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A mechani~al analar Vertical Enerry Absorption Model (VEAM) is developed Lo
predict the dynamics of an Air Cushicn Landing Systein (ACL5) in che vertical
dinension. Three derrees :f frecdon and thus three primary modes of oscillation
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lLavoratory Iesty of 3 tull=-scale Australian Jindivik drone are used to develop and
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The VEA!! study demcnstrates that ti.e use of a mechanical analop prediction
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vithin the mod21l dosain of three deprees of {reedom without knowleder of the
wumerous and varving trunk and cushioen paraneters if the modse spring and danper
coefficients are provided, . Ihe nedel response correlates with Jindivik test data
much tetter in pitch and roll than in leave. Dolh the pitch and roll iveds spring
and damper corfficients are shown to be linedar in accenrdance with inodel assuzpiicns,
Model response in heave is heavily dependent upon the node danning ratio ( < ) and
the undamper natural frequency (Wn )y Lut the results are reascnabley that is,
resporce freguency corielates to test data a2nd response displacenent 1s in the
proper ditceoldn tul S¢aeltifies 01 ancortect Tofndtude,  dne Liecave mode spring
corflici~nt i3 shown ta hold to the linear apuroximation. ile inability to ixatceh
mipgnitudes cxactly sugpests that tte lieave daaper ceni{fjiclent i3 n-n-linear,
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This report is sbout a Vertical Enerpgy Absorption Model (VEAM) for
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were conducted by the Air Force Flight Dynamics Laboratory, Meschanjcal
Branch, and selected test cases were used to verify the predictive
capability of the model in its three degrees of freedomj heave, pitch
and roll. It is my hope that the results of this effort will find
practical use in the Flight Dynamics Laboratory and will help in the
advancement of Air Cushion Technology.
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Arstract

AR mechanical analog Vertical Energy Absorption Model (VEAM) ie
developed to predict the dynamics of an Air Cushion Landing System (ACLS)
. in the vertical dimension. Three degrees of freedom and thus three
primary modes of oscillation are investigated: heave, pit~h and roill,
Data from Air Force Flight Dynamics Laboratory Tests of a full~sgcale
Australian Jindivik drone are used to develop and verify the model. As
part of the comparatjve analysis of Jindivik data, a computer procram
is developed that will analyze the peak data of an underdamped, second
ordur, sinusoidal, respcnse and evaluate the mode response characteristics,
damping ratio ('f ), undamped natural frequency ( wWn ) as well as the mode
spring and damper ~oefficients. Another computer program is developed to
analyze the same response characteristics using the method of peak
overshoot and peak times.
The VEAY study demonstrates that the use of a mechanical analog
prediction scheme for an Alr-Cushilon landing System has sufficient
merit to warrant further investisgation. It shows that a mechanical
(:> analog model can predict system response within the model domain of three
degrees of frcedon without knowledge of the numerous and varying trunk
: and cushion parameters if the node spring and damper coefficients are

provided. The model response correlates with Jindivik test data duch

better in pitch and rell than in heave, Both the pitch and roll mede
spring and damper cocfficients are shown to be linear in accordance with
model assunptions. Ilodel response in heave is heavily dependent upon
the mode danmping ravio (‘f ) and the undamped natural frequency (Wn ),
but the results arc reasonablej that i3, response frequency correlates

A

to test data and recponse displacement is in the proper direction but
sovetimes of incorrect marnitude. The heave mode spring coefficlent 4s

shown to hold to the linear approximation. The inability tc match

. L

magnitudes exactly suggests that the heave damper coefficient is non=linear.
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AXR CUSHION LANDING SYSTEM,
DROF DYNAMICS THEORY (MECHANICAL)

I. Introduction

Air Cushion Development

The Air Cushion Landing System (ACLS) is a natural extension of the
alread: successful application of air cushion theory to Ajir Cushion
Vehicles (ACV) and Surface Effect Ships (SES). Bell Aerospace, a
Division of Textron, Inc. and a pioneer in this field, in concert with
the Air Force Flipht Dynamiass Laboratory (AFFDL), has developed and
flight tested an ACLS on the lake LA-4 aircraft (Figure (1) as eariy as
) - August 1967. These

/ tests proved that
/ / an aircraft could
/ takeoff, land, and

(ET—‘”‘ <::)[:7 pround maneuver on
~S mdw;zp_—,,,——— a cushion of air
\T:;: / nmuch in the same

manner as the ACV's,

§ )
Fig. 1. The Lake LA=4 with ACLS Further, due to the
large surface

"centact” area of an ACLS, vehicle weight and landing loads were widely

43

istributed, resulting in low footprint pressures {(approximately 0.5 - 3
psi). In certain cases this characteristic of the ACLS will motivate
abandoning conventional landing gear on aircraft for the air cushion,
The lcw footprint pressures free the ACLS equiprned aircraft from a hard
surface runvay requirement and allowz routine operations on unprepared
surfaces, marsh land, water, and even obstacle strewn surfaces. In
cooperation with the Canadian government, Bell Aerospace is currently
testing an enlarged version of the LA-4 ACLS on a d¢ .villand CC-115,
fuffalo (Figure 2). Success of the Buffalo tests is expected to result
in an ACLS tast series on the Lockheed C-130 Hercules.




Fig. 2, The deHavilland CC-115, Buffalo, with ACLS

Afr Cushion Concept and Definitions

The operation of an ACLS is not the same as the ACY. The uniqueness
of the ACLS requires development of its own discipline.

The design and method of construction is in no way fixed. Many
configurations are under investigation (Ref 3126), but the one shown in
Figure 3 seems to be relatively standard. The shape and material of the
trunk has a significant effect on its capabilit:,

The trunk is that peripheral portion of the system that contains
the air cushion. Usually an elongated donut shaped manifold of a nylon/
rubber material, it contains the flow of air around and into th2 cushion.

The cushion is comprised of that volume of air inside the trunk
peripherys that is, the hole of the donut.

PN . SR Y . -
AT LA

Syste:
cushion and a back=pressure relief valve in the trunk to reduce
springiness on landing. The trunk and the cushion together absordb the

vertical enerpgy of a deascending mass.
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Trunk

Air Cushion

Fige 3¢ An ACLS Trunk-=Cushion Configuration

Early model and inexpensive trunks are made of a non-stretchable
material that functions like an inflatahle beach ball which maintains
the same surface area whether or not inflated. More sophisticated
trunks are made of a stretchable material, A trunk cannot be allowed
complete freedom of stretch or, like a balloon, it will expand under
pressure until fracture. An ACLS trunk must have limits, like a woman's
girdle, which allows elastic expansion until it reaches the nylon thread
1imit. Unlike a girdle, which has a 501 stretch capability, a Bell
Aerospace trunk will stretch up to 300% for its design shape limit., This
kind of trunk can be installed under tension, flush to the aircraft
undersurface, eliminating the nced for complicated, heavy storage doors

vhile maintaining a low drag profile when not in use.

Air Cushion Application

The Air Force, through the AFFDL, 1s rhowing great interest in
applying air cushion technology to drone recovery., Most drones are in
the same size and weight class as the LA-4, so feasibility has alrecady
been demonstrated, Present drone operations include surface launching
frou a rail, dolly, or skid, or air launching from under the wing of é

mothershin (C-130). Recovery methods include mid-air retrieval by

belicopter or parachute descent to the surface, Costs of support
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operations and limitatione on the numbers of drones that can be

handled simultanecusly demand a betier metiiod. One serious proposal

4s the Air Cushion Recovery System (ACRS). A recovery system differs
from a landing system in the gense that it is designed for landings only,
and does no! need the higher power (4irflow) required for taxi and
takeoff operations. It can be constructed of less expensive non-
stretchadle materials which can be stored in parachute fashion ready

for deployment at recovery. In a current test series, the AFFDL {e
actively engaged in the devemlopment of an ACRS on an Australian

Jindivik drone (Figure 4).

Fig. &, The Australian Jindivik Drone with ACRS

Backpround

The technology of the ACLS is in its infancy. Major research
efforts were the LA-4 program, the one quarter scale and the one tenth
models of the CC-115, and the current, full scale CC-115 progranm.
Throughout these efforts, the primary approach to development of a
Vartiral Enerey Absorption Model (VEAM) has been with the emphasis on
nass alr flow theory (Ref 9). This approach was severely complicated
by the number of variables changing simultaneously and the lack of
concrete information on many of the variables. It was the initlal
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(:> Jindivik tests that suggested an alternate approachj drop test data
indicated that the Jindivik with ACRS was behaving like an underdamped,
second order system. In April 1973, the AFFDL decided in favor of

Jhd

investigating & mechanicai analog VEAM,
The mechanical analog pronises a fast reacting prediction scheme

L]
i) e

which i8 needed as a computer subroutine to be jolned to a larger
aircraft simulation program that is being developed by the AFFDL Flight
Controls Division. TIhe ACLS portion of the program, which must eventually

el

8 s il

include forward motion with its ascociated aerodynamic aad braking forces,

is to predict the forces that the ACLS contributes to the overall
dynamics of the vehicle on landing. A real-time dynamic analysis is most
{important in order to keep pace with other force inputs, such as pilot
stick inputs, and to maintain 2 realistic simulation of vehicle response.

1 st e M ot i s 1t

[T e

Purpose
The purpose of this study, under the sponsorship of the AFFDL,

il il

Mechanical Branch, is to acvelop a Vertical knergy Absorprtion rodel using
(:) a mechanical system analog that will successfully predict the dynamics
of an Air Cushion Landing System in the vertical dimension.
The investigation is to show that a mechanical analog will predict

0 i Ll s, ol i . 41 st

ACLS response even though the physical parameters of the trunk and cushion

are not known. I1f a mechanical analog is successful, and if the spring

Wyl

and damper coefficients of the mechanical system eventually can be related
to the trunk and cushion parameters, then this method of analysis promises
a simplified design approach for the ACLS without the need to first design
and build expensive test vehicles.

i i G e s

Scope
The mechanical analcg was developed solely from the full scale

Jindivik tests, and the model results are limited by the nature of those
tests. Results are confined to cases that are restricted to three degrees
of freedoms specifically, heave, pitch and roll. This feature is

Ak b e

a8 _2 a8 D 2 -
€XpPLiCitiy ucia

VEAM. VNot an explicit part of the analysis is the understanding that 1

m -
s

~ D 2 - -
nTu ais onc nly moant Af rtho

0y 1a)
- 4 potHcia 4

(:) the model was developed from a non-stretchable trunk of unique design. 4

5
w



Extension of the model to cases where a stretchable txunk is employed
must be done with caution since the energy absorption cvapabilities and
veactions of the two materials may vary significantly. The basic deaign
of the Jindivik trunk differs from the only other trunks tested to date
(the 1A-4 and CC-115), in that the cushion volume io smaller (in
proportion to trunk volume) than other trunks. The full effect of these

differences will only become clear after more tests with diffevent
configurations.
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$i. Model Development and Theory

O

o

Ihe Jindivik Drone

Tests on a full-scale Air Cushion Recovery Systeny (ACRS) were
: Yegun by the Air Force Flipght Dynamics Laboratory (AFFDL) in February
1973 at Wright-Patterson Air Force Base. An Australian drone aircraft, 1
the Jindivik, was provided for the tests and fitted with a Sandaire
designed ACRS modified by the AFFDL., These tests motivated the
selection of the Jindivik drone as the basis for the Vertical Energy
Absorption Model (VEAM.

The Jindivik was set in a test cell as shown in Figure S and
modified slightly to accomodate the tests. The forward hood was
vemoved to facilitate instrumentation and the landing skid was
removed for the ACRS installation. Weights were added to simulate the
internal equipment, engine, and fusl with care exercised so that the
total weight and masents of inertia of the test vehicle matched its

A ) L

operational counterpart, Primary control of the Jindivik for thes tests é
(:> was achieved through the single suspension point, chain and pully }
assembly, attached directly above the center of gravity. 1

A planform drawing of the drone in Figure 6 locates tlhe recording
instrumentation used in the AFFDL tests. Signals from this instrunenta- i
tion eventually were recorded on light-sensitive paper by a !oneywell §
visicorder (Model 906 A) from which data was reduced. FPressures of the i

trunk and cushion and the displacement of the nose, wingtip, and center

A v e

of gravity were measured on all tests used for develouwent of the VEAM :
model.

Changes to the ACRS trunk design component fabdrication, and
installation were the cooperative effort of the AFFDL, Centro and

il )

Goodrich. The trunk, depicted in Figure 7, was constructed fron a
non-stretchable neoprene coated nylon of various weipghts. The lowey
surface of the trunk consisted entirely of brake tread made from
three-ejighths inch tire tread material. The heavy brake tread results in
a weight penalty (one-half the weight of the entire trunk assembly), but

(:) optimun efficiency. Two Tech Development TD~530 ejectors were provided
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Filg. 6. The Jindivik with ACRS, Dimenstéhs, and Instruzeptatijon
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for the portion of the tests used to develop the VEAM; cne provided
mass flow to the trunk and the other to the cushion.

Fig. 7. The Jindivik ACRS with Dimensions

Test Method and Data
dine AFFDL Jindivik tests were used to develop the VEAM, The tests

wers 4in the three primary modee of cscillation of the models heave, niteh,

and roll. In pitch and rell, the analysis centered on perturbation about
the hover equilibrium condition, whereas in the heave case, the analysis
was of Jindlivik oscillation dynamics after being released from a height
grexter than hover equilibrium. The method of collecting data in the
three modes influenced the analysis of each mode and the resulting model.

Roll Mode - One wing-tip was lowered to the surface and rcleased at
time zero (t, )« The wing~tip linear transducers recorded vertical
deflections of the wing~tip as oscillations damped back to hover
equilibrium. A maxihum roll angle was o1 the order of & degrees.

Pitch Mode - Resistance to pitch perturbation was sipgnificant
enough that the Jindivik could not be displaced eas!ly and txeleased,

10
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a8 with the roll casc. Osciitations were introduced until the pitch
(:) perturbations were of sufficient magnitude. The linear transducer,
attached to the nose boodn, revvided vertical deflections of the nose
boom relative to hover equilibrium, A maximum pitch angle of
. approxircately 7 degreas was experienced.

Heave Mode = The magnitude of heave stiffness was large enough to
make it techalcally impractical to conduct perturbation testing. Thus,
the Jindivik was ralsed to a height and released. This test method
required separation of the analysis into two regionsj the first, the
free-fall from release until "contact” of the ACRS with the surface; and
the second, the dynamic oscillations of the ACRS about the hover
equilibrium condition, Since the ACRS rides on a cushion of air,
“contact” does not necessarily imply the physical meeting of the trunk
and the surface, Thus, "surface contact” has been defined as In Ground
Effec~ (IGE); that is, the position at which the first distinguishible
rise¢ in trunk or cushion pressure can be detected. Experimencal
teating shows TNRAL Lrunk And cushion pressure rise wiihin & fraction of a
) second of one another, and can be considered simultanecus for the purpose
(;j of defining IGE. Heave data was complicated by the fact that the heave

linear transdu.zr could not be placed at the center of gravity due to the
fuselage, nor could it be placed directly abeve the center of gravity due
to the suspension hoist. The sensor offset resulted in heave data
being affected by pitch and required analytical adjustment.

A sunmary of the AFFDL tests in i{ts three significant modes of

oscillation and under various conditions is presented in Table 1.

TABLE I

AFFDL JINDIVIK TEFST NUMBERS
used for the VEAM development

Test Vent Cpened Vant Closed Flow Added ! Flow Added
Mode Po =~ Py Po = unk Pepcl2.5 psi Fepo30.4 psi
!.‘.“.c <0 l’.nc = () ﬁic = L}ﬁ\c l'nc - xﬁt
U j
ROLL 56 55 S8 i
PITCH 59 60 61 '
(:\ HEAVE® 123 122 121
P —

* Jindivik btalanced so that CG is approximaitely over the trunk CP.

11
“
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Tests vere conducted in still ambient air in an enclosed test cell,
and, aa described above, were limited to perturbations or vertical
descent (no forward velocity). Thus, no aerodynamic lift or drag

forces nor brake drag furce- were pregsent to coaplicate force or moment
analyeis.

The Vertical Enerey Absorption Model {(VTAN)

The model choser for analysir is depicted in Figure 8,

|
=

= Spring

+. - Damper —s/d w.it

-y

. it

Fig. 8. Scuiematic of Vertical Energy Ab;;;ption Model

Norrally, consideration of an object in three dimensional space results
in 8ix degrees of frecdam (DOF), Jindivik testing methods allewed a
reduction to 7 70F. The elimination of air fliow over the wings and
torwurd uwovement of the model during the initial test series had the
effect of eliminating all forces in the horizontal (»,y) plane. Conse~
quently, it iz assumed that there is no lateral displacement, and that
al]l movement is confined to the vertical (Z) axis. Becauss there are no
1ift and drag forces to create sideloads, yav is not present. Thus, the
dynamic’/perturbation study is limited to the vertical mode (heave) and
the pitch ar” roll modes. The axis system chosen, similar to a
conventional Euler system with Z positive down, has its origin at the
center of pravity and is fixed in gspace with the x,y plane parallel to
the surface vhen the center of gravity ic at the hover equiiitiium

condition. Tlo3 seening complication to the axsis is required in ordex

12
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to generalize the analysis and yet allow a changing equilibrium height
(f) (relative to the sur’ace) as the mass flow into the cushion changes.

Model Assumptions
Observation of the Jindivik oscillations in its three modes results
in data which gives insight into the character of the ACRS., One of the
- first Jindivik dynamic tests conducted was the roll test shown in Figure 9.
The plot of peak 41Sp1acements supggests an underdamped second order

i
i
N
E
]
N
%‘
i
4

xespongse, which notivated the selection of a mechanical analog model for
the AZRS. The perioc ( T ) is approximately constant throughout, which
makes the danped natural frequency ( Wd ) constant. A semi=iog plot of

Mtisliiaas e i,

the peak amplitude excursions from equilibrium demonstrates the linearity
of tioe exponertial decay. A complete discussion of this analysis is
crn.ained i Chapter IV.

There i3 . single effective spring and & single effeccive damper that
rreults from ewl. mode analysis. With the assumption that the springs

i i e o, e bl i, I b il

snd Jampecs are linear and time invariant, it is possilLle to construct
spring/damper units (s/d units), each a linear spring and damper in
(:) parallel, and dist.ipute them as depicted in Figure 8. The rotational !
roll spuing and dampsr and the rotational pitch spring aud damper are each ;
divided infro translat:onal s/d units displaced at ar. assumed moment arm. :
The linear heave spring and damper are repre=sented bs the combined effect
! of the four peripheral s/d units and the center cushion s/d unit. The
constants of proportionality for the Jindivik are determined from the
expeciuental data (Appendix A).

As 18 usual with lumped linear models, analysis requires the
concentration of mass at the center of gravity (point-mass assumption).
The plane surf ~e which distributes the s/d units at the proper moment arm
§{s assum~d massless. The center of gravity cdn be varied from the center
of pressure (also the geometric center of the trunk) by the distance s.
In the model, the center of pravity and the center of pressure ar~ in the
same plane.

?' Approach to Analysis
(:) Wl.an the 4CRS 1y CGut of Ground Effect (OGE), it is inoperatives that

18, pressures ol the trunk and cushion are constant and no fouces or

i 13 4

L .
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roments are present. As the ACRS descends in free fall towaxrd the
surface, it reaches the region (IGE) where rcaction with the surface
causes a pressure rise in both the trunk and cushion.

The instant the IGE condition is encountered marks time zero (Lo )
for activation of the analytical model. This displacement corresponds to
the sprinsg-neutral position (Jhc ) as depicted in Figure 10, '

release
K} )
1 free fall distance
4 ‘ contact
mogde
7 Az acgu}ation
i I O N ﬂ;fi_blibrium
Ry he ::
= é Peq
TII77777777777 7777777 7777777777777 /7777
gsurface

Figs 10. Schematic of Vertical Displacements

Any further downward displacement causes reaction forces., Descent
of the model continues, compressing each spring (AZ ) until the combined
upward force of the spring/damper units (s/d units) supports the weight
of the model. This displacement is the equilibrium position (,ﬂeg_) and
corresponds to equilibrium hover for the Jindivik. When the center of
gravity is displaced from the center of pressure, tle Jindivik longitudinal
centerline will not be level with the surface. A non-zero equilibrium
pitch angle ( ©eq ) will result so that for each s/d unit

AOZ = (lioment Arm) sin Ge% (1)

The equilibrium pitch angle is non-zero due to the combined physical
constrajints of (1) the CG of the vehicle bdbeing aft of the trunk CP in
normal confipuration. (2) the assumprion thar the roll and the

spring coefficients are symmetrically placeu relative to the trunk CP, and

(3) the assumption that the symmetrical spring cocfficients are equal
in magnitude.

i et i
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Linearity of Springs
The curves in Figure lla illustrate that a linear approximation for

4 non-linear spring is8 usually valid within a small perturbation of a
given position, in this case, equilibrium. Figure 1lb illustrates that
real spring phenaomena is not infinitely linear, but that non-linearities
are usually present at the extremes. For the VEAM, when it is above the
contact level, no forces should exist. At this extreme the spring
relationship F= Rx implies that =0 at displacenents less than contact
(Xc )e At the other extreme, where the vehicle underbelly strikes the
surface, the spring relationship again terminates., It 1s suspected that
the spring goes non-linear prior to fuselage and surface contact (X s ).
These two extremes define the limits of the domain for successful VEAM

operations,
F F
linear model
should P
approximation : .
~ do /1A
non-linear [ -{ model
} '
| Vo
| J V!
| 1 b
—1 x L + —— X
x ./‘ Xeq x;-
* < 39‘0155}11""'
a) ) 7 X

Fig. 11. Spring Linearity
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(:) II1. The Model Equations of Motion

The Force Equation

In this chapter, the equations of motion that apply to the three
degrees of freedom will be developed. Each spring/damper unit as
illustrated in Figure 12 will

+ AL contact result in a force with constants
A ':; 1feq equiblibrium of proportionality for displace-
P - - = = deflectlon ment f¢i and velocity € i for each

mode. The total force described as

Fi = - (a’tgzci*"c’izq) Q)
where displacement i3 measured

/ «

positive down fromn the spring-

/.

neutral or contact position.

When the model is released from

surface the spring neutral position, which
777777777 777777777777777777

18 defined as horizontal to the

(:) Fig. 12. A Spring/Damper Unit surface, it will settle downward
in Ardbitrary Deflection

due to nmodel mass and seek an
equilibrium position so that the forces and moments for each degree of
freedom ar: exactly balanced. This equilibrium position can vary in
relation to the horizontal surface depending upon the relative location
of the 8/d units to the center of gravity and the center of gravity to the
center of pressure of the trunk. Thus, at each s/d unit attachment

point i » if the variable deflection were defined as AZ , then the total
force at each point would be

Fi = —[_ﬁi(chi+ AZ;‘) - L 7."-'%5] . , 3)
However, for any gliven model configuration, the forces and moments due to
the deflection AT from spring-neutral to cquilibrium are constant 8o as
to exactly coutevact “he presence of the mass at all times. If the
deflection from contact to equilitriun were elinliiated from an analysis,
the resulting <quations 1epresent a dynamic forcc valance relative to
the equilidbrium condition rthere each s/d unit force contridbution would be

N represented by

Fi"(ﬁi};'r-ct'}i). ()
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In this last eguatlon, 3,~ represents the vertical deflection of each
O s/d unit attachment point from the equilibrium position ( %; = Zq# e

Parturbation from Equilibrium

. Analysis of the model in its three degrees of freedom starts by
considering the forces that act upon it in time (equation 4). The
forces remaining after model weight is eliminated are dependent upon }
and 3 e The model is given a positive deflection‘ in heave, pitch and
roll simultaneously. Allowing that all angles are small (Appendix C),

s , &
! 2 1

e v A
T 6‘
H

X

#2

Fig. 13. The VEAM in Arbitrary Deflection (Heave,Pit.a and Roll)

Figure 13 illustrates that the deflection at each s/d .nit location is

s 31 z - (g/ 8)
o= zZz- bﬁ.d) "66
3% = z+ (- cS} e (5
- Zz+ 97-@ -
Js= z2z—- &6

The rate of deflection of each s/d unit point is the derivative of

(_) equations (5).

18
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W=z - ({i ¥ $) =N
ix = 2z - 91¢ - &0
s = Z 0+ (’2" 5) 2]
W= Z2 + b -d46 6)
sz 2 - d6 .

Substitution of equations (5) and (6) into equation (4) provide the

necessary information for a force and moment analysis.

The Heave Mode

Summing all forces in the vertical direction, where the forces are
as previously described, results in

ZFz = mzZ = ”Fi . N

Substitution of the complete s/d unit force equations (the combination
of equations (4), (5) and (6), into equation (7) and separating like

orders of heave displacement and pitch angle results in the heave mode
equation

. . e
+%Z+%Z=%ée+”ﬁée (8)

where the effective spring and damper coefficients are

Ce 2:1125 9

i

Re "z:ki

The Roll Mode

In a like manner, the roll equation develops from a summation of
monments about the longitudinal x-~axis.

ZM,‘ = J‘xx.(ﬁ = F;(%)'F;.(b/l.) . (10

In this case, the physical symmetry of the trunk about the longitudinal

axis suggests that the correspending s/d units are also symmetricj or
L2 = Ly TaN

K = L /Qf.;.,q . (11)

The complete s/d unit force equations are substituted into (10) and

o
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the coefficients of like order derivatives are collected to give

G bl [ 0 an

The Pitch Mode

Development of the pitch equation \nvolves a bit more algedra, but

the method is the same. Moments are sumned about the lateral y-axls,

LMy =T8 =R+ R -RE-§) + RS + RS (13)
and the complete s/d unit force equations are substituted. To the

assumption of the roll s/d units (equation 12) is added the more tenuous
assumption that the fore-aft s/d units are also symmetric, or

= €3 = Th
By = Ry (14)

O
Ry

li

Equations (14) are considered more assumptive due to the slightly
different volume between the fore and aft trunk sections (see the cross-
sectional areas in Figure 7), but the difference is considered negligible.
The complete pitch equation is

e . i-%f [Zlcu[(%)l*éz *Zﬁt,aéz*ﬁscszlg (15)
N g}—ruz.‘[ 55+ 87 + 20, 8 £:s8]3

$Z v SZ
3-;7 QZE :)"’Y € -

Free Fall Analysis

The free fall case requires a separate analysis in a different

i

tiwe frame, After implementing the mode assumptions presented in
Chapter 1I, a free body diagram of the Jindivik Out of Ground Effect
(OGE) shows that weight is the only force acting on the system as it
falls in the vertical dimension, Time is measured from release and,
so as not to confuse with the time domain for the model IGE, free fall
time is designated T . The height of the vehicle in free fall is
designated () and follows the terminology presented in Figure 10.

20
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<:> It is measured positive dcwn to maintain the same sign convention as
' the model. -
The equations which describe free fall with no initial velocity are

T T R

Z = '12 3Tt + J\.I (2) (16) ;
i - 37T (v :
i g = 49 (e) Z

This free fall analysis is used in conjunction with the heave tests d
as previously described. The values of the release height (A1) and the
time to initial contact ( T¢ ) are determined experimentally, and from
(16a) the height at contact ( A _) is determined. Equation (16b) provides

' ancther initial condition, the velocity at contact. These values, with

{ coordinate transformation, are then used in an analysis of the character-
istics of the equations of motion. i

Summary
The complete set of equations to describe the model in its three
(:) degrees of freedom is the combination of equation (8), (12) and (15).
It should be noted that both the heave equation (8) and the pitch
equation (15) are coupled to one another if the center of gravity of the
vehicle is not at the center of pressure of the trunk, ie, &£ #O . This
is to =ay that a pure heave input notion will, in time, result in a

b ool A e i Lt 1t LA Mt .

pitch motion that may remain even after the heave motion has damped out,
and vice-versa.

Solution of these equations of motion is the subject of the next
chapter, but it must be remembered that the dynamic analysis is in

i v ok, Ll

reference to the equilibrium position of the vehicle. The equilibrium é
position can vary according to the vehicle configuration and/or flow

rates into the trunk and cushion. In heave, the difference in height

between equilidbrium and the surface is constant for any glven test,

Program DATANYL in Appendix A computes this value, For roll, the

equilibrium axis is parallel to the Lorizontal axis at all times due

| s

to the fact that the trunk is symmetrical. Pitch is the same as roll

only if the center of gravity of the vehicle is coincident with the ?
(:) center of pressure of the trunk. For most pitch cases, where the CC is ;

behind the CP, an equilibrium pitch angle ( eeg), relative to the 3

horizontal, will result, An expression for ch is in Appendix B,

21 i
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IV. Analysis of Jindivik Data (Theory)

Anslysis of Roll and Pitch Data

The equations of motion developed in Chapter III can be related to
4 standard form for linear, constant coefficient, serond order
differential equations (Ref 11244) where the coefficient of the
displacement term is equal to ()q® and the coefticient of the first
derivative of displacement is equal to 2{Wn. For example, in the

case of roll, these are written as

T
cz'LE = 2 fh)n

2 Jxx ' a»
;ﬁﬂit_. = wWn?

2 JIxx - n .

The parameters tn , the undamped natural frequency, and { , the
damping ratio, serve to characterize the differential equation and
thus the system. The solutions to the VEAM differential equaticns of
motion (equations 8,12 and 15) are of the form

D(t) = Do € 71" sin (wat + @) (18)
where D(t) is angular or linear displacement as a function of time, [\,
is a constant, and (W4 is the damped natural frequency. By definition,

wd = W, Y1 - f* (19)

The nature of the system being analyzed depends, to a large part, on the

T VRE " Y
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Fig. 14 General Underdamped Sinusoidal Response
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vaive of § . For the case of this study where f < 1.0, the systen is
(:} called "underdamped” and the natural response appears as in Figure l4.
The period of system response (T ) is the time requitred to travercse
one full cycle, thus T =1, -1Tp,=1,/%4aps . From this, the
followiag relationship is established

Wd (radfsec) = 2/ = 27 ¥d (cyc/sec) (20)

The peried, which can be found from experimental data, leads directly
to a value for the damped natural frequency.

A description of the system a3 it damps to the equilibrium
position is available by comparing two adiacent peak amplitudeg. This
' comparison is called the amplitude ratio and defined as D1,/t&.
Combining equation (19) with (18) for two adjacent peaks and solving
for the amplitude ratio gives

D _ (aw 9)/V1-7%

c (21)
D2
The lsgarithrmic decrezent (d ) 1s equal Lo the natural iogarithm ot the

amplitude ratio, and _
' O« 2w
Dz Y1 - ¢

Alternately, the damping ratio 1is

T = [ d” ]1/1’ (23)

(e

(2M)* ~ Jd*

The preceeding analysis was computerized vo evaluate the system in

roll and pitch, to provide the mode ¢ ,
| and to plot the data, This program and its results are presented in
Appendix A.

Analysis of Heave Data

The initial analysis of Jindivik heave data indicated rapid
damping of the heave mude with another mode vemainring. Tils is
illustrated in Figure 15. Evaluation of the data past the mode change

. point indicated that the pitch mode characteristies now predominated,

T3t TESUlts sugyuesied Lilat the neave mede danped out in about three
peaks 0,75 to 1.45 seconds). With so few peak amplitude points, the
heave data was considetved too sparse to analyze in the sane manner as

(;) pitch and roll. For th's zeason, an analysis bascd en pexcent ov:srshoot

and rise time was selected to characterize the systems This methed of

23
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solution, which is illustrated in Figure 16, accounted for the fact that
the medel has both initial displacement and initial velocity at model
activation (surface contact).

Starting with the heave differential equation of motion (8),
laplace transforms are used to find the solution

*t -fwat
go) = e (o5 wat + K sinwat) €28)
whetre £ + ‘io
K =yiTer Zo Wn VI-X* (25)

By using a trigonometric double-anpgle identity, (24) can be simplified
to the forn

- twnt /
f sin (wdt + &) (26)

vhere - - 1 _
¢ = ot K = sn /“1+K"
27
Maximum avershoot/undershoct occurs when Sin (wWdt+d4') = ¥ 1.0.
Thus, Z(E)max ~fuWnt,
7. - Wvkhoe (28)

Equation (26) is differentiated with respect to time and solved in
order to obtain a general expression for peak time ( tp) vaiid for any
response peak depending on the value of the integer (n),

tp = Zo/wn(Zet+Zown) = T/ wW1-T% (29)
Equation (28) is solved for the damping ratio and equation (29) for
the undamped natural frequecncy to provide two equations suitadble for an
iterative solution on a computer.

'f - - S [ IZ(t)mo.x /Zol / ﬁ_:-_\zi‘] (30)
Wn Lo (a)
Wa = 7.'0 - fr——{;—: ( i 2.0 * Zc wn)

— ()
tP (1 Zo * Zowﬂj
The program which accemplishes this, called RISE, is presented in

Appendix A,

Results

The results of the analysis of Jindivik data from both programs
DATANYL and RISE are presented in the followinp tables, Table XI
characterizes the system for each mode for each AFFDL test, and

Table 1II suaterizes results that arc peculiar to the heave mode only.

25
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RESULLS OF ANALYSIS OF JINDIVIK DATA

—varica

TABLE Il

Program DATANYL

Mode | Case| Test || Zeta Wn Mode Coefficient
No (rad/sec) kg Ce
B _ (ft-1bg/rad) | {ft-1lbg/xad/sec)
Pitch 11! 5 0438 6,66 80,334.76 | 1,052,386
2] €60 V462 | 6.20 69,524.92 1,036.00
| 6l «0357 | 5.66 57,9.7.22 731,38
Roll 1 56 0053“ 1.8‘0 &,OQO;ZQ 23“006
2| 55 0577 1 1.64 3,077 29 l 221.05
3| 58 0622 | 1.52 2,753.88 | 227.58
e e,
frogram RISE
First Peak (1bg/ft (1bg-sec/ft)
Eeave 123 3482 [ 15.22 17,769.30 813.04
31 122 «3533 ) 16.61 21,163.15 900.29
121 #3771 { 15.4¢ 1¢,381,59 895,57
Lverape
‘ieave 122AV]l 42616 | 14.90 17,029.96 537,99
122AV)| 1822 | 14.67 16,508.26 410,06
Y21AVY L1799 | 14,24 15,554.68 393,02
Cases Tt
1 -~ Vent opened
2 = Vent closed )
3 « Flow added (g = Ynr)
4 = TFlow added (1ag = i)
26
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(‘) TARLR 1II

PROGRAM RISE FREE FALL DATA
(Jindivis Teasts/He .ve Mode)

Heave ) ¢ 2004T 2rl

. Ta2st No (sec) (in) (in/sec) (in)
123 0.220 ~7.157 0.2683 2.230
122 0.202 «7.267 0.2630 2.220
121 0.21%0 -7.111 0.2173 1.980
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V. Analysis of the Spring/Damper Urits (Theory)

General

The analysis of the model equations of motion is completed by
computer solution. The computer analysis is presented in Appendix B.
Prior to implementing this solution, the spring/damper units must bdbe
fully described.

Spring/Damper Unit Evaluation

If it were not for the coupling terms in the heave and pitch cases,
the eguations of motion could be solved with the mode characteristics
only ({'s and Wn's). The coupling requires knowledge cf the individual
s/d units.,

In Chapter ll, it was amphasized that only one “snring“valuve and
one 'damper" value could be derived from the data of each mode, Analysis
of two of the modes, pitch and rcll, resulted in torsional springs and
dampers, each of which now cin be transtformed into a pair of Jin=ar
spring3 and dampers at an assuded moment arm to satisfy the model
corfiguration. The moment arm chosen for this analysis iz based on the
Jindivik ACRS trunk (Figure 7)., The tangential contact pointé of the
trunk and the surface with the xz and yz planes define the points for
measurement of trunk length and width. Assuning trunk symmetry, the
proper moment arms are half of the length (£/. ) and half the width (b/2).

In Chapter IV, tha relations between cthe rode characteristics 2nd
the spring/danper cosfficients were estatlished. The example for the
r0ll case is repeated here,

/C,z,q = (Li < Wng Iu) /I bl (a)

- 2 > any
y's [ Ju Wat 1/ b -

Exprersions for the heave and pitch cases can be found by simiiarly
equati:p the coefficients of the differantial equation, but the heave
and pitch sprinp/danper coefficients are functions of each cther,
Simultaneous solution of the expressions result in a form that is 4n

terms of the mode characteristics only, Thes» aves

all ol e e
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O Cop = frlne Ju - Ty Way m S (s1)
~ 4 (1_/2)1
Ry = (W) Tyy = m () $" o
2 (R/2)*
‘ s = 2 fuwmm - (cus v €.2)] (33)
) fs = WT(LJn“)z -2 (Mgt jha~q) (34)

Numerical solution of the s8/d units is accomplished in progranm
MODANYL (Appendix B), the results of which are presented in Table IV.

TABLE IV

LINEAR SPRING/DAMPER UNIT COEFFICICNTS
(from Program MODANYL)

Mode~Test No. Linear s/d Units
€ and Wn Position |Spring Coefficients (K)|bamper Coefficients
(1bg/fr) c)
(1bg/ftfsec)
H=-122 1’3 1,17‘008 6.9
O p-61 2,4 639.1 52.9
R~58 17,340.1 772.4
H-IZZAV 1.3 1.232.9 1300
P-él 2,4 63901 520 9
R=-58 S 12,623.1 274.6
H"123 1,3 1'80609 1607
P=-59 2.4 936.5 Sh. 4
R=-56 S 9,434.6 599.5
i
i H'IZMV 1.3 1’78002 1806
B-59 2,4 936.5 54.3
R-56 S 11,439.4 466.5

Note 13 For the heave case, calculations are based on data acquired
where the CG was shifted above the trunk CP.

Note 2¢ For the heave mode, the first peak analysis was used for ¢
and Wn unless subscripted by AV, in which case the average

analysis was used,

Note 33 Linear s/d unit values are based on the Jindivik Trumk,
Figure 7, where {/2 = 53.85 inches and b/ ® 17.6 inches,
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VI. Analysis of the Vertical Energy Absorption Model

General

The Vertical Energy Absorption Model was exercised on a CDC 6600
computer with the goal to duplicate the Jindivik test of Table I, The
model results, which compare favorably with the original tests and
with one another, are presented in graphic form in Appendix B with the
exception that the responses from & single test condition (flow added-
tests 58, 61, and 123) are included in this chapter in order to analyze
them more closely. A variable is present in these comparisons since the
heave tests were conducted with the CG approximately above the center of
pressure (CP) of the trunk, where as the roll and pitch tests vere in
normal configuration with the CG aft of the CP. The exact efiect of the
change of the CG location on the heave data is not known.

Spring Coefficient Comparison

Before examining the model responses, it is worthwhile to compare
the mode values of the spring coefficients from Table II with earlier
experimental AFFDL static test results which are summarized in Appendix D,
These values are plotted in Figure 17 in a kind of histogram where the

abscissa represents the point cushion conditions of vent opened (VO), vent

@ ROLL @ PITCH @ HEAVE
T @ 100} 20} © .
b o JAN 9, © 0
S0 © © © 10}
2t <P @ &
14
Yo VC Fa Vo V¢ YWV K
ordinate values x 1000
&> AFFDL static caped AYTERd  CRERvRCR © fysTaee J

Fig. 17. Conparison of opring Coefficients
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closed (VC) and flow added (FA)., Although point conditions, the
abscissa does suggest & scale of increasing cushion effectiveness ( P. and
M . Ancreasing). This suggests that the aynamic roll spring coefficient
and cts static roll stiffness are comparable. Thus, for an approximation,
the dynamic roll spring coefficient can be found from the easier and less
expensive static tests. Another advantage is that the static analytic
techniques are easier than the dynanic ones. The dynamic pitch stiffness
also shows reasonable agreement between the dynamic and static values and
does apprcach the static value.

The heave case shows dissimilar results. The first peak analysis
values appear to increase while the averapge analysis values show the
same decreasing trend with increasing mass flow as the static test values.
In dboth cases, there is a definite magnitude difference in the values
between the dynamic and static values ot the spring coefficients for any
given test configuration. This fact suggests the presence of a dynamic
gpring phencmenen that wae not chservahle during the static testing.

..... o [~ B84 ¥ 4

Model Roll Resnonse

The test values of the damping ratioc §  and undamped natural
frequency Wn used to characterize model response are those in
Table II. In all roll tests, generally jncreases and wn generally
decreases with increasing mass flow to the cushion,

In Figure 18 for roll test 58, the response of the model shows
excellent correlation to the test data in all respects,

Model Pitch Response

For the pitch tests, Table II,'f 's show no decisive trend, while
Wn *s, 1like the roll mode, show @ decreasing trend with increasing mass
flow to the cushion,.
Figure 19, for pitch test 61, generally shows good results except
it appears that the equilibriun axis of the response is angled slightly ;
to the equilidbrium axis of the data. Referring momentarily to Fipure 30,
page 60 , in Appendix A, the equilibriun plots <& of the original data
show a definite increasing trend with time, The equilibrium height (HEQ)
of each test was defined as the average value of these individual

equilibriun positions. Back to Figure 19, it is the average equilibrium

31
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height, a constant, that was used in program MODANYL to adjust the
original data to the same equilibrium axis as the model response so that
the two could be compared. Thus, a slight deviation is introduced to the
plot. The magnitude of this deviation is equal to the difference tetween

the average equilibrium height and the actual equilibrium height &t any
time,

Model Heave Response

The heave response tequires several computer runs with different
initial conditions in order to evaluate, In Chapter III, the axis
chosen for the development of the equations of motion was based on the
equilibrium position. Experimental data showed that the equilibriunm
longitudinal axis made an angle of about 3 = 4,5 degrees nose up from the
horizontal plane when the CG was displaced aft of the CP. When the
aircraft is dropped level with the surface, then an additional initial
condition in pitch is established where 6 = ~ 3,0 degrees relative to
the equilibrium axis of the model, The first peak and average ¥'s and
Wy's used to exanine the heave mode response are those calculated in
program RISE (Appendix A) and presented in Table V.

TABLE V
ZETA & WN COMPUTATIONS TOR HEAVE
(Progran RISE, modified)
TEST 123 1 st 122 TEST 121
Peak ZETA Wn ZETA Hn ZETA tn
1 .3482 15.22 .3533 16.61 | .3771 15.48
2 . 2644 14.72 .1627 14.40 | .1691 14.52
3 1922 14,77 .1296 14.35 | .0851 13.93
4 .1575 13.80 | .1078 13.32
s .1847 14.77 | .2515 14,37
6 .1057 14.12 | .0890 13.82
$V°r39° .2616 | 14.90 1822 | 14.675] 1799 | 14.24
alues
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In the first two heave responses presented, the model is exercisad
with initial conditions on heave only ($ = ® e 0) and thus no pitch
coupling develops, The results of these initjal conditions are what wvas
expected from che Jindivik tests when the CG was moved to & position
above the trunk CP, The fact that the Jindivik test data shows the
heave test coupling into a pitch mode suggests that, during the actial
tests, the CG was not exactly over the CP and/or the irnitial pitch
condition was not exactly level at contact.

In Figure 20a, the ¥ and Wn from the first peak analysis are
used. The response correlates well with the first data point but is
too heavily camped to approach the other data points,

In Figure 20b, the average values for 4 and w, are used, Even
though the response overshoots the first peak, a much better subsequent
Tesponse is achieved.

In the next two cases, suspected actual Jindivik test conditions
are duplicated; that is, the model is activated parallel to the surface,
which puts an initial condition on pitch, and with initial conditions
on heave., In these response exanples, the model resembles normal
Jindivik confipuration where the CG is behind the CP,

In Figure 20c, the first peak analysis shows a degradation of
response to the first peak due to pitch coupling and a tendency for the
pitch mode to dominate the response; that is, heave is not effective
after the first peake It is obvious that the pitch peaks are nowhere
near the data points, but this ay nhot be tud 8é&éTious. The peétiod of ths
pitch mode 1s constant and approximates the peried of the data. This
nmeans that the danped natural frequences (Wd ) do compare. In addition,
the peak amplitudes of the pitch response fit exactly into the data
exponential decay curve, thus sugpesting a comparable logarithmic
decrement and pitch damping ratio (¥ ).

In Figure 20d, the same initial conditions as Figure 20c are used
but with the average values for € and wWne The depredation of the first

peak response actually 8ssists toward matching the data point. Subsequent

response is nuch improved in heave, with the heave rmode matching or,
at least, moving toward all data points.
A closer inspection of the character of the heave mode i3 possible

with Table V which incluies a summary of 4 and wa calculations froam

35
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program RISE for all peake, In all the l.eave test cases, the first peak
values of'f ani wn are sipnificantly ligher thau the subsequent values,
The subsequent values of wWna are essentially conscant. Equations (17b),
(32) and (34) imply tbat «hen wy is constant, then the spring c.oefficient

is constant. ine damping ratios ( ¥ ), on the other hand vory erratically,
suggest.ing a2 non-lirear behavior. It can be seen trom equations (17a),

(31) and {33}, that, given Wa a constant, if'f is non-~linear, then the
damper coef{ficients are non-linear.




T T WAL, W g,

e

cres s D ESEESAe T Er e o=

S

GAM;-\EI73A-1

VII. Conzlusicns and Recommendations

Cernclusions

From the analysis in Chapter VI and with the supplomentary response
curves in Appendir B, th: Vertical Energy Absorption Model demonstrates
model response charactaristics in the roll and pitch modzs that correlate
well to the Jindivik data. In the heave .node, results are satisfactory,
but more important, the potential for continued development 2nd more
precise prediction has beer demonstrated. The use of a nechanical
analog prediction eschem¢ for an Air Cushion Landing Systen has sufficlent
derit to warrant turtber investigation.

Tha linear assumptien for both the spring and damper coefficients
made in Chzptur IT i5 born out by analytic results and vesponse curves
in pitch and *>1l. The roll mode is superior in this respect.,

Heave response of the model is reasonable, but care must be
exercised in the selecticn of the proper damping ratio (€ ) and
undamped natural frequency ( Wa ). For an anal: "ical means of finding'f
and Wn , the nmethod of averaging the values from a peak time analysis
(program RISE) provides good results. Reference the heave equation (8),
the terms on the right hand side indicate a coupling of the motion to
the pitch mode. The amplitudes of the heave response curves in Flgures
20a to 20d do not match the data consistently as ¥ and Wwn are raried.
Using the first peak values for ¥ and wa results in a good renuonse
match at the first data point (Figure 20a), but the excessive damping
ratio supresses the amplitude of the response at subsequent data poirts.
Using the average values of ¥ and Wn , the response approaches thc
subsequent data points out overshoots the first data point. Thucse
observations suggest that the heave response is non~linezar. 7Tt newn-
tinearity is in the exponential decay curve of Figure 14 urd i: d.. %o
the product 'fu)q . However, from the swmary of heuve cnar-ctesisiies in
Table V, it is shown that wWa is approxirmately constant and is approxtizaiely
equal to the averapge value of the heave Wq. HWith the conclusien that
the heave Wn 1s & counsiani, Lhen 1L ks pussibie tu cunclude thai the
dynanie heave spring coefficient (%e ) is constant (lineur) also. A
further observation is possibles HWith a constant heave ¢lv, Lif the

product Ywa is non-linear, then the non-linearity must be duc to tine
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danping ratio (¥ ). Translating this observation to the model, it is
fiow possible Lo conclude that the non-linearity in heave is dua to the ;
heave damper cofficient (-CE).

Of concern is the fact that the theoritical response peaks of the ‘
remaining pitch response after heave had damped out did not match the
data in time (phase shift) even though there was correlation in period
and amplitude of the exponential decay. Since the heave mode has
violated the original model assumption of linearity, it is not possible
to form a conclusion about the phase shift of the remaining pitch rcsponse
without tirst investigating the heave non-linearity.

In Chapter I, it was noted that there are two categories of trunk
material, stretchzble and non-stretchable. Since this model investigation
was based on data from an ACRS made of non-stretchable material, use of
the model with stretchable material truurs must be accomplished with
caution. The exact effect of a ~“retrlable trunk on the linearity of the

avrnme P
vy el Civen
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tr
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oowr, At This time; however, the model is
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expected to operate co-rectly if a proper expression for the spring and
damper coefficients are provided.

The schematic of the VEAM in Figure 8 visually suggests thac the
peripheral springs rervesent sections of the trunk and that the center
spring represents the cushion. This is not the case. The model
rmquires a center spring (positicn 5) to ascount for the heave dynamics
in addition to the roll and pitch linear springs which are derived from
a torsional mode springe This is illustrated in Table IV where the

linear s/d unit coefficients are summarized from program MODANYL.

Recommendations

The following recommendations are derived from this studys

1. An investigation into the non-lincar nature of the heave
danping phencmenon should be made. A non=lincar heave dauper
coeffirient should be formulated and incorporated into the
model to elininate the deficiencv of the linear assumntinn.
These results should then be used o investipate the difference

in phase shift betwcen the theoretical curve and the experimental

data of the heave responce after heave damps out,
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2. A methed should be investigated which would allow the prediction
of. the spring and damper coefficients directly from trunk and
cushion parameters so that this model can be used to investigate
the dynanics of arbitrary trunk configurations without first
building and testing on actual vehicle or scaled model.

43
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Appendix A

Analysis of Jindivik Data (Computer Solution)
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Program DATANYL

The prpogram for evaluating the Jindivik ACLS roll and pitch data
according to the theory set forth in Chapter IV is called DATANYL.,
Table VI describes the method for entering data into the program and
defines the syubols uysed, Table VII describes the output symbology and
units., Following Table VII is a listing of DATANYL, & single example
output from the line printer, and a plot of the test data of each of the
roll and pitch tests of Table I.

TABLE VI

PROGRAM DATANYL-INPUT DATA

Data No. of Data Format Input Symbol
Group Cards in
Group
i 5 F
1 8F5,F10.3, | N,P,Q,R,S,W,U,NOTR,MASSEQ,TITLE
A9
3 1-N F1G.3 T
1-N F10.3 H

DEFINITIONS OF INPUT SYMBOLS

F The nunber of sets of data (data groups 2,3, & 4)*

N Total nunber of data points

P The data point number for the first positive peak (1 or 2)
Q Total number of positive peaks

R The data point number of the last positive peak

S The data point number of the first negative peak (1 or 2)
W Total numnber of nerative peaks

v The data point nusnber of the last nerative peak

NOTR The inteper numnber of the Jindivik test run

MASSEQ| The moment of inertia (slups-it?)

TITLE | Enter "ROLL" or "PIICH"

T The tine from t,for all pcaks in consecutive order
H The adjusted linear transducer heights

* data groups 2,3, & 4 comprise a set of data for each Jindivik test
run. Enter as many sets (F) 2s there are test runs to be analyzed
on a single conputer rum.
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(:> TABLE VII
PROGRAM DATANYL-QUTPUT DATA
Column Column Description
: Number Title
' 1 DATA The data point number for recorded positive and
. POINT negative peaks in consecutive order
2 TIME The time occurrence of the positive and ragative
(SEC) peaks
3 H The recorded heights or perturbations from
(IN) linear transducers for CG, Nose, and Wing
4 T The period, measured between adjacent positive
(SEC) peaks
S FD The damped natural frequency ia cycles/second
; (Ccps)
i é WD The damped natural frequency in radians/second
: (RPS)
7 HEQ The equilibrium height of the system in steady
(1N) state
<:> 8 PQOSAR The amplitude ratios of the positive peaks E
9 NEGAR The azplitude ratios of the negative peaks ;
The following values are averaged to obtain the final value used in the '
remainder of the calculationss T, FD, WD, HEQ, POSAR, NEGAR.
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Program RISE

Program RISE computes the Jamping ration ( ¥ ) and undanped natural
~requency ( Wa ) of the Jindivik heave mode using the method of percent
overshoot and rise time to the first peak (Chapter IV) and accounts for
an initial condition on velocity as well as displaccment at model
activation, The free fall equations are included to provide values
vequired by the analysis. To check linearity in heave, RISE can be
modified (lines 381-384) to allow computa-ion of € and Wa at peak times
subsequent to the first peak. The progran i: designed for use on the
teletype remote terminal. Table VIII provides the method for reading
data into the program. Table IX describes the symbols and units for
output. Symbols in both Tables are in accord with Figure 15. Figure 31
presents a listing of the program RISE. A sumnary of all calculations
from program RISE can be found ir Tables II and III of Chaper IV,

TABLE VIII

PROGRAM RISE-INPUT DATA

Input Format Input Symtol
Statement

Read 1 5F10.3 TAU TAUPL HI HEQ HPI
Read 4 2F10.4,215 ZETA WN N L

DEFINITIONS OF INPUT SY{BOLS™*

TAU Time of free fall (sec.)

TAUP1 Time from release to the first peak (sec.)

HI Height of release point from surface (in.)

HEQ Equilibriumn height from surface (in.)

HP1 Height of fivst peak from surface (in.)

ZETA Danping ratio = assuned or guess for iteratioen (N/D)

WN Undanmped natural frequency =~ assufied or guess for
iteration (rad./scc.)

N integer value of cycles = 7 for {irsi peah

L Integer value of number of iterations desired

* Symbols are in accordance with Figure 16, Chapter IV,




O

CHWWEFwonry & wes w

TABLE IX
PROGRAM RISE - OUTPUT DATA

Output Output Output Definition Units
Statenment Symbol
Print 11 TP Time to first peak 88C.
20 Initial displacement from equili-
brium, positive measured down in,
208DPT Initial velocity at to in./sec.
ZFP1 Displacement of the first peak
from equilibrium in.
Print 15 N The N value read in N/D
2ETAl The first guess for ZETA N/D
HWN1 The first guess for WN rad. /sec.
Print 13 ZETA The iterative solution for ZETA N/D
WN The iterative solution for WN rad. /sec.
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Appendix B
Analysis of the Equations of Motion
(Computer Solution)
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Propram MODANYL

The evsaluation of the eyuarions of motion of the Vertical Energy
Absorption Model (VEAM) {n its three degrees of freedom (DOF) is
accomplished by program MODANYL, A listing of the program is presented
in Figure 32. Due to program volume, only the graphical results are
included in this study.

This progran is designed to solve the VEAM equations with the use of
AFIT Sudbroutine RKDES, a differential equation solver using ¢ v riable
step fourth-order Runga-Kutta method. In addition, the mode :-:ings
and danpers are converted to linear spring/damper units with the
equations developed in Chapter V-

The total vertical displacement as & result of movement in the 3
DOF of any arbitrary point in the plane of the model is computed by
Subroutine LOCATE. Displacement of any point (P) relative to the CG

could be accomplishod by
LOCATE, but the model assuuptions

Small ;
ungies 7 x cf Chapter II pammit liziting
,\e/ the arbitrary point to the

horizontal plane (Z2' = 0),
For this study, the threce

positions in the xy plane that
coincided with the locations of

the Jindivik linear displacement
transducers were chosen for

output in order to cewpare with
)
z the test data.

A subroutine called ANAILT

Fig. 32. Vertical Displacement ,
for Subroutine LOCATE plots the theoretical curve and

the experitental data points for
comparisen, Since this plot routine is similur to DATAPLT of Appendix A,
a listing 1s cnitted.
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(\) The equatlicns of motion solve a dynamic force balance rlative to the
’ equilibriun axis. All initial conditions on displacement that are applied
to the equations of motion must be referenced to the equilibrium axis also.

Collecting data relative to the equilibrium axis is difficult since the
equilibriun position changes according to test configuration. Therefore,
data is measured from a known horizontal such as the surface or the
spring-neutral/contact plane. For the purposes of these calculations, the
; spring-neutral or contact plane i3 choser as the rveference. A total

force and moment balance is accomplished and the equilibriun displacement
: of the model frcam the spring neutral plane is calculated for each mode.
f The following relationships provide the means to reference the initial
. conditions to the equilibrium axis.

Zo= W + W &? (35)
Q“ j{—e ra }q.’.glg( DL
_ AW
e‘%{' 2 k.. (5/~\’2. 4 (36)
~
C/ d) = 3.~ 7. = 0 for all times; that is, (37)
* Tyr o

the equilibriun axis and the contact axis measure toll relative eo
the horizontal,
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Appendix C

T Justificaticn of the Small Angle and
Horizont2l Displaccment Assumphions

in Pitch and Roll
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General

In tl. rmoin text, simplifications were made to the pitch and roll
analysis that vere based upon the assuaption that the respective angles
were sriall and/or the assuaption that the horizontal displacement of a
point during piteh or roll was negligible. .Justification of these
agssunpsions in the text would have been unwieldy, and would have detracted
from the prinary analysise The roll mode has been chosen for this

detailed illustration bacause it has the maximum motion.

Geometry

Tae roll iinear dicplacenent transducer was affixed to the Jindivik
suspension frome a distance (L ) above the horizontal surface through
the center of gravitve, A tvire on inertia-reel from the transducer
was attached to the winpg tip at posint a. Fipgure 41 chows the wing in
deflection fron equilibriuwa ( ¢ ). The trancducer recorde a vertical
displacement ( A ), bLut the attacinment point is constrained by the wing
and must swecp out the arc w=w., 7The wire, originally of lensth (L ), 1s
reduced to a length (L-R). FPoint a, attachrd to the wire, musc be or

arc t-t also, where arc t-t ies part of a cirnle centered

®»

Ye—§—

Ya~| —T°

1 & + ? ﬁ!—_' - -r.!\.
| “ xf Xy *b/2 i

Fig. 41, VYertica) and Translatjonal Tcansducer krrors
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at the transducer with radius (L-§). If the movement were truly
vertical, the point of artachment wouyld be at a®, but it is at position
& instead. This results in a vertical erzor (A.Ql), and z horizontal

error ( Xy, ~ Xa e

Analysis
An origin is created at the center of grzvity with an %,y axis

defined for this preblen as illustrated. Eguiations are then written
which describe the arcs.
For arc w-wt z* 1 yr = (%2)* (38)
For arc t-t: (x = 92)* + (4-1)" = (L-Q)° (39)
5imultanecous solution of these equations will yield the coordinates for
points a and f. From (38), sclve for X==[(%ﬂz‘ 31:])2 and substitute
into (39) to solve for

LKCE (LK) - LY L R4- (2 %)
%aﬁ = 8 ) 2 E H ] (40)
where o 2 [ LS+ (2 J
Kz20)Y 42k -5 (41)

For the maximum roll case <

L =14 fr, = 268 in.

Y2 ¢ 164.75 tn.

A = 22 in.
frem which

Ya = 22,005 in,

b= 4005 in.
This calculation shows thit the vertical error is nepligible,
Substituting Ya into equation (38) results in a solution for

Xax 163,268 in,
Point a translates by the amount 9& ~ Xa = 1,482 in., Thus, the
horizontal translation is only about 1% of the half span (©/2), and can
thus be considered nepligible.

The methed above allows a precise calculation of the roll angle,

aiso, vhere

. -1 l:l’: /
(P = Tan / Xo
For roll, (bnmx = 7,68 cegrees, which cupports the small angle

assunption.

The pitch case follows the same analysis except the half-span is

8%
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= oM L] ] s L St 0

s Bk o

Beri

o, I 1

bt 2 e ki

ST

TR TRATI TN OGO RN R PV G PN TR

s,



v e

—

O

C&'\:i/fu./lwk‘; T -

replaced by th2 distance between the nosc transducer attachment point
and the center c¢f gravity (166.51 in.), and the mavimum vertical
displacement is 19,80 inches., 7The aralysis shows that
A= 19,8047 in.
Xo= 165,328 in.
aRke= .0047 in.
Om= 6,83 dogrees
Translaticn = 1,182 in,
whizh together support the original assumptions.
Although the above analysis used the displacement trancsducers as
the example, the same asswiptions hold true for the trunk. The x-
displacement changes magnitude but their relationships and the maximun
angles remain the same, The Tesults of this analysis were used during
development of the ACLS model as described in Chapter II and ir

subsequent calculations.
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Certain dara required in various computations was provided b
q t

the Air Force Flight Dynamics

Ejector Test Results

Latoratory, iiecchanical Branch.

Equilibriun Hover Yent Vent Flow Added) Flow Added
Conditions Opened Closed P 2125psil =204 DSE
Trunk pressure ( Pe) 1.94 1.70 1.64 1,56
Cushion pressure (Pc ) 0.03 0.61 0.65 0.68
Trunk flcw (me) lbm/Sec |0.79 0.97 1.02 1.07
Cushion flow () lbg/sec |UNK 0.0 0.46 1.32
Trunk footprint (Pe) 1238 612 575 565
Static Stiffness
Roll (Re) fr-1%/rad 4583.66 | 2437.75 [2864.79 -
Pitch ( f&p) ft-1b/rad 51,566.2 | S1,566.2]51,566.2 -
Hieave (few ) 1b/ft 9000 8400 7203 -
Heave Test
Drop Tine,
Polease ta contact (cec) 0 - 0.0¢3 l0.081
Jindivik and ACRS
Moment of Inertia (Jwxx) slug‘ftz 1190
Moment of Inertia (Jyy) slug«ft2 1810
Height 1bg 2470
Trunk width in 35.2
Trunk length in 1G7.7
CP to CG Displacexent (S) in 8.56
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