FAILURE OF METHYPREDNISOLONE TO PROTECT LEAD-SENSITIZED RATS AGAINST ENDOTOXIN

Robert B. Jones, et al
Naval Medical Research Institute
Bethesda, Maryland
27 June 1973
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
RESEARCH INSTITUTE

NO. 2001

TITLE:

EXPERIMENTAL RESPONSES OF LEAD-SENSITIZED RATS TO PROTECT LEAD-SENSITIZED RATS AGAINST

REPLACE TYPE OF REPORT AND INclusive DATES

AUTHOR:

PETER, J., ET AL., AND LUNZ, A.

INSTITUTE:

INCLP.SS', FTri

TOTAL NO OF PAGES

10

NO OF HTS

15

ORIGINATOR'S REPORT NUMER(S)

M8011, 0001, 002, 0007

REPORT NO.

1

OTHER REPORT NO(S) (Any other numbers that may be assigned this report)

INSTRUCTION STATEMENT

THIS TECHNICAL REPORT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE: ITS DISTRIBUTION IS RESTRICTED TO THE NATIONAL SECURITY AGENCY, SPRINGFIELD, VIRGINIA.

SPONSORING MILITARY ACTIVITY

BURTON OF MEDICINE OF THE NATIONAL MEDICINE INSTITUTE

WASHINGTON, D.C.

This study evaluated the effectiveness of lead-dosed in doses that protected normal rats against lead sensitized rats.

Reproduced by
NATIONAL TECHNICAL INFORMATION SERVICE
U.S. Department of Commerce
Springfield, VA 22151
1. METHYLPREDNISOLONE
2. LEAD-SENSITIZED
3. RATS
4. ENDOTOXIN
Failure of Methylprednisolone to Protect Lead-Sensitized Rats Against Endotoxin

ROBERT B. JONES, JAMES L. WISE, AND LUTZ A. KEOW

Experimental Medicine Division, Naval Medical Research Institute, Bethesda, Maryland 20014

Received for publication 27 June 1974

The administration of lead acetate (PbAc₂) sensitizes both rats (7) and subhuman primates (4) to minute amounts of bacterial endotoxin. The mechanism of this sensitization has not been defined, although it has been suggested that alterations in either the degradation of endotoxin (8), or in carbohydrate metabolism (3, 4), may be important.

Glucocorticoids are demonstrably effective in protecting normal animals against endotoxin (1, 5). The purpose of the present investigation was to determine if this was also the case in lead-sensitized animals.

Under light ether anesthesia, femoral cutdowns were performed on male Sprague-Dawley rats weighing 180 to 220 g, and an intravenous injection of 20 mg of PbAc₂ dissolved in 0.5 ml of deionized water given. This was immediately followed by an injection of 0.5 ml of Serratia marcescens endotoxin (Difco Laboratories) suspended in 0.15 M NaCl buffered to pH 7.4 with 0.02 M sodium phosphate (PBS), after which 37,000 times more sensitive to endotoxin, the methylprednisolone was without any effect. Deionized water was used as a control for the PbAc₂ injections in these experiments. However, other investigators have used sodium acetate with no effect on endotoxin induced mortality (2). PBS was used as a control for the endotoxin and methylprednisolone injections.

The animals were observed for 72 h, although most died within the first 12 h. The mean lethal dose was determined for each group according to the method of Litchfield and Wilcoxon (6). No deaths out of 16 were observed in control animals which received only PbAc₂ or only methylprednisolone. Two deaths occurred in the 16 animals which received both PbAc₂ and methylprednisolone, but no endotoxin.

As can be seen from Table 1, methylprednisolone was quite effective in protecting non-lead-treated rats, a single injection causing a fivefold increase in the mean lethal dose. However, in the lead-treated rats, which were approximately 37,000 times more sensitive to endotoxin, the methylprednisolone was without any effect. This failure of a potent glucocorticoid to protect lead-sensitized rats against endotoxin suggests that lead may produce important qualitative, as well as quantitative, differences in the response of an animal to endotoxin. Furthermore, it would seem to indicate that under certain circumstances the efficacy of steroids in the treatment of septic shock may be a function of other, seemingly unrelated, factors.

We gratefully acknowledge the excellent technical assistance of Stanley Shapiro.

This work was supported by the Bureau of Medicine and Surgery, Navy Department Subtask MR01.0001.002.M07.

LITERATURE CITED


TABLE 1. Effect of lead acetate and methylprednisolone on endotoxin lethality in rats

<table>
<thead>
<tr>
<th>Lead acetate (mg/kg)</th>
<th>Methylprednisolone (100 mg/kg)</th>
<th>No. of animals</th>
<th>Endotoxin LD₅₀ (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>65</td>
<td>16.5</td>
</tr>
<tr>
<td>+</td>
<td></td>
<td>64</td>
<td>(11.6-23.6)</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>152</td>
<td>82.7</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>178</td>
<td>(66.4-102.9)</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>152</td>
<td>(0.34 x 10⁻¹ to 0.58 x 10⁻¹)</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>178</td>
<td>(0.38 x 10⁻¹ to 0.46 x 10⁻¹)</td>
</tr>
</tbody>
</table>

* Body weight.
* Abbreviation: LD₅₀, mean lethal dose.
* Numbers in parenthesis are the 95% confidence limits for each LD₅₀.


