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OPTIMAL INTERDICTION OF A SUPPLY NETWORK

Alan W. McMasiers
and

Thomas M. Mustin. LCdr., USN

Naval Postgraduate School
Monterey, California

ABSTRACT

Under cerlain condilions, 1he re-supply capabilily of a combalani force may he limiled
by the characlerislics of 1he 1ransportalivn nelwork over which supplies musi flow. Inler-
diclion hy an opposing force may be used to ;educe 1he capacily of 1hal nelwark. The effecls
of such efforts vary for differing missions and 1argets. Wilh only a limiled 1012l budgel
available. 1he interdiclor musi decide which 1argels 10 hil, and with how much effort. An
algorithm is presenled for delermining 1he oplimum inlerdiclion plan for minimizing nelwork
flow capacily when 1he minimum capacily on an arc is positive and 1he cosl of inlerdiclion is
a linear funclion of are capacily reduclion.

The problem of reducing the maximum flow in a network has received considerable interest
recently [1. 3, 8, 9], primarily as a consequence of the problem of interdicting supply lines in limited
warfare. In this paper an algorithm is presented for reducing the maximum flow in such a network
when the resaurces of the interdicting force are limited. A typical problem is that of the strike planner
who must determine the best way to allocate a limited number of aircraft to interdict an enemy’s
supply lines on a particular day.

The netwark is assumed ta be capacity limited and to be representable as a planar connected
graph of nodes and undirected capacitated arcs. Further, it is assumed to have a single source through
which flow enters the network and a single sink through which flow leaves. The maximum flow through
such networks is easily determined by finding the minimum cut set where a cut set is defined as a set
of arcs which, when removed, causes a network to be partitioned into two subgraphs, one subgraph
containing the source node and the other containing the sink node. The value of a cut set is the sum
of the flow capacities of its arcs. The minimum cut set is that cut set whose value is the minimum of
all cut sets of a network. The max-flow min-cut theorem states that the maximum flow possible through
the network is equal to the value of the minimum cut set [4, 5].

In the interdiction problem, an arc (i, j) is assumed to have a maximum flow capacity. u;; = 0, and
a minimum flow capacity, {;; = 0. At least one arc of the network is assumed to have /;; > 0. As a conse-
quence of interdiction, the actual capacity, my. on an arc will be somewhere in the range
0</ij< my< .

If we assume that the interdictor incurs a cost, Cj;, per unit of capacity decrease. then his total
cost for reducing an arc’s capacity from uj; to my; will be Cy[uy;—m;]. If we assume the interdictor
has a total budget limitation, K, which he cannot exceed, then

2 Cu[u,j-mij] < K.
an(i.j)
The cost, Cij, might represent the number of sorties required to reduce arc capacity by one unit

and K might represent the total number of sorties which can be flown in a 24-hour period.
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262 A, W. MeMASTERS AND T, M. MUSTIN

The interdictor’s problem is to find a set of m;; whieh minimizes the maximum flow in the supply
network subjeet to
> Ciluy—my} <K
allGiuj)
and
lijs my < uy for all (1, ).

Topological Dual

In resolving the interdictor's problem we will make use of tue topological dual. This dual. when
defined. is another network in which the ares have lengths instead of capacities. A one-to-one cor-
respondenee exists between the cut sets of the original or primal network and the loopless paths throngh
the dual. The problem of finding the minimum cut set in the primal 1~ cquivalent to finding the shortest
path through the dual {4).

l.et the original maximum flow netwerk be called the primal. To construct the topological dual we
begin by adding an artificial arc connecting the source to the sink in th~ primal. The resulting network
will be referr:d to as the modified primal and the area surrounding this network will be referred to as
the external mesh. A duai is defined if and only if the modified primal is planar: a planar network being

“one that can be drawn on a plane such that no two arcs intersect except at a node.

When defined. a dual may be constructed for the interdiction problem in the following manner [9]:

1. Place a node in each mesh of the modified primal including the external mesh. lLet the
sonree of the dual be the node in the mesh involving the artificial are and the sink be the node in
the external mesh.

2. For each are in the primal (except the artificial are) construet an arce that intersects it and joins
with nodes in the meshes adjacent to it.

3. Assign each arc of the dual a length equal to the capacity of the primal are it intersects.

Preview of the Algorithm

The algorithm begins by ignoring the budget restriction. All arcs of the primal are initially assigned
capacities l;; and the shortest route through the topological dual is determined. The length of the route
corresponds to the value of the minimum cut set of the primal when my;=1{;; for all arcs. A check is
then made to determine if the interdiction cost for obtaining this minimum cut exceeds the budget
constraint. If not. then the problem is solved. If. howevr -, the budget constraint has been exceeded
then a reduction in expenditures is required.

The algorithm seeks to “‘unspend”™ as carefully as possible so that the amount of flow through the
network increases as little as possible. The first step in this unspending operation is to find which arc
of the minimum eut set “*gives back” the largest amount of expense for the smallest increase in capacity.
Unspending takes place until mj;= u;; or the budget constraint is satisfied. i mi;= u;; then the algorithm
continues working on the minimum cut s¢t until the budget constraint is satisfied. The final value of
that cut set is then determined and retained for later comparisons.

The algerithm looks next for the second shertest route corresponding to the second lowest valued
cut set when all arcs have m;;=1[;;. It repeats the budget check and the unspending process. After
the budget is satisfied on this cut set then the cut set value is compared with the final value of the cut
set of the “shortest” routes; that cut set having the lower final value is retained and the other is dropped

from further consideration.
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The process continnes with eonsideration next of the third shortest ronte or third minimam ent
set with all ares having mi;=1,, and then the fourth and =0 on. If. at any time. the length of the next
shortest route nsing all /;'s is greater than the final length of the best previons route. the algorithm
terminates. There is no point in continuing the next shortest route investigations sinee all further

rontes will have lengths greater than the feasible length of the best previous ronte.

Feasible Min-Cut Algorithm

1. Construct the topological dual of the network and set alt my;=1/;;. Set r=1.
2. Determine R,. the rth shortest loopless route through the dual when mj;=1;;. and determine
its length L from
L= 2 li;.
(i, eky
If 1 = 2 rontes qualify for the rth shortest route because of ties in total length. arbitrarily select
one of these routes as the rth. another as the (r+ hith, another as the (r+ 2)th, and so on. with the last
of the group being designated as the (r+ w— 1)th shortest route.
Compare LF with L7-9, the length of the shortest feasible route from the set R;. R.. . . .. R, 1.
{Let L= x),
(a) It L¥ < L'7-" then go to step 3.
() If L} = L'V then terminate the algorithm, The rowes R, Ryiy. Rr.a. . . .. Ry will have
feasible lengths which are no shorter than L7 and need not be considered.
3. Compute the interdiction expense. £, associated with L from
Er= 2 Cij[llij-lij].
(i, ekty
(a) If E, < K. terminate the algorithm. Route R, has the minimum feasible length of all routes
through the dual.
I E,> K., go to step 4.
4. List the n ares in R, in descending order of Cj; valnes: let (/i(r) represent the largest C;; and
Catr). the lowest. Beginving with ¢=1 and L,= L}. inerease the length of the are (i, j) corresponding
to Cy(r) and the route length L, by

Er-K
Ci

Am;j= min{u;,-— I,'j, , Lir-n —Lr}.
Decrease the interdietion expense E, by Ci;Am;.

(a) If Amy;=u;;—1;j increase q by 1; compute Am;j; and the new values of L, and E, for the
next arc on the Cj; hst.
E,—K

Cij ‘
and record the current value of ¢. call it 5. Delete the route associated with L7~V from further considera-
tion. if L, > L'r-V, set L= [ir-1 and drop R, from further consideration. Increase r by 1 and return

(b} If Am;;= the interdiction expense for the route is E, =K. If L, < L't-V set '"=L,

to step 2.
te) If Amj;=L"-V~L,. the length of route r has been increased to L‘"~", but it is still not
feasible since E > K. Delete R, from further consideration, set L' = L{"-1_and return to step 2.
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Er—K
ij

If there is a tie between u;— ¢, and L' V' — L, apply part (¢).

If there is a tie between uy— 1 or L' -V — [, and for value of Ami;. apply part th) above.

Optimal Allocation N ,

The value of L7 at the termination of the algorithin is the minitnum value of all the feasible cut
sets, This is the minimum acnievable network capacity. The interdiction effort is assigned to the ares
of the primal which are “‘cut™ by the feasible route R, of the topological dual associated with the valne
of L', The optimal number of sorties to allocate is

nij=Ciu;— 1]

& for the ares of the primal cut by the dual ares of R, associated with C,.(p), Ci.2(p). . . .. Co(p)
where s is the index from the Cj; list of the first arc on R, having Am,; -~ 0. For the arc (i, j) associated
with Cip):
ol
n;,-=K— 2 ni;.
Caorti
Finally. nj;= 0 for all other arcs of the primal network.
EXAMPLE: Figure 1 presents the network information for the example. The value of K will he 5.
Node 1 is the source and node 5 is the sink. The numbers on each arc represent l;;, uj;;. Cj;.
The topological dual is formed as shown by the dashed lines in Figure 1. The artifical arc added
to the primal for constructing the dual is arc (5, 1). The completed topological dual is shown in Figure 2:
the numbers on the arcs represent the upper and lower bounds on arc length and the unit costs for
shortening them. These numbers correspond directly to the numhers on the ares of the primal ent by

the dual arcs. The source and sink of the dual are nodes A and D. respectively.

— —— g ——
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When mij=1;; on all of the ares of the dual the complete set of loopless routes frem source to sink

with associated lengths LF can be obtained by inspection. It is:

Ry:(AB.BDD =3

R, (AC., CDy =4

Ri:(AC, CB,BDl) L¥=4

R.:(AB. BC.CDy L¥=7

R. :1AB. BD2) L¥=8

R 1 (AC, CB, BD2) F=9.
The designation BD1 is associated with the upper BD are in Figure 2 and BD2 is associated with lower.
Altheugh the algorithm would not evaluate all routes R, through R, and their associated LY values
they are presented for the sake of discussion.

The algorithm begins by finding K, and computiny L} =3. L'9'= x is set so that L{* < 1'%, Hecause
E,=17> K, the cosi ~oefficients for R, are ranked, C;(1) =2 (for arc BD1) and C:(1) =1 (for arc AB).
The evalnation of Amyy,y results in
Ei—K_

(‘ BDU

6.

Amyin =

1,=9, and E,=5=K. The analysis of R, is complete because £, = K, therefore L'"'=1,=9.
After finding K., the value L} is computed. Because L¥ =4 < 1), the value of E, is next deter-
mined. £2,=14> K so the cost coefficients for K, must be ranked. €,(2)=3 (for arc AC) and

Amy =iy — Iy =2 resulting in L., =6 and F,= 8. Next Am¢,= h;,_ k2 Y250 L,=7Y2and E.=5=K,

s
<D

completing the analysis of R,.

Because L, < L' we drop R; from further consideration and set 1'2'=L,= 7Y,

K3 is next on the list. L§ < L'2'so Ey is determined. E3=22 > K and Am , must then be caiculated.
We get Aniye=tpe— 4 =2 resulting in ;=6 and F3=16. Next, Amyy = L'2'— Ly;=3%2 and R; can
be disregarded. Set L'3'=[2)= 7",

Route Ry has Lf=7<L®* and E,=13. Then Amep= L™= Ly="2 and we can disregard R,.
St LW'=[31=T1,,

Because Rs has 1§ =8> L4 the algorithm terminates,

The dual route which is used to determine the optimal allocation of interdiction effcrt is R,.
L= 72 is the value of the minimum cut of the primal network after optimal interdiction. Arc AC has
length my.=uy-=3 and arc CD has a length m¢,= 4Y2 < u¢p. Therefore arc (3, 5) of Ul primal has a
final capacity of mys=us;=3 and arc (4, 5) of the primal has a final capacity of mg;= 4Y2. The entire
budget K =5 is allocated to interdiction of arc (4. 5). This optimal interdiction gives a maximum possible
flow through the network of 72

An rth Shortest Route Algorithm

An algorithm for finding the rth shortest loopless route through the dnal network is a necessary
part of step 2 of the Feasible Min-Cut algorithm for large problems. Such an algorithm can be derived
by minor modifications to the “*N best loopless paths™ algorithm of Clarke, Krikorian, and Rausen {2]
(their algorithm will be referred to as the CKR algorithm from this point on). In seeking the N best
loopless paths the CKR algorithm concentrates on paths which have at most one loop. The procedure
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begins with the determination of an initial set S of N loopless routes along with a set T of routes having
one loop, but lengths less than the longest of the A routes of S, Special deviations, called “detours,”
from routes in the et T are then examined to see if any loopless route arises which is shorter in length
than the longest of set S. If so, then this route replaces the longer one in 8. When the elements of sets
S and T cease changing the algorithm terminates.

The modification for converting this procedure to an rth shortest route type is quite simple, Use
the CKR algorithm to find an initial set of V = 1 hest loopless routes. If, during the course of applying
the Feasible Min-Cut algorithm additional routes beyond NV are needed, use the existing |V routes to
initiate the construction of the new set S. The new set S is initially established when a specified number
of loopless routes, K( = 1), has been added to S. Those detours of routes in new S having loops. hut
total lengths less than the maximum from S form the new set T. The CKR algorithm is then applied 10
find the final set of ¥+ K best loopless routes.

If more than V+ K routes are needed after returning to the Feasible Min-Cut algorithm then
another set of K additional routes can be added in the same way as the first K. The second new set §
would be initiated with the existing N + K best loopless routes.

The values of N and K are a matter of personal choice. The use of K=1 does not however seem
very efficient becaus< of the possibility of multiple routes of the same length. With K > 1 such tiex
become nore quickly apparent. In any case. a complete list of all routes of a particular length should
be evaluated before returning to the Feasible Min-Cut algorithm. For example. if there are three
shortest routes through the network and N=2 was used then an additional set of K = 2 routes should
be evaluated to pick up the third route and to show ! it there is only one more shortest route prior
to going to step 3 of the Feasible Min-Cut algorithm.

Modifications when all ;=0

The Feasible Min-Cut algorithm was designed for problems where at least one are has /;; > 0.
The reason for this was that in most real-world interdiction problems it would be virtually impossible
to reduce an arc’s capacity to zero for any extended period of time [3. 6{. Often hand-carrying of supplies
can begin immediately after an aerial or ground attack. If one considers /;; 1o represent the average 24
hour minimum capacity then hand-carrying and minor repairs would definttely result in /;; > 0.

If the Feasible Min-Cut algorithm is applied to a network having all /;;= 0 it would evaluate the
feasible length of all loopless routes through the dual. The following modifications in steps 1 and 2 of
the algorithm are suggested as a means of possibly avoicng this complete evaluation. Step 3 would be
by-passed completely.

1. Construet the topological dual of the network aid set all my=u;;. Set r=1.

2. Determine R,. the rth shortest loopless route through the dual when m;= u;;. Then set m;;=0
for all ares on this rouie and determine £, from

Er= z C,')ll,'j.
ek,
(a) If E, < K. terminate the algorithm. Route R, has a minimum feasible length of zero and
ny= Cyu;; for all arcs on R,.
(b) If E, > K, go to step 4.

Comments
The algorithm terminates in a finite number of steps since the number of loopless routes through
the dua! network is finite for finite networks and each route is examined only once.
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Walll,. u: €. as well as A are imteger valucd then ng;, will be imteger also. If any of these parame-
ters i not integer then there is wo gmarantee of an integer sobtion. i a problem invobves allocating
sorties then integer solntions shonld be songht after the Feasible Min-Cut algorithm is completed. 1f,
however. the problem involves allocating, sayv. tons of bombs. then noninteger result= might be guite

reasonable.

Extensions

The law of diminishing returns suggests that actual interdiction costs for an are (4. 5) may follow 2
curve of the type shown in figure 3. The Feasible Min-Cut algorithm caa solve problems having this
type of nonlinear cost funetion if the function is replaced by a piecewise linear apppximation sueh as
that shown by ti.e dashed lines in Fignre 3. This linear approximation can be ereated in the primal
network by rplacing are (i, j) by three arcs having 1. w;;. and C;; values as sbown in Figure 4. The
construction of the topological dual will then require that a node be placed in each mesh of Figure 4.

A furtlier extension of the interdiction problem with nonlinear costs has been made by Nugent [7].
He consicers an exponential cost function in continuous form and presents an algorithm <imilar to
the Feasible Min-Cut algorithm for solving the problem.

ARC
CAPACITY

ARC INTERDICTION
cosT

FIGIRE 3. Arc capacily as a function of interdiction cost under the law of diminishing reierns

My, U (€, €, M HU-My)

LM (G, -C,)/ ML)

FroiRe 3. Replacement of are ti. ji fur the linear approximavon to Fig. 3
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OPTIMAL MULTICOMMODITY NETWORK FLOWS
WITH RESOURCE ALLOCATION

J. E. Cremeans, R. A. Smah and . R. Tyndall

Research Analysis Corporation
Mcl.ean, Virginia

ABSTRACT

P

‘ The problem of determining mullicommedity flows over a capacilaled network subject

1o resource consirainis may be solved by hinear programming. however, the number of

potential veclors in mosi applications is such 1har 1he standard arc-chain formulalion be-
comes impractical. This paper describes an approach—an exiension of 1he coluinn genera- i
lion technique used in 1he mulicommodity network fow problem —1hair simulianeously
considers network chain selection and resource allocalion, thus making 1he problem both
manageable and optimal. The flow anained is consirained by resource availabilii» and ne1-
work capacily. A minimum-cost formulalion is described and an exiension 19 permil the
subsiiation of resources is developed. Compuiational experience with 1the model «s discussed. !

INTRODUCTION

The problem of multicommodity flows in capacitated networks has received considerable atten-
tion. Ford and Fulkerson [3] sugges.ed a coniputational procedure to solve the general maximum-flow
case. Tomlin [7] has extended the procedure to include the minimum-cost case. Jewell [6] has pointed
out the strong historical and logical connection hetween this solution procedure for the multicom- 1
modity problem and the decomposition algorithm of Dantzig and Wolfe [2]. !

. A related problem, which has not been directly addressed. is the determination of multicom-
modity flows in a system constrained by resource availahility. For example, flows in transpertation
networks are constrained by available resources that must be shared by two or more arcs in the network.
The determination of the set of routes and the allocation of resources to these routes to maximize
multicommodity flows or to minimize system cost in mecting fixed flow requirements can be apphed

i to many problems in logistics and other areas. This paper discusses a solution procedure for multi-

commodity network flows with resource constraints in a minimum-cost case and develops an extension

‘ to permit the substitution of resources.

THE MULTICOMMODITY NETWORK FLOW PROBLEM

Consider the multimode, multicommodity network G(N, ). N is the set of all the nodes of the
network. . is the subset of all ordered pairs (x, y) of the elements of N that are arcs of the network.

Ay, . . ., Amis an enumeration of the arcs. Fach arc has an associated capacity b, = 0 and an k
! associated cost (or distance) d(,,) = 0. = o
i. For each commodity k(k=1, . . ., q) there is a source s; and a sink ix. The flow of commodity k A P 1
along a directed arc (x, y) is F&.pn, (k=1, . . ., ). and these F§ ), (k=1, . . ., g) must satisfy § '
the capacity constraints
i Féep <bupl(x. y)ed]. |
k=t i
{
269 o
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270 J. E. CREMEANS, R A SMITH AND G R. TYNDALL
The multicommedity network flow problem as formulated by Ford and Fulkerson [3] is as follows:
Define the set PX={P¥®|P¥ is a chain connecting s and t:}. Now let P be the union of the sets P*
(k=1, . . ., q). Further, let PV, PV, . . [ PW, . . . P@ be the enumeration of the chains P{¥el
such that the subscript j is sufficient to identify the chain. its origin-destination pair. and the commd-
ity with which it is associated. 0
Thus the kth commodity set is defined by

e=1{J IP}""’ is a chain from s; to &}, k=1, . . ., q. .
The arc-chain incidence matrix is
A=[ay],
where

;= :
710 otherwise

N { 1if Py

for i=1..., m j=1,.. ., n. Each column of the matrix A4 is thus a representation of a chain
P}k"

Consider the network used as an example in Ref [3], augmented by s; and & (k=1, 2). with
source s; and sink ¢, for commodity 1 and source s; and sink ¢, for commodity 2. Figure 1 illustrates the
network and Figure 2 shows the arc-chain incidence matrix A.

Ficure 1. Network A

P, Pa Py Py Py Py Py Py Py Py Py Py Py Py Py

[ Y [ | | 1
(1Y | 1 | 1 !
[N | 1 | 1 | |
oy | | | ! 1
cg ! | | | | )

9 1 1 (| 1

ay 1 1 ] | 1 1 . .-

LT T T T T R R T B T |

on T T T
COMMODITY | COMMODITY 2

FIGURE 2.  Arc.Chain Incidence Matrix A
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Letting x/ (j=1.. . .. n) be the flow ot < modity & in chain P (=1, . . .. n: k implicit)

and b; the flow capacity of .«/;, the multicommaudity. maximum-flow linear program is:
Maximize

n

(k)

2%

j=1
subject to capacity constraints

zn: aipx; < bi fori=1, . . ., m.
i

Thus the objective is to maximize flow over all possible chains from origizs to their respective
destinations subject to the capacity constraints of the arcs.

The number of variables in the aforementioned linear program is very large since the number
of possible chains is very large in most applications. The procedure proposed by Ford and Fulker-
s [3] is to treat the nonbasic variables impliciily; i.e., aonbasic chains are not enumerated. The
co  mn vector to enter the basis is generated by applying the simplex multipliers to the arcs as pseudo
costs and selecting the candidate chain using the shortest chain algorithm.*

Extension To Include Resource Constraints

In the linear programming problem stated previously, flow is to be maximized subject to the
constraints imposed by the capacities of the individual arcs of the network. In some applications addi-
tional constraints on flow are imposed by the limited availability of resources used jointly by two or
more arcs of the network. An example of this type of network, which will be used throughout the
remainder of this paper. is a transportation network. '

It is clear that the simultaneous consideration of both types of constraints is an important problem
in transportation networks. Roadways, rail lines, etc., have capacity limitations that may limit the
maximum movement of men and materials, particularly in less-developed areas. The vehicles and
resources available to use the network can actually impose a greater constraint on total movement
than the arc capacities. In a highly devcloped transportation system the capacity of the network may
greatly exceed that required; the effective limitations of movement result from too few vehicles or
other resources.

For the purposes of this paper, resources are defined to be men, equipment, or other mobile
assets that are required to accomplish flow on many arcs of the network. For example, trucks, loco-
motives. labor, etc.. are resources in a transportation network. To effect the simultaneous consider-
ation of resource and necwork capacities, we may represent resource requirements as follows:

Let the resource raatrix for commodity & be

Rk=[rk](i=1, .. .,m:s=1, ..., p),

where rf is the quantity of resource s required to sustain a unit flow of commodity & over arc i; rk = 0.

Note that for some arc commodity combinations
rk=wx(s=1, ..., p),
e.g.. if the arc represents a pipeline and the commodity is passengers.

*Professor Mandell Bellmore of The Johns Hopkins University and Mr. Donald Boyer, formerly of the Logistics Research
Project. The George Washington University. have developed computer programs to solve the problem using this procedure.
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Letting p, be the quantity of resource s available (e.g.. in inventory) for assignment to the network
(s=1, .. ., p), the minimum-cost multi-commodity network flow problem with resource constraints
may be formulated in arc-chain terms as follows:

Minimize
X )
Ak
2 A
J=1
subject to

(a) capacity constraints
n

Eag}x}"’sbf fori=1,..., m

=
(b) resource constraints

»
$3 Samrt<prs=l .o

=1 k=1 jeJy

and

(c) delivery requirements
21}"’=M~ fork=1,.. ., ¢q
g

where A, is the delivery requirement at ¢, (k=1, . . ., q), (A+=0).*
The cost coefficient, c;, may be defined as:

m m
¢j= Y Tiay;+ ﬁ z ¢irfai; (for j=1, . . ., n: k where ¥ connects sx and t,),
i=1

=1 i=1

where 7; is the cost (or toll) for a unit flow over arc i, and ¢, is the cost of using a unit of resources.

Define the matrices G and A as follows: G is a commodity delivery incidence matrix (g x n)

6= [gkj]
where
__{ 1 if jeJ &

ki~ 3
77| 0 otherwise

A is a matrix (m+ p+ qxn) formed of the submatrices 4, E, and G as follows:

. [A
A=\ E
G
The typical column of 4 is
/ij=col. (au. e s @mja Cljy o o oy Cpjs Bljy - .,gqj).

*The case where p=1 is eanivalent to the ““arc-chain formation™ of Ref [7].
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Solution Procedure Using the Column Generation Technique

The minimum-cost linear program with arc capacity and resource constraints and delivery requirc-
ments will be quite large for most applications and will, in addition. require considerable preliminary
computation to ohtain the coefficients of the 4 matrix. (The authors have solved several small problems
using a standard linear programming code.) The column generation procedure suggested by Ford and
Fulkerson [3] can be modified to apply to the problem extended to include resource ronstraints and
delivery requirements so that it is never necessary to form the 4 matrix explicitly. The shortest chain
algorithm [4] can be used to develop the 4; that will satisfy the simplex rule. Further. if the shortest
chain algorithm can find no chain satisfying the requirement. an optimum has been reached.

This formulation can be solved by adopting the standard two-phased procedure. Phase I minimizes
to zero the valus of

j=memipeg

20,

J
j=nemepsi

to obtain an initial basic fzasiple solution. This eflectively assigns a cost of 1 to the artificiai variables
and a cost of zero to the other variables in Phase I. Phase Il begins with the basic feasible solution
determined in Phase | and proceeds to minimize

i) i ijflk)'

=

in Phase I, Iin.,., may be used as the initial basis and the simplex rule is to enter a chain in the
basis if, and only if,
ci—csB-'4;<0,
where

B '=(ar, . . s Qm, T, . T, T, .. ., T,

so that the simplex multipliers a; are associated with the arcs, the 7, are associated with the resources,
and the o are associated with the artificial variables. Thus the vector 4 is entered if

m
—-2 a,-;[ a;+ i ﬂ,rf,] < o%.
i=1 2=1
Thus the contribution of each arc to ¢;—csB-' A; in Phase I is

d{‘=-—[ a;+i rr,rf,] <
2=1

We may use the shortest chain algorithm to find

mjil: [ 4%», d¥ ] = min [

J

s (—a;—g ﬂ,rf,)] over all k.

o e,
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Where .o/ is the ith are and P; is the jth chain from si 10 ¢, The minimum over all commodities
is selected as the candidate 1o enter the basis. The column vector to leave the hasis may be determined
in the standard simplex fashion. Should any a; or 7, be positive the corresponding slack variable could
be entered into the basis.

In Phase 1}

where
es=Y rkaij,
=
and
= { 1if jé.l k
%71 0 otherwisc
Thus

di=ri—ait+ ﬁ_"' k(s — )
may be . signed to arc i. The shortest, i.e., the chain with the least,
S di—oi <0
i

for k=1, . . ., q. may then be entered in the basis.
Phase 11 is terminated and the value of z is minimized when, for the minimum j,

E df¥ =z o

A,

Extension for Substitution of Resources

In the previous section only one combination of resources was permitted to be applied to an arc
in order to move one unit of commodity & over arc i. We now present a modification of the initial formu-
lation to allow for the substitution of resources. In economic terms the arc-commodity pair is similar
to a production function with constant returns to scale and fixed technical coefficients (see Ref. [1],
p. 36). In some applications this may be a significant limitation. Consider again a transportation net-
work. A highway arc might be considered for the transport of manufactured products. Closed vans
with a driver and an alternate driver might be the most efficient combination of resources. A combina-
tion of a van and one driver would be less efficient, perhaps, since more rest periods would be required.
but it is nevertheless a feasible combination. Siinilarly a third alternative would be the wtilization of
stake and platform trucks with containers, possibly more expensive than the first two alternatives. but
still feasible.
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Specific inventories of trucks and drivers may exist and (he objective might be to assign these
sets of resources in the most efficient way over all ares even if some ares or commaodities are assigned
a less than most efficient set of resources.

In the previous formulation, for each arc-commodity pair a single combination of resources is

required and represented by the vector. R¥== (rk . rk,, . . .. r}). of the matrix R*. ]

o

Define a new resource matrix: T=[tu](i=1, . . ., m:k=1, . . ., q). whore ti, = {R¥'R¥ is any
feasible resource vector for arc i, commodity k}; R¥= (7%, . . ., ).

In words, each element of T is the set of alternative resourr-e vectors for a movement of one unit
of commaodity & over arc §.

The contribution of each arc to ¢;—cxB-'4; in Phase 11 of the wminimum-cost procedure is ;

[
di=ri—a;+ i P (pe— 7).
=1
The possibility of employing alternative methods, i.e., alternative combinations of resources, affects
this by allowing for a number of vectors R¥. Thus to find the minimum ¢;— cxB~'4; one must find the
minimum
+
[ 3 ]
AP,
over the permissible RF as well as over all feasible combinations of ares. The elements ¢,(s=1, . . .,
p) are fixed for any problem, and the elements 7,(s=1, . . ., p) are fixed for any iteration. One may,
therefore, find the vector
e " min
Rf=Rf€[“‘.[ i ;ﬁ:((bx_ﬂ'*) ] f()l' l= l" o m k= 19 e q.
s=1
The kth matrix of these minima may then be defined as:
Ré=[rkY(i=1, .. .,m:s=1, .. .,p).
Each column vector R¥= (7%, . . ., 7,) is the alternative combination of resouices such that |
P B
2 if,((bx = Trx)
s=1
is minimized for arc i and commodity k. Now R* may be substituted in the minimum-cost procedure |
previously discussed and the appropriate zf, selected for entry into the basis. Thus new R¥ is con- \
structed for each commodity, each iteration. - .Y
P

Summary of the Procedure
To summarize. the proposed procedure is:
1. Calculate Cx)B'=(a1.. . ..Qm. T1a o - aTWpsO1e - . o Og).
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H 2. For each arc-commodity pair. find the least-cost applicable resource vector, “cost” meaning
cost in terms of the simplex multipliers and resources prites.
t = min
R}=Rf e'l'lu'[ i ;,A; ‘(bx_ﬂ'x’:l.
8=1 ' 4

{ ' 3. For commaodity k=1. . . ., q calculate .

df=1';—a+5: Fd—m)fori=1, .. ., m,
=1

[y

B e

and assign the d* to the arc i as a pseudo cost.
4. Using the shortest-chain algorithm, find the chain with least

dj‘=2 aij[Ti—ai+i P (¢,,—1r,.)] fork=1, .. .,q.
i 2=1

5. Find

m]i.n [df—O'k]‘

6. If the minimum [d¥— o] < 0. the vector A} is entered in the basis. If [df—a4] = 0. there is |

no chain that may improve the value of the objective function, and the procedure is terminated.

Validity of the Procedure
! e:'}’.;f(msider the linear programming formulation of the substitution problem. It is identical to the

. " . . . . . . . .
‘s origieal cost-minimization problem except that every column vector in the original problem will he

‘-: rep..ﬂc.cd by

. p; . N
vibj vectors applying to arc i],

alternate chains. The expanded substitution matrix will be many times larger than thc original matrix.

should either actually be enumerated.

|

f

} ™ , N N(M;) [where N(M;) is the number of alternate resource i
|

I It is claimed that the procedure outlined here will find the least-cosi (in the sense previously i
[

described) vector to enter the basis. It should be noted that if the procedure does not find the least-cost . k
| vector, but some other vector, say the nth least-cost vector, the algorithm will progress toward an opti- N
< ’
ul mum solution in the early stages but will terminate early. That is, any vector that satisfies the simplex : sk

rule may be hrought into the basis. but since the algorithm is terminated when the *‘shortest” chain
does not satisfy the simplex rule, the validity of the procedure depends on the validity of the shortest-

chain procedure.
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Suppose that the chain produced as a candidate is not the shortest chain and there is some other
candidate chain j* for which

dfy— o <df—on.

Two possibilities for this other chain exist:

1. The shorter chain consists of the same arcs as our candidate chain. but has different (allow-
ahle) resource vectors associated with onc or nore of these arcs.

2. The shorter chain consists of different arcs altogether with some allowable set of resource
vectors assigned to their respective arcs.

The first case is a chain that

dh < dj*

or that

i aj(ti—ai)+ i ajj i rE*(bs—m) — o

is less than

m m

Y aj(ti-ail + Y a; i Tiu* (s —m) — 0,

i=1 i=1 =1
but since the first and last terms of each expression are identical, that is a claim that for at least one
arc, common to both chains.

$ % (=) < 3 7 (=),

but since ﬁ T¥{d—m) (i=1... ., mik=1, .. .. q)isthe minimum available (step 2), the claim
a=1
that d%,— i+ < df—oy is inconsistent, and hence case 1 cannot occur. A true shortest chain :nust
employ the least-cost allowable resources on each arc that is a member of the chain.
Case 2 resolves itself to a claim that there is some chain that uses the least-cost allowable re-
sources on cach of its member arcs and has a lower (dj"*—ak*)lhan that ¢f the candidate chain. Since

the proposed procedure evaluates the pseudo cost of each arc incorporating the minimum resource costs
h

m
[i.e..ﬁ fﬁ,ld),,— rr,.)] and identical arc-use pseudo cosls[ i.e., z aij(7i —a,-)J. a claim that case 2 exists is

s=1 =1

simply a claim that the shortest-chain algorithm does not find the shortest chain.

Usefulness of the Procedure

In order to be useful in application, the routes selected and resources assigned must be feasible
in the object system. Routes through the network are composed of a series of arcs and the resources
assigned to them. Again using a transportation network as an example. it is undesirable to have different
vehicle types assigned to contiguous arcs of the same mode in a chain. That is. one wants the same
vehicle to carry the commodity over all contiguous arcs of the same mode in a chain. Quarter-ton and
12-ton trucks may be feasible suhstimites, but one does not wish to transfer from one to another at a =
node.

This is an important consideration if the results of the solution are to be used. It is simply not
feasible in practice to use chains that employ different vehicles on various arcs of the same chain unless

D
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the chain is multimode and transfer arcs are included. A procedire that is computationally simpler
than the general method just described is available, and it guarantees that the same resource comhina-
tions will be used on all arcs of a chain that are of a particular mode.

A “master” resource vector represeuting the resources required to sustain a unit flow over a stand-
ard arc of unit lengtk is provided for every commaodity, mode. and method. Each arc then has a mode
identifier, a condition factor, and a length factor assigned. The minimum-cost (in terms of the simplex
multipliers) method is then selected for each iteration, and the resource vectors for each arc are gen-
erated using the condition and length scalars. Thus a single master vector, representing a particular
method. is selected as the minimum-cost method for all arcs of that mode for each iteration. The soiu-
tion may contain several chains from si to ¢ each with arbitrarily different combinations of resources
used. but each chain will be internally consistent with respect to resources used. Centinuity of vehicle
type is ensured for all chains in the solution.

COMPUTATIONAL EXPERIENCE

A computer program in FORTRAN 1V for the Control Data 6400 has been developed for hoth
maximum-flow and minimum-cost formulations incorporating the substitution feature. The program
uses the product form of the inverse and will acconimodate up to 150 commodities, 1,000 arcs. and 50
resources. Up to 20 modes are permitted and each mode may have up to three alternative resource-
requirement vectors. Thus each arc may use any of three feasible combinations of resources to ac-
complish the move. A series of applications has been solved successfully and the results are eacouraging
with respect to accuracy and speed of solution. The use of the substitution feature does increase the
time required for solution, but this increase has been small in the cases tested to date.
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ON CONSTRAINT QUALIFICATIONS IN NONLINEAR
PROGRAMMING

J. P. Evans
Graduate School of Business Administrution
University of North Carolina

ABSTRACT

In this paper we examine lhe relationship between 1wo constraint qualifications devel-
oped by Abadie and Arrow, Hurwicz, and !!zawa. A 1hird consiraini qualification is discussed
and shown to be weaker than eilher of those mentioned above,

I. INTRODUCTION

In this paper we are concerned with constraint qualifications for the nonlinear programming

problem
(P)
min f(x)
s.t. gi(x) =0 i=1, ... m,
where f. gi. i=1, . . ., m, are real-valued functions defined on n-space. A constraint qualification,
such as that of Kuhn and Tucker [6], places restrictions on the constraint functions of (P) such that if
xo€E™ is an optimal solution for (P) and fand g. i=1, . . ., m, are differentiable at xo, then there
exist scalars u;, i=1, . . .. m, satisfying the Kuhn-Tucker conditions*:
m
Vfxe)+ 2 ui V gi(xo0) =0,
1) =
(2) uigi(x) =0, i=1,....m,
3) u z0, i=1,...,m

Section II contains necessary background and notation. In Section Il we also state the constraint
qualifications of Arrow-Hurwicz-Uzawa [2] and the concept of sequential qualification due to Abadie [1].
Two examples then show that, although both of these qualifications are more general than that of
Kuhn-Tucker [6], neither subsumes the other. In Section III we introduce the set of directions which
are weakly tangent to a set and show that this concept leads to a weaker constraint qualification then
either that of Arrow-Hurwicz-Uzawa or Abadie.

1. BACKGROUND AND NGTATION
For problem (P), let
S={xlg(x) =0, i=1,....m};

*We denote the gradienl of f evaluated at vo by V f(1t0): V [ is considered 10 be a column vector trr ).

281
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and for veS. let
1= {ilgi(xo) =0}.

the set of effective constraints at xo. Henceforth we will assume that f and g;. iel®, are differentiable
at vo. For completeness we now summarize relevant definitions from Abadie [1] and Arrow-Hurwicz-
Uzawa [2}

DEFINITION 1: The linearizing cone at .o is the set of directions Xek»

C={X|XTVai(x,) S 0. iel"}-*
DEFINITION 2: A direction XeE* is attainable at xo if there is an arc x(8)eE", such that
(@)  x(0)=x.
(b) x(0)eS. 0=0=1,

(c) x'(0) = AX for some scalar A > 0.1
Now define

A=1{X|X is attainable at xo!"

DEFINITION 3: A direction XeE* is weakly attainable at xo if it is in the closure of the convex
cone spanned by 4.1 Define

W ={X|X is weakly attainable at xo}"

DEFINITION 4: A direction XeE'" is tangent to S at v if there exists a sequence {t”} in $ such
that x»— xo and a sequence {A,} of nonnegative scalars such that

lim [Ap(x?—x) j=4X.
,)—’7‘

Let
T={X|X is tangent to S at o}

Some properties of these sets are explored in [1) and [2] Using these definitions we can sum-
marize the constraint qualifications of interest.**
Kuhn-Tucker constraint qualification: € C 4.1t

(CQ) Arrow-Hurwicz-Uzawa constraint qualification: C C W

(SQ) Abadie scquential qualification: C C 7.
If any of the above conditions holds at the optimal point .vo. then conditions (1), (2). (3) have a solution
(see [1), [2).

By definition of the set W, it is clear that the Kuhn-Tucker constraint qualification implies (CQ).
The following result establishes that condition (SQ) is implied by the Kuhn-Tucker qualification.

*This set is called the sel of locally consirained direclion by Arrow-Hurwicz:-Uzawa |2} The superscript T denotes trans-
position.

t¢'(0) denotes the derivative of the arc v(0) a1t =0

$An example in |2] shows 1hal 4 need not be closed.

**For convenience of reference we will denote the Arrow-Hurwicz-Uzawa gualification hy (CQ) and that of Abadie by
(SQv.

t*The original statement of the ichn-Tucker consirainl qualification involved the entire constraint set. 8. In this note. as
in |1} and {2]. we are concerned with a local restriclion which only need hold a1 the specitic point 10,

————
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] LEMMAL: ACT.
PROOF: Suppose XeA; then chere exists an arc x(8} such that
(a) x(0) = xo,
{
(b) x(0)eS, 0=60=1,
i te)  x'{0)=AX. some scalar A > 0. T

Let {8,}.0< 6, <1, be a sequence such that 6, — 0. Define A,=1/A8,.p=1.2, . . .. and x?= x(6,).

lim Ap(x?—xo) =llim (x?—xo)/NO, = X.
psx p—= 4}

Thus XeT. Q.E.D.
L The converse of Lemma 1 does not hold in general; see Example 2 below.

In the following examples we establish the lack of any ordering between (SQ) and (CQ).
EXAMPLE 1:

gilx)= xi x2<0
&:(x)=—x, <0
&alx)= —x.=0.

The constraint set. S, is the union of the nonnegative x,- and x:-axes. The following can be verified
easily for xo= (Y):

C={X|X z0}

4=S: )
, W={XIX20}:

T=4

Thus condition (CQ) holds, but (SQ) does not.
EXAMPLE 2: Define ifollowing Abadie [1])

s()=1ttsinlfe if ¢#0
0 if =0

—
ey

c(l)=ll‘ cos 1/t if t#0

i

é 0 if t=0.

i

i As Abadie [1] observe: these functions are continuous with continuous first partial derivatives. The | l

: functions and the derivatives vanish at t=0. Now consider ]
glx)=x2—x}-s(x,) S0 . e L

gx)=—x2+x3+c(x)) =0

&ix)=x}—-1=0.

"\ | |
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The set S is a collection of nonintersecting compact sets, one of which is the origin { (§)}. For xo= ().

we have

C={X|X:=0} =the x, — axis;
A={X|X=0}=W;
T=C.

Thus condition (SQ) is satisfied, but (CQ) dnes not hold.
These two examples show that neither (SQ) nor (CQ) implies the other condition.

1. A NEW CONSTRAINT QUALIFICATION

The constraint qualificaticn which we introduce in this section is a natural extension of the concept
of tangents to a set used by Abadie[1].

DEFINITION 5: A direction XeE" is weakly tangent to S at x; if X can be written as a convex
combination of tangents to S at xo. Define

R={X|X is weakly tangent t0 S at xo}.*

In (1] (Lemma 3) it is shown that T is a closed nonempty cone; hence R is a closed convex cone.
In the same paper it is shown(Lemma4) that T C C. Since C is a closed convex cone and R is the ~onvex
cone generated by T, this establishes

LEMMA 2. RC C.

The constraint qualification of interest in this section can now be stated quite simply in terms of
the sets C and R for the point xo:1

Q CCR.

Since the set R is generated from the set T it is clear that condition (SQ) implies (Q). In the remainder
of this section we show that condition (CQ) implies (Q). and that if condition (¢) holds at x,., and x, is
optimal in problem (P), then the Kuhn-Tucker conditions hold at x,.

LEMMA 3: Condition (CQ) implies condition (Q).

PROOF: Suppose X is a direction in C: since condition (CQ) holds, then XeW. ¥ is the closure of
the convex cone generated by A, and, by Lemma 1,4 C T. Since T is closed. R. the convex cone gen-
erated by T. is also closed. Thus ¥ C R. and condition (Q) holds. Q.E.D.

Lemma 3 together with the remarks preceding it establish that if either (CQ} or (SQ) holds at a
point xe. then (Q) holds there also.

THEOREM: Suppose f, g, i=1, . . ., m are ‘afferentiable at xo, x0 is optimal in problem (P). and
C C R. Then there exist scalars u;, i=1, . . .. m, such that

+' iV &i(x)=0
- V £ (x0) E"vg(’“)

*Varaiya inlroduces 1he sel R in [8] in a slightly differen] context.

*This qualification appeared in |4}; independenily il appeared in a paper by Guignard [5). and subsequenily in a foolnole
in Canon, Cullum. and Polak [3]. For compleleness of 1he exposilion we presen a proof 1hal 1his qualificalion is sufficient for the
va'idily of 1he Kuhn-Tucker necessary condilions.
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2) uigi(x)=.0. i=1.....m
3 uiz0 i=i,...,m

The proof follows that of Abadie’s Theorem 4 closely. We will employ the following version of

Farkas’ lemma.* Of the two linear systems

: m (Dt
Au=b 4=0
uz0 x>0,
one and only one has a solution.**
i PROOF: Now suppose (1), (2), and (3) have no solution. Then the system
} u 20, iel

Vf(xo)+2 uiV gi(x) =0

iefo

has no solution. But then by Farkas’ lemma (identifying V f with — b and V g;, iel®, with 4), there is a
direction XeE™, such that

) X"V f(x) <0
X"V gi(x) =0, el

Hence XeC, the linearizing cone at xo. Since CC R and 7 is closed, X can be written as a convex combi-

nation of elements of T. That is for some collection {X!, . . .,X¥} C T, we have
[ &
3 X=X
j=t
{
$ &
%) 2 7 =1
j=t
.\ w20 j=1 .. Lk

‘ Since XieT, j=1, . . ., k, there exist sequences {v/:?} C § such that
lim xoP=xq, j=1, . . ., k
p-’&

and sequences {A;, p} of nonnegative scalars such that

lim [ plxdP—xo) =X, j=1, . . ., k.

p— =

Now for each j=1, . . ., k, by the differentiability of f at x¢, we have

flxdp) = f(x0) + (X9 P —x0) ) TV (x0) + || P~ xofle;. a0

J 1 where ¢; is a scalar which depends on p and j, and ¢,— 0 as p — = for each j. Thus for j=1, . . ., &, L
e .
} ﬁ’ - i
*See Mangasarian (7).
i trZz0meansx;20, j=I,....n;x=0meansx;Z0,j=1,.. . nandzx;>0 for at least one j.
& **This is called the Secona Transposition Theorem in Abadie {1].
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©6) L3Py —f(2a) N p= Ay, p( 2~ xg) TV (x0) + A, pl T 2 — xo )€
In (6) multiply the jth equation by 5, and sum over j=1, . . .. k. Then
K i X
) Y nif(-#) = f(xa) JAjp = ( Y nikj. pldp— .ro)T)Vf(x..) +3 N (P = xo)lle;.
Jj=1 =1 j=1
Now since XJ.j=1, . . .. k. is tangent to S at xo, for sufficiently large p the right-hand side of (7) has
the sign of X7V (xs) which by (4) is negative. Thus for large enough p
K
3 ndi. o (69:#) = f(x0) ) <0,
j=1
But ; 20, j=1. .. .. k. and A;,, Z0 for each p and j. Thus for some j and p
S ?) < f(xo).
Recalling that if X/ is tangent to S at xq, then xJ-P€S for each p=1.2. . . ., yields a contradiction of

the optimality of xo. Thus the Kuhn-Tucker conditions ((1), 2), (3)) have a solution at xo. Q.E.D.

By an appropriate combination of the features of Examples 1 and 2 a case can be constructed for
which conditien (@) holds, but neither of the qualifications (CQ) or (SQ) hold.

ACKNOWLEDGEMENTS
The author wishes te express his apprcciation to David Rubin and F. J. Gould for helpful comments
on this paper.

REFERENCES

{1] Abadie. J.. “*On the Kubn-Tucker Theorem.” Nonlinear Programming, edited by ). Abadie (John
Wiley and Sons, Inc., New York. 1967).

[2] Arrow, K. J., L. Hurwicz. and H. Uzawa, “Constraint Qualifications in Maximization Problems.”
Nav. Res. Log. Quart. 8, 175-191 (1961).

{3] Canon. M. D.. C. D. Culinm, and E. Yolak. Theory of Optimc! Control and Mathematical Program-
Programming (McGraw-Hill Book Co., Inc.. New York. 1970).

{4] Evans.]. P.. “A Note on Constraint Qualifications in Nonlinear Programming.” “Center for Mathe-
matical Studies in Busincss and Economics,” University of Chicago, Report 6917 (May 1969).

[5] Guignard. M., “Generalized Kuhn-Tucker Conditions for Mathematical Programming Problems
in a Banach Space.”” SIAM J. Control 7, 1969.

[6] Kuhn, H. W. and A. W. Tucker., “Noniinear Programming,”” Proceedings Second Berkeley Sym-
posium (University of California Press, Berkeley. 1951).

[7] Mangasarian, O., Nonlinear Programming (McGraw-Hi’' Book Co., Inc., New York. 1969).

[8] Varaiya. P. P., “Nonlinear Programming in Banach Space,” SIAM J. Appl. Math. 15, 284-293
(1967).

L

&

L



INVENTORY SYSTEMS
WITH IMPERFECT DEMAND INFORMATION*

Richard C. Morey

Decision Studies Group

ABSTRACT

transmitted from 1he field to the stocking point. The stocking point employs a forwarding
policy which allempts to send oul 1o the field a quaniity which. in general, is some function
of the observed demand. The optimal ordering rules for the general n-period problem and 1he
steady slate case are derived. In addition orderings of the actual reorder points as functions
of 1he errors are presented. as well as some useful economic inlerpretations and numerical
illustrations.

# An inventory syslem is described in which demand information may be incorrectly

1. INTRODUCTION AND SUMMARY !

Standard inventory models assume stochastic demands governed by known distribution functions.
Superimposed on this inventory process is a known cost structure relative to which an optimal order-
ing policy is sought. Implicit in these models is the assumption that the demands are always accurately
transmitted to the inventory stocking point. In practice, however, this assumption is frequently violated
due to a variety of reasons which include improper preparation of requisitions, errors in keypunching
and errors in transmission of data. The main effect of these errors is that the supply point may process
a demand for an item which differs considerably from the true demand. This will, of course, increase }
the cost of an n-period m.del, say, and will lead to a different ordering policy. A study of the increased |
costs as a function of the variability of these errors would permit a rational evaluation of the effect of
these errors.

Little research has been carried out on problems involving errors in inventory systems. Levy
[4], [5] and Gluss [1] have published papers dealing with the general problem area, but from the stand-

; point of inexact estimates of the discount rate, penalty cost, and other constant parameters. Karlin

‘ j |3} has studied inventory models in which the distribution of the demands may change from
‘ - one period to another and obtains qualitative results descriling the variation of critical numbers over !
time. lglehart and Morey [2] have studied multiechelon systems in which optimal stocking policies :

are derived for the situation in which demand forecasts are used. In contrast, the problem suggested

here deals with errors in the flow of real-time information from the demand point to the stocking point.

Our model will cansider a single commodity. A sequence of ordering decisions is to be made peri-

; odically, for example, at the beginning of each quarter. These decisions may result in a replenishment

of the inventory of the commodity. Consumption during the intervals between ordering decisions may
K cause a depletion of the inventory. The true demand in the field in each period is assumed to be a

—_— -
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random variable. £. with a known distribution function. In addition. the transmitted demand back at
the stocking point in each period is a different random variable, say 4. Any differences between these
two random variables arise due to human and mechanical shortcomings in the transmission of the de-
mand. Finally. the stocking point employs a forwarding policy which attempts to send out to the field
a quantity. say gn). which is. in general. a function of the observed demand. 5. Since the stocking point
is further constrained by the amount it has on hand, y. it forwards the smaller of y and gtn). Figure 1
illustr#*~= tire flow of information and the flow of the stock. The dashed lines denote flow of information,

and solid lines the flow of stock.

INCO“'? ORDERS
TRANSMITTED

— ol STOCKING | y(AMOUNT ON HAND)

|
INFORMATION AMOUNT FORWARDED
CHANNEL (SMALLER OF y, g{n)}

1
| IR O—— T
TRUE DEMAND, §

§ FIELD REQUIREMENT

FIGURE 1. Informalion and Siock Flow.

The following costs are incurred during each period: a purchase or ordering cost c(z), where - is
the amount purchased; a holding cost h(x), associated with the cumulative excess of supply over
transmitted demand, which is charged at the end of the period; a shortage or penalty cost p(x), asso-
ciated with the excess of the true demand over the amount actually forwarded, which is also charged
at the end of the period; and finally a salvage cost r(x), which is associated with the excess of the for-
warded amount over the true demand and can be interpreted as a credit or a revenue factor. Hence,
the cost structure differs from the classical model in that the stocking point may forward more than
what is actually desired in the field. In addition, although the penalties are still based on the difference
between the amounts desired and the amounts forwarded, the amount forwarded is no longer limited
solely by the amount on hand, but rather also by the amount which is thought to be desired. Throughout
this paper we shall also assume that it is less costly to make purchases than to incur any shortages.
Trivially, the optimal policy in the other case would be to never mrs '~ + any purchases.

The paper is organized as follows: We state and prove in Secti - 2 some general theorems which
will subsequently be applied in Section 3 to various loss functions. These results permit qualitative
orderings of the critical reorder points as functions of the particular demands and losses involved.

~ Sectivn 3 is concerned with a more detailed discussion of the particular loss function arising
naturally from an explicit consideration of the errors in the transmission of the demands. In this section,
the general results of the previous sections are applied and various useful economic relationships and
interpretations obtained.

Finally, Section 4 calculates numerically for some special cases the actual impact on the inventory
system costs of various demand errors. Several strategies and their resulting costs are compared as a
function of the standard deviation of the transmitted demand and as a function of the correlation
between the true and transmitted demand.

2. CRITICAL NUMBERS FOR ORDERED LOSS FUNCTIONS

In this section we prove several theorems which relate critical reordering numbers to both the
ordering of the loss functions and to the demands. These results will be applied in Section 3 to the

= ‘M
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particular loss functions arising from a consideration of the errors in the transinission of the demands.
We first consider the one period case in which the ordering cost includes a set-up cost A > 0.
We take
K+cz.z>0
c(z)=
0 ,2=0.

For the standard one period model with a convex L function, the optimal policy is of (s;, S;) type,
where S, is the root of ¢+ L'(y) =0, and s, <, satisfies

C'S|+L(5|) =K+("S| +L(S|)

In our situation we wish to consider two one-period expected holding and shortage costs, ., and
L.. Let the corresponding optimal policies be [si(i),Si(i/)].i=1, 2. Then we easily obtain Theorem 1.

THEOREM 1: If L, (y) = L;(y) for all real y, then (£)S;(1) < $:112) and (ii)s\(1) < 5,(2).
PROOF: Let Gi(y; i)=c-y+Li(y), i=1, 2. Then by our hypothesis, G| (y; 1) =G| (y: 2) which
implies (i). Define 5;(2) < S,(1) as the solution to

Gi[51(2): 21= 6,8 (1) 2] +K.

Then by definition of s,(1). we have the equation

., 5,0 CRT)
J’ G, (y; 2)dy=J’ Gi(y; 1) dy.

5:42) s (1)

But since G (y; 2)< G (y; 1)< 0 for y < 5,(1), we know that 5,(2) = s,(1). But since S,(1) < 5,(2), we
have s,(2) < 5,12) which yields s,(1) < 5,(2).

Assume now, that we have two inventory systems. The one-period expected costs (exclusive of
ordering cost) are L, and L,. The amounts of stock demanded from the inventory each period for the
two systems are ¢, and £:; with density functions ¢, and ¢, respectively. Making the usual assumption
that L, and L; are convex, that the ordering cost for both systems is linear with unit cost ¢ > 0, and
that excess demand is completely backlogged, the optimal ordering policy for an n period is to order
[£a(D) —x]* (i=1, 2). If we let Cy(x: i) be the optimal expected cost for an n period model starting
with initial inventory x: then ,(i) is the smallest root of the equation G, (x; i) =0, where

Gn(xl l)‘_‘C 'x+L.'(x)+a J’: Cn—l(x—f; l)d’l(f)dg'

Our next result requires a stochastic ordering of the demands ¢, and ¢.. A random variable ¢,
is stochastically less than &, written &, < &;, if ®,(y) = ®2(y) for all y, where ®; is the distribution
function of &;. The proof of Theorems 2 and 3 are direct extensions of Karlin [3] in that they permit an

ordering of the critical reorder points as a function both of the ordering of the demands, and of the '
loss functions. The details of the proofs are therefore omitted. i
THEOREM 2: IfL; (y) = L,(y) for all real y and ¢, < &, then
o,
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4 ' () Co(x: =20 (x:2)
and
T (ii) aty s o) foralln= 1.
The above result assumes complete backlogging. The next result generalizes Theorein 2 to include
the case of lost sales. .
THEOREM 3: If L, (y) —cdi (y) = L, (y) —-cd2(y), €1 < & and there is no backlogging of excess i
& demands. then
' () C (x:1H=2C.(x;2)forx=0
i
and
(it) Zn(l)< %2V foralln=1, :
where
Zn (i) is the smallest root of the equation
v
et B e e f C!(y—&: D)bil€)dE=0.
Consider now a fixed time lag of A periods (A = 1) for delivery of ordered items and complete
backlogging. Define
|
| L® (y)=Li(y)
and
: |
‘] Li(y)=« fo Li-V(y—€)di(£)dE, j= 1.
|
| 1t is well known in inventory theory that the optimal ordering policy in the case of time lags is governed
! by a functional equation of the same type applicable in the case A=0, except that L{}(y) replaces !
Li(y). So, to obtain a result like Theorem 2 when A = 1, we need only demonstrate the following result: k
LEMMA 1: If L;(y) = L,(y) for all real y, and £, < &,, then =iy
W ' [
- dLY(y) dLY(y) o ‘e
>
dy dy

for all real y, and j=0,1,2 . . . .
PROOF: The result is true for j=0 by hypothesis. Assume that it is true for j—1. Then ;

A\ ) . I
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x

y dy dr

= 2Ly "
fafo dy? (y—&)D(£)dE,
bat since
d2Ly-n

di(0)=0.  bdi(x)=1, i _(x)=0and
dy?

&, (&) = %2 £) for all ¢, it follows that

dLY'(y) _ dLY'(y) for all y.
Sees

dy dy

3. A LOSS FUNCTION ARISING FROM CONSIDEPATION OF ERRORED DEMANDS

In this section. we shall examine in detail a particular loss function arising from discrepancies in
the true and transmitted demand.

The overall objective of this section is to develop qualitative rcsults describing the variation of
the critical numbers over time as a function of the forwarding poligy g(7). Therefore. we will be
primarily concerned with investigating functional relationships between the case of no errors and
various treatments of the errored case. We shall also assume in what follows that the holding, shortage,
and salvage cost are all linear. This assumption, whilc preserving the basic structure of the model,
greatly facilitates the proofs and economic interpretations.

With this simplification, we find the loss function arising from employing a forwarding policy
which attempts to send out to the field an amoung g(7). whenever it observes at the stocking point a

demand of 7, is given by
Lety)={Eh-[y—g(n)]*} +E{p-[—yNgn) ]} —E{r[yne(n)—€]"}

Here, x* is x if x =0, and 0 if x is less than 0, « A b denotes the smaller of a and b, and y denotes the
inventory on hand at the stocking point at the beginning of a period after an order is received.

It should he noted in the case in which the true and transmitted demands are identical, and
&(n) =7, that Ly(y) reduces properly to the classical no error loss function.

To facilitate the investigation of Ly(y). it will be convenient to define

1—Q(x)=Pr(¢ =2xandg(yn) = x)
and
1-G(x)=Pr(g(n) = x),

where it will also be assumed that G(0) =Q(0)=0. Then it can be shown that

() Ly(y)=pE(&)+hy—(h+T) J;” [1-G(u))du~— (p—r)'fy [1=Q(u))du.
2) Lyyy=h—=(h+r)[1-C(»]-(p-r[1-0(»],

and

(3) Ly(y)=(h+1r)G' () + (p—r)Q' (y).

Observe from expression 3 that a sufficient condition for Ly(y) to be convex is that p=r: this will
generally be the case since typically p=c=r.
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Recalling also that the optimal steady state reorder level, call it x(g). is the solution of Ly(y) =0,
it is clear that x (g) is positive. This follows since L, (0) =—p, and Lg(®) =h. Also it is interesting to
observe from (2) that the optimal steady state reorder point increases as r, the salvage credit. increases.
This result agrees with our intuition since we feel more disposed to keeping larger amounts of stock
on hand (and hence. being in a position to send out larger quantities), if we can recover more of the
amount by which we exceed the desired request.

It will be convenient to rewrite (2) as follows:

L,',(.V) =h[Ay(y) +Dy(y)] — pCyly) —rBy(y)
where
By(y)=Pr{é<y=<g(n)] Ayly)=Prig(n) <y<§]
and

Coy)=Pr(g(n) =y: £ 2], and Dy(y)=Prlg(n) <y: €<yl

Now, define L(y: v) to be the classical single period loss function if the demand is repr..ented
by the random variable ». Then, substituting £=»=g(»), in expression (2), we obtain

L(y;v)=E(h-ly—v]*)+E(p:-(v—¥)*),
and

L'(y;v)=h—(p+h)Priv=y).

Note that the oversupply credit factor r is not needed since in the classical formulation the stocking
point never forwards to the field more than that which is actually desired.

Then the following qualitative relationships are available which will provide comparisons of the
critical reordering levels for the perfect information case, and for various treatments of the situation in

which transmission errors are present.

THEOREM 4:

(a) If g(n) < 7. then L, (y) =L'(y; n) for all y.
(b)  1f g(n) <& then L,(y) =L'(y: ¢) for all y.

PROOF: Sincep=r,
Li(y)=h-[A,(y)+ Dy(y) ] — pCy(y) —rBe = h-[Ay(y) + Dg(y)] — p- [Cy(y) + By(y)],

but

Ay(y) +Dy(y) =Prin<g'(y)]=Pr(g(n) <y].
And since g(n) < 7. we have Ay(y) + Dy(y) < Pr(n <y) and Cy(y)+ B, (y) < Pr(n=y).
Hence. Ly(y) =2 h-Prin<y)—p-Pr(nzy)=L'(y: n).

The proof of part (b) follows similarly.

Upon applying Theorems 1, 2, 3, and 4(a) we find that if the forwarding policy is to send out to
the field an amount stochastically less than or equal to the transmitted demand, then the resulting
critical numbers are always smaller than or equal to those obtained using the classical formula with a
demand of n. This result is correct regardless of the distribution of the errors, regardless of the numbers
of periods involved or delivery lag times, and finally, regardless of whether backordering or a lost
sales philosophy is used. A similar interpretation can be given to Theorem 4(b). It is also noteworthy
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to stress that the results do not depend upon having r greater than 0, and of course apply to the realistic
forwarding policy of simply sending out. if possible, the transmitted demand 7.

The next result provides a useful tool for determining, for any particular forwarding philosophy.
how the steady-state critical numbers in the errored and perfect information cases compare.

LEMMA 2: Let x denote the optimal steady-state reordering level with perfect information. Let
x(g) denote the optimal steady-state reordering level using a forwarding policy which sends out an
amount g(n) if the transmitted demand is 1. Then, x(g) is less than or greater than x depending on
whether

4G
By(x)

h+r.
h+p

is larger than or smaller than the constant.

PROOF: It is easily shown that

L' (y; €) = Ly(y) = (h+r)By(y) — (p+ h)Ay(y).

Hence. since the steady-state solution satisfies L’ (y) =0, the result follows directly.

Up to this point, we have assumed that knowledge of the transmitted demand was available before
the decision had to be made as to the quantity to be sent out to the field. However, this is not always
the case, especially in time of emergencies. The following result is useful in those important situations
in which this transmitted demand information either is not available, or is of no value in forecasting
the actual desired demand.

LEMMA 3: Assume the random: variable £ and 7 are independent. Then the optimal stationary
forwarding policy is to send out to the field the constant amount

0=k (3=7)

and to reorder up to Q. In particular. the optimal fixed amount to be sent out in this situation is the
Bth quantile of F; whenever c=gr+ (1—B)p. The proof parallels directly the classical stationary
single reorder level analysis and will be omitted.

4. NUMERICAL RESULTS

This section is concerned with attempting to isolate the cost or dollar consequences of errors in
the demand for a particular case of practical interest. Two distinct types of analyses are presented.
The first investigates how the inventory system costs vary as a function of the errors involved. Such
knowledge is very useful in determining the amount of effort that should be spent to reduce the
errors in the flow of demand information. Quite possibly in some situations the expense of eliminating
the errors may be such that the savings resulting from having perfect information are rot economically
warranted.

Proceeding in a different spirit the second type of analysis is concerned with investigating the
relative efficiencies of various stocking and forwarding strategies whose purpose it is to reduce the
impact of the errors without requiring the costly elimination of the errors. Such strategies are definitely
of interest due to the possibility that their use might enable a large portiun of the costs currently
associated with errors to be recouped with relativcly little additional effort.
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Figure 2 depicts how the steady-state ane periad inventary system cost graws bath as a function
of p, the correlation coefficient between the true and transmitted demand, and as a function of o,
the standard deviation of the transmitted demand. The cost savings were computed assuming the joint
true and transmitted demand are distributed according to a bivariate normal random variable (properly
truncated to preserve the nonnegativity property) with equal means. This steady-state cost is computed
using the loss function L.(&n) of expression (2), where g(n) =7, and #» is the scutian of L' (y: ) =0,
Hence the difference between the dashed and solid line represents the actual incurred penalties result-
ing from naively using the classical reorder levels and are useful in determining 1o what degree it is

1

economical to eliminate or reduce errors in the informational flow.

140

b oy
8
T

oy 25 {

N
o
T
/

=20

S
T
y

OPERATING COST PER PERIOD
i

Ty =3
Oy 10
7
[-To] 3
{
.
t
80
b == = —— —= MINIMUM OPERATING — —
¥ COST IF PERFECT &
1 DEMAND INFORMATION A
WERE AVAILABLE
o] L 1 ] 1
o 03 05 o7 09

P

FIGURE 2.  One period inventory systems cost as a function of the correlation coefficient with c=1, h=0.25, r=0.30, p=5,

} E)=E(y)=75, and o(¢) =10

. The second type of analyses is concerned with the relative efficiencies of the following four for- .
‘ warding strategies. In each case the optimal stocking policy for that particular forwarding policy was '
computed by solving Ly(y) =0, and the corresponding cost calculated.

1. Send out the amount cbserved, i.e., g(n) =7.

2. Send out the optimal fixed amount, i.e., g(n) =Fz!' (ﬁ::)

|
3. Send out the best estimate of the average demand, conditional upon the observation of the “
transmitted demand, i.e., g(n) =E(&/7). .

4. Send out a combination of strategy 2 and 3, i.e., g(n) =F} (”—:}E)

In general, as might be expected, strategies 3 and 4 generally outperformed strategies 1 and 2.
As proved earlier, the optimal stocking policy for strategy 1 resulted in lower reordering levels than |
those determined from solving L'(y; n) =0, and generally recovered about 10 percent of the cost due
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to the crrors. Strategy 2, while easy to implenent. is obviously not efhicient if there is a high correlation
between £ and . Similarly, strategy 3, while having a certain heuristic appeal, does not perform as
well as one might hope, mainly because it is independent of the various costs involved. On the other
hand, the use of forwarding strategy 4. together with its appropriately derived ordering level. per-
formed quite well and generally recouped from 50 to 58 percent of the costs incurred due to the errors R
in the demand. This is due clearly to strategy -} heing dependent hoth on the observed demand 7
’ as well as on the various inventory costs involved.
: There is no doubt but that the implementation of some of these strategies would necessitate the
use of extensive tables and probably would represent a realistic option only in case of a fully automated
system. However it is felt that these and other strategies should continue to be investigated to the

point where an economic balance can be achieved between the reduction of the errors on the one hand
and the rational treatment of the remaining errors on the other.
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CONTRACT AWARD ANALYSIS BY MATHEMATICAL PROGRAMMING
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ABSTRACT

A large manufacturer of telephone directories purchases about 100,000 tons of paper
annually from several paper mills on the basis of competitive bids. The awards are subject
to several constraints. The principal company constraint is that the paper must be purchased
fromn at least three different suppliers., The principal external constraints are: 1) one large
paper mill requires that if contracted to sell the company more than 50,000 tons of paper,
it must be enablcd to schedule production over the entire year; 2) the price of some bidders
is based on the condition that their award must exceed a stipulated figure.

The paper shows that an optimal purchasing program corresponds to the solution of a
model which, but for a few coastraints, 1s a linear programming formulation with special
structure. The complete model is solved by first transforming it into an almost transportation
type problem and then applying several well-known L.P. technigues.

INTRODUCTION

This paper is based on a project directed by the writer on behalf of a large manufacturer of tele-
phone directories. The company prints each year over 3,000 different directories in 20 printing plants
across the nation. The individual directories, which vary in size from 50 to 2,000 pages, are printed in
lots ranging from less than 1,000 up to 1,500,000 copies per year. For this purpose, the printers utilize
paper in rolls of different widths. The roll widths, which range from 13 to 68 inches, depend upon the
widths of the particular printing presses employed. The printers order the required paper from the
Purchasing Organization of the company and Purchasing, in turn. distributes the orders among several
paper mills, where the paper is manufactured in large reels ranging in width from 112 to 220 inches.
Purchasing buys the paper on the basis of annual term contracts. The contracts are awarded in
Septenber. at which time both the requirements of the printers for the coming calendar year* and the
terms of the paper manufacturers bidding for the business are known in detail.

The size of the individual awards depends on several factors. As a mattcr of policy, Purchasing
strives to maintain multiple sources of supply. Specifically, at most, 40 percent of the total annual
paper requirement of all the printers may be purchased from a single paper maker, regardless of how
low his price may be.t Second, one major paper mill bids on the condition that if contracted to supply
an amount of paper which exceeds half of his production capacity, he must be enabled to schedule
production over the entire year, which, in slow periods, will tend to lower the awards to some of the

*In brief, the telephone directories are printed on presses which range from 11 to 68 inches in width and from 23 to 57
inches in cireumference. Depending on the size of the press and the method of folding the printed sheets, a packet (known
as a signature) which may contain from 24 up to 72 printed pages can be produced in a single revolution of the drum on which
the text is mounted. Normally, the smaller the number of revolutions required to print « directory, the smaller the production cost.
For example, a 720-page directory will be produced most economically on a 72-r.age signetuse press. Knowing, then, both the
capacities of the presses he owns and the size of the different directories which he must print, each printer is able to determine
how to schedule his presses most effectively, and, consequently. the amount of paper of a given width that he will require.

tSee footnote on page 298.
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298 A. G BEGED-DOV

other bidders. Third, the price «f sume bidders is based «n the conditian that they will be contracted
to supply at least a given tannage.
The typical coniract obligates the company to purchase from a paper mill a specified amonnt of
pater at a fixed noit cast, with provisions te compensate the supgdier Tor excessive trim loss *
H This means that the cost of ordering x tuns of paper fram supplier. s. fur printer. p, cannot he less than
x(ci+dy) dollars. ilere ¢, the unit cost of the paper f.o.b. mill: d,, is the unit transpartation cost
between the location of the seller and the location of the user. The cast may be higher. depending
bath «n the actual trim loss incurred and the trim loss alluwance stipulated in the contract. Suppuse
x* is the trim loss incurred to fill the order. and a, is the agreed allowance factor (nsually 0.05). Then
cwlx). the total cost of the order. can be expressed as folluws:

Colx) =x(cet dip) + Aexlx* — aux).
} where

= 1if x* > xa,
0 «therwise.

In principle. to minimize cost one only need to determine
Crp(x) = m‘in C,,,(X) .

and then order the paper from supplier r. However. x* (and hence ¢,,(x)) cannot be computed with
sufficient accuracy at the time the allocation decision must be made since the manner in which the
different suppliers will choose to trim the order from stock of reels of differeut widths they make is nat
known at this time. However. this difficulty can be resolved. Though it may be nearly impussible to
forecast x* accurately, the more general question of whether the stipulated trim allawance will, «r will
not. be exceeded can be answered. The reason is that the recurds of Purchasing show that throughout
the years not a single request for additional payment has ever been submitted by a supplier. This means
that the value of A can be set to zero.

MATHEMATIZAL FORMULATION |

The fact that trim loss considerations may be ignored for the purpuse of cantract allocation makes
it possible to formulate the problem of how to purchase the paper (required by the printers t print the

} directories assigned to them) econumically as follows:
! s P K i
) (A) minimize: Z = 2 2 (ce+ dup) 2 Xephs
=1 p=1 k=1

tThe principal purpose of the policy is to increase avadabilly. Clearly. shonld a steike or power breakdowi, o ather emer-
geney oceur i owe place, at least pant of e paper can still be ablained from tle other. Should demand merease. it ¢an be met
with greater ease by calling upon the unused capacity of several. insiead of only one or wo, facilities. By the same tokew. the possi-
bility of some paper nill becoming excessively dependent ou the business, with the subtle respousibilities whicle suele a position !

entails, is diminishec. There are other advantages. A source of supply in close proximity 10 some printers way be secured. witle 0 & !
d a corresponding opportunity to save in iransportation cosl. Also, knowing thal other conpadies are conpeting with hine tends ’ \ '
3 to keep cach supplier alert to the needs of Purchasing. (Reterence on page 297) .’ ’

<

*The trim problem arises from 1he fac 1hat the paper manufacturers must cut the large recls in whiclothe paper is priduced
into smaller rolls of the widths ordered. Since the roll widths cul from a single reel rarely add perfectly to equat the (eel width,
a certain amount of paper st the edge of the reel is wasted. This waste. wlich s bro w.. as trim loss, is reflected in the cost of
the paper.

l —
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suhject to
roK
‘A.]) 2 Ex";kle s=1,2.. . .,S
p=1 k=1
roK
(A2) S um<0 §=0,2, . - S '
p=1 k=1 . <
S
(A.3) Ex"lk=bpk p=1,2, . . .,P k=1, . e .,K,
£=1
P N K’ {
(A4) E Xpk S e s=1,2,....8 K=1,...,K, 1
p=1 k=1 k=1 i
POK
{A.5) 2 E Xapk = My some s,
p=1 k=1 i
P t
(A.b) 2 erk < 81‘(/4") 7. k= 1, 2, o o ey K,
r=1 1
|
Le & .
(A.?’ Xrpk 2 a'r(Ar) 7. k= 1, 2. o e ey K,
|
(A.8) Xa = 0 all s, p, k.
DEFINITION OF SYMBOLS '
Xy — the amount of paper shipped from supplier, s, to printer, p, for use in period. £. |
b —the amount of paper required by printer, p, in period, k.
M, and m,—the maximum and minimum awards which bidder s will accept.

Q,—the maximum amount Purchasing will buy froni him.
. —the average production capacity of supplier, s, in period, k.
L A,—the amount of business actually awarded to supplier, s.
T and t; —the annual and the periodic requirement for paper of all the printers.
} ™~ r—the index of the supplier who insists on a continuous schedule. :
5. and 8, — positive constants to be determined later. The formulation assumes S-suppliers.
P-printers, and K-periods (of equal duration). )
The objective function Z consists of SPK linearly additive terms. It represents the annual cost
of supplying the printers with the paper required to print the telephone directories assig.ied to them.
As rhown. Z must be minirium, subject, of course, to the constraints stated. That a bidder cannot be

contracted to snpply an amount of paper which exceeds either the maximum quantity he is capabie of t '
N making. or which Purchasing will buy from him is expressed in {A.1) and (A.2) respectively. That each .
) printer mnst receive the paper he needs is stated in (A.3). Implicit here is the assumption that . 2
P h

s s s
by < min(Zr,k. %,E%)k=l.2,....l(.

p=1 -1 =1 =1 ‘
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Otherwise. of course, a feasible solution cannot exist. That the cumulative production capacity of a
bidder must not be exceeded is stipulated in (A.4). That some bidders will not sell less than a specified
minimum amount of paper is stated in (A.5). Finally, (A.6) and (A.7) provide, if there is a need, supplier,
r, with a schedule which in any one period is proportional to the phased requirements of all the printers.

SOLVING THE MODEL

The above system of equations can be simplified considerably. To begin, Egs. (A.1) and (A.2) can
be readily combined into a single equation by letting

P K
Y Y up<a,=min (M,.Q,) s=1,2,...,58.

p=1 k=1

This, in turn, wnakes it possible to reduce Egs. (A) to (A.3) into an ordinary transportation problem*
with S origins and KP+ 1 destinations:

S n
(B) Minimize Z=Y ¥ cijxij,
i=1 j=0
subject to
(B.1) i Xij=a; i=1,2,...,8,
fe=r
s
(B.2) Y x=b; j=1,..., n and
i=1
(B.3) xij=0 all 4, j,
where

bo=max (0, i ai—i b;),
= j=

cij=ci+di; i=1,...,8 =1, .. .n,
Cjo=0, and
bj=b,,l.- p=l, oo .,P k=1, % I .,K,
such that

p=j module P allj

j/P. if j/P is integer for all §
k=4[] !
Pl otherwise, for all j

[N] meaning the largest integer contained in N.
By noting that a fictitious destination (j=0) has been added to drain the excess of supply over demand
at zero unit cost, we can represent the tableau for this problem as in Table 1.

This transportation problem can readily and efficiently be solved with a special algorithm. In
recognition of this fact the systems of Egs. (B) to (B.3) will be referred to hereafter as the favored
problem,

*The quaniities M,, Q, and b,, are assume:! 1o be inlegers.
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TaBLE 1. Transportation Tableau for Favored Problem

Crigin be b bs ... by bror . . . ba Availabilily
1 0 o Gz ... Cp cn R Y a,
2 0 [+]] €22 ... Czp €y .. . Cep [ 3
S 0 ca €51 . Cxp €51 cxp as

In terms of the notation used to define the favored problem, the remaining constraints of the general

award model are as follows:

5 S S K'=1 K
W=y i=1, , '=1, , K,
(B.4) PR
(B.5) 2 %ij=m;  some i,
jl:
(B.6) xr,jl’+|+xr,jl’+2+ s .. +xr,jl’el'sar£%lj=09 ly © e ey K”-l’ .
(B.7) e ot Bt .+x,,,-,.+p>s;ﬂ;—'j=o, I, . . K=

Now an approach suggested by the Method of ‘Additional Restraints (12}, [5]) in which a smaller
system (i.e., (B) to (B.3)) is solved first without regard to the other constraints (i.e., (B.4) to (B.7)) can
be employed to solve the general award model. This approach offers an important computational
advantagc over procedures which work always with the complete systeni in a case where a priori
considerations suggest that the solution of the smaller system, upon substitution, will satisfy the re-
maining constraints as well. Then, of course, the complete problem has been solved ([6]. pp. 384-385).
For example, it is easy to see that Eq. (B.4) is amenable to the method since M; normally is nearly
twice as large as a;.

Constraint (B.5) can be handled by means of the method used to solve the (well-known) single
price break problem of inventory theory ([4], pp. 238-241). To employ the method, let u be the index
of a bidder who has placed a misnumum award restriction, and assume that upon solving the favored
problem, the result indicates that A, = my. Then bidder u should be treated as if he had not placed
the restriction in the first place. Suppose, however, that A, < my. Let Z,,(g) be the solution of a new
favored problem such that the row corresponding with bidder u has been changed from

}": Xyj == My 10}": Xuyj=g&
j=1 j=t

and cyo has been changed from zero to M. a very large positive number. Then, if Z.(m,) <Z 4(0), the
bidder should be awarded a contract for exactly m. tons; otherwise, he should be awarded nothing.
If b bidders are allocated originally less than their minimui, 2° different combinations need to be ex-

amined in this manner.
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302 A, G. BEGED-DOV

Suppose then that this constraint has been taken care ol and that the entire problem has been
lormulated in terms of the (remaining) active bidders only. Now. upon solving the resulting favored
problem and examining the allocation awarded to supplier. r, it is possible to determine if he should
be provided with a stable production schedule. There are two cases to consider. If 4,, the amount -
awarded to the supplier is less than half his production capacity, M,. Eqs. (B.6) and (B.7) can be elimi- T
nated. Otherwise the values of 8, and 8’ must be stipulated to fix the bounds within which production
will fluctuate throughout the contract year. From (B.6). it is easy to verify that 8, cannot be smaller
than 4, since

— % b _
41—Exr_,$6r E_ 'f '8r
j=1 k=1
# i Similarly, Eq. (B.7) indicates that 8, must not exceed A,. Therefore. why not let

8=+ a),, 8= (1—a) 0sa<l i

As an example. let ¢, =100, ¢, =95, t;=110, A,== 80, and a = 0.1. Then the shipments of mill r
will be contained within 23 to 29 in period 1; 22 to 27 in period 2; and 26 to0 32 in period 3.
At this stage of the analysis the favored system will contain m rows (m < S, depending on whether
a supplier has been dropped or not) and KP + 1 columns; Eq. (B.4) will containt mK rows and KP
columns. and in the event that A,> 0.5M,. Eq. (B.6) and (B.7) will contain K rows and P colunns.
Now the original award model is readily solved with an appropriate lincar programming code.
This is not recommended. however, since a more efficient and accurate solution method can be
employed.
There are two cases to consider. |

If A, < M,/2 the comple.e contract award problem can be expressed as follows:
(C) Minimize Z = ¢x + dy

subject to

] (C.1) Fr=a
} " (€.2) Rx+ly=r
x,y=20,
where
C=(Cm, o ofch Cmn)n d= (0 « e ey 0)-
; Here F is the matrix of coefficients of the favored problem, R is the matrix of coeflicients of the system : l
i of equations dealing with the suppliers’ capacity constraints, I is the unit matrix. and y is an mKx1 Na
‘ 2 3 e . » - =
‘ column vector. The elements of y are slack variables corresponding with the rows in R. ;

Suppose that upon substitution of xo, a feasible optimal solution to the favored problem, inspection
reveals that Rxo+Iy=r, y 2 0. Then it is easy to show that xo is an optimal solution for the complete ,
| problem by noting that the optimality condition ([6], p. 244), !

| ) o
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(w 0) [2 0] (c d),

where e is the vector of dual variables corresponding with the optimal solution, will be satisfied. On
the other hand, if one or more of the elements of y are found to be negative, the Dual Simplex Algorithm
can be initiated. but with some modification, as the algorithm requires “knowledge of an optimal, but
not feasible solution to the primal, i.e., a solution to the dual constraints™ ([7], p. 36). (An important
advantage of the method is that the go-out vector is chosen before the come-in vector, so that if there
is a choice, a go-out vector which does not alter the favored basis, say B, can be selected, with con-
siderable reduction in computing effort.) The modification is necessary because B is not a square matrix,
and consequently, the dual variables cannot be obtained in the usual manner. However, the current
value of the dual variables can be determined readily as shown by Bakes [1],
On the other hand. if A, > M,./2 the larger problem:

M) Minimize cx+dy+diy: + day: + dyys

subject to

F 000 O]l]Xx a
R+ =1 0 1 O} yi=lr

R~ 07 0 -1 Ya r-

X, )’. yln )’2, )’:120

need be considered. Here ¢ and x are defined as before, and y, ¥1. Y2, ¥, are defined as in Ref. [1].
d=d,=(0, . . ., 0), ds=dy=(M, . . ., M), R* is the matrix of coefficients of Egs. (B.4) and (B.0),
and R~ is the matrix of coefficients of Eq. (B.7). This formulation makes it always possible to construct,
starting from 3, a primal feasible basis for the complete problem, say B*. That is, knowing B

B 0
*_
5 “[Rf: 1*]

can be determined by inspection. Here, analogous to the notation used in Eq. (C.2), R} is made of the
columns in R* and R~ which are continuations of the columns of B, and the elements of I'*, which can
be determined by inspection, are either + 1 or — 1 in the main diagonal, and zero elsewhere. The basis

will be optimal if .
00

(100*) [;* ; _1] < (cddidody),

subject to

Gwt) [Re 1] = ().

where the elements of * are chosen from (dd,dxds) to correspond with the columns of I*. How to solve
for {ww®) and then, if necessary, proceed until the complete problem has been solved, is shown in

detail in Ref. [1).
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If desired. R* can be further reduced in size. “If we feel that some secondary constraints which
are not active for the optimal solution to the smaller problem will remain inactive. it is unnecessary to
add them into the new basis™ ([6]. p. 400). Thus. so long as Q; is much smaller than #M;. all i, the con-
f straints on the cumulative production load of the suppliers can be omitted. Furthermore, Eq. (B.6)

may also be deleted from R* using a method of H. M. Wagner [Y]. The method requires that for each ‘

deleted row, a new origin and a new destination are added io the favored system of equations in accord-
ance with surprisingly simple rules. The advantage of the method resides in the fact that with available
computer codes, very little additional time will be required to solve the 'arger favored pioblem. As an
example, if both schemes are carried out, F will have m + k rows and m -+ k ¢! imns, but R * will ontain
only K, instead of (m + 2)K rows.

L SOME RESULTS
The model described above was tested using actual data from a recent year. In that vear, Pur-
chasing bought 94,481 tons of paper at, as shown in Table 2, at a cost of $17,200,000. This cost was paid

according to the (coded) price schedule shown in Table 3.

‘TABLE 2. Monthly Paper Usage — Recent Year (Tons of Paper)

Printer | Jan. ‘[ Feb. Mar. Apr. May | June July Aug. | Sept. | Oct. | Nov. | Dec. Total
1 4473 | 3553 | 3.782 | 1201 14,140 | 3.025 | 2386 4,116 802 | 2350 | 3.455 12 | 33295
2 4890 | 4319 | 2,121 141 828 922 1.981 3075 1845 553 20,675
3 456 489 4 409 187 413 358 169 470 374 504 191 4,765 .
4 091 989 681 702 922 675 3251 1,670 190 | 2409 399 [1.836 | 11487 l
5 68 68 117 85 84 21 24 39 130 9 93 3 741 |
6 141 69 108 82 67 33 38 91 126 23 108 1 887
7 208 380 47 | 1.033 10 57 672 171 432 977 175 206 4368
8 I 1.009 5 37 11 553 53 251 19 616 400 19 69 3.042
o 9 388 467 953 1.266 288 523 299 977 | 1.894 | 1,118 8.174
10 454 337 540 54 11,827 194 | 1.927 63 510 333 190 281 6.710
11 48 9 10 64 33 18 35 15 42 49 10 4 3317
Toral...| 12826 [10.685 | 9.140 | 5.048 (8651 | 5699 | 8520 | 4.727 | 6.140 | 9371 | 6071 | 2,603 { 94481

‘ Upon solving the contract award formulation represented by the system of Egs. (B) to (B.7), the l
‘g allocation shown in Table 4 was obtained at a cost of $17.063,.999. (To facilitate comparison, the figure TRy
. . 5y 1o Tk Sl
also shows the actual awards assignment made by Purchasing for that year.) The values of the decision _ x

parameters employed in the solution are summarized in Table 5. It is important to note here that the
very first solution of the favored problem yielded the optimal result. which testifies to the power of the
Method of Additional Restraints.

‘ - i '
)
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The overall savings. about $142.000. clearly indicates the value of employing an assignment model

in award analysis (8]

TABLE 3. Price Schedule (per ton). c;;= ¢; + d;; — constant

it is conceivable that efficient allocation could be obtained using some trial and error method ot
analysis. However, considering that the amount of directory paper purchased by the company is
enormous and the cost of implementing the assignment model is practically nil (altogether, about 15
minutes of IBM 1620 Computer time, and about 2 hours of human time were expended to achieve the
results reported in this section) there is little justification for not taking advantage of a tool which can

yield maximum results at a minimum of cost and effort.

Printer ' |
1 2 3 4 5 6 7 8 9 10 11
Mill
1 950 13.10 | 1790 | 10.10 | 2180 | 1760 | 1600 | 2840 | 28.00 | 17.80 19.40
2 960 13.00 | 1290 | 10.10 | 2400 | 1760 § 16.00 | 2600 | 24.20 | 17.80 1140
3 10.40  13.10 | 1830 4.40 | 2310 [ 1530 590 | 31.00 | 29.30 17.30 | 20.30
4 2893 13.83 | 13.43 | 3033 | 17.23 13.43 14.03 17.63 1843 | 2533 § 22.73
5 20.60  10.30 . 20,10 | 21.60 | 22.60 | 19.80 @ 16.70 | 2920 ] 28.00 | 11.90 15.30
TABLE 4. Values of Decision Parameters
Mill 1 2 4 b}

Parameter

m (tons) 30,000 - 10,000 - -

M (tons) 100,000 20,000 40,000 35.000 43.000

Q (tons) 45,000 20,000 20,000 22,000 25.000

K (periods) 12 12 12 12 12

o .

R
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TABLE 5. Model vs Actual Allocation (tons)

e M g % r O =
Mill 1 2 3 4 5
Printer
1 33.295
2 20625
3 4.765
4 11487
5 8.174
6 6.7110
7 4.368
8 887
9 337
10 3,042
11 741
Model 33,295 5,506 11487 20.476 23.117
Actual 40,901 19.521 16.687 9.191 8.181
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A FINITENESS PROOF FOR MODIFIED DANTZIG CUTS IN
INTEGER PROGRAMMING

V. J. Bowman, Jr.
Carnegie-Mellon University
and
G. L. Nemhauser

Cornell University

ABSTRACT

Let
2=yw—Y ¥4x;, i=0, . . .. m
jeR

be a basic solution to the linear programming problem
max xo=Zjc;x;
subject to: Liayxj=bi, i=1, .. ..m,

where R is the index set associated with the nonbasic variables. If all of the variables are
constrained to be nonnegative integers and x, is not an integer in the basic solution, the linear
constraint

Y x21, Ri={jlieR and y.; # integer}

JeRY

is implied. We prove that including these *‘cuts” in a specified way yields a finite dual simplex
algorithm for the pure integer programming problem. The relation of these modified Dantzig
cuts to Gomory cuts is discussed.

Consider the pure integer programming problem

1) max xo= ¢;x;
J
subject to: 2 aijjx;=bi, i=1, ..., m
j

xj = 0 and integer, j=1, . . ., n.

It is assumed that the c; and a;; are integers and that xo has both an upper and a lower bound.
Let xo, x1, . . ., Xxm be basic (not necessarily feasible) variables and R be the index set associated
with the nonbasic variables. Expressing the basic variables in terms of the nonbasic variables, we have

2) xi=}'50—2 YijXj, 1=0,.. ., m

Preceding page blank
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310 V. 1. BOWMAN. JR. AND G. f.. NEMHAUSER

Suppose at least one yi given by 2) is not an integer. Then the integer constraints imply the linear
constraint (3), which is not satisfied by the current solution

3) Y x=l

Jjek

Equation (3) is a Dantzig cut [2]; however, (1) implies tighter cuts of the kind in which all coefficients
are + 1. Specifically, suppose x, is not an integer in the basic solution given by Eq. (1). Then, as noted
by Charnes and Cooper [1], the requirement that x, be an integer implies that

@ 2 =1,
JjeRy

where R D R,= {jljeR and y,; # 0}.
The cut of Eq. (4) can be sharpened still further by noting that

(5) 2 =1,
JeR?
where R. D R¥= {jljeR and y,; # integer}

is also implied by the integer requirements.

Gomory and Hoffman [5] have proved that Dantzig cuts (Eq. (3)) are not sufficiently strong to
guarantee convergence of a linear programming algorithm to an optimal integer solution. We will
show that the tighter cuts, given by Egs. (4) and (5), when included in a certain way, yield a finite dual

siraplex algorithm.

THE ALGORITHM

1. Using the objective function as the top row of the tableau. solve (1) ignoring the integer con-
straints. If the optimal solution obtained is all-integer, terminate; otherwise add the redundant in-
equality 2 x; < M (M is positive and very large) as the second row of the tableau to insure that the

jekt
columnsjare lexicographically positive. Then go to step 2.
2. Let row u be the topmost row in which the basic variable is noninteger. Adjoin the constraint
(5) to the bottom of the tableau, i.e.
s—y 5=—1
jeR?
and execute one dual simplex iteration with the new row as the pivot row. The pivot column must be
chosen to maintain lexicographically positive columns. If the solution is all-integer and primal feasible,
terminate; otherwise go to step 3.

3. If the solution is primal feasible or if yo0. . . .. yu-1,0 are integers and y.o has not decreased
by at least its fractional part, go to step 2; otherwise go to step 4.

4, Execute dual simplex iterations in the usual manner (lexicographically positive columns must
be maintained) until primal feasibility is attained. If the solution is all-integer, terminate; otherwise
2o to step 2.

The branching rule of step 3 can be modified in several ways without affecting convergence;
however, we have not been able to prove that it is always possible to go to step 4 when there are primal
infeasibilities.

J— : y ﬂ
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FINITENESS PROOF

THEOREM: Application of the above algorithm to a pure integer programming problem as given
by (1) yields an optimal solution after a finite numbcr of dual simplex iterations.

PROOF:* Clearly, the number of pivots in step 1 is finite.

Let yi;(0) be the entries in the tableau associated with an optimal linear programming solution
(the solution obtained from step 1) and yi;(¢) the entries in the tableau after ¢ dual simplex iterations
beyond step 1. The yuo(t) form a monotone nonincreasing sequence bounded from below. Let A be
the greatest integer such that yo(¢) = A for all . For some ¢ suppose we have

yoo(t) = A+ foo(t), 0 < foo(t) < 1.

5=y xj=—1.

iR}

In step 2, we add the cut

In the transformed tableau, we have
Yoo(t+1) = yooit) — yox(2),

where £ is the pivot column and yox(t) < foo(t).

From the definition of R it follows that yo:(2) > 0 and consequently yoo(t+1) < voo(t).

We now show that there exists a T = ¢+ 1 such that yew(¢*) =A for all t* = T. Let fo;(t) be the
fractional part of yo;(t) and fu;(t) = ew;(t)/D(t). where D(t) is the absolute value of the product of all
previous pivot elements. Note that, since the a;; are integer, D(t) and e;;(t) are integers. Since the
pivot element is —1, D(¢+1)=D(t) and
eno(t) —eox(t)

y.m(t+1)=A+ D(t)
= eoo(t) —1 .
A+ _—D(t)

M yoo(t+1) > A, we add another cut from the objective row and again reduce the value of the
objective function by at least 1/D(t). Consequently, after at most ew(t) cuts have been added, the
objective function reaches A. Since the columns are maintained lexicographically positive, a similar
argument can be used to show that the remaining variables become integers in a finite number of,

iterations.

i Discussion and Comparison with Gomory Cuts
The proof just given for cuts from Eq. (5) applies as well to the weaker cuts from Eq. (4), but not,
of course, to the Dantzig cuts of Eq. (3). The cuts of Egs. (4) and (5), when derived from the objective
1 row, reduce yoo(t) by at least 1/D(t). This reduction is crucial. The Dantzig cut, on the other hand,
yields no reduction in yse(t) whenever there is dual degeneracy. .
A Gomory [4] cut taken from Eq. (2), when x, is not integer, is {

-
]
7

(6) 2 Suixi 2 fuo £

jeK?

*We assume, for simplicity, thal the constraint sel of (1) conlains al least one lanice poinl. An empty constrainl s~1 will be
indicaled by unboundedness in 1he dual problem.

~

oy
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where fij is the fractional part of y;;. Thus, the cuts given by Egs. (5) and (6) involve different inequalities
on the same subset of nonbasic variables. The constraint (5) cuts equally deep into each axis of the

variables associated with the index set R}. The Gemory constraint (6) cuts a different amount into

each axis, depending upon the fractional parts of the ceefficients in Eq. (2).
! One might argue that for a randomly selected row !

i Pr(fy = fu) = Pr(fi; < fi) =112,

so that on the average constraint (5) should do as well as constraint (6). However, a reason for believing
that (6) is superior to (5) is that (6) can have fio/fix large (>1) for the pivot index k.

The finiteness proof for the cuts of Eqgs. (4) and (5), when conipared with the very similar proof
+ for Gomory cuts, highlights this point. When a Gomory cut is taken {1 n the objective row, the objective
function decreases by at least its fractional part.

For the modified Dantzig cuts, only the much smaller decrease of 1/D(¢) is assured. In fact, to
prove finiteness, we had to add cuts in certain cases when there were primal infeasibilities (see step
3 of the algorithm) to prevent the product of the pivots from increasing. When using Gomory cuts,
primal infeasibilities can always be removed (and therefore further reductions can be obtained in
the objective) before additional cuts are made. Conceivably, the constraint of Eq. (4) may represent !
the weakest cut for which a finitely convergent linear programming process car be constructed.

There is a much closer relationship between cuts (5) and (6) than the mere fact they are linear
inequalities on the same subset of nonbasic variables. Specifically, the cut of Eq. (5) is a linear com-
bination of two Gomory cuts. Glover [3] has generalized the representation of Gomory cuts to yield
cuts, from row u of Eq. (2), of the form*

™ 2 ((h}'uj)_(h))’uj)xj? (h}’uo)—(h))’um :

JeR

where (x) denotes the least integer = x and & must be cursen so that {(Aywe) — (h)yuo > 0 (yuo is not
an integer).
Choosing the parameter h to be integer yields the finite abelian group of Gomory cuts of the
‘ method of integer forms [4]. In particular the cut of Eq. (6) is obtained with A =— 1. Settingh =+ 1
yields

} (8) > A —fuy)z = 1—fe

M

*Glover aclually uses the 1wo parameler represenialion

J (B =pYrat T, ((hyw) = Pyey)z; & (hywo) — pyue. & .
JeR -\,

If (h) —p is nol zero, xu=yo— 2 ¥ujx; musl be subsiiluled inlo the cul equalion 10 oblain a basic solution. This substilulion
JeR

is equivalent to requiring p= (A). For praclical purposes then, Glover's generalized culs are one parameler. Many of Glover’s

argumenls for deriving properties of 1hese culs can be simplified by sening p= (h). However, 1he use of p does emphasize 1hal |

iwo differenl quaniilies (h) and A influence 1he nalure of 1he cul

e —a— X ——-——-—-——-—“
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Adding the two Gomory cuts of Egs '6) and (8). we obtain

E (l _fuj)xj"'zfuj =1 _fuo +fuo
#R? R

which is precisely the cut of Eq. (5).

Finally, Glover has observed that the sum of two cuts taken from (7). one haring A= h, and the
other having h=h, with (h,)=—(h,), yields a cut with integer coefficients. Such cuts can have all
of the coefficients = + 1 but with even fewer nonbasic variables appearing in the sum than in Eq. (5).
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A SOLUTION FOR QUEUES WITH INSTANTANEOUS JOCKEYING AND
OTHER CUSTOMER SELECTION RULES
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and
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ABSTRACT

This paper presents a general solution for the M/M/r queue with insianlaneous jockeying
and r > ] servers. The solution is obtained in mairices in closed form without recourse to
the generating function arguments usually used. The solution requires the inversion of two
(2" =1) X (2" —1) matrices.

The method proposed is extended 10 allow different queue selection preferences of
arriving cuslomers. balking of arrivals, jockeying preference rules, and queue dependent
seleclion along wilh jockeying.

To illusirate the resulis, a problem previously published is studied to show how known
results are obtained from 1he proposed general solution.

1.0 THE PROBLEM
1.1 Queue Selection Rules

We consider the following queueing situation. There are r servers. The probability distribution
functions of service times are negative exponential distributions with parameters s, g2, . . ., fr
Arrivals form a Poisson stream with parameter A. Initially, we will assume that all customers that
arrive will join a queue (see Section 5 for other queue behaviors). Each server is assumed to have his
own waiting line. Arrivals will join a queue according to the following rules:

1.1(a) If all queues are empty, he will choose any of the open queues with equal probability.

1.1(b) If several, say ¢, but not all queues are empty, then an arrival will join any of the empty
queues with probability 1/c.

1.1(c) If all queues are occupied. then the custoiner will join the shortest queue.

1.1(d) If all queues are occupied, and if several queues, say s < r, have numbers in them equal to
the number in the shortest queue, then the customer chooses any of these equally short queues with

probability 1/s.

1.2 Jockeying Rules
Once a customer has joined a queue, he will be allowed to change queue (jockey) in accordance

with the following rules (see Section 5 for other jockey rules): =
1.2(a) If, a. any time, n; — n; = 2, then tiie customer in the ith queue will jockey to jth queuc "
instantaneously.

1.2(b) If, under rule 1.2(a), it is possible for the customer in the ith queue to jockey to several
queues, say s, then he will jockey to any of the eligible queues with probability 1/s.

Preceding page blank 315
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1 1.2(c) Hfforr > 2,1, — n; = 2 for fixed i and j and ny — n; = 2, then a jockey from i or & is equally

' likely.

! This problem has been studied by Haight [2] and Koenigsberg [3] for r = 2. It is called a queueing

T system with instantaneous jockeying

2.0 SYSTEMS EOQUATIONS
2.1 The Transition Diagram
! The simples: way to view this problem is to ccnsider its transition diagram. Using the usual “steady
state” arguments one can develop the “steady state™ equation (if necessary) from this diagram. From
the transition diagram it will be evident that the coefficient matrix for the “steady state™ equations :
exhibit a considerable amount of regularity that can be exploited to solve the problem. l
L The random process of interest to us (“the number of customers at each server at time ¢”) will
have a state space consisting of r-tuples whose jth element gives the number of customers before

server j. We define the vectors

n=(n,n,...n.n=0,12,...
ni=(n,n...n+1...n0),n=0,1,2,. ..
Jth
element ;
ng.a= (B0, . -, B+l o Bmtlo . n+l. . n)n=0,1,2:5. - '
elel':len( ~')‘ tement i=12,...r
j>i
h>j

We define the following state probabilities for r=2,

po= probability that the sy: : :m s in state 0
P.= probability that the s,...em is in staten,n=1,2, . . .
Pn, = probability that the system is in staten,,n=0,1,2, . . .

P., = probability that the system is in staten,,n=0,1,2, . . .

L The transition diagram for r=2 is given in Figure 1. We omit transitions from a state to itself.
) Such transitions do not contribute to our later work. Generalizations for r > 2 are obvious. The indi- !
} cated transition rates follow simply from the queueing rules given in Sections 1.1 and 1.2. Thus, for !
example, if the state of the system is 1, a transition to 1 occurs either by server 1 completing service
on one of the two customers in his queue (rate u:) or server 2 completing service on the only customer

he has (rate u;). In the latter case a customer immediately jockeys from server 1 to put the system

into state 1.

2.2 State Equations i
d Using the usual methods of equilibrium analysis one can write the steady siate equation from =R
3 L3
Figure 1. — P o
(a) For O

—Apo+ pipo,+ p2py, =0
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F1GURE ). Transition diagram for r=2

(b) F0r0|

A

9P~ (A1) po,+ p2p =0
, (c) For 0,
] A

2 Po— (A pz) poy+ pipr=0.

For n > 0 it is apparent that equations for n, ny, n; do not depend on the particular values of n. Hence
for each n > 0 one has

(@) Form+1,

A(pay+pny) = (A + s+ 12) po+1+ (pa+ p2) pa+an+ (s + pz) Pa+2, =0
() For (n+1),

e

A
-2-p-+1—(.\+p.,+y»¢)p(.+n,+mpn+z =0 o
(c) For(n+1),

%pn+l—(A+p1+ﬂz)p (+1) + )P ne2 =0.

.
-
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2.3 The Coeflicient Matrix

For later purposes we define the following matrices:

—A 1131 M2 0
A
No= 3 —(A ) 0 I
A
3 0 — (A p2) i
and for n >0
A A — A+ + o) (1 + p2) (1 + p=) 0
Au=] 0 0 b —(A+,1|+[L2) 0 M2 ,n=|,2, 5
2
A
6 0 2 0 —Atpmtp)  m
We partition these matrices as
A= /—A Nex= ' M2 0
A
3 | —(A+wm) 0 Mz |
A
E 0 — (A pu2) JTh
Am= /A A —(A+ i+ p) An2= (1 + pz) (1 + p2) 0
0 0 % . and — A+t ) 0 ™
A
0 0 3 0 —(A+ g )

Then the coefficient matrix for the general “steady state” equations AP =0 can be written as {for r=2)

Ao Aex 0 0 0
(21) Ne 0 An A 0 0
0 0 An Ap O

0 0 0 AYTRRAY S

[T i

The matrices Ani. Aaz, n >0 are independent of :* and hence the par:itioned matrix is siinply a bi-
diagonal matrix with Aj;= A and Ajz= Az w0 i,j= 1,2, .. .. The important consideration, however,
is that this partitioned form of the matrix dep - 1ds o - (he existence of the instantaneous jockeying rules
of Section 1.2 only. Except for the size of the submatrices, the number of servers has no effect on the
structure of A. Thus, the fact that we have chosen to carry the structure through for r=2 is irrelevant
to the construction of the partitioned matrix above and to the solution below. All results are valid for
r =2, Our choice of r=2 was pedagogical only.




—
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2.4 The State Probability Vectors
For r=2, let

Po1=po, a scalar,

PL = (po,, pos» P1)»

Pes is a column vector of lengih 3. In general, Py is of length 2r— 1. Further, for all n, let
Pl =(py, Pay Pa;on=0,1,2, . ... In general, P(y+1n is a column vector of length (r+1).
Plyi1)2=(Par111s Plnst)gs Pas1). n=0,1,2, . . . . In general, P(n.1)2 will be of length 27 —1.

2.5 The Steady State Equations
The steady state equations can be written using the above partitions as

where A is defined by (2.1) and P is the column vector whose elements are given in Section 2.4. More

importantly, however, one has
(2.2) /\0|Po| + /\osz-:O
2.3) AmPariin+ An2Pni12=0,n=0,1,2, . . ..

Again, this set of equations does not depend on r. Hence every instantaneous jockeying queue satisfy-
ing our assumption of Section 2 (and extensions given in Section 5) satisfy this system of equations.

3.0 THE SOLUTIONS
Using the partitioned form of Section 2.5 it follows directly that

3.1) Pe=— Agt NotPor.

for any r > 1.
Define
B=AgG' A

B is (27—1) X 1. Let B, be the vector of the first (2" —r—2) rows and B; the remaining (r+1) rows of
B. Then (3.1) is equivalent to

_ B|Po|.
3.2) Pyp= (Bsz )

From (2.3) one has
(3-3) P“'+l)2=—/\;-)/\MP(IH-I)I, n=09 19 29 e ..

Equation (3.3) defines the (2" —1) elements of P(n.}): in terms of the (r+1) elements of P(,. ). but
the elements of P(n.)): are known, since they represent the last (r+1) elements of Py,». We make the

following definition:
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Let: P¥,=the last (r+1) rows of P,.,. It then follows that

3.4) Pinein=Pg .

Using Egs. (3.1) and (3.3) and iterating, we find

3.5) Po=— A5 N Poy

and

Pi=—A l'zlAlan-
By (3.2) we have

P& =—BsPy,
but by (3.4)
(3.6) u=Pg=—B:Po.
Thus,
3.7 Pi= AR AuB:Po.
Since
(3.8) A'An= A Na for alli, j#0,
we let
A=A Am.

Ais a (2r—1)x(r+1) matrix. Partition 4 into 4,, A2 where A; is the (r+ 1)x(-+1) matrix con-
sisting of the last (r+1) columns of 4.

We can assemble these terms to find all the unknown probabilities in terms of Py — a scalar. Py,
is given by (3.2) in terms of known matrices and Py. Also by (3.6) and (3.7) one has the value of Py,, Py,
in terms of the given matrices and Py,. Using (3.6), 4, and 4;, (3.1) and (3.3), one has

P|2=—(Z;)Pn-

(AB:Py
Pa={ ”2(/12811%.)'

which upon using (3.7) gives

and by using the definition of P% : we obtain

sz=Aszpol=P2|-

And continuing the iteration

Pp=—AP;
(= 1)2(/41/4232’)01)
A2B:Py
P =—A3B,Po= P5,
Po = (A|A§szo|)
27\ ABoPw)

~
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In general,

— u s o 1A2B2P 0
Ponorp,=1(-1) l(A;‘z'Bsz) foralln=1.

(note: A7=1)
(3.9) P:z'—'(_l)"*'/l;Bsz.

Thus, a complete solution for all state probabilities is given by:

(3.10) Poz=_BPo|

) L i A,A;Bgl’m) =

(3.11) Ppirp=1(—1) l(A;“BzPol .n=0,1,2,...
(3.12) P+, = (—1)*(42B:Pa1).

Equations (3.2), (3.10), and (3.11) give us all state probabilities in a closed matrix form in terms of the
single scalar Po. The probabilities given by (3.12) are redundant and are included in other vectors.
Hence they do not comprise a part of the set of state probabilities. Py, is determined by requiring all

terms to sum to 1.
It is useful to note that all probabilities are obtained in terms of 4 and B and that 4 requires one

inversion, of the matrix A ,2, while B requires one inversion of the matrix Ag:.

4.0 AN EXAMPLE: THE CASE r=2 (Haight [2], Koenigsberg [3]).*

These equations and their associated matrices have been given in Section 2. Here we note:

[ Atp _ 1 B2
MmN+ + 2) (2R + g+ ) (20 + i+ )

A=l = A+}L| [13] — l
0 N (2N + pa+ p2) W (2hH g+ pa) (2N + 2)

A+ ) (A + pa) At ps At
Ntttz 2N+ pr + pz) 22N+ + paz) pa (2N + pas)

and from (3.2)
A
241
A
20
)\z
2 pt2

Por= At horPo= Lo,

*As pointed out by Koenigsberg (3: p 422] the results of this section are identical to those obtained by Gumbel {1] for the
maitre d'hotel system with two heterogeneous servers.
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A
I).’ =] %— I’ﬂn
2
P,= A Po.
Hipe

These values agree with those previously given.
Similarly, for the general equations, we find

/\—_1_—_ &2 # “2
= (it p2)? ()Nt p2) (o pe) A+ +p2)
M H _ Y2
(it p2)? (it p) (At pe) (ot pe) (N a4 p2)
A+ pe 1 1
(a1 + p2)? i+ pe it e
and
=L ApLy ApL1 2 (At ) M — )?
M= S pe)?t (i pe) (A ) 2(pat+ p2)> A+ + )
Atz _ A C2pa (A )2 A (i — )
(w+p2)? (it pe) N+ ) 2(pr+ p2)2 (N + 1 + )
AA+pi+ p) A (A s+ po )2+ A + )
(o + p2)? i+ (o + p2)?
Notice, for r=2 only,
/\;2'/\'"=A'=A2,

i.e., the last (r+ 1) rows of A comprise the whole matrix.

Thus, the general solution from (3.11) is

Ppip= (—1)"1A 1B, Py,,

which,. in the form given by Haight [2] and Koenigsberg [3], is:

and

where:

A2Ez(n+l) )\()\'*'2#192)92"
= 9Pn y = 2 . 111y Po,
2uz T T e (14 p)
AL+ 2puapt) p?
Pn =.___&B_P__ Do,
T 4 (1+ p)
- A A
P s+ e
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5.0 EXTENSIONS*

5.1 Queue Selection Preferencet
Suppose that the customer has some preference for one of the possible choices such that the
probzbility of joining an **‘open” queu: is not 1/s (see 1.1(d)).
“open” queue is not 1/s (see 1.1(d)). :
We give the following definition: An open jueue is one such that if an arrival joins that queue, it
will not give an impossible state. (Note: all queues in the state n are open queues; if all queues are
' in the state n+1 then those queues are also open.)
Let

imij . .. «= Prob (joining the ith queuelith. jth, . . ., sth queues only are apen).

- {1 if i=j
& =10 otherwise,

and

imi...s=0if i does not appear in both subscripts.

For r=2, the A matrices are given by:

—A a p 0 i

Ao= yy2A - (A+}l.|) 0 M2

2T i2A 0 "()\+ll-2) 231

and
AA (A ptpe) (1 + 2) (g1 + p2) 0
A={0 0 1Tz = (A g+ ) 0 M2 ,
i 0 0 27 2A 0 "(’\'*'ll-l +ll-2) M ‘
! These terms do not change the form of the coefficient matrix A (it does change some of the coefficients

of the state probabilities, specifically those terms that deal with arrivals to the system). The general
solution of Sectior: 3 remains valid.

5.2 Balking

/e defi
) We define ollj. .. s= Prob (balking/ith. jth, . . ., sth queues are open),

and ill;; . . . ¢isdefined as in Section 5.1, for i #0. If we require oI1;;. . ., =1 whenever all queues e
of size N then A represents the coeflicient matrix for the queueing system with finite (rV) capacity. We
note that balking probabilities do not directly enter into or change the state equations in any way, except
that the 7’s that do appcar no longer add to unity, as in Section 5.1. This merely reflects the fact that the

customer no longer joins a queue with probability one. Hence the general solution of Section 3 remains {
. valid. t

*In uddition to the extensions giver: explicitly here, one can imagine other possible behaviors that modify the transition
rates, but retain the hasic structure of the A matrix. For example, reneging can be incorporated without losing the structure.
Such inclusion is obvious and we do not explicitly expose the details.
+ Krishnamoorthi [4] has given results for this selection rule for the two server case. !
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5.3 Customer Jockeying Preference
Another generalization involves the jockeying discipline itself. It will be remembered that, if s

possible juckeys were available, then each would occur with probability 1/s. (Jockeying Rule 1.2(b)) We
note that such a situation could only occur (two or more available jockeys) for r = 3. For example, for
r=23 suppose the state was m;» and a service occurred in the 3rd queue, giving the instantaneous state
{n+1.n+1, n—1). Two possible jockeys could occur, from either the 1st or 2nd queue (but not both).
Initialiy, we defined each of ihese to happen with probability 1/2. But now let us suppose that there is a
probability distribution on these jockeying choices. In effect, we are now allowing jockeying pref-
erences: in turn, this allows us to consider the distance the jockeyer must travel; it is now possible to
tuke explicitly into account the fa-: *hat a person in an adjacent queue is more likely to jockey than a

person from a distant queue.

DEFINITION: An eligible queue i is one in which the difference ni—ni = 2; in other words, the
ith queue contains a customer who may jockey. Let us dcfine the following:

@i .. = Prob (jockeying from queue j to k/the queues i, j, . . ., ¢ only are eligible to jockey).

Furthermore, let
0 if j does not appear in both subscripts
1 ifj=k
ikij . e = ; : .
0 if k appears in both subscripts

jxij. .. otherwise.

The a’s only affect the equations for n = 1 since no jockeying occurs under the initial conditions since
all arrivals immediately enter service. Again the structure of the problem given in section 3 is unaffected
by this change and the solution given there remains valid.

5.4 Dependence on n, the Number in the Queune

Suppose that A, becomes a function of n. In other words, the arrival rates, the service rates, the
queue preference probabilities, or the customer jockeying probabilities now become dependeﬁt on the
number of people in a queue. By a development which parallels that of Section 3 it can be shown that
the solution is given by

- A.(n)A_»(l)Az(2) ...... Az(’l“l)BzPu
" A:(DA=(2) e A (n)B.Py |

This follows by dropping the condition (3.8) and leiting

AgA,=4(n).

Al(")
"(")'(A-.«n))'

By iteration. we find the solution to be as given above.

We then partition 4(n) into
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6.0 CONCLUSIONS
We have given a solution technique which seems to be powerful for a large class of jockeying

problems. A simple matrix equation has given us a closed form solution for any number of servers.

Simple extensions of the method allowed us to include the problems of customer queue selection

preference, jockeying preference, dependence on the number in the queue. and balking, where the ,

balking case included the finite capacity queue as a special case. '
The driving force in the system, in all of its forms, is the instantaneous jockeying principle. This

principle allows us to cast the steady state equations in their readily solvable form. This solution

requires a customer to jockey if it is possible. The refinements presented in Section 5 retain the special

structure of A and hence de not present important modifications to those solutions given by Egs.

(3.10) and (3.11). i
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THE DISTRIBUTION OF THE PRODUCT OF TWO NONCENTRAL
BETA VARIATES
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ABSTRACT

In 1his paper 1he exacl disiribulivn »f the pmduct of 1wo noncenlral hela variales is
| Aerived using Mellin integral 1ransformi. The densily funclion of 1he producl is reprsented
as a mixlure of Bela disiribulivns and the disiribulion funciion as a mixiure of Im-omplere

Br1a Funeclions.

1. INTRODUCTION

Mellin transform is a powerful analytical tool in studying the distributian of praducts and quotients
af independent random variables. The operational advantages of Mellin transforms in prablems of
this type have been discussed by Epstein [3]. Following Epstein many authors applied the Mellin
transfurm in a number of papers on the distribution of products and quatients of randam variables:
a detailed bibliography can be faund in Springer and Thompson [8]. Examples of engineering applica-
tians involving produets and quotients of random variables can be found in Danahue [2]. The practical
usefulness of the results described above is limited by the fact that all the carrespanding distriliutions
have infinite ranges while in many plysical applications the mathematical madels aften have finite

j characteristics.,

The situatinn invalving praduct of independent Beta variates arises in many applications, for
instance. in system reliability. If it is assumed that the system cansists of a numher of subsystems
and the initial reliability estimated from each subsystem. R;. suggests a Beta density. then the tatal
reliability, R=R,R; . . . R.. is a random variable. and it is important to know the distributian «of
this preduct. This paper gives the exact distribution of the product of twa nancentral Beta variates.

2. THE DISTRIBUTION OF THE PRODUCT OF TWO NONCENTRAL BETA
VARIATES.

Let ¥, and y2 be twa independent random variables distributed according ta the nancentral beta

density function [4] with parameters pi, qi, A, and pz, g2. Aa. respectively. Thus the density function

ufy_,- is
i . |‘(2|+£;l+g!))\;
{ “e (M g0y pis 450 N) =2—_WP“‘J)‘”2"“P}‘2'4 lL—y;)re-2 j=1,2,0<y;<1.
AT L ATE i\t
¢ I(Z)I( 2 )I.

\

We want to find the probability density function of the variate u =y,y,, by the use of Mellin tran:farms.
The Mellin transfarm f(s). corresponding to a function f(x) defined anly far x 2 0. is

L | Preceding page blank i

;“" ot
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2) f(s) =f: 2 Y (x)dx.
The inverse Mellin transform enabling one to go from the transform f(s) to the function f(x). is
3) fa =g [ xoptsran
27 Je-ix
Therefore the Mellin transform of the density function of y; is

r(2i+p[-+g!-) O
* 2 Alc J
(4) j:'(s)=2 f yl/’(’np -2)+8-- l(x .'J}I'.’ltu‘- 2)dyj‘

i=0 |’(%)|’(2—l;—pl)l' o

Term by term integration is justified since the series can be shown to converge uniformly. Thrre-

fore, we have

[.(2i+gi+g[-)~.£_”l.(2i+gi+2s—2)
(5) fis)=3 : 2
¢ . l.(2:‘ +£j)l.(2i+p,-+q,-+2s-—2)i,
2 2 ’

If we take the limit as A;—0. the result is

g

F(%)( +q+2s 2)

which is the Mellin transform of the central beta distribution with parameters pj> and ¢

lim _ fi(s) =

The Mellin transform of the density function of the product of two independent random variables is
the product of the Mellin transforms of the density functions of the individual variables [2]: therefore,
the Mellin transform of the deusily function of u=yy is

S(5) = £i(s)fe(s)
NI (Zi +§, oy q,) r (2i+p, +2 — 2) AT (2/.- +p.+ q,) l,(zl.- +pa+ 25— 2)

= (A +A) 2 2 2
=e 1 2 5 a
2 S2A+p, N [2i+p, g+ 25—2) . f2kEpo 2k pyt g+ 25 —2
'=°l( : I : ).!k«-ol 3 )l( )/.-z
2 2 2 2
6)
A“l (Zln+[:,+q,)l, (2[.'4—[),;-25—2) ?
=e-h,* '22 . . — . |
g (2A+p,)l (ZA-+,),+q,-+Zs-—2)“ \
2 2 .
NET (21'—2k+p,+q2) r (21'-2k+p,+25—2)
— 2 2
l.(2i~22lr+p,)I.(2|'~2A'+p,;-q,+2.s—2)“,_“!
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where the sum over m comes from the hypergeometric function.
The distrihution function of u is given by

i=0 k=0 m=0 ,
B
A:A."."'I‘(”—'+ﬂ+k) |‘(ﬂ+ ) ‘(2k— 4B B2 diy )
il SRR g tm)! T2 2"
fop—syr P2, D\ (P2, O G2 P2 R iyt
| (ZA i+l L), (2+ Ly 2+k+m)B( 24 ik, 2)k.(l k) im!
(e 9 9:
l.,(2+k,2+2+m), ,
L where
1 "
lu(a, b) =— f - (1—t)b-'de
(@D =gn ) 07
is the Incomplete Beta Function. l
If we set Ay=A2=0 in (9), the density function of two central beta variates is
» M9 ’
l(2+2)l(2+2)" sk @ PP @ @4
h(u)= F e e toh s ol BTl
By
2 2 22
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where the sum over m comes from the hypergeometric function.
The distribution function of u is given by

».:Af,-kr(”'+"’+k) r(ﬂ+m)r(2k—i+’#—”—*+ﬂ+m)

an S s s 2 3 2'%
Aop_:qyPr_P2 o\ (P2, 91 G2 P2y -0 Q2N vir_ gy
|(zk i+l b2y I(2+2+2+k+m)ﬁ(2+z k.z)k.(z Wi

g (P, 9,2
l.,(2+k.2+2+m),
where
l u
l.(a, b)=— f a-1(1 =¢)v-dt
(a, 5) Bla, b) 0t (1=1)

is the Incomplete Beta Function.
If we set A\y=A:=0 in (9), the density function of two central beta variates is

; i AELLIR
|‘(%+ﬂ)r(’£+‘“)u2 "A-w)z 77!

2 272 qg: P P2 4 g, g2

h(u)= l'(_-T—'T+_;._+'T'Zl—")'
(P p: q1, 92 2°2 2 272 2
'(2)r(2)'(2+2)
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OPTIMUM ALLOCATION OF QUANTILES IN DISJOINT INTERVALS

OR THE BLUES OF THE PARAMETERS OF EXPONENTIAL
DISTRIBUTION WHEN THE SAMPLE IS CENSORED IN THE
MIDDLE

A. K. Md. Ebsanes Saleh®

Carleton University, Ottawa
and

M. Ahsanullaht

Food and Drug Directarate, Ottawa

1. INTRODUCTION AND SUMMARY

In the theory of estimation it is well known that when all the observations in a sample are available,
il is sometimes possible to obtain estimators that are the most efficieut lincar combinations of a given
number of order statistics. In many practical situations we encounter censored samples. that is.
samples where values of some of the observations are not available. Singly and doubly censored samples
occur when the extreme observations are not available and middle censored samples occur when
observations are missing from the middle of an ordered sample. Censoring in the middle of a sample
may occur due to mmcasurement restrictions, time, economy or failure of thé measuring instrument
to record observations or due to off-shifts or week-end interruptions in the course of an experiment.
As mentioned in Sarhan and Greenberg 8] in the space telemetry, where signals are supposed to be
sent at regular intervals we may expect a few of these signals to he missing during journey and al the
end of communication,

In this paper we shall consider the problem of best linear unbiased estimation (BLUE) of the
parameters of thr exponential distribution based on a fixed number k (less than the number of avail-
able ohservations) selected order statistics when the sample is censored in the middle. The study is
based on the asymptotic theory of quantiles and under type II censoring scheme. The optimal alloca-
tion of the k quantiles in the two disjoint intervals along with the optimum spacings of the quantiles
have been determined. The estimates and their efficiencies may easily be calculated based on ‘he
table of coefficients and efficiencies presented at the end of this paper, in Table 1, for various pro-
portions of censoring.

The problem of choice of optimal k quantiles in uncensored and singly and doubly censored samples
liave been dealt with by Kulldorff, [1, 2] Ogawa, [3] Saleh and Ali, [4] Saleh, [5, 6] and Sarhan and Green-
berg [7, 8] The present problem is an extension to censoring in the middle posing a new problem of
optimum allocation of & quantiles in the two disjoint intervals due to censoring in the middle.

*Rescarch supported by the National Research Council of Canada. This work has been completed while the autbor was a
fellow at the Summer Research Institute, MeGill University, 1969,
+On leave from Institute of Statistical Research and Training, Dacca University, Dacca, Pakistan,
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2. ESTIMATION OF THE PARAMETERS

Suppose we are sampling from the exponential distribution

Q2.1 F(x)=l—exp(—x—;E),zap,.a>0.

where u and o are the parameters of the distribution. The samble size. n. is assumed to be large: le
the interval (0, 1) | » sub-divided into three intervals: I,= (0, a], I:=(a, B). and I,=[8, 1) with
0<a<B<I. Define ps=0 and ps3=1 so that po=0< p,=a < B=p; < p=1. Under type 1l censor-
ing scheme in the middle. we only retain a and 1— 8 proportion of samples from the two extreme
intervals so that the proportion of censoring is 8 — a. Thus the ranks of all the uncensored observations
lie in the .atervals [1, n,] and [n2, n]. respectively, where n,=[na]+1 and n.=[nB8)+1 and [ |
is the Euler’s notation for the largest integer ¢ ntained in [ |]. In this section, we shall obtain the
BLUES of the parameters based on k arbitrary quantiles whose ranks are available from the two dis-
joint integer sets [1, n,] and [n:, n], respectively.

Let the ordered observations in a sample of size n be x(1) < x(z) . . . < x(x) and consider the k
sample quantiles xr,) < X, < . . . <Xk <Xwg) < . . . < X(ngx,» where the ranks n;; are
given by '
(2.2a) ny;j=[npy;]+1 i=L2 ...k
and
2.2b) ni={nps]+1  j=1,2, ... ks,
and the spacings p,;(i=1, 2, j=1, 2, . . . k) satisfy the inequality
(2.3) N<pu<...<pu,<pn<...<pa,<l;
also

0<pij<aand B<py;<1forallj.
Now if the spacings are redesignated as
M< ... <A k=ky+k,,

then the expressions for the BLUES ard their variances and covariance and the generalized variance
will coincide with the expression in (2.7a) through (2.8) of Saleh [5] with necessary restriction due to
censoring in the middle.

The symbols ui;=In (1—pi;) ', i=1, 2, j=1, 2, . . . ki explain the connections of the expres.
sions which are:

ky k2
o= E bijx(n'-j)"' 2 b2jx(n2)-)9
j=1 j=1
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(2.5' ﬂ:x‘.”)_&.”.
(2.6a) —— izl
b1 ——(e'lt—e'll)L'
(2.6b) b'~=L"{ Bij—lj-r _ W=y
17} f"lj—e"lj—l C.U'l-e'li
where

i=2,3, ... kiand urk, 1 =uzi, u10=0,

bu=L‘,{uzi_uzl-l o _Uz2jey T Uz }

(2.6¢) €'z — e"2y-1  eY2j+1 — e*3j

phese =02 . o k=1, U= kg Uzkger =0,
2.6d) bur, = L0 [t

and

I b= =

The variances and covariance of the eshimates are

2.7a) V() ="7" (L~'w?, + (e — 1)},
2.7b) V() =‘{'f B
and
a3 2
(2.7c) cov (p, o) ="7 (uul").

The generalized variance of the estimate is
at . _
2.7d) A = (e*n~—1)L-,

When u = 0, the estimate o based on the k quantiles is

R k1 k2
2.8 o= Z bl}x(n,j) + 22 b2jx(n2j)v
= j=
where
=1y BT R T By T U
(2.9a) by; le{euu._euu_, e"u'u—e“u'}

j=1, 2, ... ky with Urky+1=U21,
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2.9h) b,,;=()-.|{ Wai™Uaj .y _U2je1— Usj }
UK leuzi—enzio1t eMzjo1 —evsj

j=l, 2. ... ka—1 with U=1U1k,. llzk,u:O.

and

. kl"( o)t kz-l( 2jer1—Uzj)2 (1 — )2

(2.10) e Urjer ™ )" U2j+1 ™ U2j U T Uik,
Q« 12. e*1j+1—e¥j +j§, €e¥2j i1 —e¥2j e 21— e“1k

The variance of the estimate is given by

2.11) V(&)=£—-
k

We note that in all the above expressions the restrictions on the u’s are

2.12) 0<un<...<wg<lh(Q—a)’ }

In (1=8) ' Suar < . . . <sax, <+

3. OPTIMUM QUANTILES FOR ESTIMATION OF PARAMETERS

In order to determine the optimum k quantiies for the BLUES of 1 and o simultaneously, we have
to minimize the expression for A, the generalized variance of the estimetes. Equivalently, we maximize

(evn1—=1)-'L

for variations of u11, w12, 1k,, . . . Uz2k,, with the restrictions (2.12) on the u’s and for all combinations
of ky and k,, such that k=k, + k. (fixed). When u=0 and o to be estimated, we maximize QJx as in
(2.10) ac- ordingly.

For the two-parar eter problem, we observe that (e*1'—1)-'L as a function of &, is monotoni-
cally decreasing (Saleh [5]) and the maximum is attained at

1 1
u;",=ln{l—n+1/2} .

Thus the optimum spacing is p} :717-1—15 and the optimum rank of the quantile is n},=1. To de-

termine the remaining A—1 quantiles, we maxinize (e*11—1)-'L with respect to w2, w3, wir,,
-1

Usy, . . . Uz, keeping u3, =In {l _n+ll/2} fixed and for all combinations of &, and &z, such that,

ky+ k2= k (hixed). Thus we use the following transformations

3.1) ty-i=uy—uf,  j=2, ... k
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Then, (e"11—1) 'L reduces t where
( ) « e ] ”2 Qk 1 ¢
K12 (g, —t)* 2 (g — ) (b —tix, )2
& _ je 1j 2j+1 2j 21 (L]
) Qs ;:f, ej-1—ehj + ,2'. elzjo1—e'2j + ez1—e'ik -1’
where

ity Lizy o o oo Liky—1s B20, - . -, L2k, salisfy the inequalities

- n—1/2
0<tn<... <t'k"'\ln[(n+1/2)(1'—a)]

_n:_lL]< _ _
il '"[(n+1/2)(1—3) St s

Thus. the problem of determining the optimum quantiles reduces to chnosing the corresponding
spacings A$y, ASz, . . ., ATk,—1s A%1, . . ., ASk,, which maximizes Q.- for variations of ¢;,.
Lik,~1s 821y - . .y L2k, satisfying (3.3) and for all combinations of k, and k.. such that, k=k, + k: (hxed).

Therefore we should solve the system of equations

Wuarg =12, .. k=1

at,;

Q-1 _ .
3.4) —Bt-_»j =(, j=1,2, . .. ks,

for all combinations of k¢ and k.. such that k=k,+ k., snbject to the restrictions (3.3) on the t’s. Let
(=12, ... kf—=1) andt(=1,2, . . . k) be the optimum quantiles which provide maximum
of Qx-, among all combinations of integers k; and k., such that k,+ k2 =k. Then, the set of spacings
AGG=1, . . . kh—1) and A%(j=1, 2, . . ., k2) are determined by the relations

th=In(1=A¥) - j=1 ... k-1

(3.5) ti=In(1=A%)""  j=1,2, ... k.

The vptimum choice of spacings for the estimation of (i, o) are nbtained entirely by the relations

24 (2n— DA :
ERC =T\ U I £ (V] o
P =57 Ve j=1,2, ... ki—1

(3.6)
24 (2n—1)A}
*=—({'___)__21. =012, - . . ey

b 2+l
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The optimum ranks of the quantiles selected are given by
n’.". =1
3.1 nf=[npHl+1, j=2,... k
nf=[p5l+1.  j=1 ... k:
The asymptotic BLUES of u and o based on the optimum quantiles are
e r— G ln(2n+1)
I n—a 2" — 1 )
ky kg
o=>blixmy+ Y bijxwi+ Y bfix i,
j=2 i=1
where
kyq ko
bri=—[ 3 61+ 3 3 ).
Jj=2 i=1
where bf,, . . . b, and b}, . . . bi, may be determined from Table 1. The asymptotic joint

efficiency (JAE) and the asymptotic relative efficiencies (ARE) compared to the best linear estimates

using all observations in the censored sample (see Sarhan and Greenberg [7}) are given by

2n—1 Q- (B—a)

JAE (4, 0) = Fm ) (1 a—p) + (1=a) 1= A){In (1—a) " —Tn (1—B) '}’

(3.8a)
y) = Q:—I(B_a)
(3.8b) Gl (a)—(B—a)(1+a—[3)+(l—a)(l—p){ln (1—a)'—In (1—8)-'}2"
and
3.80) ARE (3) = p——2 -0
[(Zn—l) In? 2252420, ]

[1+l e ]
n(B—a)(l1+a—B)+(1—a)(1-B){Ir ‘1—a)-'—In (i —8)'}* ]’

where QF_, is the maximum value of Qx_, defined at (3.2). Thus, once Q}_, is kiown, the efficiencies
can easily be computed. We must note that the above asymptotic efficiencies have been computed
using the large sample approximation of the generalized variance and the vanances of tne estimates
using all the uncensered observations presented in Sarhan and Greenberg {7] (pp. 357-360). The
following example has been presented with finite sample size to illustrate the estimation proccdure.

EXAMPLE — Simultaneous estimation of u and o: Assume n=62, k=8. a=0.4096, 8=0,7048,
and B—a=0.2952. According to the theory stated in this section we first select x(,). To determine the




r
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remnaining seven quantiles we first compute the upper and lower bounds in expressions (3.3), which
yield new a’ =0.40 and 8’ =0.70. Thus, using Table 1 for these values with #=7 we obtain £, =2 and
k+=5 and optimum spacings as A},=0.2170. A%, =0.4000; A}, =0.7000, A}, =0.8354, A},= 0.9226,
A3, =0.9720, and A};=0.9943. Using formula (3.6), we obtain optimum spacings for both (u, b’) as
ph=0.2295. pk=0.109. p%=0.7048, p%=0.8381. p%=0.9238, p%=09724, and p¥ =0.5944.
The corresponding ranks of the quantiles are n12=15, n1a=26. no1=H. n22=352, nyz=>58. n24:=61,
and n:5=62. The BLUES are given by

. ., 125

p=xm—0oln 173

== 9135x,+.2067v( 15+ .2714v26)+ . 2043 x 44y + . 1127 x(52)+ 0681 x(58) + .0345x(61)+ .01 18x(62).

The coefficients b¥ and b3; are taken from Table 1 with £=7.

4. OPTIMUM ALLOCATION OF QUANTILES AND THEIR SPACINGS FOR THE SCALE
PARAMETER.
In section 3, we have reduced the two-parameter estimation problem based on k selected quantiles ;
to the problem of estimating the scale parameter based on 4 —1 selected quantiles when the sample
is censored in the middle. Therefore, we consider ihe problem of optimizing the related variance
function Q- as in (3.2) which is a function of & —1 variables. Thus we maximize Qi -, subject to the :

restrictions

(4.1) M 0<tn<...<tw ,sln[—"——”—z-—]

' = . (n+112)(1—a)

" PR (T FOP
(n+12)(1=pg) f =7~ " Tk

The problem therefore reduces to solving the following system of equations ,

Tris1+ 71— 26,;=0

4.2)
T2j+1 +sz—2t2j=0 } ¥
subject to the restrictions (4.1), where 7y; and 73 have. he same definition as (6.3) of Saleh [5] with addi-
tional subscript 1 and 2 in ¢'s, )
The theorems in the same paper guarantee that the system of equations (4.2) has a unique solution.
Therefore the optimum quantiles for the BLUE of the scale parameter, o, are uniquely determinable. |
The nature of the solution depends on the available restrictions and, accordingly, they are as follows:
(i) The solutions coincide with unrestricted optimization problem if the proportion of censoring
at the middle is such that

< n—1/2 ]
@3) g [ (n+172) (1—a) ,
}
and RN
L n—1/2 L. e T
Bk '3"'“[(n+1/2)(1—3>]

simultaneously, where ¢¢, and ¢3, ., are the solutions of the equations in (4.2), with no restriction.

) -1y
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(i) If the solution at (i) is not available. then we proceed as a simultaneous problem of right and
left ¢ensoring, Accordingly the solution is available following section 3 and 4 of Salel [3] for (4.2) simul-
taneously. The associated computation has been performed on a GE 415 Computer with 12-figure
accaracy and the iterated solution of the equation has been performed with 5-figure accuracy, for
E=201)10 and a=0.40(0.10)0.80 8==0.50(0.10)0.80, such that 8 —a=0.1000.10)0.40,

The optimum allocation of &, optimum spacings, the coefhicient of the BLUE of o, and the maxinium
value of Q- have been presented at the end of the paper. We mark with an asterisk where the solu-
tion is not different from the unrestricted case. The table has been prepared with k instead of £ —1 10
state the result for the scale parameter when the location parameter is known. In the two-parameter
case. we use the table for kA —1 instead of k. The efficiency expression for the BLUE of o is given by

Ay O ((B—a) .
+4) HRE, (o) B-—ay(l+a—p)+(1—a)(1=B){ln (1—a)-t—In (1 —B)-}2

Now, we shall present an example with finite sample size to illustrate the estimation procedure.
EXAMPLE: Assume a=0.40, 8=0.60, k=7, n=060. From Table 1 we obtain k&)=1, k,=86,

AN, =0.4000, A}, =0.6088, A}, =0.7625. A}, = 0.8697. A¥, = 0.9387, A},=0.9778, and A}, =0.9955.

The corresponding order statistics are 25, 37. 46, 53, 57, 59, and 60.

The BLUE of o is

&-: ().2()49.\’(25 ) +0. |85|.\”(31) + 0.1 327.\”(46) + 0.0889.\”(53) + 0.0537.\”(:,7) + ().0272.\”(39, + ().00()3.!'((;0).

ARE (0)=97.04%

5. SOME REMARKS ON THE SIMULTANEOUS ESTIMATION OF u AND o BASED
ON OPTIMUM QUANTILES

The simultaneous estimation of u and o depends heavily on the solution of the scale-parameter
problem discussed in section 4 of this paper. The example cited at the end of section 2 illustraies the
estimation procedure with associated calculations needed to arrive at the right results. Efficiency
expressions are based on the asymptotic approximations of the variances and generalized variance
in the finite sample case (Sarhan and Greenberg [7]). Therefore, if the sample size is reasonably large
to justify asymptotic normality of the quantiles, the asymptotic efficiencies will also be justified. Finally,
the coefficients in the estimation for the scale-parameter case remain the same in the two-parameter
case, as well, due to the linear transformations in (3.1) and the nature of the expressions for the co-
efficients (2.6a 1o 2.6d). In this regard, the reader is referred to the papers [4, 5] of the primary author,
where all details have been given.
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TABLE 1. Optimum Spacings, the Corresponding Coefficients, and Relative Efficiency of the Scale
Parameter

(=050  a=0.40)
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1 TaBLE 1. Optimum Spacings, the Corresponding Coefficients, and Relative Efficiency of the Scale
Parameter — Continued
(a=0.#) B=0.60)
. I
2* 3 4 5* 6* 7 8 9 10

ky 0 0 1 1 1 1 2 2 2
k2 2 3 3 4 5 6 6 7 8
0 1.0176 09163 0.5108 0.4993 0.4276 0.5108 0.2446 0.2446 0.2446
Ay 0.6385 0.6000 0.4000 0.3931 0.3479 0.4000 0.2170 0.2170 0.2170
by 0.5232 0.4285 0.3934 0.3463 0.3109 0.2949 0.2046 0.2035 0.2028
2 26112 1.9339 1.2649 1.0998 0.9269 0.9384 0.5108 0.5108 0.5108
Ay 0.9266 0.8554 0.7177 0.6671 0.6042 0.6088 0.4000 0.4000 0.4000
b 0.1791 0.1933 0.2585 0.2320 0.2228 0.1851 0.2079 0.2010 0.2003
[ 3.5275 2.2825 1.8539 1.5274 1.4378 0.9384 0.9163 0.9163
Ay 0.9706 0.8980 0.8434 0.7829 0.7625 0.6038 0.6000 0.6000
by 0.0662 0.1308 0.1402 0.1492 0.1327 0.1839 0.1695 0.159%4
ty 3.8761 28714 2.2815 2.0282 1.4378 1.3439 1.2903
Ay 0.9793 0.9434 0.8979 0.8697 0.7625 0.7392 0.7248
by 0.0448 0.0709 0.0902 0.0889 0.1318 0.1220 0.1112
ts 4.4651 3.2990 2.7923 2.0382 1.8432 1.7179
A 0.9885 0.9631 0.9387 0.8697 0.8417 0.8206
bs 0.0243 0.0456 0.0537 0.0883 0.0874 0.0836
s 4.8927 3.8099 2.7923 2.4437 2.2172
As 0.9925 0.9778 0.9387 0.9132 0.8911
by 0.0156 0.0272 0.0533 0.0585 0.0599
1 5.4035 3.8099 3.1977 28177
Ay 0.9955 0.9788 0.9591 0.9403
be 0.0093 0.0270 0.0354 0.0401
[ 5.4035 42153 3.5717
Ax 0.9955 0.9852 0.9719
by 0.0092 0.0179 0.0242
1o 5.8090 4.5893

- Ao 09970 | 09898
by 0.0061 0.0123
o 6.1829
Ao 0.9979
bio 0.0042
QO 0.8203 0.8878 0.9260 0.9476 0.9606 0.9678 0.9742 0.9794 0.9828
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TABLE 1. Optimum Spacings, the Corresponding Coefficients, and Relative Effictency of the Scale
Parameter— Continued

(a=0.40 $=0.70)

k 2 3 4 5 6 7 8 9 10

ky 0 1 1 ! 1 2 2 2 2

ki 2 2 3 4 5 5 6 7 8

6 1.2040 0.5108 0.5108 0.5108 0.5108 0.2446 0.2446 0.2446 0.2446
A; 0.7000 0.4000 0.4000 0.4000 0.4000 0.2170 0.2170 0.2170 0.2170
b 0.4832 0.4750 0.3934 0.3700 0.3658 0.2067 0.2054 0.2045 0.2040
2 2.7976 1.5284 1.2649 1.2040 1.2040 0.5108 5108 0.5108 0.5108
A2 0.9390 0.7831 0.7177 0.7000 0.7000 0.4000 0 000 0.4000 0.4000
b, 0.1495 0.2914 0.2585 0.2269 0.2269 0.2774 [, Y 0.2746 0.2738
[ 3.1220 2.2825 1.9580 1.8044 1.2040 1.2040 1.2040 1.2040
A3 0.9559 0.89¢0 0.8589 0.8354 0.7000 0.7000 0.7000 0.7000
by 0.0997 0.1330 0.126%4 0.1134 0.2043 0.1902 0.1801 0.1725
ty 3.8761 2.9756 2.5585 1.8044 1.7033 1.6316 1.5780
As 0.9793 0.9490 0.9226 0.8354 0.8179 0.8044 0.7936
by 0.0448 0.0640 0.0685 0.1127 0.1015 0.0920 0.0839
ts 4.5692 3.5761 2.5585 2.3038 21308 2.0056
As 0.9896 0.9720 0.9226 0.9001 0.8813 0.8654
by 0.0219 0.0347 0.0681 0.0680 0.0659 0.0631
te 5.1697 3.5761 3.0578 2.7214 2.50%9
Ae 0.9943 0.9720 0.9530 0.9349 0.9183
by 0.0119 0.0345 0.0411 0.0441 0.0452
t; 5.1697 4,0754 3.4854 3.1054
As 0.9943 0.9830 0.9694 0.9552
b; 0.0118 0.0208 0.0267 0.0303
te 5.6690 4.5030 3.8594
A 0.9965 0.9889 0.9789
I 0.0071 0.0135 0.0183
ty 6.0966 1.8770
' 0.9977 0.9924
by 0.0046 0.0093
tin 6.4706
Ao 0.9985
b 0.0032
Q« 0.8155 0.8836 0.9260 0.9470 0.9578 0.9642 0.9704 0.9743 0.9769

|
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Optimum Spacings, the Corresponding Coefficients, and Relative Efficiency of the Scale
Perameter— Continued

(B=0.80 a=0.40)

2 3 + 3 6 T 8 Y 10

] 1 1 1 1 | 2 24 2 2

1 2 3 1 3 5 3 T 8

-1 3 3 = e Sl = = e

! 05108 0.5108 0.5108 0.5108 0.5108 0.2416 0.2446 0.2446 0.2430
A 0. 3000 0.4000 0.4000 0.4000 0.4000 0.2170 0.2170 0.2170 0.2170
by .6698 0.4945 0.4759 0.4687 0.4651 0.2108 0.2099 0.2003 0.2089
t: 21045 1.6094 1.6094 1.6094 1.6094 0.5108 0.5108 0.5108 0.5180
A 0.8781 0.8000 0.8000 0.8000 0.8000 0.4000 0.4000 0.4000 0. 4000
b 0.3126 0.2812 1.2336 0.2099 0.1956 0.3743 0.3727 0.3716 0.3710
t; 3.2031 2.6270 2.3635 2.2029 1.6094 1.6094 1.6094 1.6094
A3 0.9594 0.9277 0.9059 0.8903 0.8000 0.8000 0.8000 0.8000
by 0.0920 1.0935 0.0856 0.0771 0.1943 0.1847 0.1778 0.1726
t 1.2207 3.3811 2.9639 2.2009 2.1088 20370 1.9834
A 0.9853 .9660 0.9484 0.8903 0.8786 0.8696 0.86214
b, 0.0320 0.0433 0.0466 0.0766 0.069] 0.0627 0.0573
t; 49747 3.9815 2.9639 27092 2.5364 2410
As 0.993) 0.9813 0.9484 0.9334 0,9208 0.9103
I 0.0148 0.0236 0.0463 0.0463 0.0450 0.0431
ts 53752 3.9815 3.4633 3.1368 29104
As 0.9962 10,9813 0.9687 0.9566 0.9155
be 0.0081 0.0234 0.0280 0.0301 00309
1: 5.5752 11808 3.89%00 35108
Az 0.9962 0.9487 0.9796 0.9701
b, 0.0080 0.0142 0.0182 0.0207
t 6074 £.9085 $.2649
As 0.9977 0.9926 0.9859
b 0.0048 0.0092 0.0125
t. 6.5021 5.2825
Au 0.9985 0.9949
b. 00032 0.0063
tia ().8:()]
A 0.9990
[ 0.0022
Qs 0.7800 1.8430 09176 0.9317 .9389 0.9453 0.9494 0.9320 0.9538
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Optimum Spacings, the Corresponding Coefficients, and Relative Efficiency of the Scale
Parameter— Continued

(=050 B=0.60)

ky
k.

2* 3 4 5* 6 7 8 9* 10 . '
0 1 1 1 1 2 2 2 2
2 2 3 4 5 5 6 7 8

0
LY
by

1.0176 0.6931 0.6005 0.4993 0.4276 0.3266 0.3266 0.2991 0.3266
0.6385 0.5000 0.4514 0.3931 0.3479 0.2786 0.2786 0.2585 0.2786
0.5232 0.4517 0.3907 0.3463 0.3109 0.2563 0.2546 0.2376 0.2527

[£3
Az
b,

2.6112 1.7107 1.3545 1.0998 0.9269 0.6931 0.6931 i 0.6315 0.6931
0.9266 0.8193 0.7419 0.6671 0.6042 0.5000 1 5000 0.4682 0.5000
0.1791 0.2409 0.2361 0.2320 0.2228 0.2185 0.2015 0.1904 0.1788

L5}
A3
ba

3.304 23721 1.8539 1.5274 1.1925 1.1207 1.0055 1.0255
0.9633 0.9067 0.8434 0.7829 0.696, 0.6740 0.6341 0.6414
0.0825 0.1195 0.1402 0.1492 0.1694 0.1531 0.1483 0.1280

[N
LY
by

3.9657 2.8714 2.2815 1.7929 1.6201 1.4331 1.3995
0.9810 0.9434 0.8979 0.8335 0.8021 0.7614 0.7533
0.0409 0.0709 0.0902 0.1134 0.1097 1115 0.0997

[F
As
bs

4.4651 3.299%0 2.5470 2.2206 1.9324 1.8271
0.9885 0.9631 0.9217 0.8915 0.8552 0.8391
0.0243 0.0456 0.0685 0.0735 0.0799 0.0750

ty
s
be

4.8927 3.5646 29746 2.5329 2.3264
0.9925 0.9717 0.9489 0.9206 0.9024
0.0156 0.0347 0.0444 0.0535 0.0537 ;

i
A7

5.1582 3.9922 3.2869 2.9269
0.9942 0.9815 0.9626 0.9464
0.0119 0.0225 0.0323 0.0360

[
Au
bu

5.5858 4.3045 3.6809
0.9962 0.9865 0.9748
0.0077 0.0164 0.0217

[
Ay
by

5.8981 4.6985

A
b"l

0.9973 £.9909
3
0.0056 0.0110 |
6.2922
0.9981
0.0038

(e

0.8203 0.8906 0.9269 0.9476 0.9606 0.%?_J 0.9754 0.9798 0.9828

S
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TaBLE L. Optimum Spacings, the Corresponding Coefficients, and Relative Efficiency of the Scale
Parameter - Continued

(a=0350 B=0.70)

A 2 3 4 3 6 7 8 9 10

ky 0 1 1 1 2 2 2 2 3

k, 2 2 3 4 4 3 6 7 7

1 1.2040 0.6931 0.6005 0.6931 0.3266 0.3266 0.3266 0.3266 0.2138
A 0.7000 0.5000 0.4514 0.5000 0.2786 0.2786 0.2786 0.2786 0.1925
by 0.4832 0.4549 0.3907 0.3478 02591 0.2563 0.2547 0.2537 0.1821
i 2.7976 1.7107 1.3545 1.2935 0.6931 0.6931 0.6931 0.6931 0.4439
A 0.9390 0.8193 0.7419 0.7257 0.5000 0.5000 0.5000 0.5000 0.3585
b, 0.1495 0.2409 0.2361 0.1918 0.2425 0.2210 0.2196 0.2187 0.1561
I3 3.3044 23721 2.0477 1.2936 1.2040 1.2040 1.2040 0.6931
Az .9633 0.9067 0.8710 0.7257 0.7000 0.7000 0.7000 0.5000
by 0.0825 0.1195 0.1159 0.1889 0.1695 0.1557 0.1458 0.1852
1 3.9657 3.0652 2.0477 1.8044 1.7033 1.6316 1.2040
A 09810 0.9534 0.8710 0.834 0.8179 0.8044 0.7000
by 0.0409 0.0587 0.1141 0.1121 0.1010 0.0915 0.1454
1 4.6589 3.0652 2.5585 2.3038 2.1309 1.6316
Az 0.9905 0.9534 0.9226 0.9001 0.8813 0.8044
b, 0.0201 0.0578 0.0678 0.0676 0.0656 0.0913
s 4.6589 3.5761 3.0578 2.7314 2.1309
As 0.9905 0.9720 0.9530 0.9349 0.8813
b 0.0193 0.0343 0.0409 0.0439 0.0654
t: 5.1697 4.0754 3.1854 2.7314
A; 0.97243 0.9830 0.9694 0.9349
bs 0.0117 0.0207 0.0265 0.0438
tx 5.669C 4.5030 3.4854
Ax 0.9965 0.9889 0.9694
by 0.0071 0.0134 0.0265
ty 6.0966 4.5030
Ay 0.9977 0.9889
by 0.0046 0.0134
tio 6.0966
Ao 0.9977
bro 0.0046
Q« 0.8155 0.8906 0.9269 0.9439 0.9585 0.9689 0.9751 0.9789 0.9817

P L
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Optimum Spacings, the Corresponding Coefficients, and Relative Ffficiency of the Scale
Parameter— Continued

(=050 B=080)

k 2 3 4 5 6 7 8 9 10
Ay 1 1 1 2 2 2 2 3 3

: 1 2 3 3 4 5 6 6H 7
1 0.6931 0.6931 0.6931 0.3266 0.3266 0.3266 0 3266 02138 ' 0.2138
Ay 0.5000 0.5000 0.5000 0.2786 0.2786 0.2786 0.2786 0.1925 0.1925
by 0.6092 0.4549 0.4194 0.2645 0.2606 0.2586 0.2575 0.1848 0.1843
s 2.2868 1.7107 1.6094 0.6931 0.6931 0.6931 0.6931 0.4139 0.4339
A 0.8984 0.8193 0.8000 0.5000 0.5000 0.5000 0.5000 0.3585 0.3585
b, 0.2526 0.2409 0.2058 0.3108 0.3061 0.3039 0.3025 0.1585 0.1580
Iy 3.3044 2.6270 1.6094 1.6094 1.6094 1.6094 0.6931 0.6931
A3 0.9633 0.9277 0.8000 0.8000 0.8000 0.8000 0.5000 0.5000
by 0.0825 0.9029 0.2026 0.1799 0.1661 0.1568 0.2683 0.2675
f 4.2207 2.6270 2.3634 2.209 2.1088 1.6094 1.6094
Ay 0.9853 0.9277 0.9059 0.8903 0.8786 0.8006 0.8000
by 0.0318 0.0914 0.0837 0.0754 0.0681 0.1564 0.1497
t 4.2207 3.3811 2.9639 2.7092 2.1088 2.0370
As 0.9853 0.9660 0.9484 0.9334 0.8786 0.8696
b, 0.0313 0.0424 0.0456 0.0456 0.0679 0.0616
ts 4.9747 3.9815 3.4633 2.7092 2 5364
As 0.9931 0.9813 0.9687 0.9334 0.9208
by 0.0145 0.0231 0.0275 0.0455 0.0441
4] 5.5752 4.4809 3.4633 3.1368
A7 0.9962 0.9887 0.9687 0.9566
b: 0.0079 0.0139 0.0275 0.0296
[ 6.07 5 4.4809 3.8909
Ax 0.9977 0.9889 0.9796
b 0.0048 0.0139 0.0179
[ 2% 6.0745 4.9085
Au 0.9977 0.9926
by 0.0048 0.0090
tia 6.5021
A 0.9985
b 0.0031
Qx

0.8043 0.8906 0.9244 0.9390 0.9531 0.9603 0.9645 0.9672 0.9698
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Parameter— Continued

347

(a=0.60 B=0.70)

k 2 3* + 3 6 7 8 9 10*
k 1 1 1 2 2 2 3 3 3
ks 1 2 3 3 4 5 5 6 7l

3 0.9163 0.7540 0.6005 0.4232 0.4232 0.3740 0.2755 0.2755 0.2719
Ay 0.6000 0.5295 0.4514 0.3450 0.3450 0.3120 0.2408 0.2408 0.2381
b 0.5475 0.4477 0.3907 0.3135 0.3088 0.2820 0.2244 0.2232 0.2203
t; 2.5099 1.7716 1.3545 0.9163 0.9163 0.8016 0.5788 0.5788 0.5711
Ax 0.9187 0.8299 0.7419 0.6000 0.6000 0.5514 0.4394 0.4394 0.4351
by 0.1985 0.2266 0.2361 0.2523 0.2237 0.2120 0.1833 0.1823 0.1804
[ 3.3653 2.3721 1.6703 1.5167 1.3099 0.9163 0.9163 0.9034
Az 0.9654 0.9067 0.8118 0.7806 0.7277 0.6000 0.6000 0.5948
by 0.0776 0.1195 0.1686 0.1508 0.1519 0.1671 0.1539 0.1445
1 3.9657 2.6879 2.2708 1.9014 1.4156 1.3439 1.2774
As 0.9810 0.9320 0.8968 0.8506 0.7572 0.7392 0.7212
b, 0.0409 0.0854 0.0911 0.1017 0.1347 0.1219 0.1126
L 4.2816 3.2204 2.6554 2.0161 1.8432 1.7050
As 0.9862 0.9627 0.9297 0.8668 0.8417 0.8182
bs 0.0292 0.0461 0.0615 0.0902 0.0874 0.0847
ts 4.8820 3.6730 °.7701 2.4427 2.2043
As 0.9924 0.9746 0.9373 0.9132 0.8897
bs 0.0158 0.0311 0.0545 0.0585 0.0607
t; 5.2666 3.7877 3.1977 2.8048
Az 0.9948 097714 0.9591 0.9395
b, 0.0106 0.0276 0.0354 0.0406
[ 5.3814 4.2153 3.5588
Ax 0.9954 0.9852 0.9715
by 0.0094 0.0179 0.0246
ty 5.8090 4.5764
Ay 0.9970 0.9897
by 0.0061 0.0124
tin 6.1701
A 0.9979
bo 9.0043
O« 0.8188 0.8910 0.9269 0.9462 0.9606 0.9693 0.9745 0.9797 0.9832
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TaBLE ). Optimum Spacings, the Curresponding Coefficients, and Relative Efficiency of the Scale
Parameter— Continued
(a=0.60 £=0.80)

k 2 3* 4 S 6 7 8 9 10

ki 1 1 2 P 2 2 3 3 3

k: 1 2 2 3 3 S 5 6 W

8 0.9163 0.7540 0.4232 0.4232 0.4232 0.4232 0.2755 0.2755 0.2755
Y 0.6000 0.5295 0.3450 0.3450 0.3450 0.3450 0.2408 0.2408 0.2408
b 0.5475 0.4477 0.3231 0.3135 0.3089 0.3066 0.2248 0.2238 0.2232
t: 2.5099 1.7716 0.9163 0.9163 0.9163 0.9163 0.5788 0.5788 0.5788
Az 3.9187 0.8299 0.6000 0.6000 0.6000 0.6000 0.4394 0.4394 0.4394
by 0.1985 0.2266 0.3010 0.2523 0.2389 0.2372 0.1835 0.1828 0.1823
t 3.3653 1.2739 1.6703 1.6094 1.6094 0.9163 0.9163 0.9163
Aa 0.9654 0.. A4 0.8118 0.8000 0.8000 0.6000 0.6000 0.6000
by 0.0774 0.1870 0.1686 0.1492 0.1358 0.1994 0.1986 0.1980
L 3.5275 2.6879 2.3635 2.2099 1.6094 1.6094 1.6094
A 0.9706 0.9320 0.9059 0.8903 0.8000 0.8000 0.8000
by 0.0640 0.0854 0.0831 0.0749 0.1340 0.1259 0.1194
[23 4.2816 3.3811 2.9639 2.2099 2.1088 2.0370
As 0.9862 0.9660 0.9484 0.8903 0.8786 0.8696
bs 0.0292 0.0421 0.0452 0.0744 0.0672 0.0610
s 49747 3.9815 2.9639 2.7092 2.5364
As 0.9931 0.9813 0.9484 0.9334 0.9208
by 0.0144 0.0229 0.0450 0.0450 0.0437
t; 5.5752 3.9815 3.4633 3.1368
A7 0.9962 0.9813 0.9687 0.9566
b; 0.0078 0.0228 0.0272 0.0293
I 5.5752 4.4809 3.8909
Ax 0.9962 (.9887 0.9796
by 0.0078 0.0138 0.0177
Ly 6.0745 4.9085
Ay 0.9977 0.9926
i 0.00471  0.0089
U 6.5021
Ao 0.9938
b 0.0031
Q« 0.8188 0.8910 09179 0.9462 0.9502 0.9674 0.9730 0.977 0.9797
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TaBLE ). Optimum Spacings, the Corresponding Coefficients, and Relative Efficiency of the Scale
Parameter — Continued
(- 050 g 0.80)
3 2¢ 3* 4 5 6 7 8* 9 10
Ly 1 1 ) 2 3 3 3 } +
he 1 2 2 3 3 i} 5 5 6
= pm—————y ea SR ﬂF: == —— S S T
fn Lol7e | 0.5540 | osHa | o093 | 03501 | 03501 | 03321 | 02588 | 0.2588
Ay 0.6385 0.5295 0.1181 0.3931 0.2951 02951 0.2828 0.2280 0.2280
by 0.5232 0.4377 0.3708 0.3163 0.2721 0.2691 0.2579 0.2128 0.2119
o 4 .

b 2.6112 1.7716 1.2040 1.0998 0.7167 0.7807 0.70603 0.5120 0.5120
As 09200 | 0829 | 07000 | 06671 | 03201 | 05261 | 05066 | 0181 0.118}
b, 00791 | 02206 | 02565 | 02320 | 020 | 02067 | 02000 1 01761 | 01751

. 1 3.3053 2.2216 1.8539 1.2040 1.2040 1.1339 0.8548 0.858
Ay 0.9654 0.8916 0.8434 0.7000 0.7000 0.6782 0.5746 0.5716
[ 0.0776 0. 1390 0.1402 0.1804 0.1801 0.1511 0.1429 0. 1423
ty 3.8152 28714 1.9580 1.8041 1.6333 1.2040 1.2040
Ay 09780 | 09133 § 08589 | 0.8353 | 08017 | 0.7000 | 0.7000
by 0.0476 0.0709 0.1249 0.1121 0.1083 0.1268 0.1170

| t, 1.14651 2.9756 2.5585 2.2337 1.7033 t.6316

! As 0.9885 0.9490 (1.9226 0.8929 0.8179 0.8014

| bs 0.0213 0.0632 0.0677 0.0725 0.1005 0.9011
Is +4.5692 3.5761 29878 2.3038 2.1309
As 0.9896 0.9720 0.9496 0.9001 0.8813
by 00216 | 0.0313 | 0.0838 | 0.0673 | 00653
t7 5.1697 $.00514 3.0578 2.73114
Ag 0.9933 | 09818 | 0.9530 | 09319
by 0.017 | 00222 | 00107 | 008137
t 155990 | AGT3E | 3850
A 0.9963 | 0.9830 | 0.9694
by 0.0076 0.0206 0.026:4
ty 5.6690 1.5030
Ay 0.9%65 | 0.9889
by 0.0070 0.0131
te 6.0966
Aro 0.9977
bio 0.0046
(/N 0.8203 0.8910 0.9259 0.9476 0.9583 0.9691 0.9754 0.9792 0.9831
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DECISION RULES FOR EQUAL SHORTAGE POLICIES

G. Gerson

Cambridge Computer Corr-.
New York, N.Y.

and
R. G. Brown

IBM Corporation
W hite Plains, N.Y.

L. INTRODUCTION

Much of the applied work in inventory management has been based on **equal service™ policies -
i.e., each item in an inventory should be managed in such a way that over a year the same percentage
dollar demand for the item can be met.

This paper presents a set of practical decision rules for “equal shortage™ policies —i.e.. each
item in an inventory should have the same number of shortage occurrences in the course of a year.
It also answers the question of allocating inventories under budgetary constraints.

There is a substantial difference betv een the two policies of “equal service” and “*equal shortage.™
If one aims for a desired level of service, in terms of dollar demand filled from the shelf, presumably
the number of shortages are not of paramount importance —and conversely. A total inventory budget
is allocated among the items in the inventory in guite different ways under the two policies.

There can also be a strategic problem in allocating an inventory under a budgetary constrant.
With a fixed amount of cash available for inventory (v an equivalent measure of value. such as shelt
space available), what safety factors should be used in computing buffer stocks, and what ordering
quantities should be used to:

a. Yield minimum dollar shertages for the inventory (in terms of lost demand), or

b. Yield minimum number of shortage occurrences.

In this paper the decision rules developed will meet budgetacy constraints and allocate the in-
ventory so as to satisfy either @ or b, It is also shown in the development that the way to meet a budget
and satisfy a is to invoke the “‘equal shortages” policy, contrary to policies implemented in IMPACT,

for example, which concentrate on “equal service” rules.
In Section Il we develop the decision rules required where every stock item is ordered with the

the same frequency, as is often the case for retailers and wholesalers. In Section 1II we develop the
decision rules in the case where each item may have its own ordering frequency. In Section IV ordering
and holding costs are considered in order to minimize total expense under a given capital budget.

I1. FIXED ORDERING FREQUENCIES
In this section we deal with the casc where each item is ordered with a known frequency, and

shortages are backordered.

Preceding page blank 351
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The notation to be used is found in Brown [1] and is as follows:
Let x(t) represent the number of units of a given item that is demanded at time ¢. Assume that
x:?) has mean ¥ and standard deviation o. We also define ihe deviation at time ¢, e,. by

C'=x(') —Xx.
Then e, has mean 0 and standard deviation o. Let p(t) be the p.d.f. of e;. Define
F(k)=f’p(:)d:.
r

F (k) is the complement of the usual cumulative distribution function, and represents the prohability
that demand will exceed %+ ko. Define

E(k)=f' (t—k)p(e)dr.
.

' This function is called the *‘Partial Expectation.” The quantity cE (k) represents the expected quantity
short per order cycle. Let S represent the annual sales of an item and Q the order quantity. Let v
represent the unit value of an jtem- although v may also be considered in terms of square feet taken
up by the item in a shelf allocation procedure. Then S/Q is the number of order cycles in a year. Since
F (k) represents the probability that demand will exceed %+ ko, then F(k)S/Q will represent the
+ expected number of shortage occurrences in a year-i.e., the expected number of times in which an
out-of-stock situation will occur. With v defined as the unit value of the item, then ovE (k)S/Q will
represent the expected dollar value of the shortages.

Throughout the development we consider an inventory investment of the form

= 2 (ko + Qp;l2).
j=t

Consider a fixed budget for I. Then kjopv; represents safety stock for the jth item, and Q;u;/2 is the
value of cycle stock for the jth item.’
l THEOREM 1: Given an inventory of . items, dollar shortages will be minimized when all items

have the same number of shortage occurrences per year. In particular, if all items are reordered with
# 'T the same frequency, then all safety factors, kj, should be equal.

PROOF: Consider the individual values of cycle stock to be fixed. Fix the total investment in
safety stocks as I,. Thus,

n
Ig= 2 ij'jUj.
j=t
Total annual shortages are

; P=3 onE(k)S/Qs
S j=1
Form

l H=P—)\(13—i ij';Uj),

Jj=1

| __
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where A is a Lagrangian meltiplier.

- . . . . aH ,
To minindze P subject to the constraint on investment. set ('i—k—:”' and solve to obtain
J

Ful)Si/Q,=x. j=1L......n
Henee., if safety factors. k. are ehosen so that each item has the same number. A. of shortage accur-

rences per vear. the dollar value of the backorders is minimized. In particular. if all items are reordered

with the same frequency. i.e..

S;ilQ;=rc.
then F(k;, = eA. and all safety factors must be the same.
k=F en)®,

The same teehnique can be applied to find the values of & for whieh the numher of shortages will be

minimized f number of shortages is an appropriate definition of service). The resulting equation is
(le‘ijpUij)/Oj=A.

In this case a restrietion must he made on the form of p(k) in order to assure a unique solution —j.e..

p (k) <0.

In this theorem. each value of 0 < A <5§;/Qj generates a total value of inventory. By varying A an ex-

change eurve can be generated that yields shortages as a funetion of inventory investment.

111. RELAXATION OF THE FREQUENCY CONSTRAINT

In this seetion we consider the case where order quantities Q; are to be determined jointly with

the safety faetars so as to minimize the total value of shortages.

T(Q] ........ 0". Ih'l. ...... g Ihn) == 2 O'_,U_,E(IAJ)S_,/O]

Jj=1

subjeet to a total inventory budget /.
In order to apply Lagrangian Multiplier techniques. we must he sure that the Hessian of T is positive
definite. Define

Evaluating
EERN
| Ok dxtQ
I
aQak a0*

we obtain

E(h) [2p(k) = F2(K)IE (k) ]1Q*.

*Although this case may seem artificial, it is common practice in industry to order items based on a fixed number of months*
supply.
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However. applying "Hospital's Rule

lim F*(k}E(k)=2p(k).
L-vx

Further. taking the derivative,
[2E(k)p (k) —F2(k)) = 2E(k)p' (k) < Oif p' (k) <O0.

Therefore, the Hessian will be positive definite if p’ (k) < 0. We will assume from now on that this is the
case and that Lagrangian Multiplier techniques ean be applied as required.

The graph in Appendix 2 shows how the function F2(k)/E (k) approaches 2p(k) as k increases.
In this case, (k) is the normal density function.

THEOFEM 2: Given a total inventory constraint

1= 2 (kjo v+ Qv;12).
j=t
then the value of shortages

Y Siowik (k;)/Q;
j=1
will be minimized. providing that p’ (k) < 0 and 0 <A < S;/Q;, if the safety factors satisfy

F2(k;)=20;AE (k) /S;
and the order quantities satisfy

Q;=20E (k;)IF (k).

PROOF: The sum of cycle and safety stocks is

1=3 (ko +Qmf2).

and the value of shortages is ol

P=3 SioE (k)0
j=t
Form

H=P—>\[1—ﬁ (kjaﬂ»,-w]vj/z)]-

i=1

Take ail and -aﬁ , equate them to 0, and solve to get

ak; 0Q;
M F2(k;j) =20ME (K;)/S;
and
2) Q5= 20;E (k;) [F (kj).

Equation (1) can be solved for k; by a Newton iteration for k; or table look-up. The specific formula
required for the Newton iteration is exhibited in Appendix 1. Once k; has been determined, then Q;

7y

a——
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can be obtained from Eq. (2). Therefore. given a A which satisfies the hypotheses. we can determine

Qjand L,. Smee E(k)) is the expected quantity short per order cycle. the average service P is defined by

3) aEtk;)=Q;(1=P)).

Substitute (3) in (2) to obtain
F(k)=2(1-°,)).

Hence ;> 0.5, and at least half the value of demand will be satisfied on the average. For the normal

distribution this means that the safety factors are nonnegative,

I the number of shortages rather than the value of shortages is the criterion for service, then the

development is:

1=3 (kjoju+Qjv;l2),
=1

and the number of shortages is

P=" S;F(k)/Q;.
j=

Set
H=P—A[1—Z (ijjvj+ij,i/2)J
j=1

. o _ . oH _
Again, solve {,’kj—O and —aoj—-O to get
pZ(kj) =27\0'1ij(/€))/$;,

and

Qi=20;F(k;)[p(k)).

If these equations are to supply a feasible solution, then the Hessian of F (4} /Q must be positive definite.

The Hessian is

—F(k)[2p' (k)F (k) +p2(k)]/0Q*.

The expression in the brackets must be negative. The limit of the expre: sion is 0, but

(20" (KYF (k) +p2 (k)]

will be positive only if the second derivative, p"(k) > 0.

IV. ORDERING AND SHORTACE COSTS

Consider a cnst cj of processing a replenishment order, and an expense u; for processing each

piece backordered. Then the total annual expense is
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X=Y ¢S;/Q0+ i u;Sjor ;b (k;)1Q;
. et

j=1
with total inventory

I= i (kjoju;j+Qin;/2).
j

Form
}
H=X-x [1— 3 (kjojv;+Qjv;/2) ] .
j=
Then
l g_g=_ufs)'ajf‘(k)')/0j+ Aojv;=0,
> and
oH )
00, (u;S;io;E(kj) +¢;8;)/Q + Av;[2=0.
J

The second equation reduces to

4 Q= V2(ujo;E(k;) +c;S;) IAv;,

which becomes the conventional EOQ for o;=0. Note that A is the policy variable that governs the

exchange between capital invested and ordering expense, someiimes called the “carrying charge.’
The first equation becomes

(5) uiS;F (k) fv;Q;= A\,

which modifies earlier results only in terms of the ratio of the cost per unit backordered to the cost
per unit kept in inventory.

It would also be possible to consider a cost U per backorder processed (i.e., it costs something
to process the backorder, but the cost is not dependent on the quantity backordered). Then the results

will come out like the minimum shortage case considered earlier.

‘ Numerical Examples:
1. Consider the case where order quantities are fixed and all items are reordered with the same
} - frequency.
$,=100 S$,=200
"= 1 V= 2
O] =10 02= 20
o1=10 ag:=35 |1
| ‘ We consider for this exampie that I is made up of safety stocks alone, since the order quantities are <=
. fixed. L e -

Set I=20. Then we have k=1 for both items. The shortages turn out to be 16.66, and the total
service is 0.9667. If we use €:..-al service rules, then k;j is computed from

oE(kj) = \—P)).
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Then ki =1.44 and k:=0.74. The total inventory investment necessary to supply an item service of
0.9667 turns out to be 21.84.
2. Consider the case where order quantities and safety factors are determined jointly.

$=100 S.=200

=1 va=1
U|=6l 02=3.85
A=0.5

Then ky=2.0 and k.=2.5. We also obtain ¢, =4.55 and Q;=2.48. The total shortages turn out to be
0.621 +1.138=1.759. Service for the two items is 0.99414, and the total inventory investment is 25.34.
If we consider the equal service strategy with order quar.tities as above, then ky=2.239 and k. =2.290.
The inventory investment is therefore 25.98.

If we leave k,=2.0 and k,=2.5. and determine ('s to get an equal service strategy, then Q, =8.839
and Q:=1.214, so that the total inventory investment turns out to be 26.85.
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APPENDIX 1

! The general Newton iteration method is, with k chosen in advance

kivi=ki— f(k)If (k).

In this case—Eq. (1)—we set

,1 ¢ = 20,2/S;.
,‘ Then
| fk) = F2(k)IE(K) — ¢

and

[ (k) = F(k)[F*(k) — 2E (k) p (ki) YE* (k).

»

The nonvanishing of f'(k;) is assured by the fact that the Hessian is positive definite. This procedure
has been programmed and convergence is rapid.
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APPENDIX 2
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SYSTEMS ANALYSIS AND PLANNING-PROGRAMMING-BUDGETING
SYSTEMS (PPBS) FOR DEFENSE DECISION MAKING

Richard L. Nolan*

Harvard University

ABSTRACT

Systems analysis office titles have permeated both government and business orga.
nization charts in recent years. Systems analysis as a discipline, however, even though
increasingly accepted, has eluded precise definition. For the most part, it has been loosely
described as “quantitative common sense” and “the general application of the scientific
method.” Emphasis is placed upon the application of eclectic disciplines to a wide variety
of problems. Concepts and techniques have been drawn heavily from economics, mathe-
matics. and political science.

In the Department of Defense, systems analysis has been used extensively in the
evaluation of weapon systems during the last 9 years. During the 1960’s, it provided the
underlying concepts for the control system PPBS (Planning-Programming-Rudgeting Sys-
tem). This article traces the origins of systems analysis within the Depariment of Defense
and describes and analyzes the application of the technique. Although there always exists
disagreement, it is generally accepted that the origin of systems analysis coincided with the
inception of R. S. McNamara's administration of the Department of Defense. McNamara
organized the Systems Analysis office under Mr. Charles Hitch, who had previously developed
many basic systems analysis concepts at project RAND. From Hitch's basic concepts, the
approach became increasingly sophisticated in evaluating complex weapons systems.
Coincidently, the organizational procedures for implementing systems analysis also evolved.
Under the current Department of Defense administration, the new organizational procedures
emerging are contrasted with the old.

The allocation of resources for national security must always compete for priorities with a myriad
of alternative allocations —for example, domestic education, health, income security, and foreign
affairs. Within the constraint of limited resources, the decisive issue is always one of policy and rclated
goals. In the American system of government, both foreign and domestic policy are the preserve of
the civilian administration.

Defense decision-making, or military policy, then, cannot be considered independently. Fluctua-
tions in defense spending are related to such exogenous factors as tax revenues, inflation, and the
encumbent administration’s views on balanced hudgets. Further, the decisicns of Republicans and
Democrats regarding defense can be directed related to their positions on other issues.

Military policy can be usefully divided into (1) strategy decisions, and (2) structural decisions.
Strategy decisions pertain to the size and use of force and include strength, composition, and readiness
of forces. Such decisions as strategic and tactical deployments commonly embodied in war plans are
also included. Strategy decisions are largely executive. In close consultation with his Secretary of
Defense and Joint Chiefs of Staff (JCS), the President establishes high-level strategy. Structural
decisions, on the other hand, pertain to the procurement, allocation, and organization of resources
that implement the strategic units and require both executive and legislative action. The focus of
structural decisions is the defense budget which is, in turn, part of the naticnal budget and thus im-
mersed in domestic politics.

359
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Simply stated, defense decision-making is the conglomerate product of competing goals in which
the relative weight given individual goals is dependent upon a highly unpredictable foreign environ-
ment and a fickle domestic environment.

Defense Decision-Making During the 19530’s

The defense budget has always been the key to defense decision-making. It establishes the abso-
lute magnitude of national resources that can be committed to security goals. During the 1950's.
budgeting and defense planning were considered independently. Early in the budget cycle, the Presi-
dent provided guidance to the Secretary of Defense regarding a budget “ceiling” that he thought was
economically and politically feasible for the next fiscal year. The Secretary of Defense then allocated
a portion of this total to each service. The Services, in turn, suballocated their portions among their
various programs. The Basic National Security Policy (BNSP) paper prepared by the National Security
Council set guidelines on national strategy and priorities. Long-range defense planning for manpower
and weapon systems was performed by the individual services based upon their estimates of the
forces required to ensure our national security.

There was always a significant “‘gap” between the forces that individual services proposed were
required to meet our national security objectives and those forces that they could actually procure.
This was largely becauv:e little or no interservice coordination existed between defense plans. For
example, prior to 1961, the airlift capability of the Air Force was not sufficient to transport the forces
the Army was developing. The Army was planning forces and stockpiling inventory for a long conv.:n-
tional war, depending upon close-air support. The Air Force, on the other hand, was concentrating
almost exclusively on aircraft for use in tactical nuclear war. Thus, even though the Air Force was
committed to support the Army, divergent goals did not permit the Air Force to allocate sufficient
resources to do so. The impact is self-evident; redundancy and imbalance seriously degraded military
cost-effectiveness [3].

In addition, the basic framework of allocating a fixed budget by service, rather than by major
missior: (Strategic Nuclear Forces, Mobility Forces, Tactical Air Forces, etc.), complicated the task
of achieving a balanced defense program. For example, each service made a contribution to the total
military nuclear capability. The Army controlled the Minuteman missile system; the Air Force con-
trolled an offensive missile system and bomber forces; and the Navy controlled the sea-based Polaris
forces. Each service considered its program independently from the other services’ programs; thus,
nuclear strategy as a major mission was fragmented. Further, the Secretary of Defense received cost
data by vbject classes —Procurement, Military Personnel, Installations, etc. —rather than by weapon
systems — Strategic Nuclear Forces, General Purpose Forces, etc. This cost data was presented at
the Department of Defense level on a year-at-a-time basis. Because inception costs of most programs
are relatively small, many ultimately expensive programs were initiated with little hope of their com-
pletion at existing budget levels.

As the 1950’s came to an end, our military posture actually included only the one option of nuclear
deterrence. The capability of the Army to engage in an extensive limited war was highly questionable
because of its dependence upon nonexistent strategic and tactical resources in the other services. In
essence, the military effeciiveness for tax dollar spent was seriously impaired by the management
control system of the Department of Defense.

These problems, however, were neither unknown to nor accepted by the Eisenhower administra-
tion. Several attempts for their resolution resulted in a very favorable climate for reorganization by the

Kennedy administration.
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McNamara PPBS for Defense Decision-Making ;

By the late 1950’s, the President, Congress, and many private citizens stressed the importance
to national security that foreign, economic, and military policies be coordinated, and that imbalances
in the force structure be eliminated. For example, the Rockefeller report, on the problems of the
United States defense. recommended in 1958 that a start be made toward a budgetary system that i
*“corresponds more closely to a strategic doctrine. It should not be too difficult, for example, to restate
g the presentation of the Service budgets, so that instead of the present categories of ‘procurement,’
‘military personnel,’ etc., there would be a much better indicaton of how much goes, for example,
! to strategic air. to air defense. to antisubmarine warfare, and so forth.” (4].

Other influential critics commented an the probls:ms accruing from the planning and budgeting gap.
General Maxwell Taylor stated: “The three Secvices Cevelop their forces more or less in isolation
from each other, so that a force category such as the strategic retaliatory force, which consists of
contributions of both the Navy and the Air Force, is never viewed in the aggregate . . . In other words,
we look at our forces horizontally when we think of combat functions but we view them vertically in

bt
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developing the defense budget” [5].

The House Appropriations Committee, in 1959, expressed concern for the costly false starts
plaguing research and development programs. They stated: “The system should recognize the necessity
to eliminate aiternatives at the time a decision is madc for quantity production. It is this decision that
is all-important. At this puint there should be a full evaiuation of {1} the military potential of the system
in terms of need and time in relation to other developments, by all the military services, and (2) its

L follow-on expenditure impact if approved for quantity production” [6].

Finally, the analytical tools necessary for economic analysis of strategies and weapon systems were
available in a usable form by 1961. In the late 1940’s, Mr. Charles Hitch began to assemble the Eco-
nomics Division at Project RAND. The group innovated and refined the application of quantitative
economic analysis to the choice of strategies and weapon systems. This work is summarized } ; Hitck
and Roland McKean in their book, “The Fconomics of Defense in the Nuclear Age.”

Secretary McNamara enlisted the help of Hitch, from RAND, as his Comptroller, and Alain En-
thoven, also from RAND, as Hitch's deputy for Systems Analysis. Together, they instigated the manage-
ment philosophy commonly referred to as PPBS —Planning-Programming-Budgeting System. PPBS
hecame the deviee through which centralized planning was acrcomplislied. Through it, nativnal se-
curity objectives were related to strategy, strategy to forces, forces to resources, and resources to

costs.

In establishing the basis for PPBS, McNamara made a number of important reorganizations and
changes. First, national security cbjectives were related to strategy through planning done by the
Joint Chiefs of Staff (JCS). JCS, with tri-service representation, developed the basic planning document
referred to as the Joint Strategic Objectives Plan, or the JSOP. It essentially projected a force struc-
ture. The force structure was stated in terms of major missions embodying all three services.

Secondly, cost-effectiveness studies were performed on the JSOP force structure. Economic,
political, and technical considerations were interjected into the programming decisions resulting in
the Five-Year Defense Plan (FYDP). These considerations were largely the product of McNamara's
new stafl aides referred to as systems analysts. The Systems Analysis group provided the means
through which McNamara ‘ short-circuited” the cuinbersome bureaucracy of the Pentagon in effecting
change. (What systems analysis meant to the Department of Defense and how McNamara used it will

be described at a later point.)
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The third change was initiated to inhibit beginning programs which were destined for abortion
at later dates because of budget constraints. As mentioned earlier, when weapon system expenditures
were viewed a year st a time, many programs would be started because of the relatively small resource
commitment required during their research and development (R&D) phases. In order to limit such
commitments, McNamara required that 10-year systems costs be developed in considering new pro-
grams. Ten-year sysiems costs included R&D, investment to equip forces with capability, and operating
costs for 10 years. The timing and relative magnitudes of these costs are shown in Fig. 1.

COST ()

TIME =~~~ 10 YEARS

FIGURE |. Weapons systems cost®

In considering weapon systems, discounted 10-year systems costs were used because a modern
weapons system has a high probability of being obsolete in 10 years; and the relevant costs are related
to keeping the system in a given state of readiness.

The fourth change consisted of a set of organizational alterations that were designed to better
support PPBS. McNamara consolidated the supply and procurement systems into a DOD organiza-
tion —The Defense Supply Agency (DSA). Also, he created the Defense Intelligence Agency (DIA)
to provide relevant inputs into the JSOP planning process. Many sther organizational changes were
made that were centralizing in effect, but which also provided the necessary framework for decen-
tralizing decision-making.

Office of the Assistant Secretary of Defense (Systems Analysis)t

From 1965 to 1969, the Systems Analysis staff was probably the most colorful and controversial
group in modern government. Most popularly referred to as McNamara's “whiz-kids.” the group
has been characterized by being bright, but militarily inexperienced; skeptical of authority. but PhDD
conscious; -soteric, but iconoclastic; arrogant, but honest. In the past vears, the staff dcvcloped a
number of candid responses to critics of their studies who challenged their assumptions, but refused
to provide any alternatives. Two such responses were: “It’s better to be roughly right than exactly
wrong,” and “It’s better to use bad data and good methodology than bad data and bad methodology.”
In any case, all of these characteristics probably do contribute to describing the protile of a systems
analyst; however, a more accurate profile can be developed by describing the concept of systems
analysis and how McNamara institutionalized it in the Department of Defense.f

*Adapted from Charles J. Hitch, “Development and Salient Features of the Programming System.” H. Rowan Gaither
Lectures in Systems Science delivered at the University of California on 5-9 April 1965.

tIn 1965, Alain Enthoven, the First Assistant Secretary of Defense (Systems Analysis) was appointed. Prior 1o 1965, Alain
Enthoven was Deputy Assistant Secretary of Defense (Systems Analysis) to the Controller.

{The approach is becoming widely applied in all aspects of the government ™ ! .1 Bureau Bulletin No. 66-3 requires
department and agency heads to establish planning, programming, and budgeting systems,
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While systems analysis has been described as ‘“quantitative common sense” and the ‘“‘general
application of the scientific method,” it has escaped precise definition. One of the reasons why is that,
by its very nature, emphasis is placed upon the application of eclectic disciplines to a wide variety of
problems. Concepts and techniques of systems analysis have been drawn from multiple disciplines,
suclh as economics, mathematics, statistics, political science, and computer science; thus, it is difficult
to align with one academic field.

A uumber of relatively simple principles have provided a basic framework which has been applied
to most defense analyses in the past 9 yeurs:

1. The data used in analysis must be verifiable, eithe: by observation or deduction from plausible
premises; the procedures eniployed in the analysis must conform to accepted rules of logic. Thus, the
analysis is characteristically self-correcting.

2. Resources are always limited, but effectiveness is a function of creativity in organization.

3. All missions or activities can be accomplished in several alternative ways.

4. Alternatives should be compared by cost-effectiveness; more costly alternatives must have a
commensurate increase in effectiveness.

Two curves provide the framework within which the systems analyst tries to place his analysis.
The first curve is loosely called a cost-effectiveness curve (Fig. 2).

COST (§)

EFFECTIVENESS

FIGURE 2. Cosl-effecliveness curve

The cost-effectiveness curve, logically, illustrates the relationship between cost and effectiveness
and diminishing marginal returns. That such a curve exists is central, and it is quite important where
alternatives fall on the curve. To illustiate, consider the tons delivered into a contingency area during
30 days as a measure of effectiveness, and the number of aircraft and their support systems required
to deliver the tons as dollar cost. The first squadron of aircraft and their support systems have a lower
marginal productivity than the following squadron because of the in’tial setup cost of support systems
such as air traffic control equipment, cargo-handling equipment, and maintenance resources. At some
point. however, the curve turns sharply upward, and the increasing costs result in proportionately
less and less effectiveness. This point may be reached when the preferred route becomes so saturated
that no more aircraft are permitted to use the route. Additional aircraft are forced to fly alternate routes
with longer “legs” resulting in lower payloads.

The second curve (Fig. 3) is loosely called the trade-off curve. The trade-off curve illustrates the
concept of resource substitutions for accomplishing a mission. Any point on the curve represents
a number of airplanes and ships that could accomplish a deployment mission. For example, p’ air-
planes and ¢' ships could accomplish the deployment mission, as could p airplanes and q ships. If
the ratio of the distances a to b and b to ¢ represents an equal cost ratio for airplanes and ships, the
point e is the most cost effective number of airplanes and ships to accomplish the mission.

bt VN Dot A 3
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FIGURE 3. Trade-off curve

These curves represent a logic applicable to many problems of resource allocation. Quality and
quantities can be traded off in a similar manner. Of course, the analysis is fraught with difficulties
and complexities. Generally, the largest problem is measuring the multi-dimensioned concept of
effectiveness.

Nevertheless, the function of the analyst is to draw out the cost and effectiveness of various
alternatives so that the appropriate decision-maker can weigh the trade-offs and gain a better under-
standing of the relationship of costs and effectiveness. In the end, the defense decision-maker must
exercise his own judgment as to whether the last increment of effectiveness (e.g., 3-day decrease in
troop closure time with the enemy) is worth the cost of another increment of resources (e.g., an addi-
tional C-5A squadron).

Mr. McNamara’s changes weren’t so evident on the organization chart as they were on the locus
of authority and the processes by which major decisions were made. McNamara found that bare
military opinions were insufficient bases for making decisions. All too often, basic analysis principles
were excluded from military studies. Thus, he insisted on seeing the data and reasoning behind recom-
meadations. Although McNamara felt that no significant military problem could ever be wholly sus-
ceptible to purely quantitative analysis, he also felt that every aspect of the total problem that could
be quantitatively analyzed removed one more element of uncertainty from the decision process {1].
Feeling most confident with studies which compared alternatives in terms of their costs and some
solidly based criteria of effectiveness, he organized Systems Analysis to parallel the maisi defense
missions. As experienced practitioners of the kinds of studies McNamara found useful, the systems
analysts initiated, guided, and synthesized military research. Although their work sometimes campeted
with the work of the military advisers, Systems Analysis was designed to supplement the studies of
the military advisers {5).

In order to forcibly impose a study discipline for decision-making on the military, McNamara
delegated authority to Systems Analysis through the Draft Presidential Memorandum (DPM). DPM’s
congsisted of 20 pages or less (excluding tables) and were the principal vehicles by which force-level*
decisions were reached. The purpose of the memorandum was to study the force levels recommended
in the JSOP, as well as alternatives. Using analytical tools, cost and objective achievement implica.
tions for feasible alternatives were subsequently set forth in the DPM. As previously exemplified, a

*Force levels are comprised of 1the resources required 10 salisfy an ohjective. In the JSOP and DPM, force levels may be
expressed in unils of aircrafl squadrons, Air Force wings, Army divisions, missiles, ships, elc. The unils also include personnel,
equipmenl, and support resources required 10 make the unil operational.
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: 3-duy decrease in troop closure time, weighed against the cost of ancther C~5A squadron, could be
1 one alternative offered. Reconciling the costs of various alternatives vith the required force-level
: objective was the task of the ultimate decision-maker. DPM’s were decison documents for the Presi-
dent. Conversely, Defense Guidance Memorandums (DGM) were transmitted to the Secretary of De- 1
fense for decisions. Other than this one difference, the iwo documents were the same. Together, they i
provided the basis for changing the Five-Year-Defense Plan (FYDP)—the basic planning document.
McNamara's LPM’s and DGM’s covered the 20 functional areas listed in Table 1.

The responsibility for a DPM was assigned to a systems analyst. He then accumuiated data and
performed and coordinated analysis leading to a basis for decisions by the Secretary of Defense or the
President. Although the analysis cycle was continuous, it is nseful to think of the JSOP as the first
major document starting a new cycle. Figure 4 shows the process.
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The JSOP, along with the President’s Budget Posture Statement, estabiished tlie b..<ic military
strategy for the DPM. Rarely, if ever, did the DPM author look to the Services for unilateral contri-
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butions to strategy. As a beginning voint for analysis, the DPM author used the previous year’s FYDP
and **Record of Decision” version of the DPM. From this base, lie conducied discussions with the Serv-
ices, JCS, and other members of the Office of the Secretary of Defense (OSD) staff in order to acquire
data and rationale to support the development of the next DPM. Additionally, the author examined
relevant studies and analyses performed by the Services and other agencies. The synthesis and inte-
gration of the author’s own analyses culminated in the publication of the “for comment™ version of the
DPM. The ““for cerment” version triggered force programming.

TABLE 1. Draft Presidential Memorandums/Defense Guidance

Memorandums
(Presented in the sequernce in which normally prepared)

DRAFT PRESIDENTIAL MEMORANDUMS (DPM’s)

Logistic Guidance for General Purpose Forces
Asia Strategy and Force Structure

NATO Strategy and Force Structure

(eneral Purpose Forces

Land Forces

Tactical Air Forces

Anti-Submarine Warfare Forces

Escort Shp Fore:o s

Amphibious rorces

1da2! Deplenishment and Support Forces
Mobility Forces

Strategic Offensive and Defensive Forres
Theater Nuclear Forces

Nuclear Weapons and Materials Requirements
Research and Development

Military Assistance Program

DEFENSE GUIDANCE MEMORANDUMS (DGM’s)

Indirect Support Aircraft
Pilot and Navigator Requirements, luventories, and Training
Manpower

Shipbuilding :

The May 1 “for comment” version was submitted to the Service Secretaries and JCS for *line in,

line out”*

changes. Within 4 weeks, the Services submitted to Systems Analysis their comments and
rationale along with their Program Change Requests (PCR). August 1 was the deadline for submitting
all PCR’s. The DPM author then prepared a Program Change Decision (PCD) Guidancc Memorandum
summarizing the DPM position and the Services’ positions, presented a brief evaluation of the issues
and alternatives available, and made a recommendatiol to the Secretary of Defense. A complete set
of the JCS’s and Services’ comnients was attached to the Guidance Memorandum to ensure that the
comments were not distorted in the process. The Secretary of Defense examined the PCD Guidance
Memorandum, requested amplification if required, and issued guidelines for preparing the PCD. Based
upon the guidelines, the DPM author prepared the PCD, coordinated it with the JCS and Services,
and forwarded it along with any comments to the Secretary of Defense. The Secretary considered any

**Line in, line out” changes refers to the process of crossing out words or lines in an original document so that the words
are still legible and designating revisions by underlining.




SYSTEMS ANALYSIS AND PPBS 367

comments of the JCS or Services, reached a decision, and approved the publication of the PCD. Once
the Secretary signed the PCD, it was forwarded to the OASD (Comptrolier) for budgetary action.

After publication of the last PCD (about September 1), until November 1, key issues raised by the
process were further debated and negotiated; and, during this period, supplemental decisions could
be made. Also during this time a “Record of Decision” DPM, incorporating all changes since the PCD,
was prepared and issued for each DPM. These *‘Record of Decision” DPM’s were then used to again
update the FYDP and support the President’s defense budget submission to Congress in January.

Since Systems Analysis controlled the DPM, the basic force programming document, and supple-
mental documents required to alter the FYDP, the group exercised a great deal of pc wer in influencing
defense decisions. It is generally agreed (although controversy always exists) that the result has beer.
a substantial rise in the quality of research ard, ultimately, a higher regard for military advice than
at any time in the relatively brief history of the Department of Defense. Cost-effectiveness studies
have tended to clarify which issues are best left 1o military judgment.*

With the improvements, however, have come problems. For example, a precise definition of
objectives is imperative to effective systems analysis. During the Kennedy-Jehnson administrations,
no formal cabinet body existed to establish and state national security objectives. Instead, the “threat™
to national security was esiimated through intelligence appraisals derived from both the military
and the Central Intelligence Agency. The JCS then developed the Joint Stracegic Objecti es Plan
tJSOP) which included a recommended force structure to meet the estimated “threat.” In lieu of
a body which formally stated objectives then, the JSOP became the Department of Defense document
which performed that function.

At times, aggressive systems analysts, for the sake of effective analysis, imputed objectives
where those available in the JSOP \..re poorly defined. Once clarified, the analyst’s objectives often
gained general acceptance. As an example, the size of the conventional Army, Navy, and Air Force
was based upon an accepted defense objective of maintaining the capability to fight simultaneously
a land war in Europe and Asia, plus a minor conflict in the western hemisphere. The origin of ihe
“two majors and a minor contingency simultaneously” is a controversial subject. Nevertheless, one
of its first appearances was in Systems Analysis where the scenario was designed as a “worse case
criterion” for measuring the capability of airlift and sealift resources to deploy forces.

At other times, systems analysts have indiscriminately imposed esoteric analyses upon the Serv-
ices. Some military officers, feeling that they lost status, resented what they regarded as a failure to
recognize their contributions. In some cases, even though the analytical woik of the military staffs
improved dramatically, it may not have received due consideration and credit.

Regardless of the sources of these animos:iies between Systems Analysis and the military, fric-
tions exist within the Department of Defense which endanger continuance of the Systems Analysis
office. Administratively, eliminating the Systems Analysis office has some advantages. The office
has been stigmatized; and, along with avid supporters, it has acquired radical critics in Congress
and the Pentagon. The emotions triggered by the “Systems Analysis whiz-kids” title obviously inhibits
its flexibility in adapting to a relevant role.

In addition to the political biases afflicting the Systems Analysis office, its basic mechanism of
influence. the DPM process, also has intrinsic shortcomings. During the Eisenhower administration.

*Ironically, while credibility of subjective military judgment has increased largely due to Systems Aanalysis, the credibility
of Systems Analysis studies seems to have decreased due to their fajlure to take into account subjective factors,
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control of defense procurements was through budget ceilings; while during the Kennedy-Johnson
administr- tions. control was maintained through force-level ceilings as expressed in the DPM. This
change of control deemphasized the defense budget as a constraint. According to the Kennedy-Johnson
administrations, ‘““The country can ‘afford’ to spend as much as necessary for defense’ {2]. Thus, limits
for military spending were expressed primarily in terms of force size, and secondarily in terms of
dollars. However, the exact force size necessary to meet national security objectives involves a great
deal of conjecture and uncertainty. Because of differing points of view, the systeins analysts and the
nilitary seldom agreed in their estimations of the forces needed to meet an enemy threat. As a general
rule, the Systems Analysis group tended to estimate needs more conservatively.

These differences in judgm'ent led to a perennial tug-of-war throughout the budget cycle. Because
mest disputes invelved force size (e.g., number of wings, divisions, etc.), the Services tried to incor-
porate as much as possible in their weapon systems within the limits which they view as “fixed force
ceilings.” For exanipie, although only one aircraft or ship may be recommended by a service and
approved by the Secretary of Defense, this one piece of equipment may have bzen subsequently *“gold-
plated” to include multipurpose features. To illustrate, the mere avionics of an F—4 fighter cost con-
siderably more than a total F-100 fighter did in 1961. Obviously, many technological and economic
factors account for the increased cost of a fighter. Nevertheless, an ¢lement of “goldplating’” must be
suspected.

This practice has ultimately meant spiralling costs for the Defense Department and unjustified
requests for increased capabilities, regardless of expense. There has been little incentive for the
Services to stay within a budget ceiling, because they realize that such goldplating will probably not
affect their other programs as it would have in earlier years when they operated within a fixed budget.
The extra costs incurred may well have come from an add-on to the total defense budget or have been
siphoned from the other Services’ programs.

A second problem has been that the military tended to request everything in the hope that some-
thing would slip through Systems Analysis. Centralized analysis could not be possibly used to evaluate
each of the proposals objectively. Thus, systems analysts tended to sort through the barrage of pro-
posals by performing analysis which roughly supported negotiation positions for the Secretary of
Defense. This is precisely the area in which Systems Analysis has been indicted for taking the dom-
inant role in the weapon system selection decision process.*

Laird/Packard PPBS for Defense Decision-Making

Probably due primarily to the difficulties involved in the transition of administrations, the 1969
calendar year budget cycle was executed through the McNamara DPM process with the exception
of a few minor changes (See Fig. 5). The number of DPM’s was reduced to two. In addition, eight
Major Program Memorandums (MPM’s) were introduced for annual major programming issues decided
by the Secretary of Defense. MPM’s replaced and consolidated many previous DPM’s. Two DGM’s
were developed for nonrecurring major issues decided by tte Secretary of Defense. Table 2 lists the
1969 revised DPM’s, MPM’s, and DGM’s. A notable dificrence from the previous year’s process,
however, was that the FYL. was not updated for “out years” (i.e., years beyond Fiscal Year 1971).

*With the departure of both McNamara and Enthoven, the Services “‘dug up” huried proposals, such as manned bombers.
quiet submarines. and new missiles to resubmit to the administration. Because of the many uncertainties involved. the success
of “objectively” discounting the proposals with trade-off and cost-effectiveness ana'yses that have already been performed is
small. If the proposals should be reevaluated using this technique, a high probahnlity exists for starting some programs that
must ultimately be cancelled because of budget constraints, and also, the risk of unbalanced force structure increases.
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As pre-Nixon people left during early 1969, the Systems Analysis office was slightly reorganized.
On January 31, 1969, one of the original McNamara “whiz-kids" was appointed Acting Assistant Secre-
tary of Defense (ASD) for Systems Analysis.

Beginning in early summer and before the Fis-al Year 1971 budget had been submitted to Zon-
gress, the Laird/Packard PPBS began to take form. The theme is decentralized decision-making.
The reduced role for the Systems Analysis office was also correspondingly clear. On December 11,
1969, the Acting ASD for Systems Analysis {Dr. Ivan Selin) submitted his letter of resignation citing
the fact that it had become clear that the Senate would not confirm his position.* Less than a week

*In response to the letter of resignation, Laird, in part, wrote “Unfortunately, a number of people in various pursuits —in
Congress, in the Executive Branch, and from outside the Government —have misunderstood the role of Systems Analysis. This
misnnderstanding has, in all candor, been translated to a mistrusi of the key officials in the Systems Analysis office. The mistrust.
ironically. has been exacerbated by the fact that you and your staff have been so effective in discharging your assigned roles.”
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TaBLE 2. Draft Presidential Memorandums, Major Program
Memorandums, and Defense Guidance Memorandums

= ‘__"

DRAFT PRESIDENTEAL MEMORANDUMS (DPM's)

e

General Parpose Forees
Strategic Forees

MAJOR PROGRAM MEMORANDUMS 1MPM'«)

Land Forces
! Tactica! Air Forees
Naval Forces
Amphibious Ship Forces
\lnbiﬁl)‘ Forces
Theater Nuclear Forces
Manpower
Research and Development

DEFENSE GUIDANCE MEMORANDUMS (BGM's)

i
|
p— —

Logistics
Nuclear Stockpile and Materials

{
L

later. the President sent a nomination to the Senate for a replacement and it was immediately con-
firmed.* Since then, many of the Directorate positions in Systems Analvsis have been staffed with
military leadership. Replacing civilien leadership with military leadership weakens the impartiality
of a central power by introducing the dysfunction of “vested interests.” The Systems Analysis Direc-
torates are faced with miany decisions n which the best course of action for the Secretary of Defense
violates the interest of a particular military Service. The existence of the inherent goal incongruence
intimates abjectivity. and thereby. the credibility of decisions. The prohahle effect is that few issnes
will be adjudicated by Systems Analysis.

Figure 6 shows the sequence of events for the lLaird/Packard PPBS. One of the strong peints of
the system is formal goal setting by the revitalized National Security Council. A second strong poinl
i~ the concept of “fiscal guidance” which communicates to the Services the hard realities of political
considerations and budget ceilings. Control of budget ceilings is the main Office of Secretary of De-
fecnse tOSD) management control mechanism. The decentralization of force level and mix decision-
making to the Service Secretaries is real. The Program Objectives Memorandum (POM) is the centr.al
document in the PPBS replacing the DPM. It is prepared by the Secretaries of the Military Departments
and cmbodies the total program requirements by major mission and support categories necessary ta
support their assigned missions. OSD will check the POM's for adherence to fiscal guidance and sum-
marize them into a Program Decision Memorandum (PDM). In turn, the PDM is proposed to be used
fer updating the FYDP.

The planning process seems to be the weak link in the new PPBS. OSD apparently has no eflec-
tive control device 1o ensure realistic planning by the Services. If the past is any indicator, the Services
will be quite optimistic concerning total weapon systems cost. As a result, “‘out-years™ planning will
be overly optimistic and may result in aborted development programs in order to stay within budget
ceilings.

Moving from design to organization for PPBS, a real question is whether the Services have the
analytical resources to support decentralized force level size and mix decision-making. The com-

*The nuniinee was Dr. Gardiner L.. Tucker. Principal Deputy Director. Defense Research and Engincering.
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Ficure 6. Calendar Year 1970 Planning-Programming:-Budgeting System (PPBS) Cycle

plexity of the decisions requires systems analysis at its best. On the optimistic side, there is some
evidence that in the past years the Systems Analysis office has forced analytical parity onto the Serv-
ices. On the pessimistic side, analytical resources are especially scarce. Recruitment problems have
been aggravated for the Services by their recent image disadvantage associated with Southeast Asian
involvement.

Unfortunately, the actual effects of a PPBS can be only assessed in the long run. Effective long-
range planning is the central issue. Formal mechanisms to guide and control planning are essential,
and the new PPBS seems weak in formal planning mechanisms for maintainino a balanced force
structure. The Secretary of Defense has indicated that he is going to hold the Service Secretaries
unequivocally accountable for their programs; however, by what standards or criteria this will be
achieved is unclear. Communicated and accepted standards and measures of performance are basic
to effective management control.

On balance, the Laird/Packard PPBS has integrated many of the successful defense management
tools of both the Eisenhower and McNamara systems: formalized objectives, fiscal guidance, costs by
major programs, and systems analysis. The major change from the previous system is decentralization.
It is a well-accepted management principle that, in order to work, decentralization must be real.
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The decentralization under the new PPBS is real. Nevertheless, the analogy persists of the ill-fated
company which scraps its manual payroll system for an untested computerized system. The old cen-
tralized PPBS has been scrapped for the new decentralized PPLT. Presently, the risk is high; but if
thie debugging process can be tolerated, the system may riove many times better than its predecessor.
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David Sternligh

Litton Industries
[ '+ Hills, California

ABSTRACT

This paper describes 1he way in which economic analyses, particularly life-cycle cosi
analyses and Iradeoffs were siruclured for use as an inlegrated analysis and design lech-
niqu~ al all levels of the Coniract Definitian of the Fast Deploymeni l.ogistic Ship. I de-
scribes  ysteni. subsyslem and major componeni economic analysis and design melhodology
as well as economic analyses of special subjecis such as 1he ship produciion facilily design.
Mustrations are provided of several major sysiem parametric siudies and of shipyard and
manning/zulomalion analyses.

1. INTRODUCTION

The purpose of this paper is to describe the application of economic analysis. particularly life-cycle
cost analysis. to the Contract Definition design of the Fast Deployment Logistic Ship system. subsystems
and components. Overall performance and mission envelopes were specified by the Navy for this, the
sea-lift portion of the U.S. Strategic Rapid Deployment System. A production schedule that could not
be met by any existing shipyard was required, and it was made clear that contractors were expected
to design a highly modernized or completely new facility, heavily mechanized to reflect design con-
sistent with the best modern shipyards of Europe and Japan. The purposes of the competition were
described by the Navy as three-fold:

1. To design and develop a high-performance rapid response ship capable of carrying infantry
division carga for up ta 3 years under conditions of controlled temperature and humidity and able to
respond rapidly to an emergency in major areas of the world, delivering its cargo rapidly in ports or
over unimproved beaches in order to mate with airlifted troops.

2. To introduce systems analyses, life-cycle cost analysis. and the Contract Defiuition process
into the design of Naval ships.

3. To make a trnial application of the total package approach for ship procurement.

From these requircments, and performance and mission envelopes. a Contract Definition analysis
and design of the ship was conducted by three major competitors. Cost and benefit analysis was per-
formed at every stage of design from the system conceptual phase through facility and production
planning. Life-cycle cost analysis was not only a formal program requirement. but a major evaluation
criterion. Therefore. it was necessary to plan the Contract Definition Phase and to lesign techniques
for economic analysis of overall hardware characteristics. production facility location. production
facility design. and integrated logistics support systems, as well as for such analysis in the detailed
engineering decisior process leading to physical and performance parameters of the systemn. sub-
systems. and components.

The evaluation criteria for the FDL Contract Definition product included technical content of

ship design. military effectiveness, and lifc-cycle cost. Military effectiveness was fully defined through
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the specification of a figure-of-merit. and a systems analysis problem. Ship and system parameters
in the systems analysis problem were to be determined to minimize system life-cyele cost subject to
side constraints on fleet delivery capacity and delivery time. Alter establishing certain key ship and
system parameters. the main quantitative analytic criterion became mininum life-cycie costs subject
to side constraints expressed as performance and mission envelopes. A speed envelope. for example.
was specified. Within the overall decision ruie of minimum life-vycle costs. three classes of analyses
: were performed. System parametric studies established fleet and ship characteristics to satisfy per-
| formance and mission requirements and the: systems analysis problem with a high figure-of-merit and
low life-cycle costs. Through appropriate analytic sequencing. those parameters which were related
to cost effectiveness were first explored and their values established. Subsequent analyses could then
be performed using a minimum life-cyele cost decision rule. Engineering economists performed special
studies of such subjects as production facility site selection, interna. production facility configuration.
and manning/automation. Aithough analytic methodology was hand ilored to each problem. the
structure within which these analyses were conducted was the life-cycle cost structures established
for the entire program. Many extensive hardware life-cycle cost tradeoffs were also conducted. using a
standard analytic method an a prescribed scries of “object-related” cost categories. A managerial
technique was developed to permit a modified form of subproject organization tv overlay the functional
organization of the Litton Contract Definition team. Hardware subsystems analysis was perfor-ind
by a number of joint teams. each including a subsystem engineering design expert. a - . cost
analyst. a reliability and maintainability analyst. a human facters analyst. and an integr.: . iogistic
support specialist. In this way. subsystems were designed to achieve the benefits of reliability. main-
tainability. and effective integrated logistic support analysis within the framework of joint minimization
of total subsystem life-cycle costs within effectiveness envelopes. Tradeoffs between initial investment
costs. direct operating costs. manning costs and maintenance and repair costs for differing levels of
reliability and different maintainability configurations were an integral part of the overall subsystem
design process. Finally. a format for life-cycle cost analysis in the selection of components was de-
veloped to permit engineering specialists to configure components of subsystems for minimum total

life-cycle costs.

The common thread in all these analyses is the tool of discounted present value cash-flow analysis
often used for the comparison of capital investment alternatives. In this case. all flows were cousidered:
direct and indirect government and contractor investment costs including hardware construction. sys-
tems management, systems evaluation, training. data. industrial and operational facilities. initial
spares and repair parts: and operating and support costs including manning. direct operations. mainte-

nance and repair. material. and indirect operating support. An integrated enginecring design model was

e e e

developed and programmed for the efficient parametric analysis and tradeoff of many thousands of
differemt system hardware conhgurations. The model included an engineering design optimization
portion and a life-cycle cost portion. For each set of hardware parameters a most efhicient hardware

configuration was selected and its life-cycle costs determined. Many hundreds of these *“most efhicient”™

hardware configurations for varying parameter sets were compar=d before the final systems hardware .
configuration was selected. For the analysis of subsystems and components, tradeoffs were performed

in detail by the teams already described. using an overall system model when the costs of other portions

of the system were affected by the selection of particular subsystem or component alternatives.

As a result of the complete. coherent application of life-cycle cost analysis as an engineering

decision-making tool from sys«cm to component. a step by step economic justification of the entire
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system and the rationale for its selection exists. It is possible to see how decisions at any stage affect
and are affected by previnns and subsequent decisions. It is also possible to explore the hecision chain
when changes to the system are contemplated in order to provide an efficient method for the analysis
of the ¢conomic effect of these changes.

Ii. LIFE-CYCLE COST ANALYSIS AND INTEGRATED SHIP AND SYSTEM DESIGN

The step-wise economic analysis performed (Fig. 1)in order to design a ship and system at all levels
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FIGURE 1. Siepwise economic analysis

while maximizing figure-of-merit. minimizing life-cycle cost. or achieving both objectives. began wiih
the determination of ship and system requirements. The Navy specified a series of performance and
mission envelopes which defined the ranges within which certain critical ship design parameters must
fall. They specified a systems analysis problem wbhich was in the form of a heavily parameterized
resource allocation problem. The major mission of the FDL ship is to deliver infantry division force
cargo in response to an emergency. to specified destinations in specified amounts. The systems analysis
prmblem defined the possible origins for the FDL. fleet, the amounts of rargo prepositioned at various
points. the ship loading conditions prior to the initiation of an emergency deployment. and the cargo
amounts. delivery destinations, and delivery times to meet the military requirement. The problem did
not specify the speed. cargo capacity. or other ship characteristics. These parameters had to be deter-
mined through exercising the systems analysis problem. to meet the delivery time and cargo capacity
requirements at lowest life-cycle cost. This implied the choice of shiv size. ship speed. fleet size. and
ship prelocation. A number of side requirements (such as ability to transit the Panama Canal) were in-
cluded which provided additional constraints on the ship and fleet design parameters. At the systems
level. then. our objective was to define fleet composition. general ship configuration. speed and propul-
sion type. and detailed parametric characteristics of each ship to satisfy the performance envelopes.
the side constraints. and to maximize the figure-of-merit specified by the Navy. The sequencing of the
analysis (Fig. 2) shows the process of figure-of-merit maximization.

The problem was to maximize the classical “transportation momentum’ measure:

Speed X Capacity

25-year discounted life-cycle cost
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Ficure 2. Figure-of-meril analysis

As a first step. consider the determination of individual ship capacity. Through the use of the deploy-
ment model. the use of a detailed load list, and the use of a parametric engineering design and life-cycle
cost model, various alternative capacities and hence fleet sizes, were determined in order to maximize
the figure-of-merit. by varying individual ship capacities subject to a fixed total fleet capacity. These
analyses made it clear that a particular fleet size and ship capacity resulted in least life-cycle costs and
maximum figure-of-merit over all speeds in the range of interest. With the capacity determined. the next
step was to maximize the speed-cost ratio subject to the other performance and mission envelopes. Here
again, the deployment model and the parametric engineering design/life-cycle cost model were used to
perform analyses at many different speeds. It became clear that the systems analysis problem would be
satisfied by : range of speeds within the speed envelope, and that a minimization of life-cycle costs for
speed, with due regard to design risk, would also minimize life-cycle costs in the systems analysis prob-
lem. A speed was thus determined resulting in lowest life-cycle costs, considering design risk. With the
speed and capacity fixed, the figure-of-merit became: maximize K/LCC with K constant. which is equiv-
alent to minimizing life-cycle costs. Qur subsequent analysis and design could be conducted. within
the fleet and ship characteristics already specified, with the objective of minimizing life-cycle costs
subject to remaining mission and performance requirements. A parametric analysis of life-cycle costs
and figure-of-merit for different speeds and power plants (Fig. 3) shows that for the four major types
of power plants considered at the systems level. Type I clearly has lower life-cycle costs and a higher
figure-of-merit at any speed.

Power Plant Type I. therefore, was dominant within the range of speeds considered for this problem
and was selected. Having selected Power Plant I, further analysis indicated that the lower the speed.
the lower the life-cycle costs. At this point, a selection of speed was made based on the findings of this
analysis together with due regard for design risk. With the fleet composition, general configuration.
speed and propulsion type determined, the next step was to specify ship parameters. Physical param-
eters of a ship. such as beam. length, block coefficient. and the related endurance and stal.ility charac-
teristics for a ship of a given speed and payload are closely interrelated. One cannot consider curves of
iife-cycle cost versus ship length without due regard for the variation in other parameters. Many ships
of the same length. but with different beams and block coefficients will carry the specified cargo.
We see (Fig. 4) many such ships plotted against the figure-of-merit which, at this point, is equivalent to
the inverse of life-cycle costs. The intersections represent physically realizable ships. As the beam
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III. LIFE-CYCLE COST STRUCTURE AND MODELLING TECHNIQUES

The first step in developing a coordinated approach to life-cycle cost analysis is to define the cost
variables of interest. The first step in Jdoing this is to define the basic ground rules for life-cycle cost
analysis. A key expression of the basic ground rules is to consider all costs which occur on account of
the system of interest. while ignoring costs that would occur whether the system existed or not. Given

these ground rules for assessing the applicability of particular costs to the program, the next step is

3n

M b 2

decreases we reach a region of instability and ships tc the right of the stability limit are unacceptable.
Another side constraint. the endurance limit, is shown as a dashed line. Ships of low endurance do not
meet mission requirements. The set of acceptable. physically realizable ships. forms a small subset of
all possible ships having acceptable characteristics and meeting the payload requirement. Through
the use of many such analyses we determined the ship characteristics.

to develop a life-cycle cost structure (Fig. 5). In this structure, system costs are divided into the
three main phases of the life of the system: development. acquisition. and operations and support.
These costs are further broken dewn: acquisition into contractor and government costs; contractor
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FIGURE 5. Life-cycle cost siructure

costs into ship construction costs. ergineering and design costs, production and facilities costs, man-
agement and technical costs, initial spare parts costs, and many other elements. Government costs
are similarly broken down into appropriately detailed elements. The operations and support phase of
the systems life is broken down by major resource categories used during this phase. These categories
include manning. direct operating costs, maintenance and repair and related costs. materials costs.
administrative costs. and other major categories. These costs are further broken down into appro-
priate subcategories such as fuel. maintenance and repair and overhaul. The basic structure for the
FDL. system was developed by the Navy: contractors elahorated the structure at the finer levels of
detail. This permitted the comparison of competing contractor’s costs using a common basic structure
related to the way in which historical data on systems costs have been collected in the past. This
structure is the key to all life-cycle cost analyses: system level analyses. subsystem analyses. and
detailed engineering design analyses. All of these analyses involve the balancing of different elements
of the overall cost structure against each other. For example, to evaluate equipment reliability. if two
alternative equipinents are available both meeting the minimum reliability regnirements for the mis-
sion. one can detcrniine whether the higher reliability item is justified by conducting a life-cycle cost
tradeoff. The cost elements for equipment acquisition and initial spare parts are balanced against the
operations and support costs over the life of the system for maintenance and repair. overhaul. and
repair and spare parts. Instead of a series of such tradeoffs. the overall subsystem life-cycle cost trade-
off is used. simultaneously balancing reliability factors. training factors. manning and automation
factors and many others. The cost impact of these diverse variables is assessed in the life-cycle cost
tradeoff of the different subsystem design alternatives meeting the non-cost mission and performance
requircments. The basic process of using the life-cycle cost structure to simultaneously balance many
costs runs through our entire analytic process.

Having defined the life-cycle cost structure. the next step is to develop cost estimating relationships.
These cost estimating relationships are of two major kinds. The first is an accounting relationship
which indicates the structural breakdown of life-cycle costs. It describes those elements which are
totals of lower level elements in the cost structure so that all summary elements {mechanical totals)
are properly identified. Another kind of cost relationship is the parametric cost estimating relationship
(Fig. 6). which describes the relationship between elements of cost and of physical performance.
systems environment. and historical behavioi.
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FIGURE 6. Cosl eslimaling relalionships

The first cost estimating relationship. illustrated for installation labor ¢osts for a particular pro-
pulsion plant type. is derived through stepwise linear regression of historical data. A large number of
regression analyses were conducted of historieal data on ship materials and labor costs. Many different
structural relationships were examined in this statistical cost analysis. The quality of each of these
regressions was evaluated using multiple correlation coefficients. coefficients of variation. root mean
square error. Durbin-Watson statistic. Theil U-statistics. and other measures. Statistical cost estimating
relationships were thus structured and parameterized for the hardware costs associated with the ship.
The example illustrated shows an exponential relationship which has proved extremely useful in
practice for a variety of situations, The cost of installation is expressed for a “first ship™ as a function
of the cost per manhour and a historical funetion of shaft horsepower. The historical data used are
adjusted to a constant dollar base to make ecosts in different years comparable. Overhead cost equations
relate material and labor costs in the model. and appropriate learning curve computations are perfornied
to develop the details of the ship acquisition cost contribution to the total life-cycle in the model.

The second type of parametric relationship. illustrated for fuel costs. is a cost estimating relation-
ship based on engincering data and computations and descriptions of the environment in which the
ship must operate. We see two engineering factors: the specifie fuel consumption (SFC) based on a
family of curves at different horsepowers for various propulsion types using specified fuels. which is
derived from analytic and measurement data relaiing to these plants. and shaft horsepower (SHP) for
each plant. derived from detailed analysis of the physical configuration of the ship in question. a large
body of empirical ship resistance data. and information about the plant type and the plant weight. fuel
weight. and other ship weights. These SHP curves suinmarize the horsepower required to drive the
ship at any particular speed. A stcanming profile. specified by the Navy. is used to indicate the various
maodes of operation. the times during which the ship will operate in these modes. and the percentage
of total time in cach mode spent at each speed. Combining the above fartors with cost of fuel., we
derive the annual fuel cost for any given plant type using any appropriate fuel. also considering the
flect size and the number of years of ship operation.

Having derived the cost estimating relationships for the model. the next step is to combine them
in appropriate sequence (Fig. 7) in order to compute the life-cycle costs of the entire system. This
sequence is a function of the relations between elements and their suhtotals and totals. of the phasing

of the program. and of the parametric relationship between elements. Investment costs for spare parts.
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FIGURE 7. Life-cycle cosl analysis model flow

for example, are related to ship parameters and construction costs hy subsystem. Operations and
support costs are related to the operational doctrine of the ship. its parameters aud subsystem costs.
Fleet costs are based on per ship costs end fleet-r=lated factors not assignable on a per ship basis. For
example. the creation of a management organizaiion to supervise the construction and operation of
the ships will require an initial infrastructure before the first ship is delivered. As the ships are de-
livered. additional personnel will be added to the management structure. Many cost elements contain
such fixed and variable portions. [n the model (Fig. 7) development costs, while sunk. are shown for
completeness. These costs and some others do not vary with the ship design changes during Contract
Definition nor do they affect the outcome of any tradeoffs.

Such a model could be used during concept formulation; many more elements would then be
variable. When the fleet is operational. on the other hand. the life-cycle cost niodel will contain many
more fixed elements. Toward the end of the life of the system. the life-cycle cost model would evolve into
a historical data hase for the program rather than a collection of variable relationships.

Investment costs are computed from first ship construction costs. based on ship parameters. cost
estimating relationships. material. labor and overhead factors. The fleet coastruction cost is next
computed as a function of the fleet size. the ship production facility characteristics and learning rela-
tionships. Fleet costs are a function of ship delivery schedule, and phased by fiscal year. Other con-
tractor investment costs related to the ship and its characteristics include support equipment, spares.
training, management. and engineering. Many of these costs will not vary with ship design. and can
be expressed as constants for a similar project of the scale of the present one. Many Government
investment costs are constants provided by the project office. Operations and support costs are com-
puted on a pc ship basis. using operational profile information. ship characteristics and system de-
scriptions (for example, crew size relationships). Next, the fleet costs are computed as a function of
ship delivery schedule and fleet size.

Operations and support costs are discounted to properly consider the sacrifice of capital in the
civilian sector through commiting of funds to a program over a long term. Many suggestions have been
made as to the appropriate value of the discount rate; one very persuasive analysis indicates that it
should approximate the average industrial rate of return since this is the product foregone by the vivilian
sector when operations and support funds are committed to a particular military program. (The fore-

going of funds should not be confused with appropriation comniitiaent~ which are usually made on an
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annual basis ) Through discouiting of operations and suppurt costs (it 6 perceit at FDL. more recently
for the LHA Program discounting occurs at 10 percent) an economic measure of a particular system
or subsystem configuration results: the sum of development and investment costs together with the
discounted present value of operations and support costs. This figure may be compared for alternative
systems or subsystem designs in order to select the least life-cycle costs alternative. Figr . es-of-merit
may be computed a5 well, suel as the transportation momentnm measure discussed earlier. In Delense
planning in the past. it has often been the case that undiscounted operations and support costs are
used. In comparing alternatives with unequal lives, this is an inappropriate procedure. In effect, the use
of undiscounted costs for a given number of years is the equivalent of using discounted costs for a
longer period. For example. the use of 10-year undiscounted operations and support custs is equivalent
to the use of 20 yedrs of vperations and support cost discounted at 7.75 percent. However, such a
“rule-of-thumb™ neglects cost stream variation from year to year.

While the selection of a discount rate is made for the purpose of appropriately weighing the
economic effects of Defense spending choices as between initial and operating costs. it has strong
implications for the outcomes of life-cycle tredeoff analyse .. A high discount rate. for example, will
significantly reduce the present value of operations and support costs with possible significant design
impact. In trading off increased investment in automation against the cost savings throug: reduced
manning. for example, a high discount rate will produce a much smaller investment credit against
automation for the saving of one crewman. It has been argued. therefore, that low discount rates should
be used. It is the author’s view, rather that personnel costs should be carefully evaluated. Many costs
need to be more carefully estimated and included in the total military personnel costs. These costs
should include not only initial pay and allowances and “fringe benefit™ payments. but such costs as
the prorated share of equipment used for basic, recruit, and advanced training not particnlar to a
specified weapons system.

IV. SUBSYSTEM TRADEOFFS

At this stage. the overall ship and system parameters have been defined. The ship speed and
propulsion plant type has also been specified. The detailed design of the various subsystems of the
ship: the bull, propulsion, electrie plant, communications and control, auxiliary, vutfit and fumishings,
and armament must next be elaborated. In order to continue to follow the economic criterion of mini-
mized life-cycle costs subject to side constraints on mission and performance requirements, a sub-
system tradeoff procedure (Fig. 8) is used. Not shown in the figure is the way in which candidates for
subsystem life-cycle cost tradeoffs are identified nor the way in which design alternatives are selected.
Historical data. engineering judgmert, and experience are used to analyze the detailed structure of
the ship and compare elements of ship structure with elements of life-cycle cost in order to determine
those areas where significant life-cycle cost reductions may be effected through the use of the sub-
system tradeol process. With these eandidates isolated (a simple rule of thumb might be o define
them as subsystems whose cost is a given percentage of total ship const.uction costs, or whose life-
cycle costs are a given percentage of expected total life-cycle cost) a detailed *‘design work study™
procedure is followed to identify in great detail the makeup of these svutsysteins and major components,
the interfaces between them and other subsystems and compone.:s of the ship and to identify the
critical mission, performance, and engineering factors which have an impact on the selection of a
preferred design alternative. Reliability, maintainability, availability. contribution to probability of
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FIGURE 8. Life-cycle cosi subsysiem 1radeoff procedurc

mission success. growth potential. safety, and many other factors are considerec. Physical perform-
ance requirements. such as power and range are considered. Factors such as technical and delivery
schedule risk are also assessed. A design work study evaluation matrix is set up with the different de-
sign alternatives represented as rows and the different criteria represented as columns. For each
criterion. a minimum performance requirement, expressed numerically wherever possible, is specified.
Eacl alternative is then evaluated to see if it meets all requirements. Failure to nieet any single require-
mert is grounds for the redesign or disqualification of that particular alternative. Upon completion of
this process. many design alternatives, all meeting mission and performance requirements, are avail-
able as input candidates to life-cycle cost tradeoffs. This process helps to separate cost and effectiveness
criteria where such a sequential separation is possible. Recall that the basic nature of the cost effective-
ness analytic process is such that it is possible to follow one of two pure strategies: a) minimize cost
for a fixed effectiveness. or b) maximize effectiveness for a fixed budget. In most government procure-
ments the contractor perforins analysis in a competitive environment; it is rare for the government
to specify a price and request competition on the basis of maximum effectiveness. Usually the “specified
effectiveness-minimize cost™ approach is used. allowing competitors to be validated on effectiveness
grounds. and evaluated on the basis of their costs: the validation process confirms or refutes the con-
tractors’ contention that he has met or excecded the specified effectiveness requirements. All of his
cost predictions are carefully validated following which an evaluation of validated life-cycle costs of
alternative offerings makes a selection possible on a least life-cycle cost basis. This is an oversimplifica-
tion. but it illustrates an important basic principle. In constructing an environment in which contractors
are to purform analysis resulting in a systemn design and specifications, many probleins can be avoided
through the government determining the effectiveness it requires of a system. and permitting the
contracters to then design least life-cycle cost systems meeting this target.

Ui problem is that of comstraining elements which muast ot be aeleted froim a system during
life-cycle cost analysis. The solution to this problem is to more carefully define. during the concept
formulation phase. the values of the various effectiveness measures that the system must mcet, Of
course. the “rule of reason™ applies here. If it is indeed true that ene can obtain something for nothing
(effectiveness above the minimum required at little or no cost) then contractors should be motivated
to seek this etfectiveness. This ean be done through the appropriate use of weightings in the evaluatior
criteria for effectiveness above the minimum. These weights should. however. be constructed s» that
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increases in effectiveness above the minimum requirements. incurred at significant cost, will not be
rewarded. Otherwise, the contractor must decide between lower costs or higher effectivéness. usually
without any explicit guantitative guidance from the government as to its true wishes. As had been
explained earlier. in FDL. explicit performance and mission envelopes were specified; these were the
equivalent of minimum effectiveness requirements that the system must meet.

The snbsystem life-eycle cost tradeoff procedure began wiihi input candidates meeting mission
and performance requirements submitted to life-cycle cost analysis. Investment and operations and
support cost elements were first determined individually for each tradeoff. The elements of the life-
eyele cost structure which would significantly vary hetween design alternatives were identified and
estimating assumptions were developed and described in detail. The parameters for these assumptions
were next specified and the appropriate elements of life-cycle cost calculated. Note that the process
shown is an iterative process. After selection of the least cost alternative it is possible to develop lower
cost elaborations of the least cost alternative. and repeat the tradeoff. In some cases. several alterna-
tives are quite close to each other in total life-cycle costs and the entire tradeoff must be reevaluated.
perhaps with careful modification of alternatives. As the ship and system design proceeds in more and
more detail many faetors. which were assnmed, have their values more accurately known. Many details
of the ship design become more clearly specified. Thus. it frequently is advisable to repeat tradeoffs

although the basic character of the design alternatives may not have changed significantly.

V. SPECIAL STUDIES

Many specialized questions were explored during the FDI. Contract Definition throngh the use of
economic analysis and life-cycle cost studies. In some cases. the liie-cyele cost tradeoff methodology
was applied across many subsystems. as in manning/automation iradeoffs. majntenanve and repair
resource allocation tradeoffs. and overhaul cycle analyses. The life-cycle cost structure was used to
identify all pertinent elements of life-cyele cost and to compare alternatives which had an impact on
the balance of cost between these elements. Other studies, such as those related to the production
facility desizn. were conductod using specialized methodology in each case. In the FDL life-eyele cost
structure. for example, the facility eosts chargeable to the FDL Program made up only one element of
the life-cyele eost strueture defined by the Navy, One could. beginning from this peint. develop a
complete life-eyele cost strneture for the facility itsef. Many detailed and elaborate tradeoffs were
conducted to determine the location, configuratior. and process How for the production facility.

One of the many eeonomic analyses that led to the design of our proposed FDI. shipvard follows
the classic pattern of produetion function analysis. The simple production function in economics is
analogous to the **2 inputs. | outpnt™ case deseribed frequently in the systems analysis literature. The
ideal case (Fig. 9) consists of a series of iso-ontput curves (isoquants) which describe combinations
of capital and labor which would result in a fixed output. For example. the 13-ship 1soquant shows
those combinations of capital and labor in a shipyard which would result in the capability to produce
13 chipe per year. Similar curves for bower outpat are shiown for 12 ships per year and 10 shipe per
year. Each point on such an iso-output curve represents an effieient combination of capital and labor.
That is. for a given capital cost it is assumed that the iso-outpnt curves reflect the least labor cost that.
combined with the amount of capital will produce the specified number of ships. The iso-output curves

refleet production possibilities. There is no implication that all points on a given iso-ontput curve re-

fleet a particular total cost. but rather the produetion of a particular total output.
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FIGURE 9. Production facilily analysis; Ideal case

Isocost lines (budget or exchange curves) are also shown. These represent the amounts of capital
and labor that can be purchased for a fixed total cost. We see that the upper isocost line runs from a
paint on the labor cost axis reflecting the commitment of all financial resources to labor. to a point on
the capital cost axis reflecting that same commitment to capital equipment. The isocost line is the locus
of all snch combinations which have the same total cost. Isocost lines reflect amounts of capital and
labor that can be bought for a fixed budget; there is no implication as to the output one can produce
at any point on a given isocost line.

If we are interested in producing 10 ships per vear (the lowest iso-output curve) then the optimum
mix of capital and labor would be that point on the 10-ship iso-output curve which is just tangent to
the lowest isocost line. Any smaller total budget will not permit the production of 10 ships per year.
A higher isocost line would reflect a larger budget than necessary to produce 10 ships per year. This
optimum can be found analytically as well as graphically in many cases, although elaborate computa-
tional tools are sometimes required. In the real world, ise-output curves are not so smooth and regular
nor are isocost curves necessarily straight lines. This is partly due to the lumpiness of capital: in a
major physical facility such as a shipyard, capital is not infinitely divisible and the choice of. for ex-
ample. ship erection and launch facilities is restricted to a number of discrete possibilities. In an
analysis of the optimuin ship erection and launch facility for the proposed new shipyard. 120 alterna-
tive capital equipment configurations which could produce the required numlicr of ships per year were
defined. For each such configuration the labor necessary for efficient use of that capital facility was
determined. l.abor manhours between alternate flow paths (Fig. 10) varied 9 percent while capital
costs varied 40 percent. It is clear that many of the combinations shown are extremely inefficient. In
particular. three combinations (the exaggerated dots) clearly resulted in higher labor for a given amount
of capital than many of the others in the collection of altcrnatives. The alternatives were next plotted
on appropriately normalized per ship scales with budget curves also shown (Fig. 11). The five alterna-
tives shown were the least labor cost alternatives for the given amounts of capital. It is clear that due
to the lumpiness of capital equipment and the inefficiencies of some of the remaining combinations.
labor cost did not uniformly decrease as capital cost increased as expected from the theoretical isoquants.
In particular, alternatives ' and 2, while the least labor cost alternatives for the given capital amount.
represented “irrational” machinery combinations. Alternatives 12 and 8 were clearly the least cost
alternatives in the analysis and were chosen on a basis for further detailed elaborations of the produc-
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tion erection and launch scheme, elaborations which were then subjected to more detailed cost tradeoff
analysis. The findings of the analysis shown here were quite sensitive to amortization assumptions;

the choice between facility design alternatives depends heavily on the amortization that would be
perniitted over time.

LASOR MANHOURS SETWIEN ALTEANATE FLOW lA!nS
VARKD & PEACINT WHILE CAMTAL COSTS VARKED 40 PraCENT
. . ]
MILLIONS
o - .. .
MANNOURS
PER SN ANA T WS
i

0 PARTIAL FACILITY CAMTAL, MILLIONS OF DOLLARS

FIGURE 10. Produclion facilily analysis; Ship ereclion and launch alternalives
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FIGURE 11, Produclion facilily analysis; Ship erection and launch comparison

Extensive studies were conducted of automation and matning. In the individual subsystem tradc-
offs. different levels of automation and manning were assumed where appropriate, and suboptimization
of subsystem configurations took place through the subsystem tradeoff method. Overall systems
optimization. however. considered the fact that both crew members and automation are not infinitely
divisible, and different crew and automation functions are ccinplementary goods. In our final manning
studies, crew size was determined by considering all the operational, technical and support tasks that
the crew of the proposed ship had to perform. Many alternative crews were considered, together with
the appropriate level of automation for each crew. For each crew size. the incremental life-cycle cost
(both crew and automation-related was determined (Fig. 12). At the time of the analysis. there were
uncertainties about regulatory and MSTS requirements fei crew size as a function of the ship design.
Sensitivity analyses were, therefore, conducted and the upper and lower curves show the band within
which the requirements were expected to fall. Automation in the proposed ship, for example, could
vary between point 1 and point 2. Automation in current practice is also shown, as are life-cycle cost
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3 changes for manual operation of the ship. The exchange bctween automation and reduced crew size

3 is an extremely attractive one in this range of feasible crew sizes (chosen with due regard to minimum
i manning and maintenance tasks that must be performed to keep the ship operational). The degree of
. feasible automation in the proposed ship results in a crew size significantly smaller than that for a
; ship automated to the level of the best new-design commercial cargo ships.

V1. DETAILED DESIGN

Design below the level of subsystem tradeoffs was conducted by the engineering design groups
without the use of formal life-cycle cost tradeoffs. Many hundreds of design decisions are made each
day in a project of this kind; it would not be possible to document all of these decisions as formal life-
cycle cost tradeoffs when cost was a significant factor. Engineers were given detailed instructional
material on life-cyele cost structure, analysis and tradeoffs. and rules of thumb were provided to make
1 it possible to select between alternatives in the absence of complete information. The normal pricing
' process, selecting between vendors of similar hardware, aiso permitted cost minimization. Where
significant differences did not exist between operations and support costs, selecting the least acquisition
cost alternative (the “low bidder”) provided for valid decisions. During the pre-production phase of a
program of this kind, many of these decisions can be reexamined more carefully in an attempt to achieve
still further cost savings. Qur experience has revealed that engineers can proper'y consider significan
life-cycle cost factors in making their detailed design decisions. Rules of thumb were developed to
aid in these decisions, particularly when an operating cost difference was felt to exist but could not
be quantified. The difference in operations and support costs necessary to offset a diference of $1.000
of investment cost was defined. Engineers could frequently determine whether a design alternative
having higher investment costs was likely to have operating costs which were coniparatively low enough
to offset this difference.

VII. SUMMARY

This paper has briefly illustrated the way in which analyses and tradeoffs at many levels in the
Contract Definition of a ship and system were used to integrate economic criteria into the process from
beginning to end. As a result of our experience with FDL. we have developed methodological and
managerial insight into this process, which was used in our successful Contract Definition efforts on the
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LHA ship system and the Spruance-class destroyer system. The benefits from life-cycle cost and
economic analysis integrated into major physical system planning and design are so significant that we
have adapted these same techniques for many other systems which are currently under in-house study
and design for both defense and nondefense application. The technique of formally applied. integrated
life-cycle cost analysis is being applied by the Defense Department to many current and future pro-
curements including individual items of hardware. From the design of resistors to that of major systems,
substantial savings are possible in overall life-cycle costs. At the same time, more reliable, more main-
tainable systems will be produced. with the higher investment costs fully justified by the reduction in
total life-cycle costs. To assure these benefits, contractors must rise to the responsibility of developing
data bases on their products’ cos:s and performance. Careful analysis and complete validation of claims
for life-cycle cost savings will be required. Finally. with cost and performance incentives and penalties
covering the operations and support period of a product’s life, time will become the ultimate validator.
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STATISTICAL QUALITY CONTROL OF INFORMATION

Irwin F. Goodman

Army Tank-Automotive Command
W arren, Michigan 48090

ABSTRACT

This paper was wrillen 10 promole inlerest by management and sialislical quality
control personnel in 1he current necd for statistical quality control of informaiion of all types.
By way of illustralion, a step by slep procedure for implementing such control on compuler
files is presenied. Emphasis has been placed on the sequencing of the sysiem rather 1han
1the underlying 1echniques.

INTRODUCTION

During the past 50 years a need has been recognized for statistical quality control procedures and
techniques in product oriented industries. Another industry product and by-product, “information,”
is also in need of techniques and procedures of statistical quality control. Many contemporary decisions
are dependent upon vast storehouses of information. For parts to fit together, machine and product
toierances must be closely controlled; likewise, to assure valid decisions, the attendant data bases
must be subjected to sound statistical quality control.

Decision making processes at the Army Tank-Automotive Command are not unlike other large
government and nongovernment industrial enterprises. During the past 15 years a considerable portion
of the logistics and engineering effort has been computerized. This resulted in a considerable number
of support and reference ADP files that constitute the data input for the computer. The §les vary in
size from 50,000 records up to millions of records. In terms of alphanumeric characters some of the
files have from 50 million to 10 billion characters. The storage of such large quantities of information
and the necessary referencing of the files, as often as three to five times a day, has resulted in the
necessity for establishing data base validity, purification of the data files, and statistical quality control.

The purpose of this paper is to promote interest of management and quality control personnel
in this significant area of statistical quality control of information. Therefore. the following discussion
is presented primarily in terms of the necessary steps or tasks involved. The statistical techniques
and methods shown here do not give optimum results in terms of sample size requirements and cost
benefits. Random sampling, rather than more sophisticated sampling procedures is employed to
simplify the presentation. In the following example, a sample size of 900 is obtained. By applying
nore sophisticated techniques such as stratified sampling, sequential sampling, etc.. the 900 required
inspections could be reduced considerably.

DATA BASE VALIDITY

In the Statistical Quality Control of Information at the Army Tank-Automotive Command efforts
were initially centered around studies to ascertain a measure of the validity of the data in the computer

ADP files. These studies involved a comparison of information in the computer file with the source,

which was either a hard copy document or another computer file. Inspection criteria were limited to the
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following overview data characteristics: match, mismatch, or can’t find. These studies provide a
| vardstick and some directional priority with regard to data base purification. Similar efforts in the
literature are reflected in papers by Benz[1}, Bryson|2}. and Mintou {4].

DATA BASE PURIFICATION

The data base purification effort was concerned with an after the fact evaluation of the data in
the computer ADP files. This consisted of essentially a technical edit. although it was also concerned
with format. Exanmiples of a technical edit are correct stock number, correct nomenclature. correct
stratification codes. correct weight data. and correct dates (such as delivery). Format is concerned with
such data characteristics as numeric information in a numeric data field. alphabetic information in an
alphabetic data field. alpha-numeric information in an alpha-numeric data field. right or left justified
entry of information in the data field, and length of the data information entry. Accomplishment of the
purification efforts followed by the periodic conduct of validity studies pointed to the need for a quality
control effort. This need applied to both the data input and ADP data maintenance. such as the updating

«of the computer files.

STATISTICAL QUALITY CONTROL PROCEDURE

The purpose of the statistical quality control procedure is to assure that the percent of incorrect
data entries in computer data files does not exceed a specified value. The establishment and conduct
of a statistical quality control procedure is presented here in terms of portions of a particular computer
file. The data and nomenclature have been coded for illustrative purposes. An essential underlying
assumption in the procedure is that the “source” information is correct. Therefore, when a particular
computer record does not match the source, the computer record is considered in error. There is one
exception to this, if there is an entry in the computer record, but no entry in the source, the inspection
is considered “‘can’t find”.

STEPS IN THE ESTABLISHMENT OF A STATISTICAL QUALITY CONTROL
PROCEDURE

The steps necessary for the establishment of a statistical quality control procedure for an ADP
computer file are: Description of Data File, Description of Data Source, Inspection Criteria, Sample
Size Required, Allocation of Sample, Inspection, and Statistical Computations and Quality Control.

Description of Data File
The initial step is to determine which data elements are to be inspected from the computer rec-
ords for the computer file that is to be controlled. This requires information regarding the composition

of the computer file. Types of data required are data element nomend’ :iure, definition and purpose of
the information, identification, location, quantity of characters, and waether the information is alpha-
betic (A), numeric (N), or alpha-numeric (AN) in the computer file.

For this example, the information in the computer file was maintained on magnetic tape. Printed
listings were obtained through a computer interrogation process and used as the document to be
inspected.

The data elements to be statistically quality controlled were selected by individuals responsible
for the decisions made with the information. Selection was based on the sensitivity of the decisions
to the information of the data elements in the computer files. The data elements selected in the current

T
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. example are: Contract Number. Federal Stock Number. Item Name, Procurement Request Order
E Number (FRON), Procurement Request Order Number (PRON) Date, Contract Date, Quantity Shipped,
Contract Value. Depot Code, Delivery Date, Accounting Classification Code Army Management
Structure Code, Unit Price, Financial Inventory Accounting Code, Contract Quantity, Supply Status
Code, and Procurement Request Order Number (PRON) Quantity.

; Description of Data Source
The data source for the current example was determined to be primarily the contract folder with
various hard copy documents. They were stored in file cabinets. The file structure is described in

Table 1.
TABLE 1. Contract File Structure
3
Geographical Dale Quanlity Quantity Fraction
partition code cabinels drawers of 101al
1 1966 17 68 245
E 2 1967 13 52 .187
3 1968 1 4 014
4 1966 7 28 101
5 1967 14 56 201
6 1968 1 4 014
7 1966 4 16 .058
i 8 1967 5 20 072
3 9 1967 Y2 2 .007
] 10 1967 Ya 1 004
1 1967 1 4 014
12 1967 Ya 1 .004
13 1967 1Y2 6 022
E 14 1967 1 4 014
15 1967 1Y2 6 022
16 1967 1 4 014
17 1968 Y2 2 007
TOTALS ..., 692 278 1.000

Inspection Criteria

The inspection criteria is divided into two types: Technical and Format. A few examples of format
and technical cdit criteria are as follows:

Format Criteria:
Format (F) or

Data Element Criteria _ Technical (T)
Federal Supply Class 4 digit Numeric F
Julian Date 4 digit Numeric F
Serial Number Numeric or Alphabetic. but F

all card columns must be
filled

Technical Criteria:
Format (F) or
Data Element Criteria Technical (D

Input Code One of the following: T

F10, G11, H12, 113, 117,

J14, 17, K15. K17, L16,

L.17, M18. N22
Reference Number One of the following: T

Action M18. N20. P25, Q26
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The inspection results were classified as follows:

MATCH: The entry in the computer file record matches the corresponding .ntry in the source file.

MISMATCH: The entry in the computer file record does not match the corresponding entry in
the source file.

OMISSIONS: There is no entry in the computer file record.

CAN'T FIND: There is no entry in the source file.

Sample Size Required

The number of inspections required to determine the percent of data not correct in the computer
file depends upen the accuracy requirements for the results as well as the desired confidence associated
with this accuracy. Sample size requirements (Ref. [3]) when the accuracy is prescribed in absolute
deviations about or in relative percent of a parameter being estimated have becn calculated on a
computer time sharing terminal using formulae based on the normal approximation to the binomial
distribution. A 95 percent confidence level was assumed and the results are presented graphically in
Figs. 1 and 2. The results apply when random sampling is employed and can be improved by using
more sophisticated techniques as indicated above.

The methodology to determine the sample size required when accuracy is prescribed in absolute
deviations, namely,

(= E about P)
P*E

E=20=2[P(1—P)/N]"
N=4P(1—P)/E.

The sample size required when accuracy is prescribed in relative percent, namely,

(D% of P)
P +D%P

(DN100)P =2g =2[P(1—P)/N]"*
N=4(1-P)/(D/100)*P,

where,
=required sample size,
P =value of parameter being estimated (proportion not correct),
E =prescribed accuracy in absolute deviations (proportions),
D =prescribed accuracy in relative percent, and

20 =95 percent confidence limits,

In the current example, assuming the estimated fraction of incorrect data in the computer file
is about 0.10 (P) and that it is prescribed that the true value lies somewhere between *0.02 of the
measured value, then referring to Fig. 1 the required sanple size is 900. In this case, the prescribed
accuracy, =002, was stated in absolute deviations, E. The same example can be restated giving the
prescribed accuracy in relative percent, D, as follows: Assuming the estimated fraction of incorrect
data in the computer file is 0.10 and that the true value lies between = 20 percent of the measured value,
then referring to Fig. 2 the required sample size is 900.

4
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The preceding can be summarized as follows: In order to estimate the fraction incorrect, P, within
*0.02 in terms of absolute deviations and within 20 percent in terms of relative percent, the number
of inspections required should be 900.
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Allocation of Sample

After the sample size has been established. 900 documents in the current example. then 900 source
documents. contract folders. must be randomly selected from all the file cabinets. a considerable under-
taking. The file structure was earlier defined to consist of seventeen subgroups classified according to
the year and geographic area they represent. The problem of randomly drawing the sample among the
subgroups was accomplished by partitioning the sample in proportion to the subgroups. In the example,
if 900 is the required sample size and the objective is to randomly sample the 278 file cabinet drawers
containing the hard-copy source documents. the allecation of the sample is accomplished as follows:
Multiply the **sample size 900" by the “‘subgroup fraction of total™ in the third column of Table 2.
The resulting allocation of sample values are shown in the fourth column of Table 2.

TABLE 2. Allocation of Sample

Geographical Quantity of Fraction Allocation
partilion code file drawers of total of sample

1 68 0.245 219

2 52 0.187 168

3 4 0.014 13

4 28 0.101 91

5 56 0.201 180

6 4 0.014 13

7 16 0.058 bY

8 20 0.072 65

9 2 0.007 6

10 1 0.004 4

11 4 0.014 13

12 1 0.004 4

13 6 0.022 20

14 4 0.014 13

15 6 0.022 20

16 4 0.014 13

17 2 0.007 6
Total............... 278 1.000 900

After the numbecr of observations to be taken from each of the files has been determined, the particular
documents to be selected from the cabinets are determined. This selection process was accomplished
with random numbers as follows:

Suppose there are 782 documents in the file, with the partition code 17. Then corresponding to
the six observations required for geographical partition code 17, six randem numbers were selected
in the interval 0 10 782 and the source documents werc selected according to their order in the file.

Inspection

For each data element. the inspection consisted of recording and then comparing the data entries
in the selected contract folders with the print-outs of the computer ADP files. Work sheets for record-
ing the data entries and making the necessary computations were prepared. The inspection criteria were
already discussed ahove. Briefly summarized there were two types of inspection. format and technical.

The results were initially classified as match, mismatch, omissions. and can’t find.
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Statistical Computations and Quality Control

An example of sume inspection results and statistical computations is sh/,wn in Table 3. Statistical
tests were conducted for significance between results from inspection period to inspection period and
also between data elements for a particular file. In addition, the results were usually ranked from high

to low in terms of percent not correct.

TABLE 3. Inspection Results
{Inspections Attempted for Each Data Element: 900)

Total Percent
Data Cant Inspections Quantity Quantity Quantity | not correct | not correct

element find accomplished match omission mismatch (e&f) (e&f)fc¢
(b) () (d) (e) ) quantity (%)
1 0 900 880 20 0 20 2.2
2 0 900 870 30 0 30 33
3 5 895 810 55 0 55 6.0
4 8 892 862 30 0 30 34
5 0 900 790 20 90 110 12.0
6 4 896 856 0 40 40 4.5
7 1 899 829 0 70 70 7.7
8 0 900 860 20 20 40 44
9 0 900 880 10 10 20 2.2
10 5 895 855 20 20 40 4.5
11 0 900 870 0 30 30 3.3
12 0 900 900 0 0 0 0.0
13 0 900 890 10 0 10 1.1
14 6 894 844 0 50 50 5.5
15 0 900 850 20 30 50 3.5
16 3 897 897 0 0 0 0.0
17 0 900 840 30 30 60 6.6
Total... 32 15.268 14.613 265 390 655 4.3

The results can be further summarized over several sampling periods, as seen in Table 4.

TABLE 4. Summary of Results
(In percent)

Period studied
Result -

1 2 3 4 5 6 7 8
Inspection accomplished *....{ 90 95 92 97 9 99 98 99
Matche i 924 91.7 949 928 90.9 93.6 94.8 95.7
Omission............ 2.1 25 1.9 24 2.2 24 19 1.7
Mismatch 5.5 5.8 3.2 48 6.9 4.0 3.3 2.6
Not Correct.ccoeirieneennnnennnns 7.6 8.3 5.1 7.2 91 6.4 5.2 4.3

“ Attempted less can't find.

The results of the periodic inspection are then graphed in quality control chart format. Such
charts were prepared for selected data elements, as well as for all the data elements studied. Using
the above data, an example of a typical quality control chart is shown in Fig. 3.
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FioURE 3. Statistical quality control chart (30 confidence limits)

FUTURE DIRECTIONS

The future directions of Statistical Quality Control of Information should include computerizing
the inspecting process (Ref. [5]) the statistical computations, and automatically portraying a statistical
quality control picture of the results. Another direction for research could involve the establishment
of a dccision making matrix showing the data elements necessary for each of the decisions and dynamic
indicators reflecting the goodness potential of the decisions due to changes in validity in the data base.
Improved sampling and allocation procedures would also be very beneficial.

CONCLUSIONS

In conclusion, it is hoped this .paper will promote interest of management and quality control
personnel in this new and much needed area of statistical quality control of information. Currently
only a dearth of literature exists relevant to the subject.
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STOCHASTIC DUELS WITH LETHAL DOSE
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ABSTRACT

This paper inlroduces 1he idea of lelhal dose 10 achieve a kill and examines ils effect
on the course and final oulcome of a duel. Resulls have been illusiraled for a particular case
of exponential firing rales,

INTRODUCTION
Williams and Ancker [3] developed a new model to study combat situation by considering it as a
two person duel and incorporating in the 2nalysis the microscopic aspects of a combat. The model has
since been termed the Theory of Stochastic Duels. The details of work done by various analysts in this
topic are contained in Ancker [1].
In the various studies conducted so far it has been assumed that a single success by the duelist
ensures his win. Tlis assumption, as we shall see presently is valid only in the following cases:
(a) The target, which happens to be the opposing duelist, is such that one hit alone is sufficient to
destroy it.
(b) The guantity of ammunition delivered per round is at least equal to or more than the lethal dose
required to completely annihilate the opponent. This could be the case with heavy guns etc.
The present paper attempts to study a ducl situation wherein the opponent cannot be killed by a
single successful shot. On the other hand, the kill requires a finite number of hits. This assumption
stems from the nature of modern combat. Present day combat is characterized by emphasis on heavy
protective armor and cover designed to provide protection and safety to the combatant so that he can
effectively continue in the duel. Under such circumstances it is imperative that the quantity of ammuni-
tion delivered on the opponent should be sufficient not only to kill the opponent, but at the same time it

must also be able to nullify the affects of protection.
A similar situation arises in an air battle. It may not be very appropriate to assume that a single hit

alone will be able to bring down the opposing aircraft unless the hit has been at a very critical part of
the aircraft like the fuselage. In order to be able to bring down the aircraft, it will be plausible to assume
that we succeed in repeatedly hitting it, which will ultimately force it to go down.

STATEMENT OF THE MODEL

These considerations have been incorporated in the prcsent paper by introducing the idea of lethal
dose. We assume that two contestants 4 and B, each with an unlimited supply of ammunition, are locked
in a duel.

Let X, be a continuous positive random variable denoting the elapsed time since duelist 4 has
fired his nth round. Then {X,} is a sequence of identically distributed independent positive random
variables with a density function D(x), such that
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Pr(X,<zx)= ] " D(x)dx.
[i]

Further, let A(x)dx be the first order conditional probability that 4 will fire a round in the interval (x,
x+dx) given that ke has not fired prior to time x. Obviously

D(x) =A(x) exp (—f )\(x)d::)

Each round fired by A4 has a probability p of hitting the opponent B and with probability ¢, 4 misses
B, so that p+q=1. Further, it is assumed that each round fired by 4 delivers a certain amount of am-
munition and to kill B a certain fixed quantity of ammunition is required to be delivered by A4 on B.
Let this quantity of ammunition, the lethal dose, be contained in K . nds. 4 kill is said to have been
achieved by A as soon as A4 scores R hits on B.

Similar assumptions hold for duelist B, whose parameters are represented by placing an asterisk (*)
i as a superscript.

FORMULATION AND SOLUTION
Let us define the following discrete random variables:
N(t): Number of rounds fired by A prior to time ¢

3 N@i) =0

#(¢): Number of hits secured by A on B prior to time ¢
3 0=<6() <R
We now define the following state probabilities
Pi(x, t)dx=Pr[N(t)=n, 6(t)=r, x < Xu < x+ dx|N(0) =6(0) =0]
An(t) =Pr[N(t) =n, 8(t)=R|N(0) =6(0} =0].

Obviously,

Pi(x, t)dx=0  forr>n
and

An(t)=0 for n <R.

By continuity arguments we set up the following system of difference-differential equations:

(n [6%+£-+)\(x)]P,’.(x,t)=0, O0<sr<R-1l,n=r

(2) P:(O,t)=qfl’.'._.(x, O\ (x)dx+p fo Pi(x, )N (x)dx, 1<r<R-l,n=r
3) Pu(0, t)=qf Poi(x ON(x)dx, > 1

@) En(t)=-%An(t)=pf: PE-1 (x, )\ (x)dx, n=R.
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Initially
(5) P:(x’ 0) =6r. odu, 08(x)

where 8;, jisKronecker's delta and §(x) is Dirac delta function.
We define the following generating functions

Fix,t,a, B)=3 B3 a*Pi(x, 1)

r=0 n=0

k(t, @) =3 a"En(2).

n=0

1
E Applying the above generating functions to equations (1) to (5), we get
3.2 _
®) [ax+at+)\(x)]F(x, t, a, B) =0,
(7) F(0,t,a, B)=aq J‘z F(x, t, a, B\ (x)dx+afBp J‘x F(x, t, a, B)N(x)dx—BEk(t, a),
0 0

and

(8) F(x,0, a, B)=8(x).
! Taking Laplace transform and denoting the Laplace transform of probabilities by placing a bar

] as superscript i.e. F(s) =Lx exp (— s t)F(t)dt, Re s =0, equations (6) to (8) give
(9) [%+ J +A(x)]1-’(x, J,a, B)=58(x)

(10)  F(0, v, a,B)=ag L F(x, 4, a, B)\(x)dx+afp L‘F(x, s, a, BA(x)dx—B*K( s, ).

Solving equation (9) we get,

F(x, s,a,B)=[1+F(0, s, a, B)] exp (—.;x—fI A(x)dx).

Substituting the value of F(x, o, a, B) in (10) we get

l—ﬂ"IZ(J , )
1-o(q+Bp)D(s)

an 1+F(0, v, a,B)=

The left hand side of (11) is regular on and inside of |8] < 1, for Re s = 0and |«| < 1. In this domain
the denominator of the right hand side has a simple zero at 8=8 where

T |
B_apD(.))

{1—agD(4)).

Therefore. 8= must also be a root of the numerator, so that

(12) Rl = [1%%%3_)]”'

Whence, H(s), the Laplace transform of H(t), the probability for the time taken by A to kill B, is
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H(s)=[K(s,a)]a 4
D(s) % .
l 2 —-—p—~—-— - 3
(13) 2550 |
Similarly G( 4 ), the Laplace transform of G(t), the probability density for the time taken by !
duelist B to kill 4, is obtained as
- = p*D*( 4) R*
2O e |
EVALUATION OF WIN PROBABILITIES ' i
Let P(A) be the probability that A wins the duel; then }
k- *x %
(15) P(A) = f H() f C (r)drdt |
=0 =l q
We know
=_1— Crix _ |
(16) H(t) H ) H(s)exp (st)da

Where the path of integration is parallel to the imaginary axis, ¢ being chosen so that all the singu-
larities of H(s) lie to the left of the line of integration and H(s) is analytic to the right of it.
From (15) and (16) we have

P(A)——-f_m H(J)[f: exp (1) L:’C(T)d‘rdt]duf'

(17)
1 Cc+ix do da
=om . H(J)C(—z))-é— 21”_[-1: 4))

To evaluate the integral in (17), we choose a semi-circular contour wholly lying on the right of the
imaginary axis in the complex plane as shown in Fig. 1

Y C+iR
c
[}
; —
C-iR

FicuRre 1. Evaluation of integral.

The line is such that it separates the poles of H(s) from those of G (—s). The poles of the integrand
lying in the chosen contour are those belonging to G(—3s). Hence the second integral in (17) is zero as

-i— H( ) ‘< analytic everywhere to the right of the line ¢ —iR to ¢+ iR. Thus
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(18) P(A)=—l—.f""' ()6~ ) 3L
2l Jo-ix J

It may be remarked here that as H(t) and G(t) are probability density functions, the integral of
Jl H(s)and T} H(s)C(— 4) on C (Fig. 1) tend to zero as R—. Thus

(19) P(A)==S R,
i

where R, is the residue at the ith pole of the integrand in (18) and summation is over all the poles lying
inside the contour.
Similarly P(B), the probability that B wins the duel is given by
Crix = — d
(20) P(B)=—I—.I_. C(A- )22

2mi

=— S R*
(21) ; &

where R} is the residue at the jth pole of the integrand in (20) and summation is over all the poles lying in
the contour as in Fig. 1.

THE CASE WHEN R AND R* ARE RANDOM VARIABLES

Let us now consider the case when the exact number of rounds required to secure a kill is not fixed,
but there is a probability distribution giving the number of rounds required to kill. Let

PT(R = m) =0m
such that
an=1, ao=0.
m=0
Similarly,
Pr(R*=k)=8: -
where

S =1, p=0.
o
™~
Then H(s) and G(s), the Laplace transforms of the probability densities for the times taken to
kill by A and B respectively are given by

and
o )@ o [otD) P
2) ) =5 B2 )

PARTICULAR CASES
CASE 1 Inter-firing times exponentially distributed for both duelists:
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Let
D(s) =r_:‘j ’
_ *
D*(")=A*A+ 7
From (13) and (14) we get
Hs)= ( A—p}‘f;- )"
and

o~ A* * R*
6 =(rmpets)

Substituting the value of H(s) and G(s) in (18) we get

_(Ap)*(\*p*)** f“‘" do )
) 2mi iz & (Ap+ 2 )8(N*p* — s )R

Integrating around the contour as in Fig. 1 we find that tke integrand has a pole of order R* at
s=A*p*. We evaluate the residue by collecting the co-efficient of (s—A*p*)-! in the expansion of
the integrand and finally we obtain

Ap 'Illll*—l R+-_1 [ )\*P* ]j
PA)=|—2P__ J NPT
(A) [)\p+)\*p“‘_ 1—20 ( j ) Ap+A\*p*

* Ay +dy

=]1- Iw(R*,R)

where I -(p, q) is the well tabled (Pearson [2]) Incomplete Beta-Function Ratio defined by

I.l‘(p’ q) =BBI(p, q)

_Lletq) [ b1 —y)erdy.
l,(p)l,(q)fo yPt(1—y)*'dy

Using the relationship I.(p, q) =1~ 1,_:(q, p) we get

24) P(A) =I5 (R, R%)
Similarly,
(25) P(B) = IAE_(R*. R)

* %
Putting K=A;‘I;L in (24) we get
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I, (R.R*)

1+K

P(A)=
The product Ap gives the rate at which A hits B. Similarly A*p* is the rate at which B hits A, so
that KA is the ratio of the hitting rates of the opposing duelists. Graphs have been drawn in Fig 2 to

show the influence of R and R*on P(A) for K=4,1,2.
CCASE 2 Exponential inter-firing times and geometric R and R*:

Let
!
=
o
FIGURE 2. Effect of lethal dose on win probability.
_ - *
== : D* _=—m———
DlYy=1 5+ (=g
am= (l _a)am—l
and
Br=(1-p)B*"
From (22) and (23)
Gy — (1 —a)Ap
HE) =0 —a) S

and

Aey (1= B)N*p*
&) TMpr(1—-8) + v

so that from (18)

— (=) (L= B)ApA*p* [evi= Ge
R 2mi fp_.-, J[ap(1=a) + s JNp*(1=8) — 4]

i A o,

PR ) pe




O T S, s

404 N. BHASHYAM

Integrating around a contour as in Fig. 1 we find the integrand has a simple pole at
s =A*p*(1—B). Hepve

26) P<A>=A,,u-2‘>"li~§3<1-m
Similarly,
@7 PB)="0 -A;I)’*-ilx:pezl =B)
Putting K = S in (26) we get

p(A)= —1-a)

(1—a)+k(1-8)

In Fig. 3 graphs have been drawn to show the effect of « on P(A) for different values of 8 and K.
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.a) ./}
. 2
a wtqq ‘.'/}
o4l 4 ‘..2) "'o
G
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0 1 1 1 1
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FiGure 3. Effect of random lethal dose on win probability.
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A NOTE ON A PROBLEM OF SMIRNOV
A GRAPH THEORETIC INTERPRETATION

Ronald Alier
University of Kentucky
and
Bennel Lieniz

Systen Development Corporation

ABSTRACT

This paper considers a graph 1heorelic inlerprelalion of a problem proposed by Smirnov.

1. INTRODUCTION

The basic problem stated by Smirnov is the foliowing: how many ways can n objects of s + 1 classes
be arranged in a chain so that no two objects of the same class are adjacent? In Ref. {4] Sarmanov and
Zaharov viewed the problem as one of transitions between classes. They obtained limiting results for
the case of s =2 (i.e., three classes of objects) and for the case wherein all classes have the same
number of objects. These results are summarized in Ref. [2]. The purpose of this paper is to interpret

the problem in terms of graph theory and the theory of trees.

2. A GRAPH THEORIC INTERPRETATION

Suppose there are n objects divided into s + 1 distinct classes with r; as the number of objects in
the Ith class. Within a given class, all objects are assumed to be indistinguishable. let M@ V(r,

.+ I'vs1) denote the number of arrangements or chains possible such that no two objects of the samne
class are adjacent.

It is assumed that the reader is familiar with the usual definitions of graph, connected graph,
cyclic graph, and acyclic graph. These definitions appear in Ref. [3]. Using the standard graph theory
terminology, a tree is a connected acyclic graph. If a special vertex has been selected as the beginning
of the tree T, then this vertex is said to be the root of T, and T is called a rooted tree.

Preceding page blank A
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For the purposes of this paper, the drawing of a tree provides a very useful tool for the analysis
of the various logical probabilities which arise. The following example serves to illustrate this
interpretation.

Example. l.et n=6, s=2, and r, = rp =r; = 2. l.et an object from the Ith class be labeled A,.
Because of symmetry it suffices to consider the root of the tree beginning with an A3 say and then
multiply the total number of chains by 3. One has that which gives M®)(2, 2, 2) =3 - 10 = 30.

Note: If, for example, n =9, s = 2and r, =2, r. = 3, ry = 4, then three trees would be constructed,
and M®(2, 3, 4) = 79 = the sum of the terminal vertices of all three trees.

Several results that are applicable to the theory of trees can now be given, along with some relevant
definitions.

Definition 1: A uniform n-tree is a tree in which the shortest path from the root to cach terminal
vertex is n.

Definition 2: A chromatic tree for colored graphs is a tree in which no two adjacent vertices have
the same color.

Thus, interpreting the combinatorial problem graph theoretically it is evident that the problem
lies in chromatic uniform n-trees.

Suppose one draws chromatic uniform n-trees in the way described in Examples 1 and 2. Given
s+1
are n and s+1 distinct classes with the [th class containing r; objects n= 2 ri. By selecting a repre-
I=1
sentative from each class to a root of one tree, it can be seen that there are s+ 1 trees and that

341
Mo, L) =S By,
I=1

where B, is the number of terminal vertices on the tree whose root is chosen from the Jth class. (Note:
In the notation of Ref. {1]

BI=M(””(I'|. o o oy Taets l)).
The quantities can be obtained by the methods given in Refs. [1] and [2].
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(30 minutes). Abstracts of contributed papers must be received no later than January 30, 1971. Abstracts
should be addressed to Professor Richard W. Cottle, Department of Operations Research, Stanford
University, Stanford, California 94305.

Dr. Murray A. Geisler, The RAND Corporation, 1700 Main Street, Santa Monica, California 90406,

is the American point of contact. Inquiries regarding the Conference may be addressed to him.
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i scientifir information in logistics and will publish research and expository papers, including those
b in certain areas of mathematics, statistics, and economics, relevant to the over-all effort to improve
the efficiency and effectiveness of logistics operations.

Manuscripts and other items for publication should be sent to The Managing Editor, NAVAL
RESEARCH LOGISTICS QUARTERLY, Office of Naval Research, Arlington, Va. 22217.
Each manuscript which is considered to be suitable material tor the QUARTERLY is sent to one
or more referees.

Manuscripts submitted for publication should be typewritten, double-spaced, and the author
should retain a copy. Refereeing may be expedited if an extra copy of the manuscript is submitted
with the original.

A short abstract (not over 400 words) should accompany each manuscript. This will appear
at the head of the published paper in the QUARTERLY.

There is no authorization for compensation to authors for papers which have been accepted
for publication. Authors will receive 250 reprints of their published papers.

Readers are invited to submit to the Managing Editor items of general interest in the field
of logistics, for possible publication in the NEWS AND MEMORANDA or NOTES sections
of the QUARTERLY.
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