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ABSTRACT

The use and processing of the FM/CW signal for radar and acoustic
sounder systems are examined in this note. This signal--along with real-
time digital processing via minicomputers--is currently being used by
several groups for HF over-the-horizon radars. A comparative analysis
of the different prccessing techniques for general radar applications
has yet to be undertaken. This note therefore attempts to promulgatc
details of these techniques so that they may find use in other systems.
An example involving an HF backscatter radar is used to permit the reader
to see how the techniques are applied to an actual problem.

A linearly swept-frequency signal format is used in a 100% duty-
factor mode. In the receiver, a replica of the linear FM signal is mixed
with the received waveform at an offset such that the desired range window
is observed with the lowest possible IF frequency variation. This pulse
train is then analog-to-digital (A/D) converted and ready for computer
processing. Two techniques are described and analyzed for digitally
processing the signal via the Fast-Fourier-Transform (FFT) algorithm.

The first is a double-FFT process; the first FFT set is done within a
pulse-repetition-interval (PRI) to give range information. The next FFT
set is done over N PRIs to give Doppler information. In the second
technique, a single long FFT is used over N PRIs, giving simultaneously
both range and Doppler information. It is shown that both techniques are
identical, in that they produce the same information and require the same
number of computer steps in executing the required FFTs. Both technigues
yield unambiguous range and Doppler, for both discrete and distributed
targets; the note shows how and where this information is contained in
the processor output. The note also describes how two weighting functions
are normally applied to the pulse train time samples to reduce objection-
able range and Doppler sidelobes. Finally, simple "cookbook" rules are
given for obtaining the signal and processing parameters based on the radar
and target range/velocity specifications.

Preceding page blank '
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FM/CW RADAR SIGNALS AND DIGITAL PROCESSING

Uonald E. Barricx

1. O0BJECTIVE

The objective of this note is to present a simple and concise
analysis--backed by an example--of the application of an FM/CW signal
format in radar systems. It is shown how both time-delay (range) and
Doppler (radial velocity) information can be extracted unambiguously.

2. APPLICATION

For the sake of illustration throughout these notes, we pick the
following application and example. The HF radar cariier frequency is to
be 10 MHz. Sea scatter is to be observed from the radar out tec a range
of 150 km {corresponding to time delays up to 1 millisecond in a back-
scatter radar). It is known that HF sea scatter is confined spectrally
to frequencies within about 1/3 Hz of the carrier. Therefore a pulse-
repetition-frequency, fr’ of 1 per second is selected so that all echo
Dopplers within + 0.5 Hz of the carrier will be displayed unambiguously.
To show sufficient detail, a Doppler processing resolution better than
0.02 Hz is desired, and a range resolution of the order of 1.5 km is
desired; the latter two requirements in an ordinary pulse-Doppler system
translate to a coherent integration time exceeding 50 seconds and a
signal bandwidth of 100 kHz, respectively,

3. TRANSMITTED WAVEFORM

We select a 100% duty factor signal whose frequency sweeps upward,
1inearly, over one pulse-repetition-interval Tr (Tr = l/fr = |1 sec for
our example). Since a 100 kHz signal bandwidth is desired, the signal

can be written
vT(t) = cosfu.t + 7 Bfrtzl = cos[¢T(t)] (M)

for 'Tr/Z <t Tr/2. It 1s assumed that the signal is periodic, and
hence phase-coherent from one repetition interval to the next.
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; ? Since the instantaneous frequency, fT(t). is the derivative of the
é phase, we have

'

| 7(t) = 3 —ge— = £+ Bf L, (2)
3 where here f_ = 10 Miz, f. =1 Hz, and B = 100 kHz. Thus it can be

seen that the frequency excursion of fT(t) over one pulse-repetition
interval is

AfT(t) = B = 100 kHz. (3)

The amplitude of the transmitted signal is taken to be unity. The
plot of signal frequency vs time is shown in figure 1.

4, RECEIVED WAVEFORM
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Figure 1. Frequency ve time of transmitted and delayed/Doppler shifted
received signals.




The received signal is both delayed in time and shifted in Doppler.
To 11lustrate the situation, we assume that we have a discrete target at
range 15 km and travelling radially away from the radar at vs=5 m/s (e.g.,
an ocean wave). At time t=0, the target is exactly at R,=15 km from the
radar. After that, its range is a function of time as

R(t) = R +vt . (4)

The received signal from this discrete target is thus just a replica
of the transmitted signal, but multiplied in amplitude by a factor A
and delayed in position by a factor t,, where t = 2R(t)/c. It is thus

Valt) = Avp(t-t) = Acosluw (t-ty)+mBf (t-t4)?] (5)

its frequency {s shown in figure 1 as the dashed curve.
5. DECHIRPED SIGNAL

Now after RF amplification, we mix the received signal with a rep11é£
of the transmitted signal; this is represented mathematically by sub-
tracting a phase o (t) from ¢T(t-td) to give a signal

vx(t) = APT(t)cos[wc(t-td) - mct'.ﬂrBf',(t:—t;d)2 - 'anrt’] . (6)

There is also a sum signal with phase ¢T(t)+¢T(t-td). but ft 1s
near 2u. (twice the carrier), and hence removed by filtering. The function
PT(t) denotes a pulse of unity amplitude and width T, where here,

T= Tty

Thus the mixture of the two sawtooth frequency waveforms and their
subtraction, as shown in figure 1, produces a siagnal whose frequency
format, fl(t). is as shown in figure 2. The two frequ.ncies are

£ov e Lopit iy - oq(0)] (7a)

and
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f, = o o [op(t=ty) - or(t4T)] . (70)

The intermediate, dechirped signal can be represented as the sum
of two pulse trains as <hown in figure 2. One, vl(t). is at frequency
fl. and the width of these pulses is T = T -t,. The ather, vz(t). is
at frequency fz. and the width of the pulses is T-td. it will be
possible to eliminate vz(t) by filtering if fz>>f1; such will be the
case here.

Figure 2. Frequenoy and amplitude plots ve time of received signal after
dechirping.
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Therefore, we are left with a single pulse train to analyze, as
represented by equation (6). It is possible to re-certer the time origin
so that it falls in the middle of the first puise; this is done in
figure 2. The frequency and phase from pulse to pulse are changing very
slightly, howaver; we will analyze this now.

5.1 -T/2<t<T/2 é

Let us simplify the phase in the first pulse; denote internal time,t,
within this pulse as t;. Using t=t; and t =2R/c=2R,/c+2vt/czty+2vt,/c, i
(where tOEZRO/c is tue initial delay of the signal), we have !
¢I(t1 )§¢T(t1 'td)'¢'|'(t-| ), or

s [-20 2 v 2y
or(ty) = [-2nf t +nBf 7] + 2n[-2 & £ +Bf t) o= -Bf .t ]t,

2v v
-2npf,s = (1 - 2] . (8)

Thus we have three co-itributions to the phase: a constant, a linear
term in time ty» and a quadratic term in time, t1. For the parameters
of the example, however, the quadratic phase term is always small within
the interval -T2 <ty < T./2; e.g., at t1=Tr/2, it is of the order of
0.005 radian. Also, it can bz shown that the second term in the linear
factor is small compared to the first term and is also much less than one
radian. Of course, in all cases under consideration here, v/c << 1, i.e.,
target velocity is small compared to propagation velocity. Therefore we have

e e |

oy(ty) o -2nl EL £ 4BF t 0L, (9)
hence within the first pulse, the frequency f, s

2y
f,o= S8 feBft, . (10)

As can be seen, this frequency offset (also shown in the preceding
figure) consists of two terms: the first due to the target velocity and
the second due to the time delay (or range) to the target (t,=2R,/c=N 1
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millisecond for R°=15 km). For the example selected here, the second
term (range term) is larger; i.e., %g-fc= %—Hz, Bf.t,=10 Hz. Thus
1t is not possible to separate range from target velocity by measuring
frequency f, within a single pulse.

5.2 (Zn-T)TrIZ <t«< (2n+1)Tr/2

Here we want to examine the phase in the n-th pulse, assuming that
the n=0 pulse is the one centered at t=0. Again, we describe the time
within the n-th pulse (from its own center) as t;. The time delay to
the target, t;, however 1s now given by

ty = 2R/c = 2Ry/c+2vt/c = tor2v(nT ) /e (M)

where we describe time to the center of the n-th pulse as nTr. We can
now substitute this into the phase:

¢In(t1) = ¢T(t‘|-td) - ¢T(t1) (]2)
= -ty - -zcl ty - w. -ZEV- nT,. + mBf [t + _?E! (n’!'r,+t1)]2

2v
- 2mBf [t + T (nT +ty)]

After expansion and elimination of terms which are small compared
to others and also small compared to one radian, we have (assume n <100)

bpalty) = o, - 2nfe oot - onl Zogamee, ¢ Realey o (13)
hence the frequency in the n-th pulse is the quantity in square orackets,

i.e.,

2y 2v
f, = Y fC*Bfrto* Y 8n. (14)

n

Comparison of (14) with (10) shows that the frequency in the n-th
pulse is fdentical to that in the first pulse, with the exception of the




third term. The explanation for tha third term is simple, It marely
means that the target is moving from pulse to pulse, and its range at the
center of the n-th pulse is R,+c(2v/c)nTr/2 - R.+vnTr. as we would
expect. Since we want to integrate over as many as 100 pulses, the third
term is not negligible as n increases; e.g., at n=100, %}-Bn " %-Hz.
Two other effects occur within the pulce; 1ts width, being T'Tr'td
changes very slightly from pulse to pulse. Since T second,
ty = tyr(2v/c)nT,., we have for n=1, T = 1-107" si for n=100 we have
T = 1-107"- %-x 10°% s.  Thus the change in pulse width {s nagligible.
A very important second effect, however, is the change in phase from pulse
to pulse, as represented by the second term in (13). This phase change
shall in fact prove to be the basis for the Doppler processing. As stated
earlier, all of this assumes that the transmitted signal is phase-coherent,

i.e., ¢T(t+Tr)'¢T(t) = non-varying constant.
6. DOUBLE-FFT DIGITAL PROCESSING

Here we want to demonstrate how a double Fourier-transformation
process can be used--often in real time because of the discovery of the
digital fast-Fourier-transform (F.T) algorithm--to produce a time-delay
(range) and Doppler (velocity) display of the radar target data*. The
first Fourier transform process is performed over a pulse repetition
period, T, (i.e., within a pulse) to obtain target range. The second
Fourier transform is then performed over several pulses of these data to
obtain target Doprler or velocity.

First, let us perform a Fourier transform on a single pulse. This
is shown in figure 3. We have a pulse of width T = Tr‘td' amplitude A,
and frequency f1 given by (14). To perform this Fourier transform
digitally, one must sample the pulse M times within the time period
Tr‘ The number M daepends upon the maximum value fl can assume, and
M/Tr must be at least twice this value, i.e., fomax' according to the
Nyquist theorem. For the problem considered earlier where we want to

*This technique is currently being used by the Stanford Research Institute
for real-time processing of HF ionospheric radar signals at their Wide
Aperture Research Facility (WARF); (Sweeney, et al., 19T1).
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display possible targets at all ranges from zervo to 180 km, this co‘responds
to a frequency variation in f from O to 00 Mzy hence N wust be
greatar than 200 since T} ue. Since FFT processors require that

Mok, wherc k 18 an !nuoor. M=286 would suffice,

_fi _ﬁ"xnm v, (e 0' |o /T

: ; ' “'h\ ftn ‘ f
I
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Fgure 3. Single pulee and irs Fourier ksmaform,

The Fourier transform of the pulse is then
T/2

vm(f) -I A[cosom(t‘)]c
~1/2

~i2nfty Js
“\

or

stn2n(f-f1,)7/2) -1eHinfe: &y,
) - § e

s‘lnlzw(ﬂf]n)T/?)]‘&-M, i2nf, !gm } - (15) i
Y TET 1/2)
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This Fourtar transform 13 shown in figure 3. Since we started with
WeRf saxTy S0Mplas (NeR0O minimum), we obtatin samples in the frequency
domatn from =f,p 0 ¢f 0y o0, At Nlet T, positive values of fre-
quency, These samples are complex in &gznril. 48 evidenced by the exponentia)

——

phase factur cuntaining ¢, and Inf, nT, + Thus we conceptually have
M/2 vange bins (M/2=100 here), parmitting uv to realize the ). km range
resolution over a 180 km window, as inttially atipulated. Note that each
N/2 resolution element after the firat FFT can be consideved a range bin
80 long as the Doppler term, (Rv/c)f., 13 small compared to the vange
term, Bf.ty; thia s true for the example considered here. Since each
pulse s approximately 1/T wide at the half-powar point (TtlY, = | sec
here), we should be able to resolve 100 targets in range because the width
of each FFT pulse in this 100 Hz window 18 ) Hz. Hence after one FFY
process within a pulae we have range information, but no Doppler information;
we turn now to extraction of Doppler.

Note that {f we start with the first pulse at ne=l and do this FFY
process on each pulse, we obtain a Fourier transform n times, where we
avsume ns N (some upper value). Since the trequency, o and phase,
2nf, %} nTy, shifts slightly from pulse to pulse due to target velocity
(as given in (14)), this sine/e pulse in the frequency domain will change
very slightly after each Fourier tranyformation. Since our digital FFY
1s capable of producing numbers at M/2 discrete points, (15) should really
be written with f replaced by | = gﬁ f max WNere -N/2smsN/2.

Thus the first FFT process on M samples within a pulse gives M/2
range bins for each pulse. For each successive pulse, this FFT gives M/2
additional positive frequency samples. Digitally, we store wach M/2
samples in rows of a matrix, as shown in figure 4, until we have N rows.
Thus, we have an M/2-by<N matrix whose columns so far represant range
bins.

Now, we perform another FFT ovar each column, or range bin. This
will require N points altogether. Each matrix element is a complex

number whose value charnges in a column because the frequency, f:u' and
the phase, 2nf . %} nTr. are changing from sweep to sweep. Since each

of the N vertical elements comes from a different pulse Tr sec apart,

s ma -



NY,. aec are vequired to f11) this mutrix, Ale0, n can be related to time from
the first pulse by uso of tenl,, or met/T, (agatn, Y<n<N), Hence each
column 13 really & function of time, and the N column olements can be
consideved (digital) samples of this time function,

To Fourter treansform over a typical column (say the m-th), let us
again refer to our example for the target at R, =16 km; this target
wil) appear tn the m=10 bin for MN/2100. A2 we saw bafore, this produces
fip 1004 } N Q- + 10™" Hz, Thus for n running from 1 to 100--
corresponding to time running batween ) and 100 seconds--two things happen
to tha positive pulse in the
m=th range bin: 1ts amplti-

tude changes slightly due to o RANGE RINS s

the shift of the sinn/e s” sn. - s“. N SW.
pulse because of f,,, and
fts phase changes. The S“ S"' "o Sm. v S‘W.

amplitude variation from a=l

to n=100 is slow. For the .

example given, the shift 1!\ S R

the pulse due to f,, s 3 He ni nt nm nN/2
over N=100 pulses; the 3 dB

width of the sinx/x pulse is '

1/T«] Hz while the total s S . .. S . S

width between the first nulls b N N NN/A

1s 2/T#2 Hx. Hence the Figure d. Natriz gontaining ronge-Doppler
amp){tude variation within a ;,'gb;roagﬁ:‘.“"‘d with double-

coiumn 1s s1ight, and can be
represented in most cases by a constant or, for more accuracy, by a constant
plus a small linearly varying term; the vesults will not differ signi-
ficantly for either case. Hence we represent the amplitude by a constant
(1.0., sin[zw(f-fm/z5T/2]/[2w(f-fm/2)T/2]. its value midway down the
column where n=N/2) and leave the second representation as an exercise
to the interested reader,

Thus the only varfation now within the column (at the positive
frequency corresponding to m) is the phase factor, i.e.,

10
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in the rightmoat expression, nTr has been replaced by t, to represent the

diavrute flow of time from pulse to pulse. The Faurier transform of this
quantity over t, from 0 to NT, is

sin(an{t- g 1 INT,/2)
. KNT . wh 7
o T (an(e- AL £ ONT/2) b ()

here again we should note that our digttal FFT does not really give a
continuous variation over f (frequincy), but will compute values at N
discrete frequency points., The question arisas as to how we should choose
these N frequency points, 1.e., how wide a frequency window do we want
to display. Since our PRF, f.(f.=1 Hz here) results in an unambiguous

Doppler of ivﬂx. we would logically select fnnnx"} fr(= ;-Nz here) so
as to display all of the unambiguous Doppler window. Then the frequency

window in Doppler will be from -f,. .. to +fp, .. at a spacing fp .. /N,
which turns out to every 2fn . /N Hz, or 1/100 Hz here, Note also in '
(16) that if %} f.o 1.e., the Doppler shift, exceeds %-fr-l/2Tr. then i
from pulse to pulse we will be sampling at iess than the required Nyquist 3
sampling rate. Hence our pulse-repetition frequency (PRF), f,, must
always be at least twice as great as the maximum expected Doppler fraquency.
Observe now an important fact in (17): the displacement of the
sinx/xz pulse resulting from the second Fourier transformation over the
columns occurs at %} f . This is precisely the Doppler shift that results
from a target at (rudia?) velocity v with a backscatter radar having
carrier frequency f.. Furthermore, the 3 dB width of the pulse represented
by (17) 1s 1/NT. Hz, as shown in figure 5. Thus we produce N (or 100)
Doppler frequency points every f./N Hz (or .01 Hz here) having a Doppler
resolution of 1/NT,. Hz (= .0 Hz here). Since NT,. {1s the coherent
{ntegration time (in this scheme, it is the time required to fill the
matrix), 1/NT. is exactly the Doppler resolution one would expect from
any coherent pulse-Doppler radar.
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Therefore, {n sumn ', we have done two sets of FFTs. One set
within each pulve at M , nts to give M/2 range binsi these bins
are the elewents of a row of a matrix., The second set iz over N pulses,
or over the N column elements of the matrix, toc give N Doppler bims
for each range bin. Note that the original target range also contained
8 small offset due to Doppler. If this offset is objectionable, 1t can
now be removed--in the case of a discrete target--by using the Doppla:
information to correct the target vange.

A little thought
will show that this
process also works ’4.“ > d-l/NT‘.
for distributed tar-
gets such as ratn or
sed waves. lf one

has many targets 1in A A N
- ,
a range bin (say L VV ' v { ) f ‘
targets), ha has L ' O mox
f=8Y¢,

terms in (15), and

each alement in the

matrix {s really Figure §. Doppler spsotrun after seoond trans-
the sum of L such formation within a given range bin.
terms. The second

FFT over the columns, therefore by superpostition, gives L terms in (17); I
if each of the L scatterers in the bin (representing the distributed
target complex) has a different velocity, then the resulting Doppler
spectrum for the L ..rgets will consist of L-sinx/x pulses at different
positions, as given by (17) and shown in figure §. Thus a continuous
Doppler spectrum represented by the sum of L scatterers with many differ-
ent velocitias and scattering amplitudes will result, as would be expected
in any coherent pulse-Doppler radar system.

7. SINGLE-FFT DIGITAL PROCESSING

Now we examine another technique for extracting range and Doppler
information from the same signal. This involves a single, long FFT over

12
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the same N pulses. This cechnique is used by the Rome Afr Development
Center for some of {ts HF over-the-horizon radars (Eddy, 1973). It
involves the same number of computer oparations as that described in the

preceding section,
Here wo will draw heavily on much of the material in the preceding

section. Since we have a maximum frequency f, 1n our pulse To(=T)
seconds long, we roquive Me2f ..o T, samples per pulse, as before.
Performing the FFT over N pulses gives a total of M x N gsamples per
transform. Let us analytically find an expression for the Fouriar trans-
form of this pulse train first., To do this, we can use superposition to
express the Fourier transform of tha pulse train as the Fourfer transform
of each pulse as though 1t were &1l alone:
gy (E$IT./2
v (f) =3 j vin(t)e

nw=)
(uu-l)Trla

~{2nft at . (18)

Here we reexpress the phase om(t'i) appearing in Vp --as given
in (13)--in terms of continuous time, t, rather than time within a pulse,
t;. This is done by substituting t,=t-nT, into (13) to give

o1a(t) = ¢, + 2n(Bt,+ &% BnT In-2nl & 1, +bf b+ BBnlt . (19)

Using this in (18) and performing the indicated integration, we
obtain (with the approximation T'.nsT)

ey -{2nfnT
V(1) -n;) Vin(fle . (20)

where V; (f) {s given in (15) anu discussed in that section

Now, to perform the summation, we make the same assumptions as
before; t.e., that of both the amplitude and phase variations over n
which occur in Vm(f). only the phase variation is important. Also
we use only the first sinx/z function in (15) since it represents positive

13
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frequencies; an identical result obtains for the second term representing
the negative frequencies. Therefore, (20) becomes

N-1 2
V() - K(f)g gmin(t= E fnT, (21)
na

where we have used (16). The above summation can be performed by using

the identity:
N
sin[(N+1)a/2
qe‘lna - ,1Nu/2. nay a . (22)
nw

Thus we obtain

sin{2(f- :—éfL)NTr/Z] REIGE SARN 29

Ve (f) = K(F
! ) sin{2n(f- & £.)T,/2]

In the above final result, the complex exponential factor--as well
as the residual phase factor e % contained in K(f)--1s not important
because it has unity amplitude. However we note that the sinNx/sinx is
much 1ike the sinNx/Nz function. It contains a peak at ax=0 and side-
lobes away from the peak; it is, however, periodic whereas sinNx/Nx is
not.

Now, we note that the FFT does not actually compute a continuous
function, Fl(f). but a transform at MN positive and negative frequency
points. Since the maximum frequency, f ,...» 1s determined primarily by
the maximum target range desired, we have MN/2 positive frequency points,
and hence a value of VI(f) computed every f = Zflmax/(MN) Hz along the
positive frequency axis.

To see how a discrete target will appear, we plot first in figure 6
the broad function representing the integration over a single pulse, i.e.,

2Ty p) 1721

(24)

K(f) =

This gives the range bin, or location of the target in rang-. Its center
is slightly displaced, however, due to the Doppler term %¥ fo in finj2-
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Next we show | _ Envelope for
the sinNz/sinxz factor ( 0) i moving target
|
i

of (23) in figure 6 L, N L

for a moving target. ] N f w

Notice that it

repeats itself at T"SITTT ] J¢1NT

the pulse-repetition - _gé,_ f !

frequency, fr’ as (b) [

one would expect in

any pulse-Doppler I <f —’l

radar. Note that this r

factor contains ?Product

only Doppler inform-

ation and would be (C) i

identical for a

target at any range

having the same

radial velocity. f
Finally we K()

show the product of ()

the two functions N

for a moving target . \—/ \j ?

at a range corre- sin Nx for non-moving target

sponding to fIN/Z’

Notice that the

slow.y varying range (e)

function essentially

envelope modulates

the Doppler function,

now isolating the

target in both range

and Doppler. The (f)

range resolution is

essentially the width

Envelope for
&~ stationary target

sin x

| f » "‘fr /n\Range bin center
" for non-moving target

%"-f , Doppler shift
for target in m-th
range bin

Spectrum of >
(c) repeated

f

mf,

Figure 6. Piotorial description of long eingle
FFT processing over N pulses.
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of the broader function, corresponding to fr . llTr Hz ({.e., a 1.5 km
bin here), while the Doppler resolution 15 essentially the width of the
narrower 1ine, corresponding to 1/NT,. Hz, the coherent integration time.

The frequency axis after the long FFT can thus be broken up into
M/2 coarse range bins of width 1/T. Hz; within each range bin, finer
frequency divisions then correspond to the Doppler spectrum of the target.
In particular, there are N Doppler bins per range bin, corresponding to
a Doppler resolution of 1/NT,. Hz. It seems proper therefore to center
each range bin on a zero-Doppler 1ine. The centers of each range bin--
as shown in figure 6--are thus located at mf.(multiples of the PRF) along
the frequency axis, and extend + f./2 away from this central, zero-
Doppler position. Thus we can take the plot along the positive frequency
axis and divide it into M/2 pieces, each centered at mf,. where
0 <m < M/2. Each piece then represents the Doppler spectrum of an indi-
vidual range bin. Or, we can have the computer do the "dividing" for us,
displaying each range bin however we choose. For examplie, range bins
could be lined up behind each other, closely spaced, to give a 3-dimension-
al range-Doppler-intensity display. Note also that each range bin--and
the resulting Doppler spectrum thus obtained--is similar to the Fourier
transform over a given column in the preceding section; both are range
bins containing a Doppler spectrum vith the same resolution and width.
THEREFORE THE TWO PROCESSING TECHNIQUES YIELD IDENTICAL RESULTS.

A Tittle thought will also show that this technique will work for
distributed targets. For example, if we have many targets over several
range bins but at the same velocity, we will effectively have several
K(f) functions in (23), but centered on slightly different positions.

The sinNxz/sinx functions for the Doppler will be identical. Thus in effect
the target at a given Doppler will appear in several range bins, as it
should, but at the same discrete velocity in each.

8. NUMBER OF COMPUTER CPERATIONS REQUIRED

The possibility exists with present day computers--especially
“minic.~wputers” of the NOVA and HP 2110/2115 variety--that the range-

Doppler processing described above can be done in real time. Such
processing for HF radars has in fact been done digitally in real time by
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severa] groups for both discrete targets and sea scatter, using no more
than a single HP 2115 minicomputer. To ascertain whether such is possibie
for a given appiication, we must know the number and size of the digital
words to be stored and processed per second.

The FFT process is known to require Llog,L operations for a linear
array of L numbers. Let us first analyze the total number of operations
required by the double FFT. We first do an FFT on a pulse, using M
samples; this requires Mlog,M operations. Next we begin transforming
over each of the M/2 columns; each now contains a real and imaginary
word for a total of M words. With N elements in a colum, Nlog,N
operations are required for the FFT on each column, For M column words,
this gives MNlog,N operations. Thus the sum of operations required in
the first and second sets of FFT processing is

MNlog,M + MNlog,N = MN(log,M + Tog,N) = MNlog,MN (25)

operations.

The number of operations required in the single long FFT is simple
to calculate. With N pulses and M samples per pulse, we have MN
total samples per transform. This therefore requires MNlogZMN operations.
THIS IS IDENTICALLY THE SAME NUMBER AS FOR THE DOUBLE FFT!

Normally the FFT requires that the number of samples to be transformed
be an integer power of 2. For the double FFT process therefore, both
M and N must be powers of 2 (e.g.. 256 and 128, 32 and 64, etc.; Jjust
so M and N individually are greater than the number required by the
sampling rate and Doppler resolution). For the single, long FFT, the
product MN must be a power of two, and hence again M and N must
individually be powers of twg.

In both cases, MN elements must be accumulated and stored for
processing; this dictates the size of the ridquired core and/or disc
storage. The entire number of MNlog MN operations must be performed
every NT,. seconds if the process 1s to be done in real time. This
requires that (Mlog,MN)/T,. computer operations per second be done (not
including time for buffering and display functions). Thus the obvious
way to reduce the required data rate--if such is necessary--is to lower
M, the number of range bins. Since M 1is equal to ZfImaxTr, we must

17
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reduce f‘max, the maximum IF frequency per pulse. Tfhis does not
necessarily require one to reduce the range resolution. For example,
suppose for our example that instead of observing all ranges from 0 to
150 km with a 1.5 km resolution (giving M=200), we decided that we only
wanted to observe the window between 126 km and 150 km, but still with
1.5 km resolution. This gives conceptually M=32 or M/2=16 range bins.

To achieve this, one merely slides the linear sweep delay in the receiver
so that instead of varying between 84 and f1m8x=100 Hz, f1 NOW runs
between 0 and flmax=16 Hz. Then the M=32 samples are adequate for
the Tr'I cecond pulse repetition interval.

Finally, the number of bits required per word also affects the data
rate to some extent. The processor dynamic range depends upon the bits
per word because of quantization error. Thus the dynamic range is optimally
6b decibels, where b 1is the number of (biiary) bits per word. Currently
about 80 dB dynamic range can be realized by digital processors without
too much difficulty, requiring 14 bit words and a 14-bit A/D convertor,

9. WINDOWING AND WEIGHTING

In all of the preceding sections, we assumed a square pulse at
frequency f,, and N such pulses all with the same amplitude. As a result
we arrived at sinz/x and sinNx/sinz functions in the frequency domain
for tha target echoes. Jdoth functions have rather high, objectionable
sidelobes: the first sidelobe of the sinx/x function is only 13 dB down
from the main lobe, while the average sidelobe level of the sinNx/sinz
function between main lobes is only down 20 dB. Thus some of the side-
lobes from a single target--as illustrated in figure 6--are quite high
and could be mistaken for other targets.

The remedy for this is the same as that taken by antenna designers
to reduce sidelobes: use an amplitude taper across the original function
before Fourier transforming. This technique is currently being used in
nearly all radar digital processing schemes. The common ampl{tude
taper--or weighting--used across the time window is the Taylor weight
(although Harming and cosine-squared weights (Blackman,1958; Nathanson,
1969) are sometimes used). This results in average sidelobes down 40-50 dB

18



below the main lobe. The only bad effects of such weight.ng are the slight
broadening of the main lobe (by as much as 40% in some cases at the 3-dB
point) and a drop of 1-2 dB in signal-to-noise ratio due tv attenuation of
the original received signal at the edges of the window.

For both types of processing described above, two weighting functions
are normally performed digitally. The first is to weight the M samples
within the pulse according to the selected function (e.g., Taylor weight-
ing). The next is to weight the N pulses to be used in the coherent
integration by the selected technique. Both weighting processes across
the two respective windows of T. and NT,. seconds are normally required
to keep both the range and Doppler sidelobes unobjectionable.

10. RULES FOR SIGNAL DESIGN

Here we give a simple, stepwise procedure for calculating the signal
parameters required for a given set of backscatter radar or sounder specifi-
cations. We assume that the following parameters describing the system are
given: (1) f., the carrier frequency, in Hertz; (i1) R,s the range
window width to be calculated and displayed, in meters; (iii) vy, the
maximum target velocity in m/s; (iv) AR, the range resolution desired,
in meters; (v) Av, the velocity resolution desired, in m/s.

With these parameters given, the following four steps are to be used
to calculate the following four FM/CW signal and processing parameters:

(1) B, the signal bandwidth, or frequency excursion, in Hertz; (i) T,,
the pulse repetition interval, in seconds; (i11) N, the number of pulses
of period T, needed for a single coherent processing operation; and
(iv) M, the number of samples needed per pulse interval, T..

(1) B = ¢/(2AR), where ¢ 1s the wave propagation velocity in the
medium,

(2) T, = 1/f,, where f, = 2fy,, foy being the maximum target
Doppler shift, given by fp, = (2vy/c)f.

(3) N =T/T., where T, the total coherent integration time 1s
the reciprocal of the desired Doppler resolution, AfD. where
afp = (2av/c)f.
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(4) M= 2R, /AR samples per puise interval, T..

In the above, we have assumed that fc' Rw’ Vms AR, and Av were
all given and that B8, Tr’ N, and M were to be found. In practice, the
size of the computer and data handling rate will often 1imit M and N.
Thus one usually iterates until an acceptable comoromise is achieved, i.e.,
he varies his requirements for Rw’ AR, and Av uniil values of M and
N are obtained within the capacity of his machine.

11. SATISFACTION OF REQUIRED ASSUMPTIONS

In the course of the analysis herein, certain assumptions were made,
upon which the desired output is dependent. If these are not satisfied,
quadratic and other types of distortions will result which reduce or Timit
the achievable signal-to-noise ratio. Having derived B, Tr' M, and N
from the rules of the preceding sections, one can quickly check the follow-
ing critaeria to see whether the optimum processing gain will be realized.

(1) BT, (2vy/c)?N? << 1,
B(ZvM/c)(ZRw/c)N <« 1,
B(ZvM/c)Tr/4 <<

Satisfaction of the above conditions was assumed in going from (12)
to (13) for the phase; 1f one or more of these conditions are not
satisfied, distortion will reduce the achievable processing gain.

(2) VMNTr < AR,

This merely means that the target is not traveling so fast that it
moves through several range bins within one coherent integration period,
NTr. If the inequality fails, it simply means that the echo will appear
in several range bins, but with a proportionately reduced amplitude in

each.

(3) dv/dt NT,. < av.
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This assumption-<heretofore unmentioned--concerns the rate of
change of radial target velocity (or radial accelaration), It has been
assumed throughout the analysis that the targets under consideration have
a constant, nonaccelerating velocity. Small radial accelerations can be
tolerated, but if dv/dt 1s sufficiently large that the above inequality
fails, then the echo will appear spread into several Doppler bins with
proportionately reduced amplitude in each.

12, SUMMARY

Despite statements often seen concerning "chirp" (i.e., linearly
swept frequency) signals used with microwave radars, there ts no ambiguity
between target range and velocity for processing done in the straight-
forward digital manner described in this note.* Furthermore, two seemingly
different digital processing schemes are described and analyzed herein,
which will produce exactly the same pulse-Doppler (range-velocity) output.
Both employ the FFT; the first uses a shorter FFT many times, while the
second uses only one long FFT to produce the same coherent pulse-Doppler
map. Both techniques work equally well for discrete targets (such as an
aircraft), as well as for continuous or distributed target complexes
(such as ocean waves, rain, atmospheric turbulence, etc.), and display the
targets in their appropriate range-velocity perspective.

Identically the same total number of FFT operations is required for
both techniques; the same data rate (A/D convertor rate) is required in
each case also, 1.e., (ZRWIAR)XZX(ZVM/c)fc words per second. Here, R,
is the range window length to be examined, AR +is the range resolution
desired, Vy is the maximum target velocity to be encountered, c 15 the
free space wave propagation velocity, and fc is the carrier frequency.
The choice of whether to use the multiple vs the single FFT processing
technique then rests with the availability of appropriate equipment. For

*Perhaps the ambiguity occurring in the microwave systems is attributable
to the analog pulse compression techniques commonly employed there, such
as the dispersive delay line. Here the technique used is more prouperly
described as a coherent correlator followed by pulse-Doppler processing,
rather than time-domain pulse compression. 'The difference between the
two techniques results in the elimination of the umbiguity for type of
proce~sing described here.
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example, smal) computers may Le Yimited in the stize of a single FIT they
can handle; in this case, the multiple FFT technique having smaller

unit size may be requirad, On the other hand, special hard-wired FFY
computers are currently available (called "FFT boxes"), These can perform
a fatrly large, fined-langth transform very rapidly because of their
specialized conatruction, and are used as one component in the overall
digital proceasing system, Here, the single long FF1 {3 usually more
effigient because the need for continual, interactive storage/retrieval

of elements in matrix/fashion demanded by the multiple FFT scheme {3
eliminated.
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