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Abstract

A space optimization procedure is developed which allows the design of
100 percent reliable spring-firing pin combinations for the M42G per-
cussion primer. Optimum design tables list complete data for approximately
two hundred systems ranging in overall length from 0.500 to 2.000 inches
and in diameter-from 0.093 to 0.375 inches.

j The optimization is based on a combination of results of the theoretical
and experimental phases of the investigation. The theoretical work
employs wave propagation theory for the determination of the maximum
at tainable velocities of spring driven masses. The experimental work
confirmed existing 100 percent firing data (Erwood curves) for the M42G
primer. In addition, new 100 percent firing data were obtained, at various
energy levels, for firing pin velocities up to 1200 inches per second.
All firing tests were conducted at ambient temperature and at -40 degrees
Fahrenheit.

i

-8-



I. Introduction

1. Purpose of Investigation

The present investigation had the following two aims:

a. It was desired to confirm and to extend to higher firing pin velocities
the existing firing curves (Erwood Curves) for the M42G percussion primer.
This experimental investigation was to be conducted both at ambient
temperature as well as at -40 degrees F.

b It was further des~red to devise a design method which furnishes 100
percent reliable spring driven primer striker systems with minimum
overall space requirements for the M42G primer.

2. Outline and Results of Investigation

a. M42G percussion primers were test-fired with firing pin velocities
ranging from 50 to 1200 inches per second at energy levels of 16,14,12,
10, 8, and 6 inch-ounces. These firings took place both at ambient
temperature and at -40 degrees F.

The lFrwood Curves were partially confirmed. That is, one hundred percent
firing of the primers at ambient temperature started at the same minimum
firing pin velocities for energy levels of 16 and 14 inch-ounces. For
12, 10, 8, and 6 inch-ounce levels the minimum firing pin velocities for
100 percent firing were somewhat higher than those of the corresponding
lErwood data. Increases of the velocities beyond the above minimum values
and up to 1200 inches per second caused consistent 100% firings at all
energy levels. While in most cases a slightly higher minimum velocity
was required to fire the primers at -40 degrees F, one may generally
state that there is no significant difference between firings at ambient
temperature and those at -40 degrees F. The attempt to conduct firing
tests at an energy level of 5 inch-ounces was not successful.

b. The theoretical phase of the investigation concerned itself with the
determination of an expression for the maximum attainable velocity of
a spring driven mass in the absence of friction. Existing earlier
work was confirmed to this end. In addition, an expression for the axial
space need of a helical spring which accelerates a mass to its maximum
attainable velocity was derived.

c. An optimization prucedure was devised wlich combines experimental and
theoretical results. It allows the design of :;pring striker combinations
of minimum overall lengths and practical diameters which employ identical
firing pin masses and produce identical firing pin velocities as systems
which have been found one hundred percent reliable during the test phase
of the investigation.

The overall length of the spring striker system, i.e. the combined lengths
of the firing pin and the length of the helical spring when imparting
the prescribed velocity to the firing pin, has been found to be a function
of the spring index (the ratio of the coil diameter to the Aire diameter).

Computer searches for the optimum spring index for various combinations
have resulted in optimum design tables. These tables contain all necessary
physical data for springs and firing pins and overall dimensions for more
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than two hundred .ystems with overall lengths of less than 2.000 inches
and diameters of less thian 0.375 inches. (One of the smallest designs
requires for u diameter of 0.12r inches a total nominal length of 0.763
inches.)

Sections It to IV give the hLghlights of all work which is described in
detail in Apple:idices A to Ii. The use of the optimum design tables ýf Appendix F
is also Illustrated in section IV.

During the Initial phase of the investigation the literature dealing with
percussion primers and explosive initiation [1 - 15]*1, as well as that
dealing with penetration of plates by impacting bodies [16-24], was examined
with the intent of establishing some theoretical criteria concerning firing
pin masses and velocities required to effect primer firing. This effort
proved fruitless and had to be abandoned because of the scarcity of inform-
ation on percussion primer initiation.

1I. Theoretical Investigation

The following outlines the results of the theoretical investigation
which are described in detail in Appendices A, B, and C. Figure 1 shows a
helical spring of coil diameter D and circular wire diam.,ior d which is fixed
on its left end Z to the support S, while its right end A is deflected
through the distance f by

WIRE AXIS

z

SUPPORT S

p

L 0

Figure 1

Helical Spring Without Driven Mass
(Deflected through distance f by force 1f)

Sf

force P) The free lengthi of' thec spring i s 1. . pplendix A gives tho
derivatron of the part i al diEfe runt ial equation for the a.\ i a di splIacement
>,as a functi on of the posit ion x along the wi re axi-s and of time.

'I Numberis iii briackets des ignutQ re'fe rences in Section '
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(See also [32,33,40, 42]). The constant coefficient of the differential
o equation A-16 contains an expression for the velocity of wave propagation,
or surge velocity a, with which a relieving tension wave moves from end A

of the spring wire axis to end Z when the force P1 is suddenly removed. The
discussion preceding Eq. (A-19) shows that whenever the spring index D/d>5,
the influence of the rotational inertia of the spring wire will sufficiently
accoumted for in the following expression for the surge velocity:

a = 0.99 2

I V (4) (d)

SI where

A j spring constant [see Eq. (A-la)]

I L = length of spring wire along x-axis, and embracing all active turns

I y density of spring material

g acceleration of gravity

[I See also List of Symbols]

The solution of the partial differential equation indicates that the maximumvelocity of the free end of the spring, (point A), is attained according to
Eq. (A-41) at the time

s a (2)

after the force Pf has been removed. Ts is defined as the surge time.

This maximum velocity v H of the expanding helical spring is given by
I Eq. (A-48):

vH 0. 9 9 "rf 2 yG (3)

SI where

Tf = uncorrected shear stress associated with deflection f [See Eq. (A-45)]

G a modulus of rigidity

Equation (3) points up the fact that the maximum velocity attainable by the
free end of a given spring is only a function of the shear stress due to its
deflection. This velocity is thus clearly limited by the maximum permissible

1 tuncorrected shear stress. 2

2The corrected shear stress T, w K Tf includes the effect of the curvature
correction factor K, (see (42] and Eq. (D-8) in Appendix D). It must be
considered t6 avoid spring set. Therefore Tf must be low enough so that
TC does not predict set.
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[See also Eq. (A-49) and subsequent discussion on theoretical velocity
limit for steel helical springs.]

When the spring drives a mass M, as shown in Figure 2, the maximum velocity
of point A, and ,with that of the mass M, can also be obtained by way of the
solution of an appropriate partial differential equation. Since a separate
numerical determination of the eigen-values must be made for each occurring

WIRE AXIS
z0

SUPPORT S

"M Pf

fI

L
0

Figure 2

Helical Spring With Driven Mass
(Deflected through distance f by force Pf)
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ratio of driven mass M to spring mass in , this approach is not very practtiL.,
and was not further pursued. In additign, it is limited to cases where the
end Z of the spring remains fixed to the support S at all times, while umas-
M is firmly attached to the spring. In fuze applications it iS not custol tiY
to attach the spring to its support and the mass to the spring. Thus if
enough room is given the spring may fly off of its support and the wass fiyiV
separate from 'the spring.
K. Maier [28,35,36,37] has shown without proof that wave propagation theor'yfurnishes relatively simple analytical expressions for the behavior of sprii,
driven masses. Beyond this it allows for the possible separation of the
spring from its support as well as the separation of the mass from the spri))1,
Appendix B gives derivations of appropriate expressions along these lines.
Starting from the basic concepts of wave propagation in thin prismatical bai-
[2(,.31,39,41] the response of springs without driven end masses is considit.:
first. (Sec also [25,27,29,30,34,38,43]). Equations(B-25) and (B-20) in
dicate that as the relieving tensile wave, which is initiated by the ienmoV;:
of the compressive force Pf, travels from point A to point Z (see Figure I,
the particles along the wire axis acquire the velocity vri as given by Eq. (3.
Once point Z near the support has attained the above velocity the spring
will fly off from the support. This will occur at the time Ts after the
force is removed. [T. is also given by Eq. (2) above.]
For the determination of the velocity of the spring driven mass of Figure 2
it is necessary to distinguish between two time intervals of duration 2'I'
since the wave behavior in each of them differs from the other. Appendix
B gives detailed discussions of these phenomena.
When the compressive force Pf is suddenly removed at t 0 0, the velocity ot
mass M, for the interval 0 < t <2Ts, is given according to Eq. (B-S0W) by:

--2 12 '

v1 = vIf ( - 2 T t

where

T = 2 T
S

Sms mass of the active coils of the helical spring

Eq. (4) is valid for all values of the mass ratio cA.
The maximum velocity of mass M is attained during the interval 2T I i- i
for values of 1/a < .569. Since this range of mass ratios covers all
possible applications to primer systems, no other intervals were considcj0l,
The maximum velocity occurs when the contact force between mass M and tht.
spring vanishes, and the mass separates from the spring. Iquation (B-h2
gives the time of this event for a given system as

T ( 2 1 - 2a
A s (2+ @ )
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after the compressive force is suddenly removed. The mass ratio restric-
tion mentioned above is shown by Eq. (B-86) to be based on the condition
that TA < 4T.

Equation (B-84) furnishes the expression for the velocity of the mass in
the time interval 2T < t < TA
v2 vH e- 2aT- 1) + 2 - 4a- 2e -2a 1

2 If[ T (6)

The maximum attainable velocity of the mass M is given by the evaluation
of Eq. (6) at t = T as given by Eq. (5). According to Eq. (B-85):

e - 2u

Vmax = v 11 ( - + 2e 2

(7)

Figure B-7 on page 13-23 of Appendix B lists values of the term in
parenthesis of Eq. (7) for mass ratios M/mrs from 0 to 5.4.

Appendix C shows now Eq's. (4) and (6) may be integrated to obtain the
total distance Ft travelled by mass NI from the time the restraining force
P is suddenly removed at t - 0 until the maximum attainable velocity is
reached at t = TA. Equation (C-13) gives this distance in the following
form:

Ft = f Cf (8)

where

f = deflection due to the force PfC and
-2a 2(

Cf 2 + 4 3 -
f 2 4 2 )

(9)

The mass ratio restriction NI/m S 5.69 also applies to the above, since
Eq. (6) is involved in its derivation.

Equation (7) which allows the determination of the maximum velocity of
mass M for a given system, and Eq. (8) which indicates the minimum space
needs to attain this maximum velocity play a major part in the optimization
procedure shown in section IV.

Appendix B also indicates, (see pp. B-15 and li-16), how wave propagation
theory may be used for the determination of the time Tz at which a spring which
drives a mass will separate from its support at point Z.

-14-



III Eaxeriinental Invest igat ion

Appendix D reports in detail on all phases of the test program, test
setup, and test results.

Figure D-2 shows the original test program, giving all planned test
points at 16,14,12,10,8,6, ond S inch-ounces of firing pin kinetic energy.
The associated firing pin masses and velocities, from 50 inches per second
to 1200 in/sec, are indicated together with the respective Identification
Numbers. Figure D-3 depicts the test setup. The test firing pins are
described in Figures D-4 to D-8c, and the final design of the test springs
is shown to be based on the results of the theoretical investigation. The
physical data of these springs are listed in Figure D49. In addition, the
two methods of measuring firing pin velocity are discussed together with
all test procedures. Figures D-12a and b report on the number of firingsI at the various test points, both at ambient temperaLate and at -40 degrees
F, while Figure D-13 represents a typical data sheet.I
1. Results of FirinR Tests

Figure 3 gives the results of all firing tests, which were completed
successfully, by indicating the percentage of primers which fired at each
energy level, firing pin velocity, and temperatur( (The test results
within the heavy outlines serve as the basis of tl,,.. Optimum Design Tables
of Appendix F.) The 5 inch-ounce tests proved to be too inconsistent, and
were not completed.

The Erwood data were only partially confirmed. A comparison of
Figure D-1, the original Erwood Curves (which refer to ambient temperature),
with the comparable data of Figure 3 indicates that for energy levels of
16 and 14 inch-ounces both tests showed that 100 percent firing of the
primers starts at a minimum firing pin velocity of 100 in/sec.

For energy levels of 12 inch-ounces and less, the present tests show some-
what higher minimum firing pin velocities for 100 percent firing at ambient
temperature than the Erwood data. For 12 inch-ounces the Erwood data give
a minimum velocity of approximately 100 in/see, while the present test
required 200 in/sec. At 10 inch-ounces the comparable velocities are
approximately 140 and 200 in/sec. The Erwood data show 260 in/sec for
9 in-oz, while present tests indicate for 8 in-oz a reliable value at
500 in/sec. Finally, at 6 in-oz the comparable numbers are approximately
340 in/sec for the Erwood data and 600 in/sec for the present tests.

Just as in the Erwood tests it was found that once a minimum velocity
had been reached which produced 100 percent firing, all higher velocities
would also lead to the same result.

I Figure 3 shows also that in most cases a slightly higher minimum
velocity is required to fire 100 percent of the primers at -40 degrees F
than at ambient temperature. The differences are small enough to conclude
that when one uses a sufficiently high velocity to be certain of firing at
ambient temperature, one also may be certain of firing at -40 degrees F.

SFigure 4 gives such safe combinations of firing pin masses and velocities

which assure 100 percent firing both at ambient temperature and at -40
I degrees F.
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They were chosen in such a manner that fur each energy level the lowest
velocity is at least two subdivisions higher than the minimum one which
produced 100 percent firing during testing.

Finally, Figures 15a and lSb present the results of the tests in the
same form as the Erwood curves.

2. Verification of Theory of Spring Driven Masses
Since the experiment used spring driven firing pins, the data also made

it possible to compare the actually attained velocity of each test point,
which was held within + 2.5 percent of the required nominal velocity v., with
the theoretical velocity vT. (See top of page D-28 for discussion on vN).

As the data sheet of Figure D-13 indicates, the spring compression f was
recorded for each test firing, along with the actual mass of the firing pin.
Appendix D-4b shows how, together with the spring data of Figure D-9, the
above data may be used to compute the theoretical velocity vT according to
Eq. (7).

v was found for all test points to be somewhat higher than the corres-
ponding vN. This is to be expected since the theoretical expression does
not make prjvisions for friction in the system or for certain pecularities
of the test setup. (See bottom of page D-33)

For design purposes the above means that to attain a certain nominal
Svelocity vN, the spring deflection must be such as to produce a somewhat
higher theoretical velocity vT. To this end the design correction factor

CD - VT VN (0

N (10)

was introduced. [See Eq. (D-13)]. This permits the following relationship
between the theoretical veiocity of a given design and the actually desired
nominal velocity:

vi
vT vN( + CD) (1

(See Eq. (D-12)].
In order to attain a generally applicable value for CD which can be used

in the optimization procedure, its individual values were computed for all
tests. Figure D-16 shows this factor to vary between 0.01 and 0.25 for
nominal velocities above 100 in/sec. For the sake of safety, it was decided to
assume always

CD 0 .25, (12)

and accordingly to make Eq. (11)

VT a 1.25 VNr t(13)

for the optimization procedure.

-18-
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IV. Optimization Procedure

Appendix F gives details of the optimization procedure which leads
to the optimiun design tables presented in Appendix F. The optimization
is based on a combination of the theoretical and experimental results of
the present investigation. The optimum design tables give complete physi-
cal details of spring striker systems with overall lengths of less than 2.000
inches and diameters equal to or less than 0.375 inches. These spring firing
pin combinations reproduce the reliable 100 percent firing points given with
in the heavy outlines of Figure 3.

In addition to reproducing proven firing data with the use of identical
masses and velocities as used in the tests, the optimization uses the follow-
ing criteria:

a. The nominal velocity vN associated with each test point is
to be attained by using Eq. (11) which takes the design correc-
tion factor CD into account.

b. In order to make the springs as short as possible the firing
pin velocity v is to represent the maximum attainable velocit/
of the particuTar system. To this end the spring is tc be com-
pressed to its solid height, and the associated corrected shear
stress Tc is to be the maximum allowable one for the material.

c. Only systems with diameters of 0.375 inches are to be initially
considered, and only those resulting systems are to be retained
which have overall lengths of less than 2.000 inches.

1. Determination of Spring Mass

According to Eq. (E-12) one may write Eq. (7) for the theoretical
firing pin velocity vT with the help of Eq. (11):

2ms
Tc e M

vN (1CD) = 131 K I(- 1 + 2 e)

(14)
whenever the spring is made of steel.

With v and M determined from the test point involved, and with I and
CD given, •he required mass of the active turns of the spring is showni by
Eq's. (E-13) and (E-14) to be obtained from the above expression:

ms In 2 In (8]

where

8 131 K vN (I + CD)

2 T 'V 0S
c r (c (

K is the curvature correction factor (42]:

1 •-19-



K 4c- 1 0.615
4c - 4 c

(17)
and

D
= d(18)

The above shows that the mass of the active turns of the spring depends
on the spring index c when M, vNo tcI CD and D are known.

2. Free Length of Spring and Expanded Length of Spring Corresponding
to Maximum Velocity of Firing Pin.

Since the spring is to be compressed through the distance f to its
solid height, its free length L is determined by:

L = f+ Nd + 2d
0 (19)

where N stands for the number of active turn's and 2d stands for two full
end turns of the spring.

The number of the active turns may be related according to Eq. (E-8)
to the mass of the spring in the following way:

N4m g

S2yDd 2  (20)

When the above is substituted into Eq. (19) and the deflection f is
expressed ir, terms of the maximum allowable corrected shear stress, one
obtains for Eq. (19) according to Eq. (E-10):

2
4 ms g c T c n

L =C+) +4 2-O = 2y D2 K G c C

(21)

where

y = density of the spring material

G = modulus of rigidity

At the instant when the maximum velocity of the firing pin has been
reached, its total tray 1 is given by Eq. (8). With its help one obtains
the expanded length of the spring Lex at this instant from

Lex O fCf + Nd + 2d

(22)
where C is given by Eq. (9). With the appropriate substitutions for f and
N, as fgr Eq. (21), one obtains:

-20-



I L - 2 yDG 2 K G c )

1 (23)

3. Overall Length of System at Instant of Maximum Firing Pin Velocity

The overall length L of the spring- firing pin system at the instant
of maximum velocity of thS firing pin is given according to Eq. (E-16) by

SLt = Lex + L (24)

I where L represents the length of the firing pin.

4. Choice of Firing Pin Dimensions and Coil Diameter of Spring
While each successful test point has a definite mass associated with its

firing pin, there are many possibilities for the firing pin dimensions. To
avoid unnecessary complexity it was decided to assume the use of cylindricalIfiring pins of constant diameter for the optimization procedure. The .030 in
lengthof the hemispherical tip of the firing pin as well as any possible re-
duction in diameter, which might accommodate the seating of the pin within the
spring, was disregarded.

Figure E-1 shows the results of computations for the length Lp of such
steel firing pins for all eligible I.D. numbers, and outside diameters be-
tween 0.375 and 0.093 inches. In general, firing pin lengths of less than
0.125 inches and more than 2.000 inches are omitted from the table.I
5. Optimization of Overall Length of System

I Appendix indicates that once a choice has been made concerning the out-
side diameter D of the spring and the firing pin, the length Lp of the pin,
as well as the Fpring material, the overall length Lt of the system for a
given I.D. number depends only on the spring index c.

While it is not possible to find an analytical expression for the spring
index which produces the shortest system, an appropriate computer search
which varies the spring index will produce the desired result. The spring
index which gives the minimum overall length Lt for a given set of conditions,
also furnishes the shortest free length Lo and the shortest expanded length Lex
of the spring.

The optimum design tables of Appendix F give the results of such computer
searches. Each table represents a single test point (I.D. number) wherereliable 100 percent firing occurred, and enumerates the following data for

various firing pin outside diameters Do and associated firing pin length L:

a. Mass of active turns of the spring, according to Eq. (15).
b. Wire diameter corresponding to optimum c for given Do.
c. Number of active turns of the spring, according to Eq. (20).
d. Free length of the spring, corresponding to optimum c, according to Eq. (21).
e. Expanded length of spring, corresponding to optimum c, according to Eq. (23).
f. Overall length of system, corresponding to optimum c, according to Eq. (24).
g. Solid height of spring, including two end turns.
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All computations are based on the assumption of steel springs and firing

pins, and the following data are used:

y = 0.283 lbs/in3

"Tc = 200 000 psi

G = 11.5 x 106 psi

g = 386.05 in/sec2

CD = 0.25

[See also discussions in Appendices E and F.]

Figurc 5 is typical of the optimum design tables of Appendix F. It treats
I.D. No. 67 which had a firing pin velocity v of 700 in/sec and a firing
pin mass M of 4.0816 x 10-6 lb-sec'/in at an energy level of 16 Inch-ounces.

The following example makes use of one of the designs of I.D. No. 67,
and illustrates the use of the tables:

Example

When one chooses an outside diametex Do = 0.156 in., the following dimensions
are given by Figure 5:

Length of firing pin (L) 0.291 in. -6 2
Mass of active turns ofPspring (m ) 3.4957 x 10' lb-sec /in
Wire diameter (d) 0.03319 in.
Number of active turns of spring (N) 14.3
Number of total turns (N + 2) 16.Z
Free length of spring (L ) 0.786 in.
Expanded length of sprin? (Lx) 0.816 in.
Overall length of system (L tx 1.109 in
Solid height of spring 0,541 in.

It must now be recalled that the tables give the overall length Lt
by considering firing pins where neither the hemispherical tip nor a
reduced diameter for seating the pin inside the spring has been accounted
for. Let these design factors now be considered. With a spring O.D. of
0.156 in. and a wire size of 0.03319 in. the inside diameter of the spring
is approximately 0.089 in. Allowing for sufficient clearance, one lets the
seating diameter of the firing pin be 0.080 in.and its length 0.125 in.
Figure 6a shows the resulting firing pin design which maintains the mass
of the pin at 4.0816 x 10" 6 1b-sec2/in, while allowing for the addition of
the seating diameter as well as the hemispherical tip. The resulting length
of the 0.156 diameter is 0.255 in., and together with the 0.030 length of the
tip the active length of the firing pin becomes 0.285 in. This length must
be added to the solid height of the spring to determine the nominal space
which the system requires when the spring is compressed. (It serves to locate
the release mechanism.) This length must also be added to the expanded spring
length to determine the space requirement at maximum velocity firing.
Figure 6b shows the first dimension as 0.541 + 0.285 a 0.826 in., (not taking
some necessary clearances into account). The actual overall length of the
system has to be 0.816 + 0.285 a 1.101 in.
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_0.285
5 0.030 R. SPHERE

0.12.5 -0. 255I-

0. 080 ± 0.10.060 +0-00

EDJ OA.O3I

a.

1.101

b.

Fi gure 6

Typical Application of Optimum Design Tables

a. Firing pin design

b. Space requirements for system both when spring is compressed and when expanded
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Minor size dcvi at ions from the opt imu[I d(s i ',n tals di. t necssar S cd Ia r-
antes and part tolerances, (includin4g change' iln wi re si :e of 1..0()03 in.
will not influence the results to any extent since the factor C has lecnI
chosen sufficiently high.

It has to be kept in ;,iind though that in order to avoid spring set durn
assembly the corrected shcar stress ic should never exceed its iunoer limit 1t"
approximately 200,000 psi at solid heiglht.I
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S I APPENDIX A

HFPLICAL SPRING AS A DISTRIBUTED SYSTEM

1. Derivation of Partial Differential Equation

I a. Definition of Terms

3 Figure A-I shows a helical spring which is held on one end against the fixed
surface S while its other end is deflected through the distance f by the
axially applied force P The indicated x-coordinate is measured along the
helically shaped centerfine of the spring wire. The y-axis is coincident with
the coil axis, and the coordinate y = y(x,t) describes the instantaneous
positions of all points along the x-axis.

I WIRE AXIS D

SUPPORT 5

Pf Y y y(x~t)

: Figure A-1

SHelical Spring Terminology

SmThe following terms must now be defined:
Sd z wire diameter

SD a mean coil diameter
L s length of spring wire (along x-axis and embracing active turns)

iN w number of active turns

SL0 a free length of spring
V' w f/N, deflection per coil due to force Pf

!•A - cross-sectional area of wire (wd /4)

JO polar moment of inertia of wire cross-section (wd4/32)
i •y density of spring materialg 386.05, acceleration of gravity (in/sec2)

•' G • modulus of rigidity

IA-1
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The spring constant (,) of a helical spring is given by:

S= Pf = Gd'# (A-la)

-F 8D3N

The spring constant per coil of the spring becomes:

cl "' Pf = XN = Gd4  (A-lb)
• - 8D3

The spring constant per unit length of spring wire is given by:

k = XL = Gd4 L = Gd4 (iTDN) = Gd4n (A-ic)
8D 3 N 8D 3N 8D2

b. External Forces Acting on Element of Length dx

ni

m
m - - - 1

I-XSI. , t.-' -- 9 / /
\I . .// _/_i - -- / .

IdN

S, v-AXIS
YI~n

Figure A-2

Spring Element of Length dx

If the element of length dx of Figure A-2 is deflected so that the axial
displacement corresponds to dy, one may use the following proportionality

dx = d , (A-2)
L/N f'

A-2



SI i.e. dx bears the samne relationship to th- length of a single coil as dv has to
the deflection of a single coil due to an applied force. Therefore usivr',j partial
derivatives

ay f'N (A-3)

Tx -L

now consider the force in the y-direction at section m according to Eq.(A-lb)

Pm =f (A-4)

I and substituting the value of f' according to Eq.(A-3) gives:

I py _ (A-S)m N )x

IThe force at section n is obtained by a Taylor Ser.es expaits 4on of P1o, i.,ý.

pP = P + a (P)dx = P + c'L _2_ dx (A-6) Sin m - m -I

IAssuming that Pn acts in the direction of the positive y-axis. the sum of the
external foices EF, acting on the element is given by:

IF = P-n P = P - cla2vdx - P

I
or

EF c'l, 2 dx (A-7)
I N x2

c j.c. D'Alember. Forces cting n Element of Length dx

Translational D'Alembert Force

I The D'Alembert force due to the translational acceleration of the element of
mass dm is given by:

F Fvt -- dm 32y (A-Sa)

•' I at2

With

dm * ywd- dx

4g
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the above becomes:

=Ft ynrd 2 dx a2

4g -b

FDt (A-b

D'Alembert Force Derivable from D'Alembert Moment

Figure A-3 illustrates that the application of an axial force in the direction
of the positive y-axis does not only lead to the axial deflection dy of the
wire, but also causes it to rotate about the x-axis through a counterclockwise
angle do.

¢¢W

ROTATION

do

AXIAL DEFLECTION dy D

D IRECTION

OF FORCE

Figure A-3

Rotation About Wire Axis Due to Axial Deflection

This rotation leads to the angular acceleration d 2o/dt 2 , and therefore to the
following D'Alembert moment per unit length dx:

MD - J y dx d2_ (A-9)
- dt 2

g

Since any moment may be expressed in terms of the product of a force and a
distance, one introduces a "rotational D'Alembert force" (TDr) which is
defined by:

MD T D.

where D represents the mean diameter of the coil. Then

A-4
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TDr =MD 2
r D

Equation (A-9) then becomes:

T 2J0Y dx d2o (A-10)
r gD dt2

The angle do is related to the axial deflection dy by:

dy = 2 R sin- E do (A-li)

J Using partial derivatives one obtains:

'"-2 -2 • 2 y (A.-12)
20 = DDt D t2

Substitution of Eq.(A-12) into Eq.(A-10) results in:

TDr 04J dx ý2y (A-13)
Dr 2

d. Partial Differential Equation of Motion

The differential equation of motion of the helical spring with circular wire
is obtained with the help of D'Alembert's Principle-

I F+ ZTD = 0 (A-14)

Substitution of Eq's.(A-7), (A-8b) and (A-13) into the above yields:

I c' L dx - Uld2 + 4J0o] y dx - 0 (A-15)

Y~ -47 D2 J it2

Rearrangement leads to the following result:

I a 2 Dy 2 •y (A-16)
I •X2  3t2

where
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a 2  c'Lg 1 Ag (A- 17)
NY [4d2 + 4 JO1 Y [rd + 4 JO

e. Influence of Term Containing Polar Mon,,ht of In a J on the Velocity of

Wave Propagation

The expression
a

V yU_ +4Jo] .- 8)

as given by Eq.(A-17) represents the velocity of wave propagation or surg(
velocity of a helical sprin'; with circular wire. (See also Appendix B-3b.)
It represents the velocity with which a disturbance is propagated along the
x-coordinate of the spring. In order to examine the influence of the term
4J/D 2, which accounts for the rotational inertia of the spring wire, let
Eq.(A-18) be written in the following form:

a =I ,Xg (A-18)
+ 0.5 (1•_ • (Rd

The term .i 1 equals 0.990 for a spring index D/d = 5, and it becomes

equal to 0.994 when [)/d = 10. Sincle the above range of spring indices is
usually encountered in practice, one may write Eq.(A-18) for all springs in the
following form:

a = 0.99 Y (L.d_ (A-19)

4

A-0



2. Determination of Maximum Attainable Velocity at Free End of Helical Spring

The following uses the partial differential equation (A-16) to determine the
r displacement y(x,t) as well as the velocity y(x,t) of a helical spring which is

fixed on one end to the support S (see Figure A-1), and whose other end is
initially compressed a distance (-)f before it is released.

The solution of the above makes it possible to find the maximum attainable
velocity of the free end of the spring.

a. Boundary Conditions

I •Since the spring wire remains fixed to the support(s) at all times

y(Ot) = 0 (A-20a)

The spring is free at x = L. This is expressed by saying that there is no force
at this point and therefore there is no strain. The force at any element was
described by Eq.(A-5)

m -N ax

-i; I Since c'L/N , 0, for Pr(x = L) = 0, the second boundary condition must be:

o (L,t) 0 (A-20b)
ax

b. Initial Conditions

Let it be assumed that the initial deflection of all elements along the x-axis
!I is proportional to the deflection (-f) at x = L. Thus

y(x,O) = - f x = f(x) (A-21a)
L

Since all parts of the spring are standing still when t :, the secondI initial condition becomes:

I(tx,0) = 0 = g(x) (A-21b)

at

c. Solution of the Equation of Motion

I Using the method of separation of variables for the solution, one lets

y(x,t) = X(x)T(t) (A-22)

To satisfy Eq.(A-16), one must letj X(x) = ClCosXX + C2sinXx (A-23)
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whilu

'I(t) = C3 cOs~at + C4 sin) at (A-24)

The coefficients Cl and C2 are now found from the boundary conditions of
Eq's. (A-21a) and (A-21b)

X(O) = 0 = C1 (") + C2 (0) (A-25a)

and thus

C1 = 0 (A-26)

Furthermore

X'(L) = 0 = C 2cosAL (A-25b)

For a nontrivial solution, where C2 0 0, one must satisfy

cosXL = 0

This occurs when

XL = nit (n=l,3,S,.. odd)

and thus the cigenvaluc A must be

A = fitit (A-27)
2 L

Equation (A-23) then becomes:

X (x) = C sin -jx (A-28)

i.e. there will be an Xn(x) for each i.
Similarly Eq.(A-24) takes the form:

T (t) = A cos -r-t + B sin -at (A-29)
n 11 2L- n 2

The total solution is a sununation of all Xn(x)Tn(t) according to Eq.(A-22):

nra nira .nni
y(x,t) = (nDcOs --t + EntLt )sinVLx (A-30)

n=l,3,... odd

Since Eq. (A-21b) shows that all initial velocities are zero, i.e. g(x) = 0, it
follows that

En = 0 (A-31a)
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Equation (A-21a) serves for the evaluation of DlI1, Thus:

y(xO) AfX) D si) Slax (A-311))

1 3,... odd

To evaluate Dn multiply both sides of Eq.(A-31b) by sinm-Ex dx and integrate

between 
0 and L:

xLr , ni1 m. dxT

sNX dx D i n1)-ix dx (A-32)
-~ jx 20nxd JJ~~I 2L
S1,3 odd 0

J For m # n the integral on the right hand side of Eq.(A-32) vanishes, i.e.

LL L 111 11 I
sillsn ""' L1~ dx = cs(n-in) ni x dx - cos(n+m)ii x dxJ T 2 J 21.

= L siln(n-m) lix - sin(n+mn) 'nx = 0
7 1 ( ii-m ) 2 L 1 0 (n +m ) 2 L 0

The above is. proven as follows:
a. For in = odd: Since n = odd, -ill (n-m) as well as (n+m) will be even,

sin(n-rn) n/2 and sin(n+m) '/2 will havc the form sin(kT),
where k = 1,2,3,....

b. For w = even: Since n = odd, all (n-m) and (n+rn will be odd, and the
difference between (n+m) and (n-n) will be equal to 2m.
Thus (n+m)ii/2 and (n-re)ir/2 are angles which are mtr radians
out of phise, and the signs and values of the sine
functions are identical.

For mi n Eq.(A-32) bcomes:

.stn-Tx dx 1 il Lsin 2 
-- x dx (A-33)

0JI 1,3,...odd 0

Since

sn 21X dx = f( 1 - X) dx L (A-34)

A-9



one obtains

-D 2J x siný--{x dx (A-35)
n L2

Integration by parts of the above leads to:

n 2 T 8f 1in- (A-36)

Equations (A-31a) and (A-36) are now substituted into Eq.(A-30), and the
solution is given by:

8f nir . n n-ny(x,t) 12,2 sin- sin•n-x cos--at (A-37)
n=l,3,... odd

d. Maximum Velocity of Free End of Spring

Equation (A-37) becomes for the free end of the spring, i.e. for x =L:

8f n if (A-7ay(L,t) 8f sin 2  - C
1 2.T 2 CW tL'-8a

n=l,3,... odd
and since

sin2  = 1 , for n=l,3,... odd

one may write the above as

y(L,t) 8f r, 7T (A-38b)n2 7t2

n=1,3,... odd
The velocity at x = L is given by differentiation of the above:

Z4fa . n-
-- (Lt) nnL Sn--s at (A-39)
at

n=1,3,... odd
To find the maximum attainable velocity at x = L, one differentiates again
with respect to time and sets the result equal to zero:

a2y(L,t) = 0 = y4fa 2  
0  (A-40)

Dt .7ý L cos2L-at•t•2L 2  2
n=l,3,... odd

The series will vanish for all n for the first time when

at = 1
LA
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i.e. when,

t = TS_- L (A-41)

t = Is is known as the surge time. 1his is the time it takes for the
releasing tension wave to travel along tile full length (L) of the wire with
the surge velocity (a). (See Appendix B.)

Substitution of Eq.(A-41) into Eq.(A-39) gives the maximum velocity at x = L
during the first cyclic motion of the spring:

D (LL) Z4fa . nv
VMAXL a :iL s1n-2 (A-42)MAXa nt 2

n=l,3,... odd
To evaluate the above consider lsin(nii) for various values of n odd:

n 2
n = 1: lsin(ni7) = I

n 2

n = 3: Isin(nII7 ) -1
n 2 3

n= 5: lsin(nii) _1 ; etc.
n 2 5

Since

sin nn/2 7_
n 4

n=l,3,... odd

equation (A-42) may be expressed as
fa

V (A-43)

Now if Eq.(A-19) is substituted for (a) in the 'ibove, one obtains:

V A V 0.99f Xg (A-44)
MAX HI ly (1d24.) jA4

L -4 )

The symbol VH is used throughout this report for the maximum velocity
attainable by the free end of a helical spring (which does not drive any mass).

Now consider that the deflection f may be expressed in terms of the spring
constant A, and the respective load Pf, i.e.

Pf

Further, the shear stress Tf which corresponds to f is given by

A-11



8P f D 
(A-45)£f ,d 3

so that

Tfl~d3

f = 8D3 (A-46)

Substitution of the above into Eq.(A-44) leads to

V1 = 0. 9 9 T1f (A-47)

Further substitution of Eq.(A-lc) for the spring constant per unit length of
wire (AL) gives

Vif = 0.99T f/7I (A-48)

NOTE: For a spring made of steel with y = 0.283 lb/in3 and G = 11.5x10 6

TfV Ii 'x (in/sec) (A-49)

With a permissible Tf = 200,000 psi, (in absence of curvature correction), the
velocity of the free end of a spring becomes 1527 in/sec.
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APPENDIX B

DETERMINATION OF VELOCITIES OF FREFLY EXPANDING SPRINGS AND SPRING DRIVEN

MASSES BY MEANS OF WAVE PROPAGATION THEORY

K. Maier [35-37] ha.s shown without proof that waive Proravation theory may be
used to excellent advantage for the determination of spring velocities under
various circumstances. This approach furnishes simple design equations without
requiring the knowledge of eigenvalues of the partial differential equation.
"(See Appendix A.)

The following work gives the derivations of the above mentioned design equations,
starting with the underlying principles of wave propagation in prismatical bars
[311.

1. Longitudinal Pressure Waves in Thin Pristiatical Bars

Concepts of Particle Velocity and Velocity of Wave Propagation

K. at r ] _ _ _ __

P 1(a)

Figure B-1

Initiation and Transmission of Pressure Wave

a. Pressure wave of length Z is initiated.
b. Pressure wave travels across bar.

Figure B-1 shows a thin long ,,niform bar of elastic material. If a uniformly
distributed load P is suddenly applied to the end of the bar, and acts for a
time t, then a pressure wave will be started at this end, and it will move
along the bar. This pressure wave represents a zone in which the material of
the bar is under compression.

In front of the zone as well as behind it the material is entirely uncompressed
and at rest. At each instant new material in front of the zone is about to be
compressed, while at the same time material at the rear of the zone is losing
its compression.

B-1



Thus the zone can move along the full length of the bar, although individual
particles have only the small motion involved in compression and decompression
as the zone passes.

The velocity with which the pressure zone advances along the bar is termed the
wave propagation velocity (a), while the velocity of the individual particles
within the pressure zone is called the particle velocity (v). This phenomenon
may be explained as follows: When the force P is applied it compresses the
material near the end of the bar. The compressed portion is shortened slightly,
i.e. some of it experiences a displacement, and in being displaced is given a
velocity. (This velocity is towards the right in Figure B-I.) It strikes the
stationary material in front of it and compresses it, and starts it moving. In
so doing it is stopped itself, and the zone of compression moves foward. Thus
the material in the compresbed zone always has a certain velocity, while the
material in front of it and behind it is at rest.

Expressions for the particle velocity as well as for the velocity of wave
propagation will now be derived. Let the following magnitudes be defined:

P = magnitude of compressive force
t = time during which the compressive force acts
L = length of bar
k = length of compressive or tensile zone
v = particle velocity
a = velocity of wave propagation
E = modulus of elasticity
A = cross-sectional area of the bar
m = yA(l), the mass per unit length of bar

g
y = pg, density of bar material (lb/in3 )
g - gravitational constant PL
k = EA, stiffness constant per unit length of bar, from E =

P EA
one obtains the stiffness of the total bar as 3= UL "When
L equals unity, the above expression results.

a. Particle Veloity

When the zone of length k, (see Figure B-1), is compressed by the force P, it
is foreshortened by the amount

d Pi Pi (B-1)

EA rF

During this period force P does the work

a *Pd -p2t (B-2)
P -I-

The kinetic energy of the mass in the zone of length k is given by:

E * 2-ilv 2  (B-3)
K 2

The strain energy of this zone is found from the unit strain energy in
compression or tension:

B-2
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where
= compressive or tensile stress

S= compressive or tensile strain due to a
Thus for the zone of volume At one obtains

S1 P dZ (A p 2k (B-5
E =( T- A) -k~(2.A) _P2s 2 tA (I k - (=-)

The energy balance of the compressed zone is given by:

Wp = EK + Es (B-6)

or with the help of Eq's.(B-3), (B-4) and (B-5)

f p22 m + v P2

k 22 (B-7)

Note that the above shows that the total energy in the zone is half potential
and half kinetic. Equation (B-7) is now used to determine the particle
velocity:

v =P (B-8)

When the above is expressed in terms of the stress and the mass density p,
one obtains:

v = a (B-9)

Equation (B-9) shows that the particle velocity depends entirely on the stress
applied to a given bar.

b. Velocity of Wave Propagation

During a time dt the pressure zone advances the distance adt, where a is the
velocity of wave propagation.

The associated change of momentum experienced by an element of length adt is
given by:

m (adt) (v - 0) = m (adt) Pjl (B-10)

According to the Principle of Linear Momentum, this momentum change equals the
impulse experienced by the mass involved. Since the compression P represents
the only force acting, one obtains:

P dt = m (adt) (B-li)

The velocity of wave propagation: may now be determined as
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a = (B-t2)

ur iih different terms:

a=VL (B-13)

Equation (B-13) indicates that the wave propagation velocity depends entirely
on the material properties of the bar.

It should still be rointed out that wghen dealing with the above described
compression wave, lie :locity of the individual particles has the same
direction as that of the advancing wave. In a tension wave the velocity of the
individual particles is in thi opposite direction to that of the wave
propagat ion.

2. Superposition of Waves

Wave Reflections at Free and Fixed Ends of Bars

Superposition of wi'ves is valid as long as the material follows Ilooke's Law,
and there is no friction. The resulting force or strL:;s level, as well as the
resulting particle velocity are the vectorial sums of Ahe respective
:omponents. In the following discussion it is assumed that the bar is of
constan. cross-section and of the same material throughout.

a. Two Compressiont (or Tension) Waves Meet

Figure B-2 depicts the conditions of the forces and the particle velocities
when tvo compression waves meet. It is assumed that both ends of a prismatic
bar e>perience suddenly applied and uniformly distributed com, ression loads of
diffeient magnitudes and durations. Similar conditions would prevail if both
waves were prKoducedby censile loads. Part (a) shows the two wzves of
compression Ill and F2 traveling towards each other with identic,, absolute
values of wave propagation velocity a. The particle velocities .F both waves
have the same dircctio-is as their associated wave propagation veocities.
Sinc,, v1 is dcfined as having a positive direction, the direction of v2 is
courted as negative. 'In the case of two tension waves these sign! would be
reversed.)

Whcn the w-ves meet, as shown in part (b), the resulting compressio.i force
PR becomes:

)R = - + P2 = P1 + P2  (B-14)

The resu ting particle velocity is obtained with the help of Eq.(B,-8):

PI - P
VR a VI + V2  ;; v1  " v2  = (B-is)

Thus irae stress level is increased, while the particle velocity becomes
small.r than the largest component velocity.
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V2

Figure B-2

Two Compression Waves Meet

a. Before meeting

b. At meeting

c. After meeting
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Part(c) shows that once the waves have passed each other, each continues with
its original stress and particle velocity.

The above allows a certain deduction concerning the stress at the fixed end of
a bar or a beam. Due to the fixity there cannot be any particle velocity at
such a point. To assure this condition, the stress of the reflected wave must
be of the same magnitude and sign as that of the incident wave. This causes
the particle velocities of thd reflected and incident waves to be equal in
magnitude but of opposite signs. While the particle velocity at such an end
point becomes zero, the stress doubles.

b. One Compression and One Tension Wave Meet

Figure B-3 indicates the conditions of the forces and the particle velocities
when a compression and a tension wave meet. Part (a) shows both waves traveling
towards each other with identical absolute values of wave propagation velocity
a. Load T1 is compressive, while load P2 is tensile. The particle velocities
71 and v2 have identical signs and are positive.

Part (b) shows the meeting of these waves. Because of the signs of the
component forces one finds the resultant force FR smaller than either of the
component forces, i.e.:

PR = F1 + P-2 = PI - P2 (B-16)

On the other hand, the resulting particle velocity vR is larger than that of
either of the component waves:

P1 + P2

vR = 1 4 V2 a V I + v = (B-17)

Part (c) again indicates that once the waves have passed each other, each
continues with its original properties.

The presently discussed case allows r deduction concerning the particle
velocity at the free end of a bar or heam. Since there will he no opposing
forces, the stress at such a free end must be zero. TR assure this condition,
the stress of the reflected wave must be of the same magnitude, but of opposite
sign, as that of the incident wave. As a consequence the particle veiocity of
the reflected wave is equal to that of the incident wave both in magnitude as
well as in sign. While the stress becnmes zero in this manner, the particle
velocity doubles at the free end.

Up to now only waves produced by coistant forces were considered. The stress a
and the particle velocity v were constant along the wave. In the case of a
variable force, a wave will be produced in which a and v vary along the length.
Conclusions obtained above regarding propagation, superposition and reflection
of waves can also be applied in this more general case.
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I One Compression and One Tension Wave Meet

a. Before meeting

b. Afte meetingI
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3. Application of Wave Propagation Theory to Helical Springs

a. General Relationships

The expressions for particle velocity and wave propagation velocity derived for
thin prismatical bars, as given by Eq's.(B-8) and (B-12), can be applied to
helical springs, if one adapts the parameters m and k to the situation at hand.
Thus one must define:

m mass per unit length of spring wire along x-axis as defined by
Figure A-1 of Appendix A.

k = stiffness constant, or spring constant per unit length of
spring wire (also along x-axis), (see Eq.(A-lc)).

m is obtained with the help of the cross-sectional area A of the spring wire
and the unit length along the x-axis. Thus:

m =Td 2y (B-18)g 4g

The parameter k is derived with the help of the spring constant A for the
whole spring as given by Eq.(A-la) in Appendix A:

Gd4
A= - (B-19)

8D 3N

Since the above is the spring constant for the full length L along the x-axis,
any shortening of the spring increases the stiffness, one obtains k from:

k = AL = Gd4L Gd% (B-20)
8D 3N 8D2

b. Velocity of Wave Propagation or Surge Velocity in Helical Springs

When Eq's.(B-18) and (B-20) are substituted into Eq.(B-12) one obtains the
following expression for the surge velocity:

al i . g A (B-21)

As in Eq.(A-18) this represents the surge velocity when the rotational inertia
of the wire is neglected, This expression furnishes slightly large values, and
it is best to use the corrected form of Eq.(A-19), i.e.
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I
a 0.99 (B-22)IY y•jd 2

I c. Particle Velocity in Helical Springs Without Driven Mass

Substitution of Eq's.(B-18) and (B-20) into Eq.(B-8), together with the
.expression relating the load Pf of the spring to its associated maximum
shear stress Tf, i.e.

*Tf lTd3

f 8D

I leads to an expression for the particle velocity as a functiot f the maximum
shear stress:

v f F2•yG (B-23)

I.
The same expression results when one substitutes Eq.(B-21) into Eq.(A-43) to
obtain Vmax L. If one includes the rotational inertia term, the particle
velocity becomes identical with the maximum velocity at x = L as given by
Eq.(A-48):

! 0. 99Tf IN (B-24)

Equations (B-22) and (B-24) are used throughout this report as the applicable
i design equations.

SB-

i
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d. Maximum Attainable Velocity of Helical Spring Without Dr-,,,,a "',ss.

Time of Separation from Support

A

SUPPORT I I

WIRE y-AXIS

AX IS

Figure B-4

Helical Spring

Figure B-4 shows a helical spring which is compressed a distance f along its
y-axis by a corresponding axial force Pf. The spring is not rigidly fastened
to the support at point Z. Contact is m~aintained only as long as there is a
contact force. As soon as the contact force vanishes the spring will fly off
the support. Note that L is Lhe length of the wire along the x-axis.

When the force Pf is suddenly removed, a tensile wave containing a force ()
will start moving into the spring in the direction from point A to point Z.
Associated with this relieving force is the particle velocity

v 1i = 0.99T f Vt2'yC (B-2S)

S'

/M

Figure 10



ST = (B-26)
s a

where a is the surge velocity according to Eq.(B-22) and T is called the
surge time. Of course one starts counting time when the fofce Pf is removed

I from point A of the spring.

Since all particles have the same velocity when the spring separates from its
support, i.e. there will be no strain energy locked into the spring, there
cannot be any vibratory motion in the spring after separation.

• Ie. Maximum Velocity of Spring Driven Mass

I. Period Between t = U and t = 2Ts

I A. Derivation of Tensile Force and Particle Velocity Associated With Tension

: IWave

The following considers the events experienced by the spring mass system shown
in Figure B-5 between the time t = 0, when the deflecting force P 'is removed
from the mass M and thus a leftward moving tensile wave is started at point A,
and the time t = 2Ts = 2L/a, when the front of this wave returns to point A

I after having been reflected at point Z at the other end of the spring.

I
I Z• I A

.I

I f!

Figure B-5

I Spring Driven Mass M

Since the effect of the removal of the deflecting force is communicated along
the length L of the spring wire with the surge velocity a, one is justified in
treating this situation in terms of the superposition of a constant compression
of magnitude Pf and a leftward moving relieving tensile wave. The magnitude of

I the tensile force P(t) associated with this tensile wave will now be derived by
considering the law of maotion of mass M! under the given circ istances.
Figure B-6 shows a free body diagram of mass M at the time t a 0 when the

I deflecting force Pf has just Leen removed.
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SF=P- IP(t)M
!, " f •._M lowI

y-AXIS

Figure B-6

Free Body Diagram of W1ass After Deflecting Force has Been Removed

The only force acting on the mass is the contact force F, which conasists of the
vector sum of a force equal and opposite to the deflecting force Pf, (i.e.
acting along the positive y-axis) and the relieving tensile force P(t) of the
tension wave, which may be thought of as acting on the mass in the negative
direction of the y-axis. Thus:

F = P f- P(t) (B-27)

The differential equation of motion according to Newton's Law becomes:

Pf - P(t) . d(B-28)

Now one considers that the velocity of the inass must be identical with the
velocity of the particle at the contact point A as long as contact exists
between the mass and the spring. The particle velocity is only a function
of the tensile force P(t), and therefore it is expressed according to Eq.(B-8):

dv = dP(t),F (B-29)
- =dt Vimk

Substitution of Eq.(B-29) i.-to Eq.(B-28) leads to:

P P M dP
mk dt

or

dP _ mIT aP (B-30)
Tt M f M

rho compiementary solution to Eq.(B-30) is obtained by means of the trial
function

st

c
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I
I

Substitution of this trial function and its derivative into the homngeneous5 part of Eq.(B-30) leads to the solution for the characteristic value s:

=- (B-31)

The complementary solution is given by:

-ATPC = C e M (B-32)

I where C is a constant which must be determined from the initial conditions.
The particular solution of Eq.(B-30) is now obtained by the Method of5 Undetermined Coefficients. With the assumption that

dP
Pp = C2, and theretore atkP= 0 (B-33)

one obtains after substitution into Eq.(B-30):

P p = Pf (B-34)

The general solution is then given by the addition of Eq's.(B-32) and (B-33):I
P(t) = C1 e + P (B-3S)

f

It remains now to solve for the constant C1 with the initial condition for
iP(t) ,:

P(0) = 0 (B-36)

i.e. at the instant of the release of the deflecting force P the relieving
tension is still zero. Substitution of Eq.(B-36) into Eq.(B-3S) leads to:

I C1 = - Pf (B-37)

I and the expression for the relieving tension force at point A is finally
given by:

P(t)=Pf -a ) (B-38)

SThe velocity of mass M, as well as the particle velocity at point A, is then
for the period under consideration according to Eq.(B-8):

P f NI) (B-39)

This velocity is along the positive y-axis. The contact force, according to
Eq.(B-27), becomes:
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M 7

F Pf" P(t) =Pf e M (B-40)

B. Desirable Change in Notation

To conform with the notation usually found in the literature dealing with wave
propagation, one considers that according to Eq. (B-12):

a 2 = k (B-41)

and thus

k =la2m (B-42)

and accordingly

vmT = am (B-43)

Now consider the exponent of Eq's.(B-38) to (B-40):

am = am(LM "- M(L)

and since

mL = fs, the mass of the spring (B-44)

and further according to Eq.(B-26):

L--a Ts

one may write:

Sms (B-45)
M T

If one introduces S

T = 2Ts (B-46)

where T represents the time it takes for a surge wave to traverse the spring
twice, then Eq.(B-45) becomes:

AM 2ms (B-47)

Now one introduces

m s (B-48)

M
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Thus finally one obtains

Vm-i 2a (B-49)
M T

and Eq.(B-38) becomes:

2a

P(t) = Pf f - e T (B-SO a)

and Eq. (B-39) together with Eq. (B-25) becomes: v, = vji(l-e T-t) (B-50 b)

C. Separation of Spring from Support at Point Z

While the tensile wave travels from point A to point Z the total force Pt(1)
at any location will be given by

p = - P + P(t) (B-Si)
c~l) f

A negative sign has been chosen for compression, i.e. PP, while P(t) which
represents tension, has been given a positive sign.

Whenever the wave arrives at an arbitrary place between points A and Z, the
magnitude of P(t) corresponds to that at point A at t = 0, i.e. P = 0. The
magnitude of P(t) at the same point at any time At later is found by computing
the value of P(At) at point A.

Wheq the tensile wave arrives at point Z, it is reilected with the same sign
since the particle velocity at this point must vanish as long as contact is
maintained. (See also Section 2a of this appendix.)

The total force at point Z before separation has occurred, and after the wave1as been reflected is given by:

PtZ = - Pf + 2P(t) (B-52)

If one now starts counting time at the instant the tensile wave arrives at

point Z, Eq.(B-52) becomes with the help of equ. (B-S0):

S2a -- t

P Pf + 2Pf(l ) (B-53)

The spring will leave the support at the time tZ, after the tensile wave has
arrived at point Z, when the force Ptz of the last equation becomes zero. Thus
one obtains for Eq.(B-S3):

2at

0 Pf[-l + 2(1 - e tz)] (B-54)

or



2a
_2 t

2c -T z

This leads to

2at- tz
eT z 2e =2

With the help of Eq's.(B-26) and (B-48) one obtains:

= In 2 !T In 2 (B-55)
tz 2 m s

To find the time of separation of the spring at point Z when time is counted
from the moment the deflecting force is removed from the mass, one considers:

T= T + t = T ( + ±- In 2) (B-56)Tz s z s m -
m

Equation (B-56) is valid only for the mass ratios M/m < 2.89 and for t < 3T .

The time restriction is based on the fact that at t = 3Ts, counted from the
removal of the deflecting force, a further reflection of the wave will take
place at the point Z and Eq.(B-52) ceases to be a valid description.

This consideration is also responsible for the restriction on the mass ratio.
Equation (B-55) is only valid for t < 2r, with the time counted from the
instant of arrival of the wave at point 2. Therefore Eq.(B-55) must satisfy:

2T = 2> I ln 2 (B-57)SS a -rm a

Then

M 2 (B-58)
i - n = 2.89

This means that whenever M/m > 2.89 the separation at point Z will take place
at a time later than t = 3Ts5 s counted from the instant of the removal of the
deflecting force Pf, and a new set of equations must be derived.
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.11. Period Between t = 2T. and t = 4T,

Separation of Mass from S

A. Determination of Contact Force Between Mass and Spring

Separation of mass M from the spring at point A will occur when the contact
force between them becomes zero. It is the purpose of the following to determine
this time TA, counted from the removal of the deflecting force. Since at this
time the particle at point A will have attained its maximum velocity, it also
represents the instant of maximum velocity of mass M.

Examine now the magnitude of the contact force at point A just an instant before
the tensile wave, which has been reflected at point Z, arrives again at point
A This occurs at t <2L/a = 2T, = T. According to Eq.(B-40), the magnitude of
the contact force for 0 < t < t:

2a

F = Pf e T (B-59)

(With the above sign it represents the force of the spring on the mass in the
direction of the positive y-axis.) Substitution of t = T, or rather a value of
t just a little smaller than T, indicates that the contact force cannot vanish
before the tensile wave is once again ref'.cted at point A.

One need now to examine what happens at point A when T < t < 2T. The reflected
tensile wave arrives at point A when t = S Since there cannot be an abrupt
change of the velocity of the mass, this incident tensile wave will be
reflected as from a fixed end. This type of reflection causes a doubling of the
tensile force of the incident ware at point A.

Note that there are then two waves moving from point A towards point Z:

a. the original tensile wave which was started by the removal of the
deflecting 'orce Pf, and

b. the wave which is reelected from A at t - T.

Furthermore there is the tinsile wave moving crom point Z toward point A.

In order to determine the contact force at A it is not only necessary to
consider the action of all three of the above waves, but one must also take the
initial compression of magnitude Pf inti account.

Now let P1 stand for the tensile forc;e of the two waves moving away from point
A. The wave which advances towards point A is merely the wave sent out from
point A at t - 0, delayed a time T due to its travel across the spring and back.
The tension produced due to this latter wave at point A is obtained by
substtuting (t - T) for the time in Eq.(B-50), which represents the expression
for the tension produced at point A in the preceding interval, (i.e. 0 < t < T).
Let this force be termed P0 :

(B-60)

B-17



The total tensile force at point A for the interval T < t < 2T will thus be
given by:

P(t) = Pl(t) + PO(t - T) (B-61)

The associated particle velocity is obtained as the difference between the
particle velocity due to the tensile wave going away from point A and the one
due to the wave moving towards point A. Thus according to Eq.(B-8):

v =- [Pl( t ) - P0(t - T)] (B-62)

In order to determine the contact force F for the period under consideration,
one proceeds in a manner similar to the one leading to Eq.(B-40). This means
one must determine Pl(t).

One starts by writing Newton's Equation of Motion for mass M again:

F = M dv (B-63)

(Refer to Figure B-6 for a free body diagram.) The contact force F consists of
the original rightward acting force P as well as the sum of the leftward
acting tensile forces given by Eq.(B-61). Equation (B-63) becomes:

F-P - P(t) =. M . (B-64)

Now substitute Eq.(B-61) and the derivative of the Eq.(B-62) into the above:

Pf - [Pl(t) + Po(t - T)] -t[P(t) Po(t - T)] (B-65)

With the help of Eq.(B-49) one obtains:

d[lt - O(t - T)] + 2a[Pl W + PO(t- T)] 2a P (B66

Equation (B-66) must now be solved for P(t) in order to find an expression for

the contact force F. a2act

Miultiply all terms by e

2at 2at 2 at 2at 2at-T- dPI (t) 2 y T P~ ) 2 a_

t- - P1 (t) e dt + - T)e -XT Po(t -T)e

2ai; 2at (0-67)
a P(tT)+ -L -PfT 08 T
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S 2ctt
2aT

Note that ±--e Po(t - T) has been added to the right hand side of the above.

Equation (B-67) may now be written as:

2at 2at 2at
d ' P~)Id eT4a Tdt[e T P(t)] [e T P(t T)] -- Te P 0 (t T) (B-68)

2at
2a T
T6 Pf

Integration of the above leads to:

2at 2ut f2at

e (Plt) (e P0 (t - T) T JeT P0 (t - T) dt
(B-69a)

f2at
+2a f T dt + C

2at

where C is a constant of integration. Now divide by e T

2cat ('2at

Pl(t) = P0 (t - T) - Le Tje P0 (t - T) dt1 0 T(B-69b)

2at r 2ct 2at
2r% T T Te -+ - "T -e-e -dt + Ce

Now substitute Eq.(B-60) for %0(t - T):

t2t 2attT- 4 T 2a(cF 1
P1 (t) f P- Pf e -T e [f Pe ] dt

2cz z(t 2B-70)

2 7 PJe' dt + Ce'F-

Rewrite the above:
t 2atfp 2at-2aCT ) 4 T p --

P (t) =Pf Pf e - 4a ef e dt

4a Td ~d~ J_~e t
Te f

2at
T

+ Ce

After the indicated integrations are carried ou*, one obtains:
2c2t

p (t) P e T - 1] + Ce (B-72)
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To evaluate the constant C in the above one needs PI(T). Io obtain it the
following reasoning is used: The wave which was started at t = 0 has just
reached pLint A, and it has been reflected. Since the magnitude of P(O),
according to Eq.(B-50), is zero, both the incident as well as the reflected
wave have zero tension at t = T. The only force present is due to the P(T),

i.e. again according to Iiq.(B-50):

2otT
PI(T) = P(T) = Pf(1 - T (B-73)

f)
Substitution of the above into Eq.(B-72) gives:

pf -) 14TT•.- -2a (B-74)
P f Pfe TT j C

at t = T. Solving for the constant one obtains-

-2cx

C =p (2- 4a - e ) (B-75)
f-2a e

Finally:

2-t 2a= Pf[e 1) -- 4t e 2 a - T tp M--2 4 e )e ] (B-76)

The contact force F may now be determined with the help of the left hand side

of Eq.(B-65), i.e.:

F = Pf - PI(t) - P0 (t- T) (B-77)

Substitution of Eq's.(B-76) and (B-b0) leads to:

t
F aP t e - 1)[0"2a - 4( 1)] (B-78)

B. Determination of the Separation '1inJe TA

The separation time TA is determined by means of setting

F(TA) - 0 (B-79)

into Eq.(B-78). One obtains:

TA
0 * e - 4 -- 1) (B-O)
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-2C TA - 1)

since the factor Pfe cannot be zero at t = TA. Finally from
Eq.(B-80):

TA = T(l + e- ) (B-81)

According to Eq's.(B-46) and (B-48) respectively:
2m

T = 2T and 2a =

so that Eq.(B-81) becomes:

2m
s

M M (B-82)

C. Determination of Maximum Velocity of Mass

Substitution of Eq's.(B-60) and (B-76) into Eq.(B-62) furnishes an expression
for the velocity of the mass M while contact is maintained with the spring at
point A. Thus

P -2u(- 1) eV =f [e T 4at + 2 - 4a - e -2a 1] (-3

Now consider that according to Eq.(B-8), and its modified form Eq.(B-25) when
applied to a helical spring:

f 0.99f A u. vH

Thus Eq.(B-83) becomes:

-2a{I-- 1)
v2  VH[e (-4 t + 2 - 4a-e -2 ] (B-84)

To obtain the m.aximum velocity of the mass one evaluates the above at t = TAI
the time of separation as determined by Eq.(B-81):

.2ms

_ __ " -(B-8S)

Vmax V H [-I + 2e 2
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Figure B-7 shows a tabulation of the term in brackets in Eq. (B-85).

Since the expression for the contact force F of Eq. (B-64), which forms
the basis oZ the present section, is valid only for 2Ts<t<4Ts there will
also be a limitation on the ratio M/ms. TA must be less than 4TS, and
therefore substitution into Eq. (B-82) leads to:

2ms4Ts > Ts(2 M M

This in turn requires that:

_2m_

4 -I > e M (B-86)

This condition can only be fulfilled for W/ms < 5.69.
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M Value of M Value of
m ms Factor s Factor

0.0 1.00000 2.8 0.56577

0.1 1.00000 2.9 0.55624

0.2 0.99995 3.0 O.54719

0.3 0.99873 3.1 0.53858

0.4 0.99327 3.2 0.53038

0.5 0.98177 3.3 0.52257

0.6 0.96464 3.4 0.51512

0.7 0.94338 3.5 0.50801

0.8 0.91958 3.6 0.50121

0.9 0.89452 3.7 0.49471

1.0 0.86914 3.8 0.48848

1.1 0.84409 3.9 0.48252

1.2 0.81977 4.0 0.47681

1.3 0.79641 4.1 0.47132

1.4 0.77415 4.2 0.46605

1.5 0.75304 4.3 0.46099

1.6 0.73307 4.4 0.45613

1.7 0.71423 4.5 0.45144

1.8 0.69647 4.6 0.44693

1.9 0.67974 4.7 0.44258

2.0 0.66397 4A8 0.43839

2.1 0.64911 4.9 0.43435

2.2 -0.63510 5.0 0.43045

2.3 0.62187 5.1 0.42668

2.4 0.60938 5.2 0.42303

2.5 0.59757 5.3 0.41951

2.6( 0.58639 5.4 0.41610

2.7 0.57581

- 2m,
Figure B-7 "2ms

Tabulation of Factor - 1 + 2eg

(See equ.B-85)
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APPENDIX C

DISTANCE TRAVELLED BY MASS M BETWEEN TIME OF SPRING RELEASE AND TIME OF

10 SEPARATION OF MASS FROM SPRING

"The results of Appendix B are now used to determine the distance through which
mass M must travel until it reaches its maximum velocity. This is accomplished
by integrating the velocity of the mass with respect to time between t = 0,
when the spring is released, and t a TA, when the maximum velocity of the mass
is attained.

Equation (B-39) of Appendix B shows that the velocity of the mass during the
time interval 0 < t < 2TS = T is given by:

-Pf ( e- (C-1)
SvI =- (1- e )

S~VW

Using the change of notation indicated on page B-14, and letting

Pf kC-2)
-k= vi

according to Eq's.(B-8) and (B-25), one may express Eq.(C-1) in the following
form:

- 2ar

v v (I e- (C-3)

where
a f ms the ratio of spring mass and driven mass

T = 2Ts, twice the surge time TS

The velocity of the mass for the time interval T < t <2T =4TS is given by
Eq. (B-84) of Appendix B:

-2c%(t - 1) (C-4)

V= -l(C (TTt + 2 -4a e-e2a) - I]

1. Distance 'Travt,.J be Mass M Dluring !nterval from t = 0 to t - T

Integration of Eq.(L-3) furnishes the distance Fl, which is traveled by the
mass between t a 0 and t a T. Thus:

Fl1 = vuIf (I - e ) dt (C-S)

Performing the integration between the indicated limits leads to:

C-I



F H + 1- 24e -1)] (C-6)
1 VH*T1l 2-(e

2. Distance Travelled by Mass M During Interval from t - T to t * TA

Integration of Eq.(C-4) between the limits of t & T and t = TA furnishes the
distance F2 travelled during this time interval. After rearrangement one
obtains:

2 TA 2ct . 2 a t
F a V e2  4a - -2a 1- (C-7)2 1 H -ite (2 - 4a - e' )e e 2 dt

where, according to Eq.(B-82):

1 -2a.TA = T (1 + TO )

Term by term integration furnishes the following results:

TA 2avHT e- 2a

2ci4f A ;--ftpdt vHT-2~le -2aF2(a) = vHe T te dt• -T-[2c+l-e (4a+e +2)] (C-8)
JaT

and
TA. 2a

v~ ~(2 - • ••
F2(b) vHe2  2 4 - e 2a )fT dt 

(C-9)

vHT -Zci
S2a-(4a + e - 2)(e - 1)

Furthermore:

Adito 2(c) o '- dt (C-10)
•: teT

Addition of Eq's. (C-8), (C-9) and (C-10) leads to:
.-2*

-2 (2 - 2e - (C-11)
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I
3. Total Distance Travelled by Mass M During Interval from t = 0 to t TA

The total distance Ft travelled by mass M during the interval from t =0 to
t TA is now obtained by addition of Eq's.(C-6) and (C-i1):

e2a1 i - 2a 2 .
Ft F1 + F2 =V T[1 + -L(3 - ye - 4e 2 (C-12)

It ý,, convenient to express the product vH1T in terms of the spring deflection
f. Equation (A-43) gives:

fa f 2f-H - •L T

Therefore Eq.(C-12) may be written in the following form:

SFt = fCf (C-13)

where

I • •° °2a
ee-

C =2 + (3 - - 4e ) (C-14)

I
!
!
I
I
I

I
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I APPENDIX D

EXPERIMENTAL INVESTIGATYON

1. Aims of Experiment

3 The present appendix describes the experimental phase of the investigation.
This experimentation had the following aims:

5 a. Verification of the "Erwood Curve." (see Figure D-l) which give the
reliability of the M42G primer in terms of percentage of primers
fired versus firing pin velocity (at ambient temperature). These
curves are plotted for firing pin velocities b',tween 50 and 300
in/sec with firing pin kinetic energy levels of 16, 14, 12, 10, 9, 6
and 5 inch-ounces respectively.

I b. Extension of the above mentioned M42G primer firing curves to the
highest possible velocities attainable by firing pins of comparable
energy levels which arc driven by helical compression springs. This
was to be obtained at both ambient temperature as well as -40
degrees F. The energy levels were to be 16, 14, 12, 10, 8, 6 and 5
inch-ounces. In addition the "Erwood" range was also to be tested at
-40 degrees F.

I c. Since the test setup was to use helical compression springs, the
experiment could also serve as a verification of the theoretical
results concerning the velocities of the spring driven masses. (SeeI Appendix B.)

The following sections discuss the test program, the test setup, as well as
the test results.

2. Test Program

Figure D-2 represents the test program. It gives the various levels of kinetic

energy of the firing pins as well as their masses and velocities at which the
~: 5 primers were to be tested at both ambient temperature as well as -40 degrees F.
(The firing pin identification numbers are indicated in the upper left hand
corner of each box.) The velocities range from 50 to 1200 in/sec. The topI velocity of 1200 in/sec was chosen because computation, using the theory of
Appendix B, had indicated that this speed was close to the ultimate one
attainable for such a system. (See computations in Part b below,)

The determination of the firing pin masses will now be shown on hand of an
example: Let it be required to find the mass of a firing pin for an energyI level of 10 inch-ounces and a velocity of 200 in/sec. Consider that

K.E. V2 (D-0

where
K.E. a kinetic energy in inch-ounces
i a firing pin mass (lb-sec 2/in)
v a firing pin velocity (in/see)
Then according to the above:

I)



CL

L)

4A.
+r

teo
CL

M.
4. ,,'-. OT

10

(.3 to A

0 -4 U t

.-4 0 I

UN .,q Cd
94. 41 1

4 0 r

0e

010li uaauLd
D)-2



Velo- Mass of Ident
city of Firing No.
Firing Pin at
Pin 16 14 12 10 8 6 5
(in/sec) in.oz, in.oz, in.oz. in.oz. in.oz. in.oz. in.oz.

IJ iso L..J ._ZJ -3.j
600.0 500.0 ,400.0

_4 _ _7 j _5 .7100 200.0 175.0 150.0 125.0 100.0 75.0 62.5

11 12 1 1 4 _15 1_6 17188.8889 77.7778 66.6667 55.5556 44.4445 33.3334 27.7778
•oo8 ý,O 21=J,• l

200 1819 _ 21 272 2=3250.0 43.75 37.5 31.25 25.0 18.75 15.625

25 S 26 27 28 291 3
32.0 28.0 24.0 20.0 16.0 12.0 10.0

30 32 _33 34J 351 301 371 38122.2223 19.4444 16.6667 13.8889 11.1112 8.3334 6.9444
35 40 41 421 431 44 451

16.3265 14.285 12.2448 10.204 8.1632 6.1224 5.1020

400 46 471 481 4 501S12.5 10.9375 9.375 7.8125 6.25 4.6875 3.9062
5oo S4 55J 561 577 581

8.0 7.0 6.0 5.0 4.0 3.0 2.5
60 611 6 62 05 6

600 5.5555 4.8611 4.1666 3.4722 2.7777 2.0833 1.7361
700 67 681 69 -70 7Z1 72 73

4.0816 3.5714 3.0612 2.5510 2.0408 1.5306 1.2755

741 5 76 781 . 893.125 2.7343 2.3437 1.9531 1.5625 1.1718 0.9765

900 81 82 83 84 85 86 872.4691 2.1604 1.8518 1.5432 1.2345 I 0.9259 0.7716

1000 8.9 901 92 9 9412.0 1.75 1.50 1.25 1.0 0.75 0.625

1100 97 8 9 100 01.6528 1.4462 1.2396 1.0330 0.8264 0.6198 0.5165

1200 10 0 14 10 .107 1 0
1.3888 1.2152 1.0416 0.8680 0.0944 0.5208 0.4340

Figure D-2

Test Program for M42G Primer Firing Tests
(Masses of Firing Pins in lb-scc 2 /in x 106)
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KE. _ 0 -0-6 (D-2)

m 8 (200 )1 = 31.25 x 10 (lb-sec 2 /in)8v2 8 (200)2

3. Test Setup

Figire D-3 shows an exploded view of the test apparatus. The M42G primers are
mounted in a .38 caliber cartridge, and this cartridge is inserted into the
cartridge holder. This holder may be fastened into the front of the tube.
Before its rel.ease, the firing pin is held against the pull pin by the
compression of the spring. This compression is made adjustable by the leadscrew
slider. A scale (not shown) which is mounted on one of the runway cover plates
makes it possible together with the micrometric dial to repeat the spring
setting accurately.

When the firing pin is released, the spring is allowed to expand freely until
it flies off the supporting lever. To prevent the spring from following the
separated firing pin it is stopped by the end of the slot in which the pad
rides, (The spring leaves its support some time after the firing pin separates
from the spring. See Appendix B.) It is still to be noted that *the spring pad
is fixed to the spring.

Since it was necessary to divide the firing pins into five groups of differeýnt
diameters, all parts which depend on the firing pin diameter such as tubes,
levers, etc. had to be made in sets of five. In addition, in order to make the
testing as fast as possible thirty cartridge holders were made.

The velocity of the firing pin is measured with the help of a Fotonic Sensor
Model KD-45 Serial 65 (Mechanical Technology Inc., Latham, N.Y.). The sensing
probe(s) of this'unit consist of 0.082 inch bundles of approximately 800
optical fibers, One half of these fibers transmit a light source, while the
other half may again receive the light source once it has been suitably
reflected. The output voltage of this unit is proportional to the quantity of
the light reflected, and is used to trigger an electronic counter (Beckman
Universal Eput and Timer, Model No. 7360).

Depending on the size of the firing pin, a single probe or a two probe technique
of measuring the velocity of the firing pin is used. Both methods of measuring
are described in Section b below.

a. Design of Firing Pins

In order to obtain the firing pin masses described by the test program it was
necessary to divide them into five groups of different diameters:

Group 1: 0.500 inch diameter
Group II: 0.312 inch diameter
Group III: 0.187 inch diameter
Group IV: 0.125 inch diameter
Group V: 0.093 inch diameter

Further subdivision according to shape became necessary in order to accomodate
the velocity'measurements. Figures D-4, D-Sa, D-Sb, D-Sc, D-5d, D-6a, D-6b,
D-6c, D-7a, D-7b, D-7c, D-8a, D-8b and D-8c show all the firing pins used in
the experiment. The masses are given in lb. sec 2 /in and in grams and all
relevant dimensions are given in inches. In all cases the pins were made of
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steel. Their tips consisted of the usual hemispheres of .030 inch radius.
All firing pin masses were held within * 0.5 percent of their theoretical
weights.
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,i ' I

i5 tI t

II

.0.750

1.000 -L L

I.D. MassNo. L Mlb-sec2 /in gram

1 600 x 10-6 105.077 4.042

2 500 87.564 3.346 -

3 400 70.051 2.648 -

4 200 35.025 2.305 2.930

S 175 30.647 2.020 2.645

Figure D-4

Group I Firing Pins
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0.2500.200020

---

M

I.D. Mass
No. L Mlb-sec 2/in gram

6 150 x 10-6 26.269 2.817 3.127

7 125 21.891 2.372 2.875

8 100 17.513 1.927 2.427

9 75 13.134 1.483 2.000

10 62.5 10.945 1.263 1.763

11 88.8889 15.567 1.730 2.230

12 77.7778 13.621 1.532 2.032

13 66.6667 11.675 1.335 1.835

14 55.5556 9.729 1.137 1.637

15 44.4445 7.783 0.937 1.439

18 50.0000 8.i56 1.037 1.537

Figure D-Sa

Group 11-1 Firing Pins
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0218-1

L 0 . 6 .56 -sonO. 093
F"- - ---'

M

I.D. Mass
No. L M

lb-sec 2 /in gram

16 33.3334x10"6 5.837 0.902 1.417

19 43.75 7.661 1.087 1.602

20 37.50 6.567 0.976 1.491

21 31.25 5.472 0.865 1 .380

25 32.00 5.604 0.878 1 .93

Figure D-5b

Group 11-2 Firing Pins

Di- 9
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S

0.218 -- "- -- w
"00.. . ÷ . 0.312

I . ..O,=DR 1 L L

0.156 0.656 NO-0.093

I.D. Mass
No. LMSlb-sec2 /in gram

17 27.778x10"6  4.864 1.061 1.581 1.488

22 25.000 4.378 0.995 1.515 1.422

23 18.75 3.283 0.846 1.366 1.273

26 28.00 4.903 1.066 1.586 1.493

27 24.00 4.203 0.971 1.491 1.398

28 20.00 3.502 0.876 1.396 1.303

32 22.2223 3.891 0.928 1.448 1.355

33 19.4444 3.405 0.863 1.383 1.290

Figure 0-Sc

Group 11-3 Firing Pins
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S / 0.205-

I .D. Mass

N. lb-sec2 /in grainLGroup 

1 14 

iin-Pn
I DR IIIII

24 15.625xi0"6 2.736 0.760 1.260 I1.167

29 16.000 2.802 0.769 1.269 1.176

34 16.6667 2.918 0.785 1 .285 1.192

39 16.3265 2.8S9 0.776 1.276 I1.183

Figure 0-5d

Group 11-4 Firing Pins



0.187
0.125 0.12

o-0.656 wo0.093

• ~L

I .D. Mass
No. lb-sec 2 /in gramL M

30 12.OooxlO"6  2.101 0.902 1.402

35 13.8889 2.432 0.995 1.495

36 11.1112 1.945 0.858 1.358

40 14.285 2.501 1.015 1.515

41 12.2448 2.144 0.914 1.414

46 12.500 2.189 0.926 1.426

47 10.9375 1.915 0.849 1.349

Figure D-6a

Group Ill-1 Firing Pins
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4¸

"--0.062 0. 531--o- 0. 093

- n

I.D. Mass
No. L MSlb-sec 2/in gram

31 10.000x,0O6  1.751 0.8.3 1.353 1.260

37 8.3334 1.459 0.760 1.260 1.167

42 10.204 1.787 0.864 1.364 1.271

43 8.1632 1.429 0.751 1.251 1.158

48 9.375 1.641 0.818 1.318 1.225

49 7.8125 1.3LC 0.731 1.231 1.138

53 8.0000 1.401 0.741 1.241 1.148

Figure D-6b

Group 111-2 Firing Pins
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_ _ 0_ .125 -0o.187 --_

• F L

M

I.D. Mass
No. L M

lb-sec 2 /in gram

38 6.9444x10"6  1.216 0.315 0.690

44 6.1224 1.072 0.275 0.650

50 6.250 1.094 0.281 0.656

54 ."0 1.225 0.318 0.693

.55 6.000 1.050 0.269 0.644

Figure D-6c

Group 111-3 Firing Pins
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0.070 ~0.0931012

0.656 wap-fI0.093

M

I.D. Mass
No. L... . Mlb-sec2 /in gram

60 S.5SS6xlO" 6  0.973 0.885 1.197

Figure D-7a

Group IV-I Firing Pin
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1+-,
E- b. - i

m 
L

I.D. Mass
No. LMlb-sec 2 /in gram L M

45 5.1020;:10- 6  0.893 0.548 0.860

Si 4.6875 0.821 0.502 0.814

52 3.9062 0.684 0.415 0.727

56 5.000 0.876 0.537 0.849

57 4.000 0.700 0.425 0.737

58 3.000 0.525 0.314 0.626

59 2.500 0.438 0.258 0.570

61 4.8611 0.851 0.521 0.833

62 4.1666 0.730 0.444 0.756

63 3.4722 0.608 0.367 0.679

64 2.7778 0.486 0.289 0.601

67 4.0816 0.715 0.434 0.746

68 3.5714 0.625 0.378 0.690

69 3.0612 0.536 0.321 0.633

70 2.5510 0.447 0.264 0.576

74 3.125 0.547 0.328 0.640

75 2.7343 0.479 0.285 0.597

Figure D-Tb

Group IV-2 Firing Pins

1-lb



I .D. Mlass
-1. 530 0. 268 -- 0.4

7i65 2.0343710- 0.410 0.639 0.579

77 1.9531 0.342 0.582 0.522

; 78 1.5362 0.274 0.524 0.404

81 2.4691 0.422 0.658 0.598

82 2.1647 0.378 0.612 0.562

""837 1.85318 0.324 0.567 0.507

S84 1.5325 0.270 0.521 0.461

88 2.1000 0.350 0.588 0.528

89 1.7500 0.306 0.S67 0.491

_-2'1/

041.062.7 051 .6

-i -- N -

65 2.08x000 0.350 0.601 0.541

66 1 .7360 0.304 0.541 0.489

90 1.5306 0.263 0.514 0.454

Figure 0)-7c

Group IV-3 Firing Pins
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S0.050

+ ~0.0937

L

M__-__ _____/____

I. D Mass
No. 2g L MNo Ib-sec2/in gramL

79 1.1718xi0"6  0.205 0.204 0.391

80 0.9765 0.171 0.165 0.352

85 1.2345 0.216 0.216 0.403

86 0.9259 0.162 0.155 0.342

91 1.250 0.219 0.219 0.406

92 1.000 0.175 0.170 0.357

95 1.6528 0.289 0.299 0.487

96 1.4462 0.253 0.258 0.445

97 1.2396 0.217 0.217 0.404

98 1.0330 0.181 0.176 0.363

99 0.8264 0.145 0.136 0.323

102 1.3888 0.243 0.247 0.434

103 1.2152 0.213 0.212 0.399

104 1.0416 0.182 0.178 0.365

105 0.8680 0.152 0.143 0.330

Figure D-Ba

Group V-1 Firing Pins
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•!i I

I

I
I

I... ,0.09375
DR I LL ... - - -

0.052

!SI M

I.D. MassNo. M S
lb-sec 2/in gram

87 0.7716x10- 6  0.1351 0.317 0.287

93 0.750 0.1313 0.311 0.281

94 0.625 0.1094 0.275 0.245

100 0.6198 0.1085 0,274 0.244

101 0.5165 0.0904 0.244 0.214

106 0.6944 0.1216 0.295 0.265

1 07 0.5208 0.0912 0.245 0.215
I _ __o•o _ _o, o•• o

I Figure D-8b

I Grop V-2 Firing Pins

i
I
I
!
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-. ... ..- -- 0.09375

DRILL I

0o0.060 L

0.200

0.232

I.D. Mass
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Figure D-8c

Group V-3 Firing Pin
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g b. Selection of Springs

Figure D-9 lists the springs which were used with the various groups of
firing pins.

f Group I II III IV V

Lee Cat. LC- LC- LC- Special Special
Number 063G-12 045D-18 024B3-1S

Wire Dia. 0.063 0.045 0.024 0.022 0.018I (in)

Outside
Diar.meter 0.470 0.300 0.180 0.117 0.088
(in)

Free
Length 2.500 2.250 2.000 1.500 1.625
(in)

Active 16 22 30 31 48
Turns approx. approx. approx. approx. approx.

Load at
Solid fit. 29 19.75 5.4 8.5 6.5

SI (Ibs)

Mass of
Spring 8.988 3.888 0.903 0.476 0.35S
(grams)

i
Figure D-9

I Springs Used for Various Firing Pin Groups

I
I
I
I
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The following computation serves to illustrate the manner in which the springs
were selected. In addition it shows that a velocity of 1200 in/sec represents
the upper limit of the possible velocities for the types of mass spring systems
involqed.

Given: A spring for Group V firing pins:

Outside diameter = 0.088 in.
Wire diameter (d) - 0.018 in.
Mean coil diameter (D) - 0.070 in.
Number of active coils = 48
Free length = 1.625 in.
Spring mass (ms) = 0.355 grams
Spring material = music wire

Firing pin corresponding to identification number 102, i.e.

M = 1.3888 x 10.6 (lb-sec 2/in)
0.243 (grams)

Required firing pin velocity for identification number 102:

v = 1200 (in/sec)

Find: Is it possible for the present system to impart a velocity of
1200 in/sec to the firing pin?

To obtain the answer to the above question it is first necessary to determine
the uncorrected shear stress which the spring must experience in order to
produce the prescribed firinn pin velocity. After that it must be determined
whether the necessary spring deflection caa be obtained with the existing
solid height of the spring.

Finally the curvature correction factor must be determined for the spring and
with it one may obtain the corrected shear stress. If the resulting shear
stress is much beyond 200,000 psi it is likely that the spring will take a set
and cannot properly perform.

Equation (B-85) together with Eq.(A-49) gives the maximum velocity attained by
a spring driven mass:

2mS

e (D-3)

Vmax = 1-31-(-1 + 2e 2

This holds because the spring is made of steel. For a mass ratio M/m.s
0.243/0.355 - 0.685 the factor in parenthesis becomes according to Figure B-7
approximately 0.943. Substituting this factor as well as the desired velocity
of 1200 in/sec in the above one may solve for the required uncorrected shear
stress:

1200 x 131
Tf = 0.943 - 166,700 psi (D-4)

The required deflection of the spring is determined with the help of Equations
(A-46) and (A-la):
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I

f Gd (D-5)I = Gd

With G = 11.5 x 10- 6 and the above Tf one obtains:

f = 0.595 (D-6)

Since the free length equals 1.625 inches and the solid height equals
(48 + 2) x 0.018 = 0.900, the spring can be deflected a total of 0.725 inches.
Therefore f = 0.595 is well within the range and the free length need not be
changed.

So far it would seem that the spring is perfectly satisfactory. Now consider
that the spring index

C D 0.070,_ 3.888 (D-7)
d 0.018

and that therefore the curvature correction factor

K = 4c I + 0.615 = 1.417 (D-8)
-4c4 C

The corrected shear stress now becomes:

Tcor = TfK = 236,200 psi

The above becomes marginal when one considers that the shear stress for music
wire should not exceed 200,000 psi by too much.

This high stress means that the spring will take a certain set when assembled
the first time and strain hardening will take place. While this raises the
elastic limit somewhat and allows the newly formed spring to do its job if the
free length remains sufficient, it is not at all desirable when the spring is
to be repeatedly used.

There was a certain amount of trouble with this sprint during the performance
of the experiment. It was overcome by such brute force means as stretching the

i spring repeatedly.

Since all efforts at designing a better spring failed, it can be safely stated
that 1200 in/sec does not represent a practically attainable firing pin speed.
(This design difficulty had its reason in the fact that a single spring type
had to accomodate many firing pins.)

c. Determination of Firing Pin Velocity

The following describes the manner in which the velocity of the firing pin is
I measured. Single as well as two probe methods are involved.

g 1. Single Probe Method

[igure D-1O shows the essentials of the single probe method of measuring the
firing pin velocity. The firing pin consists of two reflective surfaces
(polished steel) and one nonreflective surface between them. This surface was
painted with optical black. As the reflective surface no.1 passes the probe

I 02



PATH OF FIRING PIN

REFLECTIVE SURFACE 1

REFLECTIVE SINGLE PROBE NONREFLE'TIVE SURFACE

SURFACE 2 C-TICAL DISTANCE

Figure D-1O

Single Probe Method of Measuring Velocity

the output voltage of the instrument rises a predetermined amount and triggers
the counter. As the nonreflective surface passes the probe the voltage
decreases, while the counter continues to count. As reflective surface no.2
passes the probe, the voltage rises again, and is used to shut off the counter.

The so called "optical distance" between the two points which cause sufficient
voltage to switch the counter is determined with the help of a specially
modified micrometer. It has been found that the optical distance is usually
within less than one percent of the actual distance between the steps.

The velocity of the firing pin is determined by the time t which passes as the
firing pin travels through this single probe optical distance 1.op

L
V . OP (D-9)

t

ll.Two Probe Method

The two probe method of measuring the firing pin velocity is applicable to the
shorter firing pins, where a reasonably long optical distance of the type
illustrated in Figure D)-10cannot be realized on the pin itself. (Conversely,
to use the two probe method on the longer firing pins would require too long
an optical distance,) Figure D-11 gives a schematic of the two probe method.

The firing pin is reflective throughout its length. As it passes probe no.1
the output voltage rises and starts the counter. Once the pin has passed probe
no.1 the voltage drops but the counter continues. When the pin passes probe
no.2 the rising voltage shuts off the counter. Again the optical distance must
be established by a mechanical measurement of the distance of motion required
to operate the counter. This distance conforms closely to the center distance
between the probes. Equation (D-9) is also applicable.

[-24



SI

1140 PROBF

M pOR(E -1 OPTICAL DIST. PROB-E 2

PATH OF FIRIN'K, PIN

I"
REFLECTIVE SURFACEI

i Figure D-11

T'o Probe Method of Measuring VelocityI
In both methods the optical distance is ot the order of 0.750 inches, and the
vclGcity of the firing pin is measured approximately 1.0 inch from the point
of impact. This general method of measuring the velocity of the firing pin hasbeen checked independently with a peripherally slotted disc rotating at various

I known speeds. Excellent correlation was attained (t1 percent).

d. Test Procedure

i !he tests were rur both at an ambient temperaru, of approximately 70 to 75
degrees F and at -40 degrees F. In order to make sure that handling would not
%wIrm up the primers, the cartridges were mounted in the cartridge holders and
k, oled together to -4-1 degrees F. The number of firings per ,nergy level,
velocity and temperature were planned to be 30I. in a few' ca:,es there were only'I :5 firings per identification number, while wlicii there a•w: ;iy doubt concerninr,ý thv
result considerably mIure Itirngs were made. Iigures b-12a and lD-12b show the
n'amber of test firings fto ambient temperature and -40 degrees respectively.

I gure D-13 gives a typical data sheet from an actual reiu. !'Iis test covers
D.D. No.60. It represents an energy level of 16 inch-ounccs at a velocity of

S-90 in/sec gt -40 degrees F. The required mass of the firingw in is
".555 x 1J lb-sec2/in, while the actual mass ij 5.5t,7 x 10"Y lb-sec2 /in.
Mie average of the optical distance is obtained from four readings as 0.75925

.Inches. (The firing pin is rotated and readings, ire taken 90 degrees apart.)
l The required time for the velocity of 600 in/sec , computed to be 0.001265
mconds.

I!lie 30 data sets record the time indicated by the,. tiectronic counter, the sprinp
& compression and whether the primer fired.
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Ident. Number of Ident. Number of Ident. Number of

No. Firings No. Firings No. Firings

1 3C 37 60 73 --
2 30 38 -- 74 30
3 30 39 30 75 30
4 30 40 30 76 30
5 57 41 30 77 30
6 120 42 30 78 30
7 118 43 120 79 30
8 240 44 30 80 30
9 85 45 -- 81 30

10 90 46 30 82 30
11 A0 47 30 83 30
12 120 48 30 84 60
is 119 49 30 85 30
14 210 50 120 86 30
IS 360 S1 30 87 30
16 330 52 -- 88 30
17 480 53 30 89 30
18 30 54 3l 90 60
19 30 55 30 91 30
20 60 56 30 92 30
21 30 57 30 93 30
22 240 58 3P 94 30
23 120 59 -- 95 30
24 90 60 30 96 30
25 30 61 30 97 30
26 30 62 30 98 30
27 30 63 30 99 30
28 30 64 30 100 30
29 120 65 30 101 --

30 60 66 -- 102 30
31 30 67 30 103 30
32 30 68 30 104 30
33 30 69 30 105 30
34 30 70 30 106 30
35 30 71 30 107 30
36 30 72 30 108 --

Figure D-12a

Number of Test Firings at Ambient Temperature
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Ident. Number of Ident. Number of Ident. Number of

I No. Firings No. Firings No. Firings

1 25 37 30 73 30
2 25 38 74 30
3 25 39 30 75 30
4 55 40 30 76 30A S 55 41 30 77 30
6 ',0 42 30 78 30
7 90 43 120 79 30
8 00 44 30 80 - -
9 60 45 - 81 30

10 3(0 46 3. 82 30
i 11 30 47 30 83 30

12 30 48 30 84 30
13 210 49 30 85 30
14 120 so 120 86 90
I1 150 51 30 87 --
I 270 52 -- 30
17 30 53 Ž0 89 30
18 30 54 M0 90 30
19 30 55 30 91 30

1 20 10 56 30 92 30
21 150 57 30 93 301 22 60 58 30 94 --

23 15U 59 -- 95 30
24 120 60 30 96 30
25 30 61 30 97 30
26 90 62 30 98 30
27 90 63 30 99 30
28 3() 64 30 100 30
I19 150 65 30 101 --
330 0 6b - 102 30
31 07 30 103 30

62 68 30 104 30
33 36 09 30 1 0S 30

i 34 30 70 30 106 30
is 60or 71 30 107, 30
1;6 90 72 3 0 108--

I ~lL61urv D-Il)-

Number of T,•t Firings at -10 )ckgrecs V

i I
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Throughout the tests it was made a rule to count only those firings where the
actual time did not deviate more than ±2.5 percent from the computed time. (The
stars on the data sheet indicate that the tube was cleaned preceding the
particular firing.)

The 5 in-oz tests were discontinued as it became apparent that it was impossible
to attain reproducible results.

4. 'rest Results

a. Results of Firing Tests

Figure D-14 is a tabulation of the results of all the firing tests at both
ambient temperature and at -40 degrees F. It shows the percentage of primers
fired at the various energy levels and firing pin velocities. As was stated
earlier, the 5 in-oz tests were discontinued since it was not possible to
obtain reproducible results.

Figures D-1Sa and D-15b presents the identical data in a graphical form similar
to the "Erwood Curves". Figure D-1Sa gives the results for ambient temperature
while Figure D-1Sb deals with -40 degrees F.

b. Verification of the Theory Concerning Velocities of Spring Driven Masses

The spring compression associated with each test velocity was recorded for all
data points. (See sample data sheet in Figure D-13.) This makes it possible to
compare the measured nominal velocities (vN) with the theoretical velocities
(VT) which correspond to the actual spring compressions.

This procedure, which allows the determination of a design correction factor,
will now be outlined by way of an example.

Figure D-13 gives the following test results for I.D. 60-B (-40 0 F):

Firing pin velocity: 600 in/sec
Firing pin mass: 0.975 grams
Spring compression (f): 0.445 inches

"This sprinW belongs to Group IV (see Figure D-9), and has the following
dimensions:

Outside diameter: 0.120 inches
Wire diameter (d): 0.022 inches
Mean coil diameter (D): 0.095 inches
Number of active turns (N): 31
Mass of spring (ms): 0,476 grams

The velocity v which corresponds theoretically to the above spring compression
f is now computed with the help of Eq.(D-3):

-2ms

(D-10)f 2
vT = vmax = -M(-l + 2e

"The shear stress associated with the deflection f is given by rearrangement of

Lq. (D-S) :

D-28
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I
I

Gdf (11.5 x 106) (0.022)(0.445) 128,500 psi (D-)

With 7= D (3.1416)(0.095)2(31)

SN_ = 2.Us
m mS

the factor in parenthesis of Eq.(D-10) becomes according to Figure B-7

approximately 0.656.

Substitution of the above into Eq.(D-lO) leads to:

V1, = 128,500 x 0.656 = 643.6 in/sec.

This is larger than the actual velocity of 600 in/sec, The percentage increase
with respect to the nominal velocity is piven by:

percentage increase = VT V N x 100 = 643.6 600 x 100
"vN

= 7.26 percent

This means that in order to actually attain a certain nominal velocity (vN),
I. the spring deflection must be computed for a theoretical velocity (VT) which
• iis higher than the nominal one by a certain percentage. Thus:

VT = vN(I + CD) (D-12)

where the design correction factor is given by:
SvT - v N

C = N (D-13)

Figure D-16 gives a tabulation of the correction factors CD for all test runs.
Except for I.D. numbers 4 and 5, and whenever the spring took a set, i.e. the
spring characteristics changed, the value of the correction factor does not
exceed 0.25. In the case of I.D.'s 4 and 5 it was found that high friction
between the firing pin and the tube was responsible for the need of increased
spring compression to attain nominal velocity. (The use of a Teflon spray
proved very helpful in reducing friction.) It needs to be pointed out that in
the experimental setup the firing pin traveled as far as 4 inches after
separation from the spring in order to facilitate the velocity measurement.
In an actual situation the firing pin travel would be much shorter and thus the
possibility for speed reducing friction work would be very much smaller.

The spring set can definitely be avoided by limiting the corrected shear stress
in the spring to approximately 200,000 psi.

Lastly, the presence of the spring pad (see Figure U-3) contribuLed to the
slowing down of the firing pin.

For design purposes one may safely assume the getieral correction factor

CD = 0.25 (D-14)
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Appendix iE, which deals with the space optimization of spring driven primer
striker systems makes use of the above general correction factor.
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APPENDIX E

SPACE OPTIMIZATION

The following appendix gives the derivation of the various design equations and
outlines the combination of experimental and theoretical results which leads to
the final optimization methods.

The resulting optimum design tables, which are listed in Appendix F, allow the
design of 100 percent successful spring striker systems for the M42G primer
with minimum space needs.

1. Free Length of Optimum Spring

The free length of the optimum spring is obtained with the assumption that this
spring is deflected to its solid height and that the spring reaches at solid
height its maximum allowable corrected shear stress.

The deflection (f) may then be defined by:

f = L0 - solid height (I3-i)

where L0 is the free length of the spring.

When one defines solid height as the product of the wire diameter (d) and the
sum of the active turns (N) and two extra turns:

solid height = d(N + 2), (F-2)

then Eq.(E-1) becomes:

f - d(N + 2) (E-3)I From the above the free length of the spring is given by:

1I0 = f + d(N +2) (E-4)

As was stated above, the spring is to be designed in .vch a manner that it
reaches its maximum allowable corrected sheor stress at solid height. In
addition its mass inu:st hie sufficient to produce the desired velocity of its
associated firing pin of mass SI.

When the deflection f is such that it produces the maximum allowable corrected
shear stress T at solid height, then

c

-= K_ (--5)

where
= uncorrected stress associated with deflection f

fi| i4c - 1 0.615
K f - + -c1, the curvature correction factor [4214c -4 C

c = the spring index relating mean cutl diamcter to wire diameter.

Equation (U-5) is now to be expressed in termrr of tile deflection f.
According to Eq.(A-45):

F - Ii' ' • -1
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" •Td3

I and according to Eq.(A la):

d G
4 f!~ Pf = ,f = G4-•

* 8D 3N

Thus Eq.(E-5) becomes:

f= KGd

Sc ND2 7r

* And finally:

* - NnD2

f= c (E-6)
i KGd

The mass of the spring, in the sense of Appendix B, is due to the active coils

only:

ig = NCnD) (•d2 (E-7)

and the number of active turns may then be expressed by:

4m g

,T2 yDd 2  (E-8)

Substitution of Eq's.(E-6) and (E-8) into Eq.(E-4) gives for the free length of
the spring:

L " 4ms g Tr c D 1 + 2d (E-9)
0 7T 2~d Dd"

When the above is expressed in terms of the spring index c, it becomes:
S4m sgC2 Tc D

ff:: fiL0u-•• + -) +2

0ii2yD2ii c (EIO)

2. Optimum Spring Mass m,

The optimum spring mass is now obtained with the help of the maximum velocity
equations (D-10) or (B-85):

E-2
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*r - 131(-1 + 2e (l-I)

Of course the theoretical velocity vT must be attained without exceeding the
corrected shear stress rc at solid height. In addition, the theoretical
velocity(v ) must be expressed in terms of the corrected nominal velocity (vN)
according To Eq.(D-12). The latter is necessary since the design procedure is
based on the experimentally attained 100 percent firing points as well as on
the experience with the springs.

Thus Eq.(E-11) is written in the form:

2m
s

C (E-12)
VN(I + C)I + 2e 2

The required spring mass m. is now obtained from the above:

ms In [-2 In B] (E-13)

,where

131 KvN(l + CD)
B - + 0.5 (E-14)

c

Eiquation (E-13) is valid only for certain ranges of the factor B: First, as
shown in Appendix B the ratio Ni/ms < 5.69, anid in addition, to obtain a
positive value for ms it is necessary that 0.606 < B < 1.000.

Therefore for the usual value of the corrected maximum shear stress 'c=

200,000 psi, and the general value CD = 0.25 (see lq.(D)-14)), the nominal
velocity which may be used in the above computations is restricted to the
following limits:

EN(min iK 260 in/sec

and

r -'

LN(maXJK < 1220 in/see

'i. Overall Space Requirement of Optimum Systetm

The overall height 1, of the mass-spring sy.;tem is now determined as the
combined length of the firing pin Lp, the solid height of the spring, and the
total distance traveled by the mass MI until it. reaches the maximum attainable
velocity which corresponds to the deflectioi r. The latter dimension was given
as Ft = fCf in Eq.(C-13) of Appendix C.

E -3



With this concept one finds:

Lt = fCf + d(N + 2) + Lp (E-15)

Substitution of Eq's.(E-6) and (E-8) leads after rearrangement to:

4msgc 2 ric 1 D +
Lt + 1 + 2 L (E-16)
tz , -y2  tK- f c p

4. Design Equations and Optimization Procedure

The combination of experimental and theoretical results of the present
investigation, which was used to devise an optimization procedure, will now
be explained in detail.

a. Use of Experimental Data

The design procedure aims to recreate those conditions which led to 100 percent
firing of the M42G primers during testing.

To this end the following successful test points (see also Figures D-2 and D-14
in Appendix D) were initially considered:

16 in-oz: I.D.: 32, 39, 46, 53, 60, 67, 74, 81, 88, 95, 102
14 in-oz: I.D.: 33, 40, 47, 54, 61, 68, 75, 82, 89, '", 103
12 in-oz: I.D.: 41, 48, 55, 62, 69, 76, 83, 90, 97, 104
10 in-oz: I.D.: 42, 49, 56, 63, 70, 77, 84, 91, 98, 105

8 in-oz: I.D.: 71, 78, 85, 92, 99, 106
6 in-oz: I.D.: 79, 86, 93, 100, 107

b. Space Restrictions and Firing Pin Dimensions

In order to stay within reasonable dimensions for the resulting spring driven
primer striker systems, it was decided that the diameter of the firing pin
(and with that the diameter of the spring) should not exceed 0.375 inches, and
that the overall height of the system, as described by Eq.(E-16) should not
exceed 2.000 inches.

Figure E-1 gives various possible firing pin lengths which correspond to
feasible firing pin diameters for the firing pin masses associated with the
I.D.'s considered. (See last section.) The material is assumed to be steel
(y = 0.283 lbs/in3 ).
The following diameters are examined for each I.D. number: 0.375, 0.312, 0.250,
0.218, 0.200, 0.187. 0.170. 0.156, 0.140, 0.125, 0.110, 0.100, and 0.093 inches.

Lengths below 0.125 inches were generally excluded.

NOTE: The firing pin is assumed to be a solid cylinder without consideration
of the 0 03 inch length of the tip, or any reduced diameter for
locating it within the inside diameter of the spring.
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c. Design Equations
The design equations used in the following optimization proceedure are now

recapitulated:

The free length of the spring is given by Eq.(E-lO):

4m gc 2 T cTrc 1 D
Lu ___ C + 2- (E-17)0 " 2yD2 (-k- + -P *

where according to Eq. (E-13):

ms H ! ln(-2 ln B) (E-18)
2

and

131 KvN(I + CD)
B 2T +0. (E-19)

further

D (E-20)

and

K 4c -1 0.615 (E-21)
4c - 4 c

The number of active turns of the spring is given by Eq.(E-8):

4m g

N = s (E-22)
w2yDd 2

Finally, the overall height of the system, i.e. the space that must be
provided so that the firing pin can reach its maximum attainable velocity
for which it has been designed, is given by Eq.(E-16):

4msgc 2 *rciC 1 2D L

Lt a -- 1 + 2- + L (E-23)
2 i2yD2  c p

where according to Eq.(C-14):

e
C -2. + T(-3 T 4e (E-24)

and

Ms (E-25)

Furthermore, the mean coil diameter D of the spring is related to the outside
diameter D0 of the spring and the firing pin by the following relationship:
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D = D + d = G(1 +
c

therefore

D D= c (E-26)
1 +c

The correct application of these design equations will now be discussed.

d, Optimization Procedure

Both the free length L0 as well as the overall height of the system Lt, as
given by Eq's.(E-17) and (E-23) respectively are directly as well as indirectly
functions of the spring index c. Because of the complexity of this dependence,
it is not practical to determine the shortest 10 and Lt for a given condition
analytically.

It has proven itself comparatively easy to search for that value of the spring
index c which results in the shortest Lt under a given set of circumstances.
Figure E-2 gives an example of such a computer search.

It was desired to find the shortest overall height L for a system employing
I.D. No. 75 which has a nominal velocity vN = 800 in/sec and a firing pin mass
M = 2.734x10" 6 lb-sec 2/in (refer to Figure D-2 in Appendix D and to Section 4a
in the present appendix).

The outside diameter Do of the spring and the firing pin was chosen as 0.125
inches, and Figure E-l indicated that the length of the firing pin had to be
0.304 inches in this case. The program was written to evaluate Eq's.(E-17),
(E-18), (E-22) and (E-23) for LO, msi, N and Lt respectively in addition to
computing the wire diameter d.

The above equations were computed for 3.4 < c < 6.00. The shortest overall
system can be found from the printout to correspond to c = 4.2 with a length
of Lt = 1.713. The associated wire diameter is 0.02404 inches, the number of
active turns are 30.1, and the free length of the spring is 1.277 inches.

The following additional parameters were used in the program:

Y = 0.283 lb/in3 (density of steel)
CD = 0.25, design correction factor (see Eq.(D-14))
Tc = 200,000 psi, corrected maximum allowable shear stress for the music

wire of the s rings
g - 386.05 in/sec, acceleration of gravity
G - 11.5x10" 6 , shear modulus of steel

Similar optimizations have been performed for all I.D. numbers and firing pin
outside diameters indicated in Figure E-1.

Finally, all optimum possibilities with overall lengths less than 2,000 inches,
"which correspond to a certain I.D. number, were combined on one output sheet.
Figure E-3 shows such a typical optimum design table for I.D. 75, (the same as
used above). It now includes the least overall heights for such outside diameters
as 0.200, 0.187, 0.170, 0.156, 0.140 and 0.125 inches.
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(iWhen comparing Figures E-2 and E-3 it can be seen that Figure E-3 shows
for an outside diameter of 0.125 inches the values which follow directly below
the minimum value in Figure E-2. Thus Figure E-2 gives a minimum overall height
of 1.713 inches, while Figure E-3 gives 1.717 as the minimum. This discrepency
has its reason in the needs of the final program. The error is of course
insignificant.)

Figure E-3 also lists all other necessary design information such as: wire
diameter, number of active turns, free length of spring, as well as its solid
height, (which takes two inactive turns into account).

In addition, the spring mass is printed out for checking purposes. (The value
of the spring masses are very close for all designs for a given I.D. number
since the spring index at optimum is essentially identical for most. (See
Eq.(E-18) for dependency on c.))

Appendix F gives all optimum design tables. Their information furnishes all
those systems which are smaller than 2.000 inches in overall height, and assure
100 percent firing for the M42G primer.

E-12
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APPENDIX F

OPTIMUM DESIGN TABLES

The present appendix lists approximately 215 spring striker systems with
overall length of less than 2.000 inches and outside diameters of less than
0.375 inches. (See Appendix E for background,) All systems correspond to
actual test points and 100 percent firing is assured in all cases. (Note the
I.D. numbers as well as their associated energy levels, firing pin masses, and
nominal firing pin velocities [vN].) As in Figure E-3 of Appendix E the
following complete design information is given:

1. Outside diameter of the system
2. Length of firing pin (assumed to be a solid cylinder without consideration

of hemispherical tip of 0.032 inches)
3. Mass of the spring
4. Wire diameter of the spring
5. Active number of turns
6. Free length of spring (based on assumption of two inactive turns turns of

spring)
7. Solid height of spring (again including two inactive turns)
8. Expanded length of spring at maximum velocity of firing pin
9. Overall height of system

Similar to the tabulations of Figures E-2 and C3-3 in Appendix I', the following
values were used in the computations:

y = 0.283 lb/in3 (density of steel music wire)
CD = 0.25, design correction factor for velocity (see Eq.{(-14) in Appendix D)
Tc f 200,000 psi, corrected maximum shear stress of spring at solid height
g = 386.05 in/sec2, acceleration of gravity
G = 1l.5x10 6 psi, shear modulus of steel

The computer program, (see sample printout below), was written in MAD (Michigan
Algorithm Decoder), and all computations were made on an IBM 7040 computer at
the City College Computation Center of the City University of New York.
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a. Computer Program

SPRING OPTIMIZATION

C = MEAN COIL DIAMETER/WIRF DIAMETER
D = MEAN COIL DIAMETER
DELCY = INCRFMENT Of C
FTT = LENGTH OF EXPANi0TD SPRING AT INSTANT OF MASS SFPARATION
K = STRESS CONCENTRATIO)N OF SPRIAJG
LZERO = FREE LENGTH OF SPRING
M = MASS OF FIRING PI:N
MS = MASS OF SPRING
NACT = NUMBPER [IF ACTIVE COILS
NTOT = TOTAl. NUMBFR OF TURNS
01) z OUTER DIAMETER OF SPRING
OVRALL = OVERALL REDUIRED LENGTH
PINL = LENGTH OF FIRING PINJ
SMALLI) = WIRE OIAmJTER
SOLH = SOLL) HEIGHT
VEL = EXPERIMENTAL VELOCITY

INTEGER INOZ, ID, IDI
EXECUTE NOHI).
READ t)ATA
ME6 = M*I.OF6

THE LAST DATA CARD tMIUST BE J = I-THIS IS A SIGNAL TO THE
PROGRAM rl4AT ALL THE I)ATA HAS BEEN REAL)

INTEGER J
WHENEVER J .E. I
PRINT FORMAT N[ITLSI
PRINT FORMAT NOTFS2
PRINT FORMAT N()TFS3
TRANSFER TO START
END OF CONDITIONAL
WHENEVER (ID .NE. II) .Ar4l). (I1)1 .NF. U)

PRINT FORMAT NOTESI
PRINT FORMAT NOTES2
PRINT FORMAT NUTES3

END OiF C{JNtI) TIONAL
WHENEVER ID .NF. IDI

PRINT FOR4MAT H)ATAl, INIOZ,IDVELMEb
PRINT FORMAT HDNGI
PRINT FOR4AT Ho)tqG2
PRINT FORMAT HI)NG3

END OF CUNUITIDNAL
VECTOR VALUFS NUTESI- $Ilt ///IH II,*TOTAL TUR'JS 1F SPRING ARE OBTAINED BY

I ADDING 2 TURNS*/IH H*TO NUMBER (IF ACTIVE TURNS4**$
VECTOR VALuES NOTES2 a $1HOH*ALL UNITS OF LENGTH ARE IN INCHES*/IH)HJAL

I L UNITS OF MASS ARE IN Lg-a,E*SEC/IN*E6J/IHoH*ALL UNITS OF VE
I LOCITY ARE IN INlSEC**$

VECTGR VALUES NUTES3 = $IHOH*OCVERALL HEIHT OF SYSTEM IS OBTAINF.D BY AD

F-2
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I DlING EXPANDFI) LF43TH OF SIPR IN(;*/ 114 tH*To LFNc3- RI (IFI Pf N"* i

VECTOR VALUES DVATA1 = ý11QH*1U'4I-( '*I29S1U0lI*IU N0l. = *13/11H U*VtLOC"

1 ITY =*1ý6.LS3,FBF3 IN MASS= F.*
VECTOR VALUES HDNIGI = IH0H*0.l).*S3,li*P)TN*S4,Hl*SPRING;*S3,H*WIRE*S,3,

I H*ACT !Vl*S3,H*FlU(:F*S3,H*gLXPANOFI)4'i)S4 t1l*JVr-ALL*S4t
2 H*SOLID**$
VECTOR VALUES HONG2 =SIH 6,H1*LF-4GTi*,S3,H*IMASS*S4,H*DIAM*S3,H*TURNS*

VECTOR VALUES HDN4G3 = $11 S46,14*OP SPRINý*S2,H*Of SY~fEM*S2tH*OF SPRING

FTT =lU).

FTTP 200.
THR~OUGH GAMMA, FUR LCAT D IFLCY, C .G. CFI,4
WHENEVFR FTTP -L. FTI

PRINT FORMAT ANS, )00, Pfl4L, MSE(1, SM-ALLI), NACI, LZEFR0, FTTP, OVKALL,
I SOLH

TRANSFER If) W'XT
END flF CONDI)ITIONALii VFCTOR VALUES AN', = tH F4.3,S3,F.4.3,S3,F6.',,S2,Ib.'J,Sl,F5.1,S3,F6.3,

I S33F6.3,S6,F6.3t`;6tF-4d,3*¶
FTTP = FTF
V =VFL*I.2'i
1) -(OD*C)/(1.() + C)
K =(4.0'*C - 1.U,)/(4.0*C - 4.0) + 0.615/C

HS -O. ?~4*ELLG.(-?.0*ýLr)G,.(V*I(/1053.435 + (0.5))
MSE6 =MS*1.0[6
ALPHA VS/M

KF =2.0 + I 1.0/ALPH4)*( 1.0 - 0.5*EXlP.(-?.Uo*ALPHA)

+F ? +1.0/C)

SMALLD z D/C
NACT =552.8eh379tVS/ W*oSNMALL.UO SMALLI)
NTOT =NACT + 2.0
LZERO 5(2.863?*LCk'C*MS )/((0*D)( 0(Oll4lj3'3' 1/K
I+ 1.o/C) + 0*k,

OVRALL FTT PINL
SOLH =SMALLI)*NTOr
CONTINOE

TRANSFE'R TO !0ARI

END OF PROGRAM
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