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ABSTRACT

A simplified flow field solution has been programmed in an attempt
to improve the accuracy of estimates of the static aerodynamic charac-
teristics of c.drance projectiles. It provides estimates of drag, nor-
mal force, static moment, and roll damping moment for pointed bodies
of revolution at supersonic speed. The program combines the Van
Dyke hybrid theory for potential flow, the Van Driest compressible
turbulent toundary layer theory, and the Chapman-Sternberg model

f for supersonic base pressure. Good agreement is demonstrated be—

tween the theoretical and experimental dzra.
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[. INTRODUCTION

For several years the Exterior Ballistics Laboratory of the Ballistics
Research Laboratories has been engaged in an attempt to improve the
accuracy of estimates of the aerodynamic characteristics of projectiles.
Some fairly good semi-empirical methods for bodies of revolution have
been used in the past, such as Hitchcock's method P of estimating aero-
dynamic drag; the Wood-Simmons methodz’ 3 for normal force and
static moment; and the Wood-Murphy unsteady slender body theory4
which includes estimates of pitch damping derivatives. In addition, a
totally empirical method called "Spinner' has rezently been advancasd
by Whyte 5. This method utilizes the large memory of a digital com=-
puter to store the experimentally determined aerodynamic characteris-
tics of many existing projectile designs. A table search combined with
a multiple interpolation routine is then used to estimate the unknown
characteristics for a given configuration. The"Spinner' method appears
to be reasonably accurate for projectiles which do not differ appreciably

frorn one or more of those tabulated in the data bank.

Although the methods in current use are capable of providing quick
and fairly accurate estimates of aerodynamic characteristics for most
projectiles of conventional design, the recent advent of large scale,
high speed computing machinery has prompted a re~examination of the
more fundamental approach to the problem - that of computational fluid
dynamics. This report compares the results of a simplified flow field
solution with results obtained experimentally for one class of projectiles
(pointed bodies at small static angle of attack in supersonic flow) and

indicates some areas in which improvement of the simplified fluid model

are needed. (An analogous flowfield solution has recently been published

by Moore26. )

*References are listed on page 53.

13




3
J
=

AN R iy

II. METHOD OF SOLUTION OF THE FLOW FIELD
AROUND A PROJECTILE

A. DPotential Flow

For the prediction of static aerodynamic characteristics, the pro-
jectile is assumed to be a rigid, reasonably slender, pointed body of
revolution, at small static angle of attack in uniform supersonic flow.
The flow is assumed to be inviscid, irrotational, isentropic, and every-
where supersonic (the restriction to '"low supersonic! speed avoids the
essential non-linearity of transonic flow). Under these assumptions,
the fluid velocity can be expressed as the gradient of a potential field,
and the solution of the potential flow around the projectile represents

a first approximation of the real flow field.

At moderate supersonic speeds and small angles of attack, the most
serious omission made in this first approximation is the neglect of
viscosity., No significant regions of separated flow can be accounted
for in an inviscid theory; in particular, the large separated flow region
aft of a blunt base requires a special treatment of base effects. Another
important omission in the theory is the neglect of the boundary layer.
Fortunately, the state¢ problem deals primarily with slender bodies of
revolution at high Reynolds numbers, a combination of conditions for
which classical boundary layer theory is applicable. The princiral,
direct effects of the boundary layer are to add skin friction and to
slightly modify the direction of the streamlines close to the surface.
The boundary layer also has an indirect effect on the base pressure,
since the flow in the near wake depends vn local flow conditions just
upstream of the base, Therefore, the addition of a boundary layer

solution represents a second approximation to the real flow field.

The specific theory selected for solution of the potential flow field
was Van Dyke's hybrid theory6’ 7 which combines a second-order axial
solution with a first-order approximation for the cross flow. This

method is computationally faster by a factor of 1000 than an equivalent
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solution by the method of characteristics. For typical slender projec-
tile designs at moderate supersonic speeds, disagreement with a solu-

tion by characteristics is usually less than 2% in velocity and pressure.

B. Viscosity Corrections

The skin friction effect for compressible turbulent boundary layers
on flat plates has been investigated by Van Driests, and his theory was
used to estimate skin friction effects on drag and roll damping moment.
The effect of the boundary layer on the flow field adjacent to the surface
of the body is accounted for by adding the lccal displacement thickness
to the local bare-body radius, and solving the inviscid flow field with
an adjusted boundary condition. A boundary layer solution could be
formally introduced, but would significantly complicate the calculation;
because of the approximate nature of the correction, a linear variation
of boundary layer displacement thickness was assumed as a concession
to the computing scheme. The turbulent flat plate boundary layer dis-
placement thickness at the projectile base is estimated; at the nose,
the thickness is assumed to be zero; then the local displacement thick-
ness is assumed to vary linearly with axial distance between the pro-
jectile nose and the base. The aercdynamic forces and moments are
then determined for the bare-body plus the linear displacement thick-

ness.

The addition of an estimate of the turbulent base pressure completes
the required component parts for a free-flight total drag estimate. The
base pressure estimate used consists of a combination of the method
of Chapmn9 for square based projectiles and Sternberg's correctionlo
for boattails. This simple semi-empirical base pressure estimate
appears to work fairly well, except for boattails at low supersonic

speeds.

The adverse pressure gradient over a boattail markedly thickens
the turbulent boundary layer in that region; hence the flat plate equa-
tion underestimates boundary layer thickness at the base of a boattailed

15
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shell (the flow can also separate along a boattail). Chapmam9 found
that thickening the boundary layer lowers base pressure and increases
base drag. The effect of using the flat plate boundary layer thickness
for boattailed configurations is to underestimate the base drag. The
normal force and static moment estimates are also affected by the
error in displacement thickness along the boattail, although the effect
on the cross flow is weaker than the effect on velocities in the near

wake.
i III. SOLUTION OF THE POTENTIAL FLOW
, The axial flow around the projectile is solved to first order by
3 superposition of the five basic solutions stated in the Appendix, equa-
2 tions (A. 29) through (A. 33). The first order solution and its first par-
tial derivatives are then substituted in equation (A. 26), and the particu-

lar integral, Yo' is evaluated. The second order problem is now re-

E duced to an equivalent first order problem, since the second order ‘
solution can be expressed as the sum of the particular integral and a

complementary solution of the first order potential denoted by Xo?

2 _
: X, * X, /r-B X =0 (1)
it rr r xx

which is precisely the first order equation. The boundary conditions

are (see equation A. 39)
2 XO (O, r) = xo (0, r) =0 (2) 1
= x :
i X, (x» R)=R'(1+¢ )-Y¥ (3) ,
r x r
16

Wt SRS E R




COEISERVE PP OYE i A I AR g e 10 PORSILTRA S SYETERIAN S S SRR b

by g A3k ARt

N

*y

R 10

pEE Ty o

%Y

SIS ATunii it e 2h

3
ES

[SCT O

R Fand VRS et e e b
L el - B =
3 ’J&%;{; &

The complementary solution xo, is obtained by superposition of the
same five basic solutions initially used to obtain ¢ o The complese

second order potential for the axial flow, ¢o, is now given by,

The cross flow is solved to first order by superposition of the two
basic solutions, stated in the Appendix, equations (A. 35) and (A. 36).
The first partial derivatives of the second order axial solution and the
first order cross flow solution give the potential axial and cross flow

velocities needed to determine the pressure distribution on the projectile.

The pressure coefficient, Cp, for steady, isentropic flow is given
by,

. 2 _v/ly-1)
2 p dd PP S
C (x,r8) =<2 {[1+22 M (1-%, -1
P i {[ 2 ¥ ] } (s)
where qz/Uz = (u/t.l)z '}(\»'/U)z + (w/U)Z (6)

Substituting equation (A.21) from the Appendix into (A.4), (5) and
(6), and expanding in series gives,

C (x,r,8)=C _ (x,r) cosa+C_ (x,r) sinacos®+-... (7)
P P, Py

For small angle of attack, sin a~ @ and cos aa 1, and equation (7)
reduces to,

Cp(x,r.O):Cpo(x,r)+Cpl(x,r)acose+.... (8)

17
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2 z-l 2 2 2
where C (x,r ) = — 1+ M [1-(149 ) -9 "] -1
P, )'MZ [{ 2 o, o } J

Ll £ 2" v ¥ T g 1)

(9)

. 1
C (xr) = -2L(l+¢° )¢1 'l'(l‘l>¢l )¢° ][uz%‘ic (x,r)]‘y
pl x x r r po

where ¢° is the solution for the axial flow; and ¢1 is the crossflow solution.

On the surface of the projectile, equations (9) simplify to,
v/{y-1)

N o N T o o T T T

..1:]‘

(10)

C (x R) =-—3-2- {1 J-;'—‘ MEL1-0+RZ) (140 )"']}
po M x

ER AR L i b

1

z -
- - 2 ™M~ y
cpl(x,n)_ 2 (1+R )(1+¢°x)¢lx[x+ > cpo(x,n)]

The pressure drag coefficient, CDP' the normal force derivative,

C_. . and the normal force center of pressure, xCPN (cﬂiberc from

N
o

apex) are given by

L
Cpp = ;% J’ R(x) R'(x) C_ (x) d x (11)
[o] (o]

A
4
C = - -R(x)C (x)dx (12)
dz Io pl

4 J‘L
= -xR(x) C (x)dx (13)
CPN c dZ o .Pl

N
a

where ''d" is the reference diameter of the projectile and, ''{" is the

length. ?
18
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Comparison of Van Dyke's hybrid theory with exact solutions is
made in Figures 1 through 5. Figures 1 and 2 show the comparison -
with conical flow for pressure coefficients at zero angle of attack,
and the normal force derivatives for ten degree half-angle cones.
Figure 3 compares the ratio of local pressure to free stream static

pressure, (p/pl =1+ %‘yMz Cp ), for the second order theory and
o
a characteristic solution, along a slender cone-cylinder-boattail de-

sign, at two supersonic speeds. Figure 4 is a reprezsentation of the
calculated pressure distribution a2long a more blunt cone-cylinder-
boattail design. Figure 5 depicts the comparison in pressure dist-i-
bution along an initial cone-tangent ogive combination, followed by a
cylindrical section, and several boattail angles. In general, the agree-
ment is quite good for slender configurations at moderate supersonic

speeds.

IV. SKIN FRICTION EFFECTS

Van Dx‘ieat8 has derived an estimate of the turbulent skin friction
on an insulated flat plate,

. -1
o.(z:z (Sm A) /"Az““m’*‘ccp-r*%(uZﬂlogm(l-xz), (14)
¥ “Fr

z -l

where 1-2%:=[1 +%(y-l)M2]

CF’I‘ = Turbulent skin friction coefficient

Re, = Reynolds number, based on length

¥ = ratio of specific heats (1.4 for air)
W = power law viscosity exponent (0. 76 for air)

= free stream Mach number

I
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This formula is used in the present theory, even though real p}ojecﬁlea

are known to Lhave heat transfer to the surface.

The wetted surface area of the projectile, SW’ is,

Sw=21I:R(x) J1+[R(x) 1 ax (15)
Equation (14) is now solved for CFT by iteration, and the skin
friction drag coefficient is given by,
(16)

For a spinning body of revolution, Charters and Kent 1 derived a
relatior between the roll damping moment coefficient, C, , and the

skin fricticn drag coefficient, CD . The relation is,

SF
c, = -+ Cp
Lp 1 "Dy
where ' (17)
c, = Roil Damping Moment
L1 L2 tds d
P 0 U° (=) &

It is difficult to estimate the absolute accuracy of the skin friction
drag calculation. For most ordnance projectiles at supersonic speeds,
skin friction drag amounts to less than 30% of total drag; hence a rea-
sonable error in CDSP(uy, 10%) contributes only 3% total drag error.

Available free fligh: data for the roll damping moment agree with the
estirnated value from equations (16) and (17). Since no direct experi-
mental check on the accuracy of skin friction drag is available, the
agreement of the roil damping estimate with experiment provides t+

only evidence that the turbulent skin friction estimate is satisfactory.

20
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V. ESTIMATION OF BASE DRAG

An estimate of the turbulent axisymmetric base pressure fox ord-
nance projectiles is obtained from a combination of Chapman's semi-
empirical method9 for square base designs, and Sternberg's corret:tirmlo
for boattails. Chapman's model assumes that the base pressure de-
pends on the approach Mach number at the base, and the ratio of bound-

- sry layer thickness at the base to base diameter. Most ordnance pro-
jectiles have fully turbuleat boundary layers, and the Chapman model
3 states that the base pressure data should correlate with (L/Re LI/S).
the fineness ratio divided by the one-fifth power of the Reynolds num-
ber (based on length), and alsc with the effective Mach number of the
approach flow at the base. The ratio of base pressure to local static

pressure for square base projectiles can be written,

AP Y

! fp;'a_ = £(M_, L/Re,!/% (18)
The actual nature of the dependence of base pressure on approach

Mach number and boundary layer thickness must be determined experi-

mentally. A rather largz amount of high quality free flight total drag

; data was available at BRL from the firings of various models through

f the spark photography ranges. Charters and Turetskylz demonstrated

: two techniques for cbtzining base pressure from free flight data; one,

the total drag subtraction method, and, two, a base pressure deter-

mination from measurement of the wake angle at the projectile base.
Total drag data for cones, cone-cylinders, Army-Navy spinner rocket
models, and tangent ogive-cylinders are available 13, 14, 15, 16.

This data was reduced for base pressure by the methods of Refer-
ence 12. Wherever possible the total drag subtraction method and the
wake angle methods were compared; in all cases, agreement to within
10% error in base pressure was obtained.
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The bage pressure data was ther analyzed to determine the nature
of dependence on approach Mach numnber and boundary layer thickness.

The final result of a least squares fitting gave the following empirical

equation.
PB .8964 34793 oy 1/5
- ° .3896 + M, LT -23913 M_ (L/Re, '°) (19)

e

with a standard error of 3.5%. This equation is valid for Me between
1 and 3, and Re ybetween 106 and 108. Figure 6 shows the first three

terms of equation (19), plotted as a solid line. The plotted points are
experimental values, extrapolated to Re L™ by means of the last

term of equaticn (19).

For square base projectiles, the effective approach Mach number
is simply the local Mach number just upstream of the base, which is

readily determined from the potential flow solition. For boattail de-
10

signs, Sternberg's correction = defines the effective Mach number as _

the Mach number of parallel flow which would reach the local Mach
number at the boattail base, if expanded to the surface angle two di-
mensionally. Since the flow is assumed to be everywhere isentropic,
the effective Mach number can be calculated using the Prandti-Meyer
function.

The Prandtl-Meyer angle corresponding to the local Mach number
at the base, MB’ is given by,

Jm Tan™! */7+1 (Mg“-1) - Tan™! ,/MBZ-I (20)
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The effective Mach number has a corresponding Prandti-Meyer
angle given by,
-1
v o= T ' 21
e> B + Tan (RB) (21)

where RB' is the rneridian slope at the base of the projectile. The
effective Mach number is related to the effective expansion angle by,

et
_ r__ -1 [y-1
v, = Y= Tan ‘J‘y-ﬁ-' (M ,JM -1 (22)

Equation (22) must be solved for the effective Mach number, M .

The ratio of local static pressure to total pressure (p'/ p,). and the
ratio of free stream static pressure to total pressure (p,/p,) are cal-

culated from the isentropic relations,

' “/(y-1)
B _ (1+7——Mz) (23)
pt
P N -v/(y-1)
= - a0+ M (24)
P, 2

The ratio of base pressure to free stream static pressure is given
by,

;léz L(;L;)/ K:—:) ] (%’.) (25)

Py
where p—') is obtained empirically, equation (19).
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The base drag coefficient, CD , is expressed oy,

B
2. Pqn -
2 B
C - (2 1= =1, (26)
D, yMz(dJL le

base diameter of projectile

where dB

d

reference diameter of projectile.

The simple semi-empirical method used to estimate turbulent base
pressure appears to be reasonably accurate for cylindrical or slightly
flared afterbodies over the range of supersonic speeds. Starnberg's
correction 10 for boattails yields essentially correct results for s eeds

well above transonic, that is, free stream Mach numbers greater than

1. 5 for slender configurations.

The primary source of error in base pressure for boattails at low
supersonic speed is believed to be the marked thickening of the boundary
layer over a region of adverse pressure gradient. Chapman's correla-
tions of measured base pressures show a decrease in bu.e pressure
with increasing boundary layer thickness, and a large increase in sen~
sitivity with decreasing Mach number. Thus the flat plate boundary
layer approximation undsrestimates base drag for boattailed shell, with

an expected increase i :¢ror at low supersonic speeds.

Vi. { CRRECTION FOR BOUNDARY LAYER
DISPLACEMENT THICKNESS
Compirises oif vhe potential normal force derivative and normal
force center of nressure with expsrimental data shows a systematic
error. Potentiul flow theory consiatently underestimates both normal

force slope and center of pressure, and the error increases with in-

24
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creasing body fineness ratio. This discrepancy appears directly at-

tributable to the presence of the boundary layer; in fact, various
authors have attempted to correct classical slender bodv theory for

4 the effects of boundary layer displacement thickness.

Since displacement thickness is defined z s the distance by which

external streamilines are shifted due to boundary layer formation, 17 a

T Y

slight modification of potential flow theory ca1 be made to incorporate
the displacement thickness correcticn. The displacement thickness is
estimated along the body surface, added to the local bare-body radius,

and the potential flow field is solved with the "'revised' boundary con-
- dition.

Schlichtin(” has derived an expression for incompressible tur-
bulent boundary layer displacement thickness for a flat plate of length
4 If welet L = 4/d, Schlichting's Formula becomes,

N 1/5
(8*/d)g,,, = -046 L/Re, ">, 27 ;

where (bi"/cl)B“e is the incompressible boundary layer displacement
thickness at the trailing edge, in calibers.

Van l.'}rieat8 has derived the effect of compreesibility on turbulent

3 boundary layer thickness. A good approximation to Van Driest's re-

sult for the ratio of compressible to incompressible thickness :s,

Wb WX s e e .

- Z 3 088

é 6./8) = [ 1+.046 (L5hy M2 | (28)
2 Assaming that (Oclbi) = (bc* /6i*), equations (27) and (28} can be (

combinad to estimate compressible turbulent displacement thickness
3 at the projectile base,
-0.88
- _ .046L y-1...23" :
- (ac*/d)Base = R_—e 175 [l + .046 ( > M J (29) ;
A ‘;

M
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The actual rate of growth of turbulent boundary layer thickness is
proportional to x4/5, where x is the downstream distance from the
apex. However, a 4/5ths power growth rate introduces 2 complica-
tion in the potential solution near the leading edge. Dcwnstream of
the leading edge, a linear boundary layer growth rate is 2 reasonable
approximation to the 4/5 ths power law; hence a simplifying assumption
was made for the benefit of the co;puting scheme. The displacement
thickness at the projectile base is estimated from equation (29), the
thickness at the leading edge is assumed to be zero, and the local
thickness is constrained to vary linearly with downstream distance a2
intermediate locations. The effect of body shape is not taken into ac-
count for the displacement thickness estimate. No attempt is made
the present theory to include the effect of angle of attack on the bound-

ary layer.

For the five, seven, and nine caliber Army-Navy spinner rocket
configurztions, Figures 7 and 8 compare the pure potential (bare-body
boundary condition) normal force slope and center of pressure with
theoretical values corrected for axisymmetric displacement thickness
and with experimental data. The Reynolds number ringe for the spin-
ner rocket models was between 3 x 106 and 107, based on model length.
The boundary layer correction markedly improves the accuracy of pre-

diction, especially for the longer proiectiles.

V. COMFARISON OF THE PRESENT THEORY WITH
EXPERIMENTAL RESULTS

The results of a comparison between the values obtained with the
present theory and those obtained experimentally are shown in the

following figures. Figures 9 through 12 present the comparison with

15 for the Army-Navy spinner rocket configuration. The

13,14

range data

comparison in Figure 13 is with data for a cone-cylinder model,
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while that for Figure 14 is with unpublished range data for an idealized
model of a typical square based artillery projectile. It is to be noted
from these figures that the agreement between theory and experiment

is quite good over the useful range of supersonic speeds.

Figure 15 compares theoretical values with measured data 16 for
several boattail angles at a free stream Mach number of 1. 7; at this
speed the agreement is good. Figure 16 shows the comparison with
experimental data for an idealized model of a typical boattailed ord-
nance projectile. The theory considerably underestimates total drag
for boattailed shell at low supersonic speeds. As indicated previously,
the primary source of total drag error at such speeds is believed to be
an error in the base pressure estimate. The errors in normal force
and static moment slopes are much smaller, since the flat plate bound-
ary layer displacem=nt thickness estimate is not seriously degraded by

adding a short boattail.

Estimates of drag, normal force slope and center of pressure were
also calculated, using the present theory, for the additional free flight
range tests reported in references 17 through 20. These models in—~
cluded head length variations on the Army~Navy spinner projectiles,
cone=cylinders of high fineness ratio, and various boattailed configu~

ratioas.

The experimental data reported in references 13 through 20 are
based on free flight spark range firings of smooth, pointed, aerody-
namically clean models, nominally 20 millimeters in diameter. A
comprehensive comparison of this data with that obtained with the

present theory is shown in Figures 17 and 18. Some of the experi men-
tal data shown in these Figures is of uncertain quality; hence a larger

scatter is observed than in previous Figures.
Figure 17 depicts for square based projectiles the ratio of the ex-~

perimental drag, normal force, and center of pressure to the theo-
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retical estimates as plotted against free strearn Mach number. Agree-
ment petween theory and experiment is good at all of the free stream
Mach numbers considered, with the largest errors observed being un=-

der 10 percent.

Figure 18 is a plot similar to that presented in Figure 17 except :
that it is for projectiles of boattailed design. It indicates for shell of
this type equally good agreement at free stream Mach numbers greater -
than 1. 7. However at Mach 1. 5 systematic errors in the theoretical
values of the order of 10 percent are observed. At Mach 1.3, the

errors range irom 15 to 25 percent,

The stated objective in the development of the present theory is to
improve the state-of~the-art in estimating the static aerodynamic
characteristics of ordnance projectiles. For aerodynamically clean
vehicles, Figure 17 indicates high quality estimates on square based
designs. Figure 18 shows reliable results on clean boattziled designs
at free stream Mach numbers greater than 1. 7. If estimates are re~
quired for a boattailed design at lower supersonic speeds, the trends
indicated in Figure 18 may be used to qualitatively a&just the theoretical

results.

Viil,. COMMENTS ON SMALL ARMS AND
ARTILLERY PROJECTILES

Use of the present theory to estimate static aerodynamic charac-
teristics of typical ordnance designs is handicapped by the fact that
most real ordnance projectiles violate to some extent one or more of
the physical assumptions inherent in the simplified fluid models. For
a specific design, the nature of the violation can usually be classified
as either basic or minor. If a given projectile basically violates the

physical assumptions of the theory, the resulting estimates will be

28
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‘; unreliable, and in general, uncorrectable by any uniformly satisfactory
¥
= method, Examples of basic violations are large thickness ratios or
% severe leading edge bluntness, which violate the assumption of isentropic
: flow; or a large region of separated flow along the projectile's surface,
. which invalidates the boundary layer assumption.

If a given projectile design contains only minor violations of the
physical assumptions, it is usually possible to correct the theoretical
estimates, at least qualitatively, for the known errors. Examples of
minor violations are small leading edge bluntness (me'plats), screw
holes, wrench slots, bourrelets, small rings, grooves or body under-
cuts, shallow helical body serrations, and, at least for square based
designs, small rotating bands. (In general, if a surface recess or
protuberance on a projectile wall is smaller than the local boundary

iayer thickness at that point, the violation is considered minor. )

Small arms and artillery projectiles represent two classes of real
ordnance design to which the present theory has been applied. The
violations encountered with these two classes of shell are sufficiently

distinct and different to warrant separate discussion.

Details of quantitative cozrections for minor violations of the pres-
ent theory will be published in the near future as separate reports for

specific classes of ordnance projectiles.
A. Small Arms Projectiles

The conventional small arms bullet is a nearly pointed, slender
bedy of revolution, with shallow helical serrations impressed on the

cylindrical section by the rified gun barrel. The bullet may or may

not have a boattail, but due to the swaging process used in manufacture,

most production bullets have rounded corners at the base. The gilding
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metal jacket and the lead-antimony core are cold-formed to the pre~
scribed design in a polished swage, and the outer contour of the bullet

is generally a very smooth surface.

Conventional small arms bullets are seldom over one inch long,
and at moderate supersonic speed, the free flight Reynolds number
usually lies in the transition range. The combination of transition
Reynolds number and a smocth surface promotes initially laminar
boundary layers, with transition usually occurring somewhere on the
body. The present theory assumes a fully developed turbulent bound-
ary layer, and from the strict viewpoint of fluid physics, an initially
laminar boundary layer constitutés a basic violation. However, the
present theory includes boundary layer effects only as a second order
correction to the potential flow field; in the mathematical sense, bound-

ary layer transition on the body introduces only a minor violation.

Since a laminar boundary layer produces significantly less skin
friction than a turbulent one, the present theory should overestimate
skin friction drag for small arms bullets. However, Chipmau9 shows
that a laminar boundary layer creates lower base pressure and therefore

the theory should underestimate base drag for the laminar case.

The possibility of a fortuitous cancellation of the two errors has
been confirmed experimentally for several small arms bullets with
predominantly laminar boundary layers. The normal force and center
of pressure estimates for the same projectiles were significantly
higher than experimental values, since the present theory overestimates
the displacement thickness for a projectile with a laminar boundary

layer.

Rounded corners at the base of a projectile cause boundary layer

separation upstream of the actual base. The assumptions of potential
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flow and the boundary layer are valid only in the region upstream of
the separation point. If separation physically occurs close to the
actual projectile base, the separation point is assumed to be the effec~
tive base location for use in the present theory. Unfortunately, no
simple method exists for predicting the separation point on rounded
bases. Good agreement between theoretical and experimental values
has been obtained for rounded base designs when the separation point

was visually determir<d from spark shadowgraphs.

Application of the th=ory to the drawing shape of a gilding metal-
lead bullet can introduce additional errors in estimation because de~
formation of the projectile in the bore is neglected. Spark shadow-
graphs of bullets in free flight often reveal a significantly different
contour from that initially loaded in the gun. Errors in drag estimates
as great as 20 percent have been traced to such bullet deformation, but
marked improvement results when the theory is applied to the contour

measured from shadowgraphs.

B. Artillery Projectiles

Typical artillery shells are characterized by fuzes with me'plats,
rough surfaces, screw holes and wrench slots, bourrelets, rings,
grooves, body undercuts, and rotating bands, all of which tend to

promote fully developed turbulent boundary layers.

The drag increase due to a small meplat can be calculated approxi-
mately and added to the theoretical estimate. The effect of rings,
grooves, body undercuts and rotating bands is to add parasitic drag,

which can be q.-alitatively estimated 21, 22. The effect of surface ir-

regularities on the errors in normal force and center of pressure are

difficult to estimate.
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The effect of a rotating band depends on its size and location. A

large band with a blunt trailing edge causes local boundary layer sepa-
ration just downstream of the band, and if the flow is required to turn
the expansion angle to the boattail before reattachment has occurred,
the present theory is basically violated. If the band is small, or far
enough forward so that reattachment occurs before the flow reaches

the boattail, the principal effect of the band is simply to thicken the
boattail boundary layer. In this case, the net effect of the rotating band
is an accentuation of the errors shown in Figure 18, for idealized boat-
tailed configurations. Unfortunately, even good spark shadowgraphs do
not always reveal the location of boundary layer reattachment, and for
the case of a rotating band upstream of a boattail, the present theory

must be used with caution.

IX. CONCLUSIONS

The estimates of static aerodynamic characteristics obtained by
the method outlined in this report agree with experimental results to
within ten percent error, for aerodynamically clean, square based
projectiles. At free stream Mach numbers above 1. 5, equally good
estimates are obtained for boattailed configurations. At low super~
sonic speeds, the present theory shows systematic errors of order of
twenty percent for boattails. The error trends observed in Figure 18
for low speeds may be used to qualitatively correct the theoretical

estimates for boattailed designs.

The present theory could be improved by adding a numerical solu-
tion of the axisymmetric turbulent boundary layer equations, using the

pressure distribution obtained from the inviscid solution. Similarly,

several authors have recently published techniques 23,24 for solution
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of the axisymmetric turbulent wake of a supersonic projectile, includ-
ing boattailed and flared afterbodies. Reference 25 gives a method of
estimating base pressure for the rocket case. Future efforts involving
the present theory should include studies to determine if adding more
refined boundary iayer and turbulent wake solutions offer significant

improvement in results, at a reasonable cost in computing time.

e
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APPENDIX

The Van Dyke Hybrid Theory.

The theory described in this appendix is essentially that giver by

Van Dyke in References 6 and 7, and is restated here for completeness.

For a body of revolution at an angle of attack, @, in a uniform
supersonic stream, the boundary condition at the body surface is
simplified by choosing a cylindrical coordinate system .n body axes.
The free stream velocity, U, is resolved into axial and cross—flow

components, as in Figure A-1.

e %

s ﬂ(ﬂ

v o X
Usina

Uecose

Figure A-1. Cylindrical Coordinate System in Body Axes

The equation of motion in terms of the velocity potential {s(x, r, 6)

is;

2 2 2 2 2
. (c -ﬂx )Dxx+ (c -(ar )Grr«f (c -fauz/rz) (‘469/1'2)

UL T e SR S )

: + 4 6% /5%) J7)=2 G ks o f 7% -2 Qyee i ’/r"‘ (A.1)

- 26 8e be = 0
X r xr
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The 3peed of sound, c, is related to c its free stream value, by;

2 2

21 2, . 2,,.2,2_ 2
¢ =c, 5 (7-1) ((ox +(‘r +(oe [r =U"] (A. 2)

Subscripts indicate partial differentiation.

The perturbation potential & (x, r, 8) is defined as;

fa(x, r,0) = U[xcosa+ rsinacos B +¢& (x,r,0)]. (A. 3)

The axial, radial, and azimuthal velocity components are given

by;
w/U = (4’/0 = cosatd
v/U = ﬁr/U = sin @ cos ¥ +§r (A. 4)
w/U = foe/rU = -~ sina sin 6 +96/r

The free stream Mach number, M, is defined as;
M= Ufc. ' (A. 5)

Substitution of equations (A. 2), (A. 3), and(A. 5) into (A. 1) gives the

equation of motion in terms of the perturbation potential,
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Qee/rz) (2 (Qx cos a + ’r sin @ cos 6 - 69 sin « sin 6/r) +

S AET Z/r2]+i (2% cosax+? z-sinza) +
x r 6 xx x x

‘rr (Qr + sin o cos 9)2 + (’OG/rZ - !r/r) (le/r - sin o sin 9)2 +

2 .xr “x + cos @) (ir 4+ sina cos 0) +2 (!xe/r) (lx + cos a)(le/r -

Ui hac iealks LoMusihd iy e QUL g M At
PSR R R »wnvn’wwwmﬂ
” e

sina 8in 0) + 2 “rﬁ/r)“{' + sin & cos 9)(06/1' -gsina 8in6) -

2 sino (!e/r - sin o sin 9)(§rsin9/r + .9 cosG/rz) }, (A. 6)

v e
ol Skt

where Bz = Mz- 1.

Since the incident stream is supersonic, all perturbations must

e e D i RE i et e S AR S S
LR 0 U Ll m R I b &) A kil

vanish upstream of the body, and the condition of tangent flow must be

imposed on the body surface. The appropriate boundary coaditions

are,

2(0,r,0)= Cx(O.,r,G) = 0. {A.7)

.r (x,R,0) + sinao cos 8 = R'[(cos o + !x(x,R,G)], (A.8)

where R = R(x), the local body radius, and R' = ':—1: » the local body

slope.
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Although the exact nonlinear equations (A. 6), (A.7), and (A. 8)
could be formally attacked by finite difference methods, a satisfactory
approximation to the solution is more easily obtained by an iterative
technique, based on a first order solution, which assumes that the en-
tire right hand side of (A. 6) can be neglected. The first order poten-
tial is denoted by ¢, and the first order problem is given by,

AR MM A S A Yy 3 20 4 A AS S ARSI I AR T o s ’"
e e = AT R M Rt m

2 .2
o__+o fr+ep/r -0 =0 (A.9)

(%] ('0, r,0) = (px (0,r,0)= 0. (A.10)

o, (x,R,0) + sin @ cos 8 = R'[cos & +(px(x, R,0)]. (A.11)

The first order problem can be further simplified by splitting the

axial and cross~-flow components into two independent problems.

Let¢(x,r,08) = (po (x, r)cos a + (pl (x, r) sin a cos 6 (A.12)

where (po is the potential of axial flow, and cpl is the potential of the
cross—flow. Substitution of (A. 12) into (A.9), (A.10), and (A.11) gives,
for the axial flow,

2
o, *+9, /[r-B"9 =0 (A.13)
ry b o xXx
0 (0.7)= €, (0,71 = 0 (A. 14)
e {x,R) = R'[l+<po (x,R)] (A.15)
I b 4

and for the cross flow,

2 2
¢, to,/r-¢/r -B"¢ =0 (A.16)
rr r XX
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1
L &
. ¢, (0,7r)=0, (0,r)=0 (A.17)
. 2 x
!
3 14¢, (x,R)=R'¢, (xR) (A.18)
A r x
r The geneval solution of (A. 13) and (A. 16), which satisfy the appro-
E priate boundary conditions are,
" x=-fr
T e 19
Olen= -] =STEE :
o Vix=§)-B'r
: P e)gm dé
é (x’ r) - I e
f The unknown function f (§) appearing in equation (A. 19) represents
’_ a distribution of sources and sinks along the x-axis, and g(§) in equa-
" tion (A. 20) represents an axial distribution of doublets. The functions
i £(€) and g(§) are determined by satisfying the tangency conditions,
‘ equations (A. 15) and (A. 18), along the body surface.
f If the first order solution (A. 12) is now substituted in the right
hand side of (A. 6), a second ordey interation equation results. The
" complete second order potential, @, can also be split into axial and
3 cross-flow components,
]
¢(x,r,9)=¢°cosa+¢lsinacose +.... (A.21)
? Substituting equations (A. 12) and (A. 21) into (A. 6), and noting that
A

{po and (p1 satisfy equations (A. 13) and (A. 16), respectively, the
. second order iteration equations become, for the axial flow,
i ;
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6 +6 fr-B% =Mize o +2+0-1Mlp ¢ +
[o] o [o] (o] [o] o o
ry r XX xr b o 00 X

2.1 2 2
o, o, tZ-lIM o @ “+2¢ ¢ ¢ + (A. 22)
rYr T XX r xXr X xr

1 2
(1 +-Z-(y-l)M2]<po 2 }
AX x

and for the cross—flcw,

2 .2 2
9, +¢lr/r-¢l/r -Be, =M {Zxoo (1-¢_)(14e )+

rr 20¢ p oy X r

2
20 @, (l+¢1r)+2¢° (1+o_Jo, +o_ ‘o, +

o
rr r r x xr r rr

1 2 2 2
-NIMe, (2o +o “te ) te (2o e+ (A.23)
xx X X b 4 x x xx

-uM @ L1490 Yo, +o_ (149 V1+20_ (140 1o, +
xx x b o r

X ¢ x x

20, ¢ 9 1.
xYr r X

___Both equations (A. 22) and (A. 23) can be simplified somewhat by
consideration of the order of magnitude estimates on inhomogeneous
terms. In equation (A. 22), at moderate supersonic speeds, the first

three terms on the right hand side contribute to @, quantities of

x
order (41032(, (4 log€, and (4. where € is the body thickness ratio.

The last three terms in equation (A. 22} contributed, at most,

quantities of order €6log3(. Near the hypersonic limit, the first
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four inhomogeneous terms contribute 0{€“], and the last two, 0[€"].
For either speed regime, the last two terms in (A. 22) may be neglected

in comparison with the first four inhomogeneous terms.

In equation (A. 23), inhomogeneous terms may be neglected if they

g

contribute to ¢l no more than 0[¢ 5logt ] at moderate supersonic
x

speeds, and 0 [(3] at hypersonic speeds. Neglecting the appropriate
terms, equations (A. 22) and (A. 23) simplify to,

2
¢, o, /r-=8 ¢, = M {cho o, + (2 4-(7-1)M2]¢° e, *
rrYy } b o 4 r xr X xx

2 1 2
o, %0, +[10-n] Mo ‘o L (A.24)
r rr X b o 4

TR |

LA IO

2 2 r
é o, +9, /4o [ -p%0 =2aMlo  (1+e )t 6 +
rr b o xx xr Tr r xxr

0
5
-
.
4
4
F-
4

12
¢, ¢, (1+9, )+3 0
r r

1
o, +3-IMlp (o +o_ (149 1+
rr r x r r

rr xX

1 2
¢, b, +3@ )}+cpo ¢, to 0, o
X xx

® |- (A.25)
XX X r xx X r x

x
The inhomogeneous wave equations (A. 24) and (A. 25) could be
. attacked by standard numerical methods; however, if any particular
solution of these equations were known, the boundary condition could
be corrected by adding solutions of the homogeneous equations (A. 13)

* and (A. 16), and the second order problem would be reduced to an

equivalent first order problem.
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Van Dyke discovered an approximate particular solution, denoted
by Yo. to equation (A. 24), stated in terms of the first order potential

and its first derivatives,

2 1 2,.2 1 .3
Y =M ip lo +; ) (M/B)ro J-2re "} (A.29)

X r r

This particular solution satisfies the iteration equation within the

order of terms already neglected, at moderate supersonic speeds.

ML T TG R AT G Ay P YA

Van Dyke states[6] that although it fails to account completely for

triple products at hypersonic speeds, numerical examples have shown

LA L MR

the actual magnitude of error to be small.

A particular solution of the iteration equation for the cross—flow
(A. 25) has not been discovered, and Van Dyke concludes (6] that a

second order solution for the cross—flow past an arbitrary body is not

[ 3 Bt ] T S bt et L L S 1

possible. However, for slender bodies of revolution at small angles of

attack, the disturbances in cross—flow are much smaller than those in

PR T T

the axial flow; this suggests that it is more important to refine the
axial flow solution than the cross—flow. Accordingly, Van Dyke pro-

posed a hybrid solution consisting of a second order axial solution

coupled with a first order solution of the cross flow. Comparisons of
the hybrid theory with exact solutions by the method of characteristics
have demonstrated excellent agreement, and form the basis for adop-

tion of the hybrid theory as a sufficiently accurate solution to the po-

tential flowfield around a projectile.

Details of First and Second Order Solutions.

YT R T T T TR T

For the axial flow, the discovery of the particular integral(A.26) re~-
duces the second order problem to a sequence of two first order prob-
lems. These are solved by repeated superposition of five basic solu~

tions, which are now derived below.
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Any first order solution may be regarded as resulting from a con-

tinuous distribution of supersonic sources and sinks located along the

Y R *ﬂw

x-axis. ‘Thefunctionf(f) in equation (A. 19) can be equally well rep-

FraT i ad o0 Kiced i A Sy il

resented as a continuous curve, or as the sum of a number of linear

. and quadratic source distributions having various strengths and starting

AT L

points, as shown in Figure A=-2.
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Figure A-2. Equivalent Methods of Creating a Source-Sink Cistribution

The linear source distribution [ f{£)~£] is required at the tip of a
pointed body, since a pointed body actually produces coaical flow near

the apex. The use of quadratic source-sink elements [f (£)~£Z] down~-

stream of the apex insures a smooth first ordexr solution for evaluation

of the particular integral.

If the body has continuous curvature, these two basic solutions are
sufficient. However, if the body has corners or curvature discon~
tinuities, additional solutions are required. A corner is accounted
for in the first order solution by adding a square roct source distribu~

tion [¢ (E)M/E_] which produces a discontinuity in streamline slope

along its leading Mach cone. A curvature discontinuity is accouated

BTG B 0 S AR M I S KT e Rt Iy iy | SR T R e 2 £

for by adding a three-halves power source distribucicn [ f(£)~¢ 3/2]

paLE
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which produces a discontinuity in streamline curvature along the lead-
ing Miach cone. The curvature sclution is also required at a corner,
since an apparent curvature discontinuity remains after the corner

solution is added.

The particular integral involves derivatives of the first order solu-
tion, and therefore has stronger discontinuities. For a body curvature
discorntinuity, the particular integral behaves like a corner, and the
corner solution must again be used. For an actual body corner, the
particular integral behaves like a step in the streamlines, and an in-
verse square root source distribution [f(§}~ I/JE] maust be added to

canczl the apparent step.

In summary, the axial first order solution and the particular in-

tegral are calculated by superposing the five basic solutions:

(1) Linear source solution - used at the apex of a pointed body,

(2) Quadratic source distribution - used downstream of the apex
for a body with continuous curvature,

{2) Square root source distribution - used to account for a corner,

(4) Three-halves powar source distribution — used 1.0 account for

a body curvature discontinuity,

{5) Inverse square root aource distribution ~ used to cancel the

step in the particular integral at a corner.

Calculation of the five basic solutions is facilitated by introducing
the conical variable t,
t = Br/x. (A.27)
Physically, t is the ratio of the tangent of the polar angle to the

tangent of the Mach angle, and varies from zero on the x-axis to unity

or: the Mach cone.
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If r is replaced by tx/B in equation (A. 19), and f () is replaced by

£n. equation (A. 19) becomes,
x(i-t)

o (xt)= - J=Ln__g£____. (A.28)
° (x-'ﬁ)z-tzm2

Performing the indicated integrations yields the five basic axial

flow solutions in the form,

(1) Linear source distribution (n=1)

~1
@ (xt) = =x (Sech t-[1-¢%) (A.29)

{2) Quadzatic source distribution (n=2)

?_(x1) = -;:_- xz[(u-;:tz) Sech | £-3/2 /1-:"'] (A.30)

(3) Square root source distribution (n=%)

¢°(x.t)=-./§i;ﬂ~/1+t (K-E) (A.31)

where K and E are complete elliptic integrals of the first and second

kind, with modulus k = J(l-t)/(li»t).

(4) Three-halves power source distribution (n= 3/2)

®_(x.t) = x>/ 2 %{Z JI+t [(3+t) K~4E]. (A. 32)

(5) Inverse square root source distribution (n= ~ -;')

24/ 2 1
Wk (A.33)

(xt)---l
Oolxt) = =75

n
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g crzss—flow requires only two basic
solutions; one for bodiez having continucus curvature, and a second
solution which iz required cniy at a2 corzer. The supsrsonic doublet
distribution, g(£). in eguation {A. 20) iz 2dequately represented by the
sum of linear doublet elements {[gi€)~£], having varicus strengths and
startirg points. The corner soiution in crosz flew is vepresented by a
square root doublet distribution [g{£)~ J‘a . if r is now reglaced by
tx/B in equation (A.20), and g(¢} is replaced by £m, equation {A. 20)

becomes,
x(1=-t)
1 m
olet) = o | fx-E1ETdE (A.34)
o J (x= g)z _thZ

Again, performing the indicated integrations yields the two basic

LEIR 4t E R A AT C T KT A W A AV AT 0 O U MEOCH A A LD A PO At A Vi) N UL i A D At b

cross~flow solutions in the form,

(1) Linear doublet distribution (m=1)

(x.t) = x[(] 1-t2)/t -t Sech }t] (A.35
¢lx. -xLJl-t c tj. )

{2) Square root doublet distribution (m= ';')

1+t
z

 ;
= O l"_
qpl(x, t) J;; > IZ~t K). {A. 36)

Approximate Tangency Candition.

The computing scheme is simplilied by using 32 approximats tan-
gency condition instzad of the 2xact condilion giver by eguation (A. 5}

in first order theory, it is consisizat with the appreoximation already

raade to neglec? ¢, and R'¢k i comparison with unity. Similar
x x
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consistency is obtaired in the second order axial solution by replacing

é ¢° in equation (A. 3) with its first order counterpart, ¢o . With these

g x x

3 approximations, the zangency condition for first and second corder

_ solutions can be written,

E @, (x, R) = R'(x). (A.37)

% r

9, (xR)= 1. (A. 38)

r

¢, (x.R)= R'(x) [1+@_ (x,R)]. (A.39)

g r x

% Van Dyke shows"} that although neither exact or approximate tan—

E gency exhibits consistent superiority for smooth bodies, the use of !
1 approximate tangency invariably leads to higher accuracy in tke vicin- *
E ity of a corner. This result is not completely unexpected, since flow
3 around a corner is locally a two-dimensional process, and the approxi-

mate tangency coandition is known to prodvce more accurate velocities
near corners in place flow. The implication is that approximate tan-—
gercy is coasistently superior for bodies of revolution with corners;

hence equations (A. 37) through (A. 39) have been adopted for calcula—

tion of flows around projectiles.

Choice of Computing Intervals. :

Van Dyke has derived rulcs[-” for computing intervals, based on
supersonic similarity. The length of the first interval, 60, for a

pointed body is given by,

_ 1 _alg .2
60 = mﬂl—R—o,,—r (1-8 Ro ). (A. 40)
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Subsequent intervals are given by,

61 =B Ri’ for smooth bodies, (A.41)

and

5 = 1 B R , at a corner. (A. 42)
c 2 c

Van Dyke states that the relative numerical error at the end of any
interval will not exceed onc percent, if the previously stated interval
lengths are used. Experience has demonstrated that to retain one per-
cent accuracy throughout the flowfield, it is necessary to reduce Van
Dyke's intervals by a factor of two for the first and subsequent inter-
vals, and by a factor of four for the first interval immediately following
a corner. If violent changes in body curvature occur within any given

interval, the interval may have to be further reduced.
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