NG S i O it ey o JCEECE e e

>
e s Ry
- RS

Semdalo. .2 '»"57 iy

AT e m«l’r‘w N

~—

~—gwor

|
F N M e T BAs

,.!’n.{

-

PR

I Y B e s ek et o i T S <G E w2 i

AD-776 335

ON RESOLVING ANGLE AMBIGUITIES OF
n-CHANNEL INTERFEROMETER SYSTEMS FOR
ARBITRARY ANTENNA ARRANGEMENTS IN

A PLANE

James E. Hanson -

Johns Hopkins University

Prepared for:
Naval Ordnance Systems Command

October 1973

DISTRIBUTED BY:

onalTechnil nfon ice
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

e 7
.....




e

om0

e T ——

T T e YR oIV o 418

W

a4

£

iane-

PO AL oareg, e

PR ™)

Trasmrmny

o

— = o

"y

N —

Unclassified

Sccurity clussilication of title, body ol abztract and indexing annotation munt be entered when the averall repott is clussilied)

Svcun!i- Classification 42 2 :Z 2 é a =§ é
DOCUMENT CONTROL DATA-R& D ‘

1 OHIGINATING ACTIVIYY (Comporate suthot) 28. REFORT SECURITY CLASSIFICATION

‘| the Johns Hopkine Unlversity Applied Physics Laboratoxyl imclassified

8621 Georgla Avenue 25, GROUP
Silver Spring, Maryland 20910 N/A

1 REPORT TITLE
On Resolving Angle Ambiguities of n-Channel Interferometer Systems for Arbitrary
Antenna Arrangements in a Plane

4 DESCRIPYIVE NOTES (Type of report and inclusive dates)

S AU THORIS) (Fitst neme, middle initial, lost nave)

Dr. James E, Hanson

6 REPORT DATE 78, TOTAL NO. OF PAGES 7b. NO. OF REFS

October 1973 xii, 152 None

6a, CONTRACT OR GRANT NO. 38, ORISINATOR'S REPORT NUMBER(S)

NOOO17-72-C-k401 o ——— ~
b. PROJECT NO. \'\TG 1224
e : ”°. gf'"::o'r‘lf""“" NO(S) (Any other numbere that may be assigned ,

d.

1C. DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

11, SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

NAVORDSYSCOM, ORD-032E

o

13 ABSYRACT

The concept of array ambiguity plot is introduced, and it is shown that there
are exactly five distinct topological cases for antennas arranged in a plane. Some
examples are given, including all regular polygon arrangements.

The remainder of the paper is concentrated on those entenna arrays having a
two-dimensional lattice point topology for their arrsy ambiguity plots, as they
appear to have the most forgiving tolerance requirements. Angle processing
implementation and measurement tolerances for ambiguity resolution are discussed.

It is shown that, for & given tolerance and region within which entemnas are to be
located, the ambiguities of the plot move away exponentially with number of antennas
if they are placed judiciously. It is therefore possible to obtain the advantages
of wide baseline systems which are ambiguity-free with just a few antennas.

The one-dimensional antenna array situation is treated, it bein~ a special case
of the theoxy.
i

/2

N ,
N , - .
i RPN 4Dl e WE

o

Precading page blank ‘o

D f:::‘ es‘ 473 l Uclaseiﬁe
Becurlty Claasification

T SN s A, St e 1

[ T .ot
R et S :

»
Y

5
. R
el




B e ] ¥ %@nv,@‘j':‘ﬂt it 22 SR IR, = A
P, oS e P SR -

nc.LaS'si‘Qed i

Sechirity Classjfication

et e oo

puve
-~

KEY WORDS
i
Angle Error Toletsnce \
Antenna Arrangements in & Plene N
3 o
Array Ambiguity Pl_’c\>t A
Interferometer Angle Processing \
Triangular Array Amﬁaiguity Plots
|
|
i j
’ \
, ..
I -
/
/l
!
/
/
I.’
// 4
/’
/
g
//
/
i
Unclasgified
Security Classification .ﬁ-’ﬁ\'
o e S ISR S SV Y o

$resilare § Frviram ]

)

gl

S GBS  (men  (Smed (e (o




1 e
: P OCTOBER 1973 : i
3 i.

Technical Memorandum

————

=

ON RESOLVING ANGLE AMBIGUITIES
OF n-CHANNEL

INTERFEROMETER SYSTEMS

FOR ARBITRARY

ANTENNA ARRANGEMENTS IN A PLANE

by J. E. HANSON

AD776335

L S VS S -y S Sy

.\‘M

-,

g
e ]

—

THE JOHNS HCPKINS UNIVERSITY o APPLIED PHYSICS LABORATORY
8621 Georgia Avenue o Silver Spring, Maryland o 20910
Operating under Contract NO0017-72-C-4401 with the Department of the Navy

==

Approved for public releass; distribution unlimited

[V

AT T N MU A AT s S S Py m»}shw Sy
-+
[




P

 —

—ay
1

p—r, PN

! Y

. y 4

PG

-

THE JOKNS HOPKING UNIVERSITY
APPLIED PHYSICS LABORATORY
SHVIR SPMING MARYLAND

CONTENTS

List of Illustrations . . . . . . .
List of Tables. . , . . . . . .
1. Introduction and Summsry . . . . . .

2. Arrey Ambiguity Plots and Their Topologies. .
Geometry Notation . . . . . . .

’ Measurements from One Antenns Pair . . .
Ambiguity Plots ] 0 [ . . . . .

Ambiguity Plot for Three Antennas Arrenged
in an Equilatersl Triangle. . . . .

Ambiguity Plots for the General Case. . .

Artificial Ambiguities and the Diamond
Arrangement . . . . . . . .

Mathematical Solution for Array Ambiguities
When Antennas Lie on a Line . . . .

Mathematical Solution for Arrsy Ambiguities,
General Case .+ "« « o+« e s

Two Antenna Summary . . . . . . .
Three Antenns Summary . . . . . .
n Antennas on a Line Sumeary, nz3. . .
Four Antennas . . . . . o e
Four Antenna Summary. . . . . . .
n>4ptennas . . . . . . .
3. Plot Topologies When the Antennas Are
Constrained to Lie on a Circle . . . .
Possible Types of Array Ambiguity Plots . .

Definition of Circular Arrays with Equal
Central Angles. . . . . . ‘ .

Equations for Array Ambiguity Plots for
Circular Arrays with Equal Central Angles .

Array Ambiguity Plot When cos A8 Is
Irrational. . . . . . . . .

ix

=

A

oN

10

11
15

14
16

18
2k
2k
25
25
29
30

33
33

36
37
38

T A P N PN

I~ v v AR

2 N e s TP WL ST

AP A mrr D aa D




_-.!:‘—-:

L. BN s oy

| ey s

o e o

e -

a1 2o ek kS

R S e N B R

oY

b Akt i

Ay

b~

xS~

\ o ot A

N

THIE JOHNE HOPKINS UNIVERSTY
APPLIED PHYSICS LABORATORY
BUVIR SPME. MARTLANS

L,

5.

CONTENTS (cont'd)

The Regular Pentagon.

Arrsy Ambiguities When 2 cos AS Is an

Integer . . .

*

Array Ambigulties When cos A9 Is Rational
But 2 cos A§ Is Not an Integer.

Array Ambiguity Topologies for Antennas
Arranged in a Regular Polygon .

n Antennas on a Cirecle with n > 4

k4

Inveriants of Arrays with Triangular Arrey

Ambiguity Plots . .

*

Area of a Triangle Formed by Two Vectors.

Necessary end Sufficient Conditions That Two

Triangular Antenna Arrays Have the Same

Array Ambiguity Plot

Necessary and Sufficient Conditions That an
Array with h+ 1 Antennas (h22) Have a

Given TAAP. N .

The Fundamental Area Theorem.

Antenna Arrsy Constraints for Awbiguity

Resolution . . .

An Area Constraint for Arrays with Three

Antennas . . .

Properties of Unambiguous Phase for Arrays
Having a TAAP and Four Antennas

Discussion 'of Unambiguous Absolute Phasge,
Ambiguity Resolution and Tolerance Prohlems

with Four Antennas.

Properties of Unambiguous Phase for Arrays
HRaving a TAAP and Five Antennas

Additional Properties of ((Ai j))

Ambiguity Resolution and Tolerance Problems

with Five Antennas.

.

Some Exemples of Arrays with Five Antennas

‘vi

few— - AN o AL A WS Y LI, PN,

e s

39
39
Al

L6
k7

53
53

54

58

>
(P

17
82

83

88
92

98
103

t.,, tz Y

| Tl

- f— - —— ot
B 7 ~— St ngrnans

— R )
Fx~—ﬁ-—’ ——td

pom———r,
D amand




~N ’ bt g

THE JOHNE HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY
SUVIN BPANG MARYLAND

1]
A G, s o St A e o S

CONTENTS (cont 'd)

s

i

[N 1
3

The One-Dimensional Case for Three and Four
Antemnas . . .+« . .« + « .+ 108

»

I

‘ [, Analogous Theorems Pertaining to the Two-
i

!

}

{

{

H

-

Dimensional Case for Six Antennas with
a TAAP. [ ] L] . . L] L] L] L] . 117

L‘ The Tolerance Problem for Six Antennas with
a Tm. L] L] * . * . . . L] 125 1

——— ‘*-—‘ =

( The General Planar Array Case for Arrays with

J BTAAP. & « 4+« .+ . . 131 ;
- An Example of an Array with Six Antennas. o 132
1\ Comparison of Arrays of Figs, 26 and 31 . . 138
X A Second Example with Six Antennas . . . k2
# r; m Antennas on a Line,m23 . . . . . 148

e et A S D ek

vii

S et s e e o,

Y it e, s
T R N S o R EE




; » b F
i
THE JOHNG HOPRING UMIVENSITY S
l APPLIED PHYSICS LABORATORY 5
1 9
LIST OF ILLUSTRATIONS
i ;
1 Coordinate System . . . . . . . . 6
1 Geometry for Antenna Pair . . . . . .
g Plasne Formed by Two Antennas and Source '
B Direction .« « « o« « e« e 8
g 4 Awmbiguity Plot for One Antenna Pair . . . 10
' 5 Equilateral Triangle Case . . . . « 11
¥ 6  Hexagonel Ambiguity Pattern for Equilateral
8 Triangle Case . . . e e e e . 13
T Dismond Antenna Array . . . . . . . 15
_’ 8  Array Ambiguity Plot for Dismond Case . . . 15
. 9 An Array . . . . . . . . . . 22 ..
[} 10  Three Antennas on aIine . . . .« . . 24 .
1l Four Antenna Case with No Array Ambiguities . 29
{ 12 Array Whose Ambiguity Plot Is a Lattice of
PointsonIine . . . . .+ .+ .+ . 34
13  An Asymmetrical Arrey . . .« .+ o+ . . 3k
[ 14 Circular Arrays with Equal Central Angles . . 36
15 Subarray Ambiguity Plots for Regular Pentagon
Ij Antenna Array .+ . . . . . . . kW
16 An Array withn =h+1 Antennae . . . . Uu8
17 Flow Chart for Achievable Array Ambigulty
B Topologies for Certain Array Types . . . 5
18 Triangles Formed by Two Vectors . .« . o« 53
g ﬁ 19 Triangular Arrey . . . . . . . . T3
20 Construction of a New Triangle e« e« « 75
E; o Type 1 Quadrilateral Array « .« .« . . 7
! 22 Type 2 Quedrilateral Array B ()
s 23 Type 3 Quadrilateral Array .« « <« .+ 18
) 24 Arrsy Antenna Numbering and Vector Description. 80
25 The Twelve Topologlies for Five Antennas . . 90
7; 26  Five Interferometer Array Configuration . . 104
“ ix
( !

_— B T OB 7 1y T .,
e A e e Tt R it B e e Lot at




> T b

THE JONME MOPKING UNIVENSITY
APPLIED PHYSICS LABORATORY
DILVRR PPMNE. MARTLANG

>
»
A W M e A 3

Yoenind

LIST OF ILLUSTRATIONS (cont'd)

T
R}
et e

Kotk

27 Anbiguity Plot for Five Interferometer Array
Configuration . . . . . . .

. 105
28 AType TArrey. . .+ .+ .« .« . . . 107
29 Type 1 Quadrilateral Array. . . . e . 109
50 Four Antennas on a ILine . ., s e . . 112
31 Hexagonal Arrsy of Coplanar Antennss . . . 133

32 Ambiguity Plot for Hexagonal Array of Coplanar
Antemnas. . . . . .+ ... . 134

33 An Array . » . . . . . . . . lh’e
34 m Antennas on a Iine . . . . . . . 148

2 FerCatiinass,

e 3 i B

Sy e s AL Lo Lk

X R
H
§
oy
{;’ he
s
\J —&’2‘

TR TS T s e s e T, T G AL W T




a

(.

"

THE JONNE HOPKINE UNIVERBITY
APPLIED PHYSICS LABORATORY
BILVER BANG. MARYLANG

TABLES

P
1 Signs forBi,j =:!=(1:lJ . . . . . .
2 Q‘mi 3 vs m,i,) o e e e e e e
3 Ai 3k for Anterma Array of Fig. 31 . . o
L A 3 for Antenna Array of Fig. 31 . . .
5 A, for Antenna Arrsy of Fig. 31 . . .
6 A g Tor Antenna Array of Fig. 33 with n 0dd
T Ai 3 for Antenna Arrsy of Fig. 33 with n 0dd
8

Ai for Antenna Array of Fig. 35 with n 0dd.

89

9k
135
136
136
143
1Lk
144

—_ et on LV Rn ..

. b e O,
e o e 5 % e o




THE JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY

SILVER BPRIKG MARYLAND

R R DTN ST
S

1. INTRODUCTION AND SUMMARY i

One important problem in interferometer antenna
system design is the conflict between the need for wide base-
lines to measure angles accurately and the need for no angle
ambiguities. In this document, it is shown that the conflict

can be resolved by judicious placement of a few antennas in a

(g iy Sty B e

Y -

L ey

plane. A general mathematicsl theory is developed which
defines geometrical constraints dictated hy measurement error !

tolerances.

b =y

Section 2 develops the mathematical solution of

L POy 9

ambiguity locations for arbitrary antenna arrsngements.

i

AR LTINS S N s i DR A T g,

o Y < o < A i

After introducing the concept of array ambiguity plot, it is
l} shown that there are exactly five distinct plot topologies:
a grid of equally spaced parallel lines, a single line, =
two~dimensional lattice of points, a one-dimensional lattice
of points, and no ambiguities.

In Section 3, the effects on plot topclogies of
constraining the antemnas to lie on a circle are examined.
It is shown that the single line topology is not achievable
and thé other four are. The general regular polygon case is
solved. {

Section 4 is devoted entirely to the two-dimensional
lattice topology, 1t being conjectured by the author that

such antenna arrays are generally superior when measurement

error tolerances are taken into account.

Two important results are proved in Section 4.
The first is that if two triangular arrays have the same
ambiguity plot, then they enclose the same area. This area
is denoted by T(P), and is therefore an invariant of the plot P.

1




A o ¥

THE JOHNS HOPKIMS UNIVERRITY
APPLIED PHYSICS LABORATORY

~ g o, -

e
LTS TR R M SIS M AT 0 00 IV L

g e Ty T

o e

o wirguies o AL

PR

SILVER SPRING MARYLAND

The second result of Section 4 has been termed the
fundamental area theorem. It states that a necessary and
sufficient condition that an antenna arrsy in a plane have a
two-dimensional lattice topology for its array smbiguity
plot is that the ratio of the areas of all pairs of triangles
formed by antenna elements is a rational number. In this
case, T(P) is the largest number which divides into the areas

of all triangles cf the arrsy with integer guotients.

Section 5 extends Section 4 in several directions
with emphasis on the two-dimensional lattice topology. The
questions of antenne placement, angle processing, and measure-
ment error tolerance are addressed. Several examples are
given as illustrations of the general theory. The theory for
one-dimensional arrays having a line grid topology is also
given, as it turns out to be a special case of the two-
dimensional theory.

The most important conclusion is that for a given
measurement tolerance and region within which one must place
antennas, the ambiguities can be made to move away exponen-
tially as the number of antennas increases, provided the
antennas are placed judiciously. A sumnary of the key
results needed in reaching this conclusion follows.

For arrays having a two~dimensional lattice ambigu-
;ty plot, if source directions in the forward hemisphere
within a cone having its axig perpendicular to the antenna
plane can be found unsmbiguously, then

T(P) < _.ﬁﬁ._ki_

12 sin” p

where p is the cone half-angle and A is the wavelength.
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A quantity 'l‘q) (units of cycles of phase) is intro-
duced, and is cali:d the sufficient phase difference tolerance.
Specifically, if the errors in phase at each antenna are all
less than ;21- Tcp in absolute value, thereby implying that phase
difference errors are all less than 'J.‘cp in absolute velue,
then all phase differences can be resolved unambiguously

except for émbiguities of the entire arrsy.

Another quantity, denoted by Ecp’ is termed the
tolerance efficiency of the arrsy. For more than three

antennas, it is defined by

E = | B3 (n-2) X (area enclosed by antenna arrey)
" " T(P)

where n is the number of antennas.

The major result of Section 5 is that E(p < 1.
This is proved for n = 4, 5, 6, and conjectured to be true
for n > 6. The significance of this inequality is that it
puts a bound on how small T(P) can be. Together with the
first inequality, which can be used to determine how suall
T(P) must be, one can then estimate how many antennas will
be needed for a given area and tolerance.

Although the determination of antenna locations is
presently somewhat of an art, the inequalities serve at
least two purposes. In some cases they can tell one that it
is a waste of time to consider fewer than a certain number of
antennas, and in other cases they can be used as measures of
goodness for any given array arrangement with a two-dimensional
lattice ambiguity plot.,
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2. ARRAY AMBIGUITY PLOTS AND THEIR TOPOIDGIEES

—

GEOMETRY NOTATION

let T, 3, X denote a right-handed triad of unit
vectors fixed in the array. T and 3 lie in the plane of the
antennas, and K is perpendicular to this plane. A unit vector
in the direction .of a point radiating scurce is denoted by 3,
end it is assumed that the source is sufficiently into the
far field of the array so that the lines joining each antenna
+ -~ with the source may be considered parallel., The direction
. cosines of the source direction are denoted by x, ¥, 2 8o that

gy

D

-

‘ g = xI +yj + 2k, (1)

It is assumed that the source lies in the forward
f hemisphere and within a cone having half-angle p, so that

0O<cos pszsl, (2)

Since x° + y2 + 2% = 1, one also has

|
¢ ﬂ 0sV =2+ y? s sin p. (3)

N §

: g A coordinate system has now been established in the #
S boresight plene, see Fig. 1, where there is a one-to-one
[ ? correspondence between source direction and points (x,y)

lying within a cirele having radius sin p.

Preceding page hlank
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Fig.1 COORDINATE SYSTEM

MEASUREMENTS FROM ONE ANTENNA PAIR

For the present anaslysis, each anténna is assumed
to be located at a point in the antenne plane, and all
antennas recelve the signal from the source with the same
amplitude. The only difference between signals from entennas
lies in the phase difference arising from different path
lengths from the source io the antennas.

Consider two antennae (T) and (2) in the entenna
plene, see Fig. 2, and let d denote the vector with tail at

@ end head at (@).
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6 18 POSITIVE IN THIS FIGURE

|

-
| DIRECTION
V} ‘ -
!
\ i 1 DIRECTION

‘ f

~

Fig.2 GEOMETRY FOR ANTENNA PAIR

If & 18 inclined at an angle § relative to I, then

3 =(d cos 0)T + (4 sin 0)7 (%)

where d i1s the (scalar) distance between the antennas.

define a plane, depicted in Fig. 3.
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The two antennas and the direction to the source
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Fig.3 PLANE FORMED BY TWO ANTENNAS AND SOURCE DIRECTION !

The path length difference of the two signal routes
is AP. Clearly,

-y

AP = 3 ¢ B, (5)

where AP is negative if the distance from the source to

' antenna @ is greater than the corresponding distance to
o antenna @) .

From Egs. (1) and (4), then
AP = d(x cos 6 + y 8in 6). (6)
If the signal in antenna (1) is denoted by

59 * Vicos (wt+p), (1)
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then the signal in antenna (B) will be

S® =V cos [w(t+%) + p] (8)
where ¢ is the speed of light.

If £ end L are the frequency and wavelength of the
signals, respectively, then

AP 2xf 2
w S = == 4P = 55 4p. (9)

if @’ denotes the phase difference between the two
antennas in units of cycles, then

(x cos § + y sin 9). (10)

P
o =&

>l

The only information avout source direction in
these two signels is embodied in sin (2x¢’) and cos (2n9’),
which can be extracted from S® and S ®" This means that
if two distinct source directions; whose maps onto the
coordinate system of Fig. 1 both lie within the circle,
yield the same values of sin (2xp’) and cos (2r9’), then
there is no way of telling them apart without additional
informetion. No signal processing tricks based on these two
signals alone can possibly alter thils conclusion.

Entirely equivalent to the knowledge of sin (2nq)')
and cos (2n¢’) is the knowledge of ¢ except for some additive
integer.

To be more precise, if (x,y) denotes the true
source projection onto the coordinate system of Fig. 1, and
if (x’,y’) is some other point within the cirecle such that

x'cose+y'sin9=n%‘:+xcose+ysine (11)
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VRN
T,
3

where n is an integer, then one camnot tell whether the source
coordinates are {x’,y’) or (x,y) or meybe something else.

v A0
twt

AMBIGUITY PLOTS

fpon”

It is instructive to examine the geometrical signif-
icence of Eq. (11) by plotting the locus of points (x’,y’) for
’: fixed (x,y). Equation (11) is the equation of parallel lines,
all perpéndicular to 3, each separated from another by a
distance of a multiple of %-, end one of them passes through
(x,y). Only those portions of the lines within the circle
contribute to the problem. This is depicted in Fig. k4.
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Fig.4 AMBIGUITY PLOT FOR ONE ANTENNA PAIR
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Several things are of interest about ambiguity

plots. First, one can see from Fig. 4 that ambiguities are U |
unavoidable with two antennas. Second, ambiguities can be
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confined to a single line for all sources within the cone of

interest if and only if %1- is greater than the diameter of
the circle, that is, if

% > 2 gin p. {12)

Third, one can observe that, excspt for the circle,
the ambiguities translate with (x,y). This property holds
for smbiguity plots in general, so that one can plot the

o ambiguities as if the source coordinates were (O ,0) on one

piece of graph paper, draw a circle on enother, put one
piece of papér atop the other, and slide it around to pro-
duce the equivalent of Fig. 4.

AMBIGUITY PLOT FOR THREE ANTENNAS ARRANGED IN AN EQUILATERAL
TRIANGLE

This last comment will be illustrated for the equi-
lateral triangle case. Figure 5 shows the antenna geometry.

®

-t
j DIRECTION

© ¢ ® -~

’ T DIRECTION
o 5 V3d -

Fig. 6 EQUILATERAL TRIANGLE CASE
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Let <p; denote the phase difference between antennas
@ and(®, and @] the phase difference between antennas (2)
and @_. If two distinet source directions produce the same
values of q:{ and (pz’, except for additive integers in each
case, then (except for the ecircle restriction) they are -
relatively asmbliguous. It does not help to consider the phase
difference between antemnas (3) and (1) as no new information
has been added. This is so because the sum of the phase

§ vl
(2

o

differences around the clock is zero, or what is the same
thing, the final phase difference between (3) and () is the
negative of the sum of the other two. This implies that if
two source directions yield the seme values of ¢; and @
except for additive integers, then they will yield the same
{ value of the phase difference between entennas @ and @
except for an additive intager.

R

b

=

The ambiguity plot for the equilateral triesngle
case is determined as follows: assume the scurce coordinates
are (0,0) in the x,y plane. Draw the grid lines for ambigu-
ities associasted with antemnas (1) and (@) as discussed
previously., HNext draw the grié lines for ambiguities asso-
ciated with entennas () and (3). The lattice points
determined by the intersections of these two families of
lines make up the ambiguity plot for the equilateral triangle

s

B case. The lattice points form a hexagonal pattern, as shown 8
in Fig. 6.
By sliding a circle around on top of Fig. 6, it can n
be seen by inspection that there will be no ambiguities for
any source within the cone of interest if aund only if the i
diameter of the circle is less than Z\d" that is, if and only !
if Eq. (12) holds. 3
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AMBIGUITY PLOTS FOR THE GENERAL CASE

Suppose there are w+l antennas (mz1) arranged in
an arbitrary fashion on the antenna plane. The first step
in determining ambiguities is to order them in some arbitrery
but fixed way, so that one can refer to the antennas by
numbers @, @, ..., . One can then let @3, «.c) @
denote the unambiguous phase differences between @ and @ ’
veey (@ and , respectively.

The second step is to draw the m families of grid
lines associated with entenna pairs (@) and @, ...,
and respectively, assuming the target coordinates to
be (0,0). A point other than (0,0) which lies on cne of

—wan S
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the lines for each of the m families will be called an array

ambiguity, and the plot of all such points will be called
the array smbiguity plot.

Except for the geometrical restrictions having to
do with the cone of directions of interest, which can be
handled by sliding a circle around on the plot (as discussed
previously), the array embiguity plot has the remarkable
property that it is independent of the ordering of the
sntennas. This 1s easily seen as the signal from a source
in any of these directions arrives at all mt+l antennas in
phase. Obviously, there is no way of distinguishing between
two such directions without more ‘:I.nformation. No signal
processing tricks will help. The general case where the
target is not at (0,0) has an array smbiguity plot which is
a translation of the plot for the (0,0) case, as discussed
previously, so the conclusion that the ordering of the
antenna elements is immaterial is still valid.

ARTTFICIAL AMBIGUITYES AND THE DIAMOND ARRANGEMENT

By not using all of the information present in a
given antenna array, it is possible to introduce ambiguities
which are not erray ambiguities, herein termed artificial
ambiguities. The converse is of course not possibie; that

is, there is no way to get rid of an array ambiguity without
additional information.

A classic exasmple of this is the commonly used
diamond antenna array deplcted in Fig. 7.

14
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Fig.7 DIAMOND ANTENNA ARRAY

The arrsy ambiguity plot for this case is the set

of circled points in Fig. 8.
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Fig.8 ARRAY AMBIGUITY PLOT FGR DIAMOND CASE
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In some systems, the phase difference between @

| and @ is used for the x-coordinate and the phase difference
p between (D and (3) is used for the y-coordinate. No other
antenna pairs are used. In this case the smbiguity plot
includes the uncircled points as well as the circled points.
The uncircled points (except for (0,0)) are the artificial
aembiguities for this processing using a diamond entenna
arrgy. One can see by inspection that the nearest ambiguity

can be pushed out a factor of «/.'2' by using all of the informe-
tion present in the array.

MATHEMATICAL SOLUTION FOR ARRAY AMBIGUITIES WHEN ANTENNAS
LIE ON A LINE

As before, suppose there are m+l antennas (m21),
ordered in en srbitrary way. Let @, ..., ¢, be as before,
and in addition, let dy and Gk denote the distance between
antennas (k) and @ and the angle that the vector from
antenna ® to antenna @ makes with the positive 1 axis,
respectively, for k = 1, ..., m. As before, the true source
coordinates are taken to be (0,0).

In general, it follows from Eq. (10) and the dis-
cussion following it that a point (x,y) other than (0,0) is
an array ambiguity if and only if the system of m equations

“‘k

(x cos 8, +y sin 0) = kK=1,2, oo, m  (13)
q.’

has a solution in integers for n,, k=1, 2, «.., m.

In the present case, all of the ek's differ from
each’ other by 0° or 180°, so that solving the system of N

equations is equivalent to finding integer solutions® for n,

*The n's in Eq. (14) may differ in sign from the n's in
Eq. (13).
16
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in the set of equations

An; An, )\nm
(x cos 91+ysinel).=-a—-=-—d—=...="-a—¢ (1)
1 2 m

It is clear that if the ratio of any two of the
d's is an irrational number, then the only solutions for

(x,y) are given by
xcos 8, +ysin ®, =0 (15)

which is the equation of a single line passing through (0,0)
and perpendicular to the line containing the antennas.

If the ratios of all possible pairs of d's are

rational numbers, then let

wﬂs' '_.Q-'

"k
k
"
where 8y and bk are integers, and T is in lowest terms.
k
(Obviously, &, =D, = 1.)
Also, let L = the least common multiple of a,, a,,
v+e 8« Then the solution to Eq. (14) is given by

L
nk=nbk§’ k_:l’ 2, esey M (17)
and
x cos 6, +y sin 9, = E%E (18)
)

where n is any integer.

The arrsy ambiguity plot is therefore identical
to that for a single peir of antennas separated by a distance

17
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a
d’, where 4’ = f, and the grid of lines is therefore deter-
mined by

x cos 8, +y sin 0, = %’-}, (19)

vhere 'n is any integer.

The irrational frection case whose solution is
given by Eq. {(15) can be included in this case by the
artifice of setting @’ =oco in Eg. (19).

MATHEMATICAL SOLUTION FOR ARRAY AMBIGUITIES, GENERAL CASE -

Now consider a general planar array of mtl antennas,
and without loss of generality assume the true source coordi-
nates to be (0,0). Assume some ordering of the antennas, and
let ¢é: d,, O, be defined as before, k =1, 2, ..., m.

The array ambiguity plot is then determined by
solving the system of Eas. (13). Next, split the equations
into groups of equations, where two equations belong to the
same group if and only if the two ek's associated with the
two equations are the same or differ by 180%-.

The analysis of the previous szction then shows
that each group may be replaced by a single equation.

The system of equations to be solved is therefore

the system
Xné
X cos 6};+ysin _91'{="é'r, k=1,2, «00, Py (20)
k

where no two 91;'8 are equal or differ by 180°, p € m, and

some of the d];'s may be ©°,

In orde. to ease the typist's task in the following
development, the primes will be removed from Eq. (20), so the

18
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reader should bear in mind that the following unprimed
variebles are not necessarily the same as in the previous
definitions.

The system of equations to be solved is thus

).nk i
X co8s ek+ysin ek::T}:’ k=1, 2’ seey P, (21) ’CJ

where no two ek's are equal or differ by 180°, p £ m, and

some of the dk's may he oo .

T —
Lo TR B
b

First, if there is Just one equation, the antennas
all lie on a line, and this case has been solved already.

Second, suppose there are Just two equetions.

>—

Since @, and @, are not equal nor differ by 180°, one can

-

solve the equations for x and y, giving

I [ n n
1
- X = A cse (92-91) —:L-sin ea-a-:-sin 01] (22)
| .
=A csc (6,-0.) ! 6+ =2 8 (23)
y = c (6,6, -(i-;-cos2 -E;cosl. )

/

If both 4, and 4, are 00, then x = y = O 18 the
only solution, and there are no array ambiguities. If just
one is ©0, say 4,= o0, then

s oA e

na
x =\ csc (8,-8;) - sin e, (2k) .
2
02
y =1 esc (9,-8,) T cos 8 (25)

which represents a set of lattice points all of which lie

on the line x cos 6, + ¥ sin 91= 0. The case where d1 and
d, are both co can be achieved with five entennas, and the
case wh'er\e Just d; = oo can be achieved with four antennes.

19.
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The cases when neither d, nor d2 are infinity
include all trisngular arrey cases. From Egqs. (22) and (23),
it can be seen that there always exists a lattice of array
snbiguities which covers the whole (x,y) plene es n, and n,
range through sll possible integers. This was: to be expected
from the geometrical nature of the array ambiguity plot,
since the intersection of two sets of non-parallel grid
lines must intersect in a lattice of points.

Next, suppose there are at least three equations.
First, consider the case where none of the dk's are infinity.

The first two equations are linearly equivalent
to Eq. (22) and Eq. (23). If one multiples the first equa-
tion of Eq. (21) by sin (6,-8,), the second by sin (8,-8,),
the third by sin (92-61), and adds, one obtains the equation
(after dividing through by A)

nl n n 6
T sin (0,-6,) + 7= sin (8,-8,) + 3= T 2 gin (92‘91) = 0. (26)

Note that x and y do not eppear in Eq. (26). Since the
coefficient of n, is not zero, Egs. (22), (23), (26) give
X, ¥, By 88 functions of n, and n,. Similarly, using the
second, third, and fourth equations, one can solve for n,
in terms of n, and n, (assuming there are at least four
eq,uations) . Therefore, a linearly equivalent set of equa-

tions to Eq. (21) is given by Egs. (22), (23), and the system
of equations

Pieka

— sin (@ ) + sin (6,-6,, )
G o a0 T 3 T e
Dyv
+ i sin (elm-ek) = 0, k=1, 2, ... p=2, (27)
2
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In the general case where no dk is 00 and there are
at least three equations, if one first finds all integer
solutions for the nk's of the system of Egqs. (27), end then
substitutes ali possible velues of n, and n, resulting from
that solution into Eqs. (22) and (23), cne has the coordi-
nates of all points (except for (0,0) which is always a
.solution) of the array embiguity plot. The above procedure
utilizing Egs. (22), (23), {27) also produces the array
ambiguity plot if some of the dk's are 00, as can be seen by
observing that Eqs. (22), (23), (27) are linearly equivalent
to Eq_.n(el) 1f one takes the varisbles in question to be

X, ¥, Ei" seey % instead of x, ¥, Ny, «osy np. By appropri-
ate linear combinations of Eas. (22), (23), and the equations
of Eq. (27), one can derive Eq. (21) regardless of whether or
not some of the -I-l-ls's are zero. Of course, if more than one

d
were o0, we know from the twe equation case that there are

d

k
no arrey ambiguities, and one need proceed no further. If
only one dk is o0, then we know that all array ambiguities

are confined to a line.

The general array ambiguity plot problem hag now
beeh completely solved mathematically. Unfortunately, most
genersl mathemetical solutions do not convey much insight into
interesting cases. Before concluding Section 2, some special
situations will therefore be examined, and the general topo-
loglcal nature of all possible plots will be derived.

First, it has been shcwn that the array ambiguity
plot for a given antenna &.ray, determined by intersections 1
of grid lines of successive palrs of antennas, does not
depend on the ordering of the antennas. The number of equa-
tioms in Eq. (21), however, mey depend on the ordering, and
50 may the existence of infinity values for the dk's. it is
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of course assured that whatever set of equations one uses,
‘ ' the resulting solutions for x and y must be identical.

To illustrate the above phenomena, consider the
arrangement of antennas in Fig. 9.

Ay

WS}

©. 0

e
=<

TDIRECTION 8
L - |
@ .“;JIRECTK)N z

Fig.9 AN ARRAY

wwanss S e

In this figure, suppose that the ratio of d; to d; is lrra-
tional. In the ordering given in the figure, there are just
two equations in Eq. (21), namely x = O and y = n 52:’ 50 that
the ambiguity plot obviously consists of lattice points con-
fined to the y-axis snd separated by multiples of --.

Ay ey
—————

o
et

da !
: On the other hand, if the sntennas were ordered .
;t @, ®, ®, ®, there ere three equations, namely } j i#
, An, .
)i x cos8 § +ysin 8 = — (28) B:
. 4 -*
| Pe (29) t3
X = e
5 An
'g -y = """“3'0 (30) -
§ d, H
‘ R
g I
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Since there are three equetions in this case, the equivalent :
set of Egs. (22), (23), (27) is 3
AR, ',
X = — (31) A
C
o, I
y=Xecsc 8| g=-g-cos b (32)
, Y4 3
n n n
1 2 3
- —+ cos § =— - gin § 3z~ = O. (33)
d 4 a4
From the lew of sines,
sin 6 1 _cos § (34)
d, d, d;-44

50 that sin © and cos © may be removed from Eq. (33), end
Eq. (33) is replaced by

n n d n
1 2 1 3

2| =1 ) -==0. ‘ (35)
d4 d4(‘13 ) d4

Multiplying by 4 & there results

o

1
n, +n,+n, =n, -a:. (36)

d.
any integer {taking n, = -n,J.

Since =— is irrstional, it follows that n, = O and n, can be
3

Substituting np = O in BEqs. (31) and (32), one has
n

x=0sand y =\ csc 0 -a-ﬂl-, and. from Eq. (34), y = n, a’i—, the
4

same result as hefore.

In addition to illustrating that the equations
depend on the sntenna ordering, this example also shows thet
some orderings simplify the analysis compared to others.
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We will conclude Section 2 by summarizing some
observations ebout array ambiguity plots which follow from
the preceding discussions when the number of entennas is 2
or 3; or more if they all iie on a line. The n = 4 and
n > b case will then be treated.

TWO ANTENNA SUMMARY

For two antennas, the array ambiguity plot is
always a grid of parallel lines, each separated from its
neighbor by a distance %.

THREE ANTENNA SUMMARY

If the antennas do not lie on a line, then the
arrey ambiguity plot consists of lattice points extending
throughout the (x,y) plene, snd are formed by the inter-
section of two sets of grid lines, each set consisting of
equally spaced parallel lines, but no line of the first set
is parallel to any line of the second set.

If the antennas lie on a line, then the ambiguity

plot consists of either a single straight line gr 8 grid of
2

ay

irrational number, the former case results, otherwise the

latter. The orientation of this array with respect to the

coordinate axes has no bearing on this conclusion.

equally spaced perallel lines. In Fig. 10, if is an

® ® ®
e 3 -

Fig. 10 THREE ANTENNAS ON A LINE
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n ANTENNAS ON A LINE SUMMARY, n 2 3

The conclusion here is the same as for then =3
case in that the array ambiguity plot consists of either a
single straight line or a grid of equally spaced parallel
lines. If one lists the distances between ell poseible peirs
of antennas, and can find two such distances whose ratio is
.an irrational number, the former case results, otherwise the
latter. '

FOUR ANTENNAS

If all four antennas lie on a line, the result is
glven by the preceding paragrsph.

If not, then there always exists an ordering of the
antennas such that no pair of 6's selected from e1 » 8,5 6,
are equal or differ by 180°. To see this, suppose first that
only three antennas lie on g line, and suppose that O, (@,
() sre these antennas. Then the ordering @, @, @, ®
will have the desired property. If no three entennss lie on
a line, then label the entemnas (D), @, @, ® arvitrarily.
Neither (3) nor (B) lie on the line joining O end @). If
the line Jjoining @ and @ is parallel to the line Joining
@ eand (@), then at least one of the orderings 3, @, @,
® or M, @, @, (® will have the desired property. If
the line joining (3) end (@) is not parallel to the line join-

ing (D) and @), then the ordering @, @, @, (® nes the

desired property. This exhausts all cases,

So suppose there are four sntennas not all on a
line, and let them be ordered so that no pair of 8's selected
from 8,, 6,, 0, ave equal or differ by 180°. TFor this order-
ing, the array smbiguity equations are glven by Egs. (22),
(23) and (26), where 4, d,, d, sre all finite. The nature

a5
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of the integer solutione to Eq. (26) will obviously depend
on the rationality of the ratios of the coefficlents of
n,, By, n, in Eq. (26). So let

P
—————

o -
A

d, sin (8,-6,) .
Cc, =
17 @ sin (8,-0,) (37)

romem 1
'

a, sin (0,-6.)
3 a~%
Cz = d, sin (6,-8,) ° (38)

§ o

Case l: There is no linear combinsation of c, end c, which
is rational when the coefficients are rationsl and at least
one coefficient does not vanish. (Example: c,= =2, ¢,=4/3)

o] ’"""'3

In this case the only solutions to Eq. (26) are

n, =n, =n, =0, as is easily seen by dividing Eq. (26)
by —-——-a—a——-, the result being

ey + cyngy + 0y = 0, (39)

‘n‘- - |

.- Since the only solution for the n's is n,=n,=n,=0,
it follows from Eqs. (22) and (23) that there are no arrsy
ambiguities. Note that in Case 1 both c¢, and c, must be

irretional, although this is not a sufficient condition for
Case 1 to apply.

‘w, t&aﬁt-l

Case 2: There exists a non-zero solution to Eq. (39), and
not both ¢, and ¢, are rational. (Example: «c, = ¢, =.2).

s

{
Let (n,,n,,n,) denote a non-zero solution. It may g

be assumed thet n,, n,, nz have no factor in common, for one ;

can always divide Eq. (39) by the greatest common factor of 3 k
o6 i
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I (n; ,né,n;) ie another non-zerc solution, then
n:'_nz-nln; must venish, for otherwise the equations

eh, +ten, = -0,

4
-na

’ ’
cn, + c;n,

would heve rational solutions for both c, and c,. Therefore,
(n,,n,) is proportional to (nj,n]) end it then follows that
(n;,nz,n,) is proportional to (n,,n,,n,).

Since n,,n,,n, have no factor in common, there

t v ?
exists an integer n such that n; = nn,, n, = nn,, n, = nn,.

From Eqs. (22) and (23), it then follows that the

erray ambiguity plot consists of lattice points confined to
the line

n, np n, Ry
X --d—lcos ez+a-2-cos e.| =v -a:sin ez--a-z-sin 8, (%0)

where the distance between nelghboring lattice points is

n_\2 n\2 n n
A fese (8,-8,) (Ei) +(-a-3) -2 (d—i) (f) cos (6,-6,).

Case 3: Both c, and c, are raticnal.

8 by
Let ¢, = o, a’nd Cy = 5’ both in lowest terms, and

let L be the least common multiple of b, and b,. Multiplying
Ea. (39) by L resulte in

Iy + Xpn, +Ing =0 (k1)

vhere I,, I,, L are integers having no factor in common.
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Let g be the greatest common factor of I, and L.
Then clearly g must divide n,. From the theory of congru-
ences, Eq. (41) is then equivalent to

I n
2 2 L
e =, — lmod =} . 4o
g nz I.. g (m g) ( )

I, L
Since ri and g are relatively prime, Eq. (42) is

equivalent to

n
. 2 L
=p—{mod = )
2 =P g( 8) (43)
where p is some fixed integer.

The solutions of Eq. (41) for n, and n, are there-
fore given by

nl = ag (U&)
L
n, = p& +b 'é' (ll-S)
where a and b are any integers.

From Eq. (21), the arrsy ambiguity points are given
by the solutions to

x cos 6, + y sin el=-’=§ﬁ (46)
2
and
% cos 8, + y sin 8, = == pa.+b-1-'- (47)
27y 27 q gl

pd,
If one multiplies Eq. (46) by o and subtracts
2
from Eq. (47), one obtains

pd pd
X [co_s 8, - -g-d-:- cos e,_] + ¥y [sin 0, - Ea—i sin 81} =-2:%b.
(48)

28
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Note that Eqs. (46) and (U48), which also define
the array smbigunity plot, are esch the ejuation of a femily
of equidistent parallel lines as a and b range over all
possible integers. There therefore exists a placement of
three antennas which produces exactly the same array smbiguity
plot as Case 3 for four antennas, and the array ambiguity plob,
is the same as that for a triengle.

R
. g
P

FOUR ANTENNA SUMMARY

All of the types of array ambiguity plots obtain-
able with three antennas, nsmely a single line, a grid of

Rl A

PSRV

lines, or a two~dimensional grid of lattice points formed by

l intersections of two non-parallel families of a grid of

we e KA B
u'-\. -

lines, are obtaineble with four antennas. In addition there
are exactly two more possible types' of plots. One is a set
of equidistant lattice points on a single line, and the

other is no arrsy smbiguities at all. Figure 9 is an example
of the former.

——

LGN
BCtcr AR e

-

The arrey in Fig. 11 is an example of the latter.

PRGN v

W
- s

- ——
i
o vrris
pcy

Fig. 11  FOUR ANTENNA CASE WITH NO ARRAY AMBIGUITIES
29
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4

From Egs. (37) and (38), ¢, = +2 and ¢, = 43, which
falls under Case 1 for four antennas.

n > 4 ANTENNAS

It will now be shown that the five types of plots

A
possible for n = 4 are also possible for n > 4, and there
are no others.

The proof will be by inducticn, that is, it is
assumed that the statement is true for some n 2 4, and one
shows that it is true for n + 1.

Begin with socme arbitrary arrangement of n + 1
antennas, and let them be ordered as before. The first n
antennas in this ordering constitute an n antenna case which
by the induction hypothesis has an array ambiguity plot which
is one of five types. The array ambiguity plot Tor the n + 1
antennas is the intersection of the ambiguity plot for the
first n antennas with the grid of parallel lines associated
with the o and (n+1)®® antennas.

Case 1: The first n sntennas have no arrsy esmbiguities.

In this case, the n+ 1 antennas clearly have no
array ambiguities. ’

Case 2: The arrsy ambiguity plot for the first n antennas

is & two-dimensional srrsy of lattice points formed by the
intersection of two sets of paraliel grid lines.

In this case, one can replace the n antennas by
three which have the ssme array ambiguity plot. Attach the

(n+].)‘t"h sntenna to the array of three in sucgha way that the
vector joining one of the three to the {(ntl)  has the same

4
direction and length as that joining the n'® and (m+1)™

in the original array.
30
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The new array of four antennas has the same plot as
the original n+1, and since the plot for four antennas must
be one of the five possibilities, so is the plot for the
n+1 antennas.

Conversely, start with an array of n antennas all

lying on a line, and equally spaced. The plot is a grid of

parallel lines., Adding an (n+l)th antenna anywhere off the

line will produce a plot which is a two-dimensional arrsy of
lattice points. Such an array is therefore achievable with

n+ 1 antennes.

Case 3: The array ambiguity plot for the first n entennas
is a line of equally spaced lattice points.

If the grid of lines associated with the nth and

(n+1)th antennas is parallel to the above line, then one of
the lines lies along it, and the intersection is the same

plot.

If not, then the intersection of the line with the
grid lines defines another set of lattice points on the line.
If the two sets of lattice points have any point in common
other than the origin, then the distances from the origin to
a pair, one from each set, have a rational quotient and the
intersection will be a set of equally spaced lattice points
on the original line. If ihe two sets have no point in

common except the origin, then there are no array ambiguities.

To show that a line of equally spaced lattice points
is an achievable plot for n+1 antennas, put n of them on &
line with the ratio of at least one pair of distances equal
to an irrational number, and put the (n+1)th antenna off
the line.

31
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Cage 4: The array ambiguity plot for the first n asntennas is
2 single line,

The n antennas may be replaced by three antennas on

a line having the same array embiguity plot as the n antennas.
Attach the (n-i-:l_)th anterme as was done in Case 2, and the plot

for the resulting four antennas is the same as for the n+1
antennas. One of the five plot types must result.

To achieve a single line plot with n+ 1 antennas,
place all n+1 entennas on a line, with the ratio of at
least one palr of distances an irrational number.

Case 5: The array ambiguity plot for the first n antennas
is a grid of parasllel lines.

The n antennas may be replaced by three antennas
equally spaced on a line, and one proceeds as before.

An example of n-+1 antennas with a grid of lines
for its array eambiguity plot is obtained by placing them all
on a line with equal spacing.

32
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3, PLOT TOPOLOGIES WHEN THE ANTENNAS ARE ]
CONSTRAINED TO LIE ON A CIRCLE ‘

POSSIBLE TYPES OF ARRAY AMBIGUITY PIOTS 3

The circle eassumption is irrelevant for the two

antenna case , end the result is the same as in Section 2;

'

namely, the array awbiguity plot consists of a grid of equally

e R A S e

spaced parallel lines.

e

that they cannot lie on a line, so it follows from Section 2
that there is just one type of arrey ambiguity plot, e two-
dimensional array of lattice points formed by the inter-

A )

section of two non-parallel sets of equidistant parallel
lines.

|
|
I
{ l
"', ' For three antennas, the circle assumption implies
i
|
For four antennas, it will be shown that the circle #
l assumption implies that there are exactly three types of ‘
plots, the two-dimensional lattice as in the three antenna
I case, a set of equidistant lattice pointe confined to a single
line, and no. array-ambiguities at all. In Section 2, it is
' shown that these are the only possibllities in general unlees
the four antennas lie on a line, which is ruled out by the
. circle assumption. It remains only to show thet each of the
l three types 1s realizable by some placement of the four
antennas around the circle.

l The diamond arrey, discussed in Section 2, is an
example of the two-dimensional lattice, The arrsy in Fig. 12
' is an example of a set of equidistant lattice points confined
to e single line. The analysis associated with the array in
l Fig.12, which is a trapezoid inscribed in a circle, is exactly
b

’
3
ar§
N
B
W
5

the same as thet for the array of Fig. 9. IU is clear that , %
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a
-a-i- can be made irrational if one fixes the circle and antennae

@ end @), end slides (3 and @ up or down the circle,
mainteining the line joining (3) anda @) parallel to the line
joining O and @®.

dg/dy 1S IRRATIONAL

Fig. 122 ARRAY WHOSE AMBIGUITY PLOT IS A LATTICE OF PGINTS ON LINE

Finally, consider the array in Fig. 13.

A

.

-
} DIRECTION

e
i DIRECTION

Fig. 13 AN ASYMMETRICAL ARRAY
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For the ordering @D, @, ), @, and letting r

be the radius of the circle, one has E

:

dl = d.2 =71 4/5 (49) E

d, = 2r si o :

3 =2rsing (50) K

8, =0 (51) 2

8, = 90° (52) ;

\2 ;

o, 9

03 = 135° + =. (53) :

s

From Egs. (37) and (38), .
c1=%(l-ccs 9 ~ein 9) (5%) };;

Y 8+ sin @) ;

¢, =5 (1-cos sin @). (55) 3

Choose 8, for example, such that cos 6 = %ﬁ and
gin 8 = % »B6. There will then be no linear combination of Cy
and c, with non-zero rational coefficients which is rational.
Section 2 shows thet there are no arrsy ambiguities in this ~
case.

All three types of arrays are therefore achievable
with four antennas confined to a circle.

For five or more antennas, it follows from Section 2,

Just as in the four antenns case, that the line grid and

single line topology are ruled out since the antennas cannot g

" NG

lie on a line. The remeining three candidate topologies can
be achieved for eny given number of entennas larger than four '"‘
arranged on a circle. The proof of this will be given after
development of a special case which follews next.
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DEFINITION OF CIRCULAR ARRAYS WITH EQUAL CENTRAL ANGLES

Figure 1k depicts the definition of this class of
antenna arrays.

i‘ “tn

s B W

[y

z«. -« u-’]

-
j DIRECTION

e

lmaﬁ{

P
i DIRECTION

;

{

Fig. 14 CIRCULAR ARRAYS WITH EQUAL CENTRAL ANGLES

(]

The antennas are ordered as in Fig. 14. For refer-
ence to the :—l', 3’ coordinate system, the vector from @ to @
.is arbitrarily chosen to be in the positive T airection.

e

In the notation of Section 2,

o=

8, = (k-1)a0 (56)

T ———
E4
L")

for the vector joining antennas k and k+1, k 2 1, and

A
4, = 2r sin 5 (57) |
! |
: for all k, where r ie the radius of the circle.
’ ' If AO, expressed in radians, is equal to 2x g, where
g is a fraction in lowest terms, then eventually the sequence
>

» - ——
| SO

v vrqa—

*-ﬁ~—0—~
e ———

| will result in en entenna which lies on a previous one, and

g ey,
s

36
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the array is the same as a regular polygon with q sides,

repetition occurring thereafter. If -g—i- is an irrational

number, eventually every point on the circle will be approached
arbitrarily closely.

In either case, one mey wish to stop the sequence

- \ R - o
T A o AR 08 et LA P

et some point, say efter h antennas. If A8 = 2x g, obviously
e array asrbiguity plot does not depend on h if h 2 q.

A
Iy

It will be shown that, if the number of distinct
antennas exceeds four, then the array ambiguity plot is

ool

either a two-dimensional lattice Or {here are no arrsy ambi-

5
m
,
.
&
&
el
%1

guities, and either case can occur for any such number of
antennas. For four antennas, the plot is either & one- or

i S R

\ two~-dimensional lattice, and either case can occur.

Y s

s

C

EQUATIONS FOR ARRAY AMBIGUITY PLOTS FOR CIRCULAR ARRAYS WITH
EQUAL CENTRAL ANGLES

heeas vesind
Py paay ey

Unless A6 is a multiple of n, which are the trivial
cases of one or two antennas, 1t follows from Section 2 that
the points (x,y) of the array ambiguity plot for h>3 are
given by (referring to Eqs. (22), (23), and (27))

-

{
|
§:
L
M A
X = o— (58)
£ 3 ks
¥ ¢
. ¥ )
?i‘ i X cos AO + y sin A9 = —g— (59) }”Sj'g
‘% | 0 in 240 in 16 = (60) i
'%' ny, sin A8 - n . sin 208 + n, . sin A8 = O, ééi
1$k<h-3 3

where Eq. (27) has been muliiplled by d, the cormon value of

t
all the dk 8.

e Commaa g
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If h=3, then the solution to Eqs. (58) and (.59)
for arbitrary integers n,, n,, yields the array ambiguity
plot. This case has been thoroughly investigated previously,
so henceforth it will be assumed that h>3.

Dividing each equation of the system Ea. (60) by
sin A6, there results

n, -2n, . cosAB+m, =0, lsks<h-3. (61)

* 8o for h>3, the arrey ambiguity plot is determined
by ell solutions for (x,y) of Egs. (58) end (59), where

Nyy Dpy ooy My 8re any integer solutions of the system of
Eq. (60).

ARRAY AMBIGUITY PLOT WHEN cos A8 IS IRRATIONAL

If there are just four antemmas, then Eq. (61) is
Just one equation, the solution of which is

n, =0 (62)
Dy = -0, (63)

So n, must be zero and n, can be any integer. From
Eqs. (58) and (59), the array ambiguity plot is a one-dimen-
sional set of lattice points confined to the line

X cos AO + y sin A = O. (64)

If there are five antemnas, then Eq. (61) is &

system of two equations, snd in addition to Egs. (62) and (63),

one heas
, n, =0 (65)
Ny = -nge (66)
38
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Equations (62), (63), (65), (65) imply n, = n, =
ny = n, = 0, 80 that for five antennas there are no array

en irrational number. Therefore the regulsr pentagon arrsy

» l smbiguities.
o
' Por more than five antennas, the conclusion is ;
obviously the same as for five, as adding antennas cannot 3
' result in adding array ambiguities. 4
' THE REGULAR PENTAGON )
» 2n . j= 1 >
In this case, A8 = —-5- red. = 727, end cos A9=J5'T’ %

has no array smbiguities.

L Figure 15 depicts this case. In Fig. 15, the I or
' x axis is horizontal, and the 3’ or y axis is vertical., The
b dots represent the asrray ambiguity plot for antennas @ ’ @ ’
l (. The line grid associsted with antennas (3) and () has
been drewn, as well as the line grid associated with antennas
g @ and @ . The symbol A denotes the array ambiguity points
for antennas @), @, @, ®, a one-dimensionel lattice,
bl and the symbol A those for @, B, ®, (B, another one-
dimensional lattice. Note that the symbols A& lie on a line,
b r the symbols A lie on another line, and the two sets of lattice
i points have only the origin (the assumed true source coordi-

‘ nates) in common.

ARRAY AMBIGUITIES WHEN 2 cos A® IS AN INTEGER

' i In this case Eqs. (61) allow any integer values
whatsoever for n, and n,, 80 that the array ambiguity plot
is a two-dimensional lattice given by the intersection of the
two sets of grid lines defined by Eqs. (58) and (59).
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Assuming h> 3, there are exactly two possibiiities
for this case, namely cos A8 = O or %, correspending to a
square or a regular hexagon, respectively.

The regular polygon casss for 3, 4, 5, or 6 sides
have now been completely snlved. ]

RRAY AMBIGUITIES WHEN cos A6 IS RATIONAL BUT 2 cos A8 IS
NOT AN INTEGER

Let 2 cos A9 = %, vhere a and b are integers, % is
in lowest terms, and b is not unity. The system of Egs. (61)

can be written for h>3 as

b(nk+nk+z) -an, . =0, 1<k<h-3, (67)

Cage 1: h is odd. (h>3)

In this case the number of equations in Ea. (67) is
h-3, which is even. Instead of using Egs. (58) and (59),
we shall use

o \- 1 o -
B3 ol 4y oein B2 ae] 22
X cos |—=5= Aeﬁ + ¥ sin 5 A0 =3 "oy (68)
i ] ! ! ~
- 7 ™
- h-1 A
X cos B-e—]-'n A8| + y.sin L-é- Ae- =3 nl.‘.,.. (69)
- . )

Equations (67), (68), (69) constitute an equivalent
get of equations which define the array ambiguity plot.

It will be shown that the arrsy awbiguity plot is
determined by Eas. (68) and (69) where n,_, and nm_ are
h-a

arbitrery multiples of bT Thus the array am’biguity plot
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is a two-dimensional lattice, If one compares this lattice
with that for h=3, one sees that the ambi%ities have been
-3

moved away from the origin by 8 factor of b @ .

For proof, Eqs. (67) are written as follows:

b(ny +n,) - an, =0 (70)
’ b(n, +ng) - any = 0 (72)
9-;—3- equations
b(nh.s toy, ) amy 5 = O (72)
- e - -
b(n,h_3 + 1)' a =0 (73)
= = =
b(r]h-q * nh+3 ) - wh-u =0 (7!{')
= = N
b(nhﬂ ¥ Prrg )' 4s = O (75)
- =
%2 equations
b(nh-4 ¥ nh-'z) "y =0 (76)
b( a7 nh-z) e (77)

First it will be shown that nh_,_:L and nh_.1 must be
b =
multiples of b # . Equations (73) andj-"?-h) clearly imply

that both nb# and n?;l are divisible by b. ITf thare is a
]
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solution in which the two n's are not zero, then there is

some largest power of b which divides them both, and one may
write

k

By = %P (78)
D

and’
Prey T Blbk (79)
=

where at least one of o, and f, is not divisible by b. If
0, is not divisible by b, one works backwerd to the first
equation, otherwise one works forward to the last. Without
loss of generality, suppose &, is not divisible by b.

Solve Eq. (73) for By _,» 804 it follows that
-

By = 0D (80)
e

where 0, is not divisible Ly b. Proceeding all the way to
the first equation, one finally has

- N3
n = ah; bk (‘r‘) (1)

where ah_l is not divisible by b. In order for n, to be an

- -

integer, k cannot be smaller than -}-152, vhich proves the result.
h-3
.

Conversely, if o and n, are arbitrery multiples of b * ,

2 NN

then proceeding from the middle equations up and down to the

first and last equations, Just as in the proof of necessity,

one finds integer solutions for all of the other n's. The

proof is now complete.

b3
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Casge 2:

now odd.

h-k

2

h is even. (h>3)

The number of equations in Eq. (67) ig h- 3 which is

Instead of Egs. (58) and (59), we shall use

ol 0]
X co08 9-2—- Ae} + y ein [-lla-lﬁ A8} = % Dy (82)
. ‘ =
X cos '1';—2“] +y sin [E:g- 48 =%‘:nh (83)
L J 7
Equations (67) are written as follows:
b(n, +n,) - an, = 0 (84)
b(n, +n,) - an, =0 (85)
equations X .
b(nh-e + _2) ~any =0 (86)
= T =
b(nh-4 * nh)‘ -y, =0 (&7)
= 7 2
) i (%8)
= T8 )
by
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9; equations
P(Pyog ¥ Bpog) ™ 2y = O (90)
B(oy g * Py, )- By, = O (1)

The soluticns to Eqs. (82)-(91) define the array
ambiguity plot. It will be shown that the general solution
for the array ambiguity plot is given bg Egs. (82) and (83)

-4

when n _ is an arbitrary multiple of b3 and n, is an
N h-z )
arbitrary multiple of b 2 . Therefore the arrsy ambliguity

plot is a two-dimensional lattice. If one compares this
lattice with that for h -1 antennas, it follows from Case 1
that the ambiguities have been moved out from the origin by
a factor of b in one dimension, but are unaltered in the
other,

The proof of sufficiency follows nearly the same as
that for Case 1. Assuming thet n, is an arbitrery multiple
heq 2 h-2

of b2 and v, 1s an arbitrary mitiple of b7 , one starts

with Egs. (873 and (88), working up and down equationwise,
and finds that integer solutions for all of the n's result.

For necessity, one must show that if LN and n,

- 3
are non-zero solutions to Eas. (84)~(91), then 38 dvis-
h’4 h-a —re—
ible by b 8  and n, is divisible by ba .
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Unless h=4 in which case Eq. (8) is the only
equation and the stated result follows easily, Eaqs. (87) and

(88) imply that ny_, &nd 1, ere both divisible by b.

2 2
There is therefore a highest power of b which divides

both nh_2 and % nh One can therefore write

2 -] K
m, ., = 0gb , (92)
end . 2
n = b (93)
)

where not both o; and B, are divisible by b. Proceeding as
in Case 1, one starts with Eqs. (87) and (88), working up or
down, and finds that k canmnot be less than P—;— or else one
of n, or 0, will-not be an integer. This coumpletes the

proof, and exhausts all possibilities for A8.

ARRAY AMBIGUITY TOPOLOGIES FOR ANTENNAS ARRANGED IN A
REGULAR POLYGON

The equilateral triangle, square, pentagon, and
hexagon cases have slready been completely solved. The array
ambiguity plots for the equilateral triangle, square, and
hexagon are all two-dimensional lattices. The pentagon has
no array asmbiguities at all. It will now be shown that any
regular polygon with n sides for n>6 has no array ambiguities
at all.

From the previous discussion, the proof depends on
proving that cos %—’-‘- is irrational for n>6.

If cos gr?' were rationel, it is clear that 2 cos %15
is not an integer for n>6. If 2 cos -2-1?- = % in the lowest

terms, then b>1. As one adds antennas with A9=%’-t-, the
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previous proof shows that with each added antenns, the srray L

ambiguity plot is always a two~dimensional lattice in which ;
L -

l the plot has been altered from the previous step. On the -

other hand, after n steps, added antennas are only repetitions,

I and the array smbiguity plot cannot change thereafter.
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e
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l This contradiction proves that cos ?Tﬂ is irrational
for n> 6 and that therefore there are no array ambiguities
for regular polygon antenns srrangements with more than

' 6 sides.
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I n ANTENWAS ON A CIRCLE WITH n > 4

The remaining loose end is to show that all three
l I candidate topologies can be achieved for this arrangement
for eany such n.

l Examples have already been given which show that the
two-dimensional lattice and no smbiguity cases can be achieved.
l So all that remsins is the one-dimensional lattice topology.
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Let n=h+ 1, and select an equal central angle case

' with h antennas such thet sin -é- A0 =3 1. /5 and cos = Ae =% JB. ‘
th antenna, move around the cirele through a central .

.

From the h
l angle v where the nth antenna will be placed. Choose ,
sin%—v =%\’l -mJEand cos,Ja' = "3+-—A/6 (see Fig. 16.) .

Some other useful numbers are

sinv=%f-%ﬁ, cosv--— %JE

sin 40 = 245, cos 40 = 3,
sin "‘ A8 = '\/-} cos "'Z‘ A = - ’39':A/60 :'
k.
{.3‘,
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l -

A8 =0pq=0h2 ORUEN
~N

Fig. 16 AN ARRAY WITH n = h+1 ANTENNAS

Since cos A® is rational and 2 cos A® is not en
integer, the array ambiguity plot of the first h antennas is
8 two-dimensional lattice given by the solution to (68)-(77)
or (82)-(91), where a = 2, b = 3, Alsc, by an argument sim-
ilar to the regular polygon argument, there are no antenna
duplications.

For the last antenna, another equation must be
added, namely the last one of the system Eq. (27), which in
this case is

n n,
h-2 1 1 h=1 3 1 Y
— G0 “‘A9+ V] » s g8in ...Ae-}-...\) + == g8in Aego.

(9h)
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From Fig. 16,

d'h-z = dh-l = 2r sin -2]-‘- A = 423—1‘-;\/3 (95)

4 =2r sin%—v =r\’l-%~»\/5‘ (96)

Multiplying Eq. (94) by r, there results

%fi[\[“%%* 2'§~/5] ) [-5\]3+%J6+\[ %JE]

and

i
I L = o. (97)
5 )
2-3

Multiplying through by %\’2 - %vg, there results
F oy, (4-vB) + gz (848 +n =0, (98)

As in Section 2, it follows that there exists a set
of three antennas which have the same array smbiguity plot
as the first h antenr}as of Fig. 16. The equations for the
plot are given by either Eqs. (68) and (69) or Egs. (82)
and (83) depending on whether h is odd or even, and where

208
S

PR o o P ot S0 SN < 1 e
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b the n's in those formulas are arbltrary multiples of the
’ % appropriate powers of 3, since b = 3 in this case. The
; equivalent set of three antennas will not in general lie on
%.' the circle.
f A new four antenna array is constructed as follows:
%{; throw away the first h -1 antennas in Fig. 16. Order the
Et three antennas in the equivalent three antenna array such that
7 ,
49
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Eqs. (68) and (69) or Eqe. (82) end (83) hold, where the

subscripts in those equaticns are changed to the appropriate

values. Translate the three antenna array until the third
antenna lies atop the h™ antenna of Fig. 16.

This four antenna array has the ssme array ambiguity
plot a8 that for Fig. 16, the equations for which are given

v Eqe. (68), (69), (98) or (82), (83), (98), where the
subseripte are changed to the appropriate values. In the
notation of Section 2, ¢, and c, are both irrational, and

Eq. (98) has non-zero solutions, for example hy_, = L,

M = 12, oy = 5

This is an example of Case 2 for four antennas in
Section 2, where it is shown that the array ambiguity plot
is a one-dimensional lattice confined to & single line.

All possible array ambiguity plot topologies have
now been determined for the cases examined.,

Figure 17 is a flow chart which summarizes the
topology resulte for Sections 2 and 3.
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n-ANTENNA
ARRANGEMENT,
n>1

(" DOTHEY LIE YES YES
ON A LINE? . - PARALLEL LINE GRID
NO
NO

- SINGLE LINE

n=37 YES o s~ TWO DIMENSIONAL LATTICE ;
FORMED BY INTERSECTION I
OF TWO NON-PARALLEL
NG FAMILIES OF EQUALLY {
SPACED PARALLEL GRID ]
_ LINES 3
REGULAR YES - YES
POLYGON? ne40RG?
NO
NO . - —»- NO AMBIGUITIES
4 NO
Ea‘&tgi’g;“' JES g ne=d? 4 TWO DIMENSIONAL LATTICE
FORMED BY INTERSECTION
OF TWO NON-PARALLEL
FAMILIES OF EQUALLY
¥ ves SPACED PARALLEL GRID
NO , LINES
ARRAY OF EQUALLY SPACED

POINTS CONFINED TO A LINE

DO THEY LIE
ON ACIRCLE ?

NO YES

e Biwn 3= NO AMBIGUITIES

Fig. 17 FLOW CHART FOR ACHIEVABLE ARRAY AMBIGUITY TOPOLOGIES FOR
CERTAIN ARRAY TYPES
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4, INVARIANTS OF ARRAYS WITH TRIANGULAR
ARRAY AMBIGUITY PLCTS

AREA OF A TRIANGLE FORMED BY TWO VECTORS

It 51 and 52 are two vectors, then triangles can
be formed from them in four ways; put the tails together and
connect the heads, put the heads together and connect the
tails, or put the tail of either at the head of the other
and connect for the third side. (See Fig. 18.)

- z. X
A "f:‘f’"‘z-: e L i
vmﬁ‘;‘uq o et

.
L
Bale X AR

A

TG ¢
. 9‘?::?%:5?&;"’ .
PR T
-

TR

2R

T

v om N
e
7

Fig. 18 TRIANGLES FORMED BY TWO VECTORS

ORCIRT 10N
Yo,

The same four triangles are generated by putting
the teils of 4, and £, together and connecting the heads,
where the four combinetions of signs glve the four triangles.

g
AN

All of the triangles have the same area, given by

A=

e S T

e o

|a1 X aa" (99)

RS

The proof is simple and is omitted.
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NECESSARY AND SUFFICIENT CONDITIONS THAT TWO TRIANGULAR
ANTENNA ARRAYS HAVE THE SAME ARRAY AMBIGUITY PLOT

The primary result of this sub-section is the
following theorem:

Let ?1'1 3 '&'3 be vectors along two of the sides of one
triangle, and 'éf{ ’ ?1'; vectors along two of the sides of another.
then a nacessary and sufficient condition that the two tri-
angles have the same array ambiguity plot is that there
exist four integers a,, B,, &, B, such that

d) = ad, + B3, (100)

_0' ~d -t

d, = od; + B4, (101)
where

a8, - OB, = . (102)

To prove thls, let U genote an arbitrary vector in
the ambiguity plot plene which Joins the location of the
true source coordinates vo an arbitrary arrsy ambiguity.

It follows from Section 2 that

i 0=m (103)
d, o T=n (10k4)

where all arrsy embigultlies are generated as m and n range
over all integers.

Using vector algebra, one can solve the above two
equations for the vector ﬁ, the soluticn being
(nd, - nd,)x (T,x4,)
7= 2 2 1n B2 (105)

(@.x3,) + (3.xa)
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Since d, and I, are not ccllinear, any vector im
the antenna array plane can be expressed as s linear combina-~
tion of 31 and 32. Ir particular one may write Egqs. {100)
and (101), where a,, B,; Q,, B, are some numbers.

Since the triangle formed by d, and d, has the same
array embiguity plot, one must have d; *¥ = m/a, &+ T = n'r,
winere m’ und n’ ave integers. Dotting Egs. (100) and (101)
with U, one obtains

n' =oym + B;n (106)

nl

Lm + Byn. (107)

Teke m = 1, n = 0, and one sees that oy and @,
must be integers. Similarly, take m = O, n = 1, and one sees
that B, and B, must be integers.

If one takes m’=1, n’ =0 and solves for m and n,
one sees that -AE and -f- are integers, where

A = alBZ - azﬁlo (108)

Similerly, taking m’=0, n’= 1, one concludes that

-Bf- and ﬂ are integers. The case A= 0 is excluded, as this

[\
would imply no solution for these two cases.

Since A must be en integer, if it were not plus or
minus unity it would fellow that &, B,, Oy, B, are all
multiples of A, and hence from Bgs. (106) and (107), so are
m’ and n’, which is a contradiction, Therefore; A = %1,

and the necessity is proved.

For proof of sufficiency, assume Egs. (100), (101),
(102) hold with a,, B,, ,, p, integers. Dotting Eqs. (100)

55
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and (101) with U produces Eqs. (106) end (107), so that
whenever m &nd n are integers, so are m’ and n’.

If one solves Egs. (100) and (101) for &, and &,

one has
L d ﬁ -d ai -4
g =3 -5 (109)
g az > al =
dz=-Td1+T 2 (110)

where the coefficients of 51' snd 32' are integers, and the
determinent of the coefficients is -AJ-'-, which is also £1.

Dotting Eqgs. (109) and (110) with U shows that.when-
ever m’ and n’ are integers, so are m and n. This completes
the proof of the theorem.

First Corollary: There are two corollaries to the theorem
Just proved which are of interest. The first is as follows:
if two trianguler arrays of antennas. have the same array

ambiguity plot, then the arees of the two triangles are the
same.

To prove this, form the cross product of d; and 5.'_.{
using Eas. (100) and (1Q1). One has

d x & = ad;x 3. (111)

The result follows from Eq. ( 99) and the fact that A = 1.

It is shown in Section 2 that there are five
distinct topologies for array ambigulty plots. It is also
shown that the two-dimensionel lattice point topology cen

ralwvays be generated by some triangular antenna arrsy, and

that every triangular antenna array generstes such a topology.
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It will be convenient to refer/to & plot with that
topology as a trianguler array ambiguti plot (TAAP). The
eabove corollary shows that if P is a TAAP, then there exists
a number T(P) uniquely determined by P, such that the area
of any triengle formed by three antennss which generate P is
T(P). T(P) will be called the trisngular asrray area {TAA)
of the array ambiguity plot P.

Second Corollery: Xet P be a TAAP, and let 31 and ’é; be two

vectors in the antenna array plane which form a triangle
generating P.

Two vectors in the array ambiguity plot plane are
formed as follows: ﬁl is a vector Jjoinlng the true source
coordinates tc the nearest ambiguity along a direction per-
pendicular to 31, and ﬁz is a vector Jjoining the true source
coordinates to the nearest ambiguity along a direction
perpendicular to 32 .

Expressions for ﬁl and f)’z are obtained by setting
m=0,n=21andm=1, n =0 respectively, in Ea. (105).

One has
- &, x (3,xd,)
ﬁl: - -J; 1—0 2—0 (112)
(q, xd,) * (d,x3d,)
- -’ -
g . 2% (8, xd,)

. (113)

The area of the triangle formed by ﬁl and. ﬁz is
-;‘- |ﬁlx ﬁa!' From Bgs. (112) and (113), using vector algebra,

one has
a. xa
1 .
ﬁl X ﬁz = -)‘2 Y -t = - - (llh)
(d,xd,) » (a4, xd,)
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from which one has

5 [U,xT,) = T&%;)" (115)

Therefore the asrea of the triangle formed by ﬁl and
and ﬁg is also a plot invariant. Denoting the ares by E(P),
one then has
)‘2
E(P) = . 116
(®) = 705y (116)
This last result is the second corollary. E(P) will

be called the elemental genersting area (EGA) of the array
ambiguity plot P.

This result is in agreement with the fact that if
the antennes are moved closer together, the ambiguities move
further out, and vice versa.

NECESSARY AND SUFFICIENT CONDITIONS THAT AN ARRAY WITH
h+1 ANTENNAS (h2 2) HAVE A GIVEN TAAP

It requires no more than h vectors joining variocus
antenna pairs to describe the array for ambiguity purposes.
This follows from Section 2 and the discussion of ordering
of the antemnas. If they are ordered in an arbitrary way
@, ®, ..., @ , then ?1'1'{ (k=1,2,...,h) may be taken
to be the vector with tail at (k) and head at . The
Egs. (13) can be rewritten as expressions involving these

vectors.

One could also take ?1'}1 to be the vector with tail
at @ end head at , &8 either of the two sets of vectors
will produce equivalent sets of the Egs. (13).

ol

So let dk
duplications) which describe the antenna arrsy, and assume

be any set of h vectors (there may be
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that the arrsy has a TAAP. let '6'.’1 and 32 be two vectors
describing & triangle which has the same TAAP. Since any
vector in the plane can be expressed uniquely &s a linear
combination of ’é; and 32 , one can write

dl;=akal+ﬁka.2, k=1’ 2, sy h. (117)

The necessary and sufficient conditions that the
array and the triengle array have the same TAAP is that the
., 's and B, 's are all integers and that there exists no

k k n(h-1)
integer other then il which divides all of the 5
determinants

s will be proved.

Let T be the vector in Eq. (105) with m=1 and
n=0, 8o that from Egs. (103) and (104), T, *T = A and
32 +T = 0. Since the two antemna arrays have the same TAAP,

b Ek' * T must be an integral multiple of A. If one cots
Eq. (117) with U, one then sees that s necessary condition
Ll for the two arrays to have the ssme TAAP is that the ak's

ere integers., Similarly, taking m=0 and n=1 implies the
seme thing sbout the Bk's. So for the rest of the proof, it
is assumed that the ak's and ak's are integers.

i If one dots Eg. (117) with any vector such that
Egs. (103) and (104) hold, one then sees that any array
ambiguity of the triangle arvay is an srrsy ambiguity of the
h+1 antenna array. The integer condition on %he czk's and

ak's is therefore both necessary and sufflecient that this

be the case.
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To complete the proof, one must show that the
determinant conditions are necessary snd sufficient that
every array ambiguity of the h+ 1 antennas is sn array
smbiguity of the triangle.

Note firat that for h=2 the theorem has already
been proved in the previous sub-section. So assume h2 3,

-5

Oréer the equations so that &, and d, are not
collinear. If this were not possible, all of the antennas
would lie on a line and the array could not have a TAAP.

By maeking appropriate linear combinations of pairs
of equations of Eq. (117), one can write

-t - —0, -—b
3,48, =B, - B3, (119)
and
-l -y —Ol
Aladz = -ajd1+ aldj (120)

fOI‘ 'j = 2’ 5, seey hs

Next, multiply Egs. (119) by o,, (120) by B,, and
add, obtaining

e Alja; = Aa,ja.:: + A:Laa' (121)

for J = 3, h‘, seey h.

™

Since A,, # O (4 and &, are not collinear), it is
clear that all of the d!'s for J =3, ««c, h can be expressed

in terms of d, and d; using the A's alone.

1f T 18 a vector in the array ambiguity plot plane
connecting the true source coordinates with an arbitrary
array embiguity, then ¥ dotted with all of the 3{{'8 are
integer multiples of A.
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If one sets
d! « 0= B\ 3=1,2, ..., h (122)
and dots Eq. (121) with U, one sees that all array embiguities K
can be found as follows: -?
First, find all integer solutions to x
Pt
+ + = ; :
Az'jn1 By By + B0y 0 (123) f;f}:
>‘¢:
forj=3, ,"" ceey ho . ’,*é
A
Then (as in Eq. (105)) all pcssible vectors U defining ‘:3
the array ambiguities are given by ;%4
o s f‘ai
(n,d.-n3d/) x (38! x37) g
=) et (124)
(dlxda) . (dlxdz) :
where n, and n, are found from the first step. K
Taking the first two equations of Bq. (117) and o
performing the cross product, one sees that one can write i} ;
in terms of 51 and az, resulting in T
o (00, =00, )a, + (nB,- 0B, )32] X (i X 32)
v T (125)
b, (d,xd,) » (3,x3,) :
and hence ;
n,B, ~ np g
- - ra f-iag § ‘
dy * U=2 (126) i
412 :
- n,Qy = 00 5
a = 2 /
.t U=2 T (127) /
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In addition to A,, # 0, it also follows that at
| least one of Aaj and A33 is noﬁ zero, for otherwise d. would
be collinear with both di and 1;, an impossibility. From
here on, separate cases will be considered.

[
K, g

Case 1: h = 3,

LRy |
——y

Here Eq. (123) is

by

!
BpBy ¥ A, *+ b, 0, =0, (128) ‘}

(-
WP §

Let g be the greatest common factor of the A's; and

write 3

Ajk = géjk, J, k=1, 2, 3, (129) gj

so that {5
a3y + 8ayfip + 8505 =0 (130)

} ot
A

where 61, # 0, at least one of §,, and 63, is not zero, and
the three &'s have no common factor.

=

Suppose without loss of generality that 6,5 £ O.
Then let g' be the greatest common factor of §,, and §,,.
(g’ will be unity if 64, is zero.)

’—H‘
"oy vt

From the theory of congruences, the solutions for
n, and n, can be found by solving '

6 ~6..n 8
(.._) Y ....) (151
g g g

n, must be a multiple of g’. If §,, = O this follows
since g’ = 1. If 65, # 0, it follows since 631 can have no
factor in common with g .

|
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623
5 So for n, en arbitrary multiple of g’, since —7 and
12
--g,- are relatively prime, one can multiply Eq. (131) through
by the inverse of «-3:-} (mod -f;: end solve for n,. If pis

this inverse, then &

2o 82
n, =850 'é"/' +n "'é"/' (132)

where n can'be any integer,

Assume thaet every array ambiguwity of the four
antenna array is also one for the equivelent triangle.

n
2
Let — be zero and n = 1. Substitution into Eqs.
g ) o] '
(126) and (127) then results in concluding -Eé-z;» and Ef" are

integers. Hence gg’ divides both o, and &,.

If U is an arbitrary vector representing an array
ambiguity of the four entemna arrsy, dotting Eq. (101) with U
then implies that 32' T 18 always a multipie of rgg’'. Unless
g = 1, this contradicts the result that n, can be any multiple
of g’. Therefore, the determinant condition is necessary.

Conversely, suppose the determinant condition holds
with A,z assumed to be # O without loss of generality. Then
one solves Eq. (128) as before, where now Ayy, Ay, and A,
have no factor in common and, setting n, =mg’, the solution

for array ambiguities is given by

n, = ug’ (133)
A, .
ny = ~Agypm + 1 -;-,-, (134)

where m snd n are any integers, g’ is the greatest common
A A

factor of A,, and A,,, and p is the inverse cf --g-%- mod -——%-?;)

g
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Substitution into Eqs. (126) and (127) yields

2.3 B0 m (pAg,B, + 87By)
1’ U=2 | gI - Alz | (135)
'en m(pr,0,+g'a)]
oy -t 2 3172 1
g+ U=n|—+ 5 (136)
L 12

It remains to show that the coefficlents of m and n
inside the brackets ere integers.

If one sets j=2 in Eq. (119) and forms the cross
product of Eq. (119) with 35, one obtains the identity

BabBay = -Babyp = Pybase (137)

One concludes from this equation that B, is divisible by g'.

If one multiplies Eq. (137) by p, and notes that
Physy = g'+kAlz, vhere k is some integer, one sees that

PhgiBp + &8'By = ~byo[Byp+ By k], (138)

Hence, in Eq. (135), the coefficients of m and n in
the brackets are integers. Repeating the process with
Eq. (120) shows the seme result for Eq. (136). The proof
for h =3 is now complete.

Corollary: For h=3, if P 1s the TAAP generated by d, and d,,
Eq. (117) holds with integer coefficients, and P’ is the TAAP
generated by the four entenna erray, then T(F') = gI(P),
where g ig the greatest common factor of the determinants.
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To prove this, it will first be shown that the TAAP

generated by
! 63 1p -

S - Sl ok (139)
: 12
and
it 1l =
d, = Py d, (140)

is the same as that generated by d;, d,, dj, where the §'s
arid g’ are as before whea g was not necessarily wnity.

First, let U denote an arrey ambiguity of the TAAP
generated by dj, da, ds. Then dy* ¥ = An, from Eq. (132)
and a; * T = An, from Eq. (133). Dobtting both sides of
Eas. (139) and (140) with T results in

3 +T=an (141)
a’g + T =nm (142)

which are integers.

Conversely, let U denote an array eambiguity of 3’;_
end d4. As in Eq. (105), one writes

(ndj - wd?) x (B x )

-, -3
(a;xd3) « (T xT

(143)

U=

Performing the cross product of Egs. (139) and (140)

one heas
qy X @ = e (A% dY) (1)
12
so that Eq. (143) may be written
6
12 = 2 =2, w
: [(n ——7-m631p) d, - mg'd|x (&, xa,
¥ =2 : . (145)
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If one dots Eq. (145) with both a3 end 3, one gets

-, - 612
d, s U=2) [n —'g* - m631p] (146)
and
2 0= [ne') (247)

which satisfy the conditions of Egqs. (132) and (133) that U
be an array smbiguity of the plot genersted by a;, a'é s 3;.

To prove the corollary, one has, using Eq. (1L4)

2

- 1 - - -t s oy ey
d; x dg =5 (dyxdz) = 7= (Ax qp) = g (T;xd,). (148)

The corollary then follows from the previous results
on TAA's,

Case 2¢ h 2 L,

The proof here is to show that the h equations may
be replaced by h- 1 equations whosge determinants have the
same g.c.f., and 'lAAP's are preserved.

To this end, expressing dj and d% of Eqs. (139)
end (140) in terms of , and d,, one has

s [g’al + 531130‘2} 3 +[ 8'By * 65,98, ]E (149)
* 812 * 812 I
and
ag=§dl+g§d2 (150)

where 3 end 34 have the seme TAAP &8 d;, d,, end dj.
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Dividing Eq. (137) vy g results in

Bab3y = Pybyp - Pibys - (251)
Similarly, one derives the identity

Oalyy = by, = 06, (152)
le'om .’che definicvion of p, one has

P623 = g' + k512 (153)

where k is some integer.

From Egs. (151) end (152) it is seen that B, and @,
are divisible by g’.

Multiplying Eqs. (151) and (152) by p, and using
Eq. (153), substitution into Eq. (149) results in

T = (cppt k) T, - (Byp+ Byk) . (154)
Also,
o] )
- 2 2 2 2
dg =-g-;d1+é—;d2o (155)

The determinant of the coefficients can be found by computing
the cross product ﬁ’:’{ x'&'g , which from Eq. (148) is found to
be just g.

In the h originel equations, select any one other
than the first three, namely

a‘J' = oed'o'l'l + B, (156)

. 67

_ ’l /‘. e ;ij-.ﬂw.&i’.w. LK gn B o e G

PRy




N

e

s enr e

~
e~ A —— ASE—— .

THE JOHNHS HOPKINS UNIVEREITY
APPLIED PHYSICS LABORATORY
VIR Secsxe MaRTLANS

The three determinents assoclated with Egs. (15&),
(155), (156) are given by

Ay = & (157)

Az = -pASJ “kAl,j (158)
A

by = —:4 (259)

Since g 1s the greatest common factor of A,,, A,,,
and A;y, the six determinants of the equations for d,, d.,
ds, '55 will heve the seme g.c.f. as Eas. (157), (158), (159)
if any factor of g which is a factor of A, and 4, is also a

factor of Alj’ Az3’ Aaj’ and vice versa.

Toward this end, some more jdentities are needed.
If one forms the cross product of Eq. (121) with &/, divides
by g and rearranges terms, one arrives at

ByyBagt B, 4020 =

ajl1z (160)

-A33631'
If one multiplies Eq. (158) by 6,,, substitutes
Eqs. (153) and (160), divides by g', substitutes Eq. (159),
one arrives at
6
23
byy = - -;,-Az + k6,4, (161)
If one multiplies Eq. (158) by 6,,, substitutes
Egs. (153) solved for kb,,, substitutes Eq. (160), divides
by g’, substitutes Ea. (159), one also has

612
AlJ = ? Az - P631A30 (162)

Now let g’ divide g, Ay, A,+ From Eqe. (161) and
(162), g" divides By 5 From Eq. (159), g” divides b,

68
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Conversely, let g” divide g, b, g0 Azd’ Aa,}‘ From
Eq. (158), g” divides 4,. From Eqs. (161) and (162), g"
divides ké,,A, and pby,A,. If one divides Eq. (153) vy g’
one sees that p and k have no factor in common. Hence g’
divides 35,45 From Eq. (159), g divides g'A,. But g’ and
8,4 have no factor in common, so that g’ divides Ag.

The equations have now been reduced to h~1 equations
whose deteminanté have the same g.c.f., and TAAP's are pre-
served. Now repeat the process until three equations are
reached. An sppeal to the theorem for Case 1 then proves

the theorem in general.

Corollary: If h+1 antennas not on a line have a TAAP
denoted by P’ , with 3}': being h vectors representing the array,
kK=21,2, ..o, hj if @, and A, ave such that Eq. (117) holds
with integer coefficients, and P is the TAAP generated by

d, and &,, then T(P’) = g(P), where g is the greatest common

factor of the M—%‘-J-‘l determinants.

The proof follows from the corollary ito Case 1l and
the procedure discussed in Case 2.

THE FUNDAMENTAL AREA THEOREM

If h+1 antennas are not all on a line, then the
arrey has a TAAP if and only if the ratio of the areas of
all pairs of triangles formed by antenns elements is &
rational number, In addition, if another array of three
antenna elements has the same TAAP, then the aree of the
triangle is the largest number which divides into the areas
of all triangles of the h+ 1l antenna array with integer
quotients.,
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For proof, assume first that the srray has a TAAP.
if ?1’1'(, k=1, 2, ..., h, are h vectors which generate the
array, any triangle of the arrsy can be described by two
vectors, each of which is a sum or difference of one or more
of the dl':'s. The area of the triangle, from Eq. (99), is
determined by sums and differences of cross products of the

5"{ g, From the theorem of the previous sub-section, the area is
therefore the sum of determinants of coefficients of Eq. (117)

times the ares of a triengle which has the same TAAP. Since
the coefficients of Eq. (117) are all integers, the ratio of
the areass of any two triangles of the arrsy is a rational
number. In addition, the ratio of the area of any triangle
of the array to the area of a triangle having the same TAAP
ag the h+l antenna arrey is an integer. If one orders the
entennas D), @, ..., @ , and lets 4/ denote the vector

k
with tail at () and heed at for k=1, 2, .usy h,

then the areas of triangles formed by 3.'1'{ and 'd’}‘ divided by
the area of a triangle having the seme TAAP are Just the set
of determirants of Eq. (117), which have no factor in common

by virtue of the theorem.

Conversely, suppose the ratio of areas of triangles

of the arrasy are all rational numbers, Order the 3};'8 as

above in such & way that 3{ and '&'; are not collinear,

Next, write
G =o@ +ad k=34 .,n (163)

™

Forming the cross product of d‘k with ('i'i and ?1’; respectively

shows that the a}:'a end 61':'8 are rational numbers.

If ozlz and 51; are expressed in lowest terms, and cne
multiplies each equation by the lowest comron multiple of

70
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the denominators of a}': end By, one has the equivalent of
Eq. {121), where for each eguation the A's have no factor
in common.

Foliowing the same development as in the proof of
the previous theorem, di, a4, d4 generate a TAAP, and may be
replaced by the vectors dj and da of Egs. (139) and (140).

One repeats the process of elimination of equationa
until one arrives at Just two vectors, having proved in the
process that the original array has a TAAP. This completes
the proof.
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5. ANTENNA ARRAY CONSTRAINTS FOR AMBIGUITY RESOLUTION

AN AREA CONSTRAINT FOR ARRAYS WITH THREE ANTENNAS

Theorem I: If a source direction can be determined unambig-

“uously by a three antcenna arrey whenever it lies within a

central cone having half-angle p, then the area of the
triangle formed by the three antennas is no larger than

2
—mr—, where \ is the wave length of the signals. Also,
12 sin® p

this number is the least upper bound of the areas of all such
triangles.

Proof: Order the sides of such a triangle by length, so
that

4 2 dy 2 d,. (164)

®

OX=t —2 @

Fig. 19 TRIANGULAR ARRAY

Then
Va ® V2 ® Vs (165)
and
, vzl v ey, sd (266)
praceding page blank 73
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From Egs. (22) and {23), the distances from the true
source coordinates to the smbiguities are computed to be

. >
P P T

<

3 2 2 \
D =hecsev, ‘/(ﬂ-) + (—’}-) -2 cos v, (—ui-) (2- (167)
; m,n a, d, d;) \as)
where m and n are any integers.
As in the discussion surrounding Eg. (12),
: 68
, | Dm,n 22 sinp (168)
¢ for 2ll m,n not both zero.
% In particular, if m=1l, n=0, one has
: A csc v,
! " 22sinp (169)
or
d, sin v, € m—te (170)
3 1 2" 2sinp’
%
1 From the law of sines, the left hand side of
5 Eq. (170) is the same as 4, sin v,, 8o that
: a, sin v, € s—2—or. (171)
. 2 17 2sinp
#
' If v, < %’-‘-, it follows from Eq. (166) that
i sin v, 2 f-ég-, so from Eq. (171),
; | J—" S (172)
' JS sin p
Th
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1

From Eq. (166), sin v, = sin v,, so from Eq. (170),

A
d, sin v, < 3 sin g . (173)

From multiplying Eqs. (172) and (173) together, one
obtains

V32

1
3 4,4, 8in vy < =
12 sin p

) (174)

the left hand side veing Just the area of the triangle.

Ifv, 2 %’L, one constructs a new triangle as follows:

Drop a perpendicuiar from @ to the extended line joining

(D and (@) (see Fig. 20). On the extended line, lay off
line segments each of length d, until the point where the
dropped perpendicular intersects the line is encompassed by
the line segment. If @ coincides with the point of inter-
section, stop at @.

Fig. 20 CONSTRUCTION OF A NEW TRIANGLE
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All of the triangles of Fig. 20 having one of the
line segments as a side have th~ seme srea. In addition,
they all have the same array ambiguity plot. The letter
follows from the discussion ir Section 4 that the vectors
representing any two sides of a triangle determine its
ambiguity plot. Since any two adjacent triangles in Fig. 20
have two common vectors, one along the extended line and the
other along the common side, the result follows.,

In the finsl triangle, the only possible obtuse
angle is @ (® (®. If this angle is less than -3-, the
area inequality holds by virtue of the previous proof., If
not, then one repeats the process of constructing a new
triengle by starting with triangle @ (® (& instead of
(:) (:) (:), and extending the shcrtest side in the same
manner as before. One keeps repeating the process until one

reaches a triangle where all angles are less than gﬂ, at

3
which point the theorem is proved. The procedure must stop
eventually, for in any triangls with an angle 2 ?;, the ratio
of the shortest side to the longest side is < 3;, and the

shortest side of the nth triangle is always the longest side

of the (n+l)th triangle unless the procedure stops. If the
procedure did not stop, the length of the longest side, and
hence the aresa, would epproach zero, a contraediction. The
proof of the area inequality is now complete.

To show that the expression is the least upper
bound, consider an equilateral triangle with d, d =d, =

3
A . Its area is —JZEJL-~ From Eq. (167),
J3 8in p 12 sin® p

Dm’n = 2 s8in p "(m-n) +m 2 2 sin pJ'—— mn > 0. (175)
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If one of m or n is zero (not both) and the other is
one, then D =2 sin p. If neither is zero, then Eq. (175)
.
shows that no ambiguity cen be closer to the true source

coordinates than 2 sin p. The proof of Theorem I is now
complete.

PROPERTIES OF UNAMBIGUOUS PHASE FOR ARRAYS HAVING A TAAP
AND FOUL AUTENNAS

Preliminary Concepts and Definitions

For the purposes here, there are three antenna
topologies which must be distinguished. These will be
called type 1, 2, 3 quadrilateral arreys, respectively.
TAAP is defined in Section 4,

Type 1: Three antennas lie on a line. }y

Note that not all four antennas may lie on a line

since the existence of a TAAP is assumed.

Fig. 21 TYPE 1 QUADRILATERAL ARRAY
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Type 2: The triengle formed by some triplet of antennas
contains the fourth antenna in its interior.

Fig.22 TYPE 2 QUADRILATERAL ARRAY

Iype 3: Given any three antennas, the fourth entenna is
exterior to the triangle formed by the three.

Fig. 23 TYPE 3QUADRILATERAL ARRAY

Other Definitions

1. The area of a quadrilateral arrey is defined to
be the aree of the appropriate triangle for type 1 and type 2
arrays, and the area of the enclosed region as in Fig. 23
for type 3 errsys.

2. Lebel the antennas @, @, @, @ in an
asbitrary feshion. Four numbers C,, C,, C;, C, are defined
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to be the arees of the trlangles obteined by omitting
antennas @ s @ ’ @ s ® » respectively. One of these
numbers will be zero for s type 1 array. C is defined tB be
the ares of the quadrilateral airay.

5. Five numbers B,, B,, B,, B,, B are defined as
follows: For a type 3 arrsy, B, = -C,. If antenne @
(j=2,3,4) is opposite to antenna (), then By = Cy Ifit
is adjacent to antenna @, then BJ = CJ‘ For a type 2
array, if entenna (J) (J=1,2,3,4) is the interior antenna,
then BJ = -CJ, otherwise BJ = CJ. For a type 1 arrsy, if
antenra (J) (J3=1,2,3,4) is the antenna not on a vertex of
the triangle of Fig. 21, then BJ c
Finally, B = C.

= -CJ, otherwise }33 =

“j.

4. Four numbers A,, A,, A;, A, are defined as
follows: If T(P) is the trianguler array area of the TAAP
generated by the four antennas, then

B
Ay =@‘(%7’ j=1,2,3, bk (176)

5. A denotes the ratio of the area of the quadri-
lateral to T(P).

. Theorem II: For any quadrileterel array in a plene having a

TAAP ;"the A's have the following properties:
1. Ay, Ay Ay Ay, A are all integers.
2. Ay, Ay Az, A4 have no factor in common.
3. Ayp +A,+ Ay +A, =0,

o faal + el + As] + |Ag] = 2a.
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Proof: The first two properties are a direct consequence of
the fundamental area theorem. The lest two follow easily
from the definitions of the A's.

Theorem III: For any source direction, let p,, W,y Mgy B,
dennte the unembiguous sbsolute phase® at antennas (:), (:),
OF (1, respsctively, in units of cycles. Then

Alpzl + Azpz + A3'J'3 + A4p'4 = 0‘ (177)

Proof: Using the vector notation of Section L, the vector
description and antenna numbering of the antenna array is
taken to be as deplcted in Fig. 2k,

Fig.24 ARRAY ANTENNA NUMBERING AND VECTOR DESCRIPTION

Strictly speeking, Fig. &4 depicts a type 3 array.
By letting antenna @ move downwards, one gets a type 1
array and then a type 2 array.

# See the discussion which follows the proof of Theorem III.
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Let n denote & unit vector pointing up out of the
plane of the paper and perpendicular to it. With the above
convention, 1t then follows that regardiess of array type,

one has: /
B8 = % (@ x &) (178)
B = 5 [(@[+ ) x A (179)
Byn = 32‘- [(a‘;+a';) X a’;] (180)
Byl = %— (@ x ). (181)

If d, and d, denote vectors which describe a triengle
generating the same TAAP as the four antenna arrey, one sees
from Eq. (117) that

ol §og

-y o= 1,2 = -
(d;xd;) = Ay, [-2- (dlxda)] = A,,7(P)n (182)

where d, and a‘z are chosen so that 31 xaz lies in the positive
1 direction.

From Eqs. (176), (178), and (182), one then has

Ay = B3p. (183)
Similerly,

Ay = 8ya * bp3 (184)

Ay = byy + Bay (185)

Ay = by (185)

where the A's are defined as in Eq. (118).
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If § is a unit vector in the direction of the source )

then from Eqs. (5), (6) and (10), the unarbiguous phese
differences are glven by

CP‘; LT TE R T ‘%‘ d; + 3, J=1,2, 3. (187)

Take j = 3 in Eq. (121) and dot both sides of that

equation with 8. ' Using Eqs. (183), (184), (185), (186), (187),
one has

0= Azsq’; + Aalq’; + Azzq’;
= Byglig=iy) + By (ngmy) + Alz(“f“a)
= Bgghy + (Byg% bogly + (B + 85 )ug + 8500,

= Alul + Aa“‘z + Aap'a + A4p4 (188)

which proves Theorem III.

DISCUSSION OF UNAMBIGUOUS ABSOLUTE PHASE

The absolute phase in any given antenna has meaning
only when a reference phase is given, and obviously has no
bearing in itself on any angular coordinates of the source.
The phase difference between any pair of antennas does not
depend on the reference phase, and is a measure of a function
of the angular coordinates of the source.

Nonetheless, as will be apparent shortly, it is

more nsturel for the purposes of this paper to work with the
p's instead of the ¢’/'s. One should note that, from the

third property of the A's in Theorem II, the apparent
presence of the phase reference in Eq. (177) is only an
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illusion, for one can write

Ay +Aqug + Ajpy + Ag,
= A1l~11 + Az(l‘f"?{) + Aa(ul+¢{+¢g') + A;( u1+¢3’_+<p2'+¢;)
= (AgthAs+AgtA iy + (AotAstA ) + (Ay+A )os + A 9

So Eq. (177) is really an equation in phese differ-
ences only.

AMBIGUITY RESOLUTION AND TOLERANCE PRUBLWMS WITIH FOUR ANTENNAS

Suppoee one wishes to arrange throe anbtennas in a
plane in such a way that any source direstion within a cone
nzviug half-angle p can be determined unambiguously. The
area constraint of Theorem I mey very well negete the possi-
bility of doing this for at least two reasons: One may be
forced to put the antennas so close tcgether thet mutual
coupling effects are unecceptable, or one may find that cue

“to tha short base lines involved, the errors in measuring

the source direction are unacceptable. In either of these
events, it is natural to consider increasing the number of
antennas, The objective in so doing is to move the antennas
farther apart while maintalning the ambigutty separation for
the array ambiguity plot generated by the new array that one
would have had with the uracceptsbie array with three antennas.

Although this is possible, there is a price in
addition to adding sntennas, and thia is a new tolerance
problem that has entered the pilcture.

83

-~

g £ s, v .
e e GG Hn e

P

FRUTURNYR W S N N )

SN PRI WO RIS BRPAL e S ATV S

.-

adrdia sk e e

'

S
Fu ney, =

. Ve wm
e :';.‘éfw»a; RIPTEO




—t

v ' 4
s - RNSgper b )

" L
e -

A ames Bl sk aae A N LS N AR

Bie =

THE JONNE HOPKING UNIVERSITY

APPLIED PHYSICS LABGRATORY
BLVER PG MARTLANG

Before discussing this problem in more detail, a few
words about array ambiguiiy plot topologies are in order. 1In
the.two dimensional problem and for more than three antennas,
one hag the choice of three such topologies: a TAAP topology,
& one-dimensicnal set of lattice points confined to & single
line, or no arrasy ambiguities at all. For this appiication,
end because of the tolerance problem, it is conjectured that
a TAAP topoivgy 18 alweys best., Thls is based on experimenta-
tion with specific ceses by the author, and a firm proof has
not ae yet been devised. Based on the conjecture, only

antenna arreys with TAAP topologies are considered as candie
dates in this pager.

Prior to introducing the tolerance subject, next
consider the four antenna case, and suppose all phase differ-
ence measurements are error free. As shown in Section 2, all
information for ambiguity resolution is contained in three
distinet unambiguous phase difference measurements, ¢, cpé, %
As in the derivation of Eq. (188), a certain linear combina-
tion with integer coefficients of these three quantities is
zero for any source direction. It follows from Section 4
that @ + my, @y + my, P + My, where m,, m,, m, are integers,
will satisfy the equation if and only if @] + w,, ¢, + m,,

@3 + wy represent the phase differences from & source direc-

tion separated from the true source by an ambiguity of the
TAAP.

This suggeste the implementation for determining the
true gource coordinates. let ¢,, ¢,, @, be the ambiguous

phase measurements, and suppose - <O S %‘-, - %-, <@y = %—,

- -;-< Py S %-. One knows that there exist integers n,, n,, n,
such thet @f = @y + Ny, Pz = Pg + Dy and Q3 = Py + Na.

Further; -he first expression in Eq. (188) will be an integer
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if one replaces 9;, g, g BY Py Pyy Py THUS 4,,0, +

83.% + 4,20 = n, where n is an integer which one determines
when @, @,, ¢, are kmown. If one finds any integer solutions
to Ag4n; + Ay, + 8,0, = -n, then the @''s so constructed
sre the phase differences sssociated with either the true
source direction, or removed from it by an ambiguity of the
TAAP, If the distance in the TAAP to the nearest arrsy
ambiguity 1s 2 2 sin p, then one can select the correct solu-
tion for n;, n,, n; from the cone of directions constraint.
Having found the unambiguous values 9!, 94, i, one sees from
Eq. (10) that one has redundent information (three equations
in two unknowns) for x and y. One can then form x and y &s
linear combinations of ¢y, ¢, ¢ to optimize some statistic,
say to provide minimum veriance on x and y based on whatever
statistical assumption about measurement errors is made.

It will be convenient for the purpose of analysis to
work with the final expression of Eq. (188) instead of the
one using phase differences. One reagon for this is that
there are several ways one can make phase comparisons and
several resultant triplets of phase differences one can use.
In general, the first expression of Eq. (188) will look
different for different triplets, and their underlying eguiva-
lence is disguised. If each equation in phase differences is
expressed in terms of the pu's, then one always gets the same
equation. There is therefore no preferred set of triplets
or ordering of phase comparisona.* (This statement is false
for more than four antennas as fer as which equations ore
should uee is concerned.)

¥A11 four antennas must be used in genereting the triplet.
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For example, one can write

Aqby + Agup + Aguy + Ay

-Ay(bay) = (A+8;)ugmiy) + A (mu,)

Aplkgmhy) + Aglugy) + A (u,-u,)

ete, (190)
weing property 3 of Theorem II.

Ancther reason why the use of the equation in u's
is useful for the sake of analysis is the natural interpreta-
tion of the A's as normslized areas (plus or minus) of
triangles of the quadrilateral array.

Now suppose errors are mede in measuring @, @,, @ .
If one imagines the errors to increase from zero, one sees
that one will arrive at the wrong value of at least one of

ny, Ny, N, when n cen no longer be correctly deteimined.

This will not occur if the inequality
e, + Aje, + Ae, + Agey| < & (291)
1% 2°2 3%3 454 2

holds, otherwise it will., The e's are the errors in absolute
phase at each of the four entennas. The condition Eq. (191),
both neceesary and sufficient that all phase differences be
unarblguously resolved except for TAAP amblguities, may be
written in terms of phase difference errors for any choice

of triplets of phase differences,

It is not clear what one can say in general about
system performence when Eq. (191) is violated, except that
the effects are bound to be undesirable. Until subsequent
analysis or simulation shows performance not seriously
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affected, the author takes the position that one should
attempt to satisfy Eq. (191) in the selection of an antenna
array .

An interesting sufficient condition for Eq. (191)
to hold can be derived as follows. Suppose

les| = e i=1,2,3,4 (192)

If the ei’s are all equal to *€, end add up with the worst
possible sign in Eq. (191), one has from Theorem II,

2he < 3. (293)

The errors for phase differences will not exceed 2e¢
in ebsolute value. If one defines Tq) to be the value of 2¢
when Eq. /193) is an equality, namely EJ}: (this definition
will change for more than four antennas), then one has the

following theorem:

Theorem IV: For any four antenna array with a TAAP, if the
ebsolute values of the errors in phase at all antennas are
less than % qu = JA, then, except for the TAAP ambiguities,
all phase differences can be resolved unambiguously.

Combining Theorems I, IV, and the definition of 4,
one has the following inequality:

2
- 3 A
P ok sin? p » (Area of Quadrilateral Array)

. (94

Thus, althovgh the area of the quadrilateral array
can be made as large as possible while preserving the triangu-
lar array ares, i1t can be done only at the expense of tolerance
on the phase difference measurements.
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2

Suppose, for example, that one needs 3 Aa = L inz
and one can only guerantee less than #20° of plalasgigi&erence
erroy (Tq)= -:-3‘8) . Then the area of the quadrilateral array
should not exceed 3 in®. If for other reasons this is
unaccepteble, then using four antennas does not solve the
original problem. Thus, although Eq. (194) does not tell
one how to construct a four antenna array with the desired
-. properties, it serves as & bound whiéh sometimes tells one
that any four antenne array will be unacceptsble.

Tcp will subsequently be referred to as the "suffi.
cient tolerance” for the array. The mathematical expression

for Tcp will in generel differ {rom -211 for more than four

antennas,

PROPERTIES OF UNAMBIGUOUS PHASE FOR ARRAYS HAVING A TAAP
AND FIVE ANTENNAS '

If four antenna arrsys are unacceptable, one may
wish to use five. In this case there may be considerable

relaxstion of the tolerance constraint over the four antenna
case.

For five antennas, the discussions in Sections 2
end 4 show that two equations of the type of Eq. (177) are
needed to resolve ambliguities that are not TAAP amblguities.
Each basic equation nses four antennas or three phase differ-
ences, and 2ll five antennas are used. Since there are five
ways of choosing four antennes, there are five equations.

An independent proof will be given that there are exactly two
independent equations, in that there exists at least one
independent pair, and for eny independent pair, the other
three are linearly derivable from the pair. It will also be
shovn that in general there are two particular equations that
it is best to work with.
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For five antennas, twelve different antenna array
topologies are distinguished, ss shown in Fig. 25. Any
topology is always one of the twelve.

Using the antemns numbering as given in Fig. 25,
ten numbers (.31:j = C.ji for i, § = 1,2, vvay, 5, 1 £ J are
defined to be the areas of the triangles formed by omitting
antennas () and (J). Five numbers C; are defined to be the

~area of the quadrilateral formed by omitting antenna @ .

C is defined to be the area of the entire array, which is
taken to be the area of the enclosed regions of Fig. &5.

Twenty-five numbers Bi,j’ i, 3=1,2, «cvy 5 are
defined as follows: for i = J, Bi.j =0, For J >3,
BJi = -Bid. For i < J, Bi.j is given by Table 1, where the

entenna numbering is given in Fig. 25. B 13 is always i0

i3’
The proper sign is given in Table 1.

Table 1.
Signs for Bi,j = :buij
Types 1,2, Types 6,8, Types
ALL Types 3.0,5,607° 90,01 6612
Bi2 -
Bya +
Bia -
Bys +
Bza + + -
Bag +
Bas "
Bag -
Bas +
Bas + - -
89
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Fig.26 THE TWELVE TOPOLOGIES FOR FIVE ANTENNAS
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In addition, let P denote the TAAP of the entire array

and, except for 1 = 3 in a type 7 arrsy, let Pi denote the TAAP

of 'the array generated when antenns @ is omitted. Define Ai 3 by

‘ #
{ 3 |
AiJ - 5%%7’ 1,3=22, «.., 5. (195) ;
Lj Also iet
, Cs |
i ek b
) and ;
( c_ |
[ A = oty (197)

The theorem enalogous to Theorem II is now as follows:

f Theorem V: For any antenna array in a plane having a TAAP
and five esntennas, the following properties hold: '

lo Aij’ Ai, A are all 1nteger8’ i, J = 1’ 2’ s00y 5.

2. The A, , have no factor in common, i, j =1, 2,

T s

3. Except for 1 = 3 in & type 7 array, the grestest

: { comron factor of Ay , Aj.s «coy Ay 18
; T(Pi)
F”d‘j' !.—. W’j.:l’ 2, voey 50
‘ - In a type 7 array, Azy = «vo = Agg = 0,
1
% [ L, Aij=0fori=l, 2, vesy 5,
i
50 lAi;]':EAi’ fori=l,2, se 0y 5'
!’ 6. The matrix ((Ai J)) is skew symmetric.
i o1
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pﬂ-wi [ S 0~2

Proof: For fixed i, the B, J's are the signed areas of the
triangles of the quadrilaterasl (except for B 412 Which is
zero) formed by omitting antenna (1). Except for the possi-
bility of changing the sign of all of Ail’ cesy Aj_s’ the
sign conventions are the seme as those for the four antenna
case derived earlier., So properties 4 and 5 follow from
properties 3 and 4 of Theorem II. Property 6 follows
directly from the definitions.

‘.,-.»3

g =

Y

=

Properties 1 and 2 follow directly from the funda-
mental ares theorem. So does property 5, because for any
fixed 1, the fundamental area theorem implies that the great-

-

est common factor of et 21z D is unity
T(Pi) TzPi” TzPi;’ tre TzPij * 1}
O is thus an integer, and property 3 follows by multipli- 1
cation. The type T array case is obvious.

‘ i
Theorem VI: For any source direction, let n,, u,, +eo; Ug
denote the unambiguous sbsolute phase at antennas @ through '%'

-d

(), respectively, in units of cycles. Then

=

=_A1;)“,j=°’ i=1,2, «oey 5. (198)

=0

Proof: For each i, one is using & quadrilateral only, and
the theorem follows from Theorem III and the definition of

4
the Ai,j 8.

ADDITIONAL, PROPERTTES OF ((4,,))

Theorem VII: For eny i, J, k, £ =1, 2, ..., 5 the following
identity holds:

e e G2

AiJAM+AJkAu+AMAM = 0, ‘(199)

b
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Proof: If any two subscripts have the same value, Eq. (199)
T collapses to an obvicus ildentity. If not, then there is
’ exactly one miseing subscript; call it m. Since it is
| obviously equivalent to prove Eq. (199) when the A's are
- replaced by the B's, note that the B's appearing in said
l_ equation are the signed areas of the six triangles of the

i five antenna erray which have sntenna () as a vertex.

R : ' Let i be a unit vector normel to the plane of
- Fig. 25 and pointing up out of the peper. Let a 2 'é.'m 5?
. 8k Opy be Vvectors with talls at @ and heads st @, @,
L ®, @ respectively. Then obviously

. (200)

mk mz) = :Bi,jn'

Since all arrsy types other then 1, 3, 8, 12, are
limiting cases of one of the types 1, 3, 8, 12, it is suffi-
cient to consider only these four types in determining the
signs in Eq. (200).

Define Qm:l. 3 to be the coefficient of n ig

(dmix dmj).

Table 2 relates Q‘mi 3 to Bkl,
types 1, 3, 8, 12, Only cases for which i< J and k < { are
considered in Table 2.

e

for antenns array
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Teble 2

Q‘mi,j vs. m,i,J

i 3 ‘
: m i Type 1 Type 3 Type 8 Type 12
1 2 3 <Bys +Bys Bis Bss
2 b *Bag Bas *Bas +Bag
! 2 5 B3, +Baq “Bag =Bag
3 4 -Bzs *Bag Bas =Bzs
1 3 5 *Bag Bag *Bag 1Bag
L5 -Bza *Bas -Baa “Ba3
2 1 3 +By4s -Bas *Byg +Bas
1k -Bas +Bag -Bag “Bag
1l 5 B34 Bag +Bagq B34
1 5 & 1Bys B1s By s *Big
3 5 -B14 *314 Big Bi1g
# Y5 B13 -B1s +B13 +B13
i 5 1 2 -Bgs *Bgs Bas -Bss
& : 14 *Bas B2g *Bas *B2e
1 5 -Bag B2g Bzg Bag
b l 2 4 “Big +Bis “Ba1s “Bis
2 5 +B14 “Bi4 B4 1B 4
L Biz2 Ba2 “Biz B2
‘;' Yy 1 2 +B3s “Bas +Bag *Bag
‘ 1 3 -B2s +Bas -B2s -Bzs
i 1 5 +Bas -Bas +Ba3 +B23
[~ 2 3 +B1s -Bis 1Bas +B1s
l T2 5 ~B13 +B13 “Bas -Baa
‘ > 5 B2 Bi2 1Bz Bz
r 5 1 2 -Baa tBag -Bas4 -Baa
i" i 3 +Bag Bag Bag +Bag
; 1k =B23 +B23 Bz “Ba3
} 2 3 ~B14 +B14 -Baq “B14.
\ 2 +By3 a3 1Bi3 B33
i 3 k4 “Bia +B3p B12 Bz
K
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|
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Inspection of Tsble 2 shows that regardless of the ,'fJ
i value of m, for 1 < J, k < 4, one always has 3
I Ut ke = BasPre (201) 4
A A
[ But Eq. (201) is valid in general, as interc-he;.n-ging )
: i and J or k end 4 changes the sign of both sides of Eq. (201). :
v Equation (199) will therefore be valid if and only if ”
o (dropping the subscript m on the d's) ;
-) -—d - - b -d -t L4 -t - N -t - - j
3 (diXdJ)°(dKXdz)+(dJXdk)°(dixd£)+(dkxdi) (djxdz)-o. ;
(202)
3 Using vector algebra, the following string of
identities proves the result:
1
.
- ) - - 3 b - =3 - - -t -
¥ (di Xda) . (dkxdz) +(dJ xdk) . (ai xdz) +(dkxdi) . (dJ xdz)
-
- . ‘-—o - - -) - -y - b - l
1 = =8, T ¥ (G xTy) +3; x (&) %8 +dy x (4 xd, )y
) ;
-d -> - |- b -\ -» - =
q =-d, {(dk -dj)di - (dk di)dj +(c1i dk)dj
L L (3,32 +(@, 3,08
L 1 * 9yl Fdy T gy
1} - (dd ¢ dk)ai
¥ o ’
i =-d, * (zero vector) = 0. , (203)
§ Theorem VIIT: The matrix ((4,)) has rank two.
8 Proof: It has rank at least one since not all the Ai J's
[_§ venish (not ell antennas lie on a line),
i
i 95
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For the antenna numbering in Fig. 25, A, never

vanlshes for any arrsy type. Therefore the second and fifth
row vectors

=2

(Aay5 05 Apay Agyy Ayg)

and

(ASI’ A52’ Asa’ A54’ O)

=3

are lineerly independent, and the rank is at least two.

Let 1 = 1, 3, or 4, and one has

ey

Asi (sz 0, Asas Agss Azs) + A (A51’ 527 Asa’ Asq’ 0)

=3

= (AsiAzl *Ajters Ay Beas Agghas t Ajheas Agrhay

S
S S

+ AizAM, AEi 25 (204%)

Applying Theorem VII three times, the right hand
side of Eq. (204) can be written as

| doi s

o

Asz (Ail’ Aiz’ Aia’ Ai4’ Ais)'

{REmRay

Since Ag, # 0, it follows that every row of ((Ai .j))
is a linear combination of the second and fifth rows, thus
proving Theorem VIII.

[ ]

, The following theorem will be needed for the dis-
cussion of the tolerance problem for five antennas.

-

S

Theorem IX: Let (A ) and. (Ab,j (or (A ) and (A,jb)) denote
two linearly independent rows (or columns) for J=1, 2, «esy 5

[

of the matrix ((Aij)) b1, 3=1,2, oo, 5. Iet g and g l
denote the greatest common factor of Aa;] for =1, 2, «ev; 5,
and Abj for § =1, 2, ..., 5, respectively. Then A, £0 i
and Aa’b is divisible by 88
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Proof: Since ((Ai .j)) is skew symmetric, it is sufficient to

L prove the theorem for rows. ;
P Ian =0, gien, sizé;:leAa--Aab:Aba:Abb:
B it follows that the & and b ~ columns would all be zero
f because the ath and bth rows are linearly independent and
, [f ((A )) has renk two from Theorem VIII. Since ((Ai 3 )) is
: skew symmetric, the 2 and b rows would also all be zero,
} & & contradiction. Hence Aab # 0.

Set 1 =a and J =b in Eq. (199), divide by 8,8y

RavPre ( k)( )+ (Aka)<AbL) =x (205) ;
agb gb ga ga gb \\

From Theorem VII, Eq. (205) holds for any %k, £ = 1,
2, ¢<+.sy 5, and the four expresgsions within the parentheses
are all integers by virtue of the definition of 8, d &,

| Hence A bAk.e, is divisible by 8.8 for all k, £ =1, 2, «vsy 5.

If p is some prime number which divides elther g, or

n
i &,» let pn1 be the highest power of p vhich divides g and p 2

be the highest power of p which divides &y Hence pn1+n2

divides A bAk,% for all k, £ =1, 2, «ue, 5,

. From property 2 of Theorenm V, one may choose k and £
§ such that p does not divide Akl@' Hence p "t Pa divides A, ,
} ’ and Theorem IX follows by decomposing 8y and &, into their
prime factors.

obtaining

st

i o

Uop e 2

/

3

1 Corollary: For eachi, 1 =1, 2, ..., 5, let & denote the
& greatest common factor of the numbers Aia’ =12, ¢ovy 5
Then, for i, J =1, 2, s, 5, A i is divisible by gig'j
L% \gi is undefined for type 7 arrays with i = 3.)

-y 2

t 91
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Proof: If Aij = 0 for some i, j, the corollary is obvious,
If Aij # 0, the proof follows exactly as in the proof of

Theorem IX, where one replaces a and b by i and J respectively
in Eq. (205).

AMBIGUITY RESOLUTION AND TOLERANCE PROBLEMS WITH FIVE ANTENNAS

Instead of the single Eq. (177) in the four antenna
case, there are now the five Egqs. (198). From Theorem VIII,
however, there are only two independent ones. Proceeding as
in the four antenna case, it follows that if one knows the
values of four ambiguous phase differences o utilizing all

five anténnas, and if one finds four integers n,, n,, ns; n,
such that

o =9, +n (206)

is a solution to Eq. (198) when Eq. (198) is rewritten in
terms of the ¢{'B, then one has all possible unambiguous
phase differences resulting either from the source direction
or a direction separated from it by a TAAP ambiguity. If the

TAAP ambiguities are far enough apart, then as before the
coxrect solution mey be chosen.,

Agein, it does not metter in what order phase differ

ences are taken. Unlike the four antenna case when there was
just one equation, one now has a choice of two out of five,

and from the point of view of measurement tolerances, it does
matter how they are selected.

Although the Aij's have no factor in common, the
coefficients of any one equation mey have a factor in common.
Except for i=3 in a type 7 array, the coefficients of the

™P
1™ equation have a greatest common factor g |\= §(§%~ from

” 98
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Theorem V Sc instead of using Eq. (198) one uses

=0, i=1,2, ..., 5, (207)

where the coefficients of Eq. (207) in any equsation have no
factor in commnon.

Select two equations from Eq. (207), say the ath

and ‘b‘t h equations, which are linearly independent. Then
consider all peirs of independent equations each of which is
a linear combination of these two and has integer coefficients.

Formelly, let ¢, 4, u, v, I;j’ J, be defined as

J
follows:
cA
——8‘41+E-A‘-l«1=1 3=1,2, «eu, 5 (208)
g J) ) 2 I
s &
vA VA'b
Aoy, gs=1,2 05 (209)
a %
where T J‘ are integers, and one works with the two inde~-

.j’
endent ex ressions and
P P ?1 3 é 5

As in Eq. (191), non-array ambiguities are resolved
correctly if and only if

1

4 1363 <3 (210)
f : 1

£ JJeJ <5 (211)

The concept of the sufficiert tolerance T carries
over to the five antenna case, but the formel definition is
guite a bit different.
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Set
g ‘Ijl =1 (212)

|JJ| =J. (213)

and

o 1 .1
If L'c auv denotes the smaller of T and 3 then T is
the maximm of T _, ~ over all selections from Egs. (208) end

(209) with the prescribed properties.

The next task will be to find bounds on T _. To this
end, note that, by setting j = a, b in Eqs. (208) and (209),
it follows that ¢, 4, u, v are rational numbers.

From Eqs. (208) and (209), direct computetion yields

Aa,_‘jAbk _AbjAak)
J

IJJk-IkJJ=(CV-du)( j, k=l, 2, vy 5'

g g
From Theorem VII, Eq. (21%) beccmes
Iij-Iij =(cv-du) NAjk, Jok=1,2, .0y 5
where (215)
A&b ( )
N = ’ 216
€a%p

a non-zero integer by virtue of Theorem IX.

Next it will be shown that (cv-du)N is a non-zero
integer. It is non-zero since N # O and

I and 2.J:¢
=% ?; 3
are independent. Since ¢, d, u, v are rational, set
(cv-du)N = %3-, a fraction in lowest terms. If p is any prime
factor of qz,z then property 2 of Theorem V allows selection

of A,, in Eq. (215) such that p does not divide A Since p

Jk Kk’
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does not divide q., and the left hand side of Eq. (215) is an
3

integer, p could not have existed, and thus (cv-du)N is a non-
zero integer. Hence

, [(ev-au)n| 2 1. (217)

“
. !

One now has, from Egs. (215) and (217),
|A3k| < |Ij]|Jk| + |Ik||JJ|, 3, k=1, 2, ..., 5.(218)
Summing Eq. (218) over k, one has

EAJSJIIJ|+I‘JJ|, 3J=1,2, vss, 5 (219)
from property 5 of Theorem V.

Summing Eq. (219) over j, and dividing by 2, one has

iA <IoJ. (220)
=
>
The large: of I and J cannot be less than EAJ,
80 one has the inequality J=1

(221)

An inequslity the other way cen be obteined by
observing from Fig. 25 that one can always choose two inde~
pendent equations of Eq. (198) such that Ay <Aend A 5 < A.
So, since Ai , A 3 and A are integers,

1

m < Tq). (222)
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Combining with Theorem I, the analogous formula to

Eq. (29%) is Eq. (221) where one substitutes for Aj the

expression
_ (area of 3™ quedrilateral) x 12 sir® p
3 JB a2
A

in Eq. (221).

F

(223)

One can replace Eq. (221) by a weaker inequality by
observing from Fig. 25 that

p)
2, A 2% (224)
J=1
where equality occurs c¢nly for a type 10 array, so that
T <

L
PR

and, combining with Theorem I,

Tcps‘/ A" . (226)

36 sin” p * (area of five entenna array)

(225)

As before, none of Egqs. (221), (225), (226) tells
one how to construct a five antenuna array with the desired

" properties, but they do serve as bounds which can sometimes

e

tell one how close a given arrsy approaches the best in terms
of tolerance, or in other cases they may serve to show that

a five antenna array is inadequate.

Consider again the example that was used in the four

1 S
antenns case, where Tcp = 98 and. =Z in®; In this

2k sin®
case one concludes from Eq. (226) that tge area of the five

antenna array should not exceed 36 inz, which is a considerable

102

ot A AP AT AP VL T S

RS g4 e e A% oo onge o, 5o

o -

fi\‘»‘*
R i L) o

»
'
L




THE JOHNS KOPKINS UNIVERSITY 9
APPLIED PHYSICS LABORATORY
CRVER SPRING. MARYLAND

o Ay

Py

? %
;, ) ﬁ
é improvement over the 3 in° result for four antemnas. One ;
% ; should also bear in mind that the 36 in® number will rarely, 3
i if ever, be achievable, but it gives one a gosl to shoot for. 2

: B " In fact, it is conjectured by the author that none of Egs.

s : (221), (225), or (226) are ever achievable as equalities.

-
; j SOME EXAMPLES OF ARRAYS WITH FIVE ANTENNAS

Consider the five antenna array of Fig. 26. The
] antennas, arranged on a circle, form an equal central angle
. case gccording to the definition in Section 3. The array is
] also type 12 of Fig. 25.

- t The array smbiguity plot is given in Fig. 27. In
L ‘ /’ this plot, some of the sub-array ambigulties are also shown.
r , The following data on the array of Fig. 26 are
. computed accordfrig to techniques developed here and in the
, previous sections, and are given without proof.
i
\E e dz 2
| - 2(P) = 5 sin AB = .029a% = .0091 x (diemeter)”. (227)
| _ The matrix ((Ai J)) is given by
- ]
~' 0 -16 28 -28 16
! (] 16 0 -21 33 -28
L ((Aij)) =] 28 22 o 22 28 \. (228)
b \ 28 33 21 o -6
| -6 28 -28 16 0
rf The A, 's and A are given by
: Ay =bh, A, =8, =4, =49, A, = b4, A = 65. (229)
“ 7
A
rf r'\’-:;;
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- -~ -,
- ~ LOOKING DOWN ON THE
7 < ™ ANTENNA ARRAY

, a_ ! * N
7 ~ [} \\ AN
/ < ! \
g ! NN
! * \
s | AN

~
/ ~ cos—138 | M

N

\
! o /
] N \(/7 cos—13/8 ’,”@

l > ~ ! - /
~ [ - l
| ~n '
214 cos—13/8 V2N
| -1 |
PN cos™13/8 /
\ I WV 4N |
Y4 ’
\ 7 cos~13/8 !
d
\ \ /¢
/ \ /
\ / \\ ' p
\\ / \ / /
// \\ P /
N\ / \ Ve
N\ / \ 4
O , —é,
~ - - . -

Fig.26 FIVE INTERFEROMETER ARRAY CONFIGURATION
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Also,
5
2h, = 235, (230)
i=l

The flve Egs. (207) are

b, o+ Tug - Tug *+ by =0 (231)
164, - 2, +33p, -28u, = 0 (232)
by + By - 3ug + Mg = 0 (233)
28y, - 33, +21uy - 165 = O, (234)
o+ Tu, - Tug + B, = 0. (235)

Any two equations selected from the sbove five are linearly
indeypendent. ’

One cen show in this case that one can do no better
as far as Tcp is concerned than to choose Egs, (208) and (209)
to be any pair of eguations selected from Egs. (231), (233),
(235). (Open question unresolved by the author: Is it always
true that for some pair a, b in Egs. (208) end (209), one
gets the largest possible T for = the unit metrix?

cduv u v
It is conjectured thet the answer is yes.)

Hence one has for this array

1
T¢ = 55

= 045, (236)
Inequality (222) says
T, .0078 (237)

go that the array is considerably better than the worst

possible array for T o'

[}
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: 4
' Inequelity (225) (the weakest) from Eq. (229) says
' , %
T < .072. (238) 5
. o 31
Ny The next strongest inequality comes from combining ;
Egs. (230) and (221), giving .¢
[ T, < 065, (239) ]
¥ ﬂ A stronger inequality is derivable from inequality
\
L (220). since I snd J are integerex and 2, A, =235, I end J
A cannot both be less than 16; so P =1
li W, l (j ‘
- ToS 15 = - 625,5 ’ (2ko)
.‘ N - The next array example is given in Fig. %8
n 1S AN INTEGER >2
L &
" ..
"1 '
ngs 3
l Fig.28 ATYPE7 ARRAY ;
i 107
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The m&brix ((Ai 3)) 1s given by

1 : 0O -1 0 2an n-l

. . 1 0] 0 n-l =

i ((Ai 3)) = o o o o o (2b1)
n-2 len 0 0 1

sfi* ‘ l-n n 0 -1 0
’g‘ Also, one has

F

I&“ .

; As = n, E 8 un-e. (242)

One can show that as far as T, 1s concerned, one can
do no better than to use the equations associated with the
fir%t and fourth rows, namely

iy + (2-m)y, + (n-1)ig

(n=2)yu, + (L-n)u, + pg

0 (243)
0. (2h4)

1
t —

Hence T o = a1y which from Eq. (222) is the worst
possible result. Equation (222) is therefore achievable, and
Fig. 28 represents a poor choice for n > 3 of antenna loca-
tions from the point of vilew of tolerance,

é . THE ONE-DIMENSIONAL CASE FOR THREE AND FOUR ANTENNAS

It turns out that the one-dimensional problem is a
E special case for the two-dimensional situation, and is equiva-

lent to the two-dimensional problem when all but one of the
antennas lie on & line.
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Consider first the case of thres antennas on a line.
Introducing a fietitious antenna off-of the line, one has s
type 1 quadrilateral array (Fig: 29).

@ dy dz
5 ®

Fig.29 TYPE 1 QUADRILATERAL ARRAY

From the definition of the A's for quadrilaterals,

one has
¢
Al = Er%y (21“5)
A2 = 578y (246)
c
A, = 575y (247)
A, =0 (248)
N ) (249)

where C; and C, are the areas of the triangles formed by

omitting antennas O and (3, respectively, and C is the
area of the entire triangle.
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\‘

Since all triangles in Fig. 29 have the same altitude,
one has

Cr:Cy:C =44, :(d,+d,). {250)

Assuming the arrsy has a TAAP, it follows from the fundamental
area theorem that the A's of Egs. (245) ~ (249) depend only
on the d's and not at all on the location '6f antenna @ .
Furthermore, it is seen that, since A4 =0, Eq. (177) depends
only on the pheses at antemnas @), @, (.

If one sets

I Gliisiine

fo 2}

2R ) e
dé =4 (2)1)

Lo et

where p and q are integers having no factor in common, !
Eq, (177) becomes

s (mQ)“z + PUg = 0. (252)

One then has

1
Ty = Bora)" (253)

This night be more intuitive if one introduces the
guantity R which is defined to be the ratio of the separation
of the lines in the line grid arrsy ambiguity plot for
o antennas ), @, (@ divided by i i T the separation
of the lines in the plot for only entemnas (D) end (3).

T From Section 2, one has

Soneetoc o der ool i St A S

e

R=p+ q. (2511-)
So

2

1 .
A Tq’ = "éﬁ' (255)
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For a given integer value of R, this analysis also
tells one where one should put antenna @ . If, for example,
one wished to expand the ambiguities due to antennas (1) and
(® by a factor of 10, then (B) should be placed at any of

Tl(')" %, 'J:.ZG’ or -19—0 of the way between antennas O and (3),

and one gets precisely the same answer in any of the four
cases, The sufficient phase difference tolerance in any of

these cases is é%’ or +18°.

Next, consider four antennas on a line. Introducing
& fifth fictitious antenna off the line, one has a type 7
array as in Fig. 25. From the definition of the A,,'s, one

I4

i3
has

0 iz 0 <., Cis

(P TPy T(P)

Ciz o 0 C.e -C

6 Py  T(P)

n
((Ai 3)) 0 0 ) 0 0 (256)

014 .034 0 0 C“E

T(P)
~C1s Y ~C
™P) T(P)

Agein, the ratios of the areas of any pair of tri-
angles depend only on the retios of corresponding line seg-'
ments along the base, since gll triangles have the ssme
altitude. As before, assuuing a TAAP for the five antenna
array, the fundamental area theorem implies that the entries
in Eq. (256) do not depend on the location of antemna (3).
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3
i
dy d2 d3 % )
o ® ® 1
® ® g
H
Fig. 30 FOUR ANTENNASON A LINE P
h ke
§ ;
If, in Fig. 30, one defines p, g, r to be three =
integers having no factor in common such that bt T
i
d, tdytdy; =piq:r (257) _ ?
then the matrix ((Ai 3 )) is given by ;; ‘
\ g :
0 ~p 0 -q v H 3
D 0 0 gtr ~(ptatr) g ;
((Aij)) - 0 0 0 0 0 (258) ‘
a -(gr) 0 0 r § §
: -(pta) pratr O ~r 0
p
s %

Also, Eqs. (198) depend only on the phases at

entennas @), &), @, (@, and any two of the four non-zero
equations determine the others.

|
= P VP

Sl

v,
b

Suppose one used the first and fourth rows in the
attempt to choose good antemna locetions. One would then have

r -
A ~adini ki
r.'.» Vl

i ~piy - Qu, + (pradu, =0 (259) ]
;. ont
v.,jj .
% au, = (g+r)u, + ru, = O, (260) l
.: 112
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g, 1s the greatest common factor of q and r, then from
Theorem IX, g_.L'g o divides q. If one works with Eas. (259)
and (260), inequality (217) reduces to «é-ggh- 2 1, and from
Egs. (218) — (221), it is clear that forlggod tolerance one
should have —Y— a5 small as possible, preferably unity.
(Note that in the exemple of Fig. 28, & -n-2 , which is
only unity if n=3.) #1684

So, suppose one sets

; Q4= g8 (261)
l

P = 80 (262)

i r = g,p (263)

?
o ———

[

where, in this case, g, and g, can have no factor in common
(otherwise p, a, r would have a factor in ccmmon), ¢t and g,
have no factor in common, and f and g, have no factor in

common, since g, and g, are greatest common factors.
’ 1 4

One then replaces Eqs. (259) and (260) by

0 (26%)

iy = Eaby + (X +gy g

and

0. (265)

81k - (81+ﬁ)112 + 5!-15

Tcp will then be no smaller than the smaller of the two num-
1

1
bers AN and B+ e It is also clear from Egs.
(218) — (221) that one should strive to make these numbers
close together. One should also bear in mind that in some

cases, another pair of equations might be better,

To obbain an estimate of how good T is when choos-
ing antenna locations, one needs the inequalities (221) and

113
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(225), which, in the present notation, are

1
T < (266)
?  V3(ptatr) + q
and
T, S e (267)
vV 3(pratr)
respectively.

Before considering some examples, these results will
be recast in terms of R, the ratio of the separation of grid
lines for the array ambigulty plot of antennas (&), ®, @,

@ to that for antennas & and (D).

From the discussion in Section 2, the number L is
found to be just p, end R is ptgtr. '

From Egqs. (221), (222), (225), (266), (267), for

four antennas on a line one has

1 1 1
NET) T < < . (268)
AR-1) =79 zr+q R

For & fixed R, the problem now is to choose p, g, r
to make T _as large as possible within the constraints of
Eq. (268). From Eaq. (255), one sees that a considerable
potential improvement in Tcp results by going from three to

four antennas, at least for large R.

The following examples serve to illustrate that in

some cases considersble improvement can in fact be achieved.

It should be borne in mind that this paper is not
about the question of a formal procedure for best choice of
antenna locations, if indeed there is such a procedure. In
the examples to follow, the antenna location cholces were
guesses on the part of the suthor, and there may in fact be
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better choices. They were the best ones the author found in

an attempt to get as close as possible to the upper hounds
on Tcp given by Eq. (268).

Case 1l: Suppose R is of the form 3n2+ n+1l. R would then
be one of the set of numbers, 7, 19, 37, ... . Then let
p =1n?, a = n{n+l), r = (n+1)®. One then has g, =N, gg=n+1l,

a=n,p =n+l, and Eq. (261) holds. The two numbers

1 1 1
Sa+gs) andle(ﬁ-*- 5y both equal srstay, and one concludes
2 °
. that Tcp TR Inequality (268) becomes

~

| E——

asymptotically approaches 5@ and 131- respectively, as n - 00,
and the latter ratio always exceeds ]5; Thus the choice of

!

;. i (___.).1 <T < 1 < L 26

; e ? Vion® +200+3 Vor® +9n+3 o
% ﬁ The ratio of

| 2(2i+I) to =

% L V10n® + 10n +3

% 2 and the ratio of

% i L to 1

§ i 2(en+1) \ r—_—9nz +on +'3'

!

,;

| oyt

antenna locations for R of the assumed form can be thought

of as being at least 75% efficient for tolerance, using the
weakest inequality.

— V—
2

Had one chosen p=1, q =3n2+3n- 1, r=1as in
Fig. 28, the analysis there shows that one would have the

. AR A e

* ST worst possible antenna arrangement, end the efficiency would
© e approach zero as n —» 0. If n=3, say, so that R=37, this
F, ‘ i worst case would have a sufficient tolerance T(p of only 77}5,
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or £5° of errors on phase difference measurements. In the
previous choice of antenna locations, however, T _1s no worse
than -i]t’ an improvement of better than a factor of 5. If one
wanted R= 37 with only three antennas, the analysis for that
case shows that one would be stuck with (from Eq. (255))

T 9 = 71-1';, not much worse than the worst case four entenna
location, but at least five times worse than the best case
four antenna location.

Case 2¢ R = nz, a perfect square. In this case, let p=1,
qQ=n-1, r=n®-n. One has g1=1,g,=n-1,a=1, B =n,
2(0;1 M) and 2(8 -J;gl) ari'ag:ﬁ and 2(n+1)’
respectively, and one concludes Tcpz L) One can do
better then this in this case, for it turns out that one
should not work with the first and fourth rows of Eq. (258),

\The two numbers

but rather the first and fifth rows. The equations equivslent

to Egs. (264) and (265) are then

“Pa - (ri‘l)ilq + nug = 0- (270)

and

-4y + npy - (n-l)uy = 0. (211)

Both equations have the same tolerance -é]-‘ﬁ, so that Tq; 2 -é‘lﬁ,
a slight improvement over using the first and fourth rows.

Inequality (268) becomes

1
2(n® - 1)

STq)S 1 < L . ;(272)

3n°+n-1 n\B

So the above antenna placement is at least 525 = 879 efficient
for tolerance when R = n°.
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ANALOGOUS THEOREMS PERTAINING TO THE TWO-DIMENSIONAL CASE

g FOR SIX ANTENNAS WITH A TAAP
‘ “ First, one needs the thecrems analogous to Theorems \\ i
e II (V) and III (VI) for four (five) antennas. Before this \
g L can be done, the definition of the A's, B's, C's must be
- extended.
P L For six antennas, three subscripts are needed, so
L Cy ik (1, 3, k=1, 2, ..., 6) 15 Gefined to be zero if any
L two subscripts are equal; otherwlse it is equal to the area

of the triangle remaining when entennas (D, @), () are

dgnored. For any i, J, k, BiJk will equal 4C, .. , and A

13k 13k

. will equal Tipk, where T(P) is the TAA of the array of six
' antennas. So all that remains in the definition of the B's
3ot ' _
] and A's is which sign to use in BiJk = g-"ijk'
l N Begin by numbering the antennas so that when

antenna @ is ignored, one of the twelve types in Fig. 25

cen always be done since it is assumed that the six antennas p
have a TAAP, and cannot therefore all lie on a line. Then

the sign relating .'B6 jk and CB 3k is defined to e the same as
in Table 1 for J < k Just as if the subscript 6 were missing,
and for k< j, B

[ results, with the antenna numbering as shown there. This

==

63k = 'Bskj , as before.

Next, B is defined -to be “Beas? and is not zero.

626

Theorems V and VI and subsequent theorems for five

were changed. With antenna @ removed, there are thus two
possible tables for the remaining five antennas anaslogous to
Table 1. Select the table for which B, hes the sign as
defined sbove. All signs for st 3k sre then uniquely deter-
mined except for cases where the area of the triangle is

} antennas would hold equally well if every sign in Table 1

§ 117
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zero, where it doesn't matter. So T 83k is defined, 2nd

stk= -Bskj for J, k= l’ 2’ o0 0y 60

e

Similerly, define Bas 6 to be ~-B‘5 26" Again one
selects the one of the twc tables with antenna @ removed
for which st 6 has the defined sign. So B 2 is defined,

for 3, k=1, 2, ..., 6.

pen ot

Jk

and sz.j = -Bz.jk

. ’ Proceeding in the same fashion, Bl 3k is defined by
choosing the proper table so that Byoe = Bgay’ From Fig. 25,

B621¥0' AgainBlkJ=-Bl'jk’ fOI‘ j, k=l’ 2, coey 60

Suppose that the configuration with antenna @
‘removed is not type 10 of Fig. 25. Then B4 is defined in

Jk
the seme menner, where B, = -B_, , withB_ _ # 0 from

624

Fig. 25. For a type 10 array when antenna @ is removed,

define B, &s before withB, = -B, and B, #0 from

Figo 250 In either Case, BQ}(J = -B4Jk fOI‘ J, k = l’ 2, ceey 6.
Finally, suppose all antennas except (3) lie on a

line., ThenB_,, =0 for j, k=1, 2, ..., 6. If the arrsy

3Jk"
is type 7 after removing antenna @, and @ is not on the
line joining (@) and (), then B 33k is defined as before

with B, , = -B, ., where B, # 0. If the array is not

type 7 when antenna @ is removed, then 133 Ik is defined es

‘ before with B, = -Bess’ end B £ 0. As before

;M‘ Bskj = -Bajk for ,j, k = l, 2, soey 60

1 ' '

% The Bi,jk 5 and Aijk s are now all defined, and
‘ . Bik'j = —Bijk’ J, k = l’ 2, sy 6- N ~

The quantities Bi,j fori, J=1,2, ..., are defined
to be zero if i = j, and equal to the area (always taken as
positive) of the quadrilateral formed by omitting antemnas ()

) and @ otherwise.
r )
i 118 ;
f g
| %
<

S Re———_——— U e - Sene A s,




ﬁ

- g
TICE JOHNE HC-ING UNIVIERSITY

APPLIED PHYSICS L.ABORATORY
BSAVER SPRING. MARYLANO

R .

By fori =1, 2, ..., 6 1 defined as the area
- (always taken as positive) of the five-sided figure formed
. by omwitting antemna (3).

el

SV AR
paag B 06N

Sy

B is defined as the area of the entire array (always
A taken as the area of a convex region containing all points of
) the array,.the region having three, four, five, or six sides.

W 2
l LLI z !

) . Ayys Ay, A ere Gbtained from the B's by dividing '
¥ \

each appropriate B by T(P) , the triangular array area of the
entire arrey.

<

i P 3 is definied as the arrsy ambiguity plot obtained

o by omitting antemnss (I) and @-

% i Theorem X: For any entenna array in a plane having a TAAP

% y and six antennas, the following properties hold:

! 1. A:l.,jk’ Ai,j’ A;, A are all integers, i, J, k=1,

5:: !1 2’ *e o , 6'
L ‘ 2. The A, o have no factor in common, i, J, k = 1,
3 g 2’ L I ] , 6'
: 3. Except for those 1 and J for which Ai,j1 = Ai,ja =
; é ‘ ces = Ai 36 = 0, the greatg?;icommon factor of

‘; Aial, Aijz, sevy Aiaa iS T P y i’ J =.1’ 2,

.00, .
i g .
ll't EA:LJR:()’ l,'j=l, 2, svey 60
k=1
;
50 21 IAijki = aAia’ i’ J = l, 2, seey 60
L]
1 & 6. Interchanging any two subscripts of A, ik changes
its sign., Thet is, for any i, J, k=1, 2,
H ss ey 6, one haS Aiak = "Aikd =Akia = “Ak’ji =
Ay = Byip
! n 119
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Proof: Except for property 6, the proof of Theorem X follows
from the definition of the A's, and is proved in the same way
as 'Theorem V. The proof for property 6 follows the proof of
the next theorem.

Theorem XI: For any source direction, let p,, B,y «oey By
denote the unambiguous absolute phase at antennss @ through
@, respectively, in units of cycles. Then

135 = 0, i, 3=1,2, ..., 6. (273)

Proof: This follows directly from Theorem VI and the
definition of the A's.

For property 6 of Theorem X, if 1 and j arve such
that Aijl = Ai,jz = eee = Ai,je = 0, property 6 is obvious.
If not, then

130 = ©

and

Bogdy =0

are equations in which the coefficients of the uk's are
signed areas of triangles of the seme quadrilasteral. It
follows from the derivation of the A's for five antennas
that the two sets of coefficients are elther identical, or
one set has all opposite signs from the other set.

For i =5, J = 6, since B, ,, = -Bgg,, 1t follows

that Asek = "Aesk fOI‘ k = l’ 2, seey 6.
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LY

-
Fori =2, §J =5, since Bogg = “Bogr 1t follows'!

that Azsk = -Aszk fOI' k = l’ 2, vosy 60
For i =2, §J = 6, since Bogg = B

th&'b Azsk = "'Aezk fOI‘ k = ]., 2, teey 60

Similerly, for 1 = 1, J = 6, the result follows
since By, = -Bgy,. By setting k = 1 in the previous step,
one cen show that B,,, = “Base ,fso the result follows for
1=1,3=2, (A's and B's are interchangesble as far as
sign is concerned.) Also from Fig. 25, B, ¢ CoDNOt vanish,
Setting k = 1 in the third previous step and k = 5 in the
1 =1, J =6 case; one can show that Bige = Bgigy 80 the
result follows for i =1, j = 5.

625’ 1t follows

- So for any pair i, J selected frem 1, 2, 5, 6,
Ai;jk = 'A,jik for k=1, 2, ..., 6. For ¢he remainder of the
proof it will be assumed thet the array is none of types 2,
k, 5,6, 7,9, 10, 11 1f entenna ) is removed. If the
desired results follow under this assumption, they must
follow in general, as these types are all limiting cases of
types 1, 3, 8, 12, ‘

This assumption implies that perhaps Bg,, = Bgaa = 0y
but B 61 does not vanish for any other pair i, J such that no
two subscripts are equal.,

Since B, . = “Bgags the result follows for i = 3,
J = 6. similerly, since Bage = “Bgggs the result follows
ford =3, §'= 5, Setting k=3 inthe 1 = 1, J = 6 case
glves B, = -Bgy3+ This, combined with setting k = 1 in
the 1 =3, J = 6 case glves B, = “Bgaz = Bygy = “Byjqs 80
the result holds for i = 3, § = 1.

If the array is not type 3 with antenns @ removed,
then B, # 0. Setting k = 2 in the 1 = 3, J = 6 case and
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k=31inthei =2, J =6 case, one has By, = B, = Bg,, =
“Bgas = Baygs = -Boaey 80 the result holds for 1 =2, J =3.
If the array is type 3 with antenna @ removed, then suppose
that B, ,, #0C., Setting k=3 inthei =1, j = 2 case and
k=21inthei =3, J =1caseleads toB,,;, = -B_,,=B,,, =
“By3a = B3jp = -Bapys 80 the result follows for 1 =2, §j =3.

If By,, = O, then antemas @, @, ®), ©® a1l Heona
line andea =0f0rk=l, 2, sevy 60

ot et
b.l u

iw % '

k

It has now been shown that for any pair i, J

selected from 1, 2, 3, 5, 6, Ai,jk = 'Ajik’ k=1, 2, «osy b,

Finally, since B,g, = -Bggp, the result follows for

4, § ='6. Also, since B,,q = -B,,q, it follows for i = 4,
= 2'

PRI XY, T s T

i i, '

o
]

l
' v,.,.m.l lm—-,-i '
-
AR LT 1Y

Set k=4 inthei =1, J =6 case and k = 1 in the

1=k, j=06case. This leads t0 By ¢ = -Bygy = Bg,, =

" Bgy, = Bygg = Bygqs 80 the result holds for i =4, j =1,

Set k=4 inthedl =3, J =6case and k = 3 in the
1=4 3§ =06caee. This leads t0 B, = B,y =B ,, =
B..,=B,,=-B

, 80 the result holds for i = 4, j = 3.

364 346

Set k=4 inthei =5, J = 6 case and k = 5 in the
i=14, J=6case. This leads t0 B uq = "Bygg = Bgys =
“Bgge = Bggs = "Bgyegs 80 the result holds for i = L, § = 5.
This completes the proof of property 6 of Theorem X.

The theorem analogous to Theorem VII is the following:

Theorem XII: For any subscripts i, j, k; 4, my, n =1, 2,

[ERE 6,

Ai.jkAIznn + AilmAjzm + AikiAJmn + AilmlAJ?,jn = 0, (274)

& o - < Y % s
£ AR Ty g o
3 4 o
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Before proving this, it is noted that, if any two
subscripts are equal, the expression reduces either to an

obvious identity, or is a special case of Theorem VII. For

example, if J = n, it reduces to Ai‘,jkA 403

+ Ailanijn + A

Ifi =4, it reduces to Ai ,jkAimn

- Ai:]kALmJ = 0,

imitiim = ©

which follows from Eq. (199), since this is the set of
Eqs. (199) for a five antenna array where antenna (@) is

omitted.

Proof: (Consider the matrix

A

A

A

fnj
143 (2715)

imj

Expand the determinant of M, by the first row, and

use Theorem VII and property 6 of Theorem X.

A pPamg * AinmAin)

g

D(M,) = Azmk(

+Azmn

* AZmJ

= AzmkAizmAin,j‘ * Ay g

= Aizm( Apmihang * Bgme e * Aﬂ,minkn)'

123

A s e

fon"igmijk

> o

One has

Apsfime * RgnPigx )
A pdimn AilnnAiz_n)

+A A LA

Lo idn 1kn

(276)

S dhn” s a3 o) o a5

R R A R

r s,

.y

L ma

XK T B sk,

AR,

P

I Sy N




~ pne e W &
e TGRSR L, W o

N o ———

THE JOHNE HOPRING UNIVIRSITY

APPLIED PHYSICS LABORATORY
BILVRR SEMHG, MARTLAND

Similerly if one -expands the determinant of M, by
the first column, one has

D(My) = Almk( APy * Aoy g )
* Auk( ArirPmey * Amn!,Ami.j)

* Ay (AlmnA.eji * Alm.jAzin)'

= Ao ting T Ao Pyt A s oan

= Aizm (AJ?.mkAinj + AiﬂkAan + AimkAJZ,jn)' (277)

Equating Eqs. (276) and (277), one has

A gm (AijkA.cmn Rl T Py t AilnnAz,jn) = 0. (278)

The expression within the brackets is the expression
in Eq. (274). One mey assume that A, - # 0 for the sske of
the proof, for if Ai m = 0, one could imagine Poving an
antenna slightly to cause Ai i # 0, and in that case the
theorem follows. It follows in general by en appeal to
continuity.

There are at most fifteen distinct equations (except
for changing the sign of all terms by invertiné the first
two subscripts) in Eq. (273). The next theorem will prove
that there are exactly three independent ones,

12k
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Theorem XIII: Given six antennas not all on a line s then
the following six by fifteen matrix has rank three:

M= ) . . (279)

Proof: From Fig. 25, Ayee 74 0 since antennas @: @ ’ @
never lie on a line. The rows defined by (Azsi) , (Azei) and
(A, 4) a.\re therefore independent since A, , =h, = Apen =
Aagg = Aggg = Aggg = O. The matrix M therefore has rank at

least three.

Cousider an arbitrary row defined by (‘A'ikm)’ where
1 and k are fixed andm = 1, 2, ..., 6. Setting £ =2, J =5,
n = 6 in Eq. (274), one has
Aasehiim = Pixstaem * Aiketaem * AkaPoen  (280)
Since A, . # 0, the row (A;,) 18 & linear combine-

tion of the three rows shown to be independent, end the
theorem is proved.

THE TOLERANCE PROBLEM FOR SIX ANTENNAS WITH A TAAP

The machinery has now been developed for proceeding
with the tolerance gquestion.

Of the at most fifteen distinct equations in Eq,
(273) there sre only three lineariy independent ones. In an
anaelogous manner to the five antemnns case, one seeks three

equations which maximize Tcp"
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If g 3 is the greatest copmon factor of the row

™(B; )
haeving 1 and J as the first two subscripts (: -7 :IL,

Theorem X) , then the equations corresponding to Eqs. (208)
and (209) are

C_ A ¢ A C A
11 253 12 26] 13 56]
+ + = I = l 2 s e 6 281
825 826 856 o = hE ey (281)

J=1,2, ..., 6 (282)

CzlAzsg + czzAze,j + CzsAse,j =3,
€25 €26 €56 J

C,.A C_.A C_A

3125 3
{1+ 226;__’_ 33563=K,
€25 €26 Bse J

3=1,2, ..., 6 (283)

where the determinant of the C's is # 0,. and the I's, J's
and K's are integers.

One then works with the three independent expressions

iIa“a’ ;Ja“a' ; My

and K
J=1
Set
i |IJ| =71 (284)
J=
|JJ| =J (285)
J:
|KJ| = K. (286)
126
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If 'l‘ci denotes the smsllest of %, -‘-;-, %, then T

J @
is the maximum of Tci

over all choices of the C's with the
prescribed properties.

The next task is to find bounds for T . To this end,

note that, by setting in turn j = 2, 5, 6 in Eas. (281)-(283),
it follows that all of the C's are rational numbers.

Consider the matrix eguation

11 12 13
A A A

8258 826 Bse 25 ] 28n 254
Caz Caz Caa A A

825 826 856 26} 26n 264
cSl caa Caa A A

825 826 Bse 56 sen s6d
IJ In II,

KJ Kn Kz

The next step is to equate determinants of Eq. (287).
If D(C), D(A), D(I) denote the three determinants, one has

p(c)p(a) = D(I).

127 .
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From Theorems VII, XII, and property 6 of Theorem X,
one has, expanding by the first row,
I4

D(A) = Azsj (AsznAes.% * AsnsAez.ﬁ)

+ Azsn (AszEAesj + AszsAszj)

+ A (A

264 A.A )

+
sszesn 635 62n

A A _A

= AzsjAszs end T M2enfezsfesy * AstAeasAsjn

= Pozs (A235A1«5n ¥ AzsnAJ% * AzsLAJGn)
2
= (Aeas)(AzseA“n) = (Aass) AZ,jn' (289)
So
[(h2se)20(€)] 4y = DT (290)

Now D(I) is an integer, and (A,5.)?D(C) is a ration-
al number. If-qne sets (Azse)zD(C) equal to a fraction in
lowest terms, the denominator must divide A n for all £, J, n.
This contradicts property 2 of Theorem X, which proves that
(Azss)zD(C) is an integer. Since it is not zero, one has

I(Azse)zD(C)l 2 1. (291)

One then has the following string of inequalities:

For all &, J, n=1, 2, ..., 6,

Iyl < ICDE 1, 113, L] 1, K, + (2,1, |

AT R AT AT AR R IEATAD
(292)
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Surming over n, end using property 5 of Theorem X,
one has

Qhyy S [IIJHK,Ll + IIzilxdl]J + [|IJ||J£| + |I£”J’J!]K

S CATARNEATEA (295)

Summing over £ and j, dividing by two, one has
6

Z Byy < SLIK. (254)

Jy&=1

L=
- e - et i S By
aPOYER T SR T A e T - ‘ ¢

e

Since the largest of I, J, and K cannot be less than

6

et S s

(295)

== =

The expression A 23 is Just twice the sum of the
£,3=1 -
(normalized by E&;y) areas’ of all quadrilaterals that can be

formed by taking the antennas four at a time.

Y S TR

The anelogous expression for Eq. (224) carries over,
and is

<

«
o s A < G e A P P T NPT PO TP, B S U s I
[S——

1 .
? | gAMzMJ, IJ=1,2, ..., 6 (296)
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so that a weaker inequality than (295) is

(297)

6

1
where ; ;AJ is just the (normalized by W) sum of the
areas Of all pentagons that can be formed by taking the
antenas five at a time.

It can be shown (the proof is omitted) that
6

'Z;A 2 lp (298)
5=

so that a still wegker inequality is

P g e (299)

P 3\,144\_
where A is the (normalized by ﬂlﬂ) area of the hexagonal
array.

It 18 conjectured that none of the inequalities of
Eqs. (295), (297), or (299) are ever achievable.

It is an open question (probably answered in the
affirmative) as to whether or not one can achieve the best.
tol:arance by some selection of three of the equations (273)
without having to form additional linear combinations of them.

For an inequality the other way, the lower bound on
1 .
'.13(,p is probably larger than m, but the point is not
belabored here, as arrays with Tq) this small are poor errange-
ments and not therefore very interesting. An obvious lower
bound follows from property 5 of Theorem X and the observation
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B3S ‘*} 3

that the area of & quairilateral of the array cannot exceed
the area of the entire array. One then has

1

ISR

v

Inequality {226) carries over as follows:

3
322
Ty < \[ua . (301)

sin® p * (area of six antenna array)

TRET

For the example considered after inequality (226),
22

2h sin® p

on the area of a six antenna arrey of 486 in®, a considersble

improvement over the 36 in® bound for five antennas. Of
course the bound can probaebly not be achieved, but as
examples to follow will show, one can approach it. An
important observation to meke is that each time one adds an
antenra, starting with four, the tolerance-amblguity-area
dilemma is eaeed by an order of magnitude if achievable

measurement errors are not too large and if one arranges the
antennes properly.

sks VY AL YR - neaTe
e ST U TR SRS MO TR P T T T

oX A SR

_ 1 _l, 2
where T o= 18 and =Z in®, one has a bound on

,‘_,“’_’A* ’
el W WP WS TN VN WA e e e

THE GENERAL PLANAR ARRAY CASE FOR ARRAYS WITH A TAAP

~

Conslder the case of n antennas in a plane. Assume

n 2 4 and that the arrsy has a TAAP. (;I'hey therefore do not
all lie on a line.)

Let Qk denote the sum of the areas of all possible
subarrays with k antennas, wvhere 4 < k < n. Q, is just the
area of the entire errey.

Let P denote the array ambiguity plot of the entire
array, and T(P) its triangular array srea.
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The inequalities for T 9 that have been proven for
n < 6 are special cases of the following inequalities:

(302)

Inequality (302)for n > 6 is only a conjecture at
this time, since the suthor has not yet proved it. It is
also conjectured that none of the upper bounds can be reached
by qu (except for the case n = L),

The innermost inequslity is the strongest bound, and
the outermost is the weskest bound. Note.also that for n=A,
the left and right hand sides collapse to the same value so
that inequality (302) becomes an equality (the same result
as previously derived for this case).

AN EXAMPLE OF AN ARRAY WITH SIX ANTENNAS

The first arrey examplé is glven in ¥ig. 31. The
six antennas are arranged on a circle in a hexagon whlch is
not regular. The array ambigulty plot for this array, which
is a TAAP, is given in Fig. 32.

The following deta for this array, computed accord-
ing to techniques developed here end in the previous sections,
are glven without proof.

a v 2 *
o(p) = 5 (—55) sin (52.615°) = & (.0805)°(.7946) == .00262"

(303)
where d is the diameter of the circle.
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T

fg = 232,615°

d4 =0.4830d

05 = 52.615°

d1 = 0,4026d

81 « Q0

Fig. 31 HEXAGONAL ARRAY OF COPLANAR ANTENNAS
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The values for Ai with 1 < J < k are given in

3k
! Table 3.
t ~
l Table 3
A:L 3k for Antenna Arrey of Fig. 31-
l i J k Ai 3k
] 2 3 30
4 -70
' p) 88
6 -8
3 4 70 |
' ‘ 5 12k ‘
6 8k ;
L 5 8k ;
| 6 -8k ;
} 5 6 48 ;
2 3 4 45
l 2 99 i
6 -84
5 -99 ?
. 6 12k ;
| i 3 6 g8
3 b 5 b5 .
; {6 ~70
' 5.5 0 :
L 5 6 -30
I
it
The values for the normalized areas of the quadri- 2
, l laterals (A, ) formed by omitting antennas @ end Q) are ~,
given for i < J in Taeble 4. s
- ] !
3 i 135
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A

Table &

13 for Antenna Array of Fig. 31

C

Ai;j

118
154
154
172
132

129

187
172

115
154

129
15k

\n jo—g |o—w

o\ OV oW = OV OV N D

118

The values for the normelized areas of the six
pentagons of the array (Ai) formed by omitting antenna (I

are given in Table 5.

Ai for Antenna Array of Fig. 31

Teble 5

XN

Ay

VT =\H O =

202
217
199
199
217
202

136
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Also, the normalized area of the entire array is

A = 2h7, (30k)
34 ana 8 by t £
63) T'(-ﬂ' are given yQ he sum of the entries
in Tables 4 and 5, respectively. ﬁ'%)' is just A, which is
ek7. Performing the calculations, one has

Q

5-(-1“,#5 = 2226 (305)
Q%

'ﬂﬂ = 1236, (306)

Inequality (302) for n = 6 then becomes

1 311 3 1 37 1
5L ¢ Ty € Jms \,T-a-%s\lggg (307)
or
002 < TCP < .088 < .093 < .100. (308)

If one works with the three best equations (from the
tolerance point of view) of Eq. (273), one finds that they
are glven by the (1,J) peirs (3,6), (1,4) and (1,6). After
dividing each of the three equetions by the greatest common
factor of its coefficients, the resulting equations are

By = 6ty + Spg = Sug =0 (309)
SHp = Sy *+ bug - Gug = 0 (310)
My = Tug + Tu, = 4 = 0. (312)
) 137
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These three equations all have the same tolerance,
and the others all have smaller tolerance. So from the

definition of T ¢’

1o
Ty 55 = .05, (312)

As before one uses 2 instead of = in Eq. (312) as

" there may & priorl be a set of equations which are linear

combinations of Eqs. (309)~(311) and which allow a larger
tolerance. As in the discussion preoceding E}é_. (236),
Eq. (312) mey be an egquality. The author has been unable
to find any better linear combinations for this array.

As in Eq. (2L40), a smaller uppeé bound cen be
obtained by observing that, from Eqs. (294) and (305) the
largest of I, J, K cannot be smaller than 12, since I, J, K
are integers. So,

1l .
T, 3 = .083. (313)

COMPARISON OF ARRAYS OF FIGS. 26 AND 31

If one carries over the concept of tolerance effi-
ciency as the ratio of Tcp to the weakest (largest) upper
bound, as was introduced in the discussion succeeding
Eq. (269), and assumes that Tcp is indeed -ala- for the six
entenna arrsy (and not greater) ; one finds an efflciency of
62% for the five antenna array, and 45% for the six antenna
array.

From Egs. (236) and (312), both arrsys have the
same sufficlent tolerance.

a
If a'i' is defined as the ratioc of the diameters of

the circles inscribing the six and five anternna arreys, one

~
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. 8 _foi.,
sees by comparing Eas. (227) end {303) that if T "N @™ 1.87,

B then thedtriangula.r srray sreas sre the same. Roughly speak- -
ing, if -(.-if’- = 1,87, then the two arrays will have about the
5
} same unambiixous coverage in terms of a cone of source direc-

tions. If T < 1.87, the six antenna array will have greater
5
. unambiguous coverage than the five antenna array.

- : Concarning the =fficiency numbers, it has been men-

-y tioned vefore that for more than four antennas, tolerance

L " efficiencies of 100% are undoubtedly not achievsble, although
how close one can come is unknown. Also, tolerance efficiency

[ . is not the whole story as far as the relation tetween toler-

ance and ambiguity remoteness is concerned., Since the
tolerance efficiency is a funetion of T(P), which :;s an ares,
it is a priori possible to heve two arrsys with the same
nuber of antennas such that the most efficient arrsy actually
has the closest nearest ambiguity. The wey this might heppen
- would be for the lattice points in one dimension of the TAAP
L of the more efficient arrey to be more widely spaced than
those of the other dimension.

. Consider next the following problem: Assuming

. Tcp = 5%, is it possible to arrange five antennas more or less
1 uniformly eround a circle with 8-inch diemeter if®

A = 1.75 sin p inches?

Three efficiencies are defined, all < 1, as follows:

2
‘U %=m“2?“° (51k)

! B = enclosed avea
A ~ area of reguler pentagon on same circle

(315)

*p is the half-angle of the cone of unambiguous coverage.
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- J 3 x (enclosed ares) (316)

Ecp is the tolerance efficiency just defined. EA is

a measure of the wniformity of distribution of the antennas

. around the circle. E, (Theorem I shows that E, < l) is a

measure of achieving a good halance in the location of the
ambiguities in the arrsy ambiguity plot.

Using the nunbers assumed here, Egqs. (31k4)-(316)

become
E, = 2,26 T(P) (317)
encloced area
3 x (enclosed area)
By = 22 T(?) (519)

Eliminating T(P) and enclosed area from Egs. (317)-
(319), one has

B
= .53 22 (320)
P

The array in Fig. 26 has an E, in excess of .98.

A
If one assumes thaet one would not want an EA any less than
,80, one has
B2 —.:;3 (321)
?
or
1
E_ 2 .65 ==, (322)
VE
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Now EP is less then unity, so practically one would
undoubtedly be required to exceed 70% in tolerance efficiency.
This is considered by the author to be & very marginal situe-

st W . et

tion, and the answer tc the original question is undoubtedly
no unless one relaxes the restriction on EA’ which will
probebly result in arrays which are undesirable for other

reasons.

T, T

For six sntennas, Eq. (317) remains the same,

Eq. (318) becomes (using a regular hexagon for the denominator)

Sy

enclosed area
BA="H6 (323)

N O e

and Eq. (319) becomes

1 34 x (enclosed area) 1

Eliminating T(P), the equivalent of Eq. (320) is 3

3 EA
- .O —
Ecp 35 & (325)

or _ @
L} EA 26) f
By = -53.’ ﬁ;- (3 ,%

The array of Fig. 31 has an E, in excess of .98, so

iy G
P A

e ~ e,
py oty n. A T Y T S
. 8 b oA A
X i e I .
- Al 2 e Y FRSE, T B v
EEROTES I LT A T . N

e rprta e

S~

v -
P e 25
SR Ny
i
2 i

s o,

that practically, six antennes solves the problem with margin

-
Lo ! P

to spare.

One can in fact show that the array of Fig. 26 will
solve the problem for a 6-inch diameter circle, and the array
of Fig. 31 will solve it for a 12-inch diameter circle.
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A SECOND EXAMPLE WITH SIX ANTENNAS

Consider the erray in Fig. 33.

Fig. 33 AN ARRAY

In Fig. 33, antemnas @), @, ®, ©® eare erranged
on & square, the ratio of the distance from @ to @ to the
distance from &) to (5) is n, en integer > 2, and the ratio
of the distance from (3) to ® to the distance from @) to
(® is also n.

Omitting antenna () leaves a type 4 array of

Fig. 25. Proceeding as before, the A

1t
13k 8 are glven in

Tgble 6 for the case where n is odd.

All of the
2 to give the A

Ay .jk'a in Table 6 are to be divided by

| 4
13k s for the even case.
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Table 6

Ai 3k for Antenna Arrsy of Fig. 33 With n 0dd

A3k
(n-2)
-n{n-2
n2

-n
(n-1)(n-2)
-n(n-1)
n-2
0
-(n-2)
n

-n(n-1)
o2
]
)
n(n-1
-nz

n(n-1)
-(n-1)(n-2)
n(n-2)

n
N1 Ne— i [\ N e\ N S G e \ N e e [\ C
O\ [ONONUT ION NV O\ JONON\T OV BN\ N -

For n odd, the Ai J's are given in Teble 7. To obtain
the Ai J's for n even, one divides the entries for A,, in
Teble T by 2.

13

For n odd, the A, 's are given in Table 8. To obtain
the A 's for n even, divide the entries for A, in Teble 8
by 2. )
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Table 7

Ai 3 for Antenns Array of Fig. 33 With n 044

O\ [t O = o W [N WD e
n
=]

N e

Table 8

g’ Ai for Antenna Array of Fig. 33 With n 0dd
g‘%

{ i N

% 1 n®

by 2 en®

) 3 2n(n-l)

A L 2n(n-~1)

: 5 2n®

f 2

: 6 n

1hh

w a e v o ke Y s W e W Se T e W otw o N - - P
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Finally, A = 2n° for n odd and A = n® for n even.

For n odd, inequalities (302) are

Lom oo 1 31 51
v < To® VEDEE < Varma < Nae 0%

For n even,

1 3{"'"'1‘ - 3{ 1 [T
o = T@ = N3} = Vu(Gn3) ~ ‘ji;i' (528)

If one now lists the equations of (273) and selects
tlie best three (from the tolerance point of view), one finds
that they are (after dividing each equation through by the
greatest common factor of its coefficients):

By = My ¥ B, =pg =0 (329)
nu, - (n-l)p, = pg =0 (330)
Hq + (n“'l)ll4 = nps =0 (331)

for odd n. Actually, there are other choices for Egs. (330)
and (331), but none has any larger tolerance than Egs. (330)
and (331). If one assumes, &s previously conjectured, that

one camnot improve tolerancewise by any linear combination of

these equations, one then has, for n odd, e
1
T = Ba° (332)

Note that for this case, Egs. (330) and (331) are
each one~dimensional cases, allowing resolution of non-array
smbiguities in two perpendicular directions individually.
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Equation (329) ties the two dimensions together, allowing
resolution of non-array ambiguities for any antenna pair.

For n even, one can improve slightly on Egs. (330)
and (331). The best three equations in this case are:

My =My +ly = Mg =0 (333)
-2, B8, 13, .0 (334)
Lxl—é-gzul--rz—luz+%p5-£n—;?-)'pe=oo (335)

In this case, all other equations have a smaller
tolersnce than Egs. (334) and (335).

Again, if one makes the seme assumption as made
after Eq. (331), one has

1

Tcp = m (336)

for n even.

Now suppose that one wished to compare the antenna
configurations of Figs. 31 and 33, assuming they have the
same tolerance. Then, since TCP = -é:-Le—, one has n = 11 or
n = 12. Suppose also that one assumes that the arrays of
Figs. 31 and 33 are constrained to lie on the same circle
(except for antennas (B) =nd (5) in Fig. 33, which will lie
in the interior). ‘
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Let P, and Pz denote the arrasy embiguity plots of
Figs. 31 and 33, respectively. Then

b

Aree of Fig. 31 , T(P,)
Area of Fig. 35 T(P,)

| Joum——

242’ n =11

= ratio of A's for the two cases = (337)

%&, n=12

If d is the diameter of the circle, then

-}

= =

Area of Fig, 31 _ (.0026)(2k7)d° _
Ares of Fig. 35 0.5a2 =15 (538)

So from Eas. (337) and (338),

o 3

™P,) 0.8, =n
™P) 1.3, n

11
12}- (339)

One would therefore expect the nearest ambiguities
to be farthest away for the n = 1l case of Fig. 35 as is the
case. The n = 12 case has the cloeest nearest ambiguities,
and the array of Fig. 31 is in between. In this sense, the
n = 1l case of Fig. 33 is superior.

T & O3

———ee

One should note however that some pairs of antennas ' {
are much closer together in the Fig. 33 array than they are )
in the Fig. 31 arrsy. This could meke a difference for other
reasons, for example mutual coupling.

In addition, if the two arrays were compared on the
basis of occupylng the same area, the array of Fig. 31 would
1 be superior, although only slightly so for the n = 1l cese
of the array of Fig. 33.
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The tolerance efficiency for the array of\Eig. 33
is computed to be 45% for n = 11 and 38 for n = 12. This
comperes with 45% for the array of Fig. 31.

m ANTENNAS ON A LINE, m 2 3

Just as before, the one-dimensionsl problem for m
antennas is a speclal case of the two-dimensional problem for
" m+ 1l antennas.

Given m antennas on a line, one inserts a fictitlous
antenne off the line, as in Fig. 34,

Fig. 34 m ANTENNASON A LINE

Iet the lengths of the m -1 line segments be related
by

A, 8d,3 00038 =P, iD,ieee iR (340)

m=2

where P,y Py voey Pm-vl are integers with no factor in common.
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oo

As before, the ratios of the areas of any peir of
triangles depend only on the ratios of corresponding line
segments along the base, since all triangles have the same
altitude,

s AR RIS T SO R 1 (F
{ 1 toorerest twenird

Again, let R denote the ratio of the separation of
‘ grid lines in the array ambiguity plot for the antennas (:),

j U ®, +++s @ to that for entennas () end @ .

From the discussion in Section 2, it follows that

f

(341)

The inequalities (302) carry over (as an established
theorem for m = 3, 4, 5 and as & conjecture for m 2 6). The
proof for m = 5 is quite similar to the previous prootf's for
m =3 and 4, and 1s omitted.

s N s |
=)
]

S

Ignoring the intermediate inequalities, inequality
(302) in this case becomes

m=2
1 , 1
T s TCP < m . (342)

The tolerance efficiency is defined as

E(p = Tq) [m-\/(m-l)n] ' (343)

i

& number not exceeding unity (a theorem for m = 3, 4, 5,

e S s B e’

>

conjecture for m = 6). E_ =1 for m = 3, and it is conjed-
tured that 1t is strictly less then unity for m > 3. It is
not known how close one can approach it.
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Consider the case where

P o, J=1, 2, veuy m-l (344)

where p 1s a positive integer > 1.

In this case

R= 2—;—:%- (345)

Equetion (342) becomes

—2-1 P‘l) . 46
E(p“"l \/ (m-1)(p"-1) ()

In this case one set of equations in the pi's that
one could use to resolve ambiguities other then array ambigu-

ities can be shown by the methods of Section 2 and this
section to be

PRy ‘(1+P)Ni+1+ iy = 0, 1=1,2, «o0y (0-2). (347)

All of these equetions have the same tolerance, so
that (assuming a better set of equations is not cbtainsble
or this array)

1
" %o " mwE) (548)
The tolerance efficiency, assuming the conjecture,
jis glven by
!
! o1 (el 1)
%o = () [ p-1 (319
!
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D
’ As m ~ 00, Ecp ~ m, a rather interesting result
that illustrates that the tolerance ambigulty problem improves
exponentially by adding sntenmnas at appropriate locaticns.

In addition, the smallev tolersnce one can meet, the larger

one can make p, and therefore the fewer number of antennas
one needs to accomplish the same expansion factor of the
ambiguities.

Another interesting example is the following one.
In this case an attempt is mede not to let the antennas get
too close to each other.

Let p be a positive integer, and

P{j = pm-J-l (1+P)J-1: J=1,2, «.c, m-1 (350)

80 that

R=(pr)" tapt 2, (351)

The equations for the pi's can be taken to be

(l+p)ui ‘(1+2P)l-11+1 +Pili+z = 0, 1=1,2, «.., (m-2). (352)

All of these equations have the same tolerance, so

. that (assuming one can find no better set of equations for
fone i this arrey)
- ¢ - v = 1 . (353)
b 0] 2(1+2p)
b

!

\
3 )

]

& 151

e . ,&; e e e S VL PR PR




—

P it aldl

TN SR e o e W‘q

THE JOHNS HOPKING UNIVERSITY

AFPLIED PHYSICS LABORATORY
SUVER SPRING. MARVLAND

The tolerance efficiency is then

m=-1

By = 5&%%‘%)- m'-z;/(nrvl)(p+l) [1 - (1‘3;)

+ 1
) vhich approaches 5 T+5p as m - 00,

}} (35%)
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