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PREFACE 

Within intelligence systems, it is important to assess the proba­

bility that certain events will occur and to determine the reliability 

of information on these events. Then, what is the best way to communi­

cate any degree of uncertainty concerning these events, or information 

on them, to a decisionmaker? 

Uncertainty can be quantified into numerical probabilities, which 

can then be readily and accurately communicated within the system. 

This report discusses the unique advantages, as well as the problems, 

involved in implementing such a method. 

This report was prepared under The Rand Corporation's project on 

defense issues raised by technological and economic change, which was 

funded by the Defense Advanced Research Projects Agency. 
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SUMMARY 

Interest has recently intensified in the area of better management 

and improved cost effectiveness of intelligence systems. Through the 

expansion of mathematics and the development of computers within the 

past two decades, many techniques for the analysis and synthesis of 

information have become available. An intelligence facility could com­

municate shades of uncertainty to decisionmakers more effectively if 

it would attach specific numerical probabilities to potentially confirm­

able statements. 

In Sec. I of this report, we discuss the concept of quantifying the 

confirmability and certainty of information, using numerical probabil­

ities. Next, we describe a number of scoring techniques that have been 

found to be useful in eliciting and assessing numerical probabilities 

(Sees. II and III). The fourth section examines the impact that these 

techniques will probably have on the motivation of individuals and organ­

izations to make accurate reports of estimates and information. How the 

scoring techniques might be specifically applied to the reporting of 

intelligence and how they have been used elsewhere are discussed in 

Sees. V and VI, respectively. Finally, Sec. VII outlines an initial 

program for using numerical probabilities in transmitting information. 

Four unique benefits stem from the elicitation, scoring, and cali­

bration of numerical probabilities as described in this report. First, 

since numerical probabilities are quantitative, they can be given to the 

decisionmaker in a variety of forms (charts, graphs, tables, etc.). 

These methods have been used for centuries in business and science for 

transmission of quantitative data and it may now be appropriate for the 

intelligence community as well to benefit from these techniques. 

Second, numerical probabilities are concise and relevant; they ex-
1 

:press uncertainty with greater precision and fewer syllables than do 

:the verbal equivalents of the Kent Chart (seep. 33). Furthermore, many 

estimators today seem to try to communicate degrees of uncertainty by 

giving the reasons why they are uncertain. This may lead to long-winded 

documents that tell the decisionmaker more than he wants to know about 
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the estimator's internal processes of ratiocination without adding to 

his understanding of what the estimator thinks the chances are in the 

case at hand. 

Third, the fact that numerical probabilities are scorable is very 

important. By keeping averages on the estimators' predicting accuracy, 

a person should, over time, be able to distinguish effective procedures 

and individuals from ineffective ones, increase the morale of the better 

estimators, improve the performance of those who are inexperienced or 

unskilled, and substantiate the credibility of the system as a whole. 

Fourth, in order to score a numerical probability, it must be a 

forecast of a confirmable event. Thus, the introduction of such tech­

niques will automatically tend to focus the attention of the intelligence 

system more on objective, confirmable events and less on metaphysical 

interpretations that may not really increase the decisionmaker's knowl­

edge of what is happening or likely to happen in the real world. 

Implementing the techniques described in this report will, of 

course, require that people be motivated and trained to express degrees 

of certainty and uncertainty in terms of numerical probabilities. 
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I. ASSESSING THE CONFIRMABILITY AND CERTAINTY OF INFORMATION 

The essential business of the intelligence establishment is to 
procure, evaluate, and transmit to the decisionmaker the information 
he requires to make wise decisions. 

The statements which are passed from the intelligence system to 
the decisionmaker may be divided into two categories: confirmable and 
non-confirmable. A confirmable statement is one that can be judged 
as true or false by any reasonable person, given that all the facts 
regarding the statement are known. 

Confirmable statements may concern future events. For example, 
the statement "Russia will have 65 ballistic missile submarines on 
January 1, 1974" is a confirmable statement, because when January 1, 
1974 comes, it will either be true or false that Russia has 65 ballistic 
missile submarines, and anyone who has sufficient information will either 
affirm or deny the truth of the statement. Another example of a con­
firmable statement is "USC will win the Rose Bowl game in 1975." A non­
confirmable statement expresses a value judgment: "USC will play better 
than their opponent in the Rose Bowl game in 1975." People often argue 
about whether or not the winner in a football game played better than 
the loser. It is, of course, possible to replace the vague concept of 
"playing better" with precise, objective concepts such as yards gained 
by passing and rushing, passes intercepted, fumbles, length of kick 
returns, and so on. Many superficially unconfirmable statements are 
simply short-hand expressions for a bundle of confirmable statements. 

Ordinarily the decisionmaker should be more interested in confirm­
able statements, which are explicit, than in non-confirmable statements, 
~ich are ambiguous. The former deal with events in the real world; 
the latter generally deal with abstractions. 

But sometimes it is impossible to make confirmable statements with 
a high degree of certainty. A natural way for the intelligence system 
to express this uncertainty is to attach a probability of truth to each 
confirmable statement it presents. Such a probability is a numerical 
measure of the uncertainty which arises from the lack of complete 
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information. Thus, a numerical probability is a complex function of 

the information available and taken into account at the time the proba-

~bility is elicited. For this reason, a numerical probability for 

assessing the truth of a statement can be expected to vary over time 

with increases in the amount and types of information available. 

Figure 1 illustrates this. 

Because each person or organization may have different sets of 

available information, their numerical probabilities for the same con­

firmable statement may be quite different. In this case, we are deal­

ing with a personal probability, not an objective probability where 

everyone can be expected to agree on the precise numerical value. It 

should be noted, however, that these personal probabilities may converge 

to become objective probabilities when all people under consideration 

possess precisely the same information and have no bias in their evalu­

ation of this information (Fig. 2). 

Is a statement like "I believe there is a 70 percent chance that 

USC will win the Rose Bowl game in 1975," confirmable or not? On the 

one hand, it is unconfirmable. We know of no way to take apart a foot­

ball game as could be done to a slot machine to determine the true 

probability of a given contingency taking place. Even after the game 

has been played, it cannot be determined whether the team had a 70 

percent chance of winning that particular contest. But on the other 

hand, a "reproducing scoring system" may be applied (see Sec. II) where 

the accuracy of the probabilistic prediction is scored after the event. 

By accumulating these scores over time, it will undoubtedly be seen 

that some forecasters usually get higher scores than others. Thus the 

degree of accuracy of the forecasters' probability predictions will be 

discovered even if it is impossible to establish the "truth" or "false­

'hood" of a single, given statement. 

The thesis of this report is that the intelligence community could 

more effectively communicate shades of uncertainty to decisionmakers 

,if it would attach specific, numerical probabilities to potentially 

confirmable statements. The quality of this system's performance (or 

the performance of various sub-systems) would be partly evaluated on 

the basis of how well the system scored in terms of some suitable scoring 
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scheme. If this policy were put into effect, a mechanism for feedback 

and control would be created, which could have two major functions: 

1. Serve as a performance measure of the intelligence system 

and individuals within it. This policy would thus help to 

induce superior performance in gathering as much relevant 

information as possible to reduce uncertainty to a minimum, 

as well as in providing accurate and unbiased numerical 

probabilities to reflect the remaining uncertainty. 

2. Serve as a track record of the performance of the intel­

ligence system, a record which can enhance and support the 

credibility of the system. The record has the additional 

advantage of being a numerical summary that measures the 

value and accuracy of the communications provided by the 

intelligence system, without ever dealing in case histories 

or revealing sources of information. 
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II. THE SCORING OF PROBABILITIES 

RATIONALE 

If a forecaster says, "There is a 60 percent chance of rain tomor­

row" and it does not, in fact, turn out to rain, how can his accuracy be 

assessed? It cannot flatly be said that the forecaster is wrong, but he 

certainly is not exactly right either. He deserves more credit than 

someone who had forecast an 80 percent chance of rain; he deserves less 

credit than someone who had predicted only a 40 percent chance of rain. 

But how much credit should he be given? 

If the forecasters were gamblers, selecting from among various wagers 

at various odds on the chance of rain tomorrow, then the more accurate 
forecasters would, over a period of time, earn more money than the less 

accurate ones. Imagine a gambling house in which there were [~(u) du] 

wagers available at odds of 1 - u:u (the "correct odds" for an event 

of probability u). If the forecaster believed that the probability of 

an event taking place was p, he would rationally accept all bets on the 

event taking place at odds better than those appropriate for probability 

p. Similarly, he would accept all bets on the event not taking place 

which were offered at odds better than those appropriate for probability 

1 - p. The net amount which the forecaster will win or lose may then 

be calculated: 

p 

payoff (if event occurs) f 
0 

1 - u 
~(u) -- du­

u 

amount won on 
bets that the 
event wiU take 
place 

1-p 

f ~(u)du 

0 

amount lost on 
bets that the 
event won't 
take place 
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payoff (if event does not occur) 

1-p 

f <f>(u) ~ du 
u 

0 

'-.... --..... .....,.----... ~ 
amount won on 
bets that the 
event won't 
take place 

p 

J <f>(u)du 

0 

'-.... __ .... 'V ____ ,.., 

amount lost on 
bets that the 
event will take 
place 

These formulas are easily extended to cover a forecaster choosing 

among n alternatives rather than two (for example: rain, snow, hail, 

or fair, instead of rain or no rain). 

ith alternative, then 

If p. is the probability of the 
l. 

payoff (if ith event occurs) 

0 

p. 

!~ 
0 

<f>(u) 1 - u du -
u 

p(u)du 
u 

n 

I 
j=l 

0 

n 

I 
j:fi 

0 

<f>(u)du 

<f>(u)du 

There is one serious intuitive difficulty with the above payoff 

scheme. For any positive <P (that is, in any gambling house where there 

are some wagers available at any probability), the forecaster will be 

able to make a profit (secure a positive payoff) by simply assuming equal 

probability for all alternatives. In other words, he will make money 

even if he is absolutely ignorant about the substantive nature of the 

events he is forecasting! We can easily adjust the system so that total 

·ignorance corresponds to zero payoff by providing that the forecaster 

must take the odds on bets placed at probabilities greater than 1/n, but 

must offer the odds on bets he places at probabilities less than 1/n. 

~lculations similar to those above lead to the formula: 

payoff (if ith event occurs) l 
1 
n 

p(u)du 
u 

n 

I <f>(u)du 
j=l 

n 



-7-

In applying these formulas it is important to note that there is 
always a time limit involved. That is, if a forecaster predicts rain 
on Monday, and it does not rain until Tuesday, the forecaster is counted 
wrong on his forecast; he gets no extra credit because of the rain which 
falls on Tuesday. Similarly, a war between A and B predicted by an 

,intelligence analyst is a non-confirmable forecast. He must predict 
war with, say, probability 0.9 before the end of 1975 for his forecast 
to be confirmable or disconfirmable. If A and B are at peace until 
2400 on December 31, 1975, then he gets the payoff appropriate to prob­
ability 0.1 regardless of what happens on January 1, 1976. 

REPRODUCING SCORING SYSTEMS 

It is easy to see that if a forecaster knows that he is to be re­
warded according to the above scheme he should report the probabilities 
he really believes in rather than shading them one way or the other to 
exploit the scoring system. Any probability he reports which varies 
from his true belief will cause him to place some bets he considers un­
remunerative, or to fail to place some bets he considers remunerative. 
Such reward structures are called "reproducing scoring systems"; some­
times they are also called "proper scoring systems," "admissible scoring 
systems," or "scoring systems which encourage honesty." 

The formulas we have derived so far are not completely explicit. 
It is necessary to specify the specific bets available (i.e., the func­
tion ¢(u)) before we can calculate the actual numerical payoffs. There 
are two possible choices for ¢(u) which have been of particular importance 
in the development of the subject: 

¢(u) 1 (logarithmic scoring system) 

¢(u) u (quadratic scoring system or "Brier score") 

:The Logarithmic Scoring System 

Plugging ¢(u) = 1 into our previously derived expression, we obtain 
the following: 
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p. 
n p. 

payoff (if ith event occurs) /1 du I IJ du u j=l 1 1 
n n 

1 n 1 
log (p.) - log (-) - L (pJ. - -) 

1 n j=l n 

n 
log (np.) (assuming I p. 1). 

1 j=l J 

This very simple payoff function has a number of desirable and 

unique properties. First of all, it is essentially the only reproducing 

system on more than two alternatives which depends only on the proba­

bility ascribed to the event which actually takes place. All reproduc­
ing scoring systems on more than two events, with the exception of the 

logarithmic scoring system and linear transformations of it, depend on 

both the probability ascribed to the event which actually takes place, 

and on the way the probability is divided among the events which do not 

take place [1]. A second desirable property of the logarithmic scoring 

system is the direct connection it establishes between the evaluation 

scheme and information theory. 

Consider the profit which a forecaster expects to make from his 

forecast: 

n 
Expected profit I 

i=l 
p.log(np.) 

1 1 

n 
log n - ( - I 

i=l 
p. log p.). 

1 1 

In information theory, the quantity in brackets is called the "entropy" 

of the partition pi. It represents the expected amount of.information 

~hich will be conveyed by the event itself; or, in other words, the 

surprise content of the event. Thus the forecaster's average reward 
will be, over the long run, equal to the average amount by which he is 

able to reduce the surprise content of the events he is forecasting. 

This beautiful correspondence between the language of information theory 
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and the intuitive desiderata of a scoring system for forecasters is 
very satisfying, and a help in thinking about the meaning of the quan­

-tities involved. 

A third important feature of the logarithmic scoring system is its 
close association with the maximum-likelihood method of statistical 
estimation. Suppose F forecasters have made forecasts on n different 
occasions. Let p. j represent the probability ascribed by the ith 1, 

forecaster to the event which actually took place on the jth occasion, 
and let k. denote the number of availa~le alternatives on the jth occa­J 
sion. Then the total logarithmic score of the ith forecaster will be 

n 

I log(kJ.piJ.) 
j=l 

n 

I 
j=l 

n 
log k. + log ( IT p .. ) , 

J j=l 1J 

Suppose a person wished to choose among the F hypotheses: "Fore­
caster i gives correct forecasts." To apply the maximum-likelihood meth­
od, which is probably the most important and general method known, one 

n would find the value of i which makes nj=l pij a maximum. This is pre-
cisely the same as choosing the forecaster who has scored the highest 
overall on the logarithmic scoring system! So we see that applying 
the logarithmic scoring system is quite consistent with the most ef­
ficient methods for statistical selection of accurate forecasters [2]. 

One disadvantage of the logarithmic scoring system is the fact 
that if a forecaster is ever unlucky enough to ascribe probability zero 
to an event which in fact takes place, the logarithmic scoring system 
prescribes that he pay an infinite penalty. This raises practical dif­
ficulties, because people will often say "probability zero" when in fact 
they mean "probability 0. 01" or something similar. Therefore, when 
actually implementing a reproducing scoring system it is probably wise 
to truncate the logarithmic payoff function; that is, simply interpret 
'"probability zero" as actually meaning "probability 0.01" or "proba­

bility 0.001" and reward your forecasters accordingly. 

The Quadratic Scoring System 

Now let us turn to the second important reproducing scoring system, 
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the quadratic system. Plugging ~(u) 

yields 

u into our general expression 

p. n p. 

payoff (if ith event occurs) /1 du - I /1 udu 

1 j=l 
1 

n n 

2 (.!.) 2 
1 n pj -

I n 
p. - n 2 1 

j=l 

1 n 2 1 
P · - 2 I P - 2n • 

1 j=l j 

This may be rewritten as 

n - 1 1 n 2 payoff (if ith event occurs) = ------- I (e - pJ.) 
2n 2 j=l j 

1 

0 

if 

if 

j i 

j I i. 

This second way of writing the quadratic scoring system payoff 

makes it clear that the forecaster who minimizes the squared difference 

between his a priori forecast and the a posteriori distribution (i.e., 

the actual outcome of the event) gets the best score. Thus the quad­

ratic scoring system is closely related to the traditional concept of 

'least-squares optimization. 

Some practical advantages of the quadratic scoring system are that 

,it is very easy to calculate (although this is perhaps a negligible 

advantage in the age of computers), and never calls for infinite payoffs 

or penalties (unlike the logarithmic scoring system). The fact that the 

quadratic scoring system is a reproducing scoring system was discovered 

about 1950 by a meteorologist named Brier 13]. Since that time this 
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score has often been used as a routine tool in evaluating alternative 

weather forecasting techniques. 

Scoring Continuous Probability Distributions 

In forecasting political and economic events, it is often inter-

esting to estimate the size of a quantity (votes for a particular 

candidate, GNP, tank production in given quarter, etc.) for sometime 

in the future rather than choosing among a finite number of alterna­

tives. To cope with such cases, any reproducing scoring sy~tem on a 

finite number of alternatives may be converted into a scoring system 

applicable to probability density functions on a continuum by a simple 

limiting process. If p(t) dt represents the probability density func­

tion presented by a forecaster, either of the following two scoring 

systems will have the reproducing property: 

log K p(t) 

+oo 

2p (t) - f 2 p(u) du 

(logarithmic) 

(quadratic) 

In the above, K is any constant, and t represents the true value 

achieved by the quantity in question. It has been found in independent 

* experiments, that when students are asked to give probability density 

functions for uncertain quantities, the distributions they give tend 

to be too "tight." Instead of the two percent that would be expected, 

about 40 percent of the time the true answer falls outside the 0.01 -

0.99 percentile band of any given respondent's distribution. This poor 

performance can undoubtedly be corrected by suitable training, but it 

does influence one to prefer the quadratic to the logarithmic scoring 

system because the former does not depend so strongly on what hypotheses 

* Results given in two unpublished papers, one by M. Alpert and 
H. Raiffa, and the other by T. A. Brown. 
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are made about the distribution of probability mass in the tails of 

the distribution. Another alternative is to convert the probability 

estimation task to a discrete one by eliciting the probability that 

the true quantity will be found to lie in each of several intervals. 

By assuming a functional form for the continuous distribution of un­

certainty, the assigned probabilities can be used to estimate the 

parameters, and, thus, the complete distribution. This method might 

serve to reduce the bias reported above. 
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III. CALIBRATING PROBABILITIES AND THE DETECTION OF BIAS 

CALIBRATING THE PROCESS OF ASSIGNING PROBABILITIES 

Up to now we have been considering the basic requirement that must 
be met by any method for eliciting probabilities, which is how to pro­
vide an incentive for the reduction of uncertainty and for accurate 
estimation of probabilities. The scoring systems described above must, 
of course, be the basis of any incentive system provided to an individual 
or organization. It must be taken as the direct and basic measure of 
the value of the information contained in the probabilities. There is, 
however, another way of viewing the process of estimating probabili­
ties--a way which provides not only an operational definition of prob­
abilities, but also a way of providing knowledge of results to an 
individual or organization in order to allow them to improve their esti­
mation of probabilities and in return to achieve a higher score as 
measured by the scoring systems discussed above. There are several ways 
of doing this, each way representing a somewhat different, but not con­
tradictory, view of calibrating the accuracy of numerical probabilities. 

The External Validity Graph 

Suppose an individual defines probabilities both as to the occur­
rence and nonoccurrence of each of a large number of confirmable state­
ments. Suppose further that enough time has passed so that each 
statement can be unequivocably confirmed or disconfirmed. There is a 
way of taking data of this type and calibrating the external validity 
of the numerical probabilities. This can be done by using the prob­
ability assignments to define subclasses of events and by examining the 
~elative frequency of occurrence and nonoccurrence of each of these 
1subclasses. To be more specific, consider each time a numerical prob­
~bility of 0.80 was assigned. Say this happened 1,000 times. Now, the 
l,OOO events in this subclass are all characterized by the fact that 
the individual has made a probabilistic forecast or prediction that 
there was an 80 percent chance that the event would be confirmed. So 
we can proceed by counting how many of these 1,000 events did in fact 
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occur. Taking the probability of 0.80 at face value, we would expect 
to see that 800 of the events occurred out of the total number of 1,000, 
yielding a relative frequency of 0.80. This process may be repeated 
for each probability level from 0 to 1 and, in the ideal case, we would 
hope to find that the empirically determined relative frequency is equal 
to the probability, except for sampling variability, over the whole 
range from 0 to 1.00. If such were the case, we would evaluate the 
probability assessor as an unbiased and realistic assessor of proba­
bilities. Furthermore, these probabilistic predictions have a direct 
empirical interpretation. Whenever the realistic assessor says that 
the probability is 0.80, then 80 percent of the time, no matter what 
events he is predicting, the event will occur, or if his probabilistic 
prediction is 0.10, then 10 percent of the time the event will be con­
firmed, and so on. The graph of such data, as shown in Fig. 3, is 
called an external validity graph because the probabilistic predictions 
made by the individual are tied down and related to confirmation and 
disconfirmation of the events in the external world. 

Now, to the extent that the graph relating relative frequency to 
numerical probability deviates from a straight line with unit slope, 
the probability assessor is biased in his assessment of the value of 
the information available to him, and, in the extreme case, where this 
graph has a slope of zero, the probabilistic predictions of the prob­
ability assessor would be absolutely worthless and have no relation to 
the external world. If, however, the slope is greater than zero, there 
does exist a relation, and there is evidence that the probability asses­
sor has some useful information for discriminating degrees of uncertainty 
about the external world. 

Estimating the Realism Function 

Under suitable conditions it appears that the function relating 
relative frequency to numerical probability can be approximated by a 
~traight line. The least-squares procedure for estimating the slope, 
a, and intercept, b, of this straight line is given below. 
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We want to find a and b so as to minimize 

The least-squares estimators are 

A a 

A 

b 
\(u. + v.)r~ \(u. + v.) - [\(u. + v.)r.] 2 
L 1 1 1 L 1 1 L 1 1 1 

The advantage of this linear estimation procedure is that now we -
can calibrate a person's numerical probabilities using much less data 
than before. For example, experience has shown that with the external 
validity graph, several hundred if not thousands of observations are 
required. With the least-squares estimation procedure, stable estimates 
may be obtained with as few as twenty or more probability estimates. 

Using this procedure, we have found that some people (about one 
in ten) can, when tested out using one of the scoring systems, produce 
probabilities which are best fitted by a line with an intercept of zero 
and a slope of one. In other words, they can produce unbiased and 

realistic probabilities. We find, however, that the Pealism function, 
the least-squares fitted function, deviates from this ideal line for 
most people, as shown in Fig. 4. In some cases, the slope is less than 
one, while in other cases it is greater than one. 

If the slope is less than one, the person appears to be over­
valuing his information. A slope of less than one implies that when a 

probability of one is assigned to an event, the relative frequency of 
occurrence is not one, but some value less than one. The event is not 
as likely to occur as the person thinks it is. On the other hand, when 
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0 Probability assigned 

Fig. 4--Two realism functions based on probability ass.ignments for 
two-outcome questions. Person I undervalues his information 
while person II overvalues his information. 

he assigns a probability of zero to an event, the relative frequency of 

occurrence, instead of being zero, is some positive value indicating 

that his information on the nonoccurrence of an event is not worth as 

much as he thinks it is. 

By similar reasoning one can see that if the slope is greater than 

one, the person is undervaluing or underutilizing the information avail­

able to him. He is, for example, assigning a probability of only 0.9 

to events when he really has information which would justify an assign­

ment of one to the event since the relative frequency is one even when 
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he assigns the probability of 0.9. At the other extreme he may be 

assigning a probability of occurrence of 0.05 to events that have a 

zero relative frequency of occurrence, in which case he would be just­

ified in assigning a zero probability to them, and so on. 

;Uncertainty in Assigning Probabilities 

Most people, when called upon to assess a probability, feel vary­

ing degrees of uncertainty or unsureness as to what the exact value of 

the probability should be. For this reason, even the most outspoken 

advocates of using personal probability in business decisionmaking, 

military decisionmaking, etc., have hesitated from seriously eliciting 

and using personal probabilities of this sort. However, if the tech­

niques for calibrating and operationally defining probability that have 

just been described work in practice, then this hesitation will be an 

error in judgment. 

More explicitly, no matter how uncomfortable one may feel at esti­

mating probabilities, if one has been properly trained and turns out to 

be capable of giving unbiased and realistic probability estimates which 

are in contact with external reality in the sense described above, then 

this should be sufficient and complete justification for the use of prob­

abilities. In other words, the probabilities given by this person are 

useful and accurate. The fact that personal feelings of unsureness or 

uncomfortableness are involved may be a psychological characteristic of 

giving probability estimates but does not contradict the validity of 

these probability estimates. Realizing this, one might be well advised 

to discount his feelings of uncertainty and unsureness and to accept the 

probability estimates at face value on the basis of their demonstrated 

validity and usefulness. 

MEASURES OF BIAS 

Perceived Versus Actual Amount of Information 

In the calibration described above, the probability assessor assigns 

a probability distribution over each of, say, n possible outcomes. We 

can use these probabilities to measure the amount of information that the 
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probability assessor perceives that he possesses with respect to the 

question at hand. In the language of information theory, the amount 

- of this information is measured by 

n 
log n + L p. log p. 

j=l l. l. 

The probability assessor is maximally uncertain or has, in his 

view, zero information when his probabilities are all equal. He has 

maximal or complete information and minimal uncertainty when he assigns 

a probability of one to one of the outcomes. 

If the questions used for the evaluation are independent, then the 

total amount of the information that the probability assessor perceives 

he possesses with respect to the subject matter under evaluation is 

measured by 

k n 

k log n + I I p. . log p .. 
j =1 i=l l.J l.J 

where k is the number of questions and p .. is the assessor's perception 
l.J 

of the probability that the ith alternative on the jth question is 

correct. 

It should be clear that this perceived amount of information can 

be computed from the person's probability values. It should be noted 

that without the use of a scoring system such as those described above, 

there is nothing to prevent the probability assessor from claiming to 

have no uncertainty whatsoever about the subject matter, or, equiva­

:lently, complete information. Remember, the second expression given 

above is maximized by assigning probabilities of one and zero across 

:all the events. 

Now another possibility is to use the realism function as estimated 

earlier (p. 16) to correct on an ex post facto basis the probability 

assignments given by the person and to use these corrected probabilities 

to estimate the actual amount of information possessed by the person. 
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This quantity may be either higher, lower, or the same as the perceived 
amount of information. 

If the realism function has a slope less than one, indicating that 
the person overvalues his information, then the new information measure 
will be computed using probabilities which are less extreme in the 
direction of one and zero than those of the perceived amount of infor­
mation measure. Thus, the actual amount of information possessed by 
the person will be less than he perceives it to be. 

If, on the other hand, the realism function has a slope greater 
than one because the person undervalues his information, the actual 
amount of information measure will be based on probabilities which are 
more extreme than those used in the perceived amount of information 
measure. The person's information is better than he perceives it to be. 

Expected Total Score 

Another way of defining realism is to evaluate the actual score 
earned by the probability assessor with respect to his distribution of 
expected total score. On each trial, the probability assessor allo­
cates a probability distribution over the possible outcomes. This 
implies an expected score for that trial, and if the trials are inde­
pendent, the sequence of distributions implies a distribution of total 
score for the test as a whole. The mean of this distribution, based 
on the scoring function f(pij), is 

m 

and the variance v of the distribution is 

v 
k n 

2 I I Pi3· f(pij> 
j=l i=l 

k n 
2 I [I p .. f(pi

3
.)1 

j=l i=l 1 J 
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Now, if the actual score obtained by the probability assessor 
falls in the lower tail of this distribution, one can argue that the 

··probability assessor is overvaluing his information and that this over­
valuation might well be measured by the probability (based on the ex­
pected total score distribution) of getting an observed total score as 
'small or smaller than that one actually obtained. If, on the other 
hand, the observed total score for the evaluation falls in the upper 
tail of the distribution, then the probability assessor is undervaluing 
his knowledge and the degree of undervaluation may be assessed by the 
upper tail probability based on the expected total score distribution. 

Another approach along these lines might be to derive the expected 
total score distribution based on the corrected probabilities by using 
the realism function described above. In this case, one can compare 
the likelihood of the actual total score using the probabilities ac­
tually provided by the probability assessor with the likelihood of the 
different correct total score based on the corrected probabilities. A 
likelihood ratio measure would test the hypothesis that the corrected 
probabilities are a perfect description of the data versus the hypoth­
esis that the uncorrected probabilities are a perfect description of 
the data. When the logarithmic scoring function is used, the likeli­
hood ratio can be computed on the basis of simple transformations of 
the actual and the adjusted total test scores. 

Loss in Score Due to Lack of Realism 

With the logarithmic scoring system, the score depends solely upon 
the probability assigned to the correct event. When it has been asserted 
that the probability assessor loses score because of his bias, this can 
be shown to him by using the realism function to adjust his probabilities 
on an ex post facto basis in order to compute a new score, the one he 
could have made if he had been unbiased in his assessment of probabil­
ities. To the extent that his probabilities are biased, this new score 
will be higher than the score actually achieved by the probability 
assessor and the difference represents his loss due to his inability to 
correctly assess the value of his information. This loss is sometimes 
called the labeling error. The difference between the new corrected 
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score and a perfect score represents the probability assessor's loss 

due to the lack of perfect and complete knowledge of the events under 

,assessment. Some analysts call this loss the sorting error. Figure 5 

shows a representative graph provided for feedback to a probability 

assessor using the Rand Videographic System for eliciting probabilities. 
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Fig. 5- One way of illustrating loss in score 
due to lack of reulism 

When to Correct Probabilities 

Although we have been talking a~out using the realism function to 
'',l}. 

correct and to adjust on an ex post/'~facto basis the probabilities 

yielded by a probability assessor, we recommend that this be used only 

as a basis for providing feedback so that the assessor might learn to 

become more realistic in his evaluation of his information. 

It may not be a good idea to correct the probabilities yielded by 

the probability assessor on the basis of a realism function obtained 

in the past. The danger here is that with incentive systems based on 

one of the scoring systems we have described, the probability assessor 

is constantly striving to improve the accuracy and realism of his 

assessments. Thus if we used data based on previous behavior to ad­

just new probability estimates from the probability assessor, we may 
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be making an incorrect adjustment. The bias may no longer be there or 
it may not be of such a magnitude or it may not fall in such a direction. 

For these reasons, we suspect that it is better to take current 
numerical probabilities at face value. However, it must be recognized 
that the wisdom of this depends on the rapidity with which probability 
.assessors are able to overcome their biases. If actual experience indi­
cates that some individuals stubbornly continue to overvalue or under­
value their information (perhaps because of some deep-seated propensity 
for risk taking or risk aversion), then it may be wise to use their 
realism function to "correct" probability estimates which they provide. 
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t ' 

IV. INCENTIVES TO ENCOURAGE ACCURACY 

IMPORT~~CE OF EMPHASIZING SCORES 

In our experience it is absolutely essential that the person assign­

ing probabilities focus upon the conditional scores as provided by a 

reproducing scoring system, rather than on the probabilities themselves. 

If for some reason the person ignores the scores and focuses upon the 

probabilities, the resulting probability assignments will almost cer­

tainly be biased and there will be a loss of potential information. 

There appear to be several reasons for this. First, use of the 

conditional scores provides structure to the task and serves to define 

the probabilities in a relevant fashion. Second, without the conditional 

scores according to a reproducing scoring system, the person is likely 

to take the probability assignments themselves as the measure of his 

performance. When he does so, the optimal strategy is, of course, to 

assign a probability of one to the most likely outcome and a probability 

of zero to all other outcomes so the person is driven to appear to over­

value his information and fails to discriminate degrees of uncertainty. 

Third, to the extent that the conditional scores are really important 

to the person, he can concentrate on maximizing his expected score and 

is better able to ignore other utilities or values that might enter in 

to influence his behavior. To take just one example, some people are 

reluctant to admit that they possess less than complete and perfect in­

formation about the subject at hand, and thus are reluctant to assign 

any probability less than one. This reluctance might be overcome by 

associating money, bonuses, or career development incentives to the 

scores yielded by a reproducing scoring system. If such hard incentives 

Mere attached to these scores, great care would be necessary to insure 

that comparisons between individuals who had made their scores answer­

ing different lists of questions were carried out on a fair basis. 

r. 
INCENTIVES FOR GATHERING ADDITIONAL INFORMATION 

Given that the person cares about his score as yielded by one of 

the reproducing scoring systems, what incentive do they provide for 
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doing a careful job of information gathering and analysis? To under­
stand this, we must take a closer look at the reproducing scoring 

t ·systems. Figure 6 shows how two reproducing scoring systems vary as 
a function of the probability assigned to the event which in fact 
occurred. 

In a working situation, a person does not have to be content with 
his current-probabilities. He can, for example, attempt to gather 
additional information and do further research in order to drive his 
probabilities toward either one or zero and this, of course, is pre­
cisely the behavior we would like to encourage. What gain accrues to 
the person who puts out this extra effort? 

Consider first the currently dominant incentive system whereby 
the person, in effect, makes an absolute prediction that a statement 
will or will not be confirmed and is rewarded for his correct predic­
tions. Suppose that we scale these rewards so that when the person is 
maximally uncertain about which of two events will occur, the ex­
pected reward is zero, while if the person has completely sufficient 
information corresponding to a probability of either zero or one, his 
expected gain is equal to one. In this case, the person's expected 
gain from making his prediction is proportional to the distance be­
tween his probability and one half as shown in Fig. 7. By exerting 
additional effort to drive his probability toward either zero or one, 
the person increases his expected gain. 

The first reaction of many people to the notion of assigning prob­
abilities and using reproducing scoring systems is that this would 
represent a policy of being lenient on individuals and would encourage 
sloppy work. The true state of affairs may be determined by examining 
the expected gain functions produced by the reproducing scoring systems 
~s shown in Fig. 7. Notice that these are U-shaped functions such that 
;the person gains relatively little by making a slight effort which 
pushes his probability moderately away from one half; in order to make 
large gains he must gather enough solid information to move his prob­
ability much closer to zero or to one. So, rather than being a more 
lenient reward structure, the new ones provide much greater incentives 
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toward gathering solid information. The logarithmic score is strongest 

in this respect and the slope of its expected gain function approaches 

infinity as the probabilities approach either one or zero. 
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V. APPLICATIONS TO INTELLIGENCE PROBLEMS 

Intelligence work is customarily divided into three categories: 

collection, production, and dissemination. We will now discuss the 

application of explicit probabilistic forecasting and reproducing 

scoring systems to each of these activities: 

THE COLLECTION PROCESS 

Collection Activities 

At first glance it might appear that probabilistic forecasts or 

estimates are rather inappropriate for the collection process. Collec­

tors fall roughly into three categories: technical systems, overt 

collectors such as attaches, ambassadors, consuls, and travelers; 

and clandestine collectors. 

The technical system ordinarily do not produce probabilistic 

statement; they produce a variety of records, tapes, and similar 

documents, but it is hard to see how reproducing scoring systems 

could be applied directly to score any of these documents. When an 

expert looks at these documents, and draws conclusions (often un­

certain) from them, he is ordinarily said to be producing rather than 

collecting intelligence. 

Overt collectors on the other hand are often called upon to inte­

grate the numerous bits and snippets of information with which they 

come in contact (including informal opinions from, for example, respon­
sible officials or communications media) into an overall assessment of 
who will win a given election, whether or not a given bill will pass, 

or whether some specific action will be taken by the government with 

which they are most concerned. It could be argued that when one is 

asked to make such an assessment, he is acting as an intelligence 

producer rather than as a collector. On the other hand, the assess-

ment produced will be used as an input to analysts working with I 
information from a variety of sources to produce "finished intelligence." 
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A Reinterpretation of Rating Systems 

A method of rating raw intelligence reports from the field has 

~een widely applied in the United Kingdom, United States, and other 

countries. Each report has a letter attached to it (A, B, C, D, E, or 

F) and a number (1, 2, 3, 4, 5, or 6). The letter indicates the quality 

uf the source, and the number indicates an initial appraisal of the con­

tent. The code definitions are: 

~rading of Source Appraisal of Content 

A Completely reliable 1 Confirmed by other sources 

B Usually reliable 2 Probably true 

c Fairly reliable 3 Possibly true 

D Not usually reliable 4 Truth doubtful 

E Not reliable 5 Improbable 

F Reliability cannot be judged 6 Truth cannot be judged 

The letter is assigned on the basis of an agent's past record, and 

is transcribed from his dossier. If agents were routinely reporting 

explicit probabilistic estimates, this letter rating could be replaced 

by his realism function. The number is not actually a measure of the 

truth of a report, but rather a measure of how well the report fits in 

with previously available information. In a probabilistic system, this 

number could be replaced by the agent's expected score on the assumption 

that the previously estimated probability of the event in question was 

correct, that is, H(p,q) = LPif(qi)' where p =previously supposed 

probability and q = agent's report. If this score was large and posi­

tive, it would indicate a definite report highly consistent with pre­

'Vious estimates; if it was small, it would indicate a vague report; 

,and if it was large and negative, it would indicate a definite report 

,at variance with previous estimates. Reports from reliable sources 

with large negative appraisal scores should be singled out for special 

attention, for they may indicate a considerable step forward in the 

knowledge concerning some situation. 
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Under certain circumstances, reproducing scoring systems might be 

useful mechanical tools in attempting to analyze enemy deception opera­

tions. For example, if a person had some information that he knew had 

been fed to him by the enemy, then letting p in H(p,q) be the proba­

bility vector of what had been inferred from just the information pro­

vided by the enemy gives a measure of the coherence of any new report 

with information the enemy has been providing. If report X is more 

coherent with what the enemy evidently wishes him to believe than it 

is with what can be inferred from all channels, then there are grounds 

for suspecting that X is somehow controlled by the enemy. 

THE PRODUCTION PROCESS 

Evaluation and Its Impact 

The biggest potential payoff for the systematic application of re­

producing scoring systems in intelligence is in the production side. 

Imagine a system in which several independent analysts, working either 

from the same information or from slightly different bodies of informa­

tion, make explicit probability assessments of a set of future confirm­

able events. By keeping score on these forecasts using a reproducing 

scoring system, it could be determined which of these analysts was more 

skillful. By examining the extent to which they individually under-

or overvalue their information, they could be counselled as to how to 

improve their forecasts. 

Simply knowing that their work is being evaluated by such an ob­

jective yardstick as a reproducing scoring system may have an immediate 

favorable effect on the morale of intelligence producers, and on the 

quality of their work. Many producers today are, we understand, haunted 

by the fear that no use is made of their output, and that they are cogs 

in a machine grinding out meaningless results. Some intelligence pro­

ducers may fear that the only way to get ahead is to generate estimates 

that correspond with the prevailing attitudes of higher-ups. The in­

stitution of a systematic grading and feedback routine based on appro­

priate scores would hopefully relieve these concerns, and stimulate the 
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producers to more careful and precise estimates (see Sec. IV). In 

numerical form, these estimates could be readily summarized, in con­

:trast to more informal written estimates that can hardly be combined 

and summarized without great effort and probable distortions of some 

sort. 

Possibilities for External Production 

The existence of an objective measure for uncertain forecasts sug­

gests that it might be profitable to put the intelligence community in 

competition, in certain areas, with the body of informed citizens at 

large. For example, if a person is interested in forecasting events in 

Ruritania over a period of time, he could write to professors, business­

men, politicians, and others in the United States who are known to be 

especially knowledgeable about Ruritanian affairs, soliciting their 
I 

assistance. Those who respond favorably would be mailed questionnaires 

asking them to assign probabilities to various alternative future events 

in Ruritania, and could be paid on the basis of what score they make. 

The cost of this endeavor would depend on how efficiently it was ad-. 

ministered, but it might be fairly low, since the level of pay required 

would only cover the time spent filling out the questionnaire, not the 

time spent accumulating the background and knowledge required to do 

so. The mean response of such a broad panel of outside experts might 

well be a more accurate view of future events than the response of a 

smaller group of regular government employees. Since such an operation 

has never, to our knowledge, been tried, we are simply not in a posi­

tion to judge. 

THE DISSEMINATION PROCESS 

Verbal Descriptions of Uncertainty 

Another major potential payoff is in the field of dissemination. 

For a long time intelligence experts have wrestled with the problem of 

finding verbal equivalents for the various states of uncertainty, which 

are expressed so clearly and unambiguously by numerical probabilities. 
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The well-known intelligence expert Sherman Kent has often advocated 

nailing down the phrases used to connote various levels of uncertainty 

to precise numerical ranges. One attempt to do this is shown in Table 1. 

This table is based on discussions with analysts as to how they use 

words and phrases such as "certain," "probable," "almost certain," and 

"impossible." Tables of this sort are called Kent Charts. There are 

fundamental problems with any such effort to find verbal equivalents for 

numerical probabilities. 

Probability 
(percent) 

100 •••...••.••••••. 
85-99 ..•...••••••• 
60-84 •••••...•••.. 
40-59 .•.•••••••.•• 
15-39 •.••.....•.•• 
1-14 ..••.••••..•• 
0 •••••••••••••••• 

Table 1 

A "KENT CHART" 

Verbal Equivalent 

It is certain that ••• 
It is almost certain that 
It is probable that .•• 
The chances are about even that 
It is probable that .•• not .•. 
It is almost certain that ••• not .•. 
It is impossible that ..• 

First of all, if the analyst thinks there is a 61-percent chance 

of an event happening and translates this into "it is probable that 

••• ,"the consumer could well interpret this as an 80 percent proba-

bility. Thus, the translation from a numerical statement to a verbal 

one always loses a certain amount of information. But the situation 

is even more serious than this. Most consumers are unaware of what 

particular verbal equivalents the producers have elected to use, and 

thus may construe "probable" as meaning 50-70 percent instead of the 

intended 60-84 percent, or think that "it is almost certain that 

not ••• " means 10-30 percent instead of the intended 1-14 percent. 

Indeed, surveys of intelligence consumers have shown that their inter­

pretation of the precise meaning of the words and phrases included on 

the Kent Chart covers an extremely wide range. It is very hard to see 

what virtue there is in replacing a numerical probability with a verbal 

equivalent, if one is interested in precise communication. 
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Numerical Probabilities and the Track Record 

By expressing estimates in numerical terms rather than verbal 

equivalents it will be possible to keep scores on disseminated material. 

The construction of a track record should greatly increase the credi­

bility of finished intelligence; under the present system spectacular 

failures are remembered while steady accuracy tends to be ignored. By 

accumulating a batting average for the various components of the intel­

ligence system we should insure that the community output is taken as 

seriously as it deserves to be. 
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VI. RELATED APPLICATIONS 

In what other areas of application have the techniques of elicit­

ing, scoring, and calibrating numerical probabilities been employed? 

~o t very many. 

Why is this so? The concept of probability has certainly been 

around for a long time. However, the success of actuarial science and 

statistics has focused attention upon probabilities obtained as rela­

tive frequencies calculated on large aggregates of data. 

More recently, a great deal of attention has been focused on using 

logic and mathematics to guide decisionmaking. Out of this work has 

come the realization that decisions must often be made in the absence 

of historical data and with respect to unique events for which there 

is no real possibility of indefinite repetition in order to observe 

the outcome of identical trials. Even so, probability theory and de­

cision analysis can be a useful guide for behavior if the relevant 

probabilities are interpreted more generally as numerical probabilities 

incorporating uncertainty in the sense described in this report. 

We can distinguish three areas where formal use is being made of 

numerical probabilities as a measure of uncertainty. They are weather 

forecasting, drilling decisions, and educational testing. 

WEATHER FORECASTING 

In 1950, Brier [3] proposed that weather forecasts be expressed 

in terms of probability and that they be scored by the quadratic scor­

ing system (see Sec. II). In 1960, the U.S. Weather Bureau began 

internal use of probabilities for precipitation forecasts. In 1965, 

.the Weather Bureau began reporting to the public its probabilistic 

forecasts, e.g., "There is a 10 percent chance of rain tonight, rising 

to 30 percent tomorrow." 

While the Weather Bureau apparently does not use the quadratic 

scoring system to evaluate and motivate individual forecasters, this 

scoring system is used to answer questions such as 
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1. What is the level of skill in present-day temperature and 

precipitation forecasts? 

2. What skill is contributed to the public forecast by each of 

the forecast echelons? 

3. Which of the forecast areas are performing with acceptable 

accuracy? [ 4] 

4. What are the "recent trends in the accuracy and quality of 

the Weather Bureau forecasting service?" [5] 

Although the Weather Bureau has had at least 23 years of experience with 

the notion of scoring probabilistic forecasts, a certain lack of under­

standing and conceptual clarity apparently remains, perhaps indicating 

a need for better training in this area [6-8]. 

Daily precipitation forecasts were, of course, prime candidates 

for the application of numerical probabilities and reproducing scoring 

systems. The prediction is made each day and the event is confirmed 

or disconfirmed within a very short period of time. 

In intelligence applications, the delay between prediction and 

confirmation will typically be much longer. There are, however, a 

number of similarities between the functions of the Weather Bureau and 

those of an intelligence system. The most important is that the major 

purpose of both organizations is to furnish information to others for 

use in making decisions. The Weather Bureau serves the needs of its 

users by attaching a numerical (probability) measure of uncertainty 

to each of its forecasts. 

DRILLING DECISIONS 

In 1960, C. Jackson Grayson published his landmark study of drill­

ing decisions by oil and gas operators [9]. The three objectives of 

his research were: 

1. To describe decision problems in a business situation where 

uncertainties are great. 

2. To learn how businessmen are making decisions in this setting. 
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3. To explore the possibilities of applying "decision theories" 

to aid the decisionmaker. 

He found that verbal, rating, ranking, and other equivalents for prob­

ability were often used and misinterpreted by operators, geologists, 

engineers, and landmen [9, p. 225]. His formal methods of decision 

analysis required that uncertainty be expressed as numerical probabil­

ities which he obtained by having the individual choose between gambles. 
Many such choices between gambles were needed to obtain each probability. 

It should be noted that the reproducing scoring system method (see Sec. 

II) is conceptually related to the method used by Grayson, but much less 

awkward in that the individual makes one response (his probability) 

which specifies how he would bet in all gambles. 

Grayson was also concerned with the possibility of falsification 
of the probabilities [9, p. 261] and, in fact, gathered evidence that 

among the individuals and branches of the larger organizations there 

exist quite different perceptions of the company goals [9, Chap. 6], 

which may lead to inconsistent decisions and distortion of the infor­

mation passed to higher echelons. He considered the possibility of 
incentives for accurate probability estimation but he was apparently 

unaware of the existence of reproducing scoring systems which could 
have satisfied most of his concerns. 

A major theme to come out of Grayson's work, which has possibly 
great relevance to intelligence applications, is the need to educate 

the individuals involved in an implementation in order to gain accept­

ance for and effective use of formal methods. The next application 

suggests that we may be in a better position than ever before to carry 

out the necessary education and training. 

EDUCATIONAL TESTING 

Whenever a student is faced with a question on, say, a multiple 

choice test, he may encounter a varying amount of uncertainty depending 
upon his knowledge of the subject matter. The student must, in effect, 

base his choice of answer upon probabilistic predictions as to which 

answer is correct. If the student responded to the test question by 
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assigning these probabilities directly to each possible answer instead 
of by choosing the answer he perceived most likely to be correct, we 

·would have a much better indication of his knowledge of the subject 
matter. By using the logarithmic scoring system (see Sec. II), we can 
encourage the student to reveal his true state of knowledge. By cali­
brating his probabilities we can give him the information he needs to 
become more realistic in assessing the value of his facts and reasoning. 
By tying incentives to the logarithmic test scores we can reward the 

* student for studying more and achieving higher levels of mastery. In 
brief, we would have a better output measure for education and training. 

In order to determine the potential of this method of probability 
measurement for application to education and training in the military, 
The Rand Corporation, under the sponsorship of the Defense Advanced 

* Research Projects Agency, is conducting theoretical studies and de-
veloping on-line computer-based techniquest for training military per­
sonnel to understand probability measurement and for administering both 
written and performance tests to military personnel. At present, the 
techniques are under development on the Rand Videographic Computer 
System and, as a consequence, are limited to use within the Rand Santa 
Monica facility. Within a year, however, The Rand Corporation will 
transfer these techniques to the PLATO IV computer utility which has 
remote terminals available to the Air Force, the Army, and the Navy, 
and at other locations in the U.S. At that time, it will be possible 
to train personnel on a large scale in the procedures of probability 
measurement as used for education and training. 

These computer-based techniques make it possible for an individual 
to gain, very rapidly and easily, a great deal of experience dealing . ' 
with uncertainty and expressing it in numerical probabilities. By 
~aking tests and immediately receiving knowledge of results in terms 
of correct answer, test score, and bias in assessing uncertainty, the 
individual can increase his understanding of and his skill with numer­
ical probabilities. 

* In a forthcoming Rand report by E. H. Shuford and T. A. Brown. 
tin a forthcoming Rand report by W. L. Sibley. 
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Such an experience would appear to be a necessary component of any 

educational program intended to increase understanding and acceptance 

·Of the use of numerical probabilities by individuals within the intel­

ligence system. The experience provided by the Rand system is entirely 

consistent with the principles developed in this report and suggested 

:for intelligence applications. 
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VII. STEPS TOWARD IMPLEMENTATION 

PROBLEMS WITH EXPLICIT PROBABILISTIC FORECASTS 

In previous sections we have discussed the advantages of using 

explicit probabilistic forecasts evaluated by reproducing scoring sys­

tems as a routine intelligence tool. In this section we will discuss 

some of the objections and problems which may arise under such a system. 

Irrational Decisionmakers 

First of all, it is a manifest fact confirmed by numerous psycho­

logical experiments that many people are very irrational gamblers in 

the sense that they do not act in such a way as to maximize their ex­

pected gain. Experiments by Slavic and Lichtenstein at the Oregon 

Research Institute [10,11], for example, have shown that subjects will 

often seek to maximize their possible gain, or minimize the probability 

of any loss, rather than seeking to maximize their expected gain. An 

example of the former behavior, which is "irrational" is a person who 

enters lotteries; the latter behavior is exemplified by people who pay 

a dollar to get the "full coverage" rather than the "$100 deductible" 

on a rented car. Thus, under the system we are proposing, expert A 

might outshine expert B not because he knows more, but only because 

he is more skilled at expressing his knowledge in terms of "money­

making" bets than expert B. Some people might regard this as an in­

justice. But if expert B truly has a tendency to overstate his position 

or to hedge his estimates too much, this will distort the quality of 

the information he conveys to the intelligence system regardless of 

whether he states his position in explicitly probabilistic terms or 

not. Only by insisting on such explicit statements, and keeping score, 

will the system be able to detect these tendencies early and counsel 

the expert to correct them. And there is some evidence that gambling 

.skill is trainable, that people can learn fairly quickly to express 

their hunches about future confirmable events quite accurately in terms 

of numerical probabilities. Use of teaching machines like the Rand 
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* Videographic Three-Alternative Test Program of Sibley and Shuford is 

one way to do this. 

Distortion Due to Unwanted Utilities 

A second problem with keeping score is that its effectiveness will 

he limited by the fact that some individuals will always be playing 

some private game of their own rather than the one you have designed for 

them to play. For example, some experts may want to emerge with the 

top score at all costs and will run risks of getting a very bad score 

in order to increase their chance of coming out number one. Such an 

individual will look like someone who is overvaluing his information. 

This "Caesar or Nothing" syndrome may be counteracted by making the 

forecasting task one of indeterminate length, and by deemphasizing any 

kind of special recognition for the very highest scorers. The financial, 

or other, payoff to the individual must be simply proportional to his 

score. 

Another game some experts may incorrigibly play is "influence the 

decisionmaker." That is, they will attempt to make their estimates in 

such a way that the decisionmaker will be influenced to pursue a policy 

which the expert favors. This appears to be a common vice in the present 

system, perhaps because it's the only game in town. By introducing a new 

game, that of scoring forecasts as to their accuracy, we will probably 

reduce the prevalence of this vice even if we do not eradicate it entirely. 

Recasting Intelligence Questions into Confirmable Propositions 

The most serious problem with making widespread use of explicit 

probability estimates and reproducing scoring systems in the intelligence 

establishment is the apparent fact that many very important intelligence 

questions may be very hard to cast into unambiguous confirmable proposi­

tions. For example, an expert might reasonably forecast "the rapid 

growth of chauvinist nationalism in country X" during the coming year. 

This could be reflected in a wide variety of events: withdrawal of 

country X from the United Nations, expropriation of foreign property, 

* Described in a forthcoming Rand report by w. L. Sibley. 
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persecution or expulsion of ethnic minorities, higher military ex­

penditures, antiforeign riots, changes in school curriculum, and so 

on. Each individual event is confirmable, but the question of how 

many such events are required to add up to '~apid growth of chauvinist 

nationalism" is a subjective matter about which reasonable people may 

differ. Is it reasonable to break down such a statement into confirm­

able propositions? On the one hand, one could argue that what the 

decisionmaker is really interested in is the general statement, not 

the probabilities of the myriad of possible incidents which could be 

viewed as validating the general statement. On the other hand, one 

could argue as we did in the first section of this paper that if a 

general statement isnot equivalent to some collection of confirmable 

statements, then it is not really meaningful, and therefore the attempt 

to reduce all statements to confirmable propositions is in and of itself 

a very useful exercise. One way to clarify whether this is really a 

serious problem would be to analyze a set of past intelligence estimates 

(e.g., all NIE's from 1960-65) and see how many confirmable propositions 

as opposed to unconfirmable propositions they contain, and how many of 

the superficially unconfirmable propositions could be translated easily 

into a collection of confirmable statements. A sentence-by-sentence 

analysis of a sample body of intelligence output by the present system 

would probably identify five kinds of sentences: 

1. Confirmable propositions which could be readily cast as 

explicit probabilistic forecasts. 

2. Non-confirmable propositions which could be restated as a 

collection of confirmable statements. 

3. Non-confirmable propositions which are meaningful, but can­

not be restated as a collection of confirmable statements. 

4. Statements of fact. 

5. Connective statements, platitudes, and so on. 

If the output of the current system consists entirely of sentences 

of types 3, 4, and 5, then the task of introducing explicit probabil­

istic forecasts of confirmable events may be very difficult. If, however, 
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a substantial portion of the output consists of sentences of types 1 
and 2, then the new methods merely represent a change in language. 

Emphasis on Trivial but Predictable Events 

If individual forecasters are left free to select the questions 
on which their probabilistic forecasts will be judged, they will al­
most certainly have a tendency to drift toward forecasts of events 
which are relatively predictable but not necessarily of much interest 
to the decisionmaker. For example, a weather forecaster would tend to 
predict "the sun will rise tomorrow" rather than risking a prediction 
on precipitation. For this reason, it is probably necessary for gen­
erators of intelligence requirements to give the various forecasters 
the questions on which they will be formally scored. The requirements 
generators must, of course, select these questions carefully in order 
to avoid giving away information which they wish to withhold; but hope­
fully it is possible to do this. 

PROGRAMS TO SUPPORT IMPLEMENTATION 

Two types of activities appear to be essential for the successful 
implementation of the techniques described in this report. One is in 
the area of system development, while the other is concerned with 

analysis. 

System Development 

People untrained in the logic of probability and decision theory 
do not necessarily obey these rules and behave in a manner consistent 
with their own best interests. Training should be provided both to 
those who will be asked to assign probabilities and to those who will 
use probabilities to make decisions. The training must go beyond a 
formal course in probability and decision theory to offer extensive 
experience in assigning probabilities in uncertain situations with 

knowledge of results in terms of a reproducing scoring system and in 
terms of bias in the process of assigning probabilities. Such training 
is desirable in order to remove bias from the probability estimates and, 
by allowing people to understand the essential logic of the process, to 
gain acceptance for the use of probabilities. 
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A computer-based system for the elicitation and assessment of prob­

abilities such as that currently realized on the Rand Videographic 

:System appears to be a very useful component of the training program. 

By taking "tests" on this system, the student can very rapidly exercise 

and improve his skill at evaluating uncertainty and assigning appro­

priate probabilities. Rapid presentation and immediate computation and 

feedback of results are necessary for effective learning of this skill. 

It is difficult to see how these features could be duplicated with 

equivalent speed using mane31 operations. 

We recommend, therefore, that this computer-based system be further 

developed along with other course materials required for effective train­

ing in the logic of probability and decisionmaking and that this train­

ing program be implemented on a pilot basis at a school for intelligence 

analysts. This seems to be an efficient way to test out and further 

improve the appropriateness and effectiveness of the training program 

and to observe the degree of acceptance of quantitative probabilities 

by the people involved. The details of how the computer-based system 

would be integrated with the curriculum of whatever intelligence school 

is selected for a trial would have to be worked out, of course, in close 

consultation and cooperation with the faculty of the school in question. 

It could probably be combined with material already being taught at the 

school in such a way that the time required to complete the course would 

not be lengthened, and the interest of the students in the material 

taught would be increased. If this training program proved successful, 

then we would have an answer to the problem of individuals being poor 

probability assessors as discussed in Sec. I. 

We recommend at the next state of implementation that the training 

program and computer-based system be joined with the actual operations 

of an intelligence activity so that the working analysts may be trained 

and evaluated according to their track record over a period of time. 

This effort will attack the problem of distortions due to unwanted 

utilities mentioned above and will undoubtedly bring new problems and 

solutions with respect to implementation. 
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Analysis 

While the system development just described is taking place, a 

certain amount of analysis should be underway, aimed at detecting par­

ticular deficiencies in current intelligence operations in order to 

guide implementation decisions. Part of this effort would be concerned 

with examining intelligence output to estimate the difficulty of re­

casting into confirmable propositions. If this appears to be a major 

problem, then the implementation strategy should focus on this dimen­

sion. If, on the other hand, this is a minor problem and much of the 

intelligence product is composed of confirmable statements, then a 

different implementation strategy is called for. 
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VIII. CONCLUSIONS AND RECOMMENDATIONS 

The systematic use of explicit probabilistic forecasts and esti­

mates, scored retrospectively by an appropriate reproducing scoring 

system, would represent a far-reaching reform in the intelligence 

service which could have multiple benefits, both direct and indirect. 

Four major benefits spring from the fact that such estimates are quan­

titative, concise, scorable, and confirmable. 

Since such estimates are quantitative, they can be communicated 

to the decisionmaker in a variety of methods (charts, graphs, tables, 

etc.). Quantitative data have been transmitted via these methods in 

business and science for centuries, and any method which makes this 

tradition available to the intelligence community has a major point in 

its favor. 

Explicit quantitative estimates are concise; they express uncer­

tainty with greater precision and fewer syllables than do the verbal 

equivalents of the Kent Chart. Furthermore, many estimators today 

seem to try to communicate degrees of uncertainty by giving the reasons 

why they are uncertain. This may lead to long-winded documents which 

tell the decisionmaker more than he wants to know about the estimator's 

internal processes of ratiocination without adding to his understanding 

of what the estimator thinks the chances are in the case at hand. 

The fact that quantitative probability estimates are objectively 

scorable is a tremendous factor in their favor. By keeping objective 

batting averages on estimators, over time it will be possible to dis­

tinguish effective procedures and individuals from ineffective ones, 

increase the morale of the better estimators, and increase the credi­

:bility of the system as a whole. 

Finally, scoring a probabilistic forecast requires that it be a 

forecast of a confirmable event. Thus the introduction of such tech­

,niques will automatically tend to focus the attention of the intelli­

gence system more on objective, confirmable events and less on meta­

physical interpretations which, however attractive they may be on the 

surface, do not really increase the decisionmaker's knowledge of what 

is happening or likely to happen in the real world. 
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Two types of activities are recommended as essential for the 

successful implementation of the techniques described in this report. 

-;First, a training system incorporating computer-aided elicitation and 

·assessment of probabilities should be developed and tried out in a 

school for intelligence analysts and then joined with an intelligence 

\operation. Second, a limited amount of analysis of current intelli­

gence operations and output should be conducted in a pilot program in 

order to help guide implementation strategy. 
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