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of Symbols

cross-sectional area of bar or sprirg wire (inz)
velocity of wave propagation or surge velocity (in/sec)
ms/M, the ratic of mass of spring to the driven mass
D/d, the spring index, ratio of coil to wire diameter
Spring constant per coil of spring

coefficient of expansion

design correction factor

wire diameter of spring (in)

mean coil diameter of spring (in)

outside diameter of firing pin and spring
modulus of elasticity (lbs/inz)

kinetic ecnergy (in-1bs)

strain emergy (in-1bs)

strain energy per unit volume (in-lbs/ins)
strain associated with stress o (in/in)
total spring deflection (in)

deflection of spring per active coil (in)
contact force between mass and spring (1lbs )
total distance travelled by mass M between t = 0 and t = TA (in)
pg, density (lbs /ins)

gravitational constan: (386.05 in/sccz)

modulus of rigidity (lbs/in?)

area polar moment of inertia of spring wire (in4)

spring constant per unit length of bar or spring wire (lbs /in/in)



List of Symbols (cont.)

K = curvature correction factor for helical springs

L = length of bar or spring wire (in)

ex Length of spring when firing pin attains max. velocity

Lo = free length of spring (in)

Lp = length of firing pin (in)

Lt = overall required system length to attain design velocity (in)

A = spring constant of helical spring (1lbs/in)

m = mass per unit length of bar or spring wire (1b-soc2/1n4)

m. = mass of active coils of spring (lb-secz/in)

M = mass of driven mass (firing pin) (1b-sec2/in)

MD = d'Alembert moment

N = number of active coils of helical spring

Nt = total number of coils of helical spring

p = applied force (lbs )

Pf = force due to deflection f (1lbs )

o = mass density (1b-scc2/1n4)

o] = compressive or tensile stress (lbs/inz)

TD = D'Alembert force

t = time (sec)

TS = surge time

T = 2 Ts

Tz = time at which spring flies off support, counted from spring
release (scc)

TA = time of separation of mass from spring, counted from spring
release (sec)

e = uncorrccted shear stress corresponding to deflection f, (lbs/inz)

e Nt 0 W B s



Ktg corrected shear stress corresponding to deflection f,
(lbs /in?)

particle velocity (in/sec)

maximum velocity attainable by freely expanding spring without
end load as it flies cff support (in/sec)

Vpax’® the maximum theoretically attainable velocity of the driven

mass (firing pin) for a given system and spring compression (in/sec)
nominal firing pin velocity (in/sec)

work (in-1bs)

work due to force P (in-1bs)
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Abstract

A space optimization procedure is developed which allows the design of

100 percent reliable spring-firing pin combinations for the M42G per-
cussion primer. Optimum design tables list complete data for approximately
two hundred systems ranging in overall length from 0.500 to 2.000 inches
and in diameter from 0.093 to 0.375 inches.

The optimization is based on a combination of results of the theorctical
and experimental phases of the investigation. The theorctical work

employs wave propagation theory for the determination of the maximum
attainable velocities of spring driven masses. The experimental work
confirmed existing 100 percent firing data (Erwood curves) for the M42G
primer. In addition, new 100 percent firing data werc obtained, at various
energy levels, for firing pin velocities up to 1200 inches per second.

All firing tests were conducted at ambient temperature and at -40 degrees
Fahrenheit.
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Introduction

Purpose of Investigation
present investigation had the following two aims:

It was desired to confirm and toc extend to higher firing pin velocities
the existing firing curves (Erwood Curves) for the M42G percussion primer.
This experimental investigation was to be conducted both at ambient
temperature as well as at -40 degrees F,

It was further desired to devise a design method which furnishes 100
percent reliable spring driven primer striker systems with minimum
overall space requirements for the M42G primer.

Outline and Results of Investigation

M42G percussion primers were test-fired with firing pin velocities
ranging from 50 to 1200 inches per second at encrgy levels of 16,14,12,
10, 8, and 6 inch-ounces. These firings took place both at ambient
temperature and at -40 degrees F.

The Erwood Curves were partially confirmed. That is, one hundred percent
firing of the primers at awmbient temperature started at the same minimum
firing pin velocities for cnergy levels of 16 and 14 inch-ounces. For
12, 10, 8, and 6 inch-ounce lecvels the minimum firing pin velocities for
100 percent firing were somewhat higher than thosc of the corresponding
Erwood data. Increases of the velocities beyond the above minimum values
and up to 1200 inches per sccond caused consistent 100% firings at all
cnergy levels. While in most cases a slightly higher minimum velocity
was required to fire the primers at -40 degrees F, one may generally
state that there is no significant difference between firings at ambient
temperaturc and those at -40 degrees F. The attempt to conduct firing
tests at an cnergy level of 5 inch-ounces was not successful.

The thcoretical phase of the investigation concerned itself with the
determination of an expression for the maximum attainablc velocity of

a spring driven mass in the absence of friction. Existing earlier

work was confirmed to this end. 1In addition, an expression for the axial
space need of a helical spring which accolerates a mass to its maximum
attainable velocity was derived,

An optimization prucedure was devised which combines experimental and
theoretical results, It allows the design of spring striker combinations
of minimum overall lengths and practical diameters which employ identical
firing pin masses and producc identical firing pin velocities as systems
which have been found one hundred percent reliable during the test phase
of the investigation.

The overall length of the spring striker system, i.c¢. the combined lengths
of the firing pin and the length of the helical spring when imparting

the prescribed velocity to the firing pin, has been found to be a function
of the spring index (the ratio of the coil diameter to the wire diameter).

Computer searches for the optimum spring index for various combinations
have resulted in optimum design tables. These tables contain all necassary
physical data for springs and firing pins and overall dimensions for more



thun two hundred systems with overall lengths of less than 2.000 inches
and diumetors of less than 0.375 inches. (One of the smullest designs
requires for u diameter of 0.12F inches a total nominal length of 0.763
inches.)

Sections Il to IV give the highlights of all work which is described in
detail in Appeadices A to K. The use of the optimum design tables f Appendix F
is also illustrated in beutnon v,

During the initiul phasc of the investigation the llterature dealing with
percussion primers and explosive initiation [1 - 15]*!, as well as that
dcaling with penctration of plates by impacting bodies [16-24], was examined
with the intent of establishing some theoretical criteria concerning firing
pin masses and velocities required to effect primer firing. This effort
proved fruitless and had to be abandoned because of the scarcity of inform-
ation on percussion primer initiation.

[I. Theoretical Investigation

The following outlines the results of the theoretical investigation
which are described in detail in Appendices A, B, and C. Figure 1 shows a
helical spring of coil diameter D and circular wire diam:tcr d which is fixed
on its left end Z to the support S, while its right end A is deflected
through the distance f by

WIRE AXI¢S
| -£- D
L] ..‘
SUPPORT S I
e |
£ y = y(x,t)
*l e
)
/ ]
i
] --r-J
"- f—.l
! L ——
0
Figure 1
Helical Spring Without Uriven Mass
(Deflected through distance f by force Pf)
1 force P_.. The free length of the spring is lo‘ Appendix A gives the
dcrlvatfon of the partial differential cquation for the axial displacement
y as a function of the position x along the wire axis and of time.
¥} Numbers in brachets designate references in Section V.
-10-




(See also [32,33,40, 42]). The constant coefficient of the differential
equation A-16 contains an expression for the velocity of wave propagation,
or surge velocity a, with which a relieving tension wave moves from end A
of the spring wire axis to end Z when the force P. is suddenly removed. The
discussion preceding Eq. (A-19) shows that whenevgr the spring index D/d>5,
the influence of the rotational inertia of the spring wire will sufficiently
accounted for in the following expression for the surge velocity:

a=09 [-2E

y &5 (1)
where
A - spring constant [see Eq. (A-la)]
L = length of spring wire along x-axis, and embracing all active turns
Y = density of spring material
g = acceleration of gravity

[See also List of Symbols]

The solution of the partial differential equation indicates that the maximum
velocity of the free end of the spring, (point A), is attained according to
Eq. (A-41) at the time

L
t=T, =3 (2)

after the force Pf has been removed, Ts is defined as the surge time.

This maximum velocity V4 of the expanding helical spring is given by
Eq. (A-48):

9 G
vy " 0.99 Te 2 v (3)

where

Te ® uncorrected shear stress associated with deflection f [See Eq. (A-45)]

G = modulus of rigidity

Equation (3) points up the fact that the maximum velocity attainable by the
free end of a given spring is only a function of the shear stress due to its
deflection. This velocity is thus clearly limited by the maximum permissible
uncorrected shear stress.2

2The corrected shear stress 1. = K 1¢ includes the effect of the curvature
correction factor K, (see [42] and Eq. (D-8) in Appendix D). It must be
considered to avoid spring set. Therefore 1¢ must he low enough so that
Tc does not predict set.

-11-
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[See also Eq. (A-49) and subsequent discussion on theoretical velocity
limit for steel helical springs.]

When the spring drives a mass M, as shown in Figure 2, the maximum velocity
of point A, and with that of the mass M, can also be obtained by way of the
solution of an appropriate partial differential equation. Since a separate
numerical determination of the eigen-values must be made for each occurring . !

[T NPT A

WIRE AXIS

SUPPORT S

i s e

Figure 2 i
Helical Spring With Driven Mass
(Deflected through distance f by force P

£)
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ratio of driven mass M to spring mass m_, this approach is not very practic.:
and was not further pursued. In additidn, it is limited to cascs where the 1
end Z of the spring remains fixed to the support S at all times, while mass i
M is firmly attached to the spring. In fuze applications it is not customary A
to attach the spring to its support and the mass to the spring. Thus if |
enough room is given the spring may fly off of its support and the mass wmay :
separate from the spring.

K. Maier [28,35,36,37] has shown without proof that wave propagation theory ;
furnishes relatively simple analytical expressions for the bhehavior of spriuy b
driven masses. Beyond this it allows for the possible separation of the ‘ ;
spring from its support as well as the separation of the mass from the spring.

4 Appendix B gives derivations of appropriate expressionsalong these lincs.
' Starting from the basic concepts of wave propagation in thin prismatical bar 3
[2¢,31,39,41] the response of springs without driven end masses is consider ;
first. (Sec also [25,27,29,30,34,38,43])). Equations(B-25) and (B-20) in

dicate that as the relieving tensile wave, which is initiated by thc remova!
of the compressive force Pf, travels from point A to point Z (sec Figure l}, ‘

the particles along the wire axis acquire the velocity vy as given by ELq. (3). : 3
Once point I near the support has attained the above velocity the spring

will fly off from the support. This will occur at the time Tg after the - ;
force is removed. [Ty is also given by Eq. (2) above.] ‘ 3

]

For the detcrmination of the velocity of the spring driven mass of Figure .
it is necessary to distinguish between two time intervals of duration 2Tg,
since the wave behavior in each of them differs from the other. Appendix .
B gives detailed discussions of these phenomena.

When the compressive force P¢ is suddenly removed at t = 0, the velocity ot
mass M, for the interval 0 <t <2Tg, is given according to Eq. (B-50b) by:

: -ZTG t
; Vi T vy (1-e ) (4)
j where
T = 2T,
)
5 = mS/M
m, = mass of the active coils of the helical spring

5
Eq. (4) is valid for all values of the mass ratio a.
The maximum velocity of mass M is attained during the interval fg st

for values of 1/a < 5.69. Since this range of mass ratios covers all
pussible applications to primer systems, no other intervals were considered.

The maximum velocity occurs when the contact force between mass M and the
spring vani§hes, and the mass separates from the spring. Lguation (B-8."
gives the time of this event for a given system as

- 1 - 2a
TA = Ts (2« 75 ° )

{5

-13-
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after the compressive force is suddenly removed. The mass ratio restric-
: tion mentioned above is shown by Eq. (B-86) to be based on the condition
g that TA < 4TS.

Equation (B-84) furnishes the expression tor the velocity of the mass in
the time interval 2TS St TA:

) . t
v, = vy 2T "1 (2 o ga o207 )

2 6)

The maximum attainable velocity of the mass M is given by the evaluation
of Eq. (6) at t = TA’ as given by Eq. (5). According to Eq. (B-85):

- 2a
)

¢
Vmax - VH (-1+ 2e 2

(7)

Figure B-7 on page B-23 of Appendix B lists values of the term in
parenthesis of Ea. (7) for mass ratios M/m5 from 0 to 5.4.

b Appendix C shows how Lq's. (4) and (6) may be integrated to obtain the
£ total distance F, truvelled by mass M from the time the restraining force
f P, is suddenly rémoved at t = 0 until the maximum attainable velocity is

rgached at t = TA. Equation (C-13) gives this distance in the following

form:
Ft = f Cf (8)
where
f = deflection duc to the force Pf, and
_zd - 2
1 . e - <
Cf = 2+ ;-( 3-5 - 4c¢c 2 )
(9)

The mass ratio restriction M/mS < 5,09 also applies to the above, since

Eq. (6) is involved in its derivation.

Equation (7) which allows the determination of the maximum velocity of

mass M for a given system, uand Eq. (8) which indicates the minimum space

needs to attain this maximum velocity play a major part in the optimization
procedure shown in section IV,

Appendix B also indicates, (sce pp. B-15 and B-16), how wave propagation

theory may be uscd for the determination of the time T, at which a spring which
drives a mass will scparate from its support at point Z.

i,
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Il Experimental Investigation

Appendix D reports in detail on all phases of the test program, test
setup, and test results,

Figure D-2 shows the original test program, giving all planned test
points at 16,14,12,10,8,6, and 5 inch-ounces of firing pin kinetic energy.
The associated firing pin masses and velocities, from 50 inches per second
to 1200 in/sec, are indicated together with the respective Identification
Numbers. Figure D-3 depicts the test setup. The test firing pins are
described in Figures D-4 to D-8c, and the final design of the test springs
is shown to be based on the results of the theoretical investigation. The
physical data of these springs are listed in Figure D-9. In addition, the
two methods of measuring firing pin velocity are discussed together with
all test procedures. Figures D-12a and b report on the number of firings
at the various test points, both at ambient temperature and at -40 degrees
F, while Figure D-13 represents a typical data sheet.

1. Results of Firing Tests

Figure 3 gives the results of all firing tests, which were completed
successfully, by indicating the percentage of primers which fired at each
energy level, firing pin velocity, and temperatur: (The test results
within the heavy outlines serve as the basis of thL. Optimum Design Tables
of Appendix F.) The 5 inch-ounce tests proved to be too inconsistent, and
were not completed.

The Erwood data were only partially confirmed. A comparison of
Figure D-1, the original Erwood Curves (which refer to ambient temperature),
with the comparable data of Figure 3 indicates that for energy levels of
16 and 14 inch-ounces both tests showed that 100 percent firing of the
primers starts at a minimum firing pir velocity of 100 in/sec.

For energy levels of 12 inch-ounces and less, the present tests show some-
what higher minimum firing pin velocities for 100 percent firing at ambient
temperature than the Erwood data. For 12 inch-ounces the Erwnod data give
a minimum velocity of approximately 100 in/sec, while the present test
required 200 in/sec. At 10 inch-ounces the comparable velocities are
approximately 140 and 200 in/sec. The Erwood data show 260 in/sec for
9 in-oz, while present tests indicatce for 8 in-0z a reliable value at
500 in/sec. Finally, at 6 in-oz the comparable numbers are approximately
340 in/sec for the Erwood data and 600 in/sec for the present tests,

Just as in the Erwood tests it was found that once a minimum velocity
had been reached which produced 100 percent firing, all higher velocities
would also iead to the same result.

Figure 3 shows also that in most cases a slightly higher minimum
velocity is required to fire 100 percent of the primers at -40 degrees F
than at ambient temperature, The differences are small enough to conclude
that when one uses a sufficiently high velocity to be certain of firing at
ambient tcmperaturc, one also may be certain of firing at -40 degrees F.

Figure 4 gives such safe combinations of firing pin masses and velocitics
which assure 100 percent firing both at ambicnt temperature and at -40
degrees F.

-15-
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They were chosen in such a manner that for each energy level the lowest
velocity is at least two subdivisions higher than the minimum one which
produced 100 percent firing during testing.

Finally, Figures 15a and 15b present the results of the tests in the
same form as the Erwood curves.

,

i

.
|2
[
ot
bl
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2, Verification of Theory of Spring Driven Masses

. Since the experiment used spring driven firing pins, the data also made
o it possible to compare the actually attained velocity of each test point,

: which was held within + 2.5 percent of the required nominal velocity v,, with
the theoretical velocity Ve (See top of page D-28 for discussion on 5N).

As the data sheet of Figure D-13 indicates, the spring compression f was -
recorded for each test firing, along with the actual mass of the firing pin.
Appendix D-4b shows how, together with the spring data of Figure D-9, the
above data may be used to compute the theoretical velocity Vo according to
Eq. (7).
v.. was found for all test points to be somewhat higher than the corres-
; pondiﬁg vN. This is to be expected since the theoretical expression does
; not make pruvisions for friction in the system or for certain pecularities
: of the test setup. (See bottom of page D-33) i

For design purposes the above means that to attain a certain nominal
.velocity vy, the spring deflection must be such as to produce a somewhat
higher theoretical velocity vy. To this end the design correction factor ;

c, = ‘1~ Y :

D V,
N (10)

i was introduced. [See Eq. (D-13)]. This permits the following relationship
i between the theoretical velocity of a given design and the actually desired
nominal velocity:

= v, (1+C))
N D (11)

' [See Eq. (D-12)]. :

! In order to attain a gencrally applicable value for C_ which can be used

! in the optimization procedure, its individual values were computed for all

| tests. Figure D-16 shows this factor to vary between 0.01 and 0.25 for

nominal velocities above 100 in/sec. For the sake of safety, it was decided to

assume always

Vr

C = 0,25
D ’ (12)

i and accordingly to make Eq. (11)

V. =2 1,25 v

for the optimization procedure.

-18-
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IV. Optimization Procedure

Appendix E gives details of the optimization procedure which lecads
to the optimum design tables presented -in Appendix F. The optimization
is based on a combination of the theoretical and experimental results of
the present investigation. The optimum design tables give complete physi-
2 cal details of spring striker systems with overali lengths of less than 2.000
- inches and diameters equal to or less than 0.375 inches. These spring firing
pin combinations reproduce the reliable 100 percent firing points given with-
in the heavy outlines of Figure 3.

In addition to reproducing proven firing data with the use of identical
masses and velocities as used in the tests, the optimization uses the follow-

ing criteria:

= a. The nominal velocity v,, associated with each test point is
to be attained by using Eq. (11) which takes the design correc-

tion factor CD into account.

b. In order to make the springs as short as possible the firing
pin velocity v, is to represent the maximum attainable velocit,
of the particuIar system. To this end the spring is tc be com-
pressed to its solid height, and the associated corrected shear
stress T_ is to be the maximum allowable one for the material.

c. Only systems with diameters of 0.375 inches are to be initially
considered, and only those resulting systems are to be retained
which have overall lengths of less than 2.000 inches.

1. Determination of Spring Mass

According to Eq. (E-12) one may write Eq. (7) for the theoretical
firing pin velocity Vi with the help of Eq. (11):

_ 2mg
c e M
VN(I"CD)=T-:,-’T—K(-1+232 )
(14)
whenever the spring is made of steel.
With v,, and M determined from the test point involved, and with « and
CD given, §he required mass of the active turns of the spring is showii by
Eq's. (E-13) and (E-14) to be obtained from the above expression:
m = -3ln[-21nB]
(15)
where
 § B 131 K VN 1+« CD)

=
-
i
|

5. + 0.5
TC (10)

K is the curvature correction factor [42]:
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The above shows that the mass of the active turns of the spring depends
on the spring index c when M, vy T CD and D are known.

2. Free length of Spring and Expanded Length of Spring Corresponding
to Maximum Velocity of Firing Pin.

Since the spring is to be compressed through the distance f to its
solid height, its free length Lo is determined by:

L = f+Nd + 2d
° (19)

where N stands for the number of active turns and 2d stands for two full
end turns of the spring.

The number of the active turns may he related according to Eq. (E-8)
to the mass of the spring in the following way:

4 ms g
n2yDd® (20)

When the above is substituted into Eq. (19) and the deflection f is
expressed in terms of the maximum allowable corrected shear stress, one

obtains for Eq. (19) according to Eq. (E-10j:

4 m. g c2 T m ¢

N =

Ty D
(21)

y = density of the spring material

G = modulus of rigidity

At the instant when the maximum vclocity of the firing pin has been
reached, its total trav 1 is given by Eq. (8). With its help one obtains
the expanded length of the spring Loy 8t this instant from

Lox = fo + Nd + 2d

(22)

where C. is given by Eq. (9). With the appropriate substitutions for f and
N, as for Eq. (21), one obtains:
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3. Overall Length of System at Instant of Maximum Firing Pin Velocity
The overall length L_ of the spring- firing pin system at the instant
of maximum velocity of ths firing pin is given according to Eq. (E-16) by

Lt = Lex + Lp (24)

where Lp represents the length of the firing pin.

4. Choice of Firing Pin Dimensions and Coil Diameter of Spring

While each successful test point has a definite mass associated with its
firing pin, there are many possibilities for the firing pin dimensions. To
avoid unnecessary complexity it was decided to assume the use of cylindrical
firing pins of constant diameter for the optimization procedure. The .030 in
engthof the hemispherical tip of the firing pin as well as any possible re-
duction in diameter, which might accommodate the seating of the pin within the
spring, was disregarded.

Figure E-1 shows the results of computations for the length ly of such
steel firing pins for all eligible I.D. numbers, and outside diameters be-
tween 0,375 and 0.093 inches. In general, firing pin lengths of less than
0.125 inches and more than 2.000 inches are omitted from the table,

5. Optimization of Overall Length of System

Appendix £ indicates that once a choice has been made concerning the out-
side diameter D_of the spring and the firing pin, the length of the pin,
as well as the gpring material, the overall length L_ of the system for a
given I.D. number depends only on the spring index c.

While it is not possible to find an analytical expression for the spring
index which produces the shortest system, an appropriate computer search
which varies the spring index will produce the desired result. The spring
index which gives the minimum overall length L, for a given set of conditions,
also furnishes the shortest free length Lo and the shortest expanded length Lgy
of the spring.

The optimum design tables of Appendix F give the results of such computer
searches. Each table represents a single test point (I.D. number) where
reliable 100 percent firing occurred, and enumerates the following data for
various firing pin outside diameters Dy and associated firing pin length LP:

a. Mass of active turns of the spring, according to Eq. (15).

b. Wire diameter corresponding to optimum c for given Dg.

¢. Number of active turns of the spring, according to Eq. (20).

d. Free length of the spring, corresponding to optimum ¢, according to Eq. (21).
e¢. Expanded length of spring, corresponding to optimum ¢, according to Eq. (23).
f. Overall length of system, corresponding to optimum c, according to Eq. (24).
g. Solid height of spring, including two end turns.

-21-
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All computations are based on the assumption of steel springs and firing
pins, and the following data are used:

Yy = 0.283 lbs/in3
t_ = 200 000 psi

G = 11.5 x 10® psi
§ = 386.05 in/sec’
C. = 0.25

[See also discussions in Appendices E and F.]

Figure 5 is typical of the optimum design tables of Appendix F. It treats
I.D. No. 67 which had a firing pin velocity vy of 700 in/sec and a firing
pin mass M of 4.0816 x 10-6 lb-sec</in at an energy level of 16 inch-ounces.

The following example makes use of one of the designs of I.D. No. 67,
and illustrates the use of the tables:

Example
When one chooses an outside diametexr Dy = 0.156 in., the following dimensions
are givea by Figure 5:

Length of firing pin (L)) 0.291 in. -6 2
Mass of active turns of®spring (ms) 3.4957 x 10 lb~sec™/in
Wire diameter (d) 0.03319 in.

Number of active turns of spring (N) 14.3

Number of total turns (N + 2) 16,2

Free length of spring (L) 0.786 in.

Expanded length of spring (L)) 0.816 in.

Overall length of system (Ltﬁx 1.109 in

Solid height of spring 0.541 in.

It must now be recalled that the tables give the overall length Lt
by considering firing pins where neither the hemispherical tip nor a
reduced diameter for seating the pin inside the spring has been accounted
for. Let these design factors now be considered. With a spring 0.D. of
0.156 in. and a wire size of 0.03319 in. the inside diameter of the spring
is approximately 0.089 in. Allowing for sufficient clearance, one lets the
seating diameter of the firing pin be 0.080 in.and its length 0.125 in.
Figure 6a shows the resulting firing pin design which maintains the mass
of the pin at 4.0816 x 10-61b-sec2/in, while allowing for the addition of
the seating diameter as well as the hemispherical tip. The resulting length
of the 0.156 diameter is 0.255 in., and together with the 0.030 length of the
tip the active length of the firing pin becomes 0,285 in. This length must
be added to the solid height of the spring to determine the nominal space
which the system requires when the spring is compressed. (It serves to locate
the release mechanism.) This length must also be added to the expanded spring
length to determine the space requirement at maximum velocity firing.
Figure 6b shows the first dimension as 0.541 + 0.285 = 0.826 in., (not taking
some necessary clearances into account). The actual overall length of the
system has to be 0.816 + 0,285 = 1,101 in.

-22-
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Figure 6
Typical Application of Optimum Design Tables

8. Firing pin design
b. Space requirements for system both when spring is compressed and when expanded
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Minor size deviations f{rom tbc optimun desipn tables due to necessary clear-
ances and part tolerances, (including changes in wire size of 0.0003 in.}),
will not influence the results to any extent since the fuctor C“ has been

chosen sufficiently high.

It has to be kept in mind though thut in order to avoid spring sct during
asscmb}y the corrected shear stress ¢ should never excecd its unper limit of
approximately 200,000 psi at solid height,

L.
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APPENDIX A

HELICAL SPRING AS A DISTRIBUTED SYSTEM

1. Derivation of Partial Differential Equation

a. Definition of Terms

Figure A-1 shows a helical spring which is held on one end against the fixed
surface S while its other end is deflected through the distance f by the
axially applied force P.. The indicated x-coordinate is measured along the
helically shaped centerline of the spring wire. The y-axis is coincident with
the coil uxis, and the coordinate y = y(x,t) describes the instantaneous
positions of all points along the x-axis.

WIRE AXIS b

SUPPORT S

Figure A-1
Helical Spring Terminology

The following terms must now be defined:
d = wire diameter

D = mean coil diameter

L = length of spring wire (along x-axis and embracing active turns)
N = npumber of active turns

Lp = free length of spring

f' = f/N, deflection per coil due to gorce Pg

A = cross-sectional area of wire (vd“/4)

Jo = polar moment of inertia of wire cross-section (nd"“/32)

y = density of spring material

g = 386.05, acceleration of gravity (in/sec?)

G = modulus of rigidity




The spring constant (}) of a helical spring is given by:

A= P = Gd" (A-1a)
T 8D3N

The spring constant per coil of the spring becomes:

A et = Pf = \N = 921 (A-1b)
T 8D3

The spring constant per unit length of spring wire is given by:

! k = AL = Gd“L = Gd“(nDN) = Gd“n : (A-1¢)
8D 3N 8D3N 8D2

b, External Forces Acting on Element of Length dx

; =1
”
{ - dy
x-AXIS
[ -
s -
Y
' v-AX1S
{ P
n
Figure A-2

Spring Element of Length dx

If the element of length dx of Figure A-2 is deflected so that the axial
displacement corresponds to dy, one may use the following proportionality

dx_=dy , (A-2)




h

i.e. dx bears the same relationship tu the length of a single coil as dv has to
the deflection of a single coil due to an applied force. Therefore usir; partial
derivatives

i
ib
&
§
f
]

) AL (A-3)
lg ax L

! i now consider the force in the y-direction at section m according to Eq.(A-1b)
: ,

5 % Pm = le' (A'4)

and substituting the value of f' according to Ey.(A-3) gives:

_ ¢'L 3y A-5
P ™ N 5 (A-5)

The force at section n is obtained by a Taylor Ser.es expausion of P, i.=.

= = 2 -
PL=Pn* 3 _(P)dx = D+ c'L 3%y dx (A-6)
ax N axz

Assuming that P, acts in the direction of the positive y-axis. the sum of the
external forces IF, acting on the element is given by:

IF=P -P =P -c'L 32y dx - P
§ n ) N 9ax
i or
‘ »3
9 g;
i IF = ¢'L 3% dx (A-7)
T N

ax?

¢. D'Alember: rForces ﬁctin; on Element of Lenggh dx

g

.

Translational D'Alembert Force

’ g The D'Alembert force due to the translational acceleration of the element of
| mass dm is given by:
:'g Fpe = - dm 3%y (A-8a)
= at2
With
¢
i:f dm = ynd- dx
i ag
& A-3

i, mindhiia,
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the above becomes:
e T (A-8b)

D'Alembert Force Derivable'from D'Alembert Moment

Figure A-3 illustrates that the application of an axial force in the direction
of the positive y-axis does not only lead to the axial deflection dy of the
wire, but also causes it to rotate about the x-axis through a counterclockwise
angle d¢.

’ Ccw
ROTATION

AXIAL DEFLECTION dy

DIRECTION
OF FORCE

Figure A-3

Rotation About Wire Axis Due to Axial Deflection

This rotation leads to the angular acceleration d?¢/dt2 , and therefore to the
following D'Alembert moment per unit length dx:

MD s - Joy dx gz%. (A-9)
+ o

Since any moment may be expressed in terms of the product of a force and a
distance, one introduces a "rotational D'Alembert force" (Tp,) which is

defined by:
My = Tpr g

where D represents the mean diameter of the coil. Then

A-4
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Equation (A-9) then becomes:

T, = - 290Y ax 42 (A-10)

Dr —— el

gh dt2

The angle d¢ is related to the axial deflection dy by:

=D 44 .0 -
dy = 2 3 sin=5 = 3 d¢ (A-11)

Using partial derivatives one obtains:

3% = 2 2%y (A-12)
at2 D 32

Substitution of Eq.(A-12) into Eq.(A-10) results in:

2
T, = - oY ax XY (A-13)
i gh2 at2

d. Partial Differential Equation of Motion

The differential equation of motion of the helical spring with circular wire
is obtained with the help of D'Alembert's Principle’

ZF + 3T = 0 (A-14)

Substitution of Eq's.(A-7), (A-8b) and (A-13) into the above yieclds:

¢'L 32%ydx - 4] 7d2 « Mo| 27y dx = 0 (A-15)
2 )
axz 8 4 D? l)t‘e

Rearrangement leads to the following result:

2 2
a2 32X L 3%y (A-16)
3x2  ae?
where
A-5

TR TP T TR L T S
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a? = C" Lg = Alp (A-17)
Ny [nd? + dJO y [nd? + 4J
T 2 - -2
D2 D"

e. Influence of Term Containing Polar Mom..t of Inertia J, on the Velocity of

Wave Propagation

The expression

ALy
a =
/; nd? + 47, .
[_"’4 — "A-18)
D2

as giver by ELq.(A-17) reprcsents the velocity of wave propagation or surge
velocity of a helical sprin- with circular wire. (See also Appendix B-3b.)
It represents the velocity with which a disturbance is propagated along the
x-cogrdinate of the spring. In order to examine the influencec of the term
4J/Dz, which accounts for the rotational inertia of the spring wire, let
Eq.(A-18) be written in the tollowing form: ‘

a = 1 e ALgo (A-18)
1+ O.S(Q)‘ Y(Eg:ﬂ
) 4
The term 1 equils 0.990 for a spring index D/d = 5, and it becomes
1 + 0.5(d/D)

equal to 9.994 when D/d = 10. Since the above range of spring indices is
usually encountercd in practice, onc may writce Eq.(A-18) for all springs in the
following form:

(A-19)

A-0
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2. Determination of Maximum Attainable Velocity at Free End of Helical Spring
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The following uses the partial differential equation (A-16) to determine the
displacement y(x,t) as well as the velocity y(x,t) of a helical spring which is
fixed on one end to the support S (see Figure A-1), and whose other end is
initially compressed a distance (-)f before it is released.

The solution of the above makes it possible to find the maximum attainable
velocity of the free end of the spring.

a, Boundary Conditions

Since the spring wire remains fixed to the support(s) at all times
y(0,t) =0 (A-20a)
The spring is free at x = L. This is expressed by saying that there is no force

at this point and therefore there is no strain. The force at any element was
described by Eq. (A-5)

P =E.'_L..a.z
m N 3x

Since c'L/N # 0, for Pm(x =1 " 0, the sccond boundary condition must be:

oy (L,t) _ -
5& =0 (A-20b)

b. Initial Conditions

Let it be assumed that the initial deflection of all elements along the x-axis
is proportional to the deflection (-f) at x = L. Thus

y(x,0) = - £ x = f(x) (A-21a)
L

Since all parts of the spring arc standing still when t = 0, the second
initial condition becomes:

%%jx,O) = 0 = g(x) (A-21b)

c¢. Solution of the Equation of Motion

Using the method of scparation of variables for the solution, one lets
y(x,t) = X(x)T(t) (A-22)
To satisfy Eq.(A-16), onc must let

X(x) = Clcosxx + Czsinxx (A-23)

A-7




whilc
1(t) = Cgeoshat + € siniat (A-24)

The coefficicnts €y and € are now found from the boundary conditions of
Eq's. (A-2la) and (A-21b)

X(0) = 0 = Cy(1) « Cy(0) (A-25a)
and thus |

C; =0 (A-26)
Furthermore

X'(L) =0 = CZAcosAL ' (A-25b)

For a nontrivial solution, where C, # 0, one must satisfy

cosAl = 0 .
This occurs when

AL = nn (n=1,3,5,... odd) ,
2

and thus the eigenvalue X nmust be

A= an (A-27)
2L
Equation (A-23) then becomes:

X (x) = C sanL (A-28)
i.e. there will be an X, (x) for cach n.
Similarly LEq.(A-24) takes the form:

Tn(t) = A Losit—t + B axngzat (A-29)

The total solution is a summation of all Xn(x)Tn(t) according to Eq.(A-22):
nna nma
y(x,t) = 2 (DHCOSZL t + E nIL +—t)s 1n2Lx (A-30)
n=1,3,... odd

Since Eq. (A-21b) shows that all initial velocities are zero, i.e. g(x) = 0, it
follows that

Ey =0 (A-31a)

A-8
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Cguation (A-21a) scrves for the evaluation of D, Thus:

1

D sintrx (A-31b)

.- f
)'(X!O) = f(X) - L n 21,
1,3,... odd

|
bl
0

To evaluate D, multiply both sides of Eq.(A-31b) by smz Tx dx and integratc

between U and Lt

n
x lA
- ij' X sin'—',‘—l".x dx = Dnj sm,';"x ,1n§-Ex dx (A-32)
L 0 : :: 0
1,3,... odd ,

For m # n the integral on the right hand side of Eq.(A-32) vanishes, i.c.

L L L
nn mn 1 L 1 .

Sin=x sin=zex dx = =1 cos(m-m)n x dx - =} cos(n+m}n x dx
21 2L 2 5T 2 3T

0 0 0

)3

L, L
= Llsin(m-m) nx] - sin(n+m) nx = 0
n n-m) 2 (n+m) 2L
0 0

The ahove is proven as follows:

a. Yor m = odd: Since n = odd, all (n-m)
sin(n-m)n/2 and sin(n+m)u/2
where k = 1,2,3,.

as well as (n+m) will be even,
will have the form sin(k7w),

b. For m = cven: Since n = odd, all (n-m) and (n+m) will be odd, and the
difference between (n+m) and (n-m) will be equal to 2m,
Thus (n+m)n/2 and (n-m)#/2 arc angles which are mr radians
out of phase, and the signs and values of the sine

functions are identical.

For m = n Eq.(A-32) becomes:

n L

L
- _f_j X sin-g—%x dx = E D"j sin? 2 2Lx dx (A-33)
Ld 0

1,3,... odd

Since

oA

Nx

L L
j sin? %x dx = ;J‘ (1 - LUSE‘X) dx = Lo (A-34)

I
i
I
|
i
|
i
[ 1
R
;
|
|
]
|
I
|
]
|
l
[
l
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one obtains

= - —-J- n——x dx (A-35)

Integration by parts of the above leads to:

. 8f .. nm
Dy = - 2,7 310 (A-36)

Equations (A-3la} and (A-36) are now substituted into Eq.(A-30), and the
solution is given by:

)

- E _8f . nw nm
y(x,t) = 53;3-51n sanLx LOszat (A-37)
n=1,3,... odd

d. Maximum Velocity of Frce End of Spring

Equation (A-37) becomes for the free end of the spring, i.e. for x = L:

o)

8f . n
y(L,t) = 2 e sin? -ﬁ-cos%%ut (A-38a)

n=1,3,... odd
and since
sin? ﬂ% =1, for n=1,3,... odd

one may write the above as

o

8f RN
y(L,t) = E oz Sosaat (A-38b)

n=1,3,... odd
The velocity at x = L is given by differentiation of the above:

3]

E 4fa . n7,
%%(L,t) = TN blnftut (A-39)

n=1,3,... odd
To find the maximum attainable velocity at x = L, one differentiates again
with respect to time and sets the result equal to zero:

w0

ﬁz_(L.t’) =0 = E 4fr?1 rzlz (A-40)
at 21.2

n=1,3,... odd
The serics will vanish for all n for the first time when

[l
(o]
"
P

A-10
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i.e. when,
T L
t =T, == (A-41)
5 a
t = Tg 1is known as the surge time. This is the time it takes for the

releasing tension wave to travel along the full length (L) of the wire with
the surge velocity (a). (See Appendix B.)

Substitution of Eq.(A-41) into Eq.(A-39) gives the maximum velocity at x = L
during the first cyclic motion of the spring:

[28]

L .
= EX(L’—) = 319- sinht -
vMAX ot @ nnl ST (A-42)

L
n=1,3,... odd
To evaluate the above consider Isin(nn) for various values of n = odd:

n 2

n=1: Isin(nn) =1

n 2
n=3: Isin(nn) = -1

n 2 3
n=5; lsin(nm) = 15 ete,

n 2 5

Since

o

sin nn/2 _m
n

n=1,3,... odd

equation (A-42) may be expressed as

E<Y

_ fa
VMAX[ =1 (A-43)

Now if Eq.(A-19) is substituted for (a) in the above, pne obtains:

(A-44)

The symbol Vi is used throughout this report for the maximum velocity

attainable by the free end of a helical spring (which does not drive any mass).

Now consider that the deflection f may be expressed in terms of the spring
constant A, and the respective load Pg, i.e.
P

£
R

Further, the shear stress Te which corresponds to f is given by

i - -
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. _f .
Tf - ‘n’d3 (A 45)
so that
rfnd3
f = T (A-46)

Substitution of the above into Eq.(A-44) leads to

Y
v, = 0.997 g (A-47)
16yD2LA

Further substitution of Eq.(A-1lc) for the spring constant per unit length of
wire (AL) gives

= 1LJ£. -
V“ O.QQTf 7Y (A-48)

NOTE: For a spring made of steel with y = 0.283 lb/in3 and G = 11.5x100

.
H ™ 131
with a permissible T¢ = 200,000 psi, (in absence of curvature correction), the
velocity of the free end of a spring becomes 1527 in/sec,

(A-49)

v {in/sec)

A-12
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APPENDIX B

DETERMINATION OF VELOCITIES OF FRELLY EXPANDING SPRINGS AND SPRING DRIVEN

MASSES BY MEANS OF WAVE PROPAGATION TIEORY

K. Maier [35-37] has shown without proof that wave vropagation theory may be

used to excellent advantage for thc determination of spring velocities under
various circumstances. This approach furnishes simple design equations without

requiring the knowledge of eigenvalues of the partial differential equation.
(See Appendix A.)

The following work gives the derivations of the above mentioned design cquations,
starting with the underlying principles of wave propagation in prismatical bars

[31].

1. Longitudinal Pressure Waves in Thin Prismatical Bars

Concepts of Particle Velocity and Velocity of Wave Propagation

e ) = QT

(a)

Il

I-— (b)
-

Figure B-1

Initiation and Transmission of Pressure Wave

a, Pressure wave of length & is initiated,
b. Pressure wave travels across bar,

Figure B-1 shows a thin loag 'wmiform bar of elastic material. If s uniformly
distributed load P is suddenly applied to the end of the bar, and acts for a
time t, then a vressure wave will be started at this end, and it will move
along the bur. This pressure wave represents a zone in which the material of
the bar is under compression.

In front of the zone as well as behind it the material is entirely uncompresscd
and at rest. At each instant new material in front of the zone is about to be
compressed, while at the samec time material at the rear of thec zone is losing

its compression.

B-1
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Thus the zone can move along the full length of the bar, although individual
particles have only the small motion involved in compression and decompression
as the zone passes.

The velocity with which the pressure zone advances along the bar is termed the
wave propagation velocity (a), while the velocity of the individual particles
within the pressure zone is called the particle velocity (v). This phenomenon
may be explained as follows: When the force P is applied it compresses the
material near the end of the bar. The compressed portion is shortened slightly,
i.e. some of it experiences a displacement, and in being displaced is given a
velocity. (This velocity is towards the right in Figure B-1.,) It strikes the
stationary material in front of it and compresses it, and starts it moving. In
so doing it is stopped itself, and the zone of compression moves foward. Thus
the material in the compressed zone always has a certain velocity, while the
material in front of it and behind it is at rest.

Expressions for the particle velocity as well as for the velocity of wave
propagation will now be derived. Let the following magnitudes be defined:

magnitude of compressive force
time during which the compressive force acts
length of bar
length of compressive or tensile zone
particle velocity
velocity of wave propagation
modulus of elasticity
cross-sectional area of the bar
yA(1), the mass per unit length of bar
g

I pmp< =t
Honowonon R on o

pg, density of bar material (1b/in3)

Y =
4 g = gravitational constant PL
k = EA, stiffness constant per unit length of bar, from E = A dL
F one obtains the stiffness of the total bar as gf = E% . When

] L equals unity, the above expression results.

a. Particle Velocity

When the zone of length &, (see Figure B-1), is compressed by the force P, it
is foreshortened by the amount

P PR

de = Rk (B-1)
During this period force P does the work
P2y
WP = P dg = < (B-2) I
The kinetic energy of the mass in the zone of length 2 is given by:
1 |
E, = 5mav? (B-3)

The strain energy of this zone is found from the unit strain energy in
compression or tension:
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1 E.=dge¢ (B-4) !

14 su-2°

'Tf where j
‘13 c = compressive or tensile stress !
gt e = compressive or tensile strain due to o :
® 3 Thus for the zone of volume AR one obtains f
| _1Pde P P _ Py ;
E P . ES - ‘2" K '—2' (Q'A) = 2‘7\“ E‘(Q‘A) - 2k (B-S) ‘4

The energy balance of the compressed zone is given by:
WP = EK + Es (B-6)

or with the help of Eq's.(B-3), (B-4) and (B-5)

P2y _ mav? + P23 ’
kK ~ 72 2k (B-7) 1

Note that the above shows that the total energy in the zone is half potential
and half kinetic. Equation (B-7) is now used to determine the particle

velocity:
v = P\/;% (B-8)

x When the above is expressed in terms of the stress and the mass density p,

one obtains:
_ 1
vV = c*lﬁg (B-9)

Equation (B-9) shows that the particle velocity depends entirely on the stress
applied to a given bar.

b. Velocity of Wave Propagation

During a time dt the pressure zcne advances the distance adt, where a is the
velocity of wave propagation.

The associated change of momentum expericnced by an element of length adt is
given by:
1

m (adt) (v - 0) =m (adt) P K (B-10)

According to the Principle of Linear Momentum, this momentum change equals the
impulse experienced by the mass involved. Since the compression P represents
the only force acting, one obtains:

P dt = m (adt) P«/;E (B-11)

The velocity of wave propagatioi: may now be determined as

B-3
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a = 4[5 (B-12)

ur in different terms:

_[E
a= A/; (B-13)

Equation (B-13) indicates that the wave propagation velocity depends entirely
on the material properties of the bar.

It should still be pointed out that when dealing with the above described
compression wave, (he velocity of the individual particles hus the same
dircction as that of the advancing wave. In a tension wave the velocity of the
individual particles is in the opposite direction to that of the wave
propagation,

2. Superposition of Waves

Wave Reflections at Free and Fixed Ends of Bars

Supcrposition of wirves is valid as long as the material follows Hooke's Law,
and therc is no friction. The resulting force or struss level, as well as the
resulting particle velocity are the vectorial sums of .he respective
romponents. In the following discussion it is assumed that the bar is of
constan. cross-scction and of the same material throughout,

a. Two Compression (or Tension) Waves Meet

Figure B-2 depicts the conditions of the forces and the particle velocitics
when tvo compression waves meet. 1t is assumed that both ends of a prismatic
bar erpericence suddenly applied and uniformly distributed compression loads of
different magnitudes and durations. Similar conditions would prevail if both
waves were produced by censile loads. Part (a) shows the two wives of
compression Py and P) traveling towards each other with identico1 absolute
values of wave propagation velocity a. The particle velocities ¢f both waves
have the same dircctions as their associated wave propagation ve.ocities.
Sincy vy is defined as having a positive direction, the direction of vy is
courted as negative. /In the case of two tension waves these sign: would be
reversed. )

thn the w' ves meet, as shown in part (b), the resulting compressioa force
becomecz

Pp =P, + P, =P vP, (B-14)

(B-15)

Thus “une stress level is increcascd, while the particle velocity becomes
small .r than the largest component velocity.
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Figure B-2

Two Compression Waves Meet

a. Before meeting
b. At meeting
c. After meeting
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Part(c) shows that once the waves have passed each other, each continues with
its original stress and particle velocity.

The above allows a certain deduction concerning the stress at the fixed end of
a bar or a beam. Due to the fixity there cannot be any particle velocity at
such a point. To assure this condition, the stress of the reflected wave must
be of the same magnitude and sign as that of the incident wave. 1This causes
the particle Velocities of thé reflected and incident waves to be equal in
magnitude but of opposite signs. While the particle velocity at such an end
point becomes zero, the stress doubles.

b. One Compression and One Tension Wave Meet

Figure B-3 indicates the conditions of the forces and the particle velocities
when a compression and a tension wave meet. Part (a) shows both waves traveling
towards each other with identical absolute values of wave propagation velocity
a. Load_Fi is compressive, while load ?é is tensile. The particle velocities

vy and v, have identical signs and ars positive.

Part (b) shows the meeting of these waves. Because of the signs of the
component forces one finds the resultant force PR smaller than either of the

component forces, i.e.:

FR = ia'l + Fz = 'ﬁ‘i'?; (B-16)

On the other hand, the resulting particle velocity Vh is larger than that of
either of the component waves:

P+ P,
VR=V1+V2=V1+V2=——/—E-‘-R——- (8-17)

Part (c) again indicates that once the waves have passed each other, each
continues with its original properties.

The presently discussed case allows & deduction concerning the particle
velocity at the free end of a bar or heam. Since there will be ne opposing
forces, the stress at such a free cnd must be zero. To assure this condition,
the stress of the reflected wave must be of the same magnitude, but of opposite
sign, as that of the incident wave. As a consequence the particle veiocity of
the reflected wave is cqual to that of the incident wave both in magnitude as
well as in sign, While the stress becormes zero in this manner, the particle
velocity doubles at the frece end,

Up to now only waves produced by coastant forces were considered. The stress o
and the particle velocity v were constant along the wave. ln the case of a
variable force, a wave will be produced in which o and v vary along the length.
Conclusions obtained above regarding propagation, superposition and reflection
of waves can also be applied in this more general case.

B-6
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Figure B-3

One Compression and One Tension Wave Meet

a. Before meeting
b. At meeting
c. After meeting
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3, Application of Wave Propagation Theory to lielical Springs

a. General Relationships

The expressions for particle velocity and wave propagation velocity derived for
thin prismatical bars, as given by Eq's.(B-8) and (B-12), can be applied to
helical springs, if one adapts the parameters m and k to the situation at hand.
Thus one must define:

m = mass per unit length of spring wire along x-axis as defined by
Figure A-1 of Appendix A.
k = stiffness constant, or spring constant per unit length of

spring wire (also along x-axis), (seec Eq.(A-1c¢)).

m is obtained with the help of the cross-sectional area A of the spring wire
and the unit length along the x-axis. Thus:

m = AQ)y _ nd?y (B-18)
g 4g

The parameter k is derived with the help of the spring constant * for the
whole spring as given by Eq.(A-1a) in Appendix A:

\al
. (B-19)
8D3N

Since the above is the spring constant for the full length L along the x-axis,
any shortening of the spring increases the stiffness, one obtains k from:

4 “
. Gd'L _ Gd'n (B-20)

k = AL
8D3N  8D?

b. Velocity of Wave Propagation or Surge Velocity in Helical Springs

When Eq's.(B-18) and (B-20) are substituted into Eq.(B-12) one obtains the
following expression for the surge velocity:

a = ~/§. " _.?:_l:&?_. (B-21)
vy nd
ey

As in Eq.(A-18) this represents the surge velocity when the rotational inertia
of the wire is neglected, This expression furnishes slightly large values, and
it is best to use the corrected form of Eq.(A-19), i.e,

B-8
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(B-22)

c. Particle Velocity in Helical Springs Without Driven Mass

Substitution of Eq's.(B-18) and (B-20) into Eq.(B-8), together with the
expression relating the load Pg of the spring to its associated maximum
shear stress g, i.e.

3
tfnd
f 8D

leads to an expression for the particle velocity as a functior .f the maximum
shear stress:

= B
RPN (B-23)

The same expression results when one substitutes Eq.(B-21) into Eq.(A-43) to
obtain vpax . If one includes the rotational inertia term, the particle
velocity becomes identical with the maximum velocity at x = L as given by

Eq.(A-48):
’ B-24
vy = 0.991f i-s-a ( )

Equations (B-22) and (B-24) are used throughout this report as the applicable
design equations,

o o ol



d. Maximum Attainable Velocity of Helical Spring Without Drivca ''.ss.

Time of Separation from Support

.

: F-+> y-AXIS

foua amp aun esm

P

FREE LENGTH

Figure B-4
Helical Spring

Figure B-4 shows a helical spring which is compressed a distance f along its
y-axis by a corresponding axial force Pg. The spring is not rigidly fastened
to the support at point Z., Contact is maintained only as long as there is a
contact force. As soon as the contact force vanishes the spring will fly off
the support. Note that L is the length of the wire along the x-axis.

When the force P. is suddenly removed, a tensile wave containing a force (-)Pf

will start moving into the spring in the direction from point A to point Z.
Associated with this relieving force is the particle velocity

p
£
v = 0.991“/-2-55 s — (B-25)

according to Eq.(B-24). As this tensile wave progresses all portions of the
spring will acquire this velocity, and the axial force will become zero.

Once the particles at point Z have attained the above velocity, the spring will
fly off its support. This will occur at the time

B-10




{B-26)

where a is the surge velocity according to Eq.(B-22) and T is called the
surge time, Of course one starts counting time when the fofce Pe is removed
from point A of the spring.

Since all particles have the same velocity when the spring separates from its
support, i.e. there will be no strain energy locked into the spring, there
cannot be any vibratory motion in the spring after separation.

e. Maximum Velocity of Spring Driven Mass

I. Period Between t = 0 and t = 2T,

A. Derivation of Tensile Force and Particle Velocity Associated With Tension

Wave

The following considers the events experienced by the spring mass system shown
in Figure B-5 between the time t = 0, when the deflecting force P.'is removed
from the mass M and thus a leftward moving tensile wave is starteg at point A,
and the time t = 2T, = 2L/a, when the front of this wave returns to point A
after having been reflected at point Z at the other end of the spring.

Z A
: Pe
M e een—
1
4 Figure B-5

Spring Driven Mass M

Since the effect of the removal of the deflecting force is communicated along
the length L of the spring wire with the surge velocity a, one is justified in
treating this situation in terms of the superposition of a constant compression
of magnitude P. and a leftward moving relieving tensile wave. The magnitude of
the tensile force P(t) associated with this tensile wave will now be derived by
considering the law of motion of mass M under the given circ .istances.

Figure B-6 shows a free body diagram of mass M at the time t = 0 when the
deflecting force P¢ has just teen removed.

B-11
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F=p, - PF(L)

Figure B-6

Free Body Diagram of Mass After Deflecting Force has Been Removed

The only force acting on the mass is the contact force F, which coasists of the
Et vector sum of a force equal and opposite to the deflecting force Pg, (i.e.
acting along the positive y-axis) and the relieving tensile force P(t) of the
tension wave, which may be thought of as acting on the mass in the negative . \
direction of the y-axis. Thus:

F = Pf - P(t) (B-27)
The diffcrential equation of motion according to Newton's Law becomes:
dv |

- = M = B-28

Pe - P(t) = M 2 (B-28)

Now one considers that the velocity of the mass must be identical with the
velocity of the particle at the contact point A as long as contact exists
between the mass and the spring. The particle velocity is only a function

of the tensile force P(t), and therefore it is expressed according to Eq.(B-8):

dv _ dp(t), [T | (B-29)
dt ~ dt mk

Substitution of Eq.(B-29) iato Eq.(B-28) leads to:

Pf—P=——M %E—
vmk

or

dp  /mk vk B-30

TP P ( )

E The compicmentary solution to Eq.(B-30) is obtained by means of the trial

function

c

B-12
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Substitution of this trial function and its derivative into the homngeneous
part of Eq.(B-30) leads to the solution for the characteristic value s:

= " Ymk (B-31)
M
The complementary solution is given by:
- /mk
Wt
P =C, e (B-32)
c 1

where C. is a constant which must be determined from the initial conditions.
The par%icular solution of Eq.(B-30) is now obtained by the Method of
Undetermined Coefficients. With the assumption that

‘ dP
Pp = C2’ and theretére aEB-= 0 (B-33)
one obtains after substitution into Eq.(B-30):
The general solution is then given by the addition of Eq's.(B-32) and (B-33):
-vVmk
¢t (B-35)
P(t) = C1 e + Pf -

It remains now to solve for the constant C1 with the initial condition for
P(t)«

P(0) = 0 (B-36)

i.e, at the instant of the release of the deflecting force P, the rclicving
tension is still zero. Substitution of Eq.(B-36) into Eq.(B-35) leads to:

Cy = - Pf (B-37)
and the expression for the relieving tension force at point A is finally
given by:

- Vo
™
P(t) = Pl - e ) (B-38)

The velocity of mass M, as well as the particle velocity at point A, is then
for the period under consideration according to Eq.(B-8):

p -fok
vy ® «-i(l e M ) (B-39)
vmk

This velocity is along the positive y-axis. The contact force, according to
Eq.(B-27), becomes:

B-13
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F=P,~ P(t) = Pf e (B-40)

f

B. Desirable Change in Notation

To conform with the notation usually found in the literature dealing witl wave
propagation, one considers that according to Eq. (B-12):

k
2 . 2 -
a - (B-41)
and thus

k = a2m | (B-42)

"and accordingly

/mk = am | (B-43\)

- Now consider the exponent of Eq's.(B-38) to (B-40):

/mk = am = am(L) .
M M M(L \

and since \

nl = L the mass of the spring (B-44)

and further according to Eq.(B;26):

2" Ts

one may write:

vk _ s (B-45)

— 5 e

M M’rs
If one introduces

T = ZTS (B-46)
where T represents the time it takes for a surge wave to traverse the spring
twice, then Eq.(B-45) becomes: '

vak Mg (B-47)

MU WMT
Now one introduces

m
. (B-48)
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Thus finally one obtains

AR 29 (8-49)
M T

and Eq.(B-38) becomes:

2a
- =5 t
P(t) = Pf(l - e ) (B-50 a)
-2a
and Eq. (B-39) together with Eq. (B-25) becomes: v, = vy(l-e T—{) (B-50 b)

C. Separation of Spring from Support at Point Z

While the tensile wave travels from point A to point Z the total force Pt(l)
at any location will be given by

Pt(l) = - Pf + P(t) (B-51)
A negative sign has been chosen for compression, i.e. Pf, while P(t) which
represents tension, has been given a positive sign.

Whenever the wave arrives at an arbitrary place between points A and Z, the
magnitude of P(t) corresponds to that at point A at t = 0, i.e. P = 0. The
magnitude of P(t) at the same point at any time At later is found by computing
the value of P{at) at point A. ‘

When the tensile wave arrives at point Z, it is rerlected with the same sign
since the particle velocity at this point must vanish as long as contact is
maintained. (Se¢ also Section 2a of this appendix.)

The total force at point Z before separation has occurred, and after the wave
Ras been reflected is given by:

P..=- P, + 2P(t) (B-52)

tZ f

If one now starts counting time at the instant the tensile wave arrives at
point Z, Eq.(B-52) becomes with the help of equ. (B-50):

2a
- 5 t

PtZ = - Pf + ZPf(l - ¢ ) (B-53)

The spring will leave the support at the time t,, after the tensile wave has

arrived at point Z, when the force P., of the last equation becomes zero. Thus
. tZ

one obtains for Eq.(B-53):

0=P.[-1+2(1-c¢ ) (B-54)

or




This leads to

With the help of Eq's.(B-26) and (B-48) onc obtains:

T M—T n 2 (B-S5)
m.s

[ad
[}
|
i
—
=
[ 2%
i

To find the time of scparation of the spring at point Z when time is counted
from the moment the deflecting force is removed from the mass, one considers:

- - M B-56
T, = TS +t, = Ts(l + - In 2) | ( )

Equation (B-56) is valid only for the mass ratios M/mS < 2,89 and for t < 3Ts.

The time restriction is based on the fact that at t = 3T , cocunted from the
removal of the deflecting force, a further reflection of the wave will take
place at the point Z and Eq.(B-52) ccases to be a valid description.

This consideration is also responsible for the restriction on the mass ratio,
Equation (B-55) is only valid for t < 2T_, with the time counted from the
instant of arrival of the wave at point 2. Thercfore Eq.(B-55) must satisfy:

o1, = L, M Ly (B-57)
S a—m_a
S
Then
M2 (B-58)
mo—In2 " 2.89

This means that whecnever M/ms > 2.8Y the scparation at point Z will take place
at a time later than t = 3Tg, counted from the instant of the removal of the
deflecting force Py, and a new set of equations must be derived.

B-16
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1. Period Between t = 2T, and t = 4T

Separation of Mass from Spring

A. Determination of Contact force Between Mass and Spring

Separation of mass M from the spring at point A will occur when the contact
force between them becomes zero. It is the purpose of the following to determine
this time T, counted from the removal of the deflecting force. Since at this
time the particle at point A will have attained its maximum velocity, it also
represents the instant of maximum velocity of mass M.

Examine now the magnitude of the contact force at point A just an instant before
the tensile wave, which has been reflected at point Z, arrives again at point

A This occurs at t <2L/a = 2T. = T. According to Eq.(B-40), the magnitude of
the contact force for 0 < t < T:

2a

- =t

F=P,e | (B-59)

(With the above sign it represents the force of the spring on the mass in the
direction of the positive y-axis.) Substitution of t = T, or rather a value of
t just a little smaller than T, indicates that the contact force cannot vanish
before the tensile wave is once agsin ref’ .cted at point A.

One need now to examine what happens at peint A when T < t < 2T. The reflected
tensile wave arrives at point A when t = 7. Since there cannot be an abrupt
change of the velocity of the mass, this incident tensile wave will be
reflected as from a fixed end. This type of reflection causes a doubling of the
tensile force of the incident wave at point A,

Note that th:ore are then two waves moving from point A towards point Z:

a. the original tensile wave which was started by the removal of the

deflecting force Pg, and
b. the wave which is reflected from Aat t = T,

Furthermore there is the t-nsile wave mecving “rom point Z toward point A,

In order to determine the contact force at A it is not only necessary to
consider the action of all three of the above waves, but one must also take the
initial compression of magnitude P in*> account.

Now let P, stand for the tensile force of the two waves moving away from point
A. The wave which advances towards point A is merely the wave sent out from
point A at t = 0, delayed a time T due to its travel across the spring and back.
The tension produced due to this latter wave at point A is obtained by
subst’tuting (t - T) for the time in Eq.(B-50), which represents the expression
for the tension produced at point A in the preceding interval, (i.e. 0 < t < T).
Let this force be termed Pj,: -

(B-60)

B-17
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The total tensile force at point A for the interval T < t < 2T will thus be
given by:

P(t) = Pl(t) + Po(t -T) (B-61)

The associated particle velocity is obtained as the difference between the
particle velocity due to the tensile wave going away from point A and the one
due to the wave moving towards point A. Thus according to Eq.(B-8):

v = -—I—[Pl(t) - Pyt - T)] (B-62)

vmk
In order to determine the contact force F for the period under consideration,

one proceeds in a manner similar to the one leading to Eq.(B-40). This means
one must determine Pl(t).

One starts by writing Newton's Equation of Motion for mass M again:

FaM g% (B-63)

(Refer to Figure B-6 for a free body diagram.) The contact force F consists of
the original rightward acting force P, as well as the sum of the leftward
acting tensile forces given by Eq.(B-gl). Equation (B-63) becomes:

dv
£ P(t) = M it (B-64)

Now substitute Eq.(B-61) and the derivative of the Eq.(B-62) into the above:

F=P

Pe - [Py(1) + Pyt - T] = ‘,;—F%?lpl(t) - py(t - 1] (B-65)
With the help of Eq.(B-49) one obtains:

%g[l’l(t) - Pyt - T + -2-%[P1(t) + Pyt - M] = :?.% Pe (B-66)

Equation (B-65) must now be solved for P(t) in order to find an expression for
the contact force F. 2ot

Multiply all terms by e

2at 2at 2at 2at 2ot
dP. (t) dP,(t - T) —
eTa-t-L—+ z%eT P (t) = eTal———-+ 2 py(t - Te T - 22 byt - Te T
2at 2at
(B-67)
2 Fen .y,
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2at
Note that ig%e Po(t - T) has been added to the right hand side of the above.

Equation (B-67) may now be written as:

20:1: Z.OE 2<xt
Sle T p )] = Sle T oyt - M) - K TRt - (B-68)

Integration of the above leads to:

2at Zat 2at

T _ T 40 § T
e Pl(t) = Po(t -T) - S Je Po(t - T) dt

‘ 2at
| s 22p fe T arec |
! T f
: 2at

where C is a constant of integration. Now divide by e

_ Zatf 2ot
_ 4o T T
Pl(t) Po(t -T) - =5 e e Po(t - T) dt

_2at 2t _ 2at
+ 22-e T Pf ] T dt + Ce . T

Now substitute Eq.(B-60) for Po(t -T):

t - 2at 2at t
I SR Vi ch'r B

(B-6%a)

(B-6Sb)

P,(t) = P Pe e -7 (P, - Pe ] dt
_ 2at 2at _ 2ut (8-70)
20 T | T dt + Ce T

-

e e

= Rewrite the above:

| 20D, -5 &
5’9 Pl(t)=Pf-Pfe -—=e Pfe dt
; 2at 2at 2ot {B-71) :

+ da e T Pf eza dt + e T _T Pf T dt

T k
2at J
= |

3

+ Ce T

E After the indicated integrations are carried out, one obtains:

i

. t 2at

I -Zu(f - [4ut T ]

I Py(t) = Pg e v (B-72)
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To evaluate the constant C in the above one nceds PI(T). To obtain it the
following rcasoning is used: The wave which was started at t = 0 has just
reached print A, and it has been rcflected. Since the magnitude of P(0),
according to Eq.(B-50), is zero, both the incident as well as the reflected
wave have zero tension at t = T. The only force present is due to the P(T),
i.e. again according to Eq.(B-50):

x‘ 2aT

- B-73)
PM =PM=pa-c T) (
Substitution of the above into Eq.(B-72) gives:
"; ,I.
2 ) -2a -Za(x - 1) (daT -2a (B-74)
: Pf Pf e = Pf c T [—T—~— 1] + Ce
at t = T. Solving for the constant one obtains:
? -2a
oy - (2 -4a -¢e ) -
3 €= Pe ~Za | (B-75)
: e
; Finally:
!
: t
i ' '20.(—' - 1) =2 - _2_&_ t
; a T 4 2 - 4u - e “°° -
— P (t) = P.[e - daleze e T (B-76)
C

x The contact force F may now be determincd with the help of the left hand side
v of Eq.(B-65), i.e.:

F = Pf - Pl(t) - Pyt - T) (B-77)
Substitution of Eq's.(B-76) and (B-06U) leads to:
t
-2&('—. - 1)
FaPee | [e™%* - dack - 1] (B-78)

B. Determination of the Separation 'lime Ta

The separation time T, is determincd by means of sctting
F(TA) = 0 (B-79)

into Eq.(B-78). One obtains:

T
0=e %% 4a(Tﬁ -1 (B-80)
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2 A-1)
- “(T
since the factor Pfe cannot be zero at t = TA. Finally from
Eq.(B-80):
e-2a
TA = T(; * s ) (B-81)
According to Eq's.(B-46) and (B-4g) respectively:
m
T=2T and 2a=—>
s M
so that Eq.(B~81) becomes:
Zm
- =32
- M M (B-82)
TA = TS(Z + st e )

C. Determination of Maximum Velocity of Mass

Substitution of Eq's.(B-60) and (B-76) into Eq.(B-62) furnishes an expression
for the velocity of the mass M while contact is maintained with the spring at
point A. Thus

t
P, -2a(t - 1)
vV = *jl{e T (i% t+2 - 4a - e'za) - 1] (B-83)
/mk

Now consider that according to Eq.(B-8), and its modified form Eq.(B-25) when
applied to a helical spring:

P
L 1/_8_ =
71";1‘_— 0.991f ZYG VH

Thus Eq.(B-83) becomes:

-2“(%'- 1) 4a

vy= v, le ARt e2-da-e% -0 (B-84)

To obtain the maximum velocity of the mass one evaluates the above at t = TA’
the time of separation as determined by Eq.(B-81):
2mg

e M (B-85)
)

Vmax * VH[-I + 2e

B-21
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- Figure B-7 shows a tabulation of the term in brackets in Eq. (B-85).

Since the expression for the contact force F of Eq. (B-64), which forms
the basis of the present section, is valid only for 2Tg<t<4Tg there will
also be a limitation on the ratio M/mg. TA must be less than 4Ts, and
therefore substitution into Eq. (B-82) leads to:

.2mg
M M
4Ts > T, (24'2-m—se )

This in turn requires that:

_2mg
M

m
4 =55 ¢

M (B-86)

This condition can only be fulfilled for M/ms < 5.69.
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M Value of M Value of
s Factor Ms Factor
0.0 1.00000 2.8 0.56577
0.1 1.00000 2.9 0.55624
0.2 0.99995 3.0 0.54719
0.3 0.99873 3.1 0.53858
0.4 0.99327 3.2 0.53038
0.5 0.98177 3.3 0.52257
0.6 0.96404 3.4 0.51512
0.7 0.94338 3.5 0.50801
0.8 0.91958 3.6 0.50121
0.9 0.89452 3.7 0.49471
1.0 0.86914 3.8 0.48848
1.1 0.84409 3.9 0.48252
1,2 0.81977 4.0 0.47681
1.3 0.79641 4.1 0.47132
1.4 0.77415 4,2 0.46605
1.5 0.75304 4,3 0.46099
1.6 0.73307 4.4 0.45613
1.7 0.71423 4.5 0.45144
1.8 0.69647 4.6 0.44693
1.9 0.67974 4,7 0.44258
2.0 0.66397 4.8 0.43839
2.1 0.64911 4.9 0.43435
2.2 0.63510 5.0 0.43045
2.3 0.62187 5.1 0.42668
2.4 0.60938 5,2 0,42303
2.5 0.59757 5.3 0.41951
2.6 0.58639 5.4 0.41610

2.7 0.57581
Figurc B-7 c:fgi
Tabulation of Fq + i

Lﬂcc cqu.B-85)
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APPENDIX C
DISTANCE TRAVELLED BY MASS M BETWEEN TIME OF SPRING RELEASE AND TIME OF

SEPARATION OF MASS FROM SPRING

The results of Appendix B are now used to determine the distance through which
mass M must travel until it reaches its maximum velocity. This is accomplished
by integrating the velocity of the mass with respect to time between t = 0,
when the spring is released, and t = Ty, when the maximum velocity of the mass
is attained.

Equation (B-39) of Appendix B shows that the velocity of the mass during the
time interval 0 <t < 2Tg = T is given by:

vk '

P - ==t .

V1=_€_(1-e M) (Cl)
vk

Using the change of notation indicated on page B-14, and letting

Pe (C-2)

— =Y

W H

according to Eq's.(B-8) and (B-25), onc may express Eq.(C-1) in the following
form:
Zat
_ B (C-3)
v, = VH(I - e )

where
o = Mg the ratio of spring mass and driven mass

M
T = 2Tg, twice the surge time Tg .

The velocity of the mass for the time interval T < t <2T = 4Tg is given by
Eq.(B-84) of Appendix B:

-Za(-% - 1)

4 -2 C-4
v, = y”[c c—%t +2 -4a - ¢ “) - 1] (c-4H

1. Distance Traveled by Mass M During Interval from t = 0 tot = T

Integration of Eq.(C-3) furnishes the distance Fy, which is traveled by the
mass between t = 0 and t = T. Thus:

T 2a
F = VHJ' (1 -e —Tt) dt (C-5)

0
Performing the integration between the indicated limits leads to:

C-1




Py = vT[1 + 5h(e™2% - 1] (C-6)

2. Distance Travelled by Mass M During Interval from t = T to t = Ty

Integration of Eq.(C-4) between the limits of t = T and t = T, furnishes the
distance F, travelled during this time interval. After rearrangement one
obtains:

2a TA - Q-t - A"-t
Fz = Ve [i%te T + (2 - 4a - e-Za)e ™ _ —%;J dt (C-7)
T e
where, according to Eq.(B-82):
1 -2a
TA = T(1 + Tae )
Term by term integration furnishes the following results:
=2a
T 24 e
A - t v, T -
2a 4 T H 7 -
Fray = Voo SF| te dt = -;-[2«»1-% (dave 2%42)] (C-8)
T
and
T 20
A- e
2 -2
Fay = Ve (2 - 4o - e “)f e T dt
T (c-9)
-2a
v, T -2
H -2a F3
- E-(du + 0 -~ 2)(e - 1)
Furthermore:
TA VHT -2
Pz(c) 6 = VH dt 8 = Tu_e (C-IO)
T
Addition of Eq's.(C-8), (C-9) and (C-10) leads to:
. ‘=20
8
v,,T -
H -
Fp = ——(2 - 26 LI 307 (C-11)
C-2
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3. Total Distance Travelled by Mass M During Interval from t = 0 to t = T,

The total distance F. travelled by mass M during the interval from t = 0 to
t = TA is now obtained by addition of Eq's.(C-6) and (C-11):
-2a

(3]
)] (C-12)

_ _ 1 1 _-2a "2
F, = F1 + F, = VHT[l + 53(3 - 3¢ - 4e

It .o convenient to express the product vyT in terms of the spring deflection

f. Equation (A-43) gives:

Therefore Eq.(C-12) may be written in the following form:

Fe = £Cp (C-13)

where

N o

- 1 e
Cf =2 + 5{3 -3 - 4e ) (C-14)
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APPENDIX D

EXPERIMENTAL INVESTIGATTON

1. Aims of Experiment

The present appendix describes the cxperimental phase of the investigation,
This experimentation had the following aims:

a. Verification ot the "Erwood Curves'" (see Figure D-1) which give the
reliability of the M42G primer in terms of percentage of primers
fired versus firing pin velocity (at ambient temperature). These
curves are plotted for firing pin veleocities between 50 and 300
in/sec with firing pin kinetic energy levels of 16, 14, 12, 10, 9, 6
and 5 inch-ounces respectively.

b. Extension of the above mentioned M42G primer firing curves to the
highest possible velocities attainable by firing pins of comparable
energy levels which arc driven by helical compression springs. This
was to be obtained at both ambient temperature as well as -40
degrees F. The energy levels were to be 16, 14, 12, 10, 8, 6 and 5
inch-ounces. In addition the "Erwood" range was also to be tested at
-40 degrees F.

c. Since the test setup was to use helical compression springs, the
experiment could also serve as a verification of the theoretical
results concerning the velocities of the spring driven masses. (See
Appendix B.)

The following sections discuss the test program, the test setup, as well as
the test results,

2. Test Program

Figure D-2 represents the test program. It gives the various levels of kinetic
energy of the firing pins as well as their masses and velocities at which the
primers were to be tested at both ambient temperature as well as -40 degrees F,
(The firing pin identification numbers are indicated in the upper left hand
corner of cach box.) The velocities range from 50 to 1200 in/sec. The top
velocity of 1200 in/sec was chosen because computation, using the theory of
Appendir B, had indicated that this speed was close to the ultimate one
attainable for such a system. (See computations in Part b below,)

The determination of the firing pin masses will now be shown on hand of an
example: Let it be required to find the mass of a firing pin for an energy
level of 10 inch-ounces and a velocity of 200 in/sec. Consider that

K.E. 1 o (D-1
e - )
where
K.E. = kinetic energy in inch-ounces
m = firing pin mass (lb-seczlin)
v = firing pin velocity (in/sec)

Then according to the above:
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Velo- Mass of | Ident,.
city of Firing No.
Firing Pin at
Pin 16 14 12 10 8 6 5
(in/sec) in.oz. in.oz. in.oz. in.oz. in.oz. in.oz. | in.oz.
50 : ._Z_J 3
600.0 500.0 400.0
100 4 5 6 7 8 9 10
200.0 175.0 150.0 125.0 100.0 75.0 6z.5
150 11 12' 13 14 15 16 17
88.8889 | 77.7778 66.6667 | 55.5556 | 44.4445 | 33,3334 |27.7778
200 18| 19 0 21| 22| 23' 24
50.0 43,75 37.5 31.25 25.0 18.75 15.625
250 25| 26| 27 28' 29 30 31
32.0 28.0 24.0 20.0 16.0 12.0 10.0
300 32| 33 34 325 36 37 38
22.2223 19.4444 16,6667 13,8889 11.1112 8.3334 6.9444
350 39 40 41 42' 43 44 45
16.3265 14,285 12,2448 10.204 §.1632 6.1224 5.1020
400 46 47 48 49 50 51 52
12.5 10.9375 9.375 7.8125 6.25 4.6875 3.9062
500 53 54 55 56 57 58 59
8.0 7.0 6.0 5.0 4.0 3.0 2.5
600 60 61 62 03 64 05 66
5.5555 4.8611 4.1666 . 3.,4722 2.,7777 2.0833 1.7361
200 67 68 69 70 711 72 73
4.0816 3.5714 3.0612 2.5510 2.0408 1.5300 1.2755
{
800 74 5 76 ‘ 7270 78 79 82
3.125 2.7343 2.3437 1.06531 1.5625 1.1718 0.9765
900 81 82 83 184 85 86 87
2.4691 2.1604 1.8518 1.5432 1.2345 0.9259 0.7716
1000 88 89 90 91 92| 93 94
2.0 1.75 1.50 1.25 1.0 0.75 0.625
1100 | 97 99 100 01
1.6528 1.4462 1,2396 1.0330 0.8264 0.6198 0.5165
1200 102 103 104 105 106 107 108
1.3888 1.2152 1.0416 0.8680 0.0944 0.5208 | 0.4340
Figure D-2

Test Program for M42G Primer Firing Tests

(Masses of Firing Pins in lb-scc2/in x 100)
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- KB o 10 595 x 107® (1b-sec?/in) (D-2)
8v? 8 (200)2

3, Test Setup

Figure D-3 shows an exploded view of the test apparatus. The M42G primers are
mounted in a .38 caliber cartridge, and this cartridge is inserted into the
cartridge holder. This holder may be fastened into the front of the tube.
Before its rel:ase, the firing pin is held against the pull pin by the
compression of the spring. This compression is made adjustable by the leadscrew
slider. A scale (not shown) which is mounted on one of the runway cover plates
makes it possible together with the micrometric dial to repeat the spring
setting accurately,

When the firing pin is released, the spring is allowed to expand frecly until
it flies off the supporting lever. To prevent the spring from following the
separated firing pin it is stopped by the end of the slot in which the pad
rides, (The spring leaves its support some time after the firing pin scparates
from the spring. See Appendix B.) It is still to be noted that the spring pad
is fixed to the spring,

Since it was necessary to divide the firing pins into five groups of different
diameters, all parts which repend on the firing pin diameter such as tubes,
levers, etc. had to be made in scts of five. In addition, in order to make the
testing as fast as possible thirty cartridge holders werc made.

The velocity of the firing pin is measurcd with the help of a Fotonic Sensor
Model KD-45 Serial 65 (Mechanical Technology Inc., Latham, N.Y.). The sensing
probe(s) of this:unit consist of 0.082 inch bundles of approximately 800
optical fibers. One half of these fibers transmit a light source, while the
other half may again receive the light source once it has been suitably
reflected. The output voltage of this unit is proportional to the quantity of
the light reflected, and is used to trigger an electronic counter (Beckman
Universal Eput and Tlmer, Model No. 7360).

Depcnding on the size of the firing pin, a single probe or a two probe tcchnique
of measuring the velocity of the firing pin is used. Both methods of mecasuring
are described in Section b below.

a. Design of Firing Pins

In order to obtain the firing pin masses described by the test program it was
necessary to divide them into five groups of different diameters:

Group I: 0.500 inch diameter
Group II: 0.312 inch diameter
Group III: 0.187 inch diameter
Group 1V: 0.125 inch diameter
Group V: 0.093 inch diameter

Further subdivision according to shape became necessary in order to accomodate
the velocity measurements. Figures D-4, D-5a, D-5b, D-S¢, D-5d, D-6a, D-6b,
D-6c, D-7a, D-7b, D-7¢, D-8a, D-8b and D-8¢ Qhow all the firing pins uscd in
the experiment. The masses are given in 1b- sec?/in and in grams and all
relevant dimensions are given in inches. In all cases the pins were made of

D-4
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steel. Their tips consisted of the usual hemispheres of .030 inch radius.
All firing pin masses were held within * 0.5 percent of their theoretical
weights.
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f I.D, Mass '
] No L M
: lb—secz/in gram

1 600 x 10-6 105.077 | 4.042 -
ﬁ‘ 2 500 87.564 3.346 -
.l\ 3 400 70.051 2.648 -

4 200 35.025 2.305 2.930

5 175 30.647 2.020 2.645
b
\
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1.D. Mass
No. L M
lb-secz/in gram

6 150 x 106 26.269 2.817 | 3.127

7 125 21.891 2.372 | 2.875

8 100 17.513 1.927 | 2.427

9 75 13.134 1.483 | 2.000

10 62.5 10.945 1.263 1.763

11 88.8889 15.567 1.730 | 2.230

12 77.7778 13.621 1.532 2.032

13 66 .6667 11.675 1.335 | 1.835

14 55.5556 9.729 1.137 | 1.637

15 44,4445 7.783 0.937 | 1.439

18 50.6000 8./56 1.037 | 1.537

Figure D-5a

Group 1I-1 Firing Pins
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1.D. Mass
No. L M
lb-seczlin gram
16 | 33.3334x10°%| 5.837 0.902 | 1.417
19 43,75 7.661 1.087 1.602
20 37.50 6.567 0.976 1.491
21 31,25 5.472 0.865 1.380
25 32.00 . 5.604 0.878 1.393
Figure D-5b

Group I1-2 Firing Pins
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I.D. Mass
No, L M S
1b-sec?/in gram
17 | 27.778x10°6 | 4.864 1.061 | 1.581 | 1,488
22 25.000 4.378 0.995 | 1.515 | 1.422
23 18.75 3.283 0.846 | 1.366 | 1.273
26 28.00 4,903 1.066 | 1.586 | 1,493
27 24,00 4,203 0.971 | 1.491 | 1,398
28 20,00 3.502 0.876 | 1.396 | 1,303
32 22,2223 3.891 0.928 ] 1.448 | 1,355
33 19.4444 3.405 0.863 | 1,383 | 1.290
Figure D-5¢
Group 1I-3 Firing Pins
10
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. Mass
o L M S
| 1b-sec /1n gram
o
15. 625x10'6 2.736 0.760 | 1.260 | 1.167
29 16.000 2.802 0.769 | 1.269 | 1.176
34 16.6667 2.918 0.785 ]| 1,285 1.192
39 16.3265 2.859 0.776 1.276 | 1.183
Figure D-5d

Group 1I-4 Firing Pins
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I1.D. Mass
No. 2 ™ L M
1b-sec“/in gram
30 | 12.000x10-6 | 2.101 0.902 | 1.402
35 13.8889 2.432 0.995 1.495
36 11.1112 1.945 0.858 1.358
40 14,285 2,501 1,015 1.515
41 12.2448 2.144 0.914 1.414
46 12,500 2.189 0.926 1.426
47 10.9375 1.915 0.849 1.349
Figure D-6a

Group I11-1 Firing Pins
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1.D. Mass
No. L M S
1b-sec?/in gram
31 10.000x10-6 | 1,751 0.833 1 1,353 | 1.260
37 8.3334 1.459 0.760 | 1.260 | 1.167
42 10.204 1.787 0.864 | 1.364 | 1.271
43 8.1632 1.429 0.751 | 1,251 | 1.158
48 9.375 1.641 0.818 | 1.318 | 1.225
49 7.8125 1.3¢o 0.731 | 1.231 | 1.138
53 8.0000 1.401 0.741 1.241 §.148
Figure D-6b
Group ITI-2 Firing Pins
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I.D. Mass
No. L M

‘% lb-seczlin gram
38 | 6.9444x10°% | 1.216 0.315 | 0.690
44 6.1224 1,072 0.275 0.650
S0 6.250 1.094 0.281 0.656
54 l,' 0 1.225 0.318 0.693
5% I 6.000 1.050 0.269 0,644

Figure D-6¢
Group LI1-3 Firing Pins
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1.D. Mass
No. L M
lb-secz/in gram
-
60 5.5556x10°% | 0.973 0.885 | 1.197 ;

E Figure D-7a
: Group 1V-1 Firing Pin
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Mass

L M
lb-secz/in gram
5.1020:10-6% | 0.893 0.548 | 0.860
4.6875 0.821 0.502 | 0.814
3.9062 0.684 0.415 | 0.727
5.000 0.876 0.537 | 0.849
4.000 0.700 0.425 | 0,737
3.000 0.525 0.314 0.626
2.500 0.438 0.258 § 0.570
4.8611 0.851 0.521 | 0.833
4.1666 0.730 0.444 | 0.756
3.4722 0.608 0.367 | 0.679
2.7778 0.486 0.289 | 0.601
4.0816 0.715 0.434 | 0.746
3.5714 0.625 0.378 | 0.690
3.0612 0.536 0.321 | 0.633
2.5510 0.447 0.264 | 0.576
3.125 0.547 0.328 ] 0.640
2.7343 0.479 0.285 | 0.597
Figure D-7b
Group 1vV-2 Firing Pins
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I.D. Mass

No. M S

lb-secz/in gram

65 | 2.0833x10°% | 0.365 0.601 | 0.541
66 1.7361 0.304 0.549 | 0.489
71 2.0408 0.357 0.595 0.535
72 1.,5306 0.268 0.519 0.459
73 1.2755 0.223 0.481 0.421
76 2.3437 0.410 0.639 0,579
77 1.9531 0.342 0,582 0.522
78 1.5625 0.274 0.524 0.404
81 2.469! 0.432 0.658 0.598
82 2.1604 0.378 0.612 | 0.562
83 1.8518 0.324 0.567 | 0.507
84 1.5432 0,270 0.521 | 0.401
88 152.0000 0.350 0.588 | 0.528
89 1.7500 0.306 0.551 0.491
90 1.5000 0,263 0.514 0.454

Figure D-7¢

Group IV-3 Firing Pins
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I.D. Mass

No. L M

lb-seczlin gram

79 1.1718)(10'6 0.205 0.204 | 0,391
80 0.9765 0.171 0.165 | 0.352
85 1.2345 0.216 0.216 { 0.403
86 0.9259 0.162 0.155 | 0.342
91 1.250 0.219 0.219 | 0.406
92 1.000 0.175 0.170 | 0.357
95 1,6528 0.289 0.299 | 0.487
96 1.4462 0.253 0.258 | 0.445
97 1.2396 0.217 0.217 | 0.404
98 1,0330 0.181 0.176 | 0.363
99 0.8264 0.145 0.136 | 0.323
102 | 1,3888 0.243 0,247 | 0.434
103 § 1,2152 0.213 0.212 | 0.399
104 1,0416 0,182 0.178 1 0.365
105 § 0.8680 0.152 0.143 | 0.330

figure D-Ba

Group V-1 Firing Pins
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0.09375

{

0.052 —
- s
i M
I.D. Mass
No. M S
lb-secz/in gram
87 0.7716x107% | 0.1351 0.317 | 0.287
93 0.750 0.1313 0.311 | 0.281
94 0.625 0.1094 0.275 | 0.245
100 y 0.6198 0.1085 0.274 | 0.244
101 | 0.5165 0.0904 0.244 | 0.214
106 | 0.6944 0.1216 0.295 O.ZOS_q
107 § 0.5208 0.0912 0.245 | 0,215
Figure D-8b
Group V-2 Firing Pins
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I.D.l Mass
Ne. "
lb-sec~/in gram

108 [ 0.4340x12-6 | 0.0750

Figure D-8c
Group V-3 Firing Pin
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b. Selection of Springs

Figure D-9 lists the springs which were

firing pins.

used with the

various groups of

Springs Used for Various Firing Pin Groups

D-21

Group I IT 111 Iv v
Lee Cat. LC- LC- LC- Special Special
Number N63G-12 045D-18 024B-15
Wire Dia. 0.063 0.045 0.024 0.022 0.018
(in)
Outside
Diameter 0.470 0.300 0.180 0.117 0.088
(in)
Free
Length 2.500 2,250 2.000 1.500 1,625
(in)
Active 16 22 30 31 48
Turns approx. approx. approx., approx. approx.
Load at
Solid Ht, 29 19,75 5.4 8.5 6.5
(1bs)
Mass of
Spring 8.988 3.888 0.903 0.476 0.355
(grams)

Figure D-9
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The following computation serves to illustrate the manner in which the springs
were selected. In addition it shows that a velocity of 1200 in/sec represents
the upper limit cof the possible velocities for the types of mass spring systems
involved.

Given: A spring for Group V firing pins

Qutside diameter = 0.088 in.
Wire diameter (d) = 0.018 in.
Mean coil diameter (D) = 0.070 in.
Number of active coils = 48

Free length = 1.625 in,
Spring mass (mg) = 0.355 grams

= music wire

Spring material
Firing pin corresponding to identification number 102, i.e.

M - 1.3888 x 10°% (1b-sec®/in)
0.243 (grams)

Required firing pin velocity for identification number 102:
v = 1200 (in/sec)

Find: Is it possible for the present system to impart a velocity of
1200 in/sec to the firing pin?

To obtain the answer to the above question it is first necessary to determine
the uncorrected shear stress which the spring must experience in order to
produce the prescribed firing pin velocity. After that it must be determined
whether the necessary spring deflection ca.a be obtained with the existing
solid height of the spring.

Finally the curvature correction factor must be determined for the spring and
with it one may obtain the corrected shear stress. If the resulting shear
stress is much beyond 200,000 psi it is likely that the spring will take a set
and cannot properly perform.

Equation (B-85) together with Eq.(A-49) gives the maximum velocity attained by
a spring driven mass:
st

TTM (D-3)

Nl

t -
f
Vmax ® T3T(°1 ¢ %€ )
This holds because the spring is made of steel., For a mass ratio M/mg =
0.243/0.355 = 0.685 the factor in parenthesis becomes according to Figure B-7
approximately 0.943. Substituting this factor as well as the desired velocity
of 1200 in/sec in the above one may solve for the required uncorrected shear

stress:

v = 12005 = 166,700 psi (D-4)

The required deflection of the spring is determined with the help of Equations
(A-46) and (A-la):

b-22
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With G = 11.5 x 10-% and the above e one obtains:

£ = 0.595 (D-6)

Since the free length equals 1.625 inches and the solid height equals

(48 + 2) x 0.018 = 0,900, the spring can be deflected a total of 0.725 inches.
Therefore £ = 0.595 is well within the range and the free length need not be
changed.

So far it would seem that the spring is perfectly satisfactory. Now consider
that the spring index

¢ = D= 0.070 _ 3 ggg (D-7)
d 0.018
and that therefore the curvaturec correction factor
_d4c - 1 0.615 _
K = rraray < = 1.417 (D-8)

The corrected shear stress now becomes:

K = 236,200 psi

T = T
cor f
The above becomes marginal when one considers that the shear stress for music

wire should not exceed 200,000 psi by too much.

This high stress means that the spring will take a certain set when assembled
the first time and strain hardening will take place. While this raises the
elastic limit somewhat and allows the newly formed spring to do its job if the
free length remains sufficient, it is not at all desirable when the spring is
to be repeatedly uscd.

There was a certain amount of trouble with this spriny during the performance
of the experiment. It was overcome by such brute force means as stretching the
spring repeatedly.

Since all efforts at designing a better spring failed, it can be safely stated
that 1200 in/sec docs not represent a practically attairable firing pir speed.
(This design difficulty had its rcason in the fact that a single spring type
had to accomodatc many firing pins.)

c. Determination of Firing Pin Velocity

The following describes the manner in which the velocity of the firing pin is
measured. Single as well as two probe methods are involved. 4

1. Single Probe Method

Iigure D-10 shows the essentials of the single probe method of measuring the
firing pin velocity. The firing pin consists of two reflective surfaces
(polished steel) and onc nonreflective surface between them, This surface was
painted with optical black. As the reflective surface no.l passes the probe

-23
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REFLECTIVE SURFACE 1

SINGLE FROBE NONREFLECTIVE SURFACE
CoTICAL DISTANCE

REFLECTIVE
SURFACE 2

Figure D-10
Single Probc Method of Measuring Velocity

the output voltage of the instrument rises a predetermined amount and triggers
the counter. As the nonreflective surface passes the probe the voltage
decreases, while the counter continurs to count. As reflective surface no.2
passes the probe, the voltage rises again, and is used to shut off the counter.

The so called "optical distance'" between the two points which cause sufficient
voltage to switch the counter is determined with the help of a specially
modified micrometer. It has been found that the optical distance is usually
within less than one percent of the actual distance between the steps.

The velocity of the firing pin is determined by the time t which passes as the
firing pin travels through this single probe optical distance Lop:

L
V= —‘t’P- (D-9)

11.Two Probe Method

The two probe method of measuring the firing pin velocity is applicable to the
shorter firing pins, where a rcasonably long optical distance of the type
illustrated in Figure D-10 cannot be realized on the pin itself. (Conversely,
to use the two probe method on the longer firing pins would require too long
an optical distance.) Figure D-11 gives a schematic of the two probe method.

The firing pin is reflective throughout its length. As it passes probe no.1
the output voltage rises and starts the counter. Once the pin has passed nrobe
no.l the voltage drops but the counter continues. When the pin passes probe
no.2 the rising voltage shuts off the counter. Again the optical distance must
be established by a mechanical measurement of the distance of motion required
to operate the counter. This distance conforms closely to the center distance
between the probes. Equation (D-9) is also applicable.

D-24
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Figure D-11

Two_Probe Method of Mcasuring Velocity

In both methods the cptical distance is ot the order of 0.750 inches, and the
veleeity of the firing pin is mecasured approximatcly 1.0 inch from the point

of impact. This general method of measuring the velocity of the firing pin has
been checked independently with a peripherally siotted disc rotating at various
known speeds., Excellent correlation was attained (:1 percent).

d. Test Procedure

The tests werce rur both at an ambient temperatu. of approximately 70 to 75
degrees F and at -40 degrees F. In order to mahe sure that handling would not

wirm up the primers, the cartridges were mountcd in the cartridge holders and
vooled together to -45 degrees F. The number of firings per energy level,

velocity and temperature were planned to be 30, In a few cases there were only

25 firings per identification number, while whon there was any doubt concerning the
result considerably mure tirings were made, Figures b-12a and D-12b show the
number of test firings for ambient temperaturce and -40 degrees respectively.

brgure D-13 gives a typical data sheet from an actual run. This test covers
Do Nu.60, It represents an energy level of 16 inch-ounces at a velocity of
nu in/sec gt -40 dggrccs F. The required mass of the firing yin is 5

“.555 x 107" lb-sec</in, while the actual mass i¥ 5.507 x 10°" lb-sec®/in.
'he average of the optical distance is obtained from four readings as 0.75925
inches. (The firing pin is rotated and reading: are tahen 90 degrees apart.)
Tiue required time for the velocity of 600 in/sec is computed to be 0,001265
seconds,

‘e 30 data sets record the time indicated by tiie cicctronic counter, the spring
compression and whether the primer fired.

D-25
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Ident. Number of Ident. Number of Ident. Number of
Firings No. Firings No. Firings
:==#;==========h============q:: — :::4

1 3 37 60 73 .-

2 30 38 -- 74 30

3 30 39 30 75 30

4 30 40 30 76 30

S 57 41 30 77 30

6 120 42 30 78 30

7 118 43 120 79 30

8 240 44 30 80 30

9 85 45 -- 81 30

‘ 10 90 46 30 82 30

3 11 90 47 30 83 30

] 12 120 48 30 84 60

] 15 119 49 30 85 30

14 210 50 120 86 30

15 360 51 30 87 30

16 330 52 - 88 30

17 480 53 30 89 30

18 30 54 k(] 90 60

19 30 55 30 91 30

20 60 56 30 92 30

21 30 S7 30 93 30

22 240 58 30 94 30

23 120 59 -- 95 30

P 90 60 30 96 3¢

25 30 6l 30 97 30

26 30 62 30 98 30

27 30 63 30 99 30

28 30 64 30 100 30

29 120 65 30 101 -~

1 30 60 66 -- 102 30

31 30 67 30 103 30

32 30 68 30 104 30

33 30 69 30 105 30

34 30 70 30 106 30

35 39 71 30 107 30

] 36 30 72 30 108 .-
3

Figure D-12a
Number of Test Firings at Ambient Temperature
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Ident. Number of Ident. Number of Ident., Number of
No. Firings No. Firings No. Firings
1 25 37 30 73 30
2 25 38 -- 74 30
3 25 39 30 75 30
4 55 40 30 76 3
S 55 41 30 77 30
6 ) 42 30 78 30
7 v 43 120 79 30
8 00 44 30 80 --
9 60 45 .- 81 30
10 30 46 3. 82 30
11 30 17 30 83 30
12 30 43 30 84 30
13 210 49 30 85 30
14 120 50 120 86 90
15 150 51 30 87 -
16 270 52 f -- 88 30
17 30 53 30 89 30
18 30 54 30 90 30
19 30 55 30 91 30
20 150 56 30 92 30
21 150 57 30 93 30
22 60 58 3u 94 -~
23 150 59 -- 95 30
24 120 60 30 90 30
25 30 61 30 97 30
26 90 62 30 98 30
27 90 63 30 99 30
! 28 30 64 30 100 30

29 150 05 30 101 --
30 30 66 - 102 30
31 - 07 30 103 30
32 i 68 30 104 30
33 3u 6Y 30 105 30
34 30 70 30 1006 30
35 LU 71 39 107 30
36 90 72 30 108 --

Figure D-12b

Number of Test Firings at -10 begrees b
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~ Throughout the tests it was made a rule to count only those firings where the

actual time did not deviate more than #2.5 percent from the computed time. (The
stars on the data sheet indicate that the tube was cleaned preceding the
particular firing.)

The 5 in-oz tests were discontinued as it became apparent that it was impossible
to attain reproducitle results.

4. Test Results

a. Results of Firing Tests

Figure D-14 is a tabulation of the results of all the firing tests at both
ambient temperature and at -40 degrees F. It shows the percentage of primers
fired at the various energy levels and firing pin velocities. As was stated
earlier, the 5 in-oz tests were discontinued since it was not possible to
obtain reproducible results.

Figures D-15a and D-15b presents the identical data in a graphical form similar
to the "Erwood Curves'". Figure D-15a gives the results for ambient temperature
while Figure D-15b deals with -40 degrees F.

b. Verification of the Theory Concerning Velocities of Spring Driven Masses

The spring compression associated with each test velocity was recorded for all
data points. (See sample data sheet in Figure D-13.) This makes it possible to
compare the measured nominal velocities (vy) with the theoretical velocities
(vp) which correspond to the actual spring compressions.

This procedure, which allows the determination of a design correction factor,
will now be outlined by way of an example.

Figure D-13 gives the following test results for I.D. 60-B (-40°F):

Firing pin velocity: 600 in/sec
Firing pin mass: 0.975 grams
Spring compression (f): 0.445 inches

This spring belongs to Group IV (see Figure D-9), and has the following
dimensions:

Qutside diameter: 0.120 inches
Wire diameter (d): 0.022 inches
Mean coil diameter (D): 0.095 inches
Number of active turns (N): 31

Mass of spring (ms): 0,476 grams

The velocity v, which corresponds theoretically to the above spring compression
f is now compu[ed with the help of Eq.(D-3):
-2"\5

M

- 3 (D-10)
{-1 + 2e )

'f

VT * Vmax ® 131

The shear stress associated with the deflection f is given by rearrangement of
Eq.(D-5):

D-23
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_Gdf (11.5 x 10°)(0.022) (0.445)

Tp = =3 = 128,500 psi (D-11)
o ab’N (3.1416) (0.095)2(31) :

With
M
m

= 2.05
S

the factor in parenthesis of Eq.(D-10) becomes according to Figure B-7
approximately 0.0656.

Substitution of the above into Eq.(D-10) leads to:

_ 128,500 . _ .,
vT S I x 0.656 = 643.6 in/sec,

This is larger than thec actual velocity of 600 in/sec. The percentage increase
with respect to the nominal velocity is given by:

percentage increase = L —} X 100 = 043.6 - 600 x 100
N, 600

7.26 percent

This mecans that in order to actually attain a certain nominal velocity (vn),
the spring deflection must be computed for a theoretical velocity (vp) which
is higher than the nominal one by a certain percentage. Thus:

Vp = vN(l + CD) (b-12)
where the design correction factor is given by:
Yt~ VN
C. = (D-13)
D VN

Figure D-16 gives a tabulation of the correction factors C, for all test runs.
Except for 1.D. numbers 4 and 5, and whenever the spring took a set, i.e. the
spring characteristics changed, the value of the correction factor does not
exceed 0,25, In the case of I.D.'s 4 and 5 it was found that high friction
between the firing pin and the tube was responsible for the neced of increased
spring compression to attain nominal velocity. (The use of a Teflon spray
proved very helpful in reducing friction.) It nceds to be pointed out that in
the experimental setup the firing pin traveled as far as 4 inches after
separation from the spring in order to facilitatc the vclocity measurement.

In an actual situation the firing pin travel would be much shorter and thus the
possibility for speed reducing friction work would be very much smaller.

The spring set can definitely be avoided by limiting the corrected shear stress
in the spring to approximately 200,000 psi.

Lastly, the presence of the spring pad (sce Figure b-3) contributed to the
slowing down of the firing pin.

For design purposes one may safely assume the general correction factor

Cp = 0.25 (D-14)




Appendix E, which deals with the space optimization of spring driven primer
striker systems makes use of the above general correction factor.
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APPENDIX E

SPACE OPTIMIZATION

The following appendix gives the derivation of the varicus design equations and
outlines the combination of experimental and thcoretical results which leads to
the final optimization methods.

The resulting optimum design tables, which are listed in Appendix F, allow the
design of 100 percent successful spring striker systems for the M42G primer
with minimum space nceds.

1. Free Length of Optimum Spring

The free length of the optimum spring is obtained with the assumption that this
spring is deflected to its solid height and that the spring reaches at solid
height its maximum allowable corrected shear stress,

The deflection (f) may tihcen be detined by:
f = Ly - solid height (I:-1)
where Ly is the trce length of the spring.

When one defines solid height as the product of the wire diamcter (d) and the
sum of the active turns (N} and two extra turns:

solid height = d(N + 2), (£-2)
then Eq,(E~1) becomes:

f= Ly~ d(N+ 2) (E-3)
From the above the free length of the spring is given by:

Ly = £+ d(N +2) (E-4)
As was stated above, the spring is to be designed in such a manner that it
reaches its maximum allowable corrected sheor stress at solid height, In
addition its mass must be sufficient to produce the desired velocity of its

associated firing pin ot mass M.

When the deflection f is such that it produces the maximum allowable corrected
shear stress T, at solid height, then

(E-5)

where
= uncorrvected stress associated with deflection f

4c - 1 0.615
A P I

D : . . , . : .
S the spring index relating mean ¢oil Jdiameter to wire diameter.

, the curvature corrcction factor {42]

tquation (E-5) is now to be expressed in terms of the deflection f,
According to Eq.(A-45):




n P BT, T ni o YA

8PfD
T, =

) nd3

»

and according to Eq.(A la):

Thus Eq.(E-5) becomes:

~ KGd
t = f
¢ ND2x
And finally:
'tanD2 (E-6)
f = Xca )

The mass of the spring, in the sense of Appendix B, is due to the active coils
only:

i} nd? y E-7
mg = N(nD) (T)E (E-7)
and the number of active turns may then be expressed by:
dm g
N= —35_
72yDd2 (E-8)

Substitution of Eq's(E-6) and (E-8) into Eq.(E-4) gives for the free length of
tiie spring:

L. 4msg(tan
0 22y "KGa3

. %&9 + 2d (E-9)

When the above is cxpressed in terms of the spring index c, it becomes:
4m gc?
3¢5 T me 1

D
L. = —————— e —_ —
0% Tk Ttk (E-10)

2. Optimum Spring Mass mg

The optimum spring mass is now obtained with the help of the maximum velocity
equations (D-10) or (B-85):




AT ECY T b i shiaicd )
" T T W IR P T P VP T e T -naw!ﬂ'—l"xm.

‘e 2
= .1 1 4+ 2 ' i
Vip 131( 1 e )} (E-11)

Of course the thcorctical velocity vy must be attained without exceeding the
corrected shear stress 1, at solid height. In addition, the theoretical
velocity(v,) must be cxpressed in terms of the corrected nominal velocity (vy)
a1ccording fo Eq.(D-12). The latter is necessary since the design procedure is
based on the experimentally attained 100 percent firing points as well as on
the experience with the springs.

Thus Eq.(E-11) is written in the form:

1 - % (E-12)

* - ._..L.- - 20
vN(l + LD) = 731 (-1 + 2e )

The required spring mass mg is now obtained from the above:

(E-13)

- g In [-2 In B]

where

131 Kv, (1 + CU)
B - - + 0.5 (-14)

Equation (E-13) is valid only for certain ranges of the factor B: First, as
shown in Appendix B the ratio M/mg < 5.69, and in addition, to obtain a
positive value for mg it is neccessary that 0,606 < B < 1.000.

Therefore for the usual value of the corrected maximum shear stress 1. =

200,000 psi, and the general value Cp = 0.25 (see Eq.(D-14))}, the neminal
velocity which may be used in the above computations is restricted to the
following limits:

C Lo in/sec
[EN(mi;]k 60 in/sec

N (md' X " /

3. Overall Space Requirement of Optimum System

The overall height L. of the mass-spring system is now determined as the
combined length of the firing pin Ly, the solid height of the spring, and the
total distance traveled by the mass M until it rcaches the maximum attainable
velocity which corresponds to the deflectioa 7. The latter dimension was given
as Fy = fCg¢ in Eq.(C-13) of Appendix C.

E-3




With this concept one finds:

t f
Substitution of Eq's.(E-6) and (E-8) leads after rearrangement to:

L. = fC. + d(N + 2) + Lp (E-15)

2
4msgc T mC 1

D
b mr ke Dt % (E-16)

4. Design Equations and Optimization Procedure

The combination of experimental and theoretical results of the present
investigation, which was used to devise an optimization procedure, will now
be explained in detail.

a, Use of Experimental Data

The design procedure aims to recreate those conditions which led to 100 percent
firing of the M42G primers during testing.

To this end the following successful test points (see also Figures D-2 and D-14
in Appendix D) were initially considered:

16 in-oz: 1.D.: 32, 39, 46, 53, 60, 67, 74, 81, 88, 95, 102
14 in-oz: 1.D.: 33, 40, 47, 54, 61, 68, 75, 82, 89, "5, 103
12 in-oz: 1.D.: 41, 48, 55, 62, 69, 76, 83, 90, 97, 104

10 in-oz: 1.D.: 42, 49, 56, 63, 70, 77, 84, 91, 98, 105

8 in-o0z: 1.D.: 71, 78, 85, 92, 99, 106

6 in-oz: 1.D.: 79, 86, 93, 100, 107

b. Space Restrictions and Firing Pin Dimensions

In order to stay within reasonable dimensions for the resulting spring driven
primer striker systems, it was decided that the diameter of the firing pin
(and with that the diameter of the spring) should not exceed 0.375 inches, and
that the overall height of the system, as described by Eq.(E-16) should not
exceed 2.000 inches,

Figure E-1 gives various possible firing pin lengths which correspond to
feasible firing pin diameters for the firing pin masses associated with the
I.D.'s considered, (See last section.) The material is assumed to be steel

(y = 0.283 1bs/in3),

The following diameters are examined for each I.D. number: 0.375, 0.312, 0.250,

0.218, 0.200, 0,187, 0.170, 0.156, 0.140, 0,125, 0.110, 0.100, and 0,093 inches.

Lengths below 0.125 inches were generally excluded.

NOTE: The firing pin is assumed to be a solid cylinder without consideration
of the 0.03 inch length of the tip, or any reduced diameter for
locating it within the inside diameter of the spring.

E-4
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s c. Design Equations

The design equations used in the following optimization proceedure are now
recapitulated:

The free length of the spring is given by Eq.(E-10):

4m_gc? t_mc
Ly » = * %9 N 22- (E-17)

0 “ZYDZ

where according to Eq.(E-13):

mg = - %.1n(-2 1n B) (E-18)
and
131 KVN(I + CD)
B = 5 + 0.5 (E-19)
c
further
D
c=3 (E-20)
and
k=4 -1 0.615 (E-21)
4c - 4 c

The number of active turns of the spring is given by Eq.(E-8):

4m g
S (E-22)

n2yDd2
Finally, the overall height of the system, i.e. the space that must be
provided so that the firing pin can reach its maximum attainable velocity
for which it has been designed, is given by Eq.(E-16):

4m gc? t_mc

a2 (£ 1 .0
Ly n2yD2 o el - Lp (E-23)
where according to Eq.(C-14):
-2a
1 0 2 ) %
cf =2+ ;(3 - ¥ - 4e ) (E-24)
and
s
i (E-25)

Furthermore, the mean coil diameter D of the spring is relaced to the outside
diameter Dy of the spring and the firing pin by the following relationship:

E-8




Dy =D +d=0D(1+ 1
C

therefore

D
D=-0°¢ (E-26)
1 +¢
The correct application of these design equations will now be discussed.

d. Optimization Procedure

Both the free length L, as well as the overall height of the system L., as
given by Eq's.(E-17) and (E-23) respectively are directly as well as indirectly
functions of the spring index c. Because of the complexity of this dependence,
it is not practical to determine the shortest L, and L for a given condition
analytically,

It has proven itself compardtively easy to scarch for that value of the spring
index ¢ which results in the shortest L, under a given set of circumstances.
Figure E-2 gives an example of such a computcr search.

It was desired to find the shortest overall height L, for a system employing
I.D. No. 75 whlch has a nominal velocity v, = 800 1n75ec and a firing pin mass
M = 2.734x10-6 1b-sec?/in (refer to Figure D-2 in Appendix D and to Section 4a

in the present appendix).

The outside diameter D, of the spring and the firing pin was chosen as 0.125
inches, and Figure E-1 indicated that the length of the firing pin had to be
0.304 inches in this case. The program was written to evaluate Eq's.(E-17),
(E-18), (E-22) and (E-23) for Lo, mg, N and L, respectively in addition to
computing the wire diameter d.

The above equations were computed for 3.4 < ¢ < 6.00. The shortest overall
system can be found from the prlntout to correspond to ¢ = 4,2 with a length
of Ly = 1.713. The associated wire diameter is 0.02404 1nches, the number of
active turns are 30.1, and the free length of the spring is 1.277 inches.

The following additional parameters were used in the program:

Y = 0.283 1b/in3 (density of steel)

Cp = 0.25, design correction factor (sec Eq.(D-14))

T = 200,000 psi, corrected maximum allowable shear stress for the music
wire of the springs

g = 386,05 in/sece, acceleration of gravity

G = 11,5x10°%, shear modulus of steel

Similar optimizations have been performed for all I.D., numbers and firing pin
outside diameters indicated in Figure E-1,

Finally, all optimum possibilities with overall lengths less than 2,000 inches,
which correspond to a certain I.D, number, wcre combined on one output shect.
Figure E-3 shows such a typical optimum design table for I.D, 75, (the same as
used above). It now includes the least overall heights for such outside diameters
as 0.200, 0.187, 0.170, 0.156, 0.140 and 0.125 inches.

E-9
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(When comparing Figures E-2 and E-3 it can be seen that Figure E-3 shows
for an outside diameter of 0.125 inches the values which follow directly below
the minimum value in Figure E-2, Thus Figure E-2 gives a minimum overall height
of 1.713 inches, while Figure E-3 gives 1.717 as the minimum. This discrepency
has its reason in the needs of the final program. The error is of course

insignificant.)

Figure E-3 also lists all other necessary design information such as: wire
diameter, number of active turns, free length of spring, as well as its solid
height, (which takes two inactive turns into account).

In addition, the spring mass is printed out for checking purposes. (The value
of the spring masses are very close for all designs for a given I.D. number
since the spring index at optimum is essentially identical for most. (Sce

Eq.(E-18) for dependency on c.))

Appendix F gives all optimum design tables. Their information furnishes all
those systems which are smaller than 2,000 inches in overall height, and assure
100 percent firing for the M42G primer.




APPENDIX F

OPTIMUM DESIGN TABLES

The present appendix lists approximately 215 spring striker systems with
overall length of less than 2.000 inches and outside diameters of less than
0.375 inches. (See Appendix E for background.) All systems correspond to
actual test points and 100 percent firing is assured in all cases. (Note the
1.D. numbers as well as their associated energy levels, firing pin masses, and
nominal firing pin velocities [vN].) As in Figure E-3 of Appendix E the
following complete design information is given:

1. Outside diametcr of the system

2. Length of firing pin (assumed to be a solid cylinder without consideration
of hemisphericul tip of 0.032 inches)

Mass of the spring

Wire diameter of the spring

Active number of turns

Free length of spring (based on assumption of two inactive turns turns of
spring)

Solid height of spring (again including two inactive turns)

Expanded length of spring at maximum velocity of firing pin

Overall height of system

Similar to the tabulations of Figures E-2 and E-3 in Appendix L, the following
values were used in the computations:

0.283 1b/in? (density of stecl music wire)

[« 3N 71 B~ 7]

W o 3

'Y =

Cp = 0.25, design correction facter for velocity (sec Eq.(D-14) in Appendix D)
1. = 200,000 psi, corrected maximum shear stress of spring at solid height

g = 386.05 in/sec?, acceleration of gravity

G = 11.5x108 psi, shear modulus of steel

The computer program, (see sample printout below), was written in MAD (Michigan
Algorithm Decoder), and all computations were madc on an IBM 7040 computer at
the City College Computation Center of the City University of New York,
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a. Computer Program

AR XX Rk Rk ek X

SPRING OPTIMIZATION
RERRRRRK R IR B RE R B K

C = MEAN COIL DIAMETER/WIRE DIAMETER
O = MEAN COIL DIAMETER

DELCY = INCREMENT OF C

FTT = LENGTH OF EXPANDED SPRING AT INSTANT OF MASS SEPARATION
K = STRESS CONCENTRATION DF SPRING
LZERO = FREE LENGTH OF SPRING

M = MASS OF FIRING PIN

MS = MASS OF SPRING

NACT = NUMBER QOF ACTIVE CUILS

NTOT = TOTAL NUMBER OF TURNS

O = OQUTER DIAMETER OF SPRING

OVRALL = OVERALL REQUIRED LENGTH
PINL = LENGTH OF FIRING PIN

SMALLD = WIRE OIAMETER

SOLH = SOLIUV HEIGHT

VEL = EXPERIMENTAL VELOCITY

INTEGER INOZ, 1D, D1
EXECUTE NOHD.
READ DATA
MES = M*1.0F6
THE LAST DATA CARD MUST BF J = 1-THIS IS & SIGNAL TD THE
PROGRAM [HHAT ALL THE NDATA HAS BEEN READ
INTEGER J
WHENEVER J oCa |
PRINT FORMAT NOTESL
PRINT FORMAT NOTESZ
PRINT FORMAT NOTFSH
TRANSFER T START
END OF CONDITIONAL
WHENEVER (1D JNE. ID1) JAND. (ID1 oNFe 0)
PRINT FORMAT NOTES]
PRINT FORMAT NQTES2
PRINT +0ORMAT NUTES?
END QF cunDITIONAL
WHENEVER ID oNF. IDL
PRINT FORMAT DATAL,INOZID,VELyMEO
PRINT FORMAT HDNG1
PRINT FORMAT HHNG2
PRINT FORMAT HDNG3
END OF CONDITIONAL
VECTDOR VALUFS NOTESL= $ltt //7/71H HeTOTAL TURNS 1IF SPRING ARE (RTAINED BY
ADDING 2 TURNS*/1H H*T( NUMBER (JF ACTIVE TURNS®XS
VECTOR VALUES NOTES2 = $L1HOH®ALL UNITS OF LENGTH ARCE IN INCHES*/LIHOHJAL
L UNITS OF MASS ARE IN LB-LEC*SEC/ZIN%ESLJ/IHOH®ALL UNITS OF VE

LOCITY ARE IN IN/SEC**s
VECTLR VALUES NUTES3 = $1HOH*OVERALL HEIGHT OF SYSTEM S ORTAINED BY AD

F-2

Bisaataciidabol
—




VEN CoeCeNaYa MAD SATURD
1 DING EXPANDED LENGTH OF SPRING®/1IH HETO LENGTH (OF PINs%*$

VECTOR VALUES DATAL = BIHLIH®IN=0UZ = #124S104H%1,0e NAe = *13/1H HevelOD
1 ITY = %p06elySIyH¥PIN MASS = %F6,3%%

VECTOR VALUES HDNGL = SLIHOH%0OeDa®S3,Hi%xPINESS yHXSPRINGHSI yHEWIRE#*S3,
I HEACTIVE*S3 H®FREFASIgHELXPANDEND®SG yHEIVOIRALL#*S4,

2 H&SOLID=%x%
VECTOR VALUES HONGZ =81H SO HELENGTHES3 yHEMASS® 54 o HEDIAMK S yH&TURNS *
1 S3,HYLENGTH®S3 HELENGTHR2 (SO HEHFIGHT®)*$
VECTOR VALUES HDNG3 = $1H S4b,HE(QF SPRINGES2 HENF SYSTEM®S2,H®*0F SPRING

?I, f? 1 #%$
2 i FIT = 1u0.

& FTTp = 200,

i THROUGH GAMMA, FUGR C = CSTy DFLOYy C oGs CFILu

WHENEVER FTTP oLe FTI

PRINT FORMAT ANS, 0D, PINL, MSE6, SMALLD, NAGT, LZERM), FTTP, OVRALLSY
1 SOLH

TRANSFER TN NEXT
END DF CONDITIONAL
VE‘CTOR VALUCS AN\ = *lH f".3'S3,"‘1.395}QFbQ‘O'SZ'Fbo‘)Qsl"'5.1'53"'6.3'

1 S33F6e3,564F6e39569F4.3%%

E FTITP = #T1
! V = VEL¥1.25
D = (0D%C)/ (1.0 + C)

K (6.0%C = 10U}/ 1G,0%C = 4o0) + 0.015/C

MG 2 =0 t¥MEELUGS [ ~20%EL0G (VEK/30534435 ¢ 0.5))
MSEe = ML%],0L6

ALPHA = MS/M

KF = 2.0 + (loO/ALPHAIR( 3.0 = O 9%EXP (=2, 0%ALPHA)

1 = G OFEXP (=0 A¥EXP (=2, 0%ALPHAY) ) )
FTIT =(552.8637%C4CEMS)/Z(DRDI&((NJ056634C4KE )/ ¢ 140/C)
l + 2.0%D/C

SMALLD = D/C

NACT =2552.86374MS/ (DHSMALLD%SMALLD)

NTOT = NACT + 2.0

LZERD =(95%2,86374L4C*MS)/Z{0%D) % (001960320 )/K
1 + 1,0/C) ¢ 2.0%D/0

OVRALL = FTT ¢ pINL

SOLH = SMALLDENTOT

CONTINUE

InL = 1H

TRANSFER TO STARI

END OF PR{GRAM

T

K '
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