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1. Introduction.

In this report we propose a method for recursive evaluation of
certain probabilities associated with two classes of finite homogeneous
Markov chains. These chains are next of kin to Bernoulli random walks
with reflccting and absorbing barriers. They may be roughly character-
ized by the following four properties:

(1) Except for the barrier stites, (one-step) transitions from each
state can be made to exactly two other states.

(2) The states are divided into two subsets, §S and S,, plus an

initial state in the absorbing case. States in S communicate

with states in Sb only via a pair of states, one®in each subset.

(3) Except for the absorbing states, the probability of transition
among states in S and among states in S has only two values,
P, 1 - P, and Sb, 1 - Py respectively.

(4) 1f states in each of the two subsets are ordered such that the
transitions with probability p are all between adjacent states in
one direction then the transitions with probability 1 - p are all
in the opposite direction, but not necessarily to the adjacent state.

A glance at Figures 1 and 3 may help to reveal the structure of a typical

member of those two classes.

We are interested in the ratio of limiting probabilities of a

chain being in the subset Sa and the subset Sb' In sections 2 and 3

we present a recursive formulae for evaluating these probabilities. Subse-

quent examples ehow that the computation is considerably simpler than the

classical method of solving systems of linear equations. Our method involves
nothing but repeated substitution and is easy to perform and program even

for a large number of states.

The need for studying these ratios arises in problems connected

with finite automata with binary inputs and outputs driven by a Bernoulli

sequence. These, in turn, appear in the so-called finite memory problems



(References (1] through [4]), which are currently receiving considerable
attention in literature.

The reason for writing this report is twofold. First since the
proofs of our formulae (Sections 4 and 5) are basically algebraic and thus
rather long it is usually necessary to condense the proof when the formula
is used as a lemma. Hence we wanted to have the proof documented in full
detail for reference. Next, it is conceivable that Markov chains of the
type studied here may be encountered in various stochastic models. Hence,
the second purpose of this report is to provide an access to our results
to other workers in the general area of stochastic modelling.

To this we would like to add that the two formulae can probably be
generalized in several directions. For instance, inspection of the proofs
indicate that the same method could still be used to establish similar
formulae for a larger class of chains, namely without the property (3)
above.

The part on ergodic chains (Sections 2 and 4) and the part on

absorbing chains (Sections 3 and 5) can be read independently.



2. Ergodic Chains.

Let L= (ra(Z),ra(J)....} and A {rb(2),rb(3),...} be two

sequences of positive integers such that 1 < t.(i) <i, 1<« rb(i) < i,

i1i=2,3,... With each such pair (Ea’r ) we assoclate a class
E(gﬂ,gb) = {Mn.m :n=1,2,.., ; m=1,2,...}

of finite ergodic Markcv chains. The chain Mn 5 has n + m states

which are divided into two subsets S. and Sb with n and m states

respectively.
We label the states in S. by (1,a), 1 =1,...,n, and the

states in Sb by (4,b), 1 =1,...,m. The transition probabilities are

as follows:

P((1,a) » (1+1,a)) .,n-1,

[ ]
©
-
[S9
L}
[
-

P((n,a) + (m,b))

[ ]
©
-

P((i,b) + (i+1,b))

P((m,b) + (n,a))
P((1,a) » (r (1),8)) =q,, 1 =2,...,n,
P((1,a) » (1,a)) =g,

P((1,b) » (r (1),b)) = q,, 1 =2,...,m,
P((1,b) * (1,b)) =

Here O < P, <1, 0« Py <1, q, = 1 - Py 9, - 1 - Ppe All other

transition probabilities are zero. The transition diagram is depicted in

Figure 1.






P iti : 5
roposition 1l: Let Mn - € E(Ea,gb), let u(s), s € Sa u Sb be its

stationary distribution, let

u(s) = Ju(s) and u(s) = ] u(s)
s€Sa sesb

be the stationary probabilities of the chain being in Sa and Sb

respectively. Then

u(Sa) P

u(s,) -

c 3

(2.1)

S
=

p

where An and Bm are polynomials in P, and Py, respectively satistyving

the recurrence relations

n
n-4%
A =p +q I Ap. o, A =1, n=1,2,..., (2.2)
n+l a a l=ra(n+1) fa 1
m ? m=-2
B =p +q ) B,p , B =1, m=1,2,... . (2.3)
] b b L=r. (m+1) £b 1

Hence, both An and Bm have integral coefficients and are of degrce
less then n and m, respectively.

(For the proof see Section 4.)

Example 1: Let (Ea'Eb) be given by the following table

i r (1) r, (1)
—a D

2 1 1

3 1 1

4 2 3

5 0 3

6 . .



Fiqure 2



let n=4, m=15. The transition diagram of this 9-state chain is

in Figure 3.
First evaluate AA and BS' From (2.2) we have
a3 3- 3-3
Aé pa + qa(AZPa 2+A3p‘ )

- Wl 2-1 2-2
A3 Pa + qulpa i quZPa ’

= + 1-1
A2 pa qaAlpa ’

= + =
A2 Pa a 1.

>
[]

2 +
3" Pa + QP 7 9,
.0l + 2 4 o020 4 o2
AA Pa 7 9aP, E %P, o P 7 95

or by substituting Q= l-p

Similarly from (2.3)
™ 4-3 bt
Bg = Py + 9, (ByPy 4B, Py
3-3

i
By, =Py ¥ 9,BP 7

-2 2-lyp o2-2
By = py + 9, (Bypy +Bpp 9)



and again substituting

Pt =1,
=pl+aqp +q

b b'b b
- T3 2 2 2
pb + qub + qbpb + qb ’

a pl 3 2p2 2

* APyt Ry Y Ry * gy

or substituting for q = 1 - Py

Hence, from (2.1)

3. p o+1,

Py

I _ L2
P p. +1
+
Pt 1



3. Absorbing Chains.

Let r = {ra(l).ra(z)....} and I - {rb(l),rb(Z),...} be two

sequences of nonnegative integers such that
0 < r'(i) <{, 0x< rb(i) < 1, i1i=1,2,...
With each such a pair (Ea’r ) we associate a class
A(E,'Eb) - {“n,m :n=1,2,... ;3 m=1,2,...}

of finite absorbing Markov chains. The chain “n a has n+ m+ 1 states,

two of them absorbing and the rest transient. One state is always
designated as an initial state while the remaining n + m states are

divided into two subsets Sa and § with n and m states respectively,

b
each containing one of the two absorbing states.
We label the states in Sa by (i,a) 1 =1,...,n with (n,a)

absorbing, and the states in S, by (1,b), { =1,...,m with (m,b)

b
absorbing. The initial state is labeled (0,a) or (0,b) or just O
as needed.

The transition probabilities are as follows:

P((i,a) » (i+l,a)) = Pys i=1,...,n-),

P((n,a) + (n,a)) = 1,

P((1,b) » (i+1,b)) = Py i=1,...,m"1,
P((m,b) + (m,b)) = 1,

P((1,a) + (r,(1),8)) = q_, 1=1,...,n-1,
P((1,b) » (rb(i),b)) = Q i=1,...,m-1,
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(0 + (1,a)) %a
P(0 + (1,a)) = —— ,
Pa + Pb
Py
P(O + (L,b)) = —
a pb

Here 0 < P, <1, 0« P, <1l, q =1 -~ P,r Q4 = 1l - P,- All other

a
transition probabilities are zer~. 7The transition diagram is depicted

in Figure 2.

Proposition: Let Mn,m € A(Ea,gb), let w(a) and w(b) be the probabilities
of absorption in the state (n,a) and (m,b) respectively, if the initial

state is the state 0. Then

"B
n(a) _ Pa “m (3.1
ﬂ(b) = m A ’ o..)
P, D

where An and Bm are polynomials in pa and »p respectively satisfying

b

the recurrence relations

E k-ra(k)
A =1-q A P , A, =0, n=1,2,..., (3.2)
n+l a 29 ra(k) a 0
m k-rb(k)
Bm+1 =1 - 9 L Brb(k)pb " B0 =0, m=1,2,... . (3.3)

Hence both An and Bm have integral coefficients and are of degree
less than n and m respectively.

(For the proof see Section 5.)



INITIAL

Figure 3
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Example 2: Let (Ea,gb) be given by the following table

i :a(i) rbﬁi)
1 n 0
2 1 1
3 1 1
4 2 3
5 C 3

let n=4, m=5. The transition diagram of this 10-state chain is

in Figure 4.
First evaluate A4 and BS' From (3.2) we have
= — 2"1 3-1
A4 J qa(Alpa +Alpa )
= - 2-0
A1 1 quOPa !
AO =0,

and substituting from the bottom to the top

A, =1,
e - - 2
A, =1-4qp, -ap;
or substituting for q = 1 - Py
= nd -

Similarly from (3.3)

=/
[

= 1 - q (Bp21+B,pl"1+B,p")

=]
n

} 2-1
3 =1 7 qBippT

B, =1,
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and again substitut ing

B, =1,
By =1l-pgq .,
-1 - - 2 . 2.2
Bs =1 -ppq - plq Podp * PLag »
or

= 3 Sm2 =
B 2pb pb pb+l.

Hence, from (3.1)

W o903 _ 2
n(a) Pa fPp " Py "B *1
3_ 3

n(b) Py Pp P, t1
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4. Proof of Proposi+'on 1.

Let P be the transition probability matrix for the chain Mn 2
»
where the first n rows and columns correspond to states (l,a),...,{(n,a)
and the following m rows and columns to states (m,b),...,(1,b).

Let p = (u(1,a),...,u(n,a),u(m,b),...,n(1,b)) be the stationary

distribution, so that
pu(I-P) = 0 , (4.1)

where 1 1s the identity matrix. Now partition the matrix P into four

submatrices

Row:
3 All 0's 0
q, 2
. _ 0 r (1)
a H\
q, 0 Py 0 i
\Pn
q 0 n

Column: 1 ra(i) i n
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and P is an m x m matrix

b
Row:
0 qb n
Ph
0 Py O qy 1

b 0 Pp0 g r (1)

0 P, 0 9
0 Py 9 " 1
Column: n i rb(i) 1

Notice that each row of these matrixes contains exactly one entry g,
namely the (i,r(i))EE one, and that the labelling of rows and columns
of Pb begins at the lower right corner while the labelling of Pa is
the usual one (beginning at the upper left corner).

The off-diagonal matrices V. and Vb consist of all zeros except
for the lower-left corner entry of Va, which 1is P, and the upper-

right corner entry of V wi:ich 1is P

bl
With this partitioning the equation (4.1) decomposes into two
equations

!a(I-Pa) - (0,...,0,u(m.b)pb), (4.2)
Hb(I-Pb) = (U(n:‘)Patob“'no): (4.3)

where
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o= (u(l1,a),...,u(n,a)) ,

and

‘E'b = (U(m)b)r"'oU(lob))-
Consider the matrix equation (4.2) first. Solving for By gives
= (0,...,0,u(m,b)p ) (1-p )}
‘Ea L IR Al ] ? b a 1]

or denoting a the (1,j)£h entry of the inverse (I-Pa)-1

1)

u(i,a) = u(m,b)pban.i. j=1,... n. (4.4)

By the well-known formula for matrix inversion

|1 |(J.i)

a S ’
N
a

vhere | I -P_ | 1s the determinant of I -P_ and | I - P |
a a a (knl)

is the (k,l)sﬁ cofactor of | I - P |. Hence

n u(m.b)pb n
U(Sa) - 121 u(i,a) = T—T—:-F;—T 121 | 1 - Pa |(i,n)' (4.5)

Next let An be the determinant of the n x n matrix obtained from

1- Pa by replacing the nEll column by a column of 1's,
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A = ‘—L\l ) (4.6)

Expanding An along this last column we obtain

n

A = 121' I-P, I(i'n).

since the (i,n)—th cofactors of A, and | T - Lo | are identical.

Thus, (4.5) can be written as

u (m'b)pb

M T TTE, T A
a
Next since the only flow of probability between sets S‘l and Sb is

through states (n,a) and (m,b) we must have
U(msb)pb - U(np‘)P. (407)

in the stationary regime. Using (4.4) we obtain

| 1 -Pp |
u(n,a) = u(m.b)pb a_(o,n) ,
|1-¢, |




and substituting from (4.7)

But

- Pa l(n,n) "

| 1-p, | =p|I-

P."'F.
-, 1 -p, ‘1\
Pq, 1-p,

19

Pa |(n,n)'

which 1s same as the determinant of the (n-1) x (n-1) matrix I - Pa

obtained for the chain Mn-l,m € E(Ea,gb).

script (n)

(n) (n)
| 1 -p " | =l I

(n-1) _ p(n-1) |

Employing temporarily the super-

for the number of states in Sa we have a recurrence relation

and since | I(l) - P:l) | = P, ve obtain

Thus

(n) (n) n
| 120 - p " | =g

A

n
u(S.) - u(m,b)pb.

Pa

Now going back to (4.3) and repeating all the steps above we obtain a

similar expression
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B
u(s,) = — u(n,a)p_,

Py

where Bm is the determinant of order m

1 \\\ ~q,
'h\:\\
1ot )
B = 1{:\\\.
m jﬂ \\
1 P, 1 -9,
1 Py Pp
Hence, using again (4.7) we have
m
SN
u{s,) n B °’
b p, m

and it remains to prove that An and Bm satisfy the recurrence relations
(2.2), (2.3).

We begin with the determinant An. To evaluate this determinant
let

I1 = {({=2...,n: r.(i) -1} .

Notice that 11 is the set of exactly those row indices 1 for which the
(i.,l)-t-E entries in (4.6) are -q,- Now multiply the first row in (4.6)
by qa/pa and add it to all rows such that 1 €1,. The determinant

becomes



3 (n)
P -P t12
0 p-p .
. =q 1 L .
™ ,
. 1l -p 9
An - . \\\:a: . U
. -q 1 -p’LHW .
0 t12

where we temporarily dropped the subscript a to ease the notation.

entries in the last column are given by

1’
)

l+q/p 1f 1 €1
0|

1 if 1¢ Il'
Expanding this determinant along the first column we have

Dgn) - pD;n).

where D{n) = An is the original determinant (4.6) and
(n)
PP t22
“q ) = LH.l .
\\\\1 -p 3
(n)
Dz .
-q 1 -P_LLL\ .
En)
t2n

21

The



22

is of order n - 1. Notice that the entries in the first column in Dgn)
are -q only for row indices 1 = 3,...,n such that either r(i) =1
or r(i) = 2. Hence, calling I = {1 =3,...,n : r(i) < 3}, multiplying

the first row in Dgn)

by p/q and adding to rows with 1 € I2 this

determinant becomes

(n)
Sy €32
0 p-p .

/4

ol
£

3 -q 1 —pquﬁ.
. En)
0 tzn

The entries in the last column are

(n) , p ,(n) '
tye *q t22 1f 1¢€1,
L
31 (n)
t21 i1f 1 ¢ 12.

Expanding again along the first column we have

(m) . . (n)
D2 p03 5

where P -pP t

&, .

) -p c

o \ .
D3 o .
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Proceeding in this fashirn we obtain a sequence of determinants

(n) _(n) (n)
D1 D, seeesD (4.8)

\
vhere D{n) is of order n - k + 1. The entries t‘(‘:‘ in the last

satisfy the recurrence relation

column of Din)

(n) , p,(n) .
(a) { tki + q tkk 1f 1 & Ik’
t (4.9)

ktl, 1 ()
ey if 1 ¢ Ik’
k=1...,n; L =%k,...,n, t

where

Ik- {i = k+#1,...,n : r(i) < k}.

Further

(n) (n)

Dygy = PO

so that

(n) n-1_(n) n-1_(n)
DI. =p ll)n =p Tt - (4.10)

(ntl)

Consider now the determinant A of order n+ 1 obtained

by using the same sequence I,

PP 1
-ql-P,LLIIH 1
-9 1.-p
AL =
-q I—P'LL 1
\
-q 1 1
-q 1




Applying the above procedure to D

where the determinants

n+ 1.

Arrange now the last columns of the sequences (4.8) and (4.11)

D{n+1)

(n+l)
Dy

into triangular arrays as follows:

t

T(n)

t

t

t

(o)

t

(n)

(@) (n)
12 * "22

(n) t(n)

In * 2n

(n+1)
11

(n+l)t(n+1)
12’22

(n+l) t(n+1)
In ’ 2n

(1) (ntl)

t t

1,0+1%2 041

{nﬂ) - A0t

(nt1)

'....Dm'l »

we obtain a sequence

t(n)

nn

¢ (otl)
nn

t(:r+1)t(n+1)
n,n+l’ ntl, okl

24

(4.11)

again satisfy (4.9) with n replaced by
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Since for 1 £ n by the definition of sets Iin)

1€ Ii“) 1f and only 1f 1€ L(™D)
the first n rows of T(n) and T(n+1) are identical, {i.e.
g e ™D ik ng k=1, (4.12)
Next by (4.9)
1 1f k = 1,...,r(n+l),
(1)
k,n+1 -
1+4 :’(_“:1) 1f k = r(mtl)+l,...,mHl.
P pur(at1)

In particular for k= n+ 1 since r(ml) <n+ 1

(m+l) q v (D)
t =1+ ) ot : (4.13)
ntl,ntl P g=r (n+1) 22

But by (4.12) for 2 <n+1

t,f:ﬂ) - t::) - ... = t::').
so that (4.13) becomes

() g § ()

o1, okl P pap(or1) %4
Hence, by (4.10)

p{ntl) p{¥)

n
—oaodd o
p P gap(utl) p
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(n)

or calling again D1

= A we have
n

n

n n-L

A =p + q 2 A, p . n=1,2,...,
nt+l a a L=r(n+l) )

where clearly Al =].
The recurrence relation for Bm is established in exactly the
same fashion.

Noticing the obvious fact that the polynomials An and Bm must

have integral coefficients completes the proof of Proposition 1.



o |
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5. Proof of Proposition 2.

Notice first that with 0 being the initial state any subsequent
visit to this state is a recurrent event. Call this event EO. Next call
Ea the event which occurs if the chain after leaving the state 0 reaches

the absorbing state (n,a) without any further visit to state 0. Similarly,

define Eb for the absorbing state (m,b). Now clearly
P(Eo) >0,
and since the absorbtion in (n,a) occurs if and only if we have either

Ea or ROEa or ROROEa etc.

P(Ea)

@t TTREy

and similarly
P(E,)

®(b) = 1 - P(Eo) ’

so that,

ERE]
~
o'l
~

[ ]
| v
~ ~
] tm
[+
|~
-

(5.1)

Next

p
P(E ) = —— p(E}), (5.2)
a P, + Py a

where E; is the event which occurs if and only if the chain after leaving
the state (1,a) reaches the absorbing state (n,a) without ever visiting
the state 0.

Consider now a subchain M: obtained from the chain “n & by

making the state 0 an absorbing state and deleting states (1,b) though

A O N FE R IR ST
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(m,b). The transition probability matrix for this subchain is the

(n+l) x (ut+l) matrix

1 0 0
" All 0's
P = .
a
) A 11\\
g 0 P,
n '] - L] - L] D -1

1f this subchain 1s started at the state (1l,a) then P(E;) is
equal to the probability of absorption in (n,a) for this subchain. Using
the well-known result from the algebraic theory of Markov chain (cf. (5],

Theorem 3.3.7) we have
1y =
P(Ea) paul,n-l’ (3.3

where [aij] = (I-Qa)-l and Q‘ is the (n-1) x (n-1) matrix of transi-

tion probabilities between transient states of M:, i.e.



0\\? All 0's
\;Ei?i}7
P, 2111L
U 0p,

By the formula for matrix inversion

where | I - Qal is the determinant of I -Q_ and

is its

n
II-Qal(n‘l.l) b (_1)

I L- Qal(n-l,l)

“m-1 TTT -0

(n-l,l)E£ cofactor. Now

All 0's

29

IR PR

(5.4)

(5.5)
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Following the same procedure for the event Eb we obtain

m
P
-0 1

where Bm = | I- Qb | and Qb is the (m-1) x (m-1) matrix of transi-
tion probabilities between transient states (1,b),...,(m-1,b). Hence,

(5.1), (5.5) and (5.6) yields (3.1) and it remains to establish the recur-

rence relations for An and Bm'

To do this we evaluate the determinant

l-p All 0's
-q 1-p
Al‘l = ’
-q 1_-p_\1\|\
-q 1

where we dropped the subscript a to ease the notation. Notice that An
is of order n - 1 and that each row but the first has either exactly one
subdiagonal entry equal to -q, namely the (1,r(1))£h, or all subdia-
gonal entries are zero. The former case occurs if r(i) > 0 while the
latter 1f r(1) = 0.

Next consider the determinant An+ of order n obtain for the

1
chain Mn+1 & with the same (E‘.Eb). Then
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)
| 0
' Ll
l.
%ﬁl - An »
lo
|
————————— '—P'—l
_q '1
Now 1if r‘(n) = 0 then there is no =-q in the last row and hence
An+1 = An' (5.7)
1f ra(n) > 0 then expanding An+l along the last column gives
An+1 = An + pDn, (5.8)
where
Lo
|
|
D A )
n n-1 P’
j 0
r ________ I=P_|
-q lo

is of order n - 1. Notice that the entry -q in the last row moved one

step to the right. Expanding Dn again along the last column gives

Dn = pDn-l'

where D is of order n - 2
n-1

ey IR



32

lo

' *
|
5 |

= A ¢ .

n-1 n-2 |0
|

I

-q 10

Now repeating this the entry -q eventually (after n - r.(n) steps)

reaches the diagonal and we have

'0
|C
|
D = A o
ra(n)+1 ra(n) l.
l0
|
L e e e e —— )2
0 . . . . 0'yq

and expanding this determinant along the last row yields

D = "qA .
ra(n)+1 r‘(n)
Substituting back into (5.8) we obtain

A = A - qpn-r(n) A

o+l n r.(n). (5.9)

which holds for any n = 1,2,... s8such that

ra(n) > 0.
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To include the case ra(n) = 0 define AO = 0. Then (5.9) reduces to
(5.7). Finally, repeatedly substituting for An in (5.9) and using the
obvious fact A2 = 1 we obtain the recurrence relation (3.2). Notice
that (3.2) holds also for n = 1 since ta(l) = 0 always.

The relation (3.3) for Bm is established in exactly the same
feshion from | I - Q |.

Noticing the obvious fact that the polynomials An and Bm must

have integral coefficients completes the proof of Proposition 2.
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