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A procedure for adjusting the gains in an a~£ filter used in iracking air targets by search
radars is given for the case in which the track updates aprear randomly in dme. The filter
gains are given by a = 1 - e #WoT and = 1 + ¢ &%0T - 2 ¢TWoT cos wyT where §, wo,
and wy are constants and T is the randomly varying time between updates. Using this gain
adjustment procedure, we found that the tracking errors are smaller than when the gains o
and 8 are held constant for tracks which are randomly updated.
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ABSTRACT

A procedure for adjusting the gains in an a -8 Siter used in track-
ing air targels by s:arch radars iz given for the case in which the
track updates appear randomly in time. The filter gains are given by
a=1-e2wol sl =1+ e BwoT - 2e$waT cos wyT where £,
wyp, and 34 z2re constants and 7" is the rendomly varying time be-
tween updates. Using this gein adjustment procedure, we found that
the tracking errors ove smaller than when the gains o and f are * AAd
constant 1 i1 tracks which sre randomly updiated.

Menuseript submitted August 21, 1973,
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CAIN ADJUSTMENT OF AN ALPHA-BETA FILTER
WITH RANDOM UPDATES

INTRODUCTION

Search cecars sometimes rack air targets by use of an o~ filter {1]. The filter
computes the target’s velocity from the measured position, smoothes both the p« ition
and velocity, and finally predicis the position the jarset will have at the next locl of the
radar. In most of these cases & uniform update time can be assumed and such & system
can be analyzed with standard technijues involving sampled-data systems [2-4].

Let us consider merging the target reports from a number of raders. The ragars are
assuimed to rotate at different speeds, and the detection capability of any given wadar on
a target depeixis on many environmental and radar factors. For these reasons the track
updates for a given target might be thought of as appearing randomly in time, Under
some circumstances a phased-array vadar could also be modeled with a random update
time. In this report we analyze the o-f filter by using the postulated random updates,

and we consider a meuns of adjusting the filter’s gain so as to improve its svstem rasponse.

REVIEW OF THE a-8 FILTER

The review of the a-g filter with constant update times includes an examination of
the transfer function, its properties, and the response of the system in both the mean
and variance. We begin by defining the -8 filter [1]:

Xk} = xp(RY + alxaik) - xp(k)]) . (1
ulk) = vl ~ 1) + BITHxp(R) - xp(R)) (2)
xpk+1) = xdk) + o) T, (3)

where
x,{k) = smoothed position,

v;ik) - smoothed velocity,

l

xpik} predicted position,
X ik} = measured position,

7

n

sampling period {constant until specified otherwise),

@, § = systern gains

L A




2 BEN H. CANTRELIL

Wi obtain a convenient form of the fiiter equations by substituting (3} into (1} and (2},

obtaining
[0 fo-@ a-arljue-v) (o]
l | = | + |l {4)
o] BT (-9 lutk-1))  |BIT|
and
g-x,(k}-i
xp(k+1) = {17} i {5
Ltk |

Applying the 2z transform {2, 3] to (4} and (5), we find that the transfer functions of the
system are

aziz + (£~ a)/a]

= x = i (6
He = 5@ism® = T 0T 5 s G ©
BIT)z(z~- 1)
= o P = 3 * 7:‘
Hy ll(Z}Ix .i!z) 22 - z{g_ o— ﬁ) ES (1 - a) ¢
H - - 1
By = xp(e)xmiz) = rP)ztz = lalle S} T

22 - z2(2-a-f)+(1-a)’

By sefting z = e”T, we find the frequency responses for a typical system (Fig. 1). The
smocthed position is obtainec! by passing the measured position through a low-pas, fiiter,
and the smoothed velocity is obtsined by differer tiating the measured position. Tre
sampler itself acts as a low-pass {ilter, and any excitation whose frequency rangr is above
1/T is simply folded into the frequency range from zero to 1/T. The normally used
valves of @ and  are shown in Fig. 2. This is obtained by examining the pole and zero
locations of the transfer functions (8). {7}, and (8). The transfer functionz (63, {7}, (8}
are placed into standard notation for a second-order system:

)
Hi.; = — ' ' e @)
CF 27 g el cos wyT + ¢ Zwo?

Equating terms in the denominator of (2) with the denominators of {6), (7). and {8), we
obtain

= 1 - e 2wl (10)

)
i

and
1+ e 2T _ g 8T

B

cos waT, {11)

and -4 is the damped natural frequency. Equations {10} and (11) will be wed later.

Before observing the system response, we consider incorporating a constar.-rate high-
spred sampler in the cystem and defining » (k) as

where £ is the damping coefficient of the second-order system, wy is the natura! frequency,

L
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Fig. 1—Fraquency response of an
-8 filter, which is given by Eqa.
(6), (7), £ (8) with z = eJT,
fora = 0,529 arnd 3= 0.579

Bl I;'WMW”' PR

L e

so
HON siNIMUY
PHASE REGIOHN
= g\
4 e ¥
‘( " '
3 {l\/} ¢ STATRITY L€

Q B<4-2a

PARAMETER B

2%
PARAMETER o

i0
= H
z H
' F 3
% vid »ie
>T

ik e

Fig. 2—Permimibie ralucs of @ and §




4 BEW H. CANTRELL

xplk) = ulty) + w(), (12)

==

=
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with w(i;) assumed to be . whi.e stationary Gaussian noise having zer¢ mean and having
variance saf reoresenting measizement error of the radar and with u(;} azcumed to be
samples from a deterministi- tasget trajectory. A block dizgram of the filter is shown in
Fig. 3. We define the matrices in Egs. (4) and {8} as

¢ (1-2) (1-a.T
- A\‘ﬂ = zi
V-arr -9 |
B(T) = £
BIT§
Px,{k}‘i
X{k} = HEY
_”si-”‘")j
CM = i1 iA),
m_yrtd wM X siyes)
e v Tl s
vl %’amx&-a ..l

1 T 13 fcoMSTANT-RATE
&AM ECEAT B egespeeo sawsier ]

Fig. 3—An a-3 filterincorporating & constant-rale highispeed sampler

At

A S b B e A R SRR I e

where A is the time between samples of the high-speed sampler. We then write the filter
equations {4) and (5) as
Xik) = A(TY XiE - 1) + B{D{ul(tr) + wity}] (13)
and 2
. xp(RT +i3) = C() X(%), (14)
whete i = 1, 2, 3, ..., 7/4, with T/A being an integer. E
The resporse of the filter is obtained in terms of means and covariarces. The equa %
tions describing the covariances are of the form {4]. §
: Plk+1) = A(NPERIA(T) + BIN o, B(D. (15)
: where
¢ §§-?x x ik} Fx‘ex {&)qi “éé
P{g‘: =§ I Y E
| Pz ,iR) "::.c‘f,??} i
in which

§
i%’i
g
2
=

=
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b
FPrx (k) = covix,(k) xk)].
The covariance equations for the a-§ filter are derived wsing (13), (34), and (15):
Pl | a-a? 2(1- a)*T a-m?r2 |[p k-1 §
i
i i
Pog(k)| = FB(L-eNT  (1-@)(1-28 (1-a)i- .0,,E * - 1]
§ _ H
Py by ®Imy* -2(1 - BT (-5 [{Pglk- 1))
L - J
[,
b a? |
o |
+ 225:::‘ | 0u . (16)
gy
ekl
Py (RT %8} = Pyo (ki + 24P, (k) + (i8) P, k), un
fori=1,2,. ., T/A. The steacy-state sclution of {15} is obtained by setting P(k + 1)
and P{k) and solving the resulling algebraic equation. The results are
P, . (e ? = 2B 3aB+ 20 a
=%, (k)ic," = af4~-2a- 33 a8
ST f(2a - B} . .
Pt = Tosog {19
5 $£2a2—83*2§—a3§ ]
AkVig = — - —. 2
P (KMO, a{4- 2a- 5} 20
We define og‘é.\ ~be
Goti} = Py (KT +id)s? (21)

Combmr".g (17) through (21}, we nio~ the normalized variance of the predicted position
s "{s = ’}‘;A) st the updatc time of the filter s a function of cand B{Fig 4). InFig. 5
wep;ciao (i} for 3 ghven o and £ io thow the intrasample ripple in the variance of the

pradicted position.

We now consider the mean resporse of the filter, A target is flown in a circle at a

large distance from the radar. (This tmsjectory represents a tumning target, and the full

circle s used such thst 2 steady state k obiained ) The range variation s a function of

time 5 {5}

i) = Ry * {v7a,) cos (e iv)t,

{22)

where Xg is the range to the center of circie (ft), o, is the normal acceleration {ft/s?),
2i1d v is the velocity of tar

target (ftfs).

When the filter is excited by samples of () taken
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at uniform instznts in time lconstant 7, the respense of the Riter x (&}, 7,i%k), and
X, 4kT + T) are sinuscids of the same frequency bet diffevent amplitudes and phases at
the sampliny instants. This sesult is well known {2,3], and & easily obiained by re
cursively solving the filtzr equstions using the szmpied values u(lz ) The intrasampls
ripple is ottained by using the constant-raie highspeed sampler: = 1, 2, ... T/4. A
system response including the mtrasample rippie is shown in Fig 6. This filter was m3-
dasigned purposely so that the error could be shown ezsily.

The various ways of designing the filter tasically attempt to roject the inﬁﬁsmftg of
{1} while mzintaining x,{X} as close &= possible to ully) [1.6-10}. We now consxler
the filter's operation when it is randomly updated.
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GABRY ADJUSTMENT WITH RANDOM SAMPLING

We begin by computing the means and covariances of the filter under random s
pling. considering only the exciiation w(i) for 2 Gxed-@in and 2 vanzblegain a-3 Siter.
We then compute the mean and covariznces of the a-# filter sonsidesing only the excits

ions w{fy) ad X{0L The 0=l mean and covariance responte can be found by super
imposing the two solutions. A procedure for showing that superposition s permissiby &
shown in Apperdix AL

Xpéfr-1) = CiTgag) Xik}. 20

where Ty & 2 random variable representing the Hme between the (2 - 132 =d kth

sample, fp = T, + 73 * ... ¢ T ©s the time of cocwrence of the &th semple, and A7, L

Random sampies 2} zze independent,

{rom the uniform distribution shown i Tig 7. The subscript o Ty will be drop

Lo
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HT) =0T
J=142,

¥ig. 7—Probability density of a sampling interval T

< deg
SAMPLING PLARIOD T

The covariances of the system states arc  :xt considered. Considering the response
only due to w{t,), we find X(k) = 0, where the bar denotes expected value. As shown
in Appendix A, the recursive equation

P(k) = A(T)P(k- 1)A'(T) + B(T)o, B(T) (26)

can be used to find the covariances P(k) 4:¢ o w{ly). The covariance equations for the
«-p filter are

7 —_— _ 7
Py x, (k) t (1-a)? 2(1 - &)?T (1-a)?712 i Py (k-1
Py (k) | = |-BQ-aliT (1-0)(1-2) (1-a)(1-B)T||Pep,tk~1)
Pt | | @m?  -2a-gir a-mz [P ik- 1)
F ]
+ 07:’:’7?! 0.2, (27)
Ol
Pex(the1) = Pog (k) + 2T Py (k) + T2P,,(3) . (28)

Cince « an’l B are constant, the coefficients in Eqs. (27) and (28) are

d+€

T = (1/d) f TdT = (d/2) + €, (29)
€

T2 = (d2/3) + de + €2, (30)

I/T = [n(d+e) - Cnelid, (31

1/T2 = 1[e(T+e€)] . (32)

As the results of using the coefficients {29) through (32) ir {27. and (28), the normalized
variance of the predicted position
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0g° = Prx,(the1)0,” (33)

A

is shown in Fig. 8 as a function of ¢ for steady-state conditions. These results were also
computed using Mnute Carlo techniques. Observing Fig. 3, we find that 002 increases
rapidly for small values of €. This can be explained as follows: In a uniform update
system, if the updatie time becomes short, the variance in the velociiy increases rapidly.
However, this effect is directly canceled in the variance of the predicted position, because
one needs ‘0 predict only over this same small interval of time. In the random update
system the cime between updates can first be short, creating a large error in velocity.
This can then be followed by a long time interval in which the target’s position must be
estimated using the poor velocity estimate. Therefore 002 increases under these condi
tions. A method of avoiding these large errors iz nexi considered.

103,

10! 1 1
oot [o ] 10 100

« (SECONDS)

Fig 8—Normalized predicled positior variance as &
function of € with d = § seconds jor a fixed-gain
a-f fter

. Variable-Grin a~f Filter

The method of avoiding large errors in the random update system adjusts the system

gains a and § according to {10) ani {1}, where 7" is the random update time. 'The
covariance equations considering only w (23} as an excitation is again given by Eqs. (27)
and (28). The coefficients are computed 5y numerical integration with the use of the

. uniform probability density given in Fig, 7. The normalized variance of the predicted

: position (33) is shown in Fig. 9 as a function of €. We find that 002 is not a strong

: function of €, as was the case in Fig. 3. This can te explained as follows: When the
time interval between samples becomes short, a and § approach 0, thus smoothing the
data heavily and negating the rise in velocity ervors. As the time between sumples be-
comes long, o and 2 approach 1 and in effect no smoothing is used. The gain adjustments E

ALt e,

JER

1 o SR,
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BOUND FOR LARGE
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Fig. 9—Normalized pmedicted positic . variance as a
function of € with £ = 0.4 and d = 6 .ecords for a
varizbl=gain a-§ filter

(1Q) and (11) appear to maintain a rather constant 00'2 under the random sampling dis-
tribution proposed.

We now investigate the effects of the excitation u(tz) and X(Q) on the system re-
sponee using the gains (10) and (11). We will find the effect of u{ty) and X(m on the
randomly updated filter by using simulation procedures. (Because Et{u(t;) - u(t,)}
fult;) - u(t,)]{ is not § for all { # j, an analytic forraulation appears to be very difficuit.)
An approach to the problem would be to find the mean and covariance of the predicted
2 position at the Ath sample. However the kth sample appears randomly in time. A more
meaningful calculation would be to find these quantities at a given instant of time. Con-
sider the constant-rate high-speed sampler defined in Fig. 3. Under any randomly sampled
excitation the filter response can be fourd at a given sample of the high-specd constant-
rate sampler which corresponds to a given instan? of time. The quantity A is made smallez
than € such that the effect of ecch random sample can be easily seen. The adjustable-gain
filter is excited by taking random samples, distribute” =< ~_ own in Fig. 7, from a sinusoid,
g given by Eq. (22). Over many trials the mean and variance of x, is computed at each
switch closing of the constant-rate high-speed saompler. The results are shown in Figs. 10
and 11. Even though u(?) is a deterministic process, under random sampling the fiiter
output is & random variable. One finds that if the filter has a sufficient bandwidth, the
filier with adjustable gains (10} and (11) follows u(#) quite well (Fig. 11).

sFif Atk

"
(L

The reason x, follows u(t) fairly well with the adjustable-gain filler may be expiained
as follows: As the time between samples becomes short, the system smoothes heavily, 3
which counteracts the increase in bandwidth due to the rapid sampling. Conversely, as %
the time between samples becomes large, the system lightly smoothes, counteracting the 3
sluggishiness induced by the long time between tamples. In fact the system attempts to 3
maintain a constant bandwidth, and if this bandwidth is wider (han the frequency content E
of the signal, then x, follows u{t) fairly closely. This system behaves like a continuous —é

system of fixed bandwidth being excited with inputs appearing randomly in time.
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) Fig. 13 —Mean (and mean plus and minus a standard devistion) of
H xpwstimeforf =94, W =0314rad/s,d=6s,ande = 0.1
a




12 BEN H. CANTRELL

The total filter response in both the mean and covariance can be obtained by super-
imposing the effects of w(¢) and [X(0). u{t)]. The filter design would adiusi § and we
such that X, followed u(t) as closely as possible while minimizing Py . which is com-
posed of the variance P - due to w{t) plus the variance Py x, due uit).

SUMMARY

The constant-coefficient a-§ filter when randomly updated was found w have large
errors in the varance under certain conditions, namely, a short time beiween updates
followed by a iong time between updates. To circumvent this problem, variable gains
a=1-e BwoT and g = 1 + e 28007 . 9 o~8woT ~gg (o, T, where ¢, wo, and wy are
constan’ and T is the randomly varying time betwren updates, were postulated. Using
these gains, one found that the variacce in the predicted position remained at reasonably
low values under the same conditions. Also it was shown that the variable-gein filter's
response Lo a given trajectory could achieve a reasonable small error.

Although the gain adjustments were simply postulated and shown to work well with
the exan:oles cited, no exact justification for their use was given. However arguments
were given as to why the system seemed to work well,
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Apvendix A

FORMULATIONS OF MEAN : ND COV..RIANCE EGQUATIONS

The purpose of this sppendix is to cutline a procedure for showing that superpos-
tion can be used in computing the means and covanances of {23) and to outline a method
of obtaining {26). We begin by writing the systam equations (23) using a convenient
form.

X{g) = AX(E-1) + Blu(ty) + w(te)], (A
wheze

0y e 1

A = random variable which is identically distributed and independent from
sample to sample,

R ot 04l vt 1, ) it

B = mandom variable which is identically distributed and independent from.
saraple io sample,

u{ty) = 1andom sampies from an arbitrary function, ;
X(0) = initial condition, i
uify) = zero-mean white Gaussian noise with variance o, 2. :f
Recursively solving (Al), we can obtain the solution in the form ;
X{k) = g{A, B, X(0). utty), wity)] . (A2)
The mean Mi(k) and covariance P(i) of X(&) are compuied using the probabiiity density :j
(25). The means M'(%) and M"(k) and the covr dances P'{¥) anc P''(k) sre computed in 3
the saine manner by first using X (0} and u{lz} as excitations and then using w{ly) as an 2
excitation. Superpusition is then shown to hold by noting 3
Mik) = W(k) + M'(k), (A3)
P(k) = P'k) + P(R) . (A4)
The computation is straightforward but quite lengthy.

We compute (26} by noting the mean vaiue of X (%} exciled with only w(lz} s 0
and forming the covariance:

X(k)Xtk) = AX(k- DNX(k- DA + Ba(lp) wl(fy) B

+ AX(kE- 1D ui{tz}B + Bw(ix X(k- 1A, {A5)
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where the bar denocits expecied value and the prime denoies timspose  Beorise of the
independence.assuraed, {A5) becomes

X)Xy = AX(k-1)X'(k-1)A' + Bw(ty) wity) &

+ AX(k-1w(t) 8 + Bu(ta) X(E-1)A". (AB)

-
-

Defining P(k) = X{k} X'(k) and noting X(k - 1) w(ty) = 0, we obtain

Pk) = AP(k-1)A’ + Bo,2B". A7)

e ziee o
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