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ABSTRACT

A simplified flow field solution has been programmed in an attempt

to improve the accuracy of estimates of the static aerodynamic charac-

teristics of c.drnance projectiles. It provides estimates of .4rag, nor-

mal force, static moment, and roll damping moment for pointed bodies

of revolution at supersonic speed. The program combines the Van

Dyke hybrid theory for potential flow, the Van Driest compressible

turbulent boundary layer theory, and the Chapman-Steriberg model
for supersonic base pressure. Good agreement is demonstrated be-
tween the theoretical and experinental dka.
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I. INTRODUCTION

For several years the Exterior Ballistics Laboratory of the Ballistics

Research Laboratories has been engaged in an attempt to improve the

accuracy of estimates of the aerodynamic characteristics of projectiles.

Some fairly good semi-empirical methods for bodies of revolution have
I*

been used in the past, such as Hitchcock's method of estimating aero-

dynamic drag; the Wood-Simmons method 2 ' 3 for normal force and

static moment; and the Wood-Murphy unsteady slender body theory 4

which includes estimates of pitch damping derivatives. In addition, a

totally empirical method called "Spinner" has recently been advanced

by Whyte 5. This method utilizes the large memory of a digital com-

puter to store the experimentally determined aerodynamic characteris-

tics of many existing projectile designs. A table search combined with

a multiple interpolation routine is then used to estimate the unknown

characteristics for a given configuration. The "Spinner" method appears

to be reasonably accurate for projectiles which do not differ appreciably

from one or more of those tabulated in the data bank.

Although the methods in current use are capable of providing quick

and fairly accurate estimates of aerodynamic characteristics for most

projectiles of conventional design, the recent advent of large scale,

high speed computing machinery has prompted a re-examination of the

more fundamental approach to the problem - that of computational fluid

dynamics. This report compares the results of a simplified flow field

solution ,vith results obtained experimentally for one class of projectiles

(pointed bodies at small static angle of attack in supersonic flow) and

indicates some areas in which improvement of the simplified fluid model

are needed. (An analogous flowfield solution has recently been published
26by Moore .)

*References are listed on page 53.
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II. METHOD OF SOLUTION OF THE FLOW FIELD
AROUND A PROJECTILE

A. Potential Flow

For the prediction of static aerodynamic characteristics, the pro-

jectile is assumed to be a rigid, reasonably slender, pointed body of

revolution, at small static angle of attack in uniform supersonic flow.

The flow is assumed to be inviscid, irrotational, isentropic, and every-

where supersonic (the restriction to "low supersonic" speed avoids the

essential non-linearity of transonic flow). Under these assumptions,

the fluid velocity can be expressed as the gradient of a potential field,

and the solution of the potential flow around the projectile represents

a first approximation of the real flow field.

At moderate supersonic speeds and small angles of attack, the most

serious omission made in this first approximation is the neglect of

viscosity. No significant regions of separated flow can be accounted

for in an inviscid theory; in particular, the large separated flow region

aft of a blunt base requires a special treatment of base effects. Another

important omission in the theory is the neglect of the boundary layer.

Fortunately, the stated problem deals primarily with slender bodies of

revolution at high Reynolds numbers, a combination of conditions for

which classical boundary layer theory is applicable. The principal,

direct effects of the boundary layer are to add skin friction and to

slightly modify the direction of the streamlines close to the surface.

The boundary layer also has an indirect effect on the base pressure,

since the flow in the near wake depends on ocal flow conditions just

upstream of the base. Therefore, the addition of a boundary layer

solution represents a second approximation to the real flow field.

The specific theory selected for solution of the potential flow field

was Van Dyke's hybrid theory6 '7 which combines a second-order axial

solution with a first-order approximation for the cross flow. This

method is computationally faster by a factor of 1000 than an equivalent

14



Ii' solution by the method of characteristics. For typical slender projec-

tile designs at moderate supersonic speeds, disagreement with a solu-

tion by characteristics is usually less than 2%* in velocity and pressure.

B. Viscosity Corrections

The skin friction effect for compressible turbulent boundary layers
8on flat plates has been investigated by Van Driest , and his theory was

used to estimate skin friction effects on drag and roll damping moment.

The effect of the boundary layer on the flow field adjacent to the surface

of the body is accounted for by adding the local displacement thickness

to the local bare-body radius, and solving the inviscid flow field with

an adjusted boundary condition. A boundary layer solution could be

formally introduced, but would significantly complicate the calculation;

because of the approximate nature of the correction, a linear variation

of boundary layer displacement thickness was assumed as a concession

to the computing scheme. The turbulent flat plate boundary layer dis-

placement thickness at the projectile base is estimated; at the nose,

the thickness is assumed to be zero; then the local displacement thick-

ness is assumed to vary linearly with axial distance between the pro-

jectile nose and the base. The aerodynamic forces and moments are

then determined for the bare-body plus the linear displacement thick-

ness.

The addition of an estimate of the turbulent base pressure completes

the required component parts for a free-flight total drag estimate. The

base pressure estimate used consists of a combination of the method
9 10of Chapman for square based projectiles and Sternberg's correction

for boattails. This simple semi-empirical base pressure estimate

appears to work fairly well, except for boattails at low supersonic

speeds.

The adverse pressure gradient over a boattail markedly thickens

the turbulent boundary layer in that region; hence the flat plate equa-

tion underestimates boundary layer thickness at the base of a boattailed

15



shell (the flow can also separate along a boattail). Chapman 9 found

that thickening the boundary layer lowers base pressure and increases

base drag. The effect of using the flat plate boundary layer thickness

for boattailed configurations is to underestimate the base drag. The

normal force and static moment estimates are also affected by the

error in displacement thickness along the boattail, although the effect

on the cross flow is weaker than the effect on velocities in the near

wake.

III. SOLUTION OF THE POTENTIAL FLOW

The axial flow around the projectile is solved to first order by

superposition of the five basic solutions stated in the Appendix, equa-

tions (A. 29) through (A. 33). The first order solution and its first par-

tial derivatives are then substituted in equation (A. 26), and the particu-

lar integral, Y0, is evaluated. The second order problem is now re-

duced to an equivalent first order problem, since the second order

solution can be expressed as the sum of the particular integral and a

complementary solution of the first order potential denoted by X 0,

x0 + X0 /r-)X 0  =0 (1)
rr r xx

which is precisely the first order equation. The boundary conditions

are (see equation A. 39)

X0 (o, r)=x ° (o, r) 0 (2)
x

X °  (x, R ) = R ' (I + 0 ) -p (3)
r x r

16



The complementary solution x o , is obtained by superposition of the

same five basic solutions initially used to obtain g o . The complete

second order potential for the axial flow, 0o, is now given by,

0 0 X°  (4)

The cross flow is solved to first order by superposition of the two

basic solutions, stated in the Appendix, equations (A. 35) and (A. 36).

The first partial derivatives of the second order axial solution and the

first order cross flow solution give the potential axial and cross flow

velocities needed to determine the pressure distribution on the projectile.

The pressure coefficient, C , for steady, isentropic flow is givenP
by,

C (x, r,0) 1 [+ 2 971M 2 ( I ___qi
M iU )]

where q /U2 = (u/U) z + (v/U) 2 + (w/U) 2  (6)

Substituting equation (A. 21) from the Appendix into (A. 4), (5) and

(6), and expanding in series gives,

C p(x,r, 0)=C (x,r) cosa+C (x,r) sinacos&+ .... (7)

For small angle of attack, sin af a and cos af 1, and equation (7)

reduces to,

C (x,r,6) = C (x,r) +C (x,r) acos+.... (8)

17



where C (x, r) - f1 +Z7-.LM, [1-(.1 +4 2- 2 1 Y(1

(9)

xi x r or I IP

where 00is the solution for the axial floN% and 0 1 is the crossflow solution.

On the surface of the projectile, equations (9) simplify to,

(10)

2 2 1
C (x,R)=-2(l+R' 2)(1+0 )0 [1+ZM C (x.R)J 7

0 1 Z

The pressure drag coefficient, C DPP the normal force derivative,

CN . and the normal force center of pressure. X CPN (calibers from
a

apex) are given by

CDP do8

CN = A -R(x) C (x) dx (12)

X CPN = J0- x R(x) C P(x) dx (13)

N

where "'d" is the reference diameter of the projectile and, "~"is the

length.
18
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Comparison of Van Dyke's hybrid theory with exact solutions is

made in Figures I through 5. Figures I and 2 show the comparison

with conical flow for pressure coefficients at zero angle of attack,

and the normal force derivatives for ten degree hall-angle cones.

Figure 3 compares the ratio of local pressure to free stream static
1 2pressure, (p/pl = I + !VM C ), for the second order theory and

a characteristic solution, along a slender cone-cylinder-boattail de-

sign, at two supersonic speeds. Figure 4 is a representation of the

calculated pressure distribution along a more blunt cone-cylinder-

boattail design. Figure 5 depicts the comparison in pressure distri-

bution along an initial cone-tangent ogive combination, followed by a

cylindrical section, and several boattail angles. In general, the agree-

ment is quite good for slender configurations at moderate supersonic

speeds.

IV. SKIN FRICTION EFFECTS

8Van Driest has derived an estimate of the turbulent skin friction

on an insulated flat plate,

0.2z42 (Sin"
-& )24 (S= log 1 0 Re CFT + I(1 + 2641Ogl 0 (1- 2), (14)

FTT
4CFT

where 1-A 2 = +1 ) M2 ] "

C = Turbulent skin friction coefficient

Re, = Reynolds number, based on length

V = ratio of specific heats (. 4 for air)

w = power law viscosity exponent (0. 76 for air)

M [ = free stream Mach number

19



This formula is used in the present theory, even though real projectiles

are known to have heat transfer to the surface.

The wetted surface area of the projectile, Sw , is,

L
SW= 2 Irf R (x) di (x) dx (15)

O

Equation (14) is now solved for CFT by iteration, and the skin

friction drag coefficient is given by,

4 (16)
C -SD SF SW CFT

11
For a spinning body of revolution, Charters and Kent derived a

relation between the roll damping moment coefficient, CiP and thep

skin friction drag coefficient, CD F . The relation is,
* SF

1

p SF

where (17)

Roil Dampin Moment

It is difficult to estimate the absolute accuracy of the skin friction

drag calculation. For most ordnance projectiles at supersonic speeds,

skin friction drag amounts to less than 30%6 of total drag; hence a rea-

sonable error in CD (say, 10%) contributes only 3% total drag error.

Available free flight data for the roll damping moment agree with the

estimated value from equations (16) and (17). Since no direct experi-

mental check on the accuracy of skin friction drag is available, the

agreement of the roll damoing e-itimate with experiment provides t

only evidence that the turbulent skin friction estimate is satisfactory.

20



V. ESTIMATION OF BASE DRAG

An estimate of the turbulent axisymmetric base pressure foa! ord-
nance projectiles is obtained from a combination of Chapman's semi-

9 10empirical method for square base designs, and Sternberg's correction

for boattails. Chapman's model assumes that the base pressure de-

pends on the approach Mach number at the base, and the ratio of bound-
ary layer thickness at the base to base diameter. Most ordnance pro-

jectiles have fully turbulent boundary layers, and the Chapman model

states that the base pressure data should correlate with (L/Re, I 5 ),
the fineness ratio divided by the one-fifth power of the Reynolds num-
ber (based on length), and also with the effective Mach number of the

approach flow at the base. The ratio of base pressure to local static

pressure for square base projectiles can be written,

p = f (Me , L/Re 1/5) (18)

The actual nature of the dependence of base pressure on approach
Mach number and boundary layer thickness must be determined experi-

mentally. A rather large amount of high quality free flight total drag

data was available at BRL from the firings of various models through

the spark photography ranges. Charters and Turetsky 1 2 demonstrated
two techniques for obtaining base pressure from free flight data; one,

the total drag subtraction method, and, two, a base pressure deter-

mination from measurement of the wake angle at the projectile base.

Total drag data for cones, cone-cylinders, Army-Navy spinner rocket
models, and tangent ogive-cylinders are available 13, 14, 15, 16

This data was reduced for base pressure by the methods of Refer-

ence 12. Wherever possible the total drag subtraction method and the
wake angle methods were compared; in all cases, agreement to within

10% error in base pressure wao obtained.
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The base pressure data was they- analyzed to determine the nature

of dependence on approach Mach number and boundary layer thickness.

The final result of a least squares fitting gave the following empirical

equation.

' PB 8964 .34793 131 LR /5)
p-- .3896 + M - 23913M (L (19)[ e Me e

~with a standard error of 3. 5%. This equation is valid for M between

and 3, and Retbetween 106 and 108. Figure 6 shows the first three

terms of equation (19), plotted as a solid line. The plotted points are

experimental values, extrapolated to Re, ,by means of the last
term of equation (19).

For square base projectiles, the effective approach Mach number

is simply the local Mach number just upstream of the base, which is

readily determined from the potential flow solution. For boattail de-

signs, Sternberg's correction defines the effective Mach number as

the Mach number of parallel flow which would reach the local Mach

number at the boattail base, if expanded to the surface angle two di-

mensionally. Since the flow is assumed to be everywhere isentropic,

the effective Mach number can be calculated using the Prandti-Meyer
function.

The Prandtl-Meyer angle corresponding to the local Mach number
at the base, MB, is given by,

lab= Tan- I -l+(B' )-"Tan "-' IJK 2 . 1  (20)
-1 (20)
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The effective Mach number has a corresponding Prandtl-Meyer

angle given by,

-B + Tan (R') (21)e BB(1

where RB' is the rmeridian slope at the base of the projectile. The

effective Mach number is related to the effective expansion angle by,

S= Tan-  ( 1)-Tan 4M -1 (22)
e +y~ e

Equation (22) must be solved for the effective Mach number, M

The ratio of local static pressure to total pressure (p'/pt), and the

ratio of free stream static pressure to total pressure (p /p are cal-

culated from the isentropic relations,

P- (I +_ M (23)
2 e

p, 'Y 1I= 1+- M) (24)
Pt 2

The ratio of base pressure to free stream static pressure is given

by,

~p, L p/g ?.
. - j P'. (25)

where is obtained empirically, equation (19).
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The base drag coefficient, C , is expressed by,
B

c~~~ -LiBZ.,B(6

where dB = base diameter of projectile

d = reference diameter of projectile.

The simple semi-empirical method used to estimate turbulent base

pressure appears to be reasonably accurate for cylindrical or slightly

flared afterbodies over the range of supersonic speeds. Sternberg's
10

correction for boattails yields essentially correct results for sveeds

well above transonic, that is, free stream Mach numbers greater than

1. 5 for slender configurations.

The primary source of error in base pressure for boattails at low

supersonic speed is believed to be the marked thickening of the boundary

layer over a region of adverse pressure gradient. Chapman's correla-

tions of measured base pressures show a decrease in base pressure

with increasing boundary layer thickness, and a large increase in sen-

sitivity with decreasing Mach number. Thus the flat plate boundary

layer approximation und,restimates base drag for boattailed shell, with

an expected increase i . zrror at low supersonic speeds.

V1. f.ORECTION FOR BOUNDARY LAYER
DISPLACEMENT THICKNESS

Comportlc.- vi 'he potential normal force derivative and normal

force center of rpressure with experimental data shows a systematic

error. Potential flow theory consiatently underestimates both normal

force slope and center of pressure, and the error increases with in-

Z4



creasing body fineness ratio. This discrepancy appears directly at-

tributable to the presence of the boundary layer; in fact, various

authors have attempted to correct classical slender body theory for

the effects of boundary layer displacement thickness.

Since displacement thickness is defined as the distance by which
17

external streamlines are shifted due to boundary layer formation, a

slight modification of potential flow theory cai1 be made to incorporate

the displacement thickness correction. The displacement thickness is

estimated along the body surface, added to the local bare-body radius,

and the potential flow field is solved with the "revised" boundary con-

dition.

Schlichting 17 has derived an expression for incompressible tur-

bulent boundary layer displacement thickness for a flat plate of length

4 If we let L = d, Schlichting's Formula becomes,

(6.*/d) 046 L/ReC /5 (27)

where (6i*/d)Bas. is the incompressible boundary layer displacement

thickness at the trailing edge, in calibers.

Van Driest8 has derived the effect of compressibility on turbulent

boundary layer thickness. A good approximation to Van Driest's re-

sult for the ratio of compressible to incompressible thickness is,

/6c) 1 +..6 M (28?

Asnuming that (6c/6) = (6c */6i*), equations (27) and (281 can be

combirwd to estimate compressible turbulent displacement thickness

at the projectile base,

0.88

(6*) Bas .046L [1 + .046 (Z_ ) M2 1 (29)Base Re//2

25



The actual rate of growth of turbulent boundary layer thickness is

proportional to x4 1 5 , where x is the downstream distance from the

apex. However, a 4/5 ths power growth rate introduces a complica-

tion in the potential solution near the leading edge. Dcwnstream of

the leading edge, a linear boundary layer growth rate is a reasonable

approximation to the 4/5 ths power law; hence a simplifying assumption

was made for the benefit of the co;puting scheme. The displacement

thickness at the projectile base is estimated from equation (29), the

thickness at the leading edge is assumed to be zero, and the local

thickness is constrained to vary linearly with downstream distance &

intermediate locations. The effect of body shape is not taken into ac-

count for the displacement thickness estimate. No attempt is made

the present theory to include the effect of angle of attack on the bound-

ary layer.

For the five, seven, and nine caliber Army-Navy spinner rocket

configurations, Figures 7 and 8 compare the pure potential (bare-body

boundary condition) normal force slope and center of pressure with

theoretical values corrected for axisyrnm etric displacement thickness

and with experimental data. The Reynolds number ringe for the spin-

ner rocket models was between 3 x 106 and 107 , based on model length.

The boundary layer correction markedly improves the accuracy of pre-

diction, especially for the longer projectiles.

VIL CO.MPARISO.N OF THE PRESENT THEORY WITH
EXPERIMENTAL RESULTS

The results of a comparison between the values obtained with the

present theory and those obtained experimentally are shown in the

following figures. Figures 9 through 12 present the comparison with
15range data for the Army-Navy spinner rocket configuration. The

comparison in Figure 13 is with data 13, 14 for a cone-cylinder model,
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while that for Figure 14 is with unpublished range data for an idealized

model of a typical square based artillery projectile. It is to be noted

from these figures that the agreement between theory and experiment

is quite good over the useful range of supersonic speeds.
16

Figure 15 compares theoretical values with measured data for

several boattail angles at a free stream Mach number of 1. 7; at this

speed the agreement is good. Figure 16 shows the comparison with

experimental data for an idealized model of a typical boattailed ord-

nance projectile. The theory considerably underestimates total drag

for boattailed shell at low supersonic speeds. As indicated previously,

the primary source of total drag error at such speeds is believed to be

an error in the base pressure estimate. The errors in normal force

and static moment slopes are much smaller, since the flat plate bound-

ary layer displacenent thickness estimate is not seriously degraded by

adding a short boattail.

Estimates of drag, normal force slope and center of pressure -were

also calculated, using the present theory, for the additional free flight

range tests reported in references 17 through 20. These models in-

cluded head length variations on the Army-Navy spinner projectiles,

cone-cylinders of high fineness ratio, and various boattailed coafigu-

rations.

The experimental data reported in references 13 through 20 are

based on free flight spark range firings of smooth, pointed, aerody-

namically clean models, nominally 20 millimeters in diameter. A

comprehensive comparison of this data with that obtained with the

present theory is shown in Figures 17 and 18. Some of the experi men-

tal data shown in these Figures is of uncertain quality; hence a larger

scatter is observed than in previous Figures.

Figure 17 depicts for square based projectiles the ratio of the ex-

perimental drag, normal force, and center of pressure to the theo-
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retical estimates as plotted against free stream Mach number. Agree-

ment between theory and experiment is good at all of the free stream

Mach numbers considered, with the largest errors observed being un-

der 10 percent.

Figure 18 is a plot similar to that presented in Figure 17 except

that it is for projectiles of boattailed design. It indicates for shell of

this type equally good agreement at free stream Mach numbers greater

than 1. 7. However at Mach 1. 5 systematic errors in the theoretical

values of the order of 10 percent are observed. At Mach 1.3, the

errors range irom 15 to 25 percent.

The stated objective in the development of the present theory is to

improve the state-of-the-art in estimating the static aerodynamic

characteristics of ordnance projectiles. For aerodynamically clean

vehicles, Figure 17 indicates high quality estimates on square based

designs. Figure 18 shows reliable results on clean boattr.iled designs

at free stream Mach numbers greater than 1. 7. If estimates are re-

quired for a boattailed design at lower supersonic speeds, the trends

indicated in Figure 18 may be used to qualitatively adjust the theoretical

results.

VIII. COMMENTS ON SMALL ARMS AND
ARTILLERY PROJECTILES

Use of the present theory to estimate static aerodynamic charac-

teristics of typical ordnance designs is handicapped by the fact that

most real ordnance projectiles violate to some extent one or more of

the physical assumptions inherent in the simplified fluid models. For

a specific design, the nature of the violation can usually be classified

as either basic or minor. If a given projectile basically violates the
physical assumptions of the theory, the resulting estimates will be
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unreliable, and in general, uncorrectable by any uniformly satisfactory

method. Examples of basic violations are large thickness ratios or

severe leading edge bluntness, which violate the assumption of isentropic

flow; or a large region of separated flow along the projectile's surface,

which invalidates the boundary layer assumption.

If a given projectile design contains only minor violations of the

physical assumptions, it is usually possible to correct the theoretical

estimates,. at least qualitatively, for the known errors. Examples of

minor violations are small leading edge bluntness (meplats), screw

holes, wrench slots, bourrelets, small rings, grooves or body under-

cuts, shallow helical body serrations, and, at least for square based

designs, small rotating bands. (In general, if a surface recess or

protuberance on a projectile wall is smaller than the local boundary

layer thickness at that point, the violation is considered minor.)

Small arms and artillery projectiles represent two classes of real

ordnance design to which the present theory has been applied. The

violations encountered with theae two classes of shell are sufficiently

distinct and different to warrant separate discussion.

Details of quantitative corrections for minor violations of the pres-

ent theory will be published in the near future as separate reports for

specific classes of ordnance projectiles.

A. Small Arms Projectiles

The conventional small arms bullet is a nearly pointed, slender

body of revolution, with shallow helical serrations impressed on the

cylindrical section by the rifled gun barrel. The bullet may or may

not have a boattail, but due to the swaging process used in manufacture,

most production bullets have rounded corners at the base. The gilding
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metal jacket and the lead-antimony core are cold-formed to the pre-

scribed design in a polished swage, and the outer contour of the bullet

is generally a very smooth surface.

Conventional small arms bullets are seldom over one inch long,

and at moderate supersonic speed, the free flight Reynolds number

usually lies in the transition range. The combination of transition

Reynolds number and a smooth surface promotes initially laminar

boundary layers, with transition usually occurring somewhere on the

body. The present theory assumes a fully developed turbulent bound-

ary layer, and from the strict viewpoint of fluid physics, an initially

laminar boundary layer constitutes a basic violation. However, the

present theory includes boundary layer effects only as a second order

correction to the potential flow field; in the mathematical sense, bound-

*ary layer transition on the body introduces only a minor violation.

Since a laminar boundary layer produces significantly less skin

friction than a turbulent one, the present theory should overestimate
9

skin friction drag for small arms bullets. However, Chapman shows

that a laminar boundary layer creates lower base pressure and therefore

the theory should underestimate base drag for the laminar case.

The possibility of a fortuitous cancellation of the two errors has

been confirmed experimentally for several small arms bullets with

predominantly laminar boundary layers. The normal force and center

of pressure estimates for the same projectiles were significantly

higher than experimental values, since the present theory overestimates

the displacement thickness for a projectile with a laminar boundary

layer.

Rounded corners at the base of a projectile cause boundary layer

separation upstream of the actual base. The assumptions of potential
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flow and the boundary layer are valid only in the region upstream of

the separation point. If separation physically occurs close to the

actual projectile base, the separation point is assumed to be the effec-

tive base location for use in the present theory. Unfortunately, no

simple method exists for predicting the separation point on rounded

bases. Good agreement between theoretical and experimental values

has been obtained for rounded base designs when the separation point

was visually determir.-d from spark shadowgraphs.

Application of the tJ.-ory to the drawing shape of a gilding metal-

lead bullet can introduce additional errors in estimation because de-

formation of the projectile in the bore is neglected. Spark shadow-

graphs of bullets in free flight often reveal a significantly different

contour from that initially loaded in the *gun. Errors in drag estimates

as great as 20 percent have been traced to such bullet deformation, but

marked improvement results when the theory is applied to the contour

measured from shadowgraphs.

B. Artillery Projectiles

Typical artillery shells are characterized by fuzes with meplats,

rough surfaces, screw holes and wrench slots, bourrelets, rings,

grooves, body undercuts, and rotating bands, all of which tend to

promote fully developed turbulent boundary layers.

The drag increase due to a small melplat can be calculated approxi-

mately and added to the theoretical estimate. The effect of rings,

grooves, body undercuts and rotating bands is to add parasitic drag,
21, 22 "

which can be q .alitatively estimated 2 The effect of surface ir-

regularities on the errors in normal force and center of pressure are

difficult to estimate.

31



The effect of a rotating band depends on its size and location. A

large band with a blunt trailing edge causes local boundary layer sepa-

ration just downstream of the band, and if the flow is required to turn

the expansion angle to the boattail before reattachment has occurred,

the present theory is basically violated. If the band is small, or far

enough forward so that reattachment occurs before the flow reaches

the boattail, the principal effect of the band is simply to thicken the

boattail boundary layer. In this case, the net effect of the rotating band

is an accentuation of the errors shown in Figure 18, for idealized boat-

tailed configurations. Unfortunately, even good spark shadowgraphs do

not always reveal the location of boundary layer reattachment, and for

the case of a rotating band upstream of a boattail, the present theory

must be used with caution.

IX. CONCLUSIONS

The estimates of static aerodynamic characteristics obtained by

the method outlined in this report agree with experimental results to

within ten percent error, for aerodynamically clean, square based

projectiles. At free stream Mach numbers above 1. 5, equally good

estimates are obtained for boattailed configurations. At low super-

sonic speeds, the present theory shows systematic errors of order of

twenty percent for boattails. The error trends observed in Figure 18

for low speeds may be used to qualitatively correct the theoretical

estimates for boattaled designs.

The present theory could be improved by adding a numerical solu-

tion of the axisymmetric turbulent boundary layer equations, using the

pressure distribution obtained from the inviscid solution. Similarly,

23,24
several authors have recently published techniques , for solution
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of the axisymmetric turbulent wake of a supersonic projectile, includ-

ing boattailed and flared afterbodies. Reference 25 gives a method of

estimating base pressure for the rocket case. Future efforts involving

the present theory should include studies to determine if adding more

refined boundary layer and turbulent wake solutions offer significant

improvement in results, at a reasonable cost in computing time.

.
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APPENDIX

The Van Dyke Hybrid Theory.

The theory described in this appendix is essentially that giver. by

Van Dyke in References 6 and 7, and is restated here for completeness.

For a body of revolution at an angle of attack, a, in a uniform

supersonic stream, the boundary condition at the body surface is

simplified by choosing a cylindrical coordinate system -n body axes.

The free stream velocity, U, is resolved into axial and cross-flow

components, as in Figure A-1.

1Y

U "$an

Figure A-i. Cylindrical Coordinate System in Body Axes

The equation of motion in terms of the velocity potential &(x, r, )
~is;

*(c 2- C ) C + (c2 -1 ) C6+ (c 2_2 /r ) ((L/r )
x xx r rr li

+ (c2 + C 2/r ) (is/r) - 2 G i&/ r2 -2 %4 r,./r 2  (A. 1)

r r
x r xr
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I
The peed of sound, c, is related to c , itb free stream value, by;

c2 21 Z2 2 2 U 2 (A2
~c c -1(y.-1) C" + ru(Y 1) + C&r + it/r  U ]  (A. 2)

0 ~ x r

Subscripts indicate partial differentiation.

The perturbation potential I (x, r, 0) is defined as;

I.(x, r,8) = U[xcos + r sinacosO + (x, r,)]. (A. 3)

The axial, radial, and azimuthal velocity components are given

by;

u/U = (6/U = cos a + *x

v/U = (/U = sin a cos + r (A. 4)

wfU C ,/rU = -sin O sin 4 + ,/r

The free stream Mach number, M, is defined as;

M = U/c . (A. 5)

Substitution of equations (A. 2), (A. 3), and (A. 5) into (A. 1) gives the

equation of motion in terms of the perturbation potential,
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* +, /r+ /r # = M ( 1 -)(4+4 +/r +
rr / xx 2  xx rr r/

2
6 fr[2 ( x cos c + # sin C cos-4 6 sin a sin 6/r) +

x r xx x x

4 + sin of cos 6)2 2 (#,,,/r 2 - 4/r) (#g/r - sin cr sin 6)2 +

24 (# +cooa) (# +sinC cos) +2 (#X4/r) (# x +cos )(#,/r-

xr xr

sin o sin 9) + 2 (#re0r) ( + sin a coo 8l)l(/r - sin o sin 0)-

2 sin a (#,/r - sin a sin 0)( sinO/r + # cos/r 2, (A. 6)

2 2Swhere =M -1.

Since the incident stream is supersonic. all perturbations must

vanish upstream of the body, and the condition of tangent flow must be

imposed on the body surface. The appropriate boundary conditions

are,

4 (0,r, = 4(0,r,6) = 0. (A.7)

# (x, R,6) + sinor cos RICcos o+ # (x,R,6)), (A. 8)r x

where R = R (x), the local body radius, and R' = , the local bodydx

slope.
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Although the exact nonlinear equations (A. 6), (A. 7), and (A. 8)
could be formally attacked by finite difference methods, a satisfactoryapproximation to the solution is more easily obtained by an iterative

technique, based on a first order solution, which assumes that the en-

tire right hand side of (A. 6) can be neglected. The first order poten-

tial is denoted by 0, and the first order problem is given by,

2 2 =o A9( r + 0 / + -,/ ;3 0. (.9

( (0, r,e = x (0, r,O) = 0. (A. 10)

r (x,R,e) + sin a cos 0 = R' [cos Y + tx (x, R, 0)]. (A. 11)

The first order problem can be further simplified by splitting the

axial and cross-flow components into two independent problems.

Let p0(x, r,9) = o(x, r)cos a + 01 (x, r)sin a cos a (A. 12)

where 00 is the potential of axial flow, and 9o1 is the potential of the

cross-flow. Substitution of (A. 12) into (A. 9), (A. 10), and (A. 11) gives,

for the axial flow,

00 +9 0o / r - 0 0° = 0 (A. 13)
rr r xx

90(0, r)= 0° (0,r) =0 (A. 14)
x

•o (x,R ) = 1'C + ° (x, R) 3 (A. 15)
*00

r x

and for the cross flow,

2 2
0 +0I /r-(P /r - = 0 (A. 16)

rr r xx
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( 0 . ) 0  (0, r) 0 (A.17)
~x

1 + (x,R)= R' 1 (x,R). (A. 18)
r x

The general solution of (A. 13) and (A. 16), which satisfy the appro-

priate boundary conditions are,

x-r
- rf ( )d

p (x, r)= - 2_ 22 (A. 19)

x-r

(P (x,0=~ JL Ixtgt d 2 (A. 20)

The unknown function f (t) appearing in equation (A. 19) represents

a distribution of sources and sinks along the x-axis, and g(C) in equa-

tion (A. 20) represents an axial distribution of doublets. The functions

f (4) and g(t) are determined by satisfying the tangency conditions,

equations (A. 15) and (A. 18), along the body surface.

If the first order solution (A. 12) is now substituted in the right

hand side of (A. 6), a second order interation equation results. The

complete second order potential, 0, can also be split into axial and

cross-flow components,

0 (x,r,8) = 0 cos Ct + 0sinu cos0 +.... (A. 21)

Substituting equations (A. 12) and (A. 21) into (A. 6), and noting that

(0 and I satisfy equations (A. 13) and (A. 16), respectively, the

second order iteration equations become, for the axial flow,
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2 Z21o0 + (_)2
0 0 0 0
rr r xx xr r xx x

'0o 00 + (-l)Mz % °o +Z 0Po 00 + (A. 22)
rr r xx r xr x r

1z z

yx x

and for the cross-flow,

2 2 2

0 10 /r-( /r -  2 M [2p (l- ° )(+0 )+

1 0 0 1

rr r xx xr x r

I2

2 4plMp (1+0 + ( +1 +1 ) ))( ++ (
0rr r r r x xr r rr

(Y-1) M 'Pl (2 'PO + f0 +0 +1 0(+0( A 3

XX X x r x x xx

(Y-1) MZ (o [(I +(o )Ol + to (I +tl)]+Z2 o *+tpo)4p, +

xx x x r r xx x x

o0 o0l
xr r x

Both equations (A. 22) and (A. 23) can be simplified somewhat by

consideration of the order of magnitude estimates on inhomogeneous

terms. In equation (A. 22), at moderate supersonic speed*, the first

three terms on the right hand side contribute to (0 quantities of

4 2 4 4 x
order C log C, C log C, and f , where C is the body thickness ratio.

The last three terms in equation (A. Z2) contributed, at most,

quantities of order C 6log 3. Near the hypersonic limit, the first
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2 4
four inhomogeneous terms contribute 0 cc ), and the last two, 01:'4).

For either speed regime, the last two terms in (A. 22) may be neglected

in comparison with the first four inhomogeneous terms.

In equation (A. 23), inhomogeneous terms may be neglected if they
5 lo5

contribute to 0 no more than 0 Ec log f) at moderate supersonic
x

3
speeds, and 0 Cc I at hypersonic speeds. Neglecting the appropriate

terms, equations (A. 22) and (A. 23) simplify to,

00 + 0or- 2  =M (2'Po 0o +[2+( Y-I)M 2 )p 0o +
rr r xx r xr x xx

2P 0 + 9o I. (A.4)
0 0 2 0 0
r rr r xx

01  +01 /r+ /r 2- 1  0o2M2[ (11 )+Po rPlx +
rr r ME xr r r xr

(°o  i o 11+01 )1+. o 11rr 1 -M-1M2 CAP +0o11+ 01 )]+

0rr 0r Ir :10r Or+ V0 Ix 0r r

(0 1° + 0 9o ))+0° 0 + ) (P ( +0° 0o (A. 2 5)

xx x r xx x x xx xr x

The inhomogeneous wave equations (A. 24) and (A. 25) could be

attacked by standard numerical methods; however, if any particular

solution of these equations were known, the boundary condition could

be corrected by adding solutions of the homogeneous equations (A. 13)

F and (A. 16), and the second order problem would be reduced to an

equivalent first order problem.
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Van Dyke discovered an approximate particular solution, denoted

by o t to equation (A. 24), stated in terms of the first order potential

and its first derivatives,

2 2 22 1 3

x r r

This particular solution satisfies the iteration equation within the

order of terms already neglected, at moderate supersonic speeds.

Van Dyke states[6 ) that although it fails to account completely for

triple products at hypersonic speeds, numerical examples have shown

the actual magnitude of error to be small.

A particular solution of the iteration equation for the cross-flow
[61(A. 25) has not been discovered, and Van Dyke concludes that a

second order solution for the cross-flow past an arbitrary body is not

possible. However, for slender bodies of revolution at small angles of

attack, the disturbances in cross-flow are much smaller than those in

the axial flow; this suggests that it is more important to refine the

axial flow solution than the cross-flow. Accordingly, Van Dyke pro-

posed a hybrid solution consisting of a second order axial solution

coupled with a first order solution of the cross flow. Comparisons of

the hybrid theory with exact solutions by the method of characteristics

have demonstrated excellent agreement, and form the basis for adop-

tion of the hybrid theory as a sufficiently accurate solution to the po-

tential flowfield around a projectile.

Details of First and Second Order Solutions.

For the axial flow, the discovery o( the particular integral(A.26) re-

duces the second order problem to a sequence of two first order prob-

lems. These are solved by repeated superposition of five basic solu-

tions, which are now derived below.
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Any first order solution may be regarded as resulting from a con-

tinuous distribution of supersonic sources and sinks located along the

px-axis. 'The function f(4) in equation (A. 19) can be equally well rep-

resented as a continuous curve, or as the sum of a number of linear

and quadratic source distributions having various strengths and starting

points, as shown in Figure A-2.

+ + + +

+ + + 4 +

Figure A-2. Equivalent Nethods of Creating a Source-Sink lstribution

The linear source distribution (f)--J is required at the tip of a

pointed body, since a pointed body actually produces conical flow near

the apex. The use of quadratic source-sink elements [I (t)- 21 down-

stream of the apex insures a smooth first order solution for evaluation

of the particular integral.

If the body has continuous curvature, theae two basic solutions are

sufficient. However, if the body has corners or curvature discon-

tinuities, additional solutions are required. A corner is accounted

for in the first order solution by adding a square root source distribu-

tion [f ()-4'] which produces a discontinuity in streamline slope

along its leading Mach cone. A curvature discontinuity is accou.ted

for by adding a three-halves power source distribuin [f()- 3/2

65



which produces a discontinuity in screamline curvature along the lead-

ing Mach cone. The curvature solution is also required at a corner,

since an apparent curvature discontinuity remains after the corner

solution is added.

The particular integral involves derivatives of the first order solu-

tion, and therefore has stronger discontinuities. For a body curvature

discortinuity, the particular integral behaves like a corner, and the

corner solution must again be used. For an actual body corner, the

particular integral behAves like a step in the streamlines, and an in-

verse square root sotrce distribution [f(4,1- lf/4' must be added to

canctl the apparent step.

In summary, the axial first order solution and the particular in-

tegral are calculated by superposing the five basic solutions:

(1) Linear source solution - used at the apex of a pointed body,

(2) Quadratic source distribution - used downstream of the apex

for a body with continuous curvature,

(3) Square root source distribution - used to account for a corner,

(4) Three-halves power source distribution - used to account for

a body curvature discontinuity,

(5) Inverse square root source distributioa - used to cancel the

step in the particular integral at a corner.

Calculation of the five basic solutions is facilitated by "ntroducing

the conical variable t,

t = r/x. (A. 27)

Physically. t is the ratio of the tangent of the polar angle to the

tangent of the Mach angle, and varies from zero on the x-axis to unity
ot, the Mach cone.
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If r is replaced by tx/p in equation (A. 19), and f 1 1 is replaced by
equation (A. 19) becomes,

x(l-t)

( 0o x, t)= -o d (A. Z8)

Performing the indicated integrations yields the five basic axial

flow solutions in the form,

(1) Linear source distribution (n= )

o0p(x t) = (Sech- 1 t- l-t 2  (A. 29)

II

(2) guadzatic source distribution (n= 2_)

4P (.t) x O+ i t ) Sech - t-3/2 ,- 7 (A. 30)

(3) Square root source distribution (n=)
2

P (x. t)- 4 '/r, t(K-E) (A. 31)

where K and E are complete elliptic integrals of the first and second

kind, with modulus k = !1 -t)(I+t).

(4) Three-halves power source distribution (n= 3/2)

(o(x, t = X/2 8 %fTT-[(3+t) K-4El (A. 32)

(5) Inverse square root source distribution (n= -

(Xt) r r;- K. (A. 33)
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The first order sol'ution i- te c ss-flow requires only two basic

solutions; one for bodies having eontinuous curvature, and a second

solution which is required cniy at & coraer. The supersonic doublet
distribution, g(t), in equation (A. 20) is adequa ely represented by the

sum of linear d-ublet elements [g(4)--] , hAving various strengths and

starting points. The corner solution in cross Rcm ia represented by a

square root doublet distribution [g(-- . if r is now replaced by

tx/P in equation (A. 20), and g(C) is replaced by n equation (A. 20)

becomes,

xl-t)

.(X,t 0 1.-E) Im (A. 34)

Again, performing the indicated integrations yields the two basic

cross-flow solutions in the form,

(1) Linear doublet distribution (m= 1)

- F--2 -1
t.) = XN I~ 1-t )/t -t Sech tJ (A. 35S)

(2) Square root doublet distribution (m =)

(xt) = E ,tK). (A. 36)

Approximate Tantency Conditii.

The computing scheme s samvli~iid by using &.z approximate tan-

gency condition instead of the exact coa. iion giver by equation (A. 61.

In first order theory, it is conpistieat eith the approximation already

nmade to neglect i) and R'4p in comparisson with unity. Shmilar
x X
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consistency is obtained in the second order axiai solution by replacing

0 in equation (A. 8) with its first order counterpart. (0 . With these
x x

approximations, the tangency ccndition for first and second order

solutions can be written,

Ro x. R) = R'(x). (A. 37)
r

(x, R)= 1. (A. 38)
r

0o (x.R = R'(x [ l+ p (x.R)]. (A-39)
r x

Van Dyke shows [ 7 ] that although neither exact or approximate tan-

gency exhibits consistent superiority for smooth bodies, the use of

approximate tangency invariably leads to higher accuracy in the vicin-

ity of a corner. This result is not completely unexpected, since flow

around a corner is locally a two-dimensional process, and the approxi-

mate tangency condition is known to prodt-:e more accurate velocities

near corners in plac-t flow. The implication is that approximate tan-

gency is consistently superior for bodies of revolution with corners;

hence equations (A. 37) through (A. 39) have been adopted for calcula-

tion of flows around projectiles.

Choice of Computing Intervals.

Van Dyke has derived rules for computing intervals, based on

supersonic similarity. The length of the first interval, 6, for a
0

pointed body is given by,

1 2.26o 8M(R1 R @ ). (A. 40 )
0
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Subsequent intervals are given by,

6. = f R., for smooth bodies, (A. 41)
2. 1

and

5 1
= , at acorner. (A. 42)

C 2 c

Van Dyke states that the relative numerical error at the end of any

interval will not exceed otie percent, if the previously stated interval

lengths are used. Experience has demonstrated that to retain one per-

cent accuracy throughout the flowfield, it is necessary to reduce Van

Dyke's intervals by a factor of two for the first and subsequent inter-

vals, and by a factor of four for the first interval immediately following

a corner. If violent changes in body curvature occur within any given

interval, the interval may have to be further reduced.
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