has been experianced by
other juvestigators and may be 2voided by solving the equations in
parznetric form. That is, two of th: strcamline coordinates (x, y)
are found using Runge-Kutta and the third is obtained as a funcrion of
thase two from the surface defirition. = = F(x, y}). This is equivalert
to solving for the projectica of the ztreamline path in the x,y plane,
Figure 52. The choice of independent coordinates (x, y) ie not
arbitrary, bt must be stitable for 'he particuler nanel geomeiry being
considered. For exampie, the reference coordinates of the sketch
would not be appropriate for a body of revolution. The obvious

choice in this case would be cylindrical-polar coordinates (x,¢, r)
This also satisfics the requirements on coordinatys necessary to use
the Surface Spline aad therefore, fits in very nicely.

In general, the coordinates uszed in obtaining the solution will not
correspond ¢o the x, y, 2 reference and it is appropriate to express
the differeatial equations in a slightly more general form:

- - C:‘; 1 =1,2,3

The C; are now interpreted to meaa the rate of change of i-th coordinate
along the path.

This distinction can be made clear by digre=ssing for a mument and
explicitly ccnsidering the aforementioned cylindrical-polar coordinates.
The coordinates and components of the clocity vector are related as
follows (vee sketch!:

x = x z

Y = r sind

z = -r cos ¢

Vx = Vl y
VvV, = \ly sin ¢ -V, cos ¢

Vg = Vycond sV, sin ¢
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Differentiating the coordinste cquations, substituting into the streamline
equations and =2clving in texrms of the new coordinates gives:

E = .V_“ = C

ds - VT T ‘x

ad Vy cos¢ +V; sind vV, -

d ° Vi = v = Ce
dr Vy sin ¢ - V, cos ¢ Vi .

& r vy Cr

The C, and C, represent the divection cosines of the x and r velocity
components but the Cg is the direction cosine of the ¢ velncity component
multiplied by 1/r.

Similarly, any scaling required in normalizing the coordinates can be
incorporatcd in the definition of C;. For example, let the x coordinate
be tcaled by length L:

3, = T
then &n ! \'.I:
% T L V.

: .1 Y
and zin.;'v define Cy ¢ i -—T .

The purpose of alt this is to keep the form of the Rungc -Kutta {i.e., the
streamline solution) independent of coordinale choice. The importance of
this statement cannot be wver stressed. [t allows the flexibility necessary
to dcline streamlires on an arbitrary body.

The Mark 1V program streamline calculation procedure may be svnm -
marized as follows:

First, the velocity field on the body is calculated (or
input) at descrete poiats, Next, the Surface Splive is
passed through these points to provide a numerical
definitiot of the body and velociiy ficld. Then, the
streamline is calculated usirg & fourth-order Runge-
Kutta integration,

This procedure has been campared to an analyticai sol-tion to check its
2~curacy and the rosults are shown in Figure 53. The body is a prolate
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Differcatiating the coordinate equittions, substituting into the streamline
cquations and solving ip terms of the new coordinates gives:

9_X_ = _vl = C

ds b V-r - x

dé _ Vycosd +V, sind Vo . 1 _
% - VT =% 7 €
dr Vy sind - V, cosd v,

I Vr vy TG

fne C, and C, represcat the direction cosines of the x and r velocity
componect: but the Cg4 is the direction cosine of the 9 veloziry component

multiplied by 1/r.

Similarly, any scaling required in normalizing the coorzinates cam be
incorporated in the definition of C;. For erxample, le! the x coordinate
be scaled by leugth L:

b f_-
then dx,, 1 Vx
db T L Vi
and simply defirz C, = I-l: -,‘;E .
T

The purpos: of all this is to keep the form of the Runge-Kutta (i.e., the
streamli- ¢ solution) independent of coordinate choice. The importance of
this statement cannot be ovaer siressed. It alinwe the flexibility necessary
to define streamlines or an arvitrary body.

The Mar¥ IV program streamline calculation procedure may be sum-
marized as follows:

First, the velocity field on the body is calculated (or
input) at descrete points, Next, the Surface Spline is
passed through these points to provide a numerical
definition of the body and velocity fisll., Then, the
streamiine is calculated using a fourth-order Kunge-
Kutta ipntegration.

This procedure ha: been compared t~ aa analytical solution to check its
accuracy and the results are shown in Figure 53. The body is a prolate
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spharoid and the flow is incampressible, non-lifting at 30 degrees angle -
of-attack. Both the body and the velocity can be deiired amalytically. The
Mark IV calculations are shown for two AS incremuiate and are in excellent
agrezemeant with the analytical solution. The Mark IV calculations have been
mad: both forward (+ 4S) and backwards (-A!i) znd trace the same stream-
line.

In addition, the zalculatioas were done both in the three-variable (x,y, z)
form and in the two-variable parametriz form, There i3 no perceptable
difference in the results of ¢ versus x given i Figure 53 , however,

the three-variable streamline did leave the suriace as anticipated. For
the present case this deviaiicn from the smrfs~e wiis very smail. It should
be noted that 41l the variove Mark IV calcula“.cos ‘were made through input
flags.




SECTION X

ViSCOUS FORCE CALCULATION METHODS

The mos. difficul” part in the analysis of an arbitrary shape is the calcu-
.aticn of viscous forces. A detailed knowledge of the local properties and
the flow history aiong surface streamlires :8 required. This ¢combined
wich the natural complexity of the beundary-layer equations nucessitates
vonsiderable simiplification of the problem before solutions can be obtained.
In the iMark 11l Hypersonic Arbitrary Body program an engineering approach
was uscd in calculating viscous forces that wes simple yet retained the
cstential characteristics of the Loundary layer problem. No attemp! was
made to calculate the detailed skin friction over the exact arbitrary shape
used for the inviscid pressures. In3tead, for skin friction purposeas the
vehicle was represented by a simplified geometry model composed of a
small nuriiber of {lat surfaces on cach of which the shear force was deter-
muned.

This approach was considered by the authors to be quite constistent with the
state of boundary layer theories. However, some users obiected to this
simple agpioach because it required the loading of another geometry deck
in addition to the inviscid pressure geometey moudel. It 1s not clear just
why there should be an ¢ebjection to loading an additional 20 or 30 clements
after as many as 1900 t¢ 2000 have been loaded inr the inviscid pressures.

However, the sumplified skin friction geometry mode! approach is still
recommended as being th: most economical use of the machine resources.
Tne Mark 11 ski: friction capabilitiecs have, therefore, bHoen retained in
the new Mzark 1V praogram, although they have heen exvanded siightly to
allow a larger nurabei of clemenis to be analyzed on one pass into the skin
friction option. Also, the iccal groperties on the skin fricthion clements
are now calculated in the inviscid portion of the prugrary just as though
they were inviscid geometry clements.

However, in spite of the above comments it is recognized that some types
of viscous studies will require a more detailed analysis than is possible
with the simplificed geometry model approacn. To cover these situations
the Mark IV program alsc huas a new alternate viseous analy =15 method
that worxs with the sam.~ g-ometry as is used for tie inviscié pressures,
In this method the viscous Now 13 calcuiaied using an integr! boundary
layer method., The cornputations are made ajeng strecamlines calculated
ovar the dedailed inviscid pressure geovinetry model.  Once the skir
fr.caon 1s calculated along these streamlines it is it with the surface
srline routines and tae skin (riction coefficient on cach clement of the
dsteiled geomeiry model determaned by interpolztien.

The intcgral boundary layer method does pot calculate the surface wall
temperatare.  However, this information 18 requirca by the intepral
‘methed so it must b furpished as inpzt data or 1! can be caleulated by
cailiag the same ternperaturce catculation routine used by the sunplificd
skin friction modcl aption (old Mark I1I). The temperature calculation
rcutine itself calculates a s'an friction cocfficient value along with the wall
temnperature basced on the old Mark 1] methods (. ¢., reference teinpera-
ture, Spalding-Chi, etc.). If the uscer wishes, this skin friction coufiicicnt
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can Le used instead of that calculated by the integral boun.lary layer
method. Under this mode of operation evervthiag is handled j ‘ot a< though
the integral method was being used (i.e., the use of streamlines on the
d2tailed geometry model, eleiment skin friction from the surfac+ spline
taterpolation, etc.). The only diffecrence is that after the temperature and
Mar III skin friction are calculated, no call is made to the integral pro-
grani, angd instzad, ths computations procced with the skin friction coeffi-
cients out of the temp:rature program.

The user should be caviioned that the methods used in the r.ew viscous
capabilities of the Mark IV program are still not what we would call a
"threc-dimensional’” boundary layer solution. Although computations are
made along streamlines, the integral toundary lay:»r method used at the
present time is still basically a two-dimensional method (cross flow pres-
sure gradienis are not accounted for). Later versions of the program may
include streamiline divergence effects bat the init:ally relcased program
does not. Also, in the first rclease of the Mark IV propgram therc 18 no
canability for continuing a streamline calculation across one geomerr::
component and on to an adj)acent component. Therefore, the new integral
boundary layer method should be restricted to velatively well behaved
parts of a vehicle shape.

The Integral Boundary l.ayer Method

The integral boundary layer method contained in the viscous part of the
Mark IV program is essentialiy the same program as presented by W. D,
McNally in NASA TN D-5681 (Reference 40). A major modification to
the A¢Nally program was required to remove the assumption of isentropic
flow implicitly used throughout the boundary layer equations. Minor
modifications in the coding have also been made to unprove efficiency and
to seduce storage requirements. Thic integral boundary layer program
18 well dacumeated in McNally's report so the development of the equaticns,
etc., will wot be duplicated in this report. Any user of the integral mechad
in the Mark ({V program should obtain a copy of NASA TN D-5661 as
supplementary documentation,

The integral toundary layer method uses Cohen and Reshotko's method for
the laminar boundary layer calcviations (Reference 41), and Sasmaa and
Cresci't method (Reference 42) tor the turbulent boundary layer. The
Schlichting-Wrich-Graoville method (Refercnce 23<5%is used 1o predict the
tranaition point. The present Mark IV program does not calculate transi-
tiona! flow data between the wholly laminar and turbuient conditions.
L.owever, some of the code in the skin friction datz srorage part of the
program provides facilities for inclusion of transitional data in future
program additions.

The application of the integral boundary layer mcthod involves the use of
severa!l other parts of the program. Thk» process starts with the analysis
of the vehicle component in the inviscid pressurc part of the program.
Subroutire FORCE calculates the local fiow properties on each element.
Theae properties (direction cosines of the surface velocity vector, Mach
number and local pressure and temperature ratios to freestream condi -
tions) are saved on the Unit ¢ geometry data storage set right along with
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the component geonetry data. It is then necessary to enter the flow-field
option and to have the surface property data copied onto the flow ficld stor-
age Unit 10 by the Surface Data Transfer option. This step is necessary so
that the data will be in the proper format for use by the surface spline
routines.

The streamline option is then calied. It is, in general, not possible or
desirable to try to calculate streamlines dawn cach row of geometry clc-
ments. Instead, streamlin:s arc only calculated so as to properly cover
the inboard and outboard cxtreries of the component together with one or
more interior lines. The streamuine surface trajectorices together with the
associated interpolated local surface groperties along them are stored
back on the flow fticld data Unit 10. Only after all of the above steps are
accomplished can we call the viscous part of the program.

In the viscous part of the program input paramceters are used to retrieve
sclected streamline data scis. The integral toundary layer method is
applicd alo:ig ecach of these streaml.nes and the resulting skin friction

"7 -ients stored back on the flow ficld storage unit right with the st..cam-

We now have skin friciion data along the streamline data points but not on
the actuai geometr' quadr:ilateral centroids where we need them for the
force integrat‘ons. To solve this problem the streamiine skin friction data
arce {it with the surface apline mcthod and the skin friction ¢ weffljiec

found at cach of the clement centroids by interpoiation.

—e =
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However, to accomplish the spline surface fit and interpolation it is neces-
sary that the data be weil behaved, That 1s, laminar, transiticral, turbu-
leri, and separated lows mo_s: be prepared and interpolated as separiate

sets of data. The bookkeeping (pointers, counters, etc.) neceisary ic provide
this is automatically accen.olished within the main integral beundavy layer
routine. Because of these features, the integral boundary la ;er meathod is
able to analyze a component that has mixed boundary layer types, e,
laminar and turbulent flows. The simplified skin {riction ~aodel using the

cld Marx 1711 methods is not capable of this.

However, there are certain things in the Mark 11l skin friction option that
are not availak'e in the integral boundary layer method., For example, the
Mark 1l skin friction includes viscous induced pressure effo-ts on the skin
friction cocfficient and the integral program does not.

Mark I11Skin Fraction Option

1n the Mark III skin friction option of the Mark IV program an enrgincering
approach has been selected that retains the essential characteristics of
the hypcrsonic bounda:y-layer problem. XNo attempt is made to calculate
the detaied skin friciion distr:bution on the cxact arbitrary shape, but
rather, the vehicle is represented by a number of flat surfaces on cach of
which the shear force is determined.
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The surface streamlines are assumed in the velocity planc and the flow
iristory is approximatad by the inclusion of an initial surface. The shear
force 18 dutermined for both laminar and turbulent flow and may be
summed Jver the vehicie for either type.

Referernce temperature and reference enthalpy methods are available
for both laminar and turbulent flows and, in addition, the Spalding-

Chi method with cither temperatur.: or enthalpy ratios may be selected
for turbulent calculations. The surfacc temperaturc may be either
input or the radiation equilibrium value determined. The eifect of
planformm shape, lcading edge viscous-interaction, and the viscous forces
on blunt bodies 2e also considered.

Skin Friction Geometry Model

For the skin friction calculations a goometrically complex vehicle is
divided into a number of planc surfaces in a manner which adequately
approxumates the true shape. Leading-edge surfaces and local curva-
tures arc omitted., Regions of relatively large curvatures can be
represented by using a greater number of plane surfaces. The degree
to which this is done will depend upon th:: complexity of the actual
shap~ and expericnce of the designer. The geometry data for the
skin-friction geometry model 1s preparcd 1n the same way as the sur-
face element data used for the inviscid pressure calculations and
retain their r:lative location to each other arnd to the flight path. This
skin fiiction modeling technique i3 best describ.:d by viewing, for
example, a typical high L/D vehicle shown in Figure 5% The upper
half presents the skin-frictica representation ¢’ the vchirle which is
to be coatrasted with the detailed inviscid geome'ry given in the lowe.
hi1f of the figure. As used in the Supersoric-Hypersonic Arbitrary-Body
Program, tiie skin frictior surfaces are referred to as an approximate
representation o{ the vehicle. This is in contrast tv the inviscid
geometry which for all practical purposes exactly represents the vehicle.

From the input clement data, the surface normal, area, aud arca
centroid coordinates are calculated  In addition, maximum chovsd length,
taper ratio, and true area are input for cach surface, The latte- maay
be different from the caleculated arcas since curvatures have been
neglected.  The initial surface, specified by its maximum chord length
ard taper ratio, 1s assum=d to be in the plane of the axin-friction sur-
face and, therefore, the flow history is only approximated. The

clen ent planform cffect on the averags skin friction is includad, how-
ever, and is discusscd scparately for laminar and turbulent flows in
later scctions. The shear force on cach surface is assumed to act
through its centroad in a direction on the surfoce paralicl to plane
contairing the su:face ne-mal and the frecv-stream veloscity vector, as
described in Section VII.

l!’)}




a) Representation for Viscous ‘Calculations

b) Representation for Inviscid Calculations

Figure s.. Geometry Modeling for a Tymical High L/D Vehicle
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Luacal Flow Conditions

The requirad local properties (presaure, temperatire, density, aad
velocity) for use in calculating the viscous :lows foi' both the integral
boundary layer method and th= Mark :11 method are calculzsted within
the inviscid prassure part of the program. That is, the geometry
over which the viscous flow is tc be calculated must first be analyzed
just as though it were regular inviscid geometrv data. A flag in the
pressure pa:t of the program controls the storoge of the required
loczl property cata so that it will be available fo- the viscous uptions.

The skin-friction surfaces and local properties, thug, have been defined
in a way that zeduces the probiem of calculating the viscous forces on

a complex shape to one of solving f~r the skin friction on a number of
constant -property flat plates,

Incompressible Flow

The basic philosophy behind buth the Spalaing-Chi and the reference
condition methods is the same Nainely, that the suitably irarsformesd
skin-{riction coefficient is givea L’ the constant-property or incom-
pressible formmulas bascd on a Reynolds number alaso suitably trars-
for'~e:, To emphasize the point, thss may he stated another wiy: Tha
compressgitle skin-friction is given by the .ncompressible fo-m with
appropriate correction factors to account for compressibility effects.
That 1s,

Cf& = C(_.‘/FC
Cfi - f(P.::i‘.- . in = FRx Rx
where
C!- = skin friztion coefficient
Rx = Reynolds number
{ )-‘ < indicates incompressible
() = indicates compressible

The incompressible formulas uscd :n the Hypersouic Aroitrary-Body
Prog:ram are gwen in Table 5 and the compressibility fact~rs, F,
and FpRpx are discussed below.




Sk'n Friction Cuefficient, 1(Rx;)
Flow Source
Local Average

Laminar 0. 6647/ Rx, .28/ VRx, |Blasius

Turbulens | 0- 088 (log Rxi-2.3686)| o osg Sivelils
(Rx; > Rpgin) 3 - —_, & Payuae
! n [iog Rxj-1.5] [log Rxj -1.5]= ((Ref. 65)

RMin 2549 6570 |

Table 5. Incompress:ble Skin-r'riction Coefficient Formulas

The Sivells and Payne formuilas have singularnities occurrving at low Reynolds
numbers. Howuever, both occur bLelow the point av .vhich the turbulent values
cross the respective Blasiur laminar curves. Thus, the turbulent incom-
oressible skin-frictiun coeflicients for Rey..olds numbers equal to or less
thaix Rpfn are given by the corresponding la:cinar values.

Compressible Flow

Reference Temperature an. Reference Lnthalpy Method

-~
<

FC = p&l”

s, 1
FR.\' : (“‘}“V) I.?c—

where # ic the density, w» the viscosity, and the superscript 7' means
evaluated at the refererce temperature, TV, or reference enthalpy, HY,;

T# Ty Taw
T: z (A”TT - (A2) -Jr-'é + {1-A)- A2}
LE H H.iw
K w AW

z (Al) 55— < (A2) = {1-Al-A2)
Hy Hy Hy

The value of the coclficients useda are due to Monaghan (Reference 46) for
Prandtl number equal to 0. 71,

Ai 0. 5825

A2 = D175
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The subscript "W" indicates the ~all value and subscript "AW'" refers to l
adiabatic waii conditions given by
Taw _ Haw Ve (1), m2
I Y  ral T U
! whe -e
. ¥ = ratw of speciuic heats
M = Mactk numnber
l!n Bl
r = recovery tactor = {P.)
n = 2 for lamurar {icw
n = 3 for turbulent flow
P, = Prandtl number - 0,71) 3
Spaiding-Chi Methcd (Reference 38):
- : 2
Fc - A/{ARSIN(:“—,.E) + ARSIN (‘_5_)}
where H
_. A - 2 :
: 74
t
i Pw
B = -
;i

Qf P*q
¥ Hw =0.772 = 0,702
c H‘ » Q . » P . 2

-
’Jl
yll

| T

:1::’
hall § -
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Surfece Equihibrzium Temperature

In the Arbitrary-Body Frogram the surfscc equilibrium iemperature s de- !
Iined as the temperatare sat:sfying the steady-state r.eat balance between 1

} the boundar -layer convection to the surface and ihe surface radiation to
: space.
5

convective heatuing: QC(T.) = Cp (Haw -Hw) l
rachztion heating: QR(T,.) = Rk TR'%

. wher: Cp 1s the heat transfoer coefficient

and R = o, ¢= emisswvit, (= 0.8)

. Stefan-Boitzmanr cunstant
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The surface equilibriu™ temperature 18 defined when QC(T.) = QR(7TR)
for Tc = TR. The #olulon s cbtained by a simple linear intercept tech-
nique illueirated in the sketch and explained briefly as follows.

Linea: iciaitnons are assuined for ™oth heating rates

QC

"

AC + {BT)T
QR

"

AR + (BR)T
The fouur coefficients are initialized as follows,
1. Asswne TCl = TR! = 100 °R

2. falculate QC! annd QR:

3. '.et QRZ2 = QCIl anud ca.culate

/1
. [ QR2Z
ez - (%)

4. U TRZ > TCZ : Tpvy, then set
TR2 = TC2 and calculate new QR2

IR
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The coefficients may now be veadily determined and the result of the linear
solution nf the heat balance equation is simply

T = (AC - AR)/(BR - BCQ)

The convective and radiation heating rates are then calculated at this tem-
perature and checked for convergence:

I - Qcuari! < EPST, where EPST - 5.0 E-4

If the criteria is not sat'sfied the cycie is repeated with TCl = TRl = T,
QRZ = QCl, and TC2 - TR2. The present technique, while lacking sophis-
tication, 18 2ccurate 2nc Quite rapid. Normaliy, twc or three cycles are
required for .deal gas solutions and one additional cycle for real gas cases.

Real Gas Effects

It is ielt that some comments are in order with regard to the overall pro-
cedure. Specifically, what is the correctness or justification in using real
gas reflerence enthalpy viscous solutions when the local inviscid flow has
been determined only for a calorically perfect or ideal gas? To answer
this question, an extensive comparison of iaminar boundary-layer methods
was undertaken in support of an carlier study and the details are reported
in Reference 47, DBriefly, the sria {riciion was determined for the flighi
conditicns of the matrix given in Table 6 corresponding to the surface
cequilibrium temperatures {(emissivity = 0.8 at the one-fool station «f a flat
plate.

Altitude Velocity (1600 fps)
{1000 Fu) T2 e ol 57T o
106 x x x « ] -
150 . . < | . N -
200 T T T - -
250 T o e T | < |

Table 6. Fhight Matrix for Skin Friction Calculations
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Angle-of-attack variation from 0° to 40” in 10° increments and five bouad-
ary-layer calculations were made at each condition. The latter correspond
to the combination of three bounda:y-layer solutions and two shock wave
snlutions for 'ocal properties as sbowa in Table 7.

Bourdary Layer Local Propetties
Solution Real Ideal
Exact 1 -
Refe rence Z 3
Enthalpy
Reference 4 5
Temperature !

Table 7. Boundary Layer Calculatiors

Alsou, additional calculations were made at the flight condition of 2¢, 000 fps,
200, 000 feet altitude, and wall temperature equal to 2000°R.

Methods 1, 2, and 5 are seli-consistent with respect to the assump-
tions made and are regarded as normal calculation modes. Methods 3

and 4 are inconsistent in the assumptions made between the inviscid and
viscoug solutiont ang are termed mived calculation medes. The free-strecam
prorerties were speci’ied by the 1962 U.S. Standard Atmosphere and
Sutherland's visce sity formula. The oblique shock-wave solu..ans are
accurate to Y-significant digits in the inverse density ratio. Tor the real
gas solution, the thermodynamic properties for equilibrium dissociating

and 10nizing air were obtained by the method in Reference 48. The assumed
ideal gas is calorically perfect with ratio of specific heats equai to 1. 40.

The real gas variation for the density-viscosity product in the viscous
sulutions was obtained as a function of enthalpy and pressure using the
polynominal equations given in Reference 49, This product is based on
the most recent thermodynarnic data of Hilsennath {(Reference 50) and

the viscosity calculations oi Hansen (Reference 51). The Frandtl number
was <ssumed equal to 0.7: for all the methods.
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Typical results of the comparison are shown in Figure 55. The exact
solutions wu:re obtained using the Douglas General Laminar Compressible
Boundary-Layer Prograra as described in Reference 49. The reference
method cal: ilations shown are tased oa the coefficient values of Monaglan.
These were selected since the skin friction calculated cons:isterily gave
the beri agreement with the exact results. Comparison of the three formu-
latioue considered — Monaghan (Reference 46), Michel (Reference 52) and
Eckert (Reference 53) are shown in Table 8 for the same fligiit conditiony
as Figure 55. Major conclusicns of the comparison are:

1. Wirh the exception of possibiy zeiro angle-of-attack the reference
temperiture method, using existing values for the coefficients Al
and A2, is inadequate for predicting skin friction for the complete
range of hypersonic flight conditions considered.

2. The real yas, reference enthalpy metnhod using Monaghan's formu-
lation adeguately predicts the laminar skin friction over the complete
flight range considered. The results, however, are consistently
about 3 to 5 percent lower than the exact calculations.

3. The n:ived calculation mode, ideal gas invisc’d — real gas reference
enthalpy is in substantial agreement with the real gas refereace en-
thalpy calculation up to 30° angle-of-attack,

Reference Angic of Attack 1 Degrees
Enthalpy
Due 1o 0 5 10 15 20 l 25 30 35 15 50
4

Monaghan | 0.247]0.623]1.056]1.445]1.75311.96v{2.00]2.121 | }.853] 1.5G60

M:chel 0.24,[0,628]1.06211. 4371, 747]1.-53]2.007{2.075; 1. 78] 1.529

N
w
da

Eckert Q2330 e13]) 0361 418 11,20 7)) 42612 042]12.05b().788

Lable B . Compar:ron of Reforonce Mathads, Values ot € x 152,

{Altitude - 200,030 Fr., Velocity - 29,000 1p:z, Ty - 20G09R)

On the basis of the results of this study, the mixed-mode ideal pas inviscid-
real 2as reference enthalpy calculation has been included in the Hypersonic
Arbitrary-Body Program, The real gas fluid properties of air are determined
by the procedures described in detail in Reference 50, Three different forraulas
are used to speci’y the viscosity, At very low temperatures sach as raight e
experienced in a high speed wind tunnel the viscosity is tound from “he
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Figure 55. Laminar Shin-Friction Coefficienc Comgarison
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Bromley-Wiike results (Reference 54). In the Arbitrary-Body Program these
are approximated by the following linear relationship;

For T = 22%C°R
-9 1b sec

w - 0,80383436 T x 10 2
tb

At higher temperztures and for an idcal gas the Sutherland viscosity
formuta is used (Reference 25);

For T > 225©0R

5/2
_ T’ -8 1b sec
b 2210 TgsE 210 T

For real gas and tempcratures greater than about 6000°R Hansen's
viscosity values are used (Fefererce 3)).

Viscous -« Inviscid Interaction

Under conditions of low Reynolds number and high Mach number, the
mutual .ateraction of the bourcary layer and the inviscid flow field can

have a large clfect on both the iannnar skin friction and surfac: pressure,
Boundary-layer displacement effects in hypersomc flow over .lat plates
have been studied at length {e.g., Reference 59) and the preseat approach
is limited to consideration of these methods. Basically, a pressuse s
induced from the relatively large outward streamline deflection c2ased by
the thick Lypersonic bounda.+ layer. The classical ¢pproach 5 to con-
sider an eitfective dody, m:.de up of the actual body pius the boundary-layer
displacement thickness, ir a.. iterative solution with the 1nviscid ilow.

This in its:2lf 1s an approximatnion and, i1n addition, e simplifving assump-
tions of hypersonic viscous similarity are usually emploved. .his pro-
cedure has veen adopted for use in the Arbitrury-Hody Program and a brief
backgrcund ard development of the tinal ecustions follow,

Bertram and Blackstock (Reference 36) prescnted some s:mple procedures
for estimating the boundary layer induced eff~cts on pressure and skin
friction. Thesce involved the vse of hypersonic-similarity-boundary-layer
thieory so'utions i an iterative technmque with the aypersonic small-ensturk-
ance tangent-wedge pressure equation. The analysis showed gond correlation
with cxperimental data for surfaces at nearly zero degrees 1ncidence to

the {ree-stream. White (Reference 57) extended the theory of Bertram and
Blackstock to include the effect of angle of attark and presented a dhirect
method for solving the problem without requiving 1terations, White used
hypersonic small disturhance expressiors 1or both compression and ex-
pansion flows and introcduced a new ingeract.on paramecter to correlate the
wail "emperaiire effect, Recently, Bertram {Reference 5R) has presented
more e'aborate solutions for the problem employing the techniques of White,
Implic.t t5 all these soiutions 15 the assomption of a calurnically perfect gas
and a Prandtl number of unity.
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White's solution has been used in the prusent 2::alysis because of the rela-
tive simphicity in it applicatior. His numerical resuits showed the local
pressure to be nearly 2 linedr function of the iteraction parametex, \:

P = 5140+ B)

where N
B = m R
P,
o 1/2
@ang G M(} ( C \
L S ~\RKx
Jre2j <)

The quant.ly G 1s a sample function of wall temperature and specific heat,
C 15 the Chapnar-Rubesin viscosity cocificient, and ) 15 the Mzngler
transformat:on parameter: tv o-dimensioval flow, )= 0, ax:allv-symumetr.c
flow, =1,

In the above equitions, F  is the local pressure (v free-stream pressure
ratio, and the subscript "o' refers to the inviscid value obtained fron: the
hypcrsconic small-aisterbance relations.

Bertrani's (Reference 56) correlation {or local) skin friction coefficient ;s

AN

, PCY’
C( = 0.60% Kl (\R‘;:

ahere K, 1s 2 pressure gradient and wall temperature correztion factor.
The shear on the surface s

T‘w :fq‘C{ dA

In the present analysts, ihe appraach taken it to determine the eflect or
ficrtor due to vistous-imieraction using White's method and then to modii ¢
the previous result without nteraction accardingiy. Thas vaiscous-iater-
action factor, X[, is obtaincd by carry:ng out the integration os the pre-
ceding equation and 15 dofined aZ foliows,

- i |
(‘rw)\'l . '!/;. + B(;‘, +] 1
byy = —e—e— = 1+ B.' 4+ Bo log.! —meemee—}
SVl Tw \ Cr Cy ge! ‘/13;:_; l
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where B¢ is based on the rcot-chord and K; ias been assumed ejual to
one. This expression 13 for a plate with taper ratic onc, but the integration
could have been done for an arbitrary value (e. g., Reizrence 59). In the
present applivation the pianform effects are included in the shear force
without iateracticn, Ty. Thie appiication results in a slightly lower factor
but has the advuntage of permaitting a step-by-gtep buiid vp and comparison
of the uverall viscous forces, The magnitude of the skin-friction correction
factor using the above techniques is shown in Figure 56,

The induced pressure on a suriace is determined as an increment 1n prea-
sure coefficient.

The average pressure increment, P - i, is found by summing the local
pressuse distribution over the surface.

. 1
- = - - dA
P-p, N (P.F)
Subsntating the expressgion fovr Yacal pressure and integrating gives

P-P = Zmic,

The due to induced pressure 1s determined for the skin-friction geo-
metry r-g)‘esm tation of the valricle shape and effects due te the planform
shape and due to the wnitial suriace are discussed 1u tne next section.

The busic hypersomc sinall-disturbance relations for calculating pressure
are:

For compression slow (K = 0)

_ Yei 2 Tf\ )
P~-l17(4)K +7i‘-;l T_K g

For expansion flow (- 2/{y- !} X >0

L2V

pz[l,"_z_ K]

The similarity parameter, X, 1s given by,

AK
[ % %]

—
N
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where Ko = M_8ind (§ 18 the suriace imipact angle) and K4. a boundary-
layer growth parameter, is taken equal to . 0,

White (Reference 57) ubserved that the pressure ejuztion (either compres-
si1on or expansion) and the expreseion for X constituted a first-order
nonlinear di{ferential equation 1n P{A) and ottained numerical solutions
drrectly without iteration. The results are shoewn in Table 9 from which
White also observed that the pressure could be approximateg by the hinear
relationship

P=F, * mi

where P, and the siope parameier, m, are just functions f K,. F 1is
given by the hypersonic similarity relaticns as a [irnction of K, and, in
the Arbitrary-Body Program, . is approximated to the daia of Tatle 9
by the follow:ing analytical curves:

For  «~z!(v-1): Ky<-3.0,

m = 1,424 + 0.2]: KO

For Ko = -3.0,
(Y Z

m = 4156 « G.41T2TK, ~ 0.0413101 K,
- 0.000427K " + 2.00214381K,* - 0.000103217K,’

l
|
For ¥. 2z 10.0,
1/2
m=[27/i(Y+ 1]
: Simllarity Parameier Kg

A N T
if
'
¥

-

-3 -2 -1 0 +1 +2 +5 +10

g

.002
172
. 428
.738
.092
. 485
. 908
. 359
.833 . 004
. 328 . 032
. 840 5.275

.028
.339
.736
.192
. 695
.234
. 801
. 352

.210
. 748
. 379
.059
.770
. 506
. 260
.029

. 000
.835
L1717
.740

.473| 8.734! 44.14 | 170.
.855] 9.930 | 45.41 | 171.
.722[ 11.18 d46.7¢ | 112,
L9141 12. 47 48.01 | 174.
.709 .108! 1370 43.33 ) 375,
.L79 294 '5.07 50 co | 170.
.65) |10.47 | 10,37 51.99 | 177.
.22 |il. 04 17.¢7 53.34 179.
810 0593 {12.80 | 18.9. 54.70 | 180.
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Table 9. Numerical Solutivns for Pregsure Ratio I (y = 1. 4)



Planformy Effects

The previous sections have dealt with the deteymanation of the local skin-
friction coefitcient or the average skin-frictior coefficient per unit span,

In this section, the determinaticn of the viscous force contribution of a
surface element having a planform shape of the type shown in the sketch
below is coansidered. In the denivations that follow it 18 implicitly assumed
that the root and tip chords are parallel to the oncoming flow.

" 4

e — G X
1 _—— = =X
! / <o
b v
/ )e 1
1
, .
hOow
Bechon ™ - ' - X

The product of lccal sken-friction cocfficrent (C¢,) and dynanus pressure
(qé) is 1ntewratea over the surface area (A) to obtain the shear force.

(The syrabol 7 is customurily vsed to define shear stress, however in
the present fext it 15 used consistently as a force. This i1s done to aveiad
the unnecessary use of area ratios in the defining e¢quations and at the same
time reta:in the significant connotation associated vath the symbol.)

Tiwe shear iorce on cach suvface 15 then wrnitten as a coeificient ‘aith re-
stvat 10 the tree-stream dynanné pressure (qm) and a specified reference
arcs (S), T,
W
Cyp = T
® S
7 %

and summed over all suriaces to obtain the vehizle characteristics due to
v.scous forces.
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Laminar Shear Force

The local nroperties are constent on each surface and the above expression
tecomes
b < -

Tw * 9 C‘a)c, ‘r _[ { f (x?

o lo

[ V] '™

dx}dy

where the surface has root cho-d ¢.» span b, and (C¢, ). is evaluated at
the 1oct chord. The local chord length may be expressed is

€ = cp 1-(i-TR)a)

where TR is the taper ratio (= ©t/cy) and = is the normaliz:d span
dimension (= y/b). Substituting this expression and completing the inte-
gration gives the shear force on the vurface as

4[ 1+ TR+ VTR ]
Q}

7 = q A(C!- ) "
v ¢ écr + TR} + JTR)

2

the SRin-iticiivi coeificieni

0
-
<)
€
»
:-
-
gn
o
0
£
|
[-U
<
]
Il
[\
®
(<%

evaiuated at tf; ragt-chard,

I. the Arbitrary-Body Program the shear iorce is expressed in terms of
ar. average chord length, <;

where 2

- oc *4[1#TR+\GE ]
r 3 (1 + TRY1 + / TR)

Visccecus-Interacilion

As was explained in the previous section, the effect of planform on the
shear force 15 not determined directly {o: {flows with viscous-interaction
but is included in the calculation of shear force without intevaction. This
procsdure results in a shightly lower force hut has the advantage of per-
mitting a step-by-stefp buiid-up and comparzisonr of the cverall viscous
forces, There is, however, an additional effect on the 1nduced pressure
due to planform shape which is accounted for,

The average pressure is obtained by integrating the local prussure over
the surface:
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c,b b ;/Cr A
= A f ; / (Pof AT d )df} dn
o
where ¢ = x/c,, the normahized streamw:ae cocrdinate.
Substituting the expressions for
c /b
A = (1 + TR)

2

c/cy =1 - (1 - TR)»

the integration 1s easily completed. The result s

. —~ J 1
Jr Iy vIK 1
(1 - TRIQ = JTR) J

e
n
v
[}
wl

B

r
i
"L

where

m

Bep = P, Aop

Tie average pressure increment for the surface 1s then

Py " Po=

O

w|o

m, l- TR - VTR l
r - P
(+ TR)(!+ JTK) |

which ‘or TR = . reduces to the value previously given,

Turbuient Srtear Force

Because of the neture of the assumed skin<irniction formulas, a differe 5t
approach than vsed for lamurar flow 1. taken to obtain the turbulent «F . av
‘orce. The end resalt, however, 15 an approximate solution which s rery
similar to the lamunar resalt. Tue shear force equation 1s dersved @ s
follows,




-

P

Tw = 9 Cfa dA

b c
qy f ; Jf Cf¢s dx idy
o "o

1

qab f CCF6 dn
o

The variable of integration is transformed to the local chord-length Reynolds
number in two steps. First in terms of the chord length c,
e

(o
/..r c CF6
T =
w q6 b J —(T—Cr --Trﬁ)- dc

<t

Next, the variable of integration is transformed to the incompressible

Reynolds number, Rc; = Fry (P_U“_c)
(]

chord values; 1
w ( - TR) R Rcri —CFCr A Rcr R

, and normalized with respect to root-

crb C
Noting that the surface area is A = —zr—- (1+ TR}, and a2lso that(—C;F—) =
c
(C—F-) , the shear equa*ion becomes r/s
/i

2 Re: Cr Rc
Tery = A(C ———— —— d
w = q5 Al F;)cr(l ] TRZ)T{ (Rcr). (?"Fcr). (Rcr)_
1 1 1

With a siniple power-law skin-fiiction formula this equation is easily
eraluated;

1
C - N
CL = ’é?_) » where N is positive
Fcy/. \Rep
i

cr ;
and 1
T { J/‘l 1- N / v
w=qACF)c( ) (Rc) d/ Rc
5 8°¢r\1- TR? R \Re; \-R_-Cf')i
2_.1
= q, A(Cy,). (__2 )(1 - TR N’)
8 8 '_'127_ 1-TR?

e g e 8% e a




'
For laminar flow N = 2 and it is e~sily verified that this expression is
identical to the one previously prcsented.

In general, vhe skin-friction coefficient is not given by a simple power-law
relationship and this is the reason for dcriving the turbulent shear with the
Reynolds nuraber as the independent variable.

The use of the Sivells and Payne formula in the shear equation intrcduces

a singlularity in the integrand and the function is nonintegrable. However,
this singularity occurs at a Reynulds numbker muach belew the laminar cutoff
and the shear equation may be integrated numerically. Several examples
for the numerically determinced integrand are shown in Figure 57. The
upper-bound represented by la.ninar flow and a lower-bound represented by
constant skin-friction are also shown. The curves are smooth and the area
under cach curve times the quantity 2/(1 - TR4) is the factor by whick the
shear increases due to a tapered planform,

It may be observed from Figure 57, that even with a large variation of
Reynolds number on the planform (fcr example, Rc, =10 9 to zero at the
tip), the major contribution to the integral is obtained over the first decade
(Re/Rcy = 1,0 to 0.1j. In the case of the upper-bound (larainar flow) and the
lower-bound {N = @) this contribution is §7 and 99 percen\, respectively.
This then, suggested the approximate approach of representing the Sivells
and Payne formula in the integrand over the entire Reynolds number range
by a local power-law fit obtained as the iaverage over the [irst decade.

Thus, the shear on the surface is obtaired from the power-law solution
with the exponent parameter, N, given as (fo: Sivells and Payne);

log Rcy - 2
0.86856

Alternately, as was done for laminar tlow, the shear iorce may be expressed
ir terms of an average chord, c;

Tw = 95 ACF);

where
(Rcr Q-1
¢ = ¢y ~—372
10° )
and 1
2
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mnitial Surface Correction to Shear Force &

When an initial surface is specified, the shear force is determined for the

combined surface geometry, for the initial surface, anc the differznce

obtained as the value for the surface of interest, This in effect is dealing

with three surfaces which have the following characteristics (see sketch _
below): R

1. Initial surface; Area A}, maximum chord length L;, taper ratio
TRj, and shear forcs Twj.

2. Surface of interest; Area A2, maximurm chord length L2, taper '
ratio TR. and shear force TWZ‘ S

3. Combined surface; Area A3 = Aj + A2, maximum chord length L3,
taper ratio TR3, and shcar force Tw3.

The shear force on surface 2 is o

TWZ = TW3 - Tw

(c ) hoAm [OF Bvop

= A K - 5= -1

45 B2V Fp BV Az |TCF Rvilz {

In the Arbitrary-Body Program this is compacted to the form \
TWZ = q A, (CFé K\/I)3 (1 - FF)

where FF has the mremonic form factor or friction factor. Three possi- C
bilities are considered in determaining the friction factor: (1) both surfaces
laminar, (2) first surface laminar and second surface turbulen’, and (3) 3

both surfaces turbulent, L

i— L, —-o-l .

— - 3
/s 1
o ! 2 3
/ INITIAL SURFACE SURFACE OF INTERES? :
e AREA A, AREA A, -
/
I
A S
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Initial Surf.ce Correction to Induced Pressure
The average pressure on surface 2 is defined as follows:
Fz F3-Fp  F3Az-P A

PZ = eme = =
Ay Az Az

wher: F. ic the force on surface i. The average pressures on the initial
surface and on the con:bhined surface are given by

1+ TRy + VTR,
1+ TR + VTEY)

L e a mee w

P = P, 2(1+ %Bl[

[ “TRs"ﬁ'ﬁ?]} {

8
P, = P, {1+ = B, Il
3 3‘ papmm——
° { 3 lit + TR3M1 +/TR3)

and the areas by 'g

A} = bLy(l+ TRy)/2
A, = bLa(i+ TRp)/2 ‘
A3 = bL3(l + TR3)/2

Substituting these expressions into the above definition and after some
algebraic manipulation the result may be written as

Tty =
o e e

1
f 5 .p -8 (Ls\r L+TR, +VTR, (. (L) TR#+VTR; \i+VTR3 :
f z" 0-3-n13~r2/l 1-1‘—3( g -~ 1

(1+TR)(1+VTR ) 1+ TR 3V TR A 14V TRy \

The lergth L3 is defined as the maximum chord length of the combined sur-
face, B8O as Ll-.O it is readily verified that the pressure reduces to the
sime expression previously given for a single, tapered plate.

ST TR Y ST EANTE PR GYTTPR TTYT e

Viscous Force cn Blunt Bodies

The ecarliest space capscles were designed with large spherical nose
caps aud flew ballistically a* zero degrees angle of attack. For such
vehicler, it was found that inviscid flow field calculations were ade-
quate to predict the splash point. 71he later generation capsules were
designed o fly ~t angle of attack to provide lift and it has been shown
that viscous forces can have a significant effect on predicting the
splash point. The theoretical solution, then, must provide sorne means
for estimating the viscous elfect.
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The procedure included in the Arbitrary-Body Program is that developed
by Goldberg of the General Electric Company (References 60 and 61),
This method 1s given in the form of 1<latively simple correlation formulas
in terms of the shock-layer Reynolds .rumber and inverse density ratiz,
The method ts applicable to the low density conditions associated with high
altitude entry and is equally suited to real gas or ideal gas analysis,

The shear force in the stagnation region of a blunt-faced body is given as
.'f'w = ‘rwo KVI

where the shear without low density or viscous-interation effects is

TWo = 4 -%mi,g C??d =
: CAJEN /R
and é is the surface impact angle,
€ is the mverse density ratio, = (£2/0, )-.1
Reg  is the shock Reynolds number
= P UaRp/ Y,

RB is the body note radius.

The viscous -interaction correction factor, Ky = Tw/ TWO, was obtained
from higher-order analysis of the boundary-layer flow (Reference 60 ).
The present authors have developed a correlation formula to represent
these soluticns in the Arbitraryv-Body Program. This factor, a compli- ‘
cated function of boih skock Reynolds number and density ratio, has been R
approximatced by a conibiration of exponential transition functions of the :
type described by (Grabau (Reference 62 ), These are

.. 1
even traraiiion: y = onp RN XD) 3
- T Ao N

1

odd transition: y = Ty oxp KX XTI
(o]

These functions arc csscentially the kernels fer the Bose-Einstein and for
the Fermi-Dirac distribution functions, respectively, for the even and the
odd iransit:ons, The notation of transition is used since these functions
represent {ic smooth transition from one asymptote to another; the cven
case docs .ot have a point of inflection and the odd transition has a point
of inflection.
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In the present applicaticn, a correlation formula for the viscous-inter-
action parameter hae been obtainea by 2 combination of an even and odd
transition function. The curve is cconsidered to have three asymptotes
(see the sketch below); Y1, Fl, and F2., First an even transition is
determined for the curve between F1 and F2 and this is designated Y2,
Next, an odd transition is established between Y1l and Y.. The curves
are adjusted through the values specified for the exponential congtants,
K, and the origin coordinates, Xo. Dectails of this procedure are given
in Reference 62.

F1

T
y'rwcn \ ~Y2

The correlation formulas developed for the present case are as follows.

Independent variable X =log (€3Pe,)

Fl1 = Al + Bl(X)
Al = 0.667
Bl = 1.1111

Fz = 1.0




Y2 = F1 + (1.0 - F1)
1.0 - exp [EVK (X - XGEV))

EVK = -180

XOEV = -0.3

TV Ty, = e Y2
1.0 + exp [ODK {X - XOOD)]
ODK = -2.0
XOOL = ACD + BOD(lop ¢)
AOD = 1.0
BOD = 3.2907

Comparison of this correlaticn and the boundary-layer solutions are
shown in Figure 58 The general shape of the curves is well repre-
sented by the correlation, although some accuracy is lost, particularily
at the peak of the €= 0.04 curve. It would be possible to tailor-fit
cach of the ¢€-curves througl: further variation in Fl, the exponential
constants and origin coordinates. However, since only thrce solutions
were available, the determination of more accurate fits was not deemed
justified. ‘Three additional ¢€-curves are given on the figure to demon-
strate the behavior of the correlation formula.

An example of this technique is shown in Figure 59 were the predicted
values of lift coerfficient for 'he Gen:ini space capsule are compared

with experimental results {Reference 63). The modificd Newtonian
calculation has been performed for the entire shape and the viscous
calculatiorns (broken lines) made only for the blunt face., The present
comparison, due to the limited data used, may not completely justify

the method, but it does show the significance of the viscous contributions.

The blunt-body viscous calculations are noi limited to entry capsules
but rmay be applied to any blunt peitions of a vehicle (e.g., leading
cdges). The method is primarity dependent on impact angle and, theve-
fore, the detailed invisciid geometry is used. It is for this reason that
the method has bLeen inciuded as one of the inviscid force options. Zero
contribution is assumed for shadow flov:,
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SECTION XI

AUXILIARY ROUTINES

The Auxili sry Routines option of the program is provided to hous=s features
that are rot directly related to one of the other major program components.
In the initial release of the Mark IV program it contains only the General
Cutiing Plane option.

General Cutting Plane Option

The General Cutting Plaue option may be used to determine the section
shape of an arhitrary »ndy in any desired plane. This capability is some-
times useful in tne geomeiry preparation stage of a problem. In this
application it can be used to help define the intersection line between
intersecting vehicle pancls., The cutting plane is orientated so as to
represent one of the panels (or clerients). Its intersectior with the other
panel is then determined with the General Cutting Plane option. This
information can then be used to assist in preparation of the geometry data
tc be input in the geomeliry part of the program.

Orientation of the Cutting Planc
Initially the cutting plane is assumed o be in the x-z plane wich its position

specified by three mutually perpendicular oricntation vectors; T), T2, "f3
coincident with i, j, k, respectively.
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The orientation of the piane is given by three rotations in a yaw-pitch-roll
sequence (y, 0, ¢) and by a final ofiser rotation 8. Angle ¢ is a rotation

about T3, angie § is 8 rotation about T2, angle ¢ is a rotation about -'fl,
and anglc B is a rotation about T3. The orientation vectors are given by

Ty i
Ez I = [R] j
| T3 k
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wnere the rotation matrix is defined as

[R] = [B] [¢) [¢] [v]
[K] is given in complete form at the end ot this section.
In most applications ¢ = 0 = C and

cosB sinf} cos¢ -sinf sing
[R] = -sin B8 cosf cos¢p -cosfB sing
0 sin ¢ cos @

This whole business seems somewhat awkward, but has been sclected with
the applications in mind. The cross-scction arcas needed for wave drag
calculations are determined by cutting planes havinpg 8 = *dach angle. The
cutting plancs are distributed along the body and luken over the necessary
viewing angles (¢).

Meridian sections for shock expansion calculations are aclerrained with
R=0 and varying the rotl angle d)

Interscction of Cutting Mancs and Configuration Geomeatry

It is expected that analyses will @ required of ceinplex configurations con-
sisting of a great many clement: and therefore any geometry handling, such
as scction cuts, muct be done efticiently.  The Douglas Arbitrary Wave
Drag Program is an example of ihis, Farlier programs select a cross
scction plane and scarch the geomcetry tor possible intersections.  As the
geometry descriptions become mora complex, it is apparent that large
amounts of time are simply wasted ia scarching. The Douglas Program,
however, sclects an clenmient and determines any and all interscctions
involving that ¢lement, The configuration ciements are cycled and the
interscctions collected according to cross-scction — the same result as
carlier programs. The big difference is that cach element is '"called"”
only once.

The intersections are found by projecting the clement into a plane normal
to the cuttinpg plane. For cross secticn cu's a plane containing Ty, T, is
convenicat, while for meridian cuts a p.ane containing T3, T3 is more
suitable. The proccedurce for meridian cuts is described beiow,

A plane is completely described by its ncrmal vector and a point in the
plane. The sketches shown have implicitly assumed this point on the

x-axis and, in particular, at the coordinate crigin for meridian cuts.  An
otfset for the plane location (xo0, yo, 7o) is castly accourted for and will so
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be assuraed in the following discussion. For the .cfinition established,

the three vectors associated with the cutting plarnc are ( 8 = 0);

Ty =cos® cosy T+cosé gingj - 8in 6 b

T, = - (cos@ sinyd + sin¢g sin 6 cos )1 +(cos® cos¥ -sin¢ sinf sin ¥)j
-sin¢ cosd k

T, = - (sin¢g siny -cos@ sind cosP)i + (sin¢ cosP + cos® sinb siny)j

+cosd coef Kk

Once the plane axis ('Il) is set (¢, 0 values given]j, the projectizn plane
is fixe 1 and for simplicity the 'I'-:, 'I‘3 plane at ¢ = 0_is used . _Tte

coordina:e axis of the projection plane, designated YP and ZP a

¥P = (T];Z)¢=° = - gin 9{!? + cos U'T

7P = (T3)¢=o = 3in6 cos¥ T + 8in6 siny] + cos Ik

The corner pcints of the quadrilateral are projscted into the YF, ZP
plane. The radws vecior to a corner point is

R(N) = X(N)TI + Y(N)] + Z(N)k

pn

and the projected compo..ents are

YP(N) = R(N) « YP - X(N) sin ¥ + Y(N) cos ¥

H

ZP@y) = R°N) - X(N) 3in6 cos¥ + Y(N\)6in6 sin¥ + Z(N)cos 8

ZP# 1 ?3

é—-—-.—.‘m [T~

YP
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be assumed in the following discussion. For the definition established,
the three vectors associated with the cutting plane are (8 = 0);

o]
Fo
n

cos 0 cos T+cos b singj - sin 6 b

Hl
N
b

-(cos¢ 3iny + 8in@d sein @ cos ¥)I +(cosP cos¥d -singd sinh sin P)J
; -sin¢ cos? Kk

e vtmas Jok kA b aw

L
[¥7)
{

= - (sin¢g siny -cosd 8in® cosP)i + (sin¢ cos’¥ + cos?P sinf siny)j
+cosd cosf k

Once the planz axis (-T-l) is set (Y, U values given), the projection plaae
is fixed and for simplicity the Tp, T3 plane at ¢ = 0_is used._ The
c¢oordirate axis of the projectioa plane, designated YP and ZP are

YP = (T2)¢::° = -zin¢i + cos v,

ZP = (1_'"3)¢=° = 8in6 cos¥ 1 + 8inf sinyYPj + co0s Ok !

The corner points of the quadrilateral 3. preircced iutv the YP, ZF
plane. The radius vector to a corner poiiuc is

R(N) = X(N'I + Y(N)j + Z(N)k

PSR TN S VIRV TN

and the projected components are

A

YPIN) = R(N) « ¥YP = - X(i!) sin ¥ + Y(N) zos ¥

-

ZP(N) = R(NY - ZP = X(N)sin@ cos¥ + Y(N)sin6 siny + Z(N)cos 6

Zp

)
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4
/
s
2
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The four corner points (N = 1,4) are projected into this plane and the
desired intersections are with {ia: Ta vectors, which in this plane is
gimply

T3 = sin ¢KTP- + cos ¢KZI_3
The subscript K is used to indicate a number of planes, say 1 to M.
The angular position of each corner point is determined
A(N) = tan™! (ZP(N)/YP(]))
and the gbK are interrogated to find the condition
Pk < Ap <Pk
each cerner point ie assigned a plane numnber egual to K:

MP(W} = K

The plane numbers of successive corner points arc tesied for possible
intersections and if indicated the intersections ace found. The number
of intersections on the line segment between two points is given by
the difference in plane numbers:

NIy nt1 = | MP(N) - MP(N+1) |

An examnle will help to demonstrate the procedure. First, an additional
simplification is presented. If the meridian planes are dezirea {or equal
increments in A¢, the corner point plane number (MP) is give: directly
by

MP(N) = [tan"! (ZP(N)/YP(N) }] 4 ¢

where integer arithrnetic is assumed (i. e., the vatue of MP is truncated
to next lower integer). For the example th:n, ~onsider equally spaced
meridian planes as shown in the sketch and calculae intersections with
elsernent A,




Corn.c:l-’-oint Pla.:e Number| Line [NMuny :r of Interaections
Number N MEN) Segment h_f:_‘;_;’(N) - MP(N+1)

1 2 )

2 : 273 2

3 > 3-4 0

4 1 5 | e 3

The results are presented in the tahle and ar: easily verified irom the
sketch. It should be noted that an slement line coincideat with a cutting

plane does not produce an intzrsec.ion.

leross-inember''.

ZP

Calcul_g.':ion of Intersection, Point_l_._

The eovation of the cutting
plane projection is

a) YP = tan ¢ -

ZP

and the equation oif pro-
jected line segment is

ZP1

b) ZP=(ZP1l -tand - YP1)+tlan 8 - YP

Rather, this is recorded by the

o
Yp

The solution for the intersection of twc linear cquations is easily found by
straightforward equalities (i.e., YPI3 = YPIp and ZPI; = ZPI,). To avoid
certain singularities howaver, the resulting equations may be reworked

algebraically. Therefor-.

a geumetric interprestation of the soluvtica which




"‘
b accounts for the singularities is presented. The coordinates of the 11.
i inntersaction (YPI, ZPI) are given in terms of radius length of the ¢ F‘
intersertion, RI: A
;

YPI = RI % sin ¢ R

ZPl = RI * cos ¢
t L-

I
| z
] ;
;&
3 6 8%
——— = vp N
YP1
i
Observing the construciion in th'- above sketch and noting that @ = ¢ + 4§,
the radius length of the intersect.on is E.i
Kl = (ZPl + cos & - YPLl . sin §)/cos (& + &) ‘
k4
where & has the sign convention given by positive s.ope in YP, ZP
coordinates (i.e., sign of dZP/dYF). This may be clarified by rewriting L
in terms of the point cooidinates YP1, ZP1l and YP2, YP2. First expand o
cos(® + 8) = cos ¢ cos 8 - sin ¢ sin § and then multiply through by the
length of the line segment
)/
Rl = ZP1 1YP2 - YPl) - YP2 (7P2 - ZP)) R/ -
coad (YP2 - YPI) - sing -(ZF2 - ZP1) d
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This equatior. is well bel. vec since the line segment and the cutiing plane
rrpuot be coincidznt.  The interaection in body coordinates is calculated

¢ auily using the principle of rroportional parts. The length ratio ie
uz. s ed as

LR = [(YPI - YP1) + (&Pl - ZPl)

(YP2 - YP1)° + (ZP2 - YPIF_

2

|

| SN

N YP] - YP1 _ 2ZP\ - ZPl

. N YP2 - YPl = ZP2 - ZP1
then

XI = X! + (X2 - ¥Xi) * LR

; YI = Y! + (Y2 - ¥1) * LR

Z1

H

Zi + (Z2 - Z1) * LR

Since many elements are involved the question naturally arises as to
whether the same intersection is calculated twice. That is, in the
preceeding example, since line segment 4-1 has three intersections
would these same intersections ke recalculated for the =lement B
which zlto contains this segment?

This duplication is avoided by selecting the line segmens used for any
given element. The selection is based on the way the element points
are ordered. Brietiy, recalling from Section III, elements are loaded
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by section according to rows anc columns. KEach element has a
number and a status flag and all this information is available,
samiple section of eiements is illustrated helow.

T e el @ n
3 1
| @O -
@ 0Ol o |
2 E]
0 e® @
® 0l o
Row J =1 @ @ ete.
o elo g

Column I =

,,
-_UJ

I
[
I
I
2

Status ¥Ylag

Correr Point Number @

Element Number

A scheme to project the line s:2gments is as foliowe:

1 £ 1 project lines 2-3 and %-4
J =1 also project line 4-)

I = 1 also project line 1-2

With this scheme, duplication is limited to s:ction boundaries.
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Rotation Miztrix {R]

¥ rotation about Ty

T
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@ rotation about TZ

Y

Ty

B rotation about T3

r cosfS

(8] =
|

..ginﬁ
0

[ cosy siny¥ 0
[Y1 = | -siny cos¥ O
l o o0 1

[9]=l 0 ] ¢

sin® O coséd

I‘ cosf@ O -ainO]
]

1 o o I

[¢] = 0 cus@ -sing I

0 siug coa¢j
sinf 0
cosB 0
0 1
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The vectors Tl' 71."2, T3 are given by

T, i
Tz = [R] _J—
T, K
where [R] = [B][&][6][v]
( [cosBcosfcos-sinB(cosp sind+singsinfcos )] \

[cosBcosd sinPtsinB(cos¢cosy: -3in@sind siny)]

-[cosBrinf +sin8sindcos 0]

[R] = < -[sinBccs fcost+cos B(cosP sinP +sindsnb cos i) \
|sinBcosésinP+cosBlcosPcosy-sind sinh sinif]

[sinfsinf -coslsindcos 0]

\ -[sin@siny -cosd sind cos ’]|sing cos¥+cosP sind sin][cosdcos§] /
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SECTION XII
COMPUTER GRAPHICS

The use of computer graphics has been z key feature of the Arbitrary-
Body Program since its inception. The first picture drawing routine
Wwas preparcd as eariy as !205 (for the Mark II program). The first g
oa-line gr-.phics program using the IBM 2250 was prepared in 1966, g
The use and imgportance of graphics capabilities in chr:cking out geo-
inetry datz has baci adequately documented in a numiber of references
by uoers of the Mark 1II version of the program. The techniques used

: iz ize ol.! Mark III proegram and its supporting on-line graphice pro-
grams have becn adapied 2.3 used by 2 number of organizations in the
development of their own graphics programs. Versions of the Mark III
Picture Drawing Program l'ave b:en pregpared for several different
types of hardcopy devices including the 52-4920, SD-4060, CALCOMP,
and the Gerber Plotter. Since mc.at ugars of the new Mark IV program
already havc picture drawing programs developed for the support of

the old Mark II' program it has not been necesasary to include a graphics
prugram within the new program on its initial release.

and the CDC 274 cathode ray tube equipme=s! in combinaticn with suit-
able hardcopy or camera equipinent, is by {ar the most efficient type of
computer graphice cperation, The term "ir::ractive graphics' implies
that the engineex has direct and real time control of the operation of a
graph'.cs program (the selection and mar ipulation of input data, program
options, viewing angles, output data, etc.,. Hiwever, the use of inter-
active graphics in an engineerirg application ghould be carefully : 5
weighed against the cost of program development and the very high cost
ci program operation,

The use of interactive graphics, such 28 is possible with the IBM 2250 !
4

— r— i s

The use of computer graphics to checkout arbitrary-bedy geometry data

is well understood. However, the use of graphics in presenting flow

field data is a relatively new development. As was the case with the i)
geometry picture drawing in the beginning we should ask the question -
: why? Why do we need flow field graphics? For the geometry prcbiem
{ it was to check the input shape data. Fcr the {low field data problemn
cormputer graphics can be used to monitor infermediate program output
data. The objective here would be to shew in a grapnhical form the
vehicle generated shock waves, embedded flow bouncaries, anc. surface
streamlines,

A very simple scheme has been used in the latest v=ision of the Douglas

IBM 2250 Graphics Program to allow the casy addit’on of flow field |
plctting capability, The trick used is to convert th - flow field informa- :
tior into standard geometry data format (complete w.th status flags, etc.). :
It is then possible to submit the flow field data te the picture drawing

programn juet as though it were geometry data, The addition of a dotied

line voutine vr.der the control of the program operator helps to separate

the flow field data from the actual geometry data.

it Y R
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The series of pictures shown in Figures 60 through 62 illustrate the
operation of this program. Figure 60 shows the hody generated fiow
field and Figure 61 the wing fieid. A side view of the vehicle flow

fiel¢ at 5° angle of attack is shown in Figure 62,

The flow field data recessary ta ~conctruct these types of pictures are
generated in the flow field op“ion of the Mark IV p:ogram and stored
on the flow field storage unit 10, The manner in which these data are
stored is described in Secciion IT of Volume III, Users wishing to
modify thei: own graphics progiams to produce flow field pictures
should study this caction careiuliy.

The following discussion and derivations related to computer graphics
are presented in the intevest of completeness and to aid new users of
the Arbitrary Body Prcgrain system. Some new suggested features
for existing graphics programs are also discussed.

Picture Drawing Methods

As explained in Section III, the geometric shap= of a vehicle 1s defined
by input sets of points in three-dimensional space. A grouping of fon-
surface points is used to describe a surface element. An orgarization
of a large number of related elements forms a bedy panel and a nuiaber
oi panels describe a vehicle component. Several components are
vsually used to make up the complete vehicle, The equaticn: reguired
to produce perspective drawings of the geometry data arc derived in
the following paragraphs.
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Figure 60, Body Generated Flow Field
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Figvre ol. Wing Generated Flow r5::ld.

204

P

G et i o o,

2 mm o el e e




by b, e - .- s e e ememee - temmres W wmmmas © cdem e Tmom ceias T - .

LI | \ | | ) T -
W\ \ . r-r rn
‘ ' . .
Mo ‘ e
‘\\ \\ \' |. “ e
"\ A\ VoA L1
Y 4 }*.- 4 , l 1
i b Y U \ * 1--’-”
AR TR 4w
Nty L 4
! ! * ‘ “’ (7} E
VA ) T 5
IR T b :
MUY i j
e -4 "] 3
RN 1 kond : .
A ‘| \. o Y n
Ny Py 4
AR <l 3
Wiy o) Wn ” i
MRS [HBA :
H"\" + : \
AR 3 ]

‘ WA Y i L ]
‘ ARRE || A 5 &
‘I \\\ '| ! ”’ g

RN UL 3
"\ A '|‘ ; N § ,_-,\
ll \\\‘\ c\;’
‘ \\\“ ’ ® a‘
W\ &
*\\\ P
)

206




Each point on the surtace is described by its coordinates in the body
reference coordinate system.
[ X
¥
2

L7

The Lody reference coordinate system is assumed to be a conventional
right-handed Cartesian system 2s illustrated below.

Z

s
X

To c¢.eate the perspeciive Arawings illustrated in this report each
surface poinrt on the bedy must be rotated to the desired viewing
angle and then transformed into a coordinate system in the plane

of the paper. With zero rotation «ngles the body coordinate syst :m
is coir.cident with the fixed system in the plane cf the paper.

Z
o
1\
Q> ¢ vaw
\ ¢ roll
- < |/ \/} - Y,
0 0 pitch

The rotations of the body and its coordinate s /stem to give a deszlred
vicwing angle are specifi:d by a yaw-pitch-roll sequence ({, 6, $).
This rotation is given by che following reluviionship:
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V. Zere the rotation matuices cre

. cosy siny o
[‘JJ = i- siny{ cosy o
- L o o lJ

ey L

a cos@ o -s8in®
9‘ = o) 1 o)
s5in® o cosf

-
=

10

. 1 Q o
l¢ = c cocd sind

L o -sind cosd

or -

x
—d

La

Y
=]

where [E]

[+}{e] +]

Since each poiat on the surface is given by its zoordinates in the
X, Y, Z systern,its position in the fized coordinate system (X y Y o’
Z ) may be found by reversing the abo-se process.

[, 5]
YP :

<
H
—_
N
1
pma
-

If we carry out this operation we obtain

- N

N
[ -
fn {]
[ore |
B
N o
o 9

"Xo I'cosBcosQJ ~8iny cosdtsinBecosPy sind siny sing+sinfcosy cosé;] (X
Yo =1 ce -3siy cosb cosdtsinfsing sind  -cosd sind+sinBsing r_oqu Y - ’
“Zo -sin6 cos@sind cosfcosd ZJ J
:
i
y 3
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Xo =X{cosfcosy) + Y(-sinycosdtsinfcosysing) + Z(sinysine+sinfcosvicose)
Y, =X(cosBsiny) + Y(cosycosdtsinbsinysing) +Z(-cnspsindtsingsinycosd)
yA

o =X(-5ing) + Y{cosOsind) + Z(cosBcosd)

We may now use these last tw< cquations to transform a given point on
the body (X, Y, 2) with a specified set of rotation angles (4, ¢, 3) into
the plane of {he paper (the Yo’ z, system). With the available graphics

subroutines it now becomszs a simple matter to plot these datz and ¢
connect the related points with straight lines.

In the surface fit technique used in this program and described in
Reference 3, each input element is replaced by a plane quadrilateral
surface element whose characteristics.are used for all subsequent
calculations. These characteristics include the area, ceniroid, and
the direction cosines of the surface unit normal. The surface unit
normals may be transformed through the required rotation angles
just as was done for the individual points. The resulting value of

the component of the unit normal in the Xo direction (out of the plane

of the paper) may be found from the fellowing equation.

nxo = nx(cosecos n,':)+ny(- sin¢cos¢+sinecosQJsin¢)~'rnz(sin¢sirnc§>+sinecos¢cos¢>)

where nx, ny, n, are the components of the surface unit normal in the

vehicle reference system.

If n is positive then the surface eiement is facing the viewer. If n,

o o
is negative the element faces away from the plane of the paper. This
result is used in the program io provide the capability of deletiny; most
o:i those elements on a vehiclie that normally could not be seen by a
viewer. The resulting picture is thus rnade more realistic and confusing
elemonts which are on the back side of the vehicle do not appear. No
criterion is provided, however, i.r the delet'on of those elernents that
face the viewer but a.e blocked by other body components. This may
be accomplishcd by a proper selection of viewing angle or by a physical
deletion of the offending section from the input data.
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The pictures generated by the above procuedures are not true per-
spactive pictures but represent the limiting condition where the
viewing ‘'eyeball' is positioned at infinity. That is, the picture does
not exhibit any foreshortening that exists when a three-dimensional
object is viewed close at hand, These types of pictures are cer-
tainly acceptable for the purpose for which they were intended - o check
out geometry data. However, for soine appiications it may be desirable
to have the computer produce true perspecturz pictures. The procedures
necessa'y to accompiish this are discussed below,

In past z.rbitrary-body picture drawing programs the picture has been
drawn in the Y-Z plane, with the X -axis projecting out of the picture
screen and, therefore, not affecting the resulting image. To ohtain
3 true perspective image it is aecessary to know the position oi the
imaginary eyveball (or camera iense) reiative to tne rotated position
of the shape. A viewing ray is assumed to exist between cach point on
the shape and the eyeball, The true persipective image is then formed
by determining where these rays pass thiroagh a viewing plcne piaced
parallel to the Y-Z plane and tetween the shape and the eyeball. The
position of the viewing plane is 2ot important as long as it is outside the
rotated shape. The closer the viewing plane is to the eyeball, the
smaller the perspective image. This prccess is illustrated below.

Y
w YE) 2
Yp
Yo
_, x
%o )Rrpln Xtaye

The resulting equations for the image position of a point are as follows.

Yp

Yot ((Yg - Yope) /Xy - Xoye)) * Ripin - Xo)

eye

VA - X

"

Zo+ (24 - Zeye‘ / Xq - xeye)) * (xvp‘.u o)

20y

v
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A FORTRAN subroutine to accomplish the perspective conversion is
shown bz:low. A sample picture produced by this procesas is shown in
Figure 63.

SUBROUTINE PERSPC
DIMENSION XO (4), YO(4)Z0O(4)
COMMCN /PER/X0, YO, ZO,XEYE, YEVE, ZEYE, XVPLN
C DO 1.0OOP TO CONVERT FOUR ELEMENT CORNER POINTS
TO PERSPECTIVE
DO 10 1=1,4
CORR = (XVPLN-XO(I) )/ (XO(I)-XEYE)
Yo Y(I) = YO(I) + (YO(I)-YEYE) * CORR
20 X (1) = ZO(I) + (ZO(1)-ZEYE) * CORR
10 CONTINUE
RETURN
END

Past arbitrary-body graphics programs have drawn each element
separately. That is, each element was drawn independently by the
graphics device, This meant that the common line between adjacent
elements was drawn twice. This did not nresent a problem on hard
copv devices such as the S['-4060 or CALCOMF. However, on some
machines such as the IBM 2250 it may not be possible to get all ele-
rients of a vzhicle shape drawn on the screen at one time because of
machine vezctor storage limitations. However, a method has been
worked cut to avoid this duplicate drawing of lines between adjacent
elements and some users may wish to modify th2ir existing programs
accocdingly. The procedure used is quite simple and involves the use
of information already available in the geometry analysis part of most
arbitrary-body programs. The basic method of identifying the points
of an element (and also of drawing the element in the graphics pro-
gram) involves a clockwise numbering of the poiats as shown below.

2 3

(2

1 4

A single panel containing several eleinents is described below. The
left figures shows the elemernis as they were originally drawn by the
program. The right figure 1llustvates the lines that are used in
drawing the same elements in tie new version of the program.
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N=2 N=3 N=1 N=2 N=3




Fig -e 63, True Perspective with Arbitrary-Body Picture
Drawing Program.




Each vertical column or elements is identified by the parameter N, The
eclement number in a given column is identified by the paraianeter I, Both
of these parameters are available in the part of the program that
generates the quacdrilaterals from the input data.

In the diagram at the right note that line 1-2 for each elemert 18 drawn
only when N=1. Line 23 is drawn for all values of N and I, as is line
3-4, Line 4-1 is drawn for I=1 only. It would be a simple matter to
store the N and I paramecters in the bead along with the Y- Z values,
and to check these values in the DISPLAY routine te cetermine which
lines arc to be drawn.

The above procedure will avoid the dupiication of line drawing within a
given section of a vehicle (until the next STATUS=2 is reached). Adjacent
vehicle sections will still have some duplication of lines at the section
edges. However, it is not worth the effort tc try to develop a scheme to
avoid this,

Application of the above scheme of checking on the N and I parameters
will also, at tiies, leave a line undrawn that we actually would like to

have in place. This occurs at the edges of pictures as is illustrated for
a single cross-section of elements in the diagram below.

In the above drawing the subscript r is used to indicate a reflected
ezlement due to shape symmetry. Elements 1, 2 and 1, through 5
are not drawn because they do not face the viewer. Note that one side
of elcment 3 will not he drawn fusing the N and I parameter checks
alone) since side 4-1 wnuld normsily be drawn if element 2 faced the
viewer. Side 4-1 of element &, is not drawn for tkhe same reason.
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The above situa‘ion can be corvected by introducing two new flags to
supplement the N-I parameter checks, These two flags (IN and INR in
our program) are uscd to indicate whea the preceding element on that
same side i the vehicle was not drawn because it did not face the
viewer. KEa:h time an input element is drawn the IN parameter is
set to zero. If it is not drawn because it does not face the viewer
(NXO.LE. 0.0) thhen it is set to 1. Elements on the reflected side of
thes symmettry plane are handied in the same manner with the INR flag.
A third flag, IFLAG is used to indicate when we are on the input
element side (IFLAG=0) and when we are on the reflected side
(IFLAC=1). The coinplete checking procedure for the above situations
is as follows,

Draw line 1-2 when

N=1 or

IFLAG=0 and IN =1 or

IFLLAG =1 and INR =1
Draw line 4-1 when

I=1 or

IFLAG =0 and IN 1 or

o

IFLAG =1 and INR

Draw lines 2-3 and 3-4 for all conditions

The preceding checkinrg procedure will produce complete pictures with

a minimum amount of line duplication for most vehicle shapes. However,
there is still another situation that has not been handled by these checks,
This duplication is shown in the drawing below.

This situation has not been corrected as yet in the Doaglas program.
The sclution involves the addition of yet another set of flags similar in
concept to the IN and INR flags. Only this timne, the flags will have

to be subscripted arrays. The procedure essentially involves a check
to sce if the last element that lad the same value if 1 was drawn or nat,
For example, in the drawing above, if element 1 was not drawn then
side 1-2 of element 5 must be drawn, The same applics to elements
2-6, 3-7, and 4-8.
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