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THE UTILIZATION OF DATA MEASUREMENT RESIDUALS 
FOR ADAPTIVE KALMAN FILTERING 

INTRODUCTION 

a In recent years, the Kaiman filter and other recursive estimation schemes 
have been utilized extensively for target motion analysis (TMA).   Unfortunately, 
in these applications, a common problem known as filter divergence is often 
encountered.   Divergence occurs when the calculated error covariance becomes 
inconsistent with the actual error covariance.   Although there are many possi- 
ble causes for divergence, a common source is system modelling errors.   This 
is particularly true in TMA work where practical limitations preclude "exact" 
modelling of the actual target dynamics. 

Various methods have been suggested to prevent the growth of modelling 
errors; fixed memory filters, fading memory filters, and/or injecting artificial 
plant noise into the system are but a few.   A common feature of these methods 
is that they all attempt to prevent divergence by discounting the influence of 
past data.   While this effectively increases filter response, it also makes the 
filter more susceptible to random errors.   Consequently, to prevent unnec- 
essary sacrificing of noise performance, adaptive control is required. 

•  ■ 

The need for adaptively controlled filters has provided impetus for the 
development of numerous "modified" Kaiman filtering schemes. 1~4 In all these 
schemes the adaptive control mechanism is a function of the Kaiman filter data 
measurement residuals.   This might be expected since data residuals provide 
the only consistently reliable basis for assessing solution quality and detecting 
the onset of divergence.   However, it is unfortunate that the importance and 
practical utility of residuals, particularly in the context of adaptive filtering, 
have not been adequately stressed.   In fact, there is a paucity of technical 
literature devoted to this subject. 

This report analyzes the Kaiman filter and its associated data measure- 
ment residuals.   By utilizing the classical method of least squares, a deriva- 
tion of the well known filter equations is presented.   Although this particular 
approach is somewhat unorthodox, it is nevertheless appealing since ancillary 
mathematical formulas that are later needed for analyzing the residuals emerge 
naturally.   Following this, an important relationship between the system per- 
formance index and the Hata measurement residuals is developed and then used 
to demonstrate the suitability of residuals for providing adaptive control and 
on-line assessment of solution quality.   In addition, pertinent statistical prop- 
erties of the residuals and performance index are deduced and utilized to es- 
tablish a basis for formulating practical adaptive control criteria.   Finally, a 
simulation example which demonstrates filter divergence (e.g., tracking of a 
maneuvering target) is presented. 
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DERIVATION OF THE KALMAN FILTER EQUATIONS 

DESCRIPTION OF THE SYSTEM 

Consider a physical system which can be described mathematically by a 
set of linear stochastic vector difference equations of the form 

X(k+1) - A(k+l,k)X(k) + B(k)W(k), (1-a) 

Z(k+1) =H(k+l)X(k+l) +V(k+1),      k = 0,1,2,3,... , 

where 

X(k) 

(1-b) 

- p-dimensional vector which statistically describes the system 
states at time T^, 

A(k+l,k) - (pxp) deterministic one-step transitioi 

B(k) - (pxp) deterministic matrix of known form, 

- q-dimensional vector of stochastic inputs. 

tor the system. 

W(k) 

Z(k+1) m-dimensional vector of noisy data measurements taken at 
time Tk+lf 

H(k+1)     - (mxp) deterministic measurement matrix, 

V(k+1)     - m-dimensional vector of additive measurement noise. 

The pertinent statistics associated with this system are as follows: 

EJX(0)( = X<0»0) (2-a) 

EJW(k)j = W(k,0) (2-b) 

E)v(k)f=0 (2-c) 

E)[X(0) - X(0, 0)1[X(0) - X^.Ol'l = P(0) (2-d) 

EJIWU) - W(J.0)llW(k) - WMl'j =öJkQ(k) (2-e) 

EJVO^'flol'Ö^RCk) (2-f) 
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E| IX(O) - X(0,0)lIW(k) - W(k, 0))'j = 0 (2-g) 

I . E|QC(0)-2(0.0)lV,(k»j-0 (2-h) 

EJ(Wu)-W(j,0)lV,(k)[ = 0 (2-1) 

where (l  J = k 
6.. =^ 
JK     (0 J ^ k (2-J) 

and E j • ( denotes the statistical expectation operator. 

As is well known (e.g.. Sage5), the formal solution to equation (1-a) is 
given by 

k-1 
X(k) - A(k, 0)X(0) + T A(k, j+l)B(j)W(J), k = 1,2,... , (3) 

which readily reveals the statistical nature of X(k)  through its functional 
dependence on the random vectors X(0).W(0),W(1),.. .W(k-l).   Consequently, 
estimates of X(k)  are aU that can be determined.   In the absence of additional 
information it is evident that the optimal estimate of X(k)   is Us a priori 
mean value, defined by 

k-1 
E X(k)   = X(k.O) = A(k,0)X(0,0) + E  A(k,J+l)B(J)W(J,0). (4) 

J=0 

It should be noted that this equation provides an a priori description of ex- 
pected system behavior.   Suppose, however, that further information about 
the system states is provided in the form of discrete data measurements 
Z(k)  which are linearly related to X(k) by equation (1-b).   If such information 
Is properly utilized, it is reasonable to expect that better estimates of X(k) 
will result.   Numerous techniques exist for extracting such estimates from 
measured data.   One of the most powerful Is the Kaiman filter which will now 
be derived. 
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X(k+1, n) = A(k+1, k)X(k, n) + B(k)W(k, n) , k = 0,1,2,... (n-1) .     (5) 

To complete a mathematical formulation of the problem, it is necessary to 
define a system performance index J(n).   To this end, let 

J(n) = l/2[X(0,n) - X(0,0)l'p"1(0)[X(0,n) - X(0,0)1 
n-1 ,    . 

+1/2 £ [W(l,n) - W(i,0)] Q^CDQVd.n) - W(l.0)l 
1=0 

n »    1 
+ 1/2 £   tZ(l) - H(l)X(l,n)] R'^mtZd) - H(l)X(l,n)j . (6) 

1=1 

It might be noted that   J(n)   is a weighted quality measure of the estimation 
process based upon the optimality criteria employed.   The first two terms in 
equation (6) account for deviations from expected system behavior, and the 
last term accounts for cumulative data-fit errors.   Because of the way J(n) 
is defined,it is reasonable to expect that this quantity, or some function thereof, 
will provide a suitable basis for assessing solution quality on-line.   This point 
is explored further in the next section. 

.   . 

DEVELOPMENT OF THE FILTER EQUATIONS 

To analyze the system previously described, assume that n data measure- 
ments Z(1),Z(2),... Z(n)  are available.   The problem at hand is to determine 
an optimal estimate of the current state vector X(n)   from these measure- 
ments and the a priori information.   Here, the criteria for optimality will be 
defined so that the resulting estimates best fit the measured data while simul- 
taneously minimizing deviations from a priori expected system behavior. 
For convenience, the following notation will be employed: 

X(k,n) = optimal estimate of X(k)  based on n data measurements, 

W(k,n) ■ optimal estimate of W(k) based on n data measurements. 

It can be seen that equation (4), which defines X(k,0),is consistent with this 
notation since the a priori mean value of X(k)  represents the optimal esti- 
mate of this vector when no data measurements are available.   Finally, to 
ensure that all estimates satisfy the general system equations, the following 
constraints are imposed: 
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An optimal estimate X(n, n) of the current state vector X(n)  niay now be 
obtained by minimizing J(n)  subject to the constraints imposed by equation (5). 
However, if equation (3) is utilized, these constraints may be rewritten in the 
equivalent format 

k-1 
X(k,n)=A(k,0)X(0,n) + S A(ktJ+l)B(J)W(j,n),        k = l,2,...n, (7) 

H> 

which reveals that J(n)   Isafimctlonofn+l independent vectors  X(0,n),W(0,n), 
W(l,n),.. .W(n-l,n).   Consequently, the minimization of J(n)  will require 
that 

i. 
m 

i: 

MiSL_ =o, 

= o, 

WC(0,n) 

öJ(n) k = 0,l,2,...(n-l). 

(8-a) 

(8-b) öW(k,n) 

Performing the operations indicated by equations (8) yields 

P'^OfXCCn) - X(0,0)1 = £ A,(l,0)H,a)R"1a)IZ(l) - H(l)Xa,n)l,      (9-a) 
1=1 

n-1     ' 
Q'^ffiflCB) - W(k.0)I = T yj^g H'CDR"1*!) [ZO.) - H^Xa.n)], 

k = 0,1,2,... (n-1) (9-b) 

By taking the transpose of equation (7), replacing the index k with 1, and 
differentiating the result with respect to W(k,n), it follows that 

ÖX (l,n) 
i       i 

l<(k+l) 

(10) öW(k,n)       /B (k)A (l,k+l)  U(k+1) * 

Hence, equation (9-b) reduces to 

Q'V^k.n) - W(k,0)l = B'M £     AiUk+mm^OnUl) - H(l)X(l,n)), 
l=k+l 

k = 0,1,2,... (n-1). (11) 
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B,(k)A'(k,k+l)S(k,n) ^Q'V)^!«.!») -W(k,0)l ,   k = 0,1,2,... (n-1). (12) 

Substituting this expression into equation (11) and utilizing the transition ma- 
trix property 

A'^k+l) =A,(k,k+l)A,(l.k) (13) 

S(0,n) = P "(OtfXfO.n) - X(0,0)J. (15) 

Similarly, setting k = (n-1)  in equation (14) yields 

S(n-l,n) = At(n,n-1)H (^R'VHZfn) - H(n)X(n,n)l, (16) 

Again referring to equation (14), it can be seen that 

S(k+l,n) =£      A {Uk+miDE^anZH) - H(l)X(l,n)l 
l=k+2 

= A'(k,k+l)S(k,n) - H,(k+l)R'1(k+l)[Z(k+l) - H(k+l)X(k+l,n)], 

k = 0,1,2,... (n-1), (17) 

where the transition matrix identity 

A(k,k)=I, k = 0,1,2,..., (18) 

:i i 

n The determination of X(n,n)  first requires that equations (9-a) and (11), 
or their equivalent, be solved for the unknown vectors  X(0.n),W(0,n),W(l,n), 
W(2, n),... W(n-1, n). To this end, it proves convenient to introduce an auxiliary 
vector S(k, n) according to the formula 

leads to the relationship 

S(k,n) -r      A,a,k)H,a)R~1(l)IZ(l) - H(l)X(l,n)], k = 0,1,2,.. .(n-1). (14) 
l=k+l 

If the index k in equation (14) is set equal to zero and the result compared to 
equation (9-a), the following boundary condition may be derived: 

c^   .     «-1 
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has been utilized.   Note that for k = (n-1)  a new vector  S(n,n) now appears 
in equation (17) and is defined by 

S(n,n) = A (n-l,n)S(n-l,n) - n'^R'^nX^n) - H(n)X(n,n)]. 

However, substituting equation (16) into (19) and noting that 

(19) 

A(l,k) = A"1(k,l) (20) 

X(k+l,n) = A{k+l,k)X(k,n) + B(k)W(k,0) + B(k)Q(k)B,(k)A,(k.k+l)S(k,n),  (22-a) 

leads to the boundary condition 

S(n, n) = 0 . (21) 

Equations (7), (12), (15), (17), and (21) comprise a coupled set of linear inhomo- 
geneous difference equations and associated boundary conditions that are math- 
ematically equivalent to equations (9-a) and (11).  .This set, which is summarized 
below, may therefore be used to determine  X(n,n). 

S(k+l.n) = A'(k,k+l)S(k,n) - H,(k+l)R"1(k+l)[Z(k+l) - H(k+l)X(k+l,n)],    (22-b) 

S(0,n) = P'VHXfO.n) - X(0,0)1 , (22-c) 

S(n,n) =0, k = 0,1,2,... (n-1). (22-d) 

It is interesting to note that the above equations are similar to the discrete 
canonical equations derived by Sage5   using dynamic optimization theory. 
Both sets describe linear two-point boundary value problems which may be re- 
solved by the method of discrete invariant imbedding. 5     However, an alter- 
nate procedure will be employed here, which yields the desired vector X(n»n) 
in a relatively simple fashion.   Thus, assume that one additional data measure- 
ment is taken at time  Tn+j.   The data measurement sequence is now defined by 
{Z(l), Z(2),... Z(n+1))   and equation set (22) is replaced by 

X(k+l,n+l) = A(k+l,k)X(k,n+l) + B(k)W(k,0) + B(k)Q(k)B'(k)A (k,k+l)S(k,n+l), 

(23-a) 

SOc+^n+l) = A'^k+ljS^n+l) - Hf(k+l)R"1(k+l)[Z(k+l) - H(k+l)X(k+l,n+l)), 

(23-b) 

S(0,n+1) = P_1(0)fX(0, n+1) - X(0,0)], (23-c) 

S(n+l,n+l) = 0, k = 0,1,2,...n. (23-d) 

7 
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Next, define 

AX(ic) , x(k, n+1) - 2Sk.n). (24-a) 

A S(k) = S(kf n+1) - S(k, n). (24-b) 

Subtracting the expressions in equation set (23) from the corresponding expres- 
sions in equation set (22) and utilizing equations (24) then yields 

AX(k+l) - A(k^l.k)AX(k) + B(k)Q(k)B,(k)A,(k.k+l)AS(k), (25-a) 

AS(k+l)  = Af(k.k+l)AS(k) + H,(k+l)R"l(k+l)H(k+l)AX(k+l), (25-b) 

4S(0) = P"1(0)A3E(a> f (25-c) 

AS(n) =S(n,n+l). (25-d) 

Though not immediately evident, the homogeneous equation set (25) is 
much simpler to solve than the original equation set (22). To illustrate, assume 
a solution of the form 

AX(k) = P(k)AS(k), k » 0,1,2,... (n), (26) 

where P(0) is known, and P(l), P(2),...P(n) are matrices to be determined. 
(Note that a similar type homogeneous solution of the form X(kfn) ■ P(k)S(k,n) 
cannot be applied to equation set (22).) Substituting equation (26) in (25-äj and 
(25-b),respectively, and utilizing equation (20) then yields 

P(k+l)AS(k+l) = N(k+l)A,(k,k+l)AS(k), (27-a) 

[P"1(k+1) - H,(k+l)R'1(k+l)H(k+l)]P(k+l)AS(k+l) = Af(k,k+l)^(k),     (27-b) 

where 

N(k+1) = A(k+l,k)P(k)A,(k+l,k) + B(k)Q(k)B (k). (28) 

In order to satisfy equation set (27) for all allowable values of k, it is 
necessary that 

P(k+1) = [N(k+1) + H,(k+l)R"1(k+l)H(k+l)r1. 

In addition, equations (24-a), (25-d), and (26) may be combined to produce the 
expression 

X(n, n+1) = X(n, n) + P(n)S(n, n+1). (30) 
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Equation (23-a), coupled with equations (28) and (30), then yields the relation- 
ship 

X(n+l,n+l) = A(n+l,n)X(n,n) + B(n)W(n,0) + N(n+1) A (n,n+l)S(n,n+1).     (31) 

Note also that equations (23-b) and (23-d) lead to 

A'fn.n+l^n.n+l) = H (n-*-l)R'1<D4'l)[Z<iH-l) - H(n+l)X(n+l,n+l)l. (32) 

. . Finally, substituting equation (32) into equation (31) to eliminate  S(n,n+1)  and 
performing some algebraic manipulation produce the desired results: 

■ 

• -1 
t . X(n+1«n+1) =2i<n+1'n) + p(n+1)H(n+1)R  <n+1)^n+1) 

-H(n+l)X(n+l,n)], (33-a) 

2C(n+l,n) = A(n+l,n)X(n,n) + B(n)W(nf0) . (33-b) 

Equations (28), (29), and (33) provide a mathematical procedure for opti- 
mally estimating the current state of a system from measured data and a priori 
statistical information.   As expected, these equations are equivalent to the 
Kaiman filtering formulas and can be put into the standard format by utilizing 
the following matrix identities: 

G(n+1) = N(n+1)H (n+l)[H(n+l)N(n+l)H (n+1) + R(n+l)]_1 

= P(n+l)H (n+l)R x(n+l), (34-a) 

P(n+1) = fN^n+l) + H,(n+l)R"1(n+l)H(n+l)]"1 

= [I - G(n+l)H(n+l)lN(n+l). (34-b) 

For completeness, the Kaiman Alter equations are summarized on the following 
page In algorithm form. 

9 
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Kaiman Filter Equations 

X (&, 0) - initial estimate of state-vector 

P(&      - initial estimate of state-vector covariance matrix 

X(n+l,n) = A(n+l,n)X(n,n) + B(n)W(n,0), (35-a) 

I N(n+1) = r\(n+l,n)P(n)A (n+l,n) + B(n)Q(n)B (n) , (35-b) 

G(n+1) = 

X(n+l,n+|l) = X(n+l,n) + G(n+l)[Z(n+l) - H(n+l)X(n+l,n)] f (35-d) 

P(n+1) = fl - G(n+l)H(n+l))N(n+l),    n = 0,1,2,.... (35-e) 

M(n+1)H (n+l)[H(n+l)N(n+l)H (n+1) + R^+l)]"1, (35-c) 

10 
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ANALYSIS OF THE KALMAN FILTER 
DATA MEASUREMENT RESIDUALS 

REPRESENTATION OF THE PERFORMANCE INDEX 
IN TERMS OF RESIDUALS 

Data measurement residuals, which arise naturally during computations 
performed by the Kaiman filter, are defined by the equation 

Y(k) = Z(k) -H(k)X(k,k-l), k = l,2. (36) 

In effect, Y(k) is a measure of the error between the actual data measure- 
ment vector at time T^ and the best available prediction of that vector.   When 
taken collectively,these residuals provide reliable indication of how well the 
state-vector estimates "fit" the measured data.  In turn, such information can 
be effectively utilized to assess solution quality.  However, it is important to 
recognize that since the residuals are random quantities they only provide in- 
formation of a statistical nature.   The magnitude of any one residual has little 
significance by itself. 

hi the preceding section, it was pointed out that the performance index J(n) 
provides a basis for assessing solution quality on-line.   Since the residuals 
may also be used for this purpose, it would appear that these quantities are re- 
lated to J(n) in some way.   To determine this relationship, first note that equa- 
tions (f; and (9-a) may be combined to yield the expression 

n-1 .-1. J(n) = 1/2 £   [W[l,n) - W(1,0)1 Q'^CEM " BM)! 
1=0 

n 
+ l/2Hza) -H(l)X(l,n) +H(l)Aa,0)X(0,n) 

1=1 

- H(1)A(1,0)X(0. (^IR'^^IZd) - H(1)X(1, n)l. 

However, equations (4) and (7) reveal that 

X(k, n) - A(k, 0)X(0,n) + A(k, 0)X(0,0) 

k-1 
= X(k.O) +L   A(k,J+l)B(J)IW(J,n) - W0.0)1- 

J=0 

(37) 

(38) 

11 
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Coniequently,  J(n) may be rewritten In the form 

J(n) - 1/2 £(Wa,n)-W(l,0)lfQ"1a)lW(l,n)-W(ltO)] 
1-0 

+ 1/2^ [Za) - HtDXa.*»!'*"1 (DtZd) - H(l)X(l.n)l. (89) 
1-1 

E E iwo.n)-w(jlo)i,B,(j)A,(i,j+i)H,a)R"1a)iz(i)-Ha)xa.i»j 
i-i i-o 

- E   IBl,n) - W(l, 0)lV1(l)lW(l,n) - W(l,0)] , (40) 
1-0 

where the final result derives from equation (11).  If equation (40) la now sub- 
stituted into equation (39) it follows that 

J(n) - 1/2 E IZ(1) -Ha) X(1.0)l R    (1)IZ(1) - H(l)X(l.n)l. (41) 
1-1 

Next, note that equations (35-a), (36-d), and (36) maybe combined to 
produce the expression 

X(k+1, k+1) - A(k+1, k)X(k,k) + B(k)W(k, 0) ♦ G(k+l)Y(k+l). (42) 

which can also be written in the equivalent form 

k-1 k 
X(k,k) - A(k,0)X(0,0) 4 £  A(k,J+l)B(J)W(Jf 0) ♦ £ A(ktJ)G0)y(J) •       (48) 

J-0 J-l 

12 

.. 

+1/2 E E lW(J.n) -WO.O)! V^Aa.J^H'^R'1^^) - H(l)Xa.n)J 
1-1 j-0 

The second term on the right-hand side of equation (39) can be simplified by 
noting that 

, 

E  lW(l,n) " WMIBV) L,    AO.H-DIMDR^OHZd) - H(J)X(Jfn)l 
1-0 J-l+1 
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Comparing this equation with equation (4) reveals that 

X(k,0) = X(k.k) - E A(k,J)G(J)Y(J). 
J=0 

(44) 

Finally, substituting equation (35-d) into equation (44) to eliminate  X(k»k) 
yields 

X(kf0) = X(k.k-l) + G{k)Yik) - S A(k.j)G(J)]ÜJ) , (45) 

from which it is readily deduced that 

Z(k) - H(k)X(k,0) = [I - H(k)G(k)lY(k) + H(k) T, A(k,j)G(j)Y(J) . (46) 

If equation (46) is now substituted into equation (41), the performance index 
J(n)  takes the form 

J(n) - 1/2 £ Y{l)[l - G'fDH'fDlR'^lHZd) - H(l)X(l,n)l 
1-1 

n    1 
+ 1/2 E L  Y,(J)G,Ö)A,(1,J)H,(1)R~1(1)[Z(1) - H(l)X(l.n)l . (47) 

1=1 J=l 

This cumbersome expression can be greatly simplified by noting that 

L E i,a)G,ö)A,a.j)H,a)R"1a)iza) - H(i)3ca.iD] 
1=1 j=l 

= E iCDG'd)!: A,(j,l)H,(J)R"1(J)lZ(j) -H(J)X(j.n)l 
1=1 J=l 

n 
= L Y'^G'^JH'^R'V)^) - H(l)X(l,n)l + S(l,n)j , 

1=1 
(48) 

where the final results derive from equations (14) and (18).   Hence, by com- 
bining equations (47) and (43)f the expression for J(n)  reduces to 

13 
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J(n) = 1/2 £ imJR'V)^!) - Ha)X(l,n)] + G'^Sd.n)!. (49) 
1=1 

+ l/2Y,(n+l)JR"1(n+l)[Z(n+l) - H(n+l)X(n+l,n+l)l + G^n+^Sin+l.n+l)] , (51) 

where AX(1)  and AS(1)  are defined by equation set (24).   The next step in the 
reduction process involves substituting equations (25-d) and (26) into equation 
(51) to obtain 

v-     '       • -1 J(n+1) - J(n) = 1/2 £ I a)[G (1) - R ^DH^P^lASd) 
1=1 

+ 1/2Y (n+l)R_1(n+l)(Z(n+l) - H(n+l)X(n+l,n+l)l .      (52) 

Note, however, that  P(l)  and R(l)  are both symmetric matrices; consequently, 
the identity 

c'Oc) - R"1(k)H(k)P(k) = 0 , k= 0,1,2,..., (53) 

is easily derived by taking the matrix transpose of equation (34-a).   This 
relationship shows that the series appearing in equation (51) vanishes.   In addi- 
tion, the last remaining term on the right-hand side of equation (51) can be sim- 
plified by utilizing equations (35-c), (35-d), (35-e), and (36).   The result is 

Y'tn+llR'V+lHZai+l) - H(n+l)X(n+l,n+l)J 

= Y,(n+l)R"1(n+l)[I -H(n+l)G(n+l)]Y(n+l) 

= Y (n+l)[H(n+l)N(n+l)H'(n+l) + R(n+l))_1Y(n+l) . (54) 

14 

.1 
-    - 

However, since n is an arbitrary integer, it follows immediately that 

J(n+1) = 1/2 £   Y'wiR'VHZa) - H(l)X(l.n+l)l + G^DSd^+l)!.        (50) 
1=1 

Subtracting equation (49) from equation (50) then yields the recursive formula 

J(n+1) - J(n) = 1/2 2-1 a)(C (l)AS(l) - R ^HfDAXd)) 
1=1 
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The preceding equations may now be combined to produce a simple recursive 
formula for J(n); that Is 

J(n+1) = J(n) + l/2\ {n+l)[H(n+imn+l)H (n+l) + Rfn+ljf^n+l) , 

n = 0,ll2      (55) 

An initial condition for J(n)  can also be deduced from equation (49).   More 
precisely, since 

Jd) = i/2Y,a)jR"1a)isa) - wDxa.D] + cwsa.DJ 

= l/2Y,(l)R"1(l)[Z(l) - H(1)X(1.1)1 

= l/2y,(l)R"1(l)ri - H(1)G(1)1Y(1) 

= l/2y'a)[H(l)N(iyH,(l) + R(1)]'1Y(1), 

it follows from equation (55) that 

J(0) = 0 . (56) 

Although equations (55) and (56) are convenient for numerical work, a closed 
form representation of J(n)  is often more desirable for analytical purposes. 
Such a representation takes the form 

J(n) - 1/2 £ Y,(1)[H(1)N(1)H,(1) + R^l^Yd) . (57) 
1=1 

A comparison of this expression with equation (6) shows that the data 
measurement residuals also provide a weighted quality measure of the estima- 
tion process based upon the optimality criteria employed.   As such, it now 
becomes evident why these residuals can be utilized effectively to assess filter 
performance. 

An important feature of equation (57) not to be overlooked is that all quan- 
tities needed to calculate J(n) can be extracted directly from the Kaiman filter 
equations without further computation.   In addition, once the terms in the series 
have been evaluated they need not be recomputed with each new data measure- 
ment.   Consequently, for practical applications, the utilization of equation (57) — 
in lieu of equation (6) — can result in a significant saving of computer time. 

15 
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STATISTICAL PROPERTIES OF THE RESIDUALS 

The mean value of Y(k)  can be determined rather easily by combining 
equations (1-b) and (46) to obtain 

k 
H(k)[X(k) - X(k,0)l + V(k) = (I - H(k)G(k)lY(k) + H(k) £  A(k,J)G0)Y(J).   (58) 

J=l 

Taking the expected value of this equation and utilizing equations (2-c) and (4) 
then yields 

k 
[I - H(k)G(k)lEJY(k) j + H(k) £ A(k,j)G(J)E)Y(J)( = 0 . (59) 

j-1 

Since the index k in equation (59) Is arbitrary, it can easily be shown by 
induction that 

EJY(k)[=0, k=l,2  (60) 

In order to determine the covariance of Y(k), it is first necessary to prove 
the following identity: 

E)[X(k) - X(k.k-l)l(X(k) - ^(k.k-Dl'j = N(k). (61) 

To this end, assume that equation (61) is true for some fixed value of k.   By 
combining equations (I-a), (1-b), (35-a), and (35-d) it can also be shown that 

X(k+1) - X(k+l,k) = A(k+l,k)IX(k) - X(k,k)l + B(k)[W(k) - W(k,0)l 

= A(k+l,k)[X(k) - X(k,k-1) - G(k)Z(k) + G(k)H(k)X(k,k-l)] 

+ B(k)(W(k) -W(k,0)) 

= A(k+l,k)[I - G(k)H(k)llX(k) - X(k,k-l)I 

- A(k+1, k)G(k) V(k) + B(k)IW(k) - W(k, 0)]. (62) 

16 

n 
Earlier in the discussion, it was noted that the data measurement residuals 

are random variables and can only provide information of a statistical nature. 
The performance index also possesses these characteristics.   Consequently, 
knowledge of the statistical properties of both J(n)  and  Y(k)  is required 
before meaningful information can be extracted from these quantities. 

.i: 
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Consequently, the statistical properties depicted In equation set (2) and equa- 
tion (61) can be utilized, together with equation (62), to produce the expression 

EJ[X(k+l) - X(k+l,k)HX(k+l) - Xfk+l.k)]'! 

= A(k+l,k)j[I - G(k)H(k)lN(k)[I - GMHfk)]' + G^ROOGV)} A'(k+l,k) 

+ B(k)Q(k)B,(k) . (63) 

Note, however, that 

P(k) = [I - G(k)H(k)lN(k) 

= [I - G(k)H(k))N(k)[I - GOOIKk)]' + G(k)R(k)G,(k) . (64) 

Consequently, equation (63) reduces to 

E) lX(k+l) - X(k+1, k)] [X(k+1) - X(k+1, k) ]' j 

= A(k+l,k)P(k)A,(k+l.k) + B(k)Q(k)B,(k) = N(k+1), (65) 

where the final result derives from equation (35-b).   It has therefore been 
shown that if equation (61) is valid for any value of k, then so is equation (65). 
The last remaining step in this induction proof is to show that equation (61) is 
valid for some value of k.   In particular, let k = 1.   For this case, equations 
(1-a) and (35-a) can be combined to yield 

X(l) - X(l,0) = A(l,0)lX(0)    \{0t0)] + B(0)[^(0) - W(0,0)) . (66) 

If equation set (2) is again utilized, together with equatiors (35-b) and (54), it 
then follows that 

E\\X{1)-X(1,0)]1X{1)-X(1,0)]\ 

= A(1,0)P(0)A,(1,0) + B(0)Q(0^,(0) = N(l), (67) 

and the validity of equation (61) is established. 

17 
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1 
i 

The covarlance of Y(k)  can now be determined in a simple manner by | 
recalling that ^ 

Y(k) = H(k)[X(k) - X(k, k-l)J + V(k) . (68) J 

As such, the desired result 

EtiOOlV)! " H(k)N(k)H,(k) + W (69) 

E jj(n) ( = 1/2 L EJY^DfHiDNCDH'a) + Ra)!"1^) j 
1=1 
n 

= 1/2 S m " (l/2)mn . (71) 
1=1 

E j [J(n) - E {J(n)} J2 ( = (l/2)mn . (72) 

: 

can be deduced immediately from equation set (2) and equation (61).   It # fc 
might also be noted that 

E)Yf(k)[H(k)N(k)Hf(k) + ROOf^k) j 

- Trace ) IH(k)N(k)H,(k) + R(k)j"1E{ Y(k)Yf(k)|j * | i 

«Trace {[H^N^HV) + R(k))'1[H(k)N(k)H,(k) + R(k)l ( 

-Trace jlj = m , (70) ' * 

where m is the dimension of the measure meat vector Z{k).  With the aid of 
equation (70), the mean value of the performaoce index can be easily determined 
as follows: . . 

:: 

n 

A final statistic of importance is the variance of J(n).   In general, a . . 
closed form expression for this quantity cannot readily be obtained since fourth 
order statistical moments must be computed.   However, if all statistics are « • 
Gaussian, then J(n) will be Chi-Square distributed6 with   m«n degrees of 
freedom. Under these conditions, the variance of J(n) is given by 

n 

" 
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._ 

• . It is important to note that this statistic provides a measure of the permissible 
deviation in J(n)  from its expected value.   Unfortunately, since larger and 
larger deviations are permitted as the number of data measurements increases, 
it becomes progressively more difficult to extract reliable information from 
J(n).   More precisely, after many measurements have been processed, large 
deviations in J(n)  cannot be attributed solely to filter divergence, but instead 
may result simply from the accumulation of random errors.   The con- 
comitant ambiguity makes it impossible to accurately assess the true filter 
status. 

Fortunately, there are various ways to circumvent this difficulty.   The 
simplest technique is to introduce a "modified" performance index of the form 

L{n) = 1/2 I) y11"1)Y,(1)[H(1)N(1)H,(1) + Rd)!"^^ - m( , (73) 
1=1 

where y is a weighting factor which satisfies the inequality 

0<y<l. (74) 

The mean and variance of L(n) are given by 

E)L(n)j=0. (75-a) 

E  L>)   =- s-l. (75-b) 
2W  / 

i. 
Note that these statistics remain bounded as the number of data measurements 
increase.   In fact 

i  2     <       m 

lim E )L (n) { = jr . (76) 
ih»» 2(l-y ) 

For finite values of n, any desired variance in the range 

f<ElL2w(<f (77) 
r 
* * can be obtained by choosing y appropriately.   This flexibility is achieved by 

exponentially discounting past filter performance so that  L(n)   is influenced 
much more by current events than is J(n).   As such,   L(n)  will provide a re- 

19 
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liable quantitative measure of current solution quality which can be effectively 
utilized for adaptive control.   For example, if the values of L(n)  are statis- 
tically consistent, then it can be safely assumed that the Kaiman filter is per- 
forming satisfactorily.   However, if L(n> becomes statistically inconsistent 
during the course of operation (e.g.,   L(n) continually exceeds its one sigma 
limit), this would indicate that the filter is diverging, and appropriate preventa- 
tive action should be taken.   It might be noted that the effectiveness of any 
divergence prevention scheme can also be easily assessed by continually moni- 
toring  L(n)   for statistical consistency. 

For convenience, a recursive algorithm for numerically computing L(n) 
as well as a summary of its statistical properties is presented below: - ' 

I 
L(0) - 0 , (78-a) 

Y(n+1) = Z(n+1) - H(n+l)X(n+l,n) , (78-b) 

L(n+1) =yL(n) + 1/2JY (n+l)[H(n+l)N(n+l)H,(n+l) + R(n+l)r1Y(n+l)- m(,(78-c) 

EJY(n+l)( = 0, (78-d) 

EJ Y(n+1)Y (n+1) ( = H(n+l)N(n+l)H,(n+l) + R(n+1) , (78-e) 

E)L(n+l)j = 0, (78-f) 

EJLVD (- - (lJy2     \, 0<y<l , (78-g) 

where m is the dimension of the data measurement vector, and n = 0,1,2,... . 

n 

20 
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SIMULATION RESULTS 

To demonstrate the advantages of using a modified performance index for 
adaptive control, a target motion analysis (TMA) experiment was conducted. 
Since target maneuvers are a primary cause of divergence in present TMA sys- 
tems, the geometry depicted in figure 1 was chosen.   In this geometry, target 
maneuvers consisting of 180 degree turns occur at approximately 6 minutes and 
12 minutes.   Ownship motion is as shown and the turning rate of both vehicles 
is 3° per second. *   Ownship speed is 18 knots and target speed is 20 knots. 
Two experiments were performed with this geometry. 

First, an extended non-adaptive Kaiman fllter-TMA algorithm which 
utilizes a constant target acceleration plant descripcion was employed.   Data 
measurements consisted of bearing and range rate information.   Figures 2, 3, 
and 4 are plots of the target parameter estimate errors versus time.   In figures 
5 and 6, normalized valuest of the performance index J(n),   defined by equation 
(57), and the modified performance index  L(n),   defined by equation (73), are 
presented.   From examination of figures 2, 3, and 4, it is evident that the esti- 
mation errors become unacceptably large after the first target maneuver.   In 
addition, deviations (from expected behavior) apparent in figures 5 and 6 indi- 
cate that the filter statistics are no longer consistent with their a priori expected 
values.   Clearly, the target maneuvers have caused the Kaiman filter to diverge. 

In the second experiment, an extended adaptive Kaiman filtcr-TMA algo- 
rithm which also utilizes a constant target acceleration plant description was 
employed.   Here, however, plant noise was injected into the system to accom- 
modate mis-modelling errors introduced by target maneuvers.   The plant noise 
covariance matrix is adaptively varied according to the behavior of the modified 
performance index.   Figures 7,8, and 9 are plots of the target parameter 
estimate errors versus time for this case.   Figures 10 and 11 are the respec- 
tive analogues to figures 5 and 6.   Inspection of figures 7, 8, and 9 reveals 
that the error divergence observed in figures 2, 3, and 4 is no longer present; 
and examination of figures 10 and 11 indicates that the adaptive control mech- 
anism has effectively realigned the filter statistics with their a priori expected 
values.   Further examination of figures 10 and 11 also reveals the sluggish 
nature of the performance index J(n)  and the more responsive behavior of the 
modified performance index   L(n). 

""Turning radius of ownship is not shown in figure 1. 

fin this simulation, the performance indices J(n)  and    L(n) have been 
normalized so that both have expected values of unity for all n. 

21 I 
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Figure 1.   Target-Ownshlp Geometry 
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Figure 2.   Target Range Error vs Time (Non-Adapüve Kaiman Filter) 

: 

f! 
af nr tV.N       iV-w       35       15       AH      !>■•      tTi 

Figure 3,   Target Course Error vs Time (Non-Adaptive Kaiman Filter) 
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Figure 4.  Target Speed Error vs Time (Non-Adapüve Kaiman Filter) 
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Figure 5.   Performance Index vs Time (Non-Adaptive Kaiman Filter) 
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Figure 6.   Modified Performance Index vs Time (Non-Adaptive Kaiman Filter) 
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Figure 9.   Target Speed Error vs Time (Adaptive Kaiman Filter) 
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Figure 10.   Performance Index vs Time (Adaptive Kaiman Filter) 
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Figure 11.   Modified Performance Index vs Time (Adaptive Kaiman Filter) 
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CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

An important relationship between the Kaiman filter data measurement 
residuals and the associated system performance index has been established. 
The computational simplicity of the relationship not only permits on-lino eval- 
uation of the performance index, but is further exploited to deduce pertinent 
statistical properties of the index.   These statistics are subsequently utilized 
to formulate practical adaptive control criteria and to modify the performance 
index to enhance its reliability as a solution quality indicator.   The utility of 
the modified performance index for assessing filter status and for adaptively 
regulating the plant noise covariance matrix has been discussed and demon- 
strated via laboratory simulation. 

Even though the simulation results are preliminary they clearly illustrate 
that a significant improvement in filter performance can be achieved when this 
type of adaptive control mechanism is appended. 

Although the results presented here are encouraging, much work remains 
to be done.   In particular, a quantitative functional relationship between the 
modified performance index and the plant covariance matrix needs to be estab- 
lished.   A study to determine how at-sea data affect the behavior of the modi- 
fied performance index should also be conducted.   Finally, techniques to adap- 
tively compute both the mean and covariance of the plant noise should be further 
explored.   Current efforts are being directed toward the solution of these 
problems and the results of these investigations will be documented in future 
reports. 
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