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ABSTRACT

The goals of the research discussed in this report are:

(1) to create new models of time-shared computer systems which

include important features comnonly found in real systems;

(2) to insure that the formulations of, and solutions to, these
models are relatively simple so that they may be used by

designers and computer center managers;

(3) to compare the behavior of these models with the behavior of
more complex systems through simulation studies and empirical

performance investigations of operational computers; and

(4) to indicate some »f the ways these models may be used to

aid in the design, evaluation, and control of time-shared computers,

Chapter 1 contains an introduction to some important features of current
time-shared cowmputers and a survey and review of many of the current approaches

to their modeling. Errors in three well known articles are discussed and cor-

\

rected,

Chapter 2 presents a number of new models which are extensions to, and
modifications of, previous studies., The new features include a more realistic
treatment of overhead degradation and processing quantum length., One of the
models is a feedback queueing structure having two servers in tandem. The

results of each model include the mean value of the time required by the system
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to respond to a request. In addition, exact and approximate expressions for
expected response time conditioned on service vrequest are developed and
compared with each other to study the accuracy of the approximations.

Chapter 3 presents the results of a number of simulation experiments
designed to examine the robustness of the analytic models. The first model
is similar to the first analytic formulation. The next two simulations are
based on the tandem queueing structure., The last simulation includes a
detailed model of the scheduling mechanism of TSS/360, an operational time-
shared system marketed by IBM,

Chapter 4 contains the results of three empirical studies of actual
systems. The first two were performed on TSS/360 and the third was performed
on a Univac 1108 running with EXEC-8, a time-sharing operating system,

Chapter 5 contains a discussion of some applications of the models
developed in Chapter 2. The first example is an application of the models
to a design decision for the operating system of a multi-processor configura-
tion. The next illustratec the way the models may be used in performancz
evaluation studies to examine possible overall system improvements arising
from enhancements to subsystems. The last example indicates how the models
may be used in a dynamic control system to improve system performance.

The first appendix presents a number of results which were used, but
not derived, in earlier chapteirs. The remaining appendices contain listings
of major programs used in the research.

Analytic models are but one of many tools available to those who want
to analyze, measure, improve, and create better computing systems. One of
the goals of this report is to help place this approach to system modeling

into perspective as an important tool, not a panacea, for computer scientists.
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CHAPTER 1

INTRODUCTION

1.1 THE USE OF ANALYTIC MODELS - AN OVERVIEW

"Everyone today knows that a queue is a waiting line. If one
also takes the trouble to examine the literature, which now is near-
ing 2000 references on the subject, he might get the idea that all
those contributing to the understanding of congestion phenomena are
interested in doing something about them since, after all, queueing
theory is concerned with relieving pain and saving tim» for all of
us who have to wait. Indeed, queues make a substantial demand on  ur
very lives by taking precious time from them.

But the situation is getting worse in spite of the fact that
in the past seven years the literature of queueing theory has in-
creased by half of its amount for the previous fifty years., Improve-
ments do not match the increase in theoretical developments. Rarely
has so much ingenuity been shown in tackling a variety of technical
problems on paper by some of the ablest people in the world. It may
be that many additional good papers are waiting in queues for publica-
tion. But real life queues are still primitive, and indifference to
waiting by both facility owners and resigned customers is a normal
state of affairs,” 1
Thomas L. Saaty

"The big problem with management science models is that managers
practically never use them. There have been a few applications, of
course, but the practice is a pallid picture of the promise. Much of
the difficulty lies in implementation and an especially critical aspect
of this is the meeting between manager and model. I believe that com-
munication across this interface today is almost nil and that the situa-
tion stands as a major impediment to successful use of models by managers
¢sssssseses.A model that is to be used by a manager should be simple,
robust, easy to control, adaptive, as complete as possible, and easy to
communicate with." 2
John D. C. Little

The goals of the research discussed in this report are: (l) to create
new models of time-shared computer systems which include important features com-

monly found in real systems; (2) to insure that the formulatiouns of, and solutions

1Saaty, T., '"Seven More Years of Queues, A Lament and A Bibliography', Naval
Research Logistics Quarterly, Vol. 13, No. 4, December, 1966, p. 447,

2 .
Little, John D. C., "Models and Managers: The Concept of a Decision Calculus",
Management Science, Vol. 16, No. 8, April 1970, p. B-466.
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to,these models are relatively simple so that they may be used by designers
and computer center managers; (3) to compare the behavior of these models
with the behavior of more complex systems through simulation studies and
empirical performance investigations of operational computers; and (4) to
indicate some of the ways these models may be used to aid in the design,
evaluation, and control of time-shared computers. The quotations from Saaty
and Little indicate that often theoretical results of operations research
studies are not applied to practical situations. The Institute of Management
Science recently changed the name (and the focus) of one of its periodicals
to Interfaces in an attempt to bridge this implementation gap.

Two reasons why computing system models often remain unused are that
articles describing them seldom contain discussions about their validity
for describing observed phenomena and that often the results are so complicated
that users are not willing to invest the time needed to understand the model
and its behavior. The main purpose of descriptive models is to account for
observed phenomena of physical systems. The complexity of most actual sys-
tems requires that any particular model address itself to a limited and con-
strained subset of state variables., Thus each model is an abstraction of
a particular set of important features of interest to an analyst or designer.
Simplifications required to make an abstraction manageable by a particular
solution technique limit both scope and power. Since analytic models are
characterized by symbolic formulations and deducFive derivations, they require
many simplifying assumptions. The consequences of these assumptions must be
explored before one applies the model,

For the study of computing systems there are two other tools which are

related to analytic modeling:
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(1) the construction of large, detailed, simulations

(2) the design and implementation of empirical investigations

All three methods have areas of applicability which intersect. For example,
analytic models often expand to the point where a large amoun* of computa-
tional effort is required to calculate results. Often a point is reached
when a modest simulation may be a more cost effective approach. Large simula-
tions may eventually grow into system prototypes, and enpirical investiga-
tions can provide insight required to design better models. Analytic models
often indicate which of many possible parameters or subsystems are good
candidates for more detailed study via simulation and experimentation.
Another important use for analytic models is as a reference system for statis-
tical analysis of simulation results. For example, Gaver (1969) presents
evidence showing how the classic Monte Carlo technique of control variates,
which makes use of an approximate model, can improve simulation efficiency
by reducing the variance of parameter estimates from simulation experiments.

To be useful, analytic formulations should include the essential features
of a system, or subsystem, and should have solutions that are readily under-
standable. The necessity of spending excessive computer effort to solve
for each parameter value of an analytic model casts doubt upon its usefulness
since simulations typically can handle more detailed cases with similar effort.
The conclusion from these considerations is that analytic models, simulation
studies, and empirical investigations should complement one another in the
study of computing systems. The new models developed in the next chapter
add to the tools available for analytic performance analysis.

Section 1.2 contains an introduction to some important features of

time-shared computer systems, and Section 1.3 contains a survey and review
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of many of the current approaches to their modeling. Errors in three well
known articles are discussed and corrected.

Chapter 2 presents a number of new models which are extensions to, and
modifications of, previous studies. 1he new features include a more realistic
treatment of overhead degradation and processing quantum length. One of the
models is a feedback queueing structure having two servers in tandem. The
results of each model include the mean value of the time required by the sys-
tem to respond to a request. In addition,exact and approximate expressions
for expected response time conditioned on service request are developed and
compared with each other to study the accuracy of the approximations.

Chapter 3 presents the results of a number of simulation experiments
designed to examine the robustness of the analytic models. The first model
is similar to the first anmalytic formulation. The next two simulations are
based on the tandem queueing structure. The last simulation includes a
detailed model of the scheduling mechanism of TSS/360, an operational time-
shared system marketed by IBM,

Chapter 4 contains the results of three empirical studies of actual
systems. The first two were performed on TSS/360 and the third was performed
on a Univac 1108 running with EXEC-8, a time-sharing operating system,

Chapter 5 rontains a discussion of some applications of the models
developed in Chapter 2. The first example is an application of the models to
a design decision for the operating system of a multi-processor configuration.
The next illustrates the way the models may be used in performance evaluation
studies to examine possible overall system improvements arising from enhance-
ments to subsys;ems. The last example indicates how the models may be used

in a dynamic control system to improve system performance.
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The chapter concludes with an evaluation of the techniques and points to

future work,

1.2 IMPORTANT FEATURES OF TIME-SHARED SYSTEMS

"It is now possible for users
to be connected bv a pailr of wires to a powerful computer system
that may be in the next room or may be many miles away. All users,
wherever they are, have instant access to the computer, and can ex-
pect a response to their demands that is limited only by the fact that
the computer must share its time between all the users. The develop-
ment of such systems is, however, still in its infancy, and much develop-
ment of hardware and software must take place before users can be given
everything that they have a right to demand. There is no doubt that,
in a few years time, the best of the currently operating systems will

appear very primitive indeed." 3
M. V. Wilkes

Time-Sharing Computing Syutems, by Wilkes (1968), is a good introduction

to the hardware and software features included in many time-shared structures.
Tt will provide a good background to the non specialist.

Figure 1.1 illustrates the basic features of many time-shared systems.
Users submit tasks from termminal devices to the system. A task may be con-
ceptualized as a job step which requires the use of a number of system re-
sources to be completed. The computer's operating system controls and al-
locates these resources, such as primary and secondary memory, channels, and
processors, so that users requiring small amounts of resources will get a
rapid response from the system. In this report response time will be defined
as the elapsed time from task submittal to task completion. If a particular
task keeps a resource such as the central processor occupied for a time period
that would seriously affect the response of other jobs in the system, it is
interrupted and placed in the system of queues while another task uses the

resource. When the system has finished with all of the work associated with

3
Wilkes, M. V., Time-Sharing Computer Systems, American Elsevier Publishing
Company, Inc., New York, 1968, p. 2.
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the task it gives the user an appropriate output message. Using the con-
tent of this message, the user formulates his next job step, and in this
manner cyclic interactions contirnue until the user leaves the system. A
major goal of such designs is to encourage users to interact with data and
programs. If interaction is very slow or cumbersome, effectiveness will
diminish. Short requests usually receive high priority through an interrupt
scheme that allows the central processor to switch to a new task whenever
the active one is delayed or exceeds a maximum processing threshold called

a quantum interval. In this way the central processor divides its capacity
among tasks awaiting execution. When a user submits a request that will
require minutes, or even hours, of central processing time, interactive
response should not be greatly affected. The user with a long task must
realize that due to resource sharing with interactive requests, his job will
take longer on a shared system than on a batch system of equal capacity.

A "good model" must predict both fast response time for short jobs and response
degradation for long ones.

Another observed phenomenon of time-sharing is non-linear degradation
of response time as a function of system load. Systems can provide good
response only within a limited range of input demand., If demand exceeds
this range, response time deteriorates rapidly. Because of this degradation,
many systems arbitrarily limit the number of users who are allowed to inter-
act simultaneously with the computer. Non-linear response to increasing de-
mand is another physical observation which should be a derived consequence
of a "good model".

Computing structures allowing frequent task switching and quanta inter-
ruptions add overhead time to that already present in the basic operating

system. This addition arises because of many bookkeeping functions required

bl T



to maintain status lists of tasks and shared resources. A 'good model" of
time-sharing systems should explicitly consider overhead degradation.

The random nature of actual quantum intervals is often ignored in analytic
models. Input/output requests, paging demands in systems with virtual
memory, supervisor calls, and external interrupts are causes of quantum
ends, in addition to task completions and quantum overruns that combine to
make actual quanta random. The following statistics from a user seésion at
Carnegie-Mellon University on an IBM 360/67 demonstrate that the IBM time-
sharing monitor, TSS, processes interrupts occurring most frequently for
reasons other than task completion or excessive central processor utilization
during an interaction., Figure 1,2 is a state transition diagram illustrat-
ing the results of a probe of a typical user session.

Numbers on the figure are frequencies of events. During this 16 minute
probe, 927 separate interactive job steps generated 30,856 interruptions to
normal processing, an average of approximately 33 interrupts per interaction,
Only 367, or about one percent, of these interrupts were processing quantum
overruns. A random event such as a reference to part of a program not cur-
rently in core (a page fault) triggered the vast majority of quantum aborts.,

The software monitor used to gather these statistics creates an output
record for every internal system event of interest. The analyst initializes
a particular probe by informing TSS which events are to be traced, and thke
system saves the resulting output on magnetic tape for later statistical analysis.
Deniston (1969) describes the design and performance characteristics of this
type of measurement technique.

The preceding review swmmarized a number of important features of opera-
tional time-shared systems. The next section indicates the kinds of struc-

tures currently in use to model them. The highly variable nature of time-sharing
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interactions indicates that probabilistic methods should form a basis for
system analysis. Queueing formuiations often become very complicated even
though the models are easy to describe. Thus one must carefully select

areas to study within a system or queueing theory will be of little help.
1.3 A SELECTED REVIEW OF ANALYTIC TIME-SHARING MODELS

Time-sharing models have grown at a rate paralleling that of actual sys-
tems. McKinney's (1969) survey and annotated bibliography, containing 35
references, categorizes most contributions through 1969. An earlier paper
by Estrin and Kleinrock (1967) presents a useful taxonomy of analytic models
and a review of simulation and measurement studies of several systems. These
references are excellent introductions to the general area of time-sharing
models. The more limited goal of this section is to trace the development
of models upon which the work of Chapter 2 depends.

Figure 1.1 may be used as a conceptual framework to classify many models.
The user subsystem generates tasks for the computing subsystem. There are
two common ways of modeling the input process. The most common approach
is to assume that requests arrive at the computer according to a homogecneous
Poisson process with arrival rate A jobs per unit time. This assumption is
equivalent to stating that interarrival times between requests have an ex-
ponential distribution with mean 1/)\ time units. This model of the arrival
process also assumes that the input rate is independent of the behavior of
the computer subsystem, The common queueing terms for this assumption dare

the "exponential, infinite source" input, or the "Poisson source'.
The other common approach to the arrival process is to assume a tinite

number of independent users, each of whom submits a task and waits until it

Section 2.2 contains a summary of many of the properties of a Poisson process.
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has been satisfied before submitting another. For this case "think-time",
commonly defined as the interval between response to one task and submittal
of the next, for each of the users, has an exponential distribution with
mean 1/)\ time units. For this "finite source" model the combined arrival
rate to the computer depends upon the number waiting for service since a user
may submit only one task at a time, This structure is self balancing since
the input rate decreases as the system becomes overloaded.

The exponential distribution is central to most analytic time-sharing
models. If time between events is distributed exponentially, and an event
has not occurred for t time units, the time remaining until the next event
has the same exponential distribution as the original inter-event interval,
This memoryless, or Markov, pProperty permits many simplifications in model
structure because state information concerning elapsed time since a prior
event is unnecessary.

Four empirical system studies support the approximate exponential shape
of interarrival time distributions, but the measurements usually have higher
variance than predicted by the exponential (Totschek, 1965; Coffman and Wood,
1966; Bryan, 1967; Scherr, 1967). Although the exponential does not fit the
data exactly, the additional complexity introduced by allowing general inter-
arrival distributions is not justified for models having simple results as
a major goal.5 Greater input variance causes slightly increased system congestion.

There are also two common ways of modeling the basic service philosophy
of a time-sharing organization. The first, and more realistic, is the "round
robin model" in which one explicitly considers a quantum interval during

which a single task receives all the power of the central processing unit,

SSee Saaty (1961), Chapters 9 and 10, for formulations of queueing systems
having generalized input processes.
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If the task does not terminate naturally during this interval, it is inter-
rupted and forced to rejoin the queue of waiting users while some other task
gains access to the processor. Some models include priority levels in the
queueing subsystem, The terms "processor-shared" or "pure time-sharing"
denote the second basic service approach which may be viewed as a limiting
case of the first method. At each instant, the fixed processor capacity, C
instructions per time unit, is uniformly shared by all active tasks. Lach
of M active jobs receives C/M units of computing power per unit time. In
the limit, as tiie quantum interval approaches zero, the finite quantum, round
robin model becomes the processor-shared system.6

One of the early works to consider a feedback qucueing structure similar
te Figure 1.1 was the paper by Takacs (1963). His problem arose in studies
of the theory of telephone traffic, and there is no mention of either time-
sharing or computer system design. His formulation includes an infinite ex-
ponential source, a finite and random quantum interval, and total service
times which are the sum of a geometrically distributed number of quanta each
of which is drawn from the same generalized distribution. He solved this
model for the expected number of tae%s in the system and for the unconditioned
moments of response time for a re;. sst. (An interesting aspect of the study
was the use of a symbolic differentiation computer program to find the complicat-
ed expression for the second moment of response time.)

Chang (1966) realized the applicability of the Takacs work to the time-
sharing domain and redefined a number of parameters to be consistent with
computer terminology. He extended the original model to consider a random

selection of the quantum distribution, but he solved the extension only for

Coffman and Kleinrock (1968) summarize many of the models of these service
disciplines.
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the generating function of the number of queued tasks at the end of a quantum
or at the instant of a job departure., Neither author calculated mean response
conditioned on the amount of service requested. This latter quantity indicates
how a time-sharing design will respond to tasks requiring different amounts

of computing time. Section 2.3 presents a logical extension of the Takacs
work in which random overhead is added to the quantum interval and mean
response conditioned on service is calculated.

Kleinrock (1964) first calculated expected response conditioned on
service for a simple model. He constrained events to occur only at discrete
points of time corresponding to constant service quanta of length Q, At
the end of each interval a new task enters the first-in-first-out (FLFO)
queue with probability \Q; the job being served, if the system is not empty,
either completes service (probability 1-g) or rejoins the end of the queue
(probability ¢); and the processor takes the job at the head of the qucue
for a service interval of length Q. Call the processing requirement of a job,
V. A job having V = nQ units is forced to join the end of the queue n times
before its processing is complete. Kleinrock calculates the steady state
expected number of tasks in the system, E(M) as given in equation (1.1).

He also calculates the conditional response time for a job requiring nQ units
of processing, E(Ran), and shows that a good approximation to the latter

result is the simple formula of equation (1.2).

= Mo
(L1 E0) = 12—

Mo
(1.2)  ER[nQ) mmnQ(l + {722

In a later paper Kleinrock (1967) considers the limiting case (as Q - 0)

of the above model. For this processor-shared case the arrival process
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becomes the infinite exponential source with rate )\ jobs per unit time, and
the service requirement for each task becomes an exponential random variable
with mean 1/u time units per job., Equation (1.3) is his result for expected
response time conditioned on a processing neced of V time units. In the con-
cluding sections of the paper Kleinrock further extends his earlier work

by considering priority classes in the queueing structure,
(1.3) E(RIV) = V~u/(u—\)

A series of four similar articles closely relatred to Kleinrock's worlk
began with a& paper by Shemer in 1967, In these models computing requests
come from an infinite exponential source having rate ) jobs per unit time,
Processing requests arec exponentially distributed random varial les having an
expected value of 1/u time units. [Each request joins the end of a first-iu-
first-out queue upon arrival, FEach task receives a maximum processing Antum
interval of Q time units, where Q is a counstant, If a request cowmpletes
service before its time limit expires, it leaves the system and the processor
immediately begins work on the task at the head of the queue, I @ dob can-
not complete service during a quantum, it is interrupted and forced to join
the end of the queue while the processor works on the next waiting task.

Fimre

Figure 1.3 illustrates this specific form of the general structure of
1.1.

For this model, the expected number of tasks in the system, and the
expected unconditional response time, are identical to the vesults [or thoe

classical Poisson source exponential service, single channel queueing

7
system (M/M/1)." Shemer (1967) uses these facts in his derivation of expected

In queueing literature, models are often classified using Kendall's notation:
a/s/n where "a" denotes the type of arrival, "s" the type of service, and 'n"
the number of service channels., In the example above 'M" denotes Markov, or

exponential, arrival and service.
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response time conditioned upon a particular task's service request, but

he makes two errors. Using expected value arguments he derives a recursive

expression for the mean time spent in queue waiting for service quantum i as
a function of the expected wait for service quantum (i-1). The derivations

are clear to follow and correct except for i=l and i=2, The two properties

of tha model that Shemer does not treat correctly are:

1. The remaining time, Q> of a quantum interval in progress, if
the processor is not idle, when a new task enters the system
has a distribution that is different from the distribution of

a full quantum interval.

2. The conditional probability that a task will return for more
service, given that it has already completed part of a service
quantum, is different from the probability that a task just start-

ing a quantum interval will return for additional processing.

These errors propogate through all values of i and distort the final result,
Section 2.2 contains a discussion of the properties of a quantum in progress
when a new task arrives and Appendix A contains a correct derivation of this
model with a slight extension., Shemer's paper concludes with extensions to
the basic model involving priorities.

Coffman and Kleinrock (1968) use a slightly more complex approach to
study the same model in a paper which also contains a number of interesting
extensions including priority scheduling policies. Although both articles

were published in the Journal of the Association for Computing Machinery,

the latter paper did not indicate the errors in the earlier work. Coffman

and Kleinrock made a small mistake in the derivation of the second moment
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of the processing time actually received by a task during a quantum, Their
result is distorted also since this intermediate formula appears in the
final expression. Appendix A presents the corrected result for the second
moment of a quantum interval of this type.

Adiri and Avi-Itzhak (1969) solved a model similar to Figure 1,3 with
the addition of a constant delay, d, before every processing quanta. This
extension adds realism to the basic model, and complicates the solution.

The delay represents constant sverhead degradation, or set-up time, required
by the processor to switch from one task to the next. The added complexity

of the solution arises from the fact that the total processor time required

by a task is no longer exponential. A task needing V units of processing,
where V is an exponentially distributed random variable, now requires

V + [v/Q]-d processing units where [X] denotes the largest integer greater

than or equal to X. The results for the expected number of tasks in the
system and the expected unconditional response time are now identical to

the exponential source, general service time, single channel queueing system
(M/G/l). The authors employ sophisticated mathematical techniques involving
complicated Laplace transforms and generating functions to solve for response
time conditioned on service request. The solution is correct and reduces to
the results of Shemer (1967) and Cof fman and Kleinrock (1968) when the delay,
d, is set to zero, and when the corrections noted in the preceding paragraphs are
incorporated in the earlier derivations. To derive expected value of response
conditioned on service, one may use expected value techniques employed by tlie
previous authors rather than the more involved methods used by Adiri and
Avi-Itzhak. Since these simpler techniques are the basis for the derivations
in the following chapter, Appendix A contains a proof that the results from

the two methods are identical.
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Rasch (1970) studies the model of Figure 1.3 and then extends it in
almost the identical manner as the work described in the preceding paragraph.
He adds a constant delay d after, rather than before, each processing quantum.
His approach contains a major mathematical error not present in any of the
other three works. While deriving the expression for expected waiting time
in the queue before receiving service quantum i, he mistakenly presumes that
the mean value of all waits after the first will be the same. Although the
differences are small, and one may wish to make this simplifying assumption
to achieve simpler final expressions, one must realize (as the other authors
did) that the wait for service quantum i depends in a non-trivial way upon
the wait for service quantum(i-1).

The preceding paragraphs place into perspective previous studies that
are in the direct line of development of the derivations of Section 2.3 and
2.4. The work of Section 2.5 has different historical roots since it is a
finite exponential source, processor-shared, model including overhead loss
as a function of system state. Early work in this area is categorized in
queueing literature as 'the machine interference" problem.8 Sherr (1967)
recognized the applicability of this work to the time sharing domain and
presents an exponential, finite source, processor-shared model. He compares
his results with a simulation and with measuremencs taken from the CTSS
time sharing system at MIT. To approximate an overhead loss of X percent,
he simply reduces the capacity of the processor by X percent.

Attempts to solve the structure of Figure 1.3 with modifications of
a fini'n number.of exponential input temminals and a constant delay d before

each quanta started with the paper by Coffman and Krishnamoorthi (1964).

T
See the book by Saaty (1961), p. ses 323-333, for an excellent review of re-
sults of classic work on machine interference.
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This work was expanded by Krishnamoorthi and Wood (1966) and then further
refined with the correction of an error by Adiri and Avi-Ttzhak (1969b).
Results of these studies are complicated in both the methodologies and the
form of the expressions. Greenberger (1966) made a number of mathematical
approximations to achieve simpler, although approximate, results. Applying
a cost function to service delays he investigates the optimal size for the
quantum parameter Q. 1In all of these studies overhead delay, d, and maximum
quantum size, Q, are constants and service and input distributions are ex-
ponential,

A number of other papers present surveys of analytic models concerned
with features such as externally assigned priorities and service disciplines
which are dependent on system state. In addition to the two surveys referenced
at the beginning of this section, and the papers already discussed, the inter-
ested reader is directed to studies such as Coffman (1966), Coffman and Muntz
(1969), and Schrage (1967) and (1969).

A different modeling approach is based upon the work of Jackson (1963)
and Gordon and Newell (1967). In these models tasks circulate among a
number of service stations. Buzen (1971) applies these methods to multi-
programming systems, and Moore (1971) applies them to time-sharing designs.
Courtois (1971) applies results of Simon and Ando (1961), concerning the
dynamics of nearly decomposable systems, to queueing systems, His methods
significantly simplify the numerical work required to solve hierarchical
queueing networks.

Chapter 2 contains a number of models which extend the work reviewed
in this section. The aim of these derivations is to include as many fea-
tures of real systems as possible in model formulations which lead to straight-

forward results.
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CHAPTER 2

NEW ANALYTIC MODELS OF TIME-SHARED COMPUTER SYSTEMS

2.1 INTRODUCTION

The analytic models presented in this chapter are the end products
of compromises designed to include a number of important characteristics
of current time-shared computer systems often ignored in other analytic
models, but still to insure that the results are easy to understand and
compute. They focus on the mean time required for a time-sharing system
to respond to a user's request.

The survey of the analytical modeling literature in the previous
chapter revealed that overhead and swapping times are often neglected
in models of time-sharing. If considered, they appear almost exclusively
as constant delays either before or after each service interval. Simi-
larly, even though most time-sharing systems have many different quantum
sizes based on a job's priority, its recent history, and the system state,
models in which the quantum intcrval is a parameter usually consider it
to be a constant and not a random variable. Results of many of these
models appear as Laplace transforms which often require numerical inver-
sion. Transforms are also used directly to obtain moments of distribu-
tions by differentiation, but often the results are very complicated,
(See the following papers for illustrations of these statements: Greenberger,
1966, Krishnamoorthi and Wood, 1966; Coffman and Kleinrock, 1968; Adiri
and Avi-Itzhak, 1969, Rasch, 1970.)

The new models presented in this chapter extend previous work. The

first foimulation includes features such as:
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1. a random part of each quantum interval is required for

overhead functions
2. the service/execution segment of each quantum is a random variable

3. the total service request for a task may have any distribu-
tion which can be represented as a geometrically distributed
sum of independent random variables, each of which has the

same arbitrary distribution

The second model is a tandem service structure which models the multi-
programming aspects of many systems by representing the behavior of a
task as a random number of cycles through both a central processor and
an input/output subsystem. Processing may occur simultaneously in each
subsystem. The third model is a finite source system having a processor-
shared service facility with overhead degradation which is a function of
the state of the system.

The following symbols will be used in a standard manner throughout

the report. Other notation will be introduced as needed in each section.

P(e) = the probability of event (-)

P(GIH) the conditional probability of event G given event H

Fx(t) the cumulative probability distribution function of a
random variable X
= P(X s t)

= j‘t dF (t) (the Stieltjes integral)

-

fx(t) the density function of a continuous random variable X
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E(X) = the expected value of a random variable X

I d

= J_m t Fx(t)
E(XIY) = the conditional expectation of X given Y
E(g(X)) = ji;g(t)de(t) = the expected value of a function g(-)

of a random variable X
VAR(X) = the variance of a random variable X
2

= E((X - EX)) )

SD(X) = the standard deviation of a random variable X

1
= (VAR(X))Z

the lLaplace transformation of a non-negative random
variable X

-sX o -st
= E(e ) = Jc e dFX(t)

the inverse Laplace transformation

Lx(s)

-1

Lx (t)

Before proceeding to the derivation of the models, the next section will
review some important properties about the Poisson process that are uscd

throughout the chapter,
2,2 THE POISSON PROCESS

This section contains a brief summary of a number of well known
properties of the Poisson process which are used throughout the field of
queueing theory. These results are usually scattered throughout texts. The
following books contain good discussions: Feller (1957); Saaty (1961);
Parzen (1962); and Conway, Maxwell, and Miller (1967). The following
presentation borrows extensively from the material contained in Chapter 8
of Conway, Maxwell, and Miller (1967). This text also contains an excel-
lent bibliography for the reader interested in pursuing the subject in

greater depth,



-23-

2.2.1 Process Definition

A counting process is usually defined as an integer-valued process
{N(t), t = 0} which counts the number of points occurring in an interval,
these points having been distributed by some stochastic mechanism. Here
the points represent the times at which events of a specified character
occurred. Consider events occurring in time on the interval 0 to «,
and for t > 0 define N(t) to be the number of events that have occurred
in the interval 0 to t (the interval is open at 0 and closed at t). Let
N(0) = 0. Then, for a Poisson process, whatever the value of N(t), the
probability that during (t, t+h) an event occurs is A-h + o(hz),
and the probability that more than one event occurs is o(hz). The term
o(hz) denotes a quantity which is of smaller order of magnitude than h
so that o(hz)/h tends to zero as h tends to zero. The Poisson process
has increments between events which are independent and stationary in time.

The following equations are derived consequences of the process
definition.

At

()\-t)n e

= 0=0,1,2,...

(2.1) P(N(t) =mn) =

(2.2) E(N(t)) = A.t
1
(2.3) SD(N(t)) = ()\-t)2

1f A is the random time between two successive events, then:

(2.4) P(Ast) = 1l-e , t=0

1
See Parzen (1962), p. 117.
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(2.5) EQ) = 1/a
(2.6) SD(A) = 1/

2,2.2, Memoryless Property

A consequence of the postulate that the probability of an event
during (t, t+h) is independent of previous process history is that the
time until the next event, given that no event has occurred for y time

units, is independent of y.

(2.7) P(A> y+t|A>y) = P(A>t) =e M, £>0, y> 0

Another interesting property of the Poisson process is that if n events
occur in an interval (0,t), then the n event times are independently

and uniformly distributed over the interval (0,t)

2.2,3, Branching and Aggregation of Poisson Processes

Consider a Poisson stream of events with rate )\ which is randomly
split into k different streams in which the probability that path i will
be taken is P;e If the output paths are chosen independently, then the

th

i path is a Poisson stream with rate xpi'
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Conversely, if k independent Poisson streams, having rates Xl,kz,...kk,

k
are aggregated, the resulting stream is Poisson with rate A= X li.
i=1
Mo
~..
\ -
S
)l T-' —» A

2.2.4 Remaining Service Time Distribution

Let jobs arrive at a server from a Poisson source. Given that a
new job arrives while another one is being served, the remaining service
time, Q_, is defined as the time interval from the arrival of the new
job until the service completion of the one already there. If service
intervals, X, are random variables with distribution function Fx(t),
then Conway, Maxwell, and Miller (1967) derive the following two results
about Qr’ the remaining service time:

a - Fx(t))dt
(2.8) P(t=Q st+ dt) =

E(X) ?
k1
k, _ EX ) _
(2.9) E(Qr) = G E(X) k=1,2,...
Ty ca {2,8) gives the probability that Qr will be in a small interval,

and (2.9) gives the kth moment of Qr' The following diagram illustrates

2Conway, Maxwell, and Miller (1967), p. 146-147. Appendix A contains
derivations of equations (2.8) and (2.9). The method used to derive
(2.8) differs from the approach of Conway, Maxwell, and Miller.
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the relationship between X, and Qr' The results are conditioned on there

being a job in service when a new one arrives,

Service interval of length X
s —

l I time

| ——

r

Arrival time

of new job
Remaining service
interval of job in
pProgress when new
job arrives

2.2.5 OQutput of anp M/M/l Queue

If the arrival to a single server queueing system is Poisson with
rate ), and the service ig exponential with rate k= X, and if the queue
scheduling procedure is independent of the set of processing times of the
jobs, then in the steady state the departure intervals are independently
distributed exponential variables with parameter ). In other words, the
output process is Poisson with the same rate, )\, as the input process.
This result may be extended to the generalized birth-death process, and

thus it also applies to M/M/n systems,

2,2.6 Results for M/G/l Queue

If the input process to a single server queueing system is Poisson
with rate \, if the Processing time, X, has a general distribution with
mean l/u, and if the traffic intensity p = X/u is less than one, then for

any service discipline that is independent of the Processing times of the jobs
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(such as first-in-first-out), the following results are steady state values

for important system parameters.

(2.10) E(flow time through queue and server) = E(R)

2 2
_ 2PE(X)-(-p) + MEXD) _ A-E(XD)
2-(1-p) = EQX) + 57(1-0)

(2.11) P(server is idle) = l-p

Equation (2.10) is the classic Pollaczek-Khintchine formula., The expected

number of jobs in the queue and in the server is related to this result by (2.12),
Little's theorem (1961), These results show that different processing time
independent scheduling rules have no effect on the mean number in the system,

the mean response time, and the probability that the server will be idle.
Scheduling rules which are independent of processing time do have effects

on the respoﬁse times of individual jobs, but not on the expected value of

response for all jobs.
(2.12) E(number of tasks in M/G/l system) = A*E(R)
2.3 A TIME-SHARING MODEL WITH RANDOM QUANTA AND RANDOM OVERHEAD - TSMOD1

The model in this section has the following basic structure: a
Poisson source of tasks; a random delay drawn from a general distribution
representing overhead loss due to quantizing; a random processing quantum
drawn from an arbitrary distribution; and feedback to a round robin,
first-in-first-out queue. The independent variables are: speed of the
processor; interrupt probability; and the probability distributions of

quantum requests, overhead delays caused by each interrupt, and interarrival
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times between requests. The dependent variable is the expected value of
the time required by the system to service a request. Although analysis
becomes complicated, the directly applicable result is simple., This model
is useful since it retains simplicity while including a number of essential
parameters for time-shared systems. Figure 2.1 illustrates the structure

of the model.

2,3.1 Definitions and Model Formulation

Define the following symbols for use in the model.

C = a constant equal to the computer processing rate expressed
in instructions per unit time

£ = the probability that a task has been completed after an
interrupt

W = the random number of instructions executed during a pro-

cessing quantum before an interrupt occurs
. . th
wi = the i~ moment of W

V = a random variable denoting the number of instructions
required by a task for one complete interaction

. .th
vi = the i moment of V

D = a random variable representing the overhead delay of an
interrupt

. . th
di = the 1t moment of D
M = the random number of tasks in the queue and in the server
R = response time, a random variable denoting the elapsed
time from task submittal to task completion (queue wait-

ing time plus service and overhead time)

N = the number of interrupts experienced by a task during
the execution of its V instructions

A = a random variable expressing the interarrival time between
tasks requesting service from the system

Q = the random length of a quantum interval which is the sum
of a service segment, W/C, and an overhead delay D.
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The original model presented by Takacs (1963) has the following
formulation and solution within this more general framework. Requests
for service arrive at the system from a Poisson source. If e, is the
time the ith job enters the system, interarrival times are Ai =e,-e g
All Ai are independent, identically distributed random variables having
an exponential distribution with expected value E(A) = 1/A. (See equations
2.4, and 2.5,)

Models based on the simplistic assumption of constant quanta are
neglecting a primary feature of many real systems. A way of approximating
the fact that tasks often return to the queue after using only a small
amount of the maximum allowable quantum (for example, to wait for an
input/output request) is to make the quantum W a random variable, The
server works on tasks in a cyclic, round robin manner. After each task
receives a random service quantum it either leaves the system (probability
L), or rejoins the end of the queue (probability 1-£) while the processor
works on the next task, The event, "job rejoins the queue', is indepen-
dent of both the length of quantum service, and the number of quanta the
job has received. The distribution of N, the number of job interruptions,

is geometric with expected value 1/2.

-1
#(1-0) ™ ), n=1,2,3,...
(2.13) P(N=n) =
0, elsewhere
W may have a general distribution function with the obvious restriction
that it be non-negative. The first three moments of W are wl, w2, w3,

The total service request for a complete interaction, V, consists nf the

sum of a.random number of random quanta wi.
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N
(2.14) v= T W,
N has the probability mass function specified in equation (2.13). Equation
(2.15) is the Laplace transform of V in terms of the Laplace transform

of W.

(2.15) Lv(s)

1]
™M 8

Iy 4w (s) » P(=1)}
1 1" i

i
®

. -
(L (s 4o (1-p)"
- L

1=

L ()« 4 {11g(s) -(1-0))

Moments of a distribution may be calculated from its Laplace transform

by differentiation.

dLV(s)
(2-16) E(V) =yl= - -&-S—_ 6=0 = wl/z
d2L (s) 2
2.17) E(P) =va = ——| = L2 4 2:(1o0) D)
ds s=0 2,2

From this viewpoint total service time per interaction, V, is deter-
mined by £ and individual quantum times wi. V may have any distribution
that can be represented as the geometric sum of variables having an
arbitrary distribution Fw(t).

For the remainder of this section, consider C, the processing rate

of the computer, to be one instruction per time unit so that W and V
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are measures of the quaantum and interaction times, as well as the numbers
of instructions executed. (Quantum time = (number of instructions per
quantum)/(processing rate of computer)). Using arguments that relate
this model to the M/G/l queueing system, Takacs (1963) establishes the
following formulas for the steady state mean value, and second moment, of

response time R.

Aw2 + 2wl(l-)wl)
2(4-\wl)

(2.18) E(R) =

Y

6 (2-wWwL)Z[#Z - 22+Hwl) + wwl]

(2.19) E(Rz) =

- {2 L[6XW13 - ewl® - Eawlw2 + w2 + wl]

- [2wld - 12w1? - eawlv2 + 22 %wlv3 - Pw2?])

The necessary and sufficient conditions for these equations to be valid
steady state solutions are that le/z‘: 1 and that w2 and w3 be finite.
The term le/z is similar to the standard definition of traffic intensity,
p, which is the mean arrival rate divided by the mean service rate. In
this model the effective arrival rate is 1/2 which includes tasks which
are fed back from the server for additional processing. One may apply
Little's Theorem (equation 2.12) to equation (2.18) to obtain the expected

number of tasks in the system, E(M).

2.3.2 A First Extension to the Basic Model

The model described above may be extended in a number of directions
to include more features of time-sharing. Processor speed, and interrupt

overhead become explicit independent variables in the following analysis.
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Previously W and V were equivalent to time units since the processing
rate was one instruction per time unit. C, the constant computer speed,
is expressed in instructions per unit time. W is the number of instruc-
tions processed before an interrupt occurs, and V is the total number of
instructions required for a task to complete one interaction. The time
spent in one service quanta will be W' = W/C, and total service time for
one task will be V' = v/c.

Interrupts cause overhead. For example, systems with virtual memory
structures, such as the IBM 360/67 and the GE 645, require approximately
five williseconds to process a page tau.i,t.3 This type of overhead may
be included in the model by adding an interrupt processing delay, D, to
each quantum W/C. D is a random variablc, independent of W, having first
three moments dl1, d2, and d3. The central processor continues to work in
a cyclic manner, but after a quantum interval on one task, it cannot start
another until the interrupt processing time D has elapsed. The addition
of D defines a new total quantum time, Q = W/C + D with first three moments
ql, q2, and q3. Using the fact that the Laplace transform of the sum of
two independent random variables is the product of the individual trans-

forms, one may easily differentiate LQ(S) to obtain its moments,

(2.20) LQ(s) = Lw/c(s) . LD(S)

2.21) ql = wl' +dl = wl/Cc +dl
(2.22) q =w2' + 2ul'dl + d2 = w2/c* +2wldl/C + d2
(2.23) q3 = w3/C° + 3dlw2/c® + 3d2wl/cC + d3

3See, for example, the experiments performed on the MULTICS system at MIT
by Corbato (1968).
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Equation (2.15) still defines the relationship between W and V. The
addition of D to W does not change the users' demands, but the processor
takes more elapsed time to satisfy a request in the presence of overhead
than without it.

Replacing wl and w2 with ql and q2 (equations (2.,21) and (2.22)) in
equation (2.18), leads to the following expression for mean response in
this system,

[nfw2/c? + 2wldl/C + d2} + 2(wl/C + d1) + (L-AML/C + d1))]
3 IAWL/C + dD)]

(2.24) E(R) =

The necessary and sufficient condition for existence of a steady state
solution is that X(wl/C + dl)/z < 1. The quantity on the left of this
expression is the effective traffic intensity for the extended model.
One can make the same substitution in (2.19) to investigate the behavior

of the second moment of response time.

2.3.3 'Iwo Examples

Let V, the number of instructions required to complete a task's
request, have a general non-negative distribution with first and second
moments vl and v2, Consider the simplified case of no overhead and no
service interruptions (dl = d2 = 0; £ = 1), Since w = v, this case cor-
responds to batch processing where each interaction is processed to comple-
tion., Equation (2.24) reduces to (2.10), the Pollaczek-Khintchine result
for average response in an M/G/l queueing system, (The first two moments
of service time are vl/c and v2/C2.)

2
(2.25) E(R) = Awv2/c” + %E\{l/_CiS[&))\vl/c)
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Now consider service to be quantized, but still with no overhead, D,
associated with quantum interrupts. W and 4 will be adjusted to hold
the moments of V constant. The probability, £, of completing an
interaction after a quantum of length W is less than one. Substituting
the appropriate variables from (2.16) and (2,17) in (2.24) one arrives
at the following expression for the quantizing model without overhead.

The final form is identical to (2.25).

2,2
A2 - 2(1-0) w1%/cY + 24(v1/e) (1 -avl/C)
(2.26) E(R) 2(4 - Avl/c)

- w2/c? + 2(v1/c) (1 - wl/c)
2(1 - al/c)

Equation (2.26) is unintuitive since, for this model, quantizing
without overhead has no effect on E(R), the expected value of response
time. Any overhead will increase E(R)., If quantizing does not improve
mean response, and actually degrades it due to overhead, one may reason-
ably ask what benefit accrues from this scheduling policy. Briefly, the
benefit is that short requests receive better than average response at
the expense of long requests. The policy of favoring short interactive
requests penalizes longer tasks and degrades overall response when there
is overhead associated with quantum interrupts.

Figure 2,2 illustrates that even though mean response remains con-
stant as more overhead-free quantizing occurs, the standard deviation
of response increases, For this example each quantum is exponentially
distributed. The total service request, V, is also exponential since a

geometric sum of exponentials is an exponential, The mean of V is held
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1 4
10 E(N)

ErN) = 1/42 p = o3 p= .1 p= .9 p= .95
1 1.000 1.000 1.000 1.000
2 1.183 1.268 1,363 1.388
3 1.225 1,333 1.458 1.492
4 1.243 1.363 1.502 1.541
5 1,254 1.380 1.528 1.569
6 1.260 1.390 1.544 1.587
7 1.265 1.398 1.556 1.601
8 1,268 1,404 1,565 1.610
9 1.271 1.408 1.571 1.618

10 1.273 1.411 1.577 1.624

Each table entry is the ratio of the standard deviation of response to
the expected value of response.

Figure 2,2

Effect of Quantum Size on Standard Deviation of Response - SD(R)
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constant and the mean quantum size and the mean number of interruptions
(1/ %) are varied. The input rate increases to examine the effect of
increasing the user demand. For each value of )\, mean response remains
constant. Increased service variability is another undesireable effect
of round-robin scheduling which must be balanced by increased responsive-
ness to short requests.

The effects of overhead on response are obvious in the second example.
Let processor speed, C, be 500,000 instructions per second, and the mean
request for a complete task, vl be 100,000 instructions. Let the standard
deviation of the instruction requests be 150,000 instructions. The aver-
age processing time per task,v1/C,is 200 milliseconds. The probability
that a task will require additional processing after an interrupt is
.97 (£ = 1/30). Thus a task produces an average of 30 interrupts per
interaction, and the mean non-overhead quantum time between interrupts
is 6.67 milliseconds, Figure 2.3 displays expected response, as a func-
tion of mean overhead delay, dl, for a number of values of )\, the Poisson
arrival rate of requests. For each curve, the standard deviation of D
is twice its mean of d1, These results show commonly observed response
degradation caused by overhead delay and by congestion resulting from in-

creasing arrival rates,

2.3.4 Mean Response Conditioned on Service Request

This section contains exact and approximate expressions for mean
response time conditioned on measures of the service requirement.
E(R|N=n) is the expected response for a particular task, requiring n
quanta, which will be marked and followed until it leaves the system.

Let Mi be the number of tasks ahead of this tagged job (both in queue and
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E(R)
Seconds

L = 1.4 Tasks/second
7.0 , = 1,2 Tasks/second

5.0

LB A = 1,0 Tasks/secon

3.0°T

2.0+

1.0~

L L g

20 d1 = mean
overhead
per interrupt
in millisecond

Do
E g
=)}
(s 4}
—
o
—
N
=
Fal
—
=)}
—
(s 4]

C = processor speed = 500,000 instructions per second
1/ 4 = expected interrupts per task = 30

vl = mean number of instructions per task = 100,000

Figure 2.3
Effects of Overhead and Input Rates on Expected Response - TSMODI
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in the processor) as it enters the queue to wait for its ith processing
. th - . s
quantum. Define the i wait, Ti’ to be the time the tagged job waits in

queue as the Mi tasks preceding it receive their quanta.

M

(2.27) Ti = kfl Qk
In this equation task quantum time, Qk’ includes both the random delay D
and processing time W/C.

The first cycle (i=1) is a special case since the remaining quantum
interval of the task being served when the tagged job arrives has a dis-
tribution different from other quanta. Consider cycles after the first.
Processing quanta of all tasks, including the marked job, have the same
distribution. The expected value of the sum of m identically distributed

random variables is m times their expected value. Thus the conditional

expectation of Ti given Mi =m is:
(2.28) E(T;|M;=m) = m-E(Q) = m-ql, i=2,3,...

Removing the condition by taking the expectation with respect to Mi leads

to the unconditional expected value of Ti'
(2.29) E(Ti) = E(Mi) * ql; i=2,3,...

The number of tasks in the system at the start of the ith cycle is
dependent on system state changes during cycle (i-1). The probhability
that a job will leave the system after a quantum interval is £, and the

probability that it will return to the queue is (1-¢). Thus the expected
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number of jobs in front of the tagged job at the start of the ith cycle,
that was also in front of this job at the start of the (i-1l) cycle, is
(1-2) - E(Mi-l)' In addition, new tasks from the input process which
arrive during the tagged job's (i-1) queueing wait plus service quantum
will also be ahead of the tagged job as it begins waiting for its ith
quantum. Since the mean number of arrivals from an exponential source

with rate A during time period T is AT, the expected number of new arrivals
during (T].__1 + ql) is X\ - (Ti-l + ql). Taking the expectation with respect
to Ti leads to the following recursive 2xpression for expected value of Mi

as a function of the expected values of Mi-l and Ti-l'
(2.30) EM) = (1-8) - EQM ;) + ) = (E(T, ;) +4ql), i=2,3,...

Specification of E(Ml) and E(Tl) allows one to use equations (2.29)
and (2.30) to calculate all future waits. Since the arrival process is
Poisson and independent of the service process, a new task arrives at a
random time. E(Ml) is thus the steady state expected number of customers
in the system, E(M), given by applying equation {2.12) to (2.24). cCal-
culation of E(Tl) is complicated by the fact that when the tagged job
arrives at a busy system, the task currently being processed has been
in service for a random interval and its remaining quantum service, Qr’
is distributed differently from other quanta., As indicated in Section 1.3
Shemer (1967) did not recognize this fact and his exponential service model
without overhead contains errors due to this oversight. Figure 2.4 illus-

trates the situation.
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tagged job arrives,

%

Figure 2.4

Calculation of First Wait Time, T1

Since ql is the expected value of a full service quantum, let q1r
be the expected value of remaining quantum service, Qr’ of the job being
processed when the tagged job initially arrives at the queue. Let pi'be
the probability that there are i jobs in the system when the tagged task
arrives. Then the expected wait in queue of this task before it begins
service is the sum of mean values of the service quanta of al) queued

jobs and the expected remaining quantum service of the task in the processor.

-y = . L) L]
(2.31)  E(T) = qlspy + (ql +ql)p, + (al +2:al)=py + .-

o]

o(1- i-1
qlr(l po) + ql izl (i )pi

ql;(l-po) + ql{E(M) - (l-po))

p¢r+qHEm)-p)

where p = 1-p0 = x-ql/ﬂ, (equations (2.10) and (2.16))

and E(Qr).= qlr = q2x§-q1), (equation 2.9).
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All values necessary for the calculation of expected total wait, T, con-
ditioned on the number of required quanta, n, are now in easily computable
form.

n

T E(T.)
i=1 1

(2.32) E(T|N=n)
n
= E(Tl) + .§ E(Ti)
i=2
One may express this result in closed form by using equations (2.29)
and (2.30) and straightforward applications of the following identity con-

cerning finfte series.

n

A"/, =

n+l , x=1

(2.33) 1 +x+ x2 4+ ... +t X

k-1
2.30) B, = 2%V LBt + b{i:: } ., k=2,3,...

where a = (1-4) + A-°ql

b = )\-ql

Substitution of this expression in (2.32) leads to a closed form for

E(T|N=n).

l-a (1-a)2

l-an-1 beql n-2
(2.35) E(T|Nen) = E(T)) + ql*EQMy) * + « {(n-2)(l-a)-a(l-a )}
n=1,2,3,...
where E(Tl) is given by (2.31)
E(Mz) = X-(E(Tl) + ql) + (1-2)°EM)

E(M) is given by (2.24) and (2.12)



=43~

Expected total response, conditioned on N, is the sum cf mean expected

total wait and mean total service given that N = n.
(2.36) E(R|Nen) = E(T|Nen) + n-ql

Appendix A includes a derivation of the results of a different model
studied by Adiri and Avi-Itzhak (1969) using the techniques of this section
rather than their complicated transform methods. Their model has a Poisson
source of requests, and constant swapping overhead with exponential service

requests. The results of the two different types of analysis are identical.

2.3.5 A Simplifying Approximation

Equation (2.35) is not an intuitive expression. An interesting approxi-
mation is to let mean waiting time in queue for each cycle after the first,
E(Ti)’ be equal to the steady state expected number of tasks in the system,
E(M), multiplied by the mean quantum interval, ql. Table 2.1 demonstrates
that the magnitude of the error introduced by making this approximation is
small, The exact result, equation (2.35), enables one to measure effects
of such simplifying approximations. Shemer (1967) and Rasch (1970) both
made approximations without realizing it and without measuring the effects.
These results show that their derivations, although not exact, are close
to the correct solutions.

Equation (2.31) is the exact expression for E(Tl)’ the mean wait in
queue before a task begins to receive its first service. One could use
the approximation for this quantity also, but the additional complexity
added by including the exact expression is small. Using the approximation
E(Ti) ~ E(M)-ql in equation (2.32) leads to the iollowing result for mean

total wait in queue, given that N = n,
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(2.37) E(T|¥=n) = E(T;) + (n-1)+qLl-E(M)

p-(q2/2+ql - ql) + neql-E(M), n=1,2,...

A more interesting form of mean conditional response time is to remove
the condition on N, the number of quanta received by a task, and replace
it with a condition on V, the actual processing request. To remove this
condition, one must determine the distribution of the number of quanta

required to fulfill a processing request v.

@
(2.38) E(T|v=v) = I E(T|V=v,N=n):P(Nen|V=v)
n=1
w0
& pc(q2/2-q1 - ql) + ql-E(M)c M ncP(I\hnIV=\,)
' n=1

To evaluate the infinite summation in the above equation, one must
first determine P(N|V=v), the conditional probability that a task will
experience N quanta given that it requires v instructions from the central
processor. This summation is the conditional mean of N given that V = v,
Define (X) ~ f(x) to mean that the random variable X has the distribution
given by f(x). Let f;n(x) be the n-fold convolution of the random variable

*
X (i.e., fxn(x) = f +X (x)) . The total service request for a task,
n

X1+...

V, is the sum of N independent quanta, W, wherc N has the probability mass

function defined in equatioan (2.13).
*n
(2.39) (V|N=n) ~ £, (V)

*n
(2.40) (V,N) ~'fw (v) «P(N=n)

o]

(2.41) (V) ~ £ () = T P(N=n)-f:;n(v)
' n=1
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*n
P(N=n) fw (v)
fV(V)

(2.42) P(N=n|V=v) =

(10" £ W)

n=1,2,...

One may now substitute equation (2.42) into (2.38) to calculate the final
form of the mean total wait in queue conditioned on a service request of
v instructions, The specific form of the result will depend on the density

function of W.

2.3.6 An Exponential Service Quantum Example

A specific example will illustrate this model. The use of an ex-

ponentially distributed quantum, W, keeps the mathematics simple because:

(1) the sum of n identically distributed exponential variables,
when n is a constant, is a random variable having a gamma

distribution

(2) the sum of N identically distributed exponential variables,
when N is & random variable having a geometric distribution,

is an exponential variable,

These two well known facts may be verified by calculating the appropriate
Laplace transforms and comparing them to the transforms of the gamma and
exponential distributions,

Let the density function of W be exponential with mean wl, Therefore
the density function of f;n is gamma and the density function of V is ex-

ponential with mean vl = wl/z.
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e-v/wl
(2.43) fw(v) == Vv =20
z n-1 —v/wl
244y €0y = WD e -1,2,...
( ) f“ v) wi-(a-1)! vz0,n >
.e-z-v/wl
(2.45) £ (V) = ZE—e——, v 20

Substituting the above equations into (2.42) leads to the desired result

for P(N|V=v).

((1-Z)-v/wl)n-l.e'(l'Z)-v/wl

(2.46) P(N|v=v) = — THE , v=0, o°1,2,...
(2.47) E(N|v=v) = T n-P(N|V=v) = ul + :i-z)-v s v=0
n=1

The conditional mass function for N, the number of quanta needed to get v
instructions, is almost the standard Poisson distribution with parameter
ve(l1-2)/wl. Note that the mean number of quanta needed to receive v in-
structions is not the more intuitive quantity v/wl where wl is the mean
number of instructions received per service quantum.

Substituting (2.47) in (2.38) gives a closed form for mean total wait

in queue given that a task requires v instructions.
(2.48) E(T|v=v) = p-(q2/2ql - ql) + ql-E(M) - E(N| v=v)
= {p+(q2/2ql - ql) + ql-EM)} + ql-E(M)-(1-2)-v/wl, v =0

Expected total response conditioned on v is the sum of the wait in the

queue, mean overhead associated with this task, (wl + (1-2)-v)-dl/wl, and

the service time of the task v/ec.
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(2.49) E(R|vev) = E(T|Vev) + (Wl + (1-8)+v)-dl/wl + v/C

a + Bev

p+(q2/2ql - q1) + ql-E(M) + dl

where ¢

=
]

1/C + (ql-EM) + dl)-(1-p)/wl

The term o of the previous equation is the expected value of the
minimum response time possible in the system. This unavoidable delay is
the sum of the task's overhead time and the processing and overhead times
of the jobs already in the queue. A physical interpretation of this term
is the response time to a null input (e.g., a carriage return). Note that
after this initial delay, expected response is a linear function of service
request v. A common aspect of many current time sharing models is an
essentially linear relationship between response and service request. This
characteristic is present in the earliest models as shown by the form of
equations (1.2) and (1.3) derived by Kleinrock, but these early models do
not include important features such as random quanta and random overhead.
E(R) may be obtained from (2.49) by removing the condition on v. Since

the expression is linear, one simply replaces v with E(V).
2.4 THE TANDEM QUEUEING MODEL - TSMOD2

A characterisitc shared by almost all computer programs is that they
can be represented as repeating cycles of central processor activity fol-
lowed by utilization of the input-output, (I/O), system. Multiprogramming

designs allow different programs to use these facilities simultaneously by
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switching control from a program requesting I/O service to one needing the
central processing unit. When the original program has finished I/O ac-
tivity it may queue for additional central processing time and release the
I/O facility. Time-sharing operating systems often force task switching

by making a program release control of the central processor when it has
exceeded a quantum processing limit, Figure 2.5 illustrates a basic tandem,
two server model of this organization. For analytical purposes it clearly
does not matter which server is considered the central processor and which
the I/O system.

Define the following symbols for use in the model.

4 = the probability that a job leaves the system after
a cycle of processing and I/O activity

C, = a constant equal to the processing rate of sub-
system i expressad in work per unit time

W. = the exponentially distributed random work required
from subsystem i during a processing cycle. The

expected value of Wi is wli.

W, = Ci/wli = the exponential service rate of subsystem i

-4
[}

the random number of cycles required by a task to
finish one complete interaction with the system

V = an exponentially distributed random variable de-
noting the total work required by a task from
the central processor in N cycles. The expected
value of V is wl]/z.

M. = the random number of tasks waiting in queue i, and
being served in subsystem i
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The assumptions for the model are:

(a) the input process is Poisson with rate )\

(b) queue 1 and queue 2 have unlimited capacity

(c) the service time in each processor is exponential with
mean w]l/C] and w]z/Cz, respectively

(d) after completing service in the second processor a task
rejoins queue 1 with probability (1-£) and leaves the
system with probability (4). The probability of rejoining

queue 1 is independent of all other state variables.

Jackson (1963) presents a number of important results for networks of
Poisson queues. A summary of many of his derivations appears in Conway,
Maxwell, and Miller (1967), Chapter 10. Call the combined input rate to the
first processor \'. It is the sum of the external Poisson input, of rate ),
and that portion of the I/0 system's output which is fed back to the first
queue. This latter process has a rate of \'+(1-£). Thus \', the rate of

the combined input, is:

(2.50) A" =21+ (1-8) '

or \' =1/

A key result of Jackson's analysis is that in the network illustrated in
Figure 2.5 the combined input processes and the resulting output processes
are all Poisson. Thus each subsystem may be analyzed as an exponential

server having Poisson input.
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In the steady state each of the two servers may be treated as an
independent M/M/l queue with input rate \', and service rate Wy = Ci/WIi‘
Equation (2.10) presents expected response in an M/G/1 queueing system.

This equation reduces significantly when service is exponential. Thus
expected response through subsystem i, and the sum of the expected number of

tasks waiting in queue and being served in subsystem i, E(Mi)’ are:

(2.51) E(R,) 1/(ui-w) i=1,2, u, > A’

(2.52) E@M) = A'"ERy) =)'/ -\, i=1,2, p; >\’

Let Ti be the time spent waiting for the central processor plus the
time waiting and receiving service from the I/O processor on the ith pass
through the system. Since all of the stochastic subsystems in this model
are Poisson, in steady state, job arrivals and departures occur at random
points in time. For exponential service, the remaining processing time of
a task is also exponential regardless of how much service the task has al-
ready received. Thus the wait in queue 1 is E(Ml)'E(service quantum), and
the mean response time through system 2 is 1/(u2-X'). In steady state all

cycle times have the same expected value,

E(wait for processor) + E(wait + service for I/0 system)

(2.53) E(Ti)

= )\' + 1
ul(ul-)\') (u'z-)\') 2

B and u,z > !

i=1,2,...

The conditional response time of a job requiring v units from the central

processor which it receives in n quanta is:
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A 1

G T Gaya)

(2.54) E(R|V=v,N=n) = n-{ } + v/Cl, r=1,2,3...
vzay0

Wy and Moy > !

Removing the condition by using (2.46) leads to the result for expected

response conditioned on service request.

(2.55) E(R|V=v) = o + B.V/C,
where = A + L
o ul(ul-k') (uz-x')
and B = p;c(1-0)o+ 1

Figure 2.6 displays the non-linear effect of increasing the demand on
the system. For each line on this graph, the processing request, v, is
held constant and the arrival rate, A\, is increased. Figure 2.7 is a graph
of expected response conditioned on service request, v, for a number of
input rates A, Thus this model also predicts both a linear relationship
between expected response and service request, and non-linear response
degradation as a function of system load.

2.5 A PROCESSOR-SHARED MODEL WITH STATE DYPENDENT OVERHEAD, ARRIVAL, AND

SERVICE PROCESSES - TSMOD3

A fundamental concept of time-sharing organizations is that the
power of the central processing unit is to be allocated to all tasks
demanding service, Processor-shared models approximate actual scheduling
procedures, such as round robin time slicing, with an ideal discipline in
which fixed processor capacity, C, is divided uniformly and delivered to

all active tasks. At every instant, each of n active jobs receives C/m
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units of computing power per unit time. Scherr (1967) recognized that
one of the classic forms of the general "birth and death" model was
directly applicable to the time-sharing problem. His formulation of the
problem allows cne to consider explicitly the number of terminals con-
nected to the system. Scherr considered overhead in a simplified manner
by reducing the capacity of the central processor from C to a lesser
value C'. The quantity (1-C'/C) represents the fraction of the capacity
lost to overhead.

Van de Goor (1970) measured a number of overhead factors in a small
time-sharing system. He discovered that a significant portion of over-
head is proportional to the number of active tasks demanding service from
the system. For example, both paging activity in a virtual memory organiza-
tion and many monitor list searching operations are proportional to the
number of active tasks. The mathematical structure of a finite source,
processor -shared model, allows one to incorporate overhead loss that is
proportional to the number of active tasks in the system. If there are
m active jobs demanding service, then at each instant every task will seem
to have its own virtual processor with capacity (l-f-m)-C/m instructions
per unit time. To keep capacity positive the overhead lcss fraction, f,
must be less than l/N where N is the number of terminals connected to the
system,

Each of the N input terminals is an exponential source with rate ).
However, once & terminal has submitted a job, it is blocked from Additionil
input activity until the computer completes its request. The combined
total input rate for all termminals that do not have requests pending is

(N-m)+ %, where m is the number of jobs actively using the processor. All
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service requests are drawn from an exponential distribution with parameter
v. Thus the mean service request is l/v instructions, and the rate at
which the server processes jobs is ve(l-fem).C. An important feature of
this type of model is that it is stable in the sense that the input rate
decreases as the number of tasks demanding service increases., Unlike
the models in the previous sections where the queues could become un-
bounded, this structure is self correcting, and a steady state solution
will always exist, Figure 2.8 illustrates the basic organization of the
model.

The standard method of solving this class of model is to form a set
of differential difference equations involving system state variables.
Let Pm(t) be the probability that there are m active tasks in the processor
at time t. Since all of the individual input and service processes are
exponential this continuous-time Markov model has simple state transition

probabilities. For example, when 1 < m < N the general state equation is:

(2.56) ﬁu(t+6) (N-m+1)-x-5-(1-f-(m-1))-v-C-6)-Pm_1(t)

+ (1-(N-m)-)\°6)-(1-(1-f-m)-v-C-6)-Pm(t)

+ (L= () +veCo be (1= (N-m=1) 4 X+8) B (£) + o0(5%)
The basic principles underlying this equation are that if interevent

times have an exponential distribution with rate y, then:

(a) the probability that an event will occur during an interval
of length § is y*5, and the probability of no event occurring

is (l=y+§)
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(b) if there are k such processes working in parallel, then
the probability that an event will occur during an inter-

val of length 6 is key-d

(c) the probability of two or more events occurring during

8§ is of the order of 6-58, i.e., 0(62).

The next steps in the derivation are to comstruct similar equations for
the two boundary states m=0 and w=N, and take the limit as § = 0, Let
the derivative of the state probability with respect to time be P&(L)

Pm(t+6)-Pm(t)

— = pt
(2.57) limit, _ g 5 Pm(t)

The set of differential difference state equations becomes:

(2.58) P(') (t) = -N-)\-Po(t) + (1--f)-v-C-P1(t)

I};(t) = (N-(m-1))*MB__,(t) - {(N-m)*x + (L-m*£)v°C}*P (t)
+ (L-(utl)-f)-v-C-P ., () , w=1,2,...N-1
PR(E) = APy, (1) - {(N-N):x + (1-N-£)-v-C]}-P (E)

Statistical equilibrium (or steady state) exists when the statc probabili-

ties no longer change with time,

|
[—]

(2.59) lim P'(t) =
t= ® nm

(2.60) 1lim _ B (t) =P

]
d
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To solve for the equilibrium state probabilities, one lets all
Pé(t) = 0 and then uses the resulting recursive set of steady state equa-
tions, and the fact that tﬁe sum of all of the probabilities is unity, to
compute all values of Pm' Setting all g;(t) to zero and reworking equa-
tion (2.58) by substituting the result for Pm into the equation for %ﬁ+1

leads to the following set of steady state equations.

(2.61) (l-m+£)+v-C-B_ = (N-(m-1))*X-B ;, w=1,2,...N, £< /N

0

(N-N) APy

Adding all terms on both sides of this set of equations produces the follow-

ing expression.

N N N N
(2.62) veCe T P = veC-fe T m-Pﬁ = Ne)de T P = A+ I mPh
m=1 " m=) m=0 m=0

Substituting equations (2.63) and (2.64) into (2.62) leads to (2.65), the
result for the expected value of the number of tasks demanding service from

the system, E(M).

N
(2.63) E(M) = T m.P
m=0 o
N
(2.64) mEI P = 1 - P,

(2.65) EM) = {N-: - v-C-(l--Po)}/(x-(v-C)-f) , £ <1/N, £ "?%E

Equation (2.64) and the set of equations (2,61) lead to the derivation

of PO’ the probability that the central processor is idle. All of the
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other state probabilities are expressible in terms of P..

0

(2.66) P, = N-x-PO/{v-C-(l-f)}

P, = N-(N-l)-xzoPO/[(v-c)Z-(1-f)(1-2f)]

2

: m

Po=PB 0 {(N-(i-1)) N/ (v-C-(1-i£))}, m=1,2,...,N

i=1 '
m
where 2=1Xi = xl-x2-x3...xm
N m

2.67 = 1/[1
@61 By =1L+ B T (n(i-1))on/(voCe (110 ]

If the state dependent overhead fraction, f, is zero, then the result re-

duces to the classic formula for the exponential machine repair problemf

To express mean response time as a function of the mean number in
the system' (equation 2,65) one may use the equilibrium argument that the
mean number of jobs submitted to the system per unit time must equal the
mean number served per unit time. Each of the N terminals goes through
many cyc.2s of generating a request and then waiting for the system to
respond to that request. The mean time spent in the first part of this
cycle is 1/\ time units and the mean time spent in the second i; E(R)
time units. Thus the mean arrival rate from each terminal is 1/(1/1+E(R))
and the total mean arrival rate to the system is N times this quantity.

The service rate of the system is v-.Ce(l-m+f) where w is the number of

tasks being served.

4
See Saaty (1961), p. 326.
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N
(2.68) N/ (1/M+E(R)) = 0-Fg +vC L (1-m.£).P_
m=1

= VcCo(l-Po) = veCefeE(M)

Another way of looking at this relation is to note that when there
are m tasks in the system the arrival rate from the remaining temminals

is (N-m).)\ and thus the mean arrival rate is (N-E(M)):\. One may equate

both expressions for mean arrival rate,
(2.69) N/ (L/MER)) = (N-E@M)) -2

By using equation (2.65) in (2.68), or more simply by solving (2.69)
for E(R), one may obtain the following result for mean response time

in TSMOD3. Both approaches lead to the same result,

E(M)

(2.70) E(R) = A+ (N-E(M))

Figure 2.9 illustrates mean response as a function of N, the number of
terminals connected to the pProcessor, for a number of values of f, the
overhead loss function,

Each of the models developed in this chapter focusses on a different
aspect of current implementations of time-shared computing systems, The
inherent complexities of queueing models make the simultaneous considera-
tion of all such features very difficult., The next two chapters present
empirical iuvestigations of both simulated and actual systems. Response
time measures of these more complex systems are compared with the predic-
tions of the analytic models of this chapter, Chapter 5 contains a number

of examples of how one may use these models,
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CHAPTER 3

SIMULATION STUDIES OF SYSTEM BEHAVIOR

3.1 INTRODUCTION

The results of Chapter 2 provide new expressions relating response
time measures of system performance to parameters such as overhead loss,
processing capacity, service and arrival distributions, and interrupt
probabilities., To keep results easy to compute, these analytic models
are based on many simplifying assumptions concerning system architecture
and user behavior. In addition, equation (2.49), the least complicated
expression for mean response conditioned on service request, depends on
the approximation that all cycle times after the first are equal to
the mean number of tasks in the system multiplied by the mea#n quantum
interval., The goal of this chapter is to explore the robustness of these
results when they are applied to systems that do not satisfy all of the
assumptions. The following experiments range from simulations closely
related to the analytic models of Chapter 2 to more complex designs based
on features of an operational time-shared system,

The first simulation is an exact model of Figure 2.1, with overhead
and quantum times both having truncated normal distributions (both were
constrained to be non-negative), The second and third models are based
on a tandem queueing structure like that analyzed in Section 2.4, The
last gimulation in the ch&épter includes a detailed model of the schedul -
ing algorithms of TSS, an operating system for the IBM 360/67. Task
dispatching in this system includes dynamic priorities, and is much more

complex than the cyclic, round robin, scheduling of the previous models,
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The goals of the experiments are:

(a) to determine how well the equations of Chapter 2 predict
performance characteristics, such as expected value of
response conditioned on service request, even though the
models differ from the assumptions underlying the previous

derivations

(b) to study periormance characteristics that were not derived
analytically but are easy to examine by simulation and
which lead to a deeper understanding of feedback queueing

systems

(c) to determine if a complex model based on an operational
system exhibits the same basic characteristics as the

simpler models,

3.2 EXPERIMENTAL METHODOLOGY

3.2.1 The Simulations

All of the models are implemented in SIMULA, a general purpose
simulation language which extends ALGOL in a number of important dimen-
sions. In addition to all of the features of ALGOL, the language pro-
vides good list processing capabilities, a powerful co-routine capability
including a full range of process scheduling mechanisms, and a number of
statistical procedures.1

For the first three studies each experiment consisted of a 100 task

initialization period, in which statistics were not gathered, followed

1The readér interested in SIMULA is directed to Dahl and Nygaard (1966),
Univac (1967), and McCredie (1970).
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by a production period in which statistics were calculated for 1000
tasks passing through the system, Pilot runs produced initial estimates
for running times and variances of the sample statistics. Each experi-
mental run of the first study required approximately 10 seconds of Univac
1108 processing time. Since the second and third models have two pro-
cessing subsystems in tandem they required twice as much computer time
per simulation as the initial model. To simulate the processing of 1000
tasks in the complex model described in Section 3.5 required about three
or four minutes of 1108 time. As a result of the expense associated
with the detail of this model, only a few experiments were performed.
Each run represents an independent set of statistics since the
models were initialized with different starting seeds for random number
generators, and all statistical counters were reset to zero. The initiali-
zation period to remove startup transients preceded each run. Appendix B

contains listings of the simulations used for the studies.

3.2.2 The Statistical Analysis

One must use statistical tools to analyze data from stochastic
systems. A striking characteristic of the data from the simple queueing
structures of Sections 3.3 and 3.4 is its high variance. The estimators
used to determine model variables come from independent experiments. Jabel
the value of an estimator from simulation rum i, Xi. Each independent
Xi is drawn from a population having a finite mean y and variance 02. An
estimator of  is the sample average i, which is based on all of the ex-
periments and is itself a random variable, In Section 3.3 and 3.4 each

study consists of 20 independent experiments (n = 20).
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n
- X X
i=1

(3.1) X =

=R

i

2
The population variance, ¢~ , for each variable, is unknown in the experi-
ment, but one may use the following estimator of it.

2

n
(3.2) s° = Z

=.2
i (X;-X)

.
n-1 i

To scale X so that it has a mean of zero andlvariance of unity,
subtract p from X and divide the result by (sz/n)z.

1 1
(3.3) 2= &/ (X /m? = (n)2EX-p)/s

The central limit theorem states that Z becomes normally distributed with
mean 0 and variance 1 as n becomes large. Z does not have a normal dis-
tribution for small n because it is based on the random variable sz, an
estimate of 02. Z has a Student-t distribution which deviates from the
Normal distribution for small values of n, but approaches the Normal
when n is large (e.g., n > 30).2

One may form a confidence interval for sample averages by locating
points which partition a desired percent of the area uuder the density
function for the Student-t distribution. For example, one may compute the
probability that an interval based on sample statistics covers the true
mean, p. Using the Student-t distribution with n-1 = 19 degress of freedom,
one finds that in these experiments the probability is .95 that the interval

of equation (3.4) will contain the true mean, .

2See Mood and Graybill (1963), pp. 251-253 for a discussion of the estima-
tion of mean values when the variance is not knowr and pp. 149-153 for a
discussion of the central limit theorem.
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1 |
(3.4) X - 2.09'(sz/n)2 Sy s X + 2.09,(52/n)2

3.3. A SIMULATION OF TsMOD1

3.3.1 The Model

TSMOD1, the feedback queueing model studied in Section 2,3 and illus-
trated in Figure 2.1, is the subject of the first validation experiment.

The following parameters were used in the study:

Fw(t) = FD(t) ~ normal distributions (mean=.05, c=.015)
wl/c = dl =, = .05 seconds

w2/C2 = d2 = 02+(H)2 = .002725(seconds)2

w3/C3 = d3 = (u)3+3'u'<72 = .00015875(seconds)3

Processing rate = C = 1 instruction/microsecond
Arrival rate = )\ = 1 job/second

Probability job leaves after an interrupt = £ = 1/8

The statistical estimators used to summarize the date are:

(3.5) R = the sample average of response times

R,
i

u
= ]
I M3

i=1
where Ri = (time task i leaves the system - time task i

entered the system)

(3.6) SD(R) = the zample standard deviation of respounce times
1

n
_ ol =2y 2
= E (R, -R)"}

i=1
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3.7) ¢t the sample average of the time spent waiting until

a task receives its first processing quantum

n
%‘ % (time task i waits before beginning its first
i=1

processing quantum)

(3.8) P0.100 = the percentage of time the processor was idle

100 -+ (time processor idle/total simulated time)

(3.9) B = least squares estimate of slope of response time as
a function of service request (where vy is service

request of the ith task)

n n n n 2 n 2
={n- T Rev, - ¥ RS vi}/{n + v - (Tv))
i=1 i=1 1 i=1 i=1 =14

The analysis of Section 2.3 presents exact solutions for the expected
values of R (equation 2.24), SD(R) (equation 2.19), El (equation 2,31),
and P0 (equations 2.10 and 2.16). Equation (2.49) is an approximate ex-
pression for the expected value of response time conditioned on service
request, This equation contains a parameter B which is the slope of the
conditional response time. The approximation is based on the assumption
that the service request, V, is an exponentially distributed random vari-
able, and on the mathematical simplification that all cycle times after
the first are equal to the mean number of tasks in the system multiplied
by the mean quantum interval., The next section contains comparisons of
the results of the simulations of TSMODl with the analytic expressions for

these variables,
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3.3.2 The Results

Table 3.2 presents all of the experiemtnal results for each of the

five variables for 20 independent runs, each of which represents 1000

observations obtained after an initialization period of 100 tasks. The

1

experimental values are combined to form the estimators X, sz, S, (s2/20)2

defined by equations (3.1) and (3.2).

presenting the 95 percent confidence interval from the experimental data

Table 3.1 summarizes this data by

and the analytic result from Chapter 2 for each of the five variables.

All of the analytic results lie within the confidence intervals. The

samples display the high variance inherent in queueing systems of this

type. This particular sample exhibits slightly heavier congestion than

predicted by the analytic solution.

very heavily congested experiments.

response times in TSMODI.

95 percent confidence Sample
variable interval {see eq. (3.4)1} Average
R 3.35 < E(R) S 4,51 3.93
SD(R) 4,47 < SD(R) = 6,31 5.39
$0-100 17.38 < py + 100 < 20.43 18.90
ty .34 < E(tl) < 47 A4l
B 8.33 < E(B) < 11,28 9.81

TABLE 3.1

For example, runs six and ten are

Figure 3.1 is a typical histogram of

Analytic
Result

3.81
5.58
20,00
.39

8.54

Comparison of Experimental and Analytic Values for TSMOD1
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The analysis of Section 2.3 predicts a nearly linear relationship
between service request and mean response, To test this result, each
task recorded both its service request and its transit time through the
system, These data were separated into equal service intervals (and
an additional overflow interval) and processed to calculate mean job
response for each interval., Table 3.3 displays the average response,
and the number of observations on whish it is based, for five service
intervils for the 20 experimental runs. Results for the i, sz, s, and
(sz/n)2 are also displayed.

Figure 3.2 is a graph of the data of Table 3.3. Each point is the
sample average of the observations in that interval, and is placed at the
mid point of the service interval. The vertical bars through each point
represent the sizes of the 95 percent confidence intervals computed using
equation (3.4). The solid line connects the sample averages and the two
broken lines form an area in which the true value of mean response con-
ditioned on service request lies with 95 percent confidence. The increas-
ing variance with service comes from two factors: (a) the number of
observations decreases in the intervals having higher values of service
and (b) variance of response increases with service request. Thus long
jobs experience longer, and more highly variable, response than short

jobs.
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3.4 A SIMULATION OF TSMOD2

3.4,1 The Models

TSMOD2 is similar to TSMODl with an additional processing system
after the central processing unit. This extra queueing subsystem repre-
" sents an input/lutput (1/0) system for program swapping, paging, and
file handling. Figure 2.5 illustrates the structure and Section 2.4
includes an analysis of the model when the service times in both systems
are exponential. This section includes simulations of two versions of
TSMOD2. 1In the first (which is identical to the model of Section 2.4)
both the processor and the I/O systems have exponential service distribu-
tions and there is no explicit overhead delay. In the second, the pro-
cessor is identical to TSMODl (an overhead delay and then a processing
quantum) and the I/O processor has a uniform service distribution which
is more representative of rotating external storage devices than an ex-

ponential distribution. The following parameters Were used for these

two models:
Version I Version II
Server 1 Exponential distribution Overhead and service
with rate 10 jobs/second. quanta both have Normal
No overhead. distributions with
mean = .05 seconds and
standard deviations =
.015 seconds (rate =
10 jobs/second)
Server 2 Exponential distribution Uniform distribution be-
with rate 10 jobs/second. tween 0.0 and .2 seconds
(rate = 10 jobs/second).
System arrival rate= 1 job/second 1 job/second
& 1 1
Probability job leaves 8 3

after an .interrupt = £



(3.10)

M, and M

1
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The statisitical estimators used to summarize the data are:

SD(R)

=

sample average of response time (previously defined)
sample standard deviation of response time (previously defined)
sample average of number of tasks in, and waiting in queue

for, server 1

=

IT (number in queue 1 + number in server 1) dt
0

where T irf the simulated time interval of the experiment
sume definition as ﬁl except that queue 2 and server 2
replace queue 1 and server 1

least squares estimate of slope of conditional response

time (previously defined)

Section 2.4 contains exact expressions for the expected values of

9 (equation 2.52), and for the mean value of B (equation 2.55).

The unconditional mean response time, E(R), may be obtained from equa-

tion (2.55) by remaining the condition on V. Since this equation is

linear in v, one simply replaces v with its expected value E(V). The

results of Version I verify this analysis and provide insight into the

variability of the results, Version II is included to test the effects

of changing the distributions of the overhead delay and the processing

requests,

The next section contains comparisons of these two versions

of TSMOD2 with each other and with the analytic expressions of Section

2.4,
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3.4.2 The Results

The results of the simulations of TSMOD2 are presented in a manner
similar to that of Section 3,3. Table 3,4 summarizes the results of
Version I by presenting the 95 percent confidence intervals for the
data and the analytic results from Section 2.4 for these variables,
Table 3.5 displays the zesults for each of the variables for the 20 ex-
periemntal runs of TSMOD2 - Version I. As in the previous section, each
run represents 1000 observations obtained after an initialization period
of 100 tasks. All of the analytic results lie within the confidence
intervals. To test the prediction of a linear relationship between
service request and mean response, each task again recorded both its
service request and its transit time through the system. Table 3.6 cou-
tains the results of separating the service requests into equal intervals
and calculating the sample averages for each interval. Figure 3.3 is
a graph displaying this data and the 95 percent confidence intervals

for response as a function of service request,

95 percent confidence Sauple Analytic
Variable interval {see eq. (3.4)} Average Result
My 3.58 < E(M)) < 4.29 3.9 4.00
M, 3.59 < E(M,) < 4.45 4,02 4.00
R 7.24 < E(R) < 8.61 7.93 8.00
B 7.89 < E(B) < 9.20 8.55 8.88
Table 3.4

Comparison of Experimental and Analytic Values for TSMOD2 - Version I
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Table 3.7 contains the experimental results for TSMOD2 - Version IL.
Each run represents 1000 observations obtained after an initialization
period of 100 tasks. To test the prediction of a linear relationship be-
tween response and service request each task again recorded both its
service request and its transit time through the system., Table 3.8 con-
tains the sample averages of response time for various service request
intervals and the number of data points in each interval. Figure 3.4
is a graph of this data including the 95 percent confidence intervals for
response time as a function of service request.

TSMOD2 - Version II differs in a number of ways from Version I. Since
neither the central processor nor the I/O system have exponential service
distributions, the outputs and thus the resultant inputs to both systems
are not Poisson. Both service distributions have a coefficient of varia-
tion less than an exponential and thus the outputs from the servers are
more regular than from a Poisson process. This increased regularity of
service and input processes reduces both the congestion in the system and
response times. The analysis based on exponential input assumptions over-
states congestion. Queueing theory offers little help in the analysis of
non-Poisson queues in tandem, For example, if the methods of Section 2.4,
in which each subsystem is treated as an independent queueing system, are
applied to this example and both subsystems are treated as independent
M/G/1 queues (with Poisson input rate )' = 8) the mean number in each sub-
system would be E(Ml) = 3,809 and E(Mz) = 2,933, The simulation results
show these valuer to be ﬁl = 2.60 and ﬁz = 2.38, or about 25 or 30 percent
less than predicted by an M/G/l model, This example indicates how non-
radical changes in modeling assumptions may force the analyst to switch
from analytic techniques to simulations to get more accurate estimates of

system parameters, Note, however, that the linear relationship between
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response and service request, which was derived on the basis of the
assumptions of Version I, Lolds for Version II. Both models exhibit
the same general behavior as the input rates increase, or as one sub-

system changes its processing capacity relative to the other.
3.5 A SIMULATION OF SCHEDULING IN TSS/360

2.5.1 The Mod:1

TSS/360 is a tine-sharing operating system for the IBM 360 Model 67.
(IBM, 1968). This computer differs from the standard 360 line because of
hardvare additions designed to create a virtual memory addressing struc-
ture utilizing segments and pages . Section 5.3 contains an elementary
discussion of paging. The interested reader is directed to Wilkes (1968)
and Denning (1970) for excellent treatments of the subject,

The algorithm which schedules and dispatches tasks in this multi-
programmed, time-shared enviromment is a section of TSS called the table
driven scheduler. Since each TSS system has a different user community
to suuisfy, and a different hardware configuration, the parameters in
the table driven scheduler may be set by each installation. Many parameters
within the table are branching codes to other sections of the table, The
scheduling section of this simulation is much more detailed than other
subsystems such as the paging disks. This model is also implemented in
SIMULA. Appendix C contains a listing of the program.3

McCredie and Schlesinger (1970) describe the structure of the model
in more detail than is required here. One goal of the design was to show
that a useful model can be easily implemented without detailed modeling

of all system components. Different system modules have vastly different

3 .
This program was designed jointly by J. McCredie and S. Schlesinger. S.
Schlesinger implemented and debugged the version presented in Appendix C.
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levels of detail in the simulation, and the areas of detail may change

as the model evolves. Elements of the physical system were included only

when necessary because of interactions with the scheduler. The primary

goal of the study was to obtain measures of response times expericnced

by interactive users. Figure 3.5 illustrates the model's structurc.
Three hardware facilities appear: the CPU, the paging devices,

and memory. The CPU appears implicitly in all software elements of the

system and in the execution of user programs. No CPU characteristics

such as clock cycle time or instruction times are included, although

they are implicit in the amount of computation time used by user programs.
Two types of paging devices are included in the model: disks and

drums. Disks are viewed as an infinite source of new pages demanded by

executing programs and as an infinite storage facility for pages written

out by the monitor. Actual operation of these units is complex since

arm seeks on different spindles can be overlapped, and software disk

management routines try to optimize arm movements to maximize the flow

of pages into core. Instead of modeling this process directly, the

access time of a page is drawn from a distribution. The statistical

characteristics of this distribution reflect the operation of the actual

system, The parameters of the distribution were determined by observa-

tions from system logging information. Drums are represented by their

revolution times and their capacity in pages. The distribution of access

times for pages from a drum is uniform from zero to the revolution time.
There are two major software routines in the model - the timer inter-

rupt handler and the table driven scheduler. Minor software functions

occur implicitly in other parts of the model. A timer interrupt occurs

R e 2
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when a user program has CPU control at the end of its time quantum, The
interrupt handler may, depending on the program's scheduling parameters,

do any of the following: force a time-slice end and write pages onto the
disk (or drum); change the scheduling paramete:s; give the program an
additional time quantum, The timer routine in the model performs the func-
tions of several subroutines of TSS/360 which are called when a timer
interrupt occurs.

The table driven scheduler is the most detailed portion of the simula-
tion. Each program in the system is assigned an entry in the schedule
table. This entry contains maximum limits on CPU usage and paging activity
of a program. A program exceeding the limits is penalized by loss of
eligibility for CPU allocation and possible lowering of priority. This
penalty occurs by changing the program's schedule table entry to-a new
one depending upon how the progran exceeded the bounds of its previous
entry. For each maximum there is a new schedule table entry to which
the program will be assigned if that limit is exceeded. The monitor inter-
rupts a program during its time slice to check if any bounds have been
violated.

The ccheduler maintains several lists of programs, each one having
a different eligibility for CPU allocation. User programs move among the
lists depending on their schedule table entry and operating characteristics.
The schedule table in the actual system has limits on additional operating
characteristics of programs to enable fine-tuning of the scheduling algorithm.

Frogram behavior is characterized by periods of CPU usage separated
by page fauits. When the program receives CPU control from the scheduler

it is interrupted only by a timer interrupt or page fault. While it has
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CPU control, no classification is made of language used, system functions
called, or other modes of activity. The only parameter of interest during
CPU usage is the time necessary to complete the user request, Paging
activity is based upon the working set concept of Denning (1968). Each
request specifies the working set size for that request. The user pro-
gram then calls for sufficient pages to fill the working set. There is
no distinction concerning the contents of each page. Only the number in
core is of interest.

The users in the model make temminal requests and wait for system
response at the temminal, A request consists of the amount of CPU time
required and the number of new pages which have to be brought into core
for a complete working set. The model draws both of these parameters
from distributions either approximating observed system behavior or test-
ing hypothetical modes of system use. The distribution of response time

experienced by a user is the statistic of primary interest.

3.5.2 The Results

A modular simulation such as the one described in the preceding sec-
tion gives a systems analyst a great deal of flexibility. The original
goal of the model was to aid in tuning TSS /360 to the job load of the
CMU environment. The first use of the simulation involved a group of
users who proposed paying a higher rate to receive better service from
the system. The plan designed to achieve this service differential was
to create an algorithm in the schedule table so that users from the
higher priority class would follow a different path through the schedule
table. Tests using the model indicated that benefits of the proposed
solution were marginal compared to the increased charge. A different

plan, based upon the concept of guaranteed terminal access to a certain
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number of higher priority users, provided the required sa2rvice differen-
tial.

“he model may be used like the previous ones in this chapter to
measure both the mean value of response times for various loadings and
the mean response time conditioned on service request. Figures 3.6 and
3.7 are typical graphs of such experimental results. The first is a
heavily loaded system, and the second is more representative of a typical
user load, Results from this model of TSS/360 have the same global char-
acteristics as the results from the analytic models of Chapter 2,

Mean response conditioned on service request is a linear function of the

service request, and severe response degradation occurs with heavy loading.
3.6 DISCUSSION

The examples of this chapter illustrate some of the advantages and
disadvantages o1 siwvl:tion as a tool for the analysis of computer systems
Flexibility is demonstrated by the ease with which these models may be
modified incrementally to examine the effects of changes such as new dis-
tribution assemptions or the addition of another processing subsystem for
input and output activity. Appendix B contains the listing for TSMOD2,

To use this program to study TSMOD1l, one removes the activity describing
the I/O system, and changes a few lines of code in the activity dascribing
the central processor. Appendix E contains a listing of the progrem used
to study different dynamic control algorithms for time-shared systems. The
program used to study TSMOD2 is also the basis for this latter model. The
dynamic control algorithm, and the user behavior model, were easily added

to the original design. The model of TSS/360 which is listed in Appendix C
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also illustrates the flexibility of a modular approach to simulation.
Once implemented and debugged, a well designed simulation can be a very
powerful aid to system analysis.

Large simulations are expensive to implement and to runm. The data
in the previous sections illustrate the variability which is inherent in
queueing processes. To properly analyze the results of experiments on
models of such systems, one must make many experimental runs. Since each
experiment is only one realization of a stochastic process, it can become
expensive to produce tightly bounded estimates of the values of state
variables.

The primary goal of this chapter was to examine the robustness of
the anulytic models developed in Chapter 2. When the simulations are
closely related to the analytic models, the analytic results are within
the confidence intervals determined by the experiments. In addition, the
global behavior of more complex systems such as TSMOD2-Version 2 and
TSS/360 has the characteristics predicted by the analytic models. The
next chapter presents the results of three empirical investigations of

operational time-shared computing systems.
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CHAPTER 4

EMPIRICAL STUDIES OF SYSTEM BEHAVIOR

4.1 INTRODUCTION

Although the models of Chapter 2 include important features often
neglected in other models, they are simple structures when compared with
actual computer systems. The simulation studies of the previous chapter
illustrate a number of properties of feedback queueing structures, and
demonstrate that more complex models exhibit the same basic behavior pat-
terns as the simpler analytic structures. The purpose of this chapter
is to present empirical evidence that one may describe macroscopic per-
formance measures of actual systems with these same analytic fonmulations,
The models capture enough of the essential features of actual designs
to enable one to use them, as outlined in Section 1.1 and illustrated
in Chapter 5, in systems analysis studies.,

There are maay different ways to measure and evaluate the performance
of computing systems. Perhaps the oldest, and most common, technique is
the execution of a representative set of programs (called a benchmark
series) while monitoring the system. The development of a benchmark
series which accurately models the characteristics of a particular user
comnuniiy is a difficult problem that is not adequately solved. An ad-
ditional problem is that a computing system can usually be tuned to do
well on any specific benchmark series. llowever, the purpose of the ex-
periments which follow is not to compare and evaluate different systems
for a particular enviromment, but rather to explore their general behavior

and compare it with that predicted by the models of Chapter 2.
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A representative henchmark series is particularly hard to create
for a time-shared system that is to support many independent users. A
method which is related to the standard benchmark technique is a user
population simulator which creates pseudo user tasks which follow a
script with precise inter-command timing delays, This procedure is an
important evaluation technique because of its high degree of repeatability.
Two common ways of implementing it are to dedicate a second computer to
the task of simulating the user population or to create, within the systenm
being measured, a special program that interfaces with the operating sys-
tem and is capable of inserting user jobs into the task queue. Special
programming systems are required for this technique,

An alternative design, which was used for the first expariment,
makes use of people who follow a benchmark script. The purpose of this
design is to create a semj-controlled enviromment in which users can
run pre-designed prograns aad exparience realistic system response, The
experiment was non-repeatable at the instruction level since users were
not synchronized or driven by any timing infonnation, but this type of
pPrecision wias not required for the global performance measures of interest
in this chapter. An advantage of this semi-controlled design is that
actual user behavior does not have to be modeled. Real users type at dif-
ferent speeds with different accuracy. To use a user population simulator
one must design a script, and an explicit model of the behavior of all
users., Thus in the semi-controlled enviromment one trades a gain in
realism for a loss in repeatability, Another reason for using the semi-
controlled environment was that the response time investigations, reported

in the next sections, were but one dimension of a larger investigation of
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properties of different time-sharing systems. In the larger study,
qualitative judgments of users along dimensions such as ease of use,
perceived power, and reliability were important,

A disadvantage of both of the experimental techniques discussed so
far is that to observe the system in a realistic mode of operation one
must create a script which is a good approximation to user behavior.

An alternative procedure is to measure the system during an actual user
session. One may treat the computer and its user coomunity as one large
system to be measured by inserting a probe task with known characteristics
into the job queue and monitoring its behavior. An advantage of this
technique is that if the probe job does not use a great many resources,
measurements can be made during actual user sessions without causing
severe degradation to qther users.,

The following experiments include the monitoring of both an operational
IBM 360/67 using TSS/360 and a Univac 1108 using EXEC-8. In the first
experiment, a set of users followed a script which directed their inter-
actions with TSS/360 while the system calculated and saved response statis-
tics. For the second, a small probe job was inserted into the actual
user enviromment. This probe entered the 360/67 at random intervals over
a period of a number of weeks, measured selected state variables, and
gathered statistics about its own response. The last experiment was
similar to the first, but it was performed on the 1108 using EXEC-8. Thus
the same basic experiment was conducted on two very different systems, and
two different types of experiments were performed on one of the systems.
The following sections contain a more detailed discussion of each of the

experiments and their results.
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4.2 EXPERIMENTS ON TSS/360

4.2.1 Controlled User Script

The computer used was the Carnegie-Mellon IBM 360/67 using TSS/360
Version 5.1. The experiment was run during the spring of 1970 when
Carnegie was using a memory hierarchy which included IBM large capacity
storage (LCS) which had a relatively slow cycle time of eight microseconds.

For this experiment 29 selected TSS users received a short training
session in which they were introduced to both the goals of the study and
the script. The computer was dedicated to the experiment for approximately
two hours. Users not participating in tha study were denied access to
the system. Participants had special account numbers valid only for the
study. All background batch computing was terminated so that only the
script tasks submitted from terminals would be active.

Figure 4.1 is a block diagram of the script, and Appendix D contains
a complete listing of the script. After establishing a connection with
the computer each user performed initialization tasks which gave him ac-
cess to required programs and which created necessary statistical files.
The initialization program called the FORTRAN compiler and directed it
to process TESTl. There were two small intentional errors in this source
code and each person then used the editor to correct these statements and
list the program. After the program was recompiled each user called it
a number of times submitting as control input the number of times the
program should execute its major loop. The code multiplied two thirty
by thirty matrices, and stored the result in a third matrix. Each user

task measured and printed its response time, and stored the information
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on a file for later statistical analysis, The second program, TEST 2,

was a small job which adds the integer one to a counter a specified number
of times and then stops. The third program, TEST3, was similar to TESTI
in computing requirements, but it demanded a large amount cf storage
(approximately 23,000 words). All of the programs computed the elapsed
time required by the system to process each request, The users saved all
terminal listings for later data verification purposes,

Figure 4.2 is a graph of the sample averages of response times for
the three tests. The horizontal axis measures the computing request in
terms of the number of iterations, I, through the major loop of TESTI,
Each of the other programs was scaled to this measure of central processor
demand., Each point on the graph represents the sample average of requests

having the same value of I.

4.2.2 TSS/360 Probe Experiment

The goal of this experiment is to investigate mean response as a
function of system load and service request in a typical user environment,
Over a period of a number of weeks a version of TESTl, which is listed
in Figure 4.3, was submitted to TSS/360 as a conversational task. A sup-
porting package was written to simplify the execution of each run of the
probe. One command initiated a complete cycle of five replications of
TEST1l, each with a different parameter to control the processing request.
As in the previous experiment, control information was in terms of the
number of required iterations of the major loop of the program, Data
points were saved in a master file for later processing. Each data block

included the time of the experiment, the number of active conversational

a7
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Figure 4.3
Listing of TESTI

0000100 DIMENSION IB(8),1E(8)

0000200 DIMENSION M1(30,30),M2(30,30),M3(30,30)

0000300 100 PRINT 899

v000400 899 FORMAT(/' TEST1: PLEASE ENTER N IN FORMAT 12')
0000500 READ 900,N

0000525 900 FORMAT(12)

0000550 IF (N.EQ.0) GO TO 10

0000600 PRINT 901,N

0000700 901 FORMAT(' TEST1: ITERATION=',13)

0000800 CALL CLOCK(1B)

0000900 DO 6 L=1,N

0000910 DO 2 1=1,30

0000920 DO 1 J=1,30

0000930 M1(1,J)=2

0000940 M2(1,J)=3

0000950 1 CONTINUE

0000960 2 CONTINUE

0000970 DO 5 1=1,30

0000980 DO 4 J=1,30

0000990 M=

0001000 DO 3 K=1,30

0001010 3 M=M+M2(I,K)*M1(K,J)

0001020 M3(1,J)=M

0001030 4 CONTINUE

0001040 5 CCNTINUE

001050 6 CONTINUE

0001100 CALL CLOCK(IE)

0001200 TRAN=36000*(IE(1)=1B(1))+3600+(IE(2)-1B(2))+600«(IE(3)~IB(3))
0001300 TRAN=TRAN+60*(I1E(4)~IB(4))+10+(IE(5)-IB(5))+(IE(6)=-1B(6))
0001400 TRAN=TRAN+.1+«(IE(7)-1B(7))+.01*(IE(8)~IB(8))

0001700 PRINT 903,18

0001701 903 FORMAT(' START TIME= ',211,":"',211,":',211,'.',211)
0001702 PRINT 904,IE

0001703 904 FORMAT(' END TIME= ',211,"':',211,":',211,"'.',211)
0001704 PRINT 905, TRAN

0001800 905 FORMAT(' RESPONSE TIME= ',F8.2)

0001900 WRITE(1,800) N,IB, IE, TRAN

0001950800 FORMAT(2H 1,18,811,811,F8.2)

0002000 GO TO 100

0002050 10 PRINT 906 ’

0002051 906 FORMAT(' TEST1 NOW COMPLETE. YOU ARE IN COMMAND MODE')
0002052 sTOP

0002100 END

TEST1: PLEASE ENTER M IN FORMAT 12 TEST1: PLEASE ENTER N IMN FORMAT 12
01 01

TEST1: ITERATION= 1 TESTL: ITERATION= 1

START TIME= 20:17:05.86 START TIME= 20:14:24,35

END  TIME= 20:17:13.36 END  TIME= 20:15:12.09

RESPONSE TIHE= 3.00 RESPONSE TIME= Sh.74

PR T e 2 TR i =
T e N PR KPR T A R ot W e el JE S R L B o oo L B e . ™ .
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users, control information and the response time experienced by the pro-
gram. The system operator initiated a run of the probe approximately
once every hour while TSS was running user jobs.

The probe ran in a different enviromment each time it was initiated.
The program remained the same, but the system load varied from light to
heavy. Detailed status information about each user was not gathered. The
data were classified according to the number of active users and the pro-
cessing request. Figure 4.4 is a graph of the sample average of response
time conditioned on service request for a number of different system loads.
Each line represents a different user population density. Data points
were aggregated into four classes according to the number of active users
on the system (5-10, 10-15, 15-20, 20-25). Figure 4.5 treats the same
data in a different way. Instead of displaying equal load lines, this
graph presents equal service request curves plotted against the number of
active users. Since the users were grouped into classes, the data points
are in the middle of the appropriate intervals. Again the service request
is measured in terms of I, the number of times the probe had to execute

its major loop.

4.3 EXPERIMENT ON EXEC-8

EXEC-8 is a general purpose time sharing operating system which runs
on the Univac 1108 computer. Many of its design goals are the same as
TSS /360. Onme major difference in philosophy is that there is mo virtual
memory. Instead of dividing programs into pages, as in TSS /360, EXEC-8
moves entire programs back and forth from core memory to external storage.
This experiment was the same as that described in Section 4.2.1. The

overall design was identical to Figure 4.1. The computer had 196K words
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of high speed core storage, and a fully balanced set of drums and disks.
The computing system was dedicated to the experiment for approximately two
hours, The test was part of an overall evaluation of EXEC-8 per formed

by the CMU University Computing Council, in the spring of 1970, and
Univac donated the time at their Chicago Information Systems Division ser-

vice bureau. Forth-three users participated in the experiment. Each

followed the same script, and each saved the terminal listings for later

analysis. Figure 4.6 is the graph of the sample averages of response
conditioned on service request. Once again the global behavior corres-

ponds to the predictions of the analytic models.

4.4  DISCUSSION

TSS/360 and EXEC-8 are large operating systems which control complex
time-sharing systems. The philosophy of memory organization is complete-
ly different in the two designs. The results presented in this chapter
should not be used as a basis for comparing the two different systems.
There was no attempt made to calculate the costs of the machines, and thus
one cannot make cost/berformance comparisons. The particular programs
used in the script and for the probe could be unintentionally biased to-
wards one machine. The goal of this chapter was not to compare two dif-
ferent systems, but to observe their macroscopic performance,

The models of Chapter 2 capture enough of the basic design philosophy
of these two systems to predict the observations that for equal values
of load, measured in terms of the number of active users, response is a
linear function of service request and that for equal service requests,
response is a non-linear function of system load. One important variable

not explicitly considered in any of the previous models is the size of
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user tasks., Figures 4.2 and 4.6 show that for equal service request,
measured in instructions from the central processor, response depends
on the size of the program. TEST] required approximately 3,000 words
for its code and data, and TEST2 needed only a few hundred words.
TEST3, however, was relatively large and required approximately 23,000
words of core storage. New models which consider the memory require-
ments of user programs should be developed to investigate this observed
rzlationship between response and size.

Analytic models, simulations, and empirical investigations should
interact. Section 1.1 outlined a number of ways these tools should aid
each other in systems analysis. The results of this chapter clearly in-
dicate that future analytic models should consider memory requirements
as an explicit parameter. The results also show that models like those
of Chapter 2 do have the ability to predict macroscopic behavior of actual
systems. The next chapter illustrates a number of ways these analytic

results may be used.
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CHAPTER 5

APPLICATION OF THE MODELS

5.1 INTRODUCTION

Chapter 2 contains a number of new results from models of time-shared
computing systems. Each model focussed upon a different feature of real
systems because the current state of queueing theory makes the simultaneous
treatment of all such features very difficult. The goal of this chapter is
to illustrate how models of this level of complexity may be used in three
areas: (1) design (2) performance improvement studies and (3) dynamic system
control., The user of such models need not have the mathematical background
to develop new solutions, but he must understand the underlying concepts and
assumptions. The developer of new models should present them in such a way
as to make these features readily understandable to the user. The presentation
of Chapter 2 was an attempt to make the assumptions and the methodology obvious,
The experiments of Chapters 3 and 4 are included to demonstrate that systems
of greater complexity than the models, including real time-shared computers,
behave in ways which the models predict. This chapter presents some realistic

examples of how these models may be used.

5.2 SOFTWARE LOCKOUT IN A MULTI-PROCESSOR

The following problem illustrates the use .' modifications of the develop-
ments of Section 2.4 and Section 2.5 in a real design problem. The Department
of Computer Science at Carnegie-Mellon University is implementing both a multi-
processor system called C.mmp (Bell et al., 1971) and an operating system for

it called HYDRA (Wulf et 41, 1971). The major goal of this project is to

T ST
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create a powerful and flexible computing system which will support parallel]
and pipeline processing and which is capable of orderly growth through the
addition of processors and memory. A major problem in the architecture of
such a system is the scheduling and coordination of the many individual pro-
cessors. The approach taken in HYDRA is to have a common shared data base
which contains all of the information necessary for a processor to make a
scheduling decision. While one processor is examining or updating this shared
information all others must be prohibited from accessing or changing it. The
act of protecting data from all but one processor is called locking and the
code accessing this data is called a critical section.

Figure 5.1 is a diagram of the model used to study the locking of critical
sections in C.mmp. Each of N homogeneous processors is a source of scheduling
requests, and each request must gain access to all of the data starting with
the first critical section and proceeding to all sections in order. If the
first critical section is free, the processor issuing the request locks the
section and uses (possibly modifying) the data. When the request is satis-
fied, the processor unlocks the first critical ection and tries to gain ac-
cess to the second. If a critical sectiou is locked, the processor must wait
for access until it has been unlocked by some other processor. Thus, a queue
of waiting processors may form in front of each critical section. A pro-
cessor will be designated as "blocked" for a scheduling operation if it is
either waiting for, or inside, one of the S critical sections.

A basic design problem is to determine how many critical sections, §,
to build into the shared data base. At one extreme S could equal the number
of logically distinct information segments in the data base, and at the other
extreme it could be equal to unity by having a single critical section include
the entire data base. There is an overhead loss of L tim: units associated

with each locking and unlocking operation which would be minimized by setting
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S equal to one, but this solution does not allow for concurrent use of the
scheduling information. Overall system efficiency may be increased signif-
icantly by allowing many processors to have simultaneous access to the
scheduling information even though the additional locking operations introduce
more overhead,

The total time, T, that a processor must have access to the shared infor-
mation in order to make a scheduling decision is a random variable due to the
dynamic nature of the data base 4nd to the many different kinds of decisions.
Let the time spent in each of the S critical sections be an exponentially
distributed random variable with mean L + T/S. This approximation includes
an assumption that the designer would try to balance the system so that pro-

cessors would spend the same mean time in each critical section.

5.2.1 A Poisson Source Tandem Queueing Model - MOD1

A simple but useful model to explore this problem is the Poisson source,
tandem queueing structure discussed in Section 2.4, Since there is no cycling
of requests within the critical sections, the appropriate modification of
this model is to set f, the probability that a request will leave the system
after passing through the S servers, to unity. All arguments presented in
Section !.4 to justify analysis based on independent M/M/1 queueing systems
apply to this model also.

Let the source of scheduling requests be Poisson with rate )°'N requests
per unit time where N is the number of processors making requests, and )\ is the
rate from an individual processor. A major assumption in this formulation
which is not realistic is that a processor will continue to issue scheduling

requests before the previous ones have been satisfied. Congestion will be
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more severe in this model than in a more realistic formulation which assumes
that a processor may not generate additiownal scheduling requests when it is
in the blocked state. The next section considers such a finite source model.
The mean number of requests, E(Mi), either waiting for, or inside of, each
of the S critical sections is simply the expected number of tasks in an MM

queueing system with input rate A-N, and service rate 1/(L+T/s).
(5.1 EM) = 2-N/{1/(L + T/5) - \.N}

The total number of requests waiting for, or inside of, all critical sections
is S-E(Mi). Little's theorem, presented in equation (2.12), relates the mean
response time through all critical sections, E(R), to the mean number of blocked

requests,
(5.2) E(R) =S.E(M) /(A\-M) = S/{1/(L + T/S) - \-N)

Figure 5.2 is a graph of mean response through all critical sections for different

values of S and N for fixed As L, and T for the Poisson source model.

5.2.2 Finite Source Models - MOD2

A more realistic approximation to actual processor behavior than the
previous model is the assumption that each of the N processors computes for
an exponentially distributed random interval and then makes a scheduling
request. The processor will be unable to proceed with normal computing until
it has gained access to all S critical sections and is no longer in the blocked
state. As in the previous model, the time spent in each critical section will
be an exponentially distributed random variable with mean L + T/S,

If the number of critical sections equals one, the model reduces to one

form of the machine repair problem discussed in Section 2.5(with the overhead
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loss fraction, f, equal to zero). Madnick (1968) used this model to calculate
the mean number of blocked procecssors, when S=1, as a function of P, the
number of processors in the system. Jackson (1963) derives results for
general networks of Poisson queues which have statr dependent inputs. This
general solution may be applied to this model in a straightforward manner to
determine the mean number of blocked processors for an arbitrary number of
critical sections, S. His method leads to the following equation for the mean
number of blocked processors in the finite source model illustrated in Figure

5.1.

i.N! . S-

1 {(N-i) ! (
N! . S-

{——m-i) o (

Where u = 1/(L + T/S)

(5.3) E(M) = L

M=z ™M=

N NI
NN
FI>ﬂF|>=
]~
N N —

i=0

The second argument used to derive (2.69) applies to this model and thus
equation (2.70) may be used to relate mean response time through the critical

sections to mean number of blocked processors.

- E(M
(2.70)  E(R) = 5o m s

Figure 5.3 illustrates the relationship between the mean response time and
the number of processors, N, and the number of critical sections S, for fixed

A, L, and T for the finite source model.

— =
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A lower bound for mean response time of scheduling requests may be
obtained using an idealized state dependent service rate model based on
the development of Section 2.5. 1In this model, the system is capable
of dynamically reconfiguring the structure of the shared data base in the
following way. Let m be the number of processors requiring access to the
scheduling information at time t. The ideal system would provide m critical
sections at time t. Whenever a processor completes its scheduling activity,
or whenever a processor arrives with a new request, the accessing program
will instantaneously change the structure of the data base to provide
exactly the same number of critical sections as processors which need ac-
cess to this data, In addition, all m processors will always have access
to some data so that they will never be idle while attempting to use the
shared scheduling information. Although this scheme is obviously imprac-
tical, it does lead to a lower bound for response time, and one may see
how close to this bound a practi. I implementation may get.

Since every processor may use scheduling information at once, the
exponential service rate for each processor is 1/(T4m-L), where m is the
constantly changing number of processors demanding access to the common
data. A processor will not have to wait for any other processor, but it
will pay a dynamic overhead penalty with rate m-L time units where m changes
with the system state. Let Pm(t) be the probability that there are m pro-
cessors in critical sections at time t. As in Section 2.5 one may write

the following system of state equations.

(5.4)  Bo(t48) = (L-N-X+8) = By() + (1-(N-1)+}8) - §:B (£)/(T4L) + o(5%)

B e s T e
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B (t) = (N-(m-1))-\-8 {1-(m-1)-8/(T+(m-1)-L)} - P__,(E)

+ (1-(N-m)+r+8) » {l-m-§/(T4m-L)} « B (t)

+

{(m+1)-5/(T+(m+1)-L)} « {1-(N-(m+1l)-n-56} - Pm+1(t) + 0(62),

w=1,2,...,N-1

P (t) Aege {1-(N-1) -8/ (T+(N-1)-L) }* B, ()

+ {1-N+&/(T+N-L)} P () + 0(52)

Following exactly the same procedure as in Section 2.5, one first collects
terms and then takes the limit as § = 0 to get P&(t). In statistical
equilibrium lim P'(t) = 0, and lim gn(t) = Pm' The result of this manipula-

t—=x t—x®

tion is the following set of steady state equacions.

m
(5.5) B = gy 0 A (N-(i-1)) - (T+isL)/i, m=1,2,...,N
i=1
N
P.=1- % P
0 i=1 m

One may calculate the mean number of processors in the blocked state by
solving the above set of equations and then using equation (2.63). Equa-
tion (2.70) relates the mean response time for a scheduling request to the
mean number cof blocked processors. On Figure 5.3, the line labeled

ng = ideal" is the plot of mean response time for this jdealized version

of the critical section scheduling problem.

5.2.3 Discussion of Results

Both Figure 5.2 and Figure 5.3 illustrate the sawc types of performance
changes with respect to changes in the number of processors and the number
of critical sections. Mean response time increases with the number of

processors. For a constant number of critical sections, S, the increase

T AP TR 1 AT N
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in mean resprnse Lime is approximately linear, with respect to N, until
the system becomes congested, As N increases beyond this point, the slope
of mean response time as a function of N grows larger with increasing N.
This non-linear response time degradation as a function of the number of
Processors is more severe in the first model (because processors continue
to submit requests while blocked) than in the second, but it is evident in
both.

The addition of one more critical section significantly improves mean
response, for higher values of N, in both models. The additional locking
overhead, L, associated with each critical section degrades performance
slightly for small values of N. At these low values of N, the arrival rate
of requests is so low that the extra locking overhead is not compensated
for by the potential parallel utilization of the S critical sections.

An interesting characteristic of these models is the large performance
improvement achieved by the creation of one or two additional critical
sections. Figure 5,3 demonstrates that when S=2, the response time im-
provement is about one half of what the idealized system could provide.

The improvement is greater for higher arrival rates of scheduling requests,
The slight response time degradation for low arrival rates indicates that
an efficient design would be the implementation of a few (8=2, or 3)
critical sections. This choice would create an effective safety valve,
Whenever the load would increase, parallel access to the data would occur
and the shared scheduling information would not become a bottleneck. The
overhead penalty at low arrival rates is in the neighborhood of only five
percent and the improvement at higher request rates is approximately fifty

percent.
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All conclusions drawn from a model like this depend on the values

of the input parameters. The variables isolated for this model are:

A, the mean arrival rate of scheduling requests from each processor; N,

the number of processors; S, the number of critical sections; T, the mean
time required to perform a scheduling operation; and L, the mean time
needed to lock and unlock a critical section. The system designers can
determine the values of T and L from code requirements and the speed of

the processors, and they know the range over which N may vary. However,
one needs an estimate of A to determine the best value of S. Unfortunately,
this parameter is very hard to estimate before the system has been built.

This basic dilemma is at the heart of many crucial design decisions,
One needs the value of an important parameter to make a good implementation
decision, but that value can only be estimated with a reasonable degree
of confidence after the system has been in operation for some time. A
good analytic model can be an important tool in such decisions. The nature
of system response over a wide range of possible values may be easily
studied. These sensitivity studies may lead directly to a solution, or
they may help to plan a strategy for future experimentation and performance
evaluations,

For example, the model of scheduling activity in C.mmp indicates that
when the number of processors is less than four or five, and scheduling
requests arrive with a mean interarrival time of five milliseconds (k=]/5000)
from each processor, a single critical section is all that is needed. As
one adds more processors, or alternatively, if the rate of scheduling re-
quests is much greater than this estimate, then one or two additional

critical sections will improve performance significantly, Since both the
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overhead penalties at low request rates, and the implementation costs, are
small for these additional critical sections, the designers at Carnegie-

Mellon chose a multiple locking strategy for C.mmp.
5.3 PERFORMANCE IMPROVEMENT ANALYSIS

Consider a time sharing system similar to the IBM 360/67. This sys-
tem, using the operating system TSS/360, was the basis for the simulation
presented in Section 3.5 and it was used for the empirical investigations
reported in Section 4,2, Many of the powerful features of this system
lead to high overhead costs. The virtual memory design gives every user
a working space for programs and data that is much larger than the amount
of high speed core memory in the <ystaowm. The operating system manages
this virtual memory so that users do not have to worry about storage al-
location problems. When a user wants some information that is not cur-
rently stored in the high speed memory the system will automatically
retrieve it from secondary storage. All information in the system is
divided into blocks called pages. A page fault occurs when a program
needs access to a page that is not currently in high speed memory.

Each page fault causes both an overhead operation,due to the many
bookeeping functions that must be performed, and a request to the input/
output (I/O) subsystem to retrieve the new page. Quite often a page
already in memory must be placed in external storage to make room for
the new page. The page fault rate is related to the amount of high speed
core allocated to each active user. As each user's core allocation be-
comes smaller he will generate more page faults. Computers with a virtual

memory often have been observed to enter a mode of operation, commonly




-121-

called thrashing,in which each user is allocated so little core memory
that he generates a page fault very soon after gaining control of the
central processor. Then the combined page request rate from all users
may exceed the capacity of the I/O subsystem, When thrashing begins
efficiency drops very quickly due to the cumbined effects of page fault
overhead and the I/O system bottleneck.1 A common cause of thrashing is
‘allowing too many active programs to be squeezed into core memory with
the result that none has enough of this resource.

A manager of this type of time-shared system can improve system
performance in a number of ways. This section will illustrate how
the models of Chapter 2 may aid in a study of alternative performance
improvement plans, For example, changes in technology, or in operating
budgets, may make it feasible either to increase the processing capacity
of the central processor (C,measured in instructions executed per unit
time) or to increase the total amount of core memory available. One may
want to combine both methods. The performance measure used here will be
the mean response time experienced by the users. The hypothetical system
will have characteristics that are useful for illustrative purposes, and
will not be representative of any particular implementation,

Increasing C, the instruction rate of the computer, will benefit
users because their tasks will take less Processing time. A common way
of increasing C is to improve the performance of the memory in the system,
For example, the 360/67 at Carnegie-Mellon was configured with a large
amount of core memory, called LCS (Large Capacity Store), having a relatively

slow cycle time. Improvements in memory technology made it possible to

1See Denning (1968) or (1970) for good discussion of thrashing.
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increase the speed of similar memories by a factor of approximately
three. 1If the number of active users is kept below the number that causcs
thrashing, what improvement may be expected in mean response time if (
is increased by a factor of two or three and all other parameters remain
constant? An increase in C would be of little help if the system were
operating under conditions where thrashing could occur frequently.
Increasing the amount of core memory available will help users be-
cause they will be able to compute for longer intervals, when they have
control of the central processor, before causing a page fault, Overhead
will decrease because there will be fewer page faults to process, and the
paging demand placed on the I/0 system will also decrease. How much will
a two or three fold decrease in the number of page faults experienced by
a task benefit mean response time if all other parameters remain the same?
What effect would one observe from a combination of these two possible
performance improvements?
The hypothetical system which will form the basis for the analysis

will be a computer with the following basic characteristics:

(a) the original speed of ihe ceniral processor will Le

250,000 instructions per second;
(b) tasks arrive at the system with a mean rate of 2 per necond ;

(¢) each task oviginally will issue an average of 40 page

faults per request;

(d) each request will be for an exponentially distributed

number of instructions having a mean value of vl = 50,000;

These operating characteristics are illustrative representations of some
current time-shared computers which make use of extended core storage
devices and a virtual memory design,

e ow el i L Rl
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the overhead time to process a page fault will be a
random variable with a mean of 5 milliseconds; (Since
a page fault will occur with a mean rate of once every
50,000/40 = 1,250 instructions, or about once every 5
milliseconds, the system is spending approximately 50

percent of its time in paging overhead operations.)

the time required to locate and transfer a page of in-
formation from external storage will be approximately

10 milliseconds.

In the following analysis three different types of possible per-

formance improvements will be considered:

Case (a)

Case (b)

Case (c)

B . i

Mean overhead time required to process a page fault will
remain constant at dl = ,005 seconds per page fault re-
gardless of the value of C, the effective speed of the
central processor. C will increase from 250,000 to

550,000 instructions per second.

The mean number of instructions required to process a page
fault will remain constant at dl.I = 1250 instructions.

Thus the mean time needed to process each page fault will
be (dl1-1/C). C will increase from 250,000 to 550,000 in-

structions per second.

C will remain constant at 250,000 instructions per second,

but the mean number of page faults generated by each task

. will decrease from 40 per interaction to 18.2 per interaction

(4 increases from .025 to .055).
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The distribution of the number of instructions a task
requests will remain the same, but tasks will compute for

longer periods of time before generating a page fault.

Increasing the effective speed of the central processor may, or may not,
have an effect on time required to perform overhead operations associated
with a page fault. Case (a) represents system designs in which an in-
crease in the instruction rate of core memory dedicated to users does not
affect the speed of overhead activities associated with the resour: : al-
location functions of the operating system. For example, the system could
have a memory hierarchy in which the operating system used the fastest,
and most expensive, memory in the system and user programs ran in slower
core memory (LCS). Performance improvements in LCS would not affect the
speed of overhead functions which make use of the high speed memory.

Case (b) represents the situation in which the performance of all memory
in the system is improved. Case (c) illustrates the effects of an addigion

of m' re memory to the system with a resulting decrease in paging activity.

5.3.1 TSMOD1 Analysis

Figure 2.1 illustrates the structure of TSMODl. Paging overhead is
treated explicitly in this model. Overhead will be a random variable
having a mean of dl and standard deviation of d1/5. Equation 2.24 pre-
sents the functional relationship between mean response time and the other
system parameters, Let the expected value of V (the number of instruc-
tions required to complete a task's request) be vl, and the expected value
of W (the number of instructions executed betwecn page faults) be wl, If

V has an exponential distribution, W will also have an exponential distribution
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with mean £:vl and second moment w2 = 2-(w1)2. The values of all para-

meters needed for the initial configuration of the model are:

o
(]

250,000 instructions/second

2 tasks/second

= 1/40
vl = 50,000
wl = g.vl
w2 = 2.(4v1)?

dl = .005, case (a)
1250/c, case (b)

d2 (d1/5)2 + (d1)2

Note that the I/O system does not appear in this model. An implicit
assumption associated with this structure is that the I/O system is not a
bottleneck and will not significantly affect performance. Any delays
associated with page transfers will degrade performance from that predicted
by TSMODL.

Figure 5.4 presents graphs of the performance increases which result
from the three different strategies (a), (b), and (c). ihe first example
of Section 2.3.3 indicated that when overhead is not present and when all
other parameters were held constant, changes in £ did not cause changes
in the mean response time. As more quantizing took place (/£ decreased)
the standard deviation of response increased, but the mean remained the
same, Figure 2.2 illustrated the effects of a type (c) improvement in
an overhead free enviromment. However, the overhead included in the model
of this section has a large effect upon mean response as £ changes,

Cutting the paging rate in half is equivalent to doubling the speed of
core dedicated to users. A careful examination of equation (2,34) indicates

that an increase in C produces a response time improvement similar to a
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decrease in the number of instructions required to satisfy a task's
request. A decrease in the paging rate (an increase in £) produces an
improvement similar to a re&uction in overhead delay associated with the
processing of page faults. Cases (a) and (c) produce almost exactly the
same improvements. Case (b) reduces the load on the central processor
by decreasing the times required to process both a task's request and

the overhead associated with each page fault.

5.3.2 TSMOD2 Analysis

Figure 2.6 illustrates the structure of TSMOD2. An 1/0 subsystem
in tandem with the central processor allows one to consider the effects
of page transmissiuvn delays on mean response time. To keep the analytic
formulation tractable, one must assume that the service times spent in
both the central processor and the 1/0 system are exponentially distributed.
The analysis of Section 2.4 did not include any provision for overhead
degradation due to the processing of page faults.
One may introduce overhead into TSMOD2 in the following way. Let
the service time spent in the central processor be an exponentially dis-
tributed random variable having a mean of (vl/c + .005/4) seconds for
case (a) and a mean of (V1/C + 1250/(C-L)) seconds for case (b). As in
the previous section the total number of instructions required to satisfy
a task's request will have a mean value of vl. The mean time spent in
the central processor during each quantum interval will be an exponentially
distributed random variable with mean ((vl-L)/C + .005) seconds for case
(a) and mean ((vl- g + 1250)/C) seconds for case (b). This formulation
retains the essential features of a random quantum interval which is

divided into an overhead segment and a processing segment.

P T
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Equation (2.55) presents the mean response time in TSMOD2 conditioned
on the fact that a job requires v instructions. Since this is a linear
function of v,one may remove the condition by replacing v with its ex-
pected value presented in the preceding paragraph. Let the time re-
quired to find, and then transfer, a page from externmal storage be an
exponentially distributed random variable with mean wl2 = .0l seconds.
All parameters required for this model have now been specified.

Figure 5.5 is a graph of the performance increases achieved by using
the three improvement plans. In this model an increase in C, the pro-
cessing rate of the central computer, has no effect on the I/O subsystem,
Case (b) is again better than case (a) because an increase in C reduces
the overhead delay. But the best of the threce strategies is case (c).

A reduction in the paging rate achieved by the addition of more core
reduces both overhead and the demand on the I/O system, For case (c)
the system maintains a better overall balance, and neither subsystem be-

comes overly congested.

5.3.3 TSMOD3 Analysis

TSMOD3 is a finite source, processor-shared, model with an overhead
loss which is a function of the state of the system, Figure 2.8 illustrates
the structure of this configuration. Like TSMODl, this model does not
have an I/O subsystem and thus an implicit assumption in its use is that
the I/O delay is not significant. Any delay in the I/O system will add
to response times cumputed by this formulation.

The model does not explicitly consider any overhead associated with

the processing of page faults. The state dependent overhead loss represents
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general overhead degradation, but it is not a function of the paging rate.
To apply the model to the situation of interest in this section one may
take the same approach as in Section 5.3.2. The instantaneous exponential
rate for each job in the processor-shared system was called veCe(l-f-m)
in Section 2.5. The number of tasks in the processor at each instant of
time is m. Let v-C be equal to L-C/(vloz + .005.C¢) for case (a) and
2°C/(v1-2 + 1250) for case (b)., Since the mean of an expenential process
with rate v+C is 1/(v-C) this formulation leads to the same expected pro-
cessing times as the previous derivation. This model also retains the
essential characteristic of a random quantum interval which is divided into
an overhead and a processing segment. The state dependent loss factor
(1-f.m) will be applied as it was in Section 2.5.

Let N, the number of terminals making requests upon the system, be
40 and let the time between the completion of one request and the sub-
mission of the next be an exponentially distributed random variable with
a mean of 20 seconds (A = 1/20). Let the overhead loss fraction, f, be
.02, All parameters required for TSMOD3 have now been specified and one
may examine cases (a), (b), and (c). Figure 5.6 is a graph of the per-
formance increases achieved by using these three plans. An examination
of the equations of Section 2.5 indicates that for cases (a) and (c¢) an
increase in the processing rate, C, is equivalent to & reduction in the
paging rate. Thus the curves for cases (a) and (c) coincide. Case (b)
achieves a better level of performance because an increase in C has a

direct effect on the overhead delay associated with each page fault.
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5.3.4 Discussion of Results

Each of the three models used to study the hypothetical performance
improvement problem concentrates on a few important features of time-
shared computing systems. In the previous sections each model was modified
so that it could be applied to a problem for which it was not specifically
designed. For example, TSMOD1l and TSMOD3 do not include subsystems
which can represent input/output activities. TSMOD3 is the only formula-
tion which considers the effects of both a finite user population and an
overhead degradation which is a function of system state. TSMOD2 and TSMOD3
both require that service requests be exponentially distributed random
variables, and neither of these two models includes an explicit mechanism
for studying the effects of paging overhead.

By carefully redefining some important parameters one may apply all
of these models to the periormance improvement problem. FEach model allows
the analyst to focus on a different aspect of systea design. The results
clearly show that performance may be significantly improved by either in-
creasing the processing rate or decreasing the paging rate. All three
graphs also indicate that the performance improvement curves lev:.l out
after an initial interval of a higher rate of change.

All of the models point to additional studies which should be made.
For example, none includes a functional relationship between the size of
core and the paging rate. All of the models predict significant performance
improvements if one can lower the paging rate, but the amount of additional
core which woulG be required o cut the paging rate in half {by doubling
£) is beyond the scope of these analytic models. A simulation such as

the one presented in Section 3.5 can help with this problem. In addition,
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a carefully designed experiment on the current configuration could help
quantify this relationship.

The following list illustrates some (of the many) additional consider-
ations which would be required prior to an actual performance improvement
decision: the relative costs of more versus faster memory; comparative
reliabilitites of different memories; maintenance problems; vendor

' compatability; purchasing and leasing agreements; interface problems with
other system components; predictions of future usage patterns and tech-
nological improvements; changeover costs; other subsystem improvements,
The use of analytic models as a performance analysis tool can help reduce
uncertainty in some of these dimensions and thereby improve the decision

making process.
5.4 DYNAMIC SYSTEM CONTROL

All of the models applied to the performance improvement problem of
the previous section show that response time will increase with the paging
rate. As the number of users competing for core in a virtual memory sys-
tem grows the paging rate increases. At the end of a quantum interval,
systems which do not have a virtual memory structure must often save, in
external storage, that portion of a user's program and data which is cur-
rently in core memory. The saving of one core image in external storage
and the retrieval of a different one is usually called swapping. Swapping
need not occur at the end of every quantum because core may be large enough
to hold several tasks at one time. As the load increases, and more users
demand service, the swapping rate, like the paging rate in a virtual
memory design, will increase, The overhead associated with paging and

swapping will cause response time degradation,

e e S i




-134-

Figures 2.3, 2.6, 2.7, and 2.9 show that as the arrival rate of
requests grows, expected respouse time increases in a nonlinear manner.
This degradation, as a function of the arrival rate, occurs even when
there is no overhead associated with swapping or the processing of page
faults. With overhead present the effects are magnified. The phenomenon
of thrashing, which was described in the previous section, is an extreme
example of what can happen when cverloadity occurs.

Quick response to short requests is a major goal of time-shared
computing systems. To maintain a reasonable level of response all such
systems must limit the input rate of requests., For example, at Carnegie-
Mellon a logon Priority system limits the number of interactive terminal
users to 2 pre-set limit. If someone tries to join the system and the
number of people currently logged on is equal to the limit, the new user
is denied access until the system can folrce one of the active users to
leave. The algorithm which makes the decision,about which job should be
forced, considers factors such as pre-assigned priorities and the length
of time each of the current users has been connected to the system. The
algorithm chooses a user to be forced from the system and then notifies
him that he must leave within the next t'5 minutes or be automatically
terminated. If the algorithm is unable to find a user who meets all
criteria for automatic termination, the new user is denied access. Once
a user has been allowed to logon to the system he is guaranteed a minimum
length of time during which he may use the computer.

McCredie (1967), Wulf (1969), Wilkes (1971), Mills (1971), and others
have suggested that dynamic load adjustment procedures be used to control

the performance of computing systems. CTSS, a time-shared system developed
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at MIT, has such an automatic load leveling capability built into the
operating system. Wilkes (1971) presents an analysis of the stability
of such a system and Mills (1971) describes the algorithm in use at MIT.
The objective of this section is to illustrate how analytic models such
as those developed in Chapter 2 may be used as an integral part of such
a control system. Clearly a model for this purpose should not require

a great deal of computer time to solve, or any gains resulting from the
use of the model could be lost in the extra overhead required to support

the control algorithm,

5.4.1 The System

Figure 5.7 illustrates the structure of the combined computer and
user subsystems. Of all potential users, only a fraction will want to
interact with the computer at any particular time., The system will deter-
mine how many active users, N, will be able to establish a connection
(logon) and then use the computer. The procedure which performs this
control function will be called the Terminal Allocation Algorithm (TAA).
Appendix E contains a listing of the SIMULA program used to investigate
a few (of the many possible) different versions of a Terminal Allocation
Algorithm,

The global structure of the program is illustrated in Figure 5.7,
The data gathering facilities and the central processor and input/output
subsystems are slightly modified versions of the simulation used to study
TSMOD2 in Section 3.4, The changes from the previous model are the addi-
tions of multiple input queues (based on the priority of a job) for each

subsystem, and the modification of the overhead portion of each quantum
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to include a constant part and a portion which is proportional to the
number of tasks waiting for service. Users at temminals are represented
by a SIMULA activity, called USER, which creates requests and inputs them
to the computing subsystem. After each request has been completed the
user gathers statistics about his response time and then either creates

a4 new request or leaves the system when all requests have been satisfied,
Each user is inactive while waiting for the computer to finish a request.
Another SIMULA activity, called the GENERATOR, creates users who try to
gain access to the system. The Terminal Allocation Algorithm decides

whether or not a new user may logon to the system,

5.4.2 TAAL
The first Terminal Allocation Algorithm evaluated is the default,
or null, aigorithm. Every job requesting service is admitted to the
system regardless of the current load. After an intitialization period
during which 20 users submit a total of 100 requests, new users logon
to the system at a rate slightly greater than users leave the system.
All users have the same statistical properties and the same priority.
The line labeled TAAl on Figure 5.8 shows an increase in average
response times as a function of time. As the number of users in the system

increases, average response time increases in a nonlinear fashion.

5.4.3 TAA2

Using knowledge gained from the behavior of models like those of
Chapters 2 and 3, one may formulate a simple but effective Terminal Al-
location Algorithm based upon a limit to the number of people using the

system., The only value needed by the algorithm is the number of users
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current ly logged onto the system. If the number is greater than the
control limit any new user is denied access to the system, Whenever a
current user finishes work and leaves the system a new user is allowed
to logon if one is still waiting,

The line labeled TAA2 on Figure 5.8 shows that the simple strategy
of controlling the input rate to the system will keep response times
within design limits. Any idle time generated by limiting the maximum
number of users may be allocated to lower priority tasks which may be

interrupted with the arrival of more higher priority work.

5.4.4 TAA3

The third Terminal Allocation Algorithm is based upon the type of
load balancing mechanism in use on the CTSS system at MIT. The control
algorithm of TAA3 samples the state of the system periodically, and
dynamically adjusts the maximum number of users who are allowed to logon
to the system, Between sampling intervals the algorithm acts exactly like
TAA2. If a user tries to logon, and the number of users already active is
greater than or equal to the control limit, the new user is denied access
to the system.

The philosophy underlying dynamic adjustment of the maximum number
of users is based upon the observation that users have widely varying modes
of interactive computer usage patterns. The parameters describing usage
and input rates vary with time. If these parameters were stationary with
respect to time one could choose a value for the maximum number of active
users, Nmax, and never change it. If all Mmax users are performing editing

types of functions the central processor may be underloaded, and the system
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could support more users. Alternatively, if all Nmax users are compiling
and running large programs the system could become overloaded. A control
system that monitors the actual state of the system and balances the load
accordingly can increase the number of users when there is excess capacity,
and can reduce the input rate of requests when overloading occurs.

At each sampling instant TAA3 estimates values of the input rate of
requests from the active users, the sizes of the queues in frout of the
central processor and the I/O system, and the rate at which tasks request
service from the I/O subsystem. Using these values, TAA2 estimates both
the number of tasks currently being processed by the computer and their
characteristics. Using TSMOD2, the tandem queueing model developed in
Section 2.4, the control algorithm then computes what effects the addition
of another active user would have on the state of the system. If the pre-
dicted value of the system state is within the control range, the maximum
number of users allowed to logon is increased by unity. If the addition
of one more active terminal causes the predicted system state to exceed
the control limit, the maximum number of active users is not changed. If
the measurements indicate that system state has already exceeded the con-
trol values, the maximum number of active users is decreased by unity.
However, in this implementation, no users are forced to leave the system
before their session is complete.

It is a well known fact from the field of control theory that control
algorithms, such as the one outlined above, are subject to severe instabili-
ties. Since both the input and service functions are stochastic processes
all of the parameter estimates are random variables subject to statistical

fluctuations. Wilkes (1971) examines the stability of a simplified version
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of the previously described dynamic control algorithm and demonstrates
that instabilities are possible in practical situations. In addition

to the variance of the parameter estimates, :fe time delays between
changes in the control variables and their resulting effacts make the
proper choice of a control strategy a difficult problem. The theoretical
treatment of this control problem, as applied to computer systems, is an
area of future work which is not treated in the present development.

The particular version of TAA3 used in the following simulation is
listed in Appendix E as activity ESTIMATOR. A common method of estimating
non-stationary random variables is to form an estimate at each review
period which is based on a combination of the past information and the
current observations. TAA3 uses the following exponentially smoothed

estimator for all state variables:

(3.6) X4 = U-o) - )-(k to- Sk,k+1

ik is the value of the estimator at the end of the kth period, and Sk,k+1
is the sample observations which occur during period k+l., In the simula-
tion, = 1/3 and the time period between each sample was 25 seconds.
These values were found by trial and error to smooth the statistical fluc-
tuations of the process, and to track changes in the parameters of the users.
For this simulation each new user draws the parameters, which describe
his usage mode, from probability distribution functions. Two parameters
characterize user behavior:
(1) the mean value of the service request

(2) the mean time a user spends in the "think" state between

the completion of one¢ task and the submittal of the next.

g
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Each user's parameters remain constant over the duration of his
terminal session, but each request and each thinking interval are random
variables drawn from a distribution characterized by the constant parameters,

Thus the total user load will change as the parameters change.

5.4.5 Discussion of Results

Table 5.1 presents the results of a simulation of this enviromment
using TAA2 with the maximum number of users set at 30, Table 5.2 presents
the results of a simulation of the same environment using TAA3, the dynamic
control algorithm. S is the estimated average number of tasks being pro-
cessed by both the centra’ processor and the I/0 system. TAA3 tried to con-
trol this value at 3.5. The average number of interactions processed during
each reporting period of 400 simulated seconds is approximately the same al-
though TAA3 is slightly higher (381 versus 392). The average number of
tasks in the system and their average response times are significantly larger
for TAA2 than for TAA3 (4.56 versus 3.54 and 4.83 versus 3.84). P is the
average percentage of idle time spent by the central processor. TAA2 had
significantly less idle time (.12 versus .19) than TAA3. This time is not
wasted since it can be used for background tasks of lower priority.

By controlling the average number of tasks demanding service, TAA3 is
able to significantly improve system performance. TAA3 uses TSMOD2, the
tandem queueing model, to evaluate the effects of proposed changes in the
control variables. The magnitude of the potential performance improvements
indicate that future investigations should examine the problem of designing
an allocation algorithm which is optimal with respect to stability and per-
formance objectives, The goals of this section were to illustrate how such
an algorithm can use analytic models, such as those developed in Chapter 2,
and to investigate what orders of magnitude of performance improvement one

may expect from the implementation of static and dynamic control policies.
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5.5 CONCLUSIONS AND FUTURE WORK

Chapter 1 contained a discussion of the role of analytic models as
one of the techniques useful in the analysis of computing systems. The
interactions of the analytic approach with simulations and empirical
studies were explored, and the work of the following chapters was placed
in context with other studies.

Chapter 2 presented the derivation of a number of performance mea-
sures of models of time-shared computer systems., Simplifying approxi-
mations, developed for some of these results, were compared to the exact
expressions. Each model focussed upon a different feature of current
time-shared implementations. Each of the models is easy to understand
and use because the results are not complicated to compute, and because
the structure of the model is obvious to the user. Since relatively few
(five to nine) variables specify each system, the models are easy to
control in sensitivity studies.

Chapters 3 and 4 presented evidence that the models are robust in
the sense that the behavior they predict is observed in a wide range of
related systems (both simulated and actual). The previous sections of
Chapter 5 illustrated how such models may be used by designers and managers
of computer systems. The example of Section 5.2 is a case study of how
system implementors were guided in an important decision concerning the
design of part of the operating system of C.mmp, the Carnegie-Mellon multi-
mini-processor. Thus the models meet a number of the criteria, stated by

John Little in Chapter 1, required of models which are to be used by de-

signers and managers,
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One of the characteristics of much of the current literature dealing

with analytic models of cowputer sys

actual systems. Increased communica

tems is that it lags developments of

tion among those who design systems

and operations research specialists who create new models would help to

reduce this time delay. Many currently available models are directly

applicable to present design problem
location and scheduling of resources

one in which models, such as those o

s. For example, the area of the al-
in networks of computer systems is

£ Chapter 2, could be helpful.

Analytic models are greatly simplified abstractions of real computing

systems, Therefore it seems appropriate for future model builders to

concentrate more on simplifications which lead to useful approximations

of important system problems, then o
tions to minor modifications of exis
proximations must be carefully studi
plicability.

Analytic modelling is only one

want to analyze, measure, improve, a

n exact, but very complicated, solu-
ting structures. Naturally such ap-

ed to determine their domain of ap-

of many techniques available to tiose who

nd create better computing systems.

One of the goals of this report is to help place this approach to system

modelling into perspective as an important tool, not a panacea, for com-

puter scientists.
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APPENDIX A

DERIVATIONS

This appendix contains a number of derivations which were referred
to in the body of the report, but did not fit in any previous major line
of development. The first section presents helpful, but non-standard,
methods of calculating the first and second moments of non-negative ran-
dom variables. These results are used in Section A2 which contains the
correct expression for the second moment of the truncated exponential
quantum interval of the Coffwan and Kleinrock (1968) model, and in A3
which contains a derivation of the distribution and moments of Qr’ the
remaining service time distribution of & quantum in progress when a new
job arrives. Section A4 presents a solution te the Poisson source, ex-
ponential service with constant overhead associated with each quantum, mod-
el analyzed by Adiri and Avi-Itzhak (1969) and Rasch (1970). The
solution method is the one used in Chapter 2, and the results are identical
to those obtained by Adiri and Avi-Itzhak who used more complicated trans-

form methods,
Al., THE FIRST TWO MOMENTS OF A NON-NEGATIVE RANDOM VARIABLE

The well known technique of integration by parts forms the basis for
the following analysis. Integrals may often be simplified by application

of equation (A.1l).
A.1) [Pudv = wv|® - Pvay
"a g1

If X is a non-negative random variable having finite first and second

moments, E(X) and E(Xz), and a distribution function Fx(t), then:

R a—
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A.2) E®) = [T(L-F (£)de
0
A.3) E&) = 2f°t(1-px(c))dt
0

Proof

Apply (A.1) to (A.2) with the following substitutions:

u= 1-Fx(t) du -de(t)

(A.4) j:(l-px(c))dt - t-(l-Fx(t))IZ - j:l(-dpx(c)) - j:Ede(t)) = E(X)

Apply (A.1) to (A.3) with the following substitutions:

u= 1-Fx(t) du -de(t)

dv = 1t dt V=t2

(A.5) 2+[ 7t (1-F, (£))dt = tz-(l-Fx(w)“” - [T (ar () =BG
0 0 0

The term t'(l-Fx(t)) 3 is zero because t'(l-Fx(t)) < ya§°de(y)
' t

0

o 2 o©
and lim [u§de(y) = 0 since E(X) exists. Similarly t -(l-FX(t))|
t-o>® t 0

@ 2 - 2 s
is zero because tz-(l-Fx(t)) < }“& de(y) and lim J y de(y) = 0 since
‘ t

t -

2
E(X ) exists,

TR Y T R T
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A2, THE SECOND MOMENT OF A TRUNCATED EXPONENTIAL QUANTUM INTERVAL

The second moment of a quantum interval is an important quantity in
the Coffman and Kleinrock (1968) article. They assume that service quanta

have the following distribution function:

0_ut t<o0
(A.6) F (t) =/(/1-e 0 <t<gq
Q 1 t 2q
L -
q }
1
I
|
T v

The second moment of Q may be easily calculated using equation (A.3).

(A.7) EQ%) =2 j“}(l-F (t))dt
0 Q

=2 [lee™ e + 2 [ t.0de = 2 [Tee g,
0 q 0

Apply (A.1) to (A.7) with the following substitutions:

u=t du = dt
=ut
av = 2e™%f4¢ v = 22e
u
~ut
2 -2te™ 2 -ut
EQ) = ==— [+ ;'|q e e
0

al 2 e ud
5 + (l-e )
-uq
= -—2 = 2 (2uq+2)
u u
e e o e R
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The final form of equation (A.7) corrects equation (16) of Coffman

and Kleinrock in which they assert the following incorrect resuit:

2

e _(u2q® + 2uqt2) INCORRECT

.8 EQ) =2 -
u u

A3. REMAINING SERVICE TIME - Qr

Given that a job from a Poisson source enters a system and finds a
job being served, what is the distribution of Qr’ the time from the arrival
of the new job until the one being served finishes? Section 2.2.4 contains
a discussion of this quantity. Conway, Maxwell and Miller (1967), Chapter 8,
pages 146-147, present a derivation of the properties of Qr' Since this
quantity is very important to the results of Chapter 2, and since Shemer
(1967) did not realize that Qr had a distribution different from other
quanta, this section will present a derivation of the distribution of Qr’
its Laplace transform, and its moments. The following derivation differs
substantially from Conway, Maxwell and Miller, but the results are the same.

Let Y be the elapsed time from the beginning of a service interval
until a new task arrives. A well known result of renewal theory is that

if a job finds another being served when it arrives, then:

(A.9) P(y SY S yHy) = {(1-F(3)/EC) Wy, y =0

where Fx(y) is the distribution function of a service interval.

1Coffman, E., and Kleinrock, L., "Feedback Queueing Models for Time-Shared
Systems," Journal of the Association for Computing Machinery, Vol. 15,
No. 4, Oct. 1968, p. 557, equation (16).

2See Morse (1958), p. 10, or Avi Itzhak and Naor (1963) for discussions
of equation (A.9).

9 . 4
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service interval of length X

/
X Ae

time

new job
arrives in system
The probability that Qr will be greater than some value t, given that
Y=y, is just the probability that X will be greater than y+t, given that

it is already equal to y.

(A.10) P(Q_ > t[Y=y) = P(X > t+y|x > y)

1 - F, (tty)

= __T_:_F;?;T 7y tyy 20

By subtracting this result from unity one gets the conditional distribution

function for Qr given Y,

Py (849) - Fy(y)
I-FG

(A.11) Fy 4(t) = PQ_ = t|y=y) = E,y 20

Q¥

FtHdtty) - Fy (tty) .
1 - Fo () d

(A.12) P(t <Q_ s t+de|v=y) = t,y 2 0

Multiplying equation (A.12) by (A.9) leads to the following joint probability:

(A.13) P(t < Qr S tHdt and y £ Y < yHdy) =

(Fy(tHdety) - Fy(tty)) dy
E(X) )

t,y 20
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By integrating equation (A.13) over all values of Y, one gets the
probability of the single event, (t = Qr < t#dt). Using the definition
of Fx('), one sees that the numerator of (A.13), integrated over all values

of Y is just dt multiplied by the probability that X will be greater than t

(PEX>t)=1 - Fx(t)).

(A.14) P(t <Q_ S t+dt) = [* p(e = Q_ < tHt and y < Y < yiy)-dy
y=0
_ (1 - Fx(t))odt

EX) , t 20

Equation (A.14) is the result presented earlier as equation (2.8).
The first moment of Qr was called qlr in Chapter 2. The value of qlr is

easily obtained from (A.14) by using equation (A.3).

rm t.(1l - Fx(t))-dt

(A.15) E@Q)) =ql_=
r o E(X)

2
= EX")/(2°E(X))
The laplace transform of Qr is:

-st
(A.16) LQ (S) = E(e-sQr) = l'm e .(1 = Fx(t))'dt
r t=0 E(X)

1 - LX(S)
s E(X)

Moments may be obtained from Laplace transforms of random variables by

differentiation.

k
d L_ (s)
@17 EQ) = (-D5__ %

ds s =0

. oo - - = " -
e o S e el e B R B e e D DU o L e o P B I o B B
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Using equation (A.17) one may show that the following result is valid for

the kth moment of Qr'

B xk+i

ky _
(A.18) E(Qr) = (D) -E(X) k=1,2,.,.

Equation (A.18) was presented Previously as equation (2.9),

A4, DERIVATION OF POISSON SOURCE, EXPONENTIAL SERVICE, AND CONSTANT

OVERHEAD, MODEL

An assertion of Chapter 2 is that the methodology based on simple
expected value arguments will handle more complex models than those
previously published. The attempt by Rasch (1970) to use this technique
in an exponential model with constant overhead was unsuccessful not
decause the method lacked power, but because Rasch failed to recognize
important state dependent relationships. He neglected the fact that Ti’
tne wait in queue preceding service quantum i, is dependent on Ti-l'

Adiri and Avi-Itzhak (1969) solve the Poisson source, exponential
service model with a constant overhead delay associated with every quantum,
Figure Al illustrates the structure of this model. The distribution func-

tion of the length of a quantum, Q, follows,

t<d
(A.19) £y (c) = 1-¢-u(t-d) TSt Sdhw
1 t < d4w

Every quantum is divided into two segments. The first interval, repre-
senting overhead delay, is a constant d, and the second is a random veri-
able representing useful processing time. The maximum length of the second

interval 1s a constant, w, The total Processing request, V, exclusive of

I Ty S




e e e

=154~

overhead delay, is exponentially distributed with mean l/v. If a request
is not satisfied in a quantum, the job leaves the processor and rejoins
the end of the queue. If a request is completed within the time limit w,

the task leaves the system and a new quantum may start.

P(Task completes service) = l-e-vw
1 .
/;‘4_\ constant overhead service
-~ 7 ¥ delay d interval of
“\‘ J maximum
Poisson J: i th
source with 0000 g ength w
rate A jobs )- 7(
er unit time:
/
7
P(Task rejoins queue) = g-vw
F. (t
Q( )
1—— l—-—
l-e W—t— -~ - - -~ - - - B
.-/ i
s
/ 1
1
+
1
{- >t
d diw
Figure Al

Structure of the Adiri/Avi-Itzhak Model

Adiri and Avi-Itzhak employ generating functions and Laplace trans-
forms in non trivial ways in their derivation. The purpose of this section

is to show that careful application of simpler, more easily understood,

i S e i o
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techniques will also yield exact solutions to problems of this complexity.
Transform techniques are more powerful than the methods of Chapter 2 since
higher momeris may be computed by differentiation. Transforms may also
be numerically inverted to obtain the distribution function of a random
variable., The price paid for this greater power is increased complexity
which makes the results harder to understand and use.

The model of Figure Al is another example of an M/G/l queueing system.
Like the early part of Section 2,3, the first part of the Adiri/Avi-Itzhak
work is the calculation of total service request, expected r:mber of tasks
in the system, and the first two moments of the quantum interval. 1In the
following discussion (AA.n) will denote equation n of the Adiri/Avi-Itzhak
work. Minor symbol changes maintain notational compatability with Chapter 2.

Define: o= e

(AA.12) E(V) = 1/v + d/(1-q)
(AA.19) p = l-p0 = A-E(V) <1
(AA.21) EM) = p + xZE(Vz)/(Z(l-D)), where M is the random number
of tasks in the queue aud in
the server
The expected wait in queue until the task enters the server for its
first quantum interval, E(Tl), given in equation (2.31), has the same
derivation in this model as in the system of Section 2.3.4., Equation (2.31)
is identical toc (AA.49).
Adiri and Avi-Itzhak base their recursive equations on the random
variable, Ki’ the number of queued tasks behind the tagged job as it enters
the server for the ith quantum,. E(Kl) is the sum of three terms: (a) = the

expected number of arrivals from the exponential input source during Tl;

R = e s e e R L e AT TR o R . e e
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(b) = the expected number of jobs that return to the queue that were in
the queue in front of the tagged job when it arrived; and (c) = the
expectation that the arriving job finds the server busy (Probability p)

and that the job in service returns to the queue,

(A.20) E(Kl) = (a) + (b) + (c)
(a) = NE(Ty) = A-ql-(E(M)-p) + A+p-q2/(2-ql)

(b) = e™ "V (EM)-p) = a- (E(M)-p)

(c) requires careful treatment analogous to the derivation of qlr’
the expected remaining service time of the job in service when an arrival
occurs. The probability that this task will return to the queue is not ¢
as it is for the other jobs. The fact that this job has received a random
amount of service when an arrival takes place alters the probability that
it will return for additional quanta. Shemer (1967) neglacted this fact
as well as the fact that ql_ # ql.

Multiplying equation (A.1l) by (A.9) gives one the probability of
the joint events that (A) an arriving task finding the system busy enters
y time units after the start of the service quantum in process and (B)
waits less than t time units until that quantum is finished.

{FQ(t+y) - By}
4

(A.21) P(y < Y < y+dy and Qr St) =

Evaluating this expression for t = d+w-y and integrating over the
allowable range of y values (0,d+w) gives the probability that = job in
progress when a new arrival occurs finishes before the maximum quantum

limit and therefore does not rejoin the queue. Call this event "D".

TP O L T ORPC ) P S—
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1 dw
. = == = d
(A.22) P(D) 1 Jo {FQ(d+W) FQ(y)} y
1 diw -
_ql - (dw)ee™

ql

The probability that the job does rejoin the queue is thus:

(dtw) * o

(A.23) 1-P(D) = ql

Multiplying this result by p, the probability that the server is busy when
a new job arrives, and substituting in equation (A.20) leads to the expected

number of tasks behind a job as it enters the server for the first time.
(A.24) E(K)) = (E(M)-p) = (orth+ql) + peiheq2 + 2.0 (d+) 1/ (2 q1)

To get this result in the exact form of Adiri and Avi-Itzaak one need

only cxpand the quantity Aql and use eq. (AA.12) and eq. (AA.19).
(A.25) Aql = A+ (d+(l-a)/v) = X E(v)*(1-o) = p*(1-a)

Substituting p.(l-o) for A-ql in equation (A.24) leads to (AA.39). The
authors note that their form of the result was derived from a generating
function "after a rather lengthy and not painless process."3

The equations for E(Ki) and E(Ti) for i=2,3,4,... are easily derived,
as in Chapter 2, once the initial values for i=l are specified (equations

(A.25) and [2.31)).

3Adiri and Avi-Itzhak (1969), p. 644.
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APPENDIX B

LISTING OF TSMOD2

BEGII

INTEGED LOOP;

FOR LOOP:=1 STEP 1 ULTIL 20 N0

SUWLA BEGH

INTEGER I1IDEX, SEED, K, COUNT,STATE, START!IP, MAXCHSTONERS ;
REAL SUMS,5UH5S,SI01C, SUGC, 5HRE, UM, 510D,

REAL STATTINE,EXITPRIZ,STATEINTERR L, 1ALK, TEP,CUT;
PEAL MARK2,CPIDLE, CPREST;

REAL :ARK3, IDIDLE, 1DCST;

REAL APRAY DATA(1:21,1:2),10T2(1:2), 01977 (1:2n);
INTEGER ARRAY TRANSITRIST(1:21),5ERVICENIST(1:21),3TATEPROR(1:21);
IATEGER ARRAY I1HT3(1:07);

SET CPOUEUE, | ONUENE;

ELEMENT PROCEZSOR, 1USYS, AN

BOOLEAN 1 TIALIZE;

PROCENURE LSET;
SEGI!]
HITIALIZE s =FALSE;
COWiTe=0;
UARK e sMARE 2 o= TATTINE s =TI
SUNS:=8U'S5 e =51 Ce=SNCCs =5UInSe=i P e =5 PR e =0 N
STATEIHTEGPAL: =CPINLE::=10INLFe=n,";
FOR Ke=1 STEP 1 tHTIL 21 N0
SEGIH
TRAUSITDIST(RK Y e =TI CEDIST () e =STATERPINAD(K) 1 =0
NATACIL, 1) 1 =DATACH,2) :=0,17;
Eul;
Edn OF PROCEDULE NESET:
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ACTIVITY TASK ;
BEGIN
REAL ARRIVALTIME,SERVICETINME,CYCLEL;
BO00LEAN PASS1;
PASS1:=TRUE;
ARRIVALTINE:=TIIE;
HISTO(STATEPROG, INT3,5TATE, (TIIE=I'ARK)*100.7);
ACCUM(STATEITEGRAL,I'ARK,STATE, 1);
IF IDLE(PROCESSUR) THEN ACTIVATE PROCESSOR AFTER CHRRENT;
YAIT(CPQUEUE);
TENP:=TINE-ARRIVALTII'E;
SUMR :aSUNMK+TEIP;
SUMRP s aSUNMRR+ TEMP=TENP;
SULS s =SUIS+SERVI CETIME;
SUMSS s =SUNSS+SERVICETIIE*SERYICETINE;
SUNC:=SUiMC+CYCLE];
SUNMCC:=SUMCC+CYCLE1+CYCLEL;
S5UNNS :=SUNRS+TENP*SERVICETIME;
HISTO(TRANSITDIST, IilTY, TENP,1);
HISTO(SERVICEDIST, INT2,SERVICETIVE, 1)
HI STO(STATEPROB, INT3,STATE, (TIHE-IIARK) #100,0);
INDEX:=SERVICETIME*20,0+1,0;
ACCUM(STATEINTEGRAL,MARK,STATE,-1);
INDEX:=IF IIIDEX LEN 21 THEN INDEX ELSE 21;
DATACINDEX, 1) :=DATACINDEX, 1)+TEMP;
DATA(CIIIDEX, 2) : aDATACINDEX, 2)+1.0;
COUHIT: =COUIIT+1;
IF CINITIALIZE ANID COUNT EQL STARTUP) THEN PESET;
£ COUNT EQL MAXCUSTOMERS THEN ACTIVATE NAIYM;
END OF ACTIVITY TASK;

ACTIVITY GEMERATOR;

BEGIMN

G1:HOLD(NEGEXP(1.0,5EED));
ACTIVATE MEY TASK AFTER CURRENT;
GO TU 61;

END OF ACTIVITY GENERATOR;
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ACTIVITY COlMPUTER;
BEGIH
REAL OVERHEAS, NUANTA;
CL:EXTRACT FIRST(CPOUEYE) "'HEN TASK DN
BEGIN
C2:OVERHEAD ¢ =NORIAL(.05,.015,3EED)
IF PASS1 THEH
RECIN
CYCLEL:=TII'E=ARTIVALTIME+DYENHUEAD;
PASS51:=FALSE;
END;
QUANTA: =NORDAL(, N5, .716,5EED);
SENVICETINE e =5 ERVICET I E+NIANTA;
HOLD(OVERHEADR+NUANTA) ;
IHCLUDE(TASK, I0QUENE);
IF IDLECIOSYS) THEN ACTIYATE 10SYS AFTER CURRENT;
END
OTHERVIISE BEGIN
ACCUN(CPIDLE, I'ARK2, CPREST, 1, 00);
PASSIVATE;
ACCUM(CPINLE  HARK2, CPREST, =1.0);
END;
GO TU €1;
END OF ACTIVITY COIPUTER;

ACTIVITY 10PROCESSOR;
BEGI
REAL 103ERVICE;
101 EXTRACT FINSTCIOOUEUE) LUEN TASK Dn
DEGIN
OSERVICE:aUNIFORI(N,N, ,2,SFEEN);
HOLDCIOSERVICE);
TEAP: = FORI(N, N, 1., 5EEN);
IF TENMP LEQ EXITPROS THEN ACTIYATE TASK ARTEP CUrR0enT
ELSE BEGI!N
IMCLUDE(TASK, CPQUENFE) ;
IF INDLE(PPOCESSOP) THEN
ACTIYATE PROCESSOP AFTER CUNNEMNT;
END;
END
OTHERVUISE BEGIH
ACCUMCIOIDLE,INARK3, IONEST,1.0);
PASSIVATE;
ACCUNCIOIDLE, M ARKS, IC2EST,-1.1);
END;
GO TU 101;
END OF ACTIVITY I1UPROCESSOR;

T 4 .
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END OF ACTIVITY [10PROCESSOR;

READ (SEED,STARTUP,MAXCUSTOMERS);
{IRITE(' SEED:=',SEED,' STARTUP:=',STARTUP, 'MAXCUSTOMERS:=', MAXCUSTOMERS);
EXITPROB:=,125;
INITIALIZE :=TRUE;
FOR K:=1 STEP 1 UITIL 20 DO
BEGIHN
INT1(K):=1.5%K;
IHT2(K):=,1%K;
INT3(K):=K-1;
END;
PROCESSOR := NEY COMPUTER;
105YS:=NEV IOPROCESSOR;
MATN:=CURRENT;
ACTIVATE NEV GENERATOR AFTER CURRENT;
PASSIVATE;
ACCUM(STATEINTEGRAL,MARK,STATE, N);
ACCUM(CPIDLE,NARK2,CPREST,0.0);
ACCUM(IOIDLE,MARK3,10REST,0,0);
URITE(' TIME AT RUN COMPLETION 15',TIME,' NUMBER OF TASKS PROCESSED IS',
COUNT);
HRITE(' CURRENT STATE I1S',STATE, 'AVERAGE STATE 15',
STATEINTEGRAL/(TIME=-STATTINE));
TEMP: =SUNS/COUNT;
OUT:=SQRT(SUMSS/COUNT=TEMP#TEMP);
MRITE(' SAMPLE AVERAGE AND SD OF SERVICE TIMES ARE', TEMP,OUT);
TE!MP:=(COUHT*SUMRS=SUMR*SUMS )/ (COUNT#SUMSS=SUMS*SUMS) ;
OUT:=(SUIIR=TEMP*SUNS) /COUNT; .
URITE(' REGRESSION ESTINATE OF SLOPE AMND INTERCEPT ARE',TEMP,0UT);
TEMP: =SUMC/COUNT;
OUT:=SQRT(SUNCC/COUNT=TEI'P*TEMP);
WRITE(' SAMPLE AVERAGE AHD SD OF FIRST VAITING TIMES ARE',TEMP,OUT);
TEMP: =SUMR/COUNT;
OUT:=SQRT(SUMRR/COUNT=TENP*TEIP);
HRITE(' SAMPLE AVERAGE AND SD OF RESPONSE TIMES ARE',TEMP,OUT);
MRITE(' PROBABILITY PROCESSOR IS IDLE 1S',CPIDLE/(TINE=STATTIME));
WRITEC' PROBABILITY 1OSYSTEM IS IDLE 15', I0IDLE/(TIME=-STATTIME));
WRITE(' THE TABLE DISPLAYS RESPO"SE AS A FUNCTION OF SERVICE');
WRITEC' INTERVAL','AVERAGE R', "NUMBER OF PNOINTS');
FOR K:=1 STEP 1 UNTIL 21 DO
BEGIN
TEMP:=1F DATA(K,2) GEN 1.0 THEN DATA(K,1)/DATA(K,2) ELSE 0,0;
OUT:=K/20; '
URITE(OUT, TENP,DATA(K,2));
END;
END OF SINULA BLOCK;
END OF PROGRAM;
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APPENDIX C
LISTING OF TSS/360 MODEL
g 31
VUTEOER STAWTCLOCR, ST iTIYE p THINK, WSMEAN}
PXTEINAL PRACEDIURE LISTC,LPRT T, AKESCHEMULETARLE )
AJEAL CUEiMEAD VMTHFA:
RACLEAY ALY IQ0FLT 00 ALY, INLINA
VUTRGES  AXIISERS,
SCREIDTARENTRID Y,
CAXTASKSOMAIRPL ST LESPAGES, OHAIELYS )
SCHEDPTARENTRINS 3 2493
CEAL
[*TEGFR AZRAY SOMFOTAR(LISCHENTABETHIES)119)3
12TESE R GUMIFTARKS, HAGESHSEL, QA" TA, TOLEVEL,
PRIARITYy TIMLSLINE)¥AXCR,
MAXRGID, "T«, TSEC, MPRE , PAGENELAY)
[ 'TFGFR SEENL,SFEN2,SFENT, TRACELEVEL ,SEEDG,SEEDS, SEED4,SEF D/ ;
LISY TATACCHANMELS , LOSPAGES )FAGEDELAY ) MAXTASKSONDISPLIST, "AXUSERS,
TRACFLFVEL4SIMYIMESGVERAFAD, THING, VMTMEAN W3 'R AN}
FOR2AT UATAPRIATOIE, ! CHAMLELSY, 1~,0 LCS PAGES!, 15, "3EC PAGE DEILAY!®
» 18, DISP TASKS!',AL,1,138," USERS', T4, LEVEL TRArEY,
18, HINS STHULATED TIME',N9¢34" OVE“READ FACTNARY,
A1 ,1,18," SECS THINK TIME',DR,1,! MSEC CQMPLTFE YIrg!,
[R, ' PAGE .ORv SET',A1,1)}
LOCAL LAHEL MNODATALCFT)
PRINRTITY=21)
TIMPSLICF =22y
W'JA~Taz3)
MAXCR34)
HAYRGINEY )
nTizh}
TSE~ =27}
UPRE 3
[7LEViLs9)
AR STHEDULE TARLE(SENFDTASENTRIFS ,SCHEUTAR)
ETDATAL
CEAN(DATA, NODATALFET) wFITECDATA,DATAPRINT)
A B
TSTEAER ARFAY PAGERN N, PAGERIHO MANY {1 11AXUSENRS®#2) )
INTEGER RPAGEENTRY,SEFEN}
FOR SEED22773 N0
Sl'tUL A RFGIN
TEAL STYARTIULETIYE,
ARRAY TRIV)AVG,HARD ) STARTPAGE ALL, TOLETINE(=233kl)
ARQAY ACTUALQUANTLFNAT-(=23171))
ARQAY FALTS(=2:151);
CANHAT GABK('USR!,nY,2,' USER',213,' RESP',D6,1,' COMC',0%,3,
' wQ(g1t'!3.- TPRY e, 13,0 FAULTS, 13, NisP, 13,
'OELIG',IX, 7 TASKS', 13,0 ISRPGY, T3, TOTOGY,14,41)8
[*TE5LR PROCENURE FAIRSHARE )
FAIRSHAREEEMNTIFR(LOSPAGES/MUMOFTASYS) )
FLEMENT ELINTEFNALSCHENULER,
ELTIMER,
ELBUFUPSma ' NER,
ACTIvETASK
ELEMENT ARRAY ELUSFR, TSI(1¢MAX ISFRS) JELPAGEPRICESSIROLICHAI'NELSY)
SEY DISPIR, nlIsPEX,
ELIGIBLELICT,
INACTIVELIST)
ACTIVITY TASK( USERaM )3
1* TFGER USERNIIM}
BEGT v
FARVAT PGOUT('PTW?,%9,2,' TASK?,13,17,! PARFSQUT AT TwAlT1,a1)}

2 ks nlie G e g b e Ve pd o e SR L e g =
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BOOLEAN PAGEWALY, [0BOUND}
REAL VMTIME.SST;T!M!CQUNT.STAHTTIM[;TIHELEFT.STARTPAGENAIT;
INYEGER QUANTAYSED, WORKINGSET, PAGEFAULYS)
INVEGER STE, NEWPAGESREQ, PAGECOUNT, PAGESOQUT, NEWPAGF ,PAGESTOGET)
BEGIN
REAL VMTIMEPJECE:!
VERYTOPOF TASK
PAGEFAULTS®QUANTAUSEDEN)
TIMELEFTayMY I ME )
PAGESTOGEY & NEWPAGESREQ)
TOPOFTASKI
VMT IMEPJECE®S Y |MELEFT/(PAGESTOGET®1))
FOR NEWPAGE=(?,4,PAGESTOGET) DN
BEGIN
IF TIMECOUNT#VMTIMEPIECE LSS SCHEDYAB(STE,TIMESLICE) THEN
BEGIN
CANCEL(ELTIMER))
HOLD(VMTIMEPIECE) )
L!STO(ACTUALOUANTLEMGTH,a.10@.0;5.vn71n:px:cg),
TIMECOUNTSTIMECOUNT«VHYIMEPIECE
END
ELSE BEGIN
COMMENY TIMER INTERRUQY COMES WERE )
LISTO(ACTUALQUANTLENGTH,2,192,0,5,
SCHEDT/AB(STE, TIMESLICE)=TIMECOUNT))
PASSIVATE
GO YO TNPOFTASK)
END}
IF NEWPAGE EQL PAGESTOGET THEN 60 TO TWALT)
PAGEENTRYSPAGEENTRY#1
PAGERQHOWMAMY(PAGEENTRY)a¢)
PAGERQNHO(PAGEENTRY)lUSERNUH;
PAGEFAULTSEPAGEFAULTS )
PAGEWA!TRTRUE
STARTPAGEWAITeTIME)
ACTIVATE ELONUEUESCANNER DELAY PAGEDELAYS
PASS]VATE
ENDI
TWAITY
COMMENT ISSUE TWALIT 3
PAGESQUY s PAGECOUNT = FAIRSHARE }
IF PAGESOUT G6TR 2 THEN BEGIN
STARTPAGEWA]TeU}
PAGEENTRYSPAGEENTRY+1)
PAGERQWHO(PAGFENTRY ) SUSERNUM}
PAGERQHOWMANY (PAGEENTRY )swPAGESOUT}
IF TRACELEVEL GTR 2 THEN WRITE(TIME/10202,USERNUM,PAGESOUY,PGOUT)
END OF PAGINGOUTY
ACTIVATE ELUSER(USERNUM) AFTER CURRENT;
ACTIVATE ELQUEUESCANNER AFTER CURRENT)
TRANSFER(TS] (USERNUM), [NACTIVELIST))
TIMECOUNT =D
PASSIVAYE}
GO 70 VERYYOPOFTASK
END
END)
PROCEDURE FILEINELIGLISTC LTSI )3
ELEMEMT (TS1)
INSPECY LTS WHEN TASK DO
BEGIN ELEMENY TSIINLIST)
INTEGER LYSIPRI} REAL LTSISSTILOCAL LABEL OUT)

N T —
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LYSIPRISSCHEQTAISTE PRIORITY)
LYSISSTeSST;
YSIINLISTEREADCELIRIBLELIST)
FOR TSTINLISTESUC(TSIINLIST) AHILE EXIST(TSIINLIST) DO
INSPECT TSII.LIST WHEN TASK DO
IF LYSIP2] LSS SCHEDTAR(STE,PRIORITY) THMEN
REGIN PRECEDE(TSTINLIST, LTSI
GO TO 2T END
ELSF
IF LTSIPR] EQL SCHEDPTAB(STE,PRINKITY) AND
LTRISST LSS SST THE:
REGTY PRECEDE(TSTIMLIST,LTSIY
a0 1A AUT LND}
TRANSFER(LYSI)FLIGIBLELIST)Y;
OUT | END OF FILEIVELIGLIST)
ACTIVITY TIMER}
sFGtN
BOCOLEAN FORCEN;
FORMAT TY“E(.TMQ'.DQ.Z" TASK"I3.X3.SZ’XZ'SZ.X3.'PR!QQITY' '0!3!
X2,t55Ts *,06,1,)%2,'STEs ', 15,X2,515,A),
PAGOUT('PSEY,08,1," TASK',13,17,"' PAGESOUT AT TSEND',16,
' PAGES NEXT TIME ',A1))
TOPOF YIMERS
FORCENsFALSE
IMSPECY ACTIVETASY WHEN TASK DO
RESIN SOOLEAN YWNIO}  INTEGER PAGESOUT) LOCAL LABEL L
OLD10s10ROUNDI
TIMELEF TaTIMELEFT=SCHENTAB(STE, TIXESLICE))
NJANTAUSEDSQUANTAUSED + 1)
1F QUANTAUSED GEY SCHEDTAB(STE,QUANTA) DR
PAGECOUNY GTR SCHEDTAB(STE,“AXCR) OR
NEWPAGE GEO SCHEOTAR(STE,MAXPGRD) THEN BEGIN
STEsSCHENTAB(STE,IF PAGECOUNT GTR SCHEDTAB(STE,MAXCR)
THEN MPRE ELSE TSEND)I
§ST=1F SCHEDTAR(STE,DTR) ENL @ THEX @ ELSE
TIME#SCHEDNTAB(STE,,DTR) «
IF SST LSS & THEN SST ELSE o3
CANCEL CACTIVETASK) S
FILEINELIGLISYT(ACTIVETASK) )
PAGESQUT=PAGFCrUNT=FAIRSHARE )
FORCEDaTRUE )
1F PAGESQUT 6Tn # THEN
BEGIN
STARTPAGEWA]Ya2)
PAGEENTRYsPAGEENTRY1}
PAGERQWHO(PAGFENTRY)SUSERNUM}
PAGERAHOWMA' Y(PAGEE TRY)saPAGESOUT}
PAGESTORETS AX (N yPAGESTOGFT=NEWPAGE®
PAGESOUTOUNIFORM(,2,,7,SEEDS) )
IF TRACELEVEL GTR 2 THEN
WRITEC(TIMEZ11QB,USERNYM ,PAGESQUT ,PAGESTOGET ,FAGOUT)
GO TO0 L
END OF PAGING OUTH
FANY OF TIMESLICFEND)
PAGESTOGE TSPAGFSTYOGET=NEWPAGE)
L
10R0LUNDETIF NEWPABE GEQ SCHWFDTAR(STE,IOLEVEL)
THEN TRUE ELSE FALSE
TI"ECOUNTs”)
tF TRACELEVEL GTR 4 THFM
JRITECTYME, TIME/1Q00,USERNUM, IF OLDIAM THEN '10' ELSE 'EX')
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IF 10BOUMD THEN '10' ELSE 'EX',SCHEDTAB(STE,PRIOR]ITY),SST/104@,STE,
IF FORCED THEN 'TSENP FORCED' ELSE ¢ 1))
END)
ACTIVATE ELOQUEUESCANNER AFTER CURRENT:
PASSIVATE)
GO YO YOPOFTYIMER
END)
ACTIVITY USER(!DoPRTY,CONVERSE.TH;NKSECONDS.coMPUTEMEAN.
TRANSACTIONS ) WORKSETMEAN) )
INTEGER !DoPRTY,TH;NKSECONDS.TRANSAcTIONS.HORKSETMEAN]
BOOLEAN CONVERSE)
REAL COMPUTEMEAN)
SEGIN INTEGER 1
REAL TEMP}
TSICID)SNEW TASK(ID))
NUMOFTASKS 3 NUMOFTASKSey;
FOR I3(1,1,YRANSACTIONS) DO
BEGIN
INSPECT TSI(1D) WHEN TASK nQ
BEGIN
IOROUND=IQUFLY)
STARTTIMERTIME)
VMTIMERNEGEXP(L1/COMPUTEMEAN,SEEDL))
NORKxNGSET'RANDINT(E.ZOHORKSETMEANoSEEDZ)l
NEHPAGESREO-MAxcaoHORKXNGSET-RAND!NT(GoPAGECOUNToSEEDB>)l
STERPRTYe)F COMVERSE THEN 2 ELSE 19)
IF 1 EQL 4 THEN SSTs@ ELSE
SSTRSCHEDTAB(STE,DTR)*TIME
IF SST LSS @ THEN SSY FLSE 2

FILEINELIGLIST(TSI(1D))}
IF WAIT THEN BEGIN WAITaFALSZ)
ACTIVATE ELOUEUESCANNER APTER CURRENT END)
PASSIVATE )
IF CONVERSE THEN BEGIN
TE“P=(TIMEwSTARTTIME)/1200)
LISTO(ALL,?,302,2,08,YEMP))
LISTO(FAULTS,2,5%,1,2,PAGEFAULTS+,21))
IF VMYIME LSS 35 AND NEWPAGESREQ LEQ 2 THEN
LJSTOCYRIV,0,320,,25,TEMP) ELSE
IF VMTIME GTR 250 OoR MEWPAGESREND GTR 40 THEN
LISTO(HARD,®,320,2,2,TEMP) ELSE LISTO(AVG,P,300,1,0,YEMP))
END OF COLLECTING DATA)
IF TRACELEVEL GTR @ THEW
WRITE(GARR, TIME/ 1020, USERNUM, [ ) (TIME=STARYYIME) /1000, VMTIME/1000,
WORK!NGSET.NEHDAGESREQ.PAGEFAULTS.CARD!NAL¢DlSPIO)0
CARDINAL(DISPEX),
CARDINALCELIGIBLELISY),NUMOFTASKS,PAGECOUNT,PAGESUSED))
HOLD( THINKSFECONDS & 1002 )
END OF IMSPECYIOH
END OF TYRAMSACTION LOOP)
REMOVE(YSI(ID)))
TER“INATE(TSI(IN))Y)
NUMOFTASKSsNUMOPTASKS»1)
TERMINATE(CURRENT)Y)
END)
ACTIVITY PAGEPROCESSAR(YJ)}
INTERER J)
BEGIN
INTEGER USERNUM,NUMPAGES, 1}
TOPOFPAGEPROCESSOR |

R G M B Lm0 Lo TR WM gesiiii —— Wk e e e
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MibPACESSPAGERQHOYMANY (1)}

JSERNIMBPAGERIWHO (1) 3

PAGFE“TRV=PAG[EuTnv-1;

FCR 1=(1,1,PAGEENTRY) DO REG]M
PAGERONHO(l):PAGEHQUH0(1*1)3
pAGERUHOWMANV(]):PAGERQHONMANY(lol)8 END)

BEGIN INTEGER I, PAGINGOPERATIONS
REAL GETREGUESTTIME
GETREAUFSTTIMF=TIME S )
PAGINGOPERATIﬂNStABStNUMPAGFS)//B*I }
FOR I2(1,1/)FAGINGOPERATIONS) Do
HOLD(UMIFCQH(25.?.125.’.§EE03))l
PAGESUSED = PAGESUSED « NUMPAGES )
INSPECT TSI(USERNUM) WWEN TASK DO
BEGIN
PAGEWAITsFALSES
PAGECOUNT=PAGECOUNTouuMPAc[S !
IF STARTPAREWAIT GTR @ TWEN
LISTnfSYAqTPAGE'Z'SGQ..2'
CGFTREQUESTTIME:STARYPAGENA]T)/1wﬂ?)l
END
IF PPWALIT THEN
BEGIN
PPWA]TeFALSE}
ACTIVATFE ELRYFUESCANNER AFTER GURRENT
IF IDLING TWE«
BEGIW
IDLINGuFaLSE
LISTO<IULETIWEnﬂu3”9..1.tT!ME-STARYIDLETIHE)/;Z@J)
END
EMDS
ENDS

PASSIVATE)

GN YO TrPOFPAGEPRACESSER

EvDy

ACTIVITY QUEVESCANVER;

BEGIN [MTEGER ]

REAL LASTTIMETHRU}

TOPNFAUEUESCANNFR]

FOR Is(1,1,CHANNELS) N0 IF PAGEENTRY GTR 4 THEN

ACTIVATE ELPAGEPROCESSOR(1);

ACTIVATE ELINTERNALSCHEDULER DELAY (TIME<LASTTIMETHRU)®OVERNEAD}

PASSIVATES

LASTTIMETHRUST[wE

GRTN TOPOFQUEUESCANMER

END OF Q«SCANMNER)

ACTIVITY INTERNALSEHEDULER])

EGIN

ELEMENT LTSI

1*TEGER PR]};

BOCLEAN BEWINDONLY}

8C0LEAN PROCEDURE E-TRANCECRITERI A}
ENTRANCECRITERTAS

IF CAQD!NAL(UISP!0)¢CARDIVAL(DISPEX) LSS MAXTASKIONOISPLIST
THEN TRUF ELSF FALSE;
PROCEDURE MOVETADISPLIST( LTS )3
FLEMENT LTS1;
INSPECT LTS WuEN TASK (O
BEGIN
LOCAL LABFL FAUNDPLACE
SSTE]IF SSY (SS "™ TWFN ¢ ELSF SST=TI1“E,

L e e
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IF 1ORQUNR THEN
BEGIN
INTEGER LYSIPRI)
ELEMENT INIO)
LYSIPRISSCHENDTAB(STE,PRIORITY)?
FOR INIOs AST(DISPIC),PRED(INIO) WHILE EX]ST(IN]OD) DO
INSPECTY INJO WHEN TASK DO
1F SCHEDTAB(STYE,PRIORITY) LEO LYSIPR] THEN
BEGIN FOLLOWCINTIO,LTYSI)! GO FOUNDPLACE END}
PRECEDE(HEAD(DISPIO),LYST)
END 10ROUND CASE
ELSE TRANSFER(LTSIDISPEX))
FOUNDPLACE !
END OF MQVE YO DISP LIST)
LOCAL LABEL SORTDISPATCH)
YOPOF INTERNALSCHENULER)
BEWINDONLYSTRUE )
TOPOFSEARCH)
IF EMPTY(ELIGIBLELISTY) THEN GO YO SORTDISPATYCH)
LYSIsFIRST(ELIGIBLELIST)
FOR LTSIsSUC(LTS!) WHILE EXIST(PRED(LTYSI)) 0O
INSPECT PRED(LTS!) WHEN TASK QO
IF NOY PAGEWA!T THEN
BEGIN
IF BEMINDONLY AND SST GEO YIME
THEN GO TN YSINOGOON
ELSE IF EMTRANCECRITERIA THEN
REG]N
MOVETUDISPLISTY(TASK) )
GO TA TOPOF INTERNALSCHEQULER
ENA
FLSE GO TQ SORTDISPATCH]
TSINOGQOD)
END}
IF NOY BEHINDONLY THEN GO TO SORTDISPATCH)
BEMINDONLYSFALSE]
GO TO YOPOFSEARGH)
SORYDISPATCHI
IF NOT EMPTY(DISPEX) THEN TRANSFER(FIRST(DISPEX),DISPEX)]
BEGIN
COMMENT
THIS 18 THWE DISPATCHER PART OF THE SCHEDULER

INTEGER 1}
BOOLEAN BUSYPAGERS}
ELEMENT DTS}
FOR DTSIaFIRST(DISPI0),SUC(DTYS]IY WHILE EXIST(DTS]),
FIRST(DISPEX),SUC(DTST) wHILE EXISY(DTSI) DO
INSPECY OTSI WWEN YASK DO
IF NOT PAGEWAIT THEN
BLGIW
ACTIVETASK = DYSI}
ACTIVATE ACTIVETASK AFTER CURRENT}
ACTIVATE ELTIMER DELAY SCHEDTAB(SYE, TIMESLICE)»TIMECOUNT}
PASSIVATE )
GO TO TOPOFINTERNALSCHEDULER)
END)
BUSYPAGERSSFALSFE}
FOR 13¢(1,1,CHANNELS) DO IF NOT IDLE(ELPAGEPROCESSOR(!)) THEN
BUSYPAGERS®TRUE )
|F BUSYPAGERS TWEN
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SEGIN
PP UALITETRUE)
1F NCT EMPTY(ELIGINRLELIST) THEN
REGIN
IOLING=TRUE}
STARTICLETIMEsTIME
EnND
(2
FLSKE :
1F PAGEENTRY LFQ ¢ THEN WA[TsTRYF ELSE
ACTIVATE ELIUYFUESCANNER AFTER CURRENT
PASSIVATES
A TO TOPOFINTERNALSCHEDULER
E~D OF DISPATCHER PART)
PN OF INTERMALSHMED ILER)
~AvMENT CONTROLLIMG CNDE COMES NEXT)
REGT
1:'TEGER 113
STARTLOCKSCLOCwK !
PAGEE 'TRYSQ)
1oL TMGSFALSE S
POWA]T = FALSF 3
10DFLT = TRUE}
WAJTSTRUE }
PAGESH'SED = )
SEEN1=SEEDS SEED2«SEFD1#17) SEEr3IsSEEDi#74)
SEEN4=SELED®23 CEFO5ESEED*31} SEENG6=SEEN*>7) SEEC7sSEEDS1)
NUMOFTASKS s 3y
ELGUEUESCANNER s NEW QUEUFESCANNER)
ELTIVER 8 NEW TIMER
ELIMTERNALSCHEDLF& = NEW NTERNALSCHERQULER}
FOR 1a(1,1,CHANNELS) N0 ELPAGEPROCESSNOR(1)ZNEW PAGEPRNCESSOR(]))
FER 1=(1,1,1AXUSERS)Y N0
BESIN
CLUSERCIIBNEW USERC] 25, TRUE, THINK,VMTMEAN,50,WSMEAM))
ACTIVATE ELUSER(I) AT 1e3¢00
MO
E1Dy
HOLDC SIMTIME » 67022 ))
“RITE('ennsavacs REAL TIME IN SECS',CLOCK=STARTCLOCK,' ®aasast))
LPEIMTCALL D e3Y0,2,9,1,20"0LL" )Y
LPOINTITRIV,0,304,,25,1,?"TRIVIALY)}
LPOINTIAUG @037091,0,,97, YAVERAGE)Y )
LPQIR:T“"ARD.GQSQC'.Z.H. .97. THARUY )Y
I PIINT(STARTPAGE , 2,302 ,¢2¢31,72"'TIME YO START PAGE FETCH'))
LPRINTCINLETIME P, 36%, ¢ 101,2, ' JOLE TIME WHILE ELIGIBLE TASKS'))
LEOINTFAULTS)9,50,1,2,1,@,'PAGE FAULTS")
LPRINT(ACTUALQUANTLENGTH 0917 000,5,,99,'ACTUAL COMPUTE SLICES')
FNR OF SIMULA 3L0CK
FNDY OF 42XUSERS LOOP)
O GEYDATAJ
"QATALEFT
PN AF SCHEDTAR DECL
EN™ COF EVERYTHIMNG
SHBBBBBORBBRBRBBNBPPBRRBRNEDES SRR BNRBBPNBRBBRRBBRRNBEBNg0
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APPENDIX D

LISTING OF SCRIPT PROGRAMS

Figure 4.1 is a block diagram of the User Script used for the
response time experiments reported in Sections 4.2.1 and 4,3, Figure
4.3 is a listing of TESTl, the first program in the script. The fol-
lowing two listings are of TEST2 and TEST3. The terminal output of
an actual user following the script is also included. The arrows on
this latter listing indicate the places where users must insert imput
data to the script system. This example output was used as part of the

training of the users who participated in the experiment.

DIMENSION IB(8),IE(8)
2 1I=0

PRINT 899

899 FORMAT(/'PLEASE ENTER N IN FORM J*10**K')
READ 900,N, NN

900 FORMAT(2L1)
N=N*10**NN
IF (N.EQ.0) GO TO 10
PRINT 901,N

901 FORMAT ('TEST2: CYCLES=',I7)
CALL CLOCK(IB)
po 1 J=1,N

1 I=I+1

CALL CLOCK(IE)
TRAN=36000* (LE(1) -IB(1))+3600% (IE(2) -IB(2))+600*(IE(3)-IB(3))
TRAN=TRAN+6 0* (IE(4) -IB(4))+10% (IE(5) -IB(5))+(IE(6)-IB(6))
TRAN=TRAN+, 1% (IE(7)-IB(7))+.01*% (IE(8)-IB(8))
PRINT 903, 1B

903 FORMAT('START TIME= ',21l1,':',2I1,':',21l,'.',211)
PRINT 903, IE

904 FORMAT('END TIME=',2I1,':',21l1,':',211,'.',2I1)
PRINT 905,TRAN

905 FORMAT('RESPONSE TIME=',F8.2)
GO TO 2

10 PRINT 906

906 FORMAT('TEST2 NOW COMPLETE., YOU ARE IN COMMAND MODE')
STOP

END

T T T TR T TR 3 il T T —— T LI F T B T O e
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REAL M1,M2,M3,M
DIMENSION IB(8),IE(8),C(20000)
DIMENSION M1(30,30),M2)30,30),M3)30,30)
100 PRINT 899
899 FORMAT(/'TEST3: PLEASE ENTER N IN FORMAT 12')
READ 900,N
900 FORMAT(IL2)
IF (N.EQ.0) GO TO 10
PRINT 901,N
901 FORMAT('TEST3: ITERATIONS=',I3)
CALL CLOCK(IB)
DO 6 L=1,N
DO 50 I=1,20000
50 C(I)=I
DO 2 1=1,30
Do 1 J=1,30
M1(1,J)=2
M2(1,J)=3
1 CONTINUE
2 CONTINUE
DO 5 I=1,30
DO 4 J=1,30
M=0
DO 3 K=1,30
3 M=M+M2 (I,K)*M1(K,J)
M3(I,J)=M
CONTINUE
CONTINUE
CONTINUE
CALL CLOCK(IE)
TRAN=36000%* (IE(1) -IB(1) )+3600* (IE(2) -IB(2))+600*(IE(3) -IB(3))
TRAN=TRAN+60% (IE(4) -1B (4))+10% (IE(5) - IB(5) )+(IE(6) -IB(6))
TRAN=TRAN+.1*(IE(7)-IB(7))+.01*(IE(8)-IB(S))
PRINT 903,1B
903 FORMAT('START TIME=',2I1,':',2I1,';',211,',",2I1)
PRINT 904, IE
904 FORMAT('END TIME=',2I1,':',211,':',2I1',',2I1)
PRINT 905, TRAN
905 FORMAT (' RESPONSE TIME=',F8.2)
GO TO 100
10 PRINT 906
906 FORMAT('TEST3 NOW COMPLETE. YOU ARE IN COMMAND MODE')
STOP

(= NN O, I

END
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BOO1 5.1 TSS AT OMU TASKID=0022 04/07/70 19:02 3900 SDA=0064

=== USER0O
18:56 07 APR 70-BENCHMARK TRSTS ARE TO BE CONDUCTED AT 1900 - 2100 ..

SHARE PUBPRO,S132UM23, PUBPRO
«==p CDS PUBPRO,USERLIB(SYSPRO)
CZAFV460 ENTER DSORG VIP OR VSP, DEFAULT: MEMBER GIVEN OLD DSORG.

—ap ABEND
Fvi( 93)3#2° 2v piHw?
FOC #~6( Jeed? sk, #~6(40) 0023

— KU
INITIAL
CZUHWO01 AT 19:04:37: 6 USERS, 0 TTYVS, 6 2741VS, 0 10509S
BFO3 SOURCE.TESTA COPIED AS SOURCE.TESTI.
BFO3 SOURCE.TESTB COPIED AS SOURCE.TEST?.
BF03 SOURCE.TESTC COPIED AS SOURCE.TEST3.
BFO3 SOURCE.FFCLOCK COPIED AS SOURCE.FCLOCK.
CZU,#001 AT 19:04:53: 6 USERS, 0 TTYVS, 6 2741vS, 0 10509S
A053 MODIF ICATIONS? ENTER Y OR N.
N
BO16 LP FOUND MO ERRORS.
0000250 E "™ | LLEGAL EXPRESSION. OPERAMD NOT FOUND WHERE REQUIRED
0000250 X=Y(
n

LINE NOISE. REENTER

0000251 E *** ERROR IN RELATION OR LOGICAL OPERATOR OR CONSTANT
0000251 Z=X.Y :
9

A053 MODIFICATIONS? ENTER Y OR N.

Y

(D, 250,251

= R, 100,2100

0000100 DIMENSION 1B(8),1E(8)

0000200 DIMENSION M1(30,30),M2(30,30),M3(30,30)
0000300 100 PRINT 899

0000400 899 FORMAT(/V (EST1: PLEASE ENTER N IN FORMAT 12v)
0000500 READ 900,M

0000525 900 FORMAT(12)

0000550 IF (N.EQ.0) GO TO 10

0000600 PRINT 901,N

0000700 901 FORMAT(V TEST1: ITERATION=Y,13)
0000800 CALL €LOCK(IB)

00009500 DO 6 L=1,N

0000910 DO 2 1=1,30

0000920 DO 1 J=1,30

0000930 M1(1,J)=2

0000940 M2(1,J)=3

0000950 1 CONTINUE
. 0000960 2 CONTINUE

0000970 DO 5 1=1,30

0000980 DO &4 J=1,30

0000990 M=0
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0001000 DO 3 K=1,30
0001010 3 M=tWM2(1,K)*M1(K,J)
0001020 M3(1,J)=1
0001030 & CONTINUE
0001040 5 CONTINUE
0001050 6 CONTIIUE
0001100 CALL CLOCK(IE)
0001200 TRMJ=36000*(IE(1)-IB(1))+3600*(IE(2)-IB(2))+600*(IE(3)-IB(3))
0001300 TRAN=TRAN+60*(IE(h)-IB(h))+10*(IE(S)-IB(S))+(IE(G)-IB(G))
0001400 TRAN=TRAN+. I*(1E(7)=1B(7))+.01%(1E(8)-1D(8))
0001700 PRINT 903,18
0001701 903 FORMAT(Y START TIME= v,211,9:9,211,9:9,211,9.9,211)
0001702 PRINT 904,IE
0001703 904 FORMAT(v END TIME= v,211,9:9,211,9:7,211,9.9,211)
0001704 PRINT 905, TRAN
0001800 905 FORMAT(V RESPONSE TIME= V,F8.2)
0001900 WRITE(1,800) ii,1B,1E, TRAN
0001950300 FORMAT(2H 1,18,811,811,F8.2)
0002000 GO TO 100
0002050 10 PRINT 906
0002051 906 FORMAT(V TEST1 NOW COMPLETE. YOU ARE IN COMMAND HODEY )
0002052 STOP
0002100 END
2
AO53 MODIFICATIONS? ENTER Y OR N.
B016 LP FOUND !0 ERRORS.

P TEST1

TEST1: PLEASE ENTER N IN FORMAT 12
—p01

TEST1: ITERATION= 1

START TIME= 19:08:49.86

END  TIME= 19:08:52.36

RESPONSE TIME=  2.50

TEST1: PLEASE ENTER M IN FORMAT 12
TEST1: ITERATION= 10

START TIME= 19:09:05.15

EMD  TIME= 19:09:34.35

RESPONSE TIME= 29.20

TEST1: PLEASE ENTER N IN FORMAT 12

ey 00
TEST1 NOW COMPLETE. YOU ARE it COMMAND MODE
CHCIVW STOP

ety ETH TEST2,Y

A053 MODIFICATIONS? ENTER Y OR N.
aN
B016 LP FOUND NO ERRORS.

——yp TEST2

TEST2: PLEASE ENTER N IN FORM J¥10%K
——p11

TEST2: CYCLES= 10

START TIME= 19:10:49.68

END  TIME= 19:10:49,70

RESPONSE TIME= 0,02

TEST2: PLEASE ENTER N IN FORM J¥10°%K
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w—p 25
TEST2: CYCLES= 200000
START TIME= 19:11:14.36
END TIME= 19:12:08.27
RESPONSE TIME= 53,91

TEST2: PLEASE ENTER N IN FORM J*10°K
—= 00
TEST2 NOW COMPLETE.CYOU ARE IN COMMAND MODE
CHCIW STOP
ety FTN TEST3,Y
A053 MODIFICATIONS? ENTER Y OR N.
=l N
B016 LP FOUND NO ERRORS.
-ty TEST3

TEST3: PLEASE ENTER M IN FORMAT 12
TEST3: ITERATIONS= 10

START TIME= 19:16:13.01

END TIME= 19:18:07.48

RESPONSE TIME= 114,47

TEST3: PLEASE ENTER N IN FORMAT 12
—ly 02 '

TEST3: ITERATIONS= 2

STAKT TIME= 19:18:25,23

END TIME= 19:18:34.12

RESPONSE TIME= 8.89
TEST3: PLEASE ENTER N IN FORMAT 12
TEST3 NOW COMPLETE.OYOU ARE IN COMMAND MODE
CHCIW STOP
=y F INAL

CZUHWO001 AT 19:19:00: 29 USERS, 14 TTYVS, 15 2741vS, 0 1050VvS
CZUHW001 AT 19:19:31: 29 USERS, 14 TTYVS, 15 2741vS, 0 1050YS
B0O07 CPU TIME 00:01:24.77 CONNECT TIME 00:16:35 TIME 19:19

i u P’
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APPENDIX E

LISTING OF ALLOCATION MODEL

SINULA BrEGI

INTECEDP I”PFA STED, K, COUrT, STATE, STAPTIR, BAYCHETAMEPE,
INTEGEP SAP, rﬁVdﬁQS HA"PFf”r'*G L RO h""Ir“

PEAL Uh, SU” P SUNC SRpre, Spnine supp, U”pr;

FEAL TATTI 1~ SF\TFI“TF(P”I 4“PV TERR, OV'T;

PEAL ESR, LﬂlA” LG2AY, LGUPF‘"N“"E PlF”PFCPanF ,MAPKD
FEAL IAPKB IQIDLE,IOP ST;

REAL N1AV, N2AY, N1, 02 PMARKY , VADYS,
REAL APPAY DhTA(l'”] 1:2), 1‘71(1.?”) 1N72(1:20);

INTEGER ARPAY TPRANS ITPIQT(I 71),)EFVIPFP|°T(1 $21),5TATERPAR(1:21);
INTEGER APRAY IMT3(1:20);

SET ARPAY CPOUFUE(1:2), ID“UEUF(I:Q);

REAL KAPR,FSLAM,DELTI, T1 “PE,TSPF;

REAL LAM;

FLEMENT PPOCESSOR, [ 0YSYS, A

FLFNENT UPDATF,PF'U“VP°

BOOLEAN IMNITIALIZE;

AR LR RALIL b ol Al b o o

PPOCFDURE PESET;
REGIN
VITIALIZF e=FALSE;
CoOLHT:=0;
MAPK: ”APK2:=PAPK3:=“APKM:=”ﬁPKS:=STﬁTTI“r:=T|“F;
"UP""°UHSS:=SUHC:=S“PCC:=S““"S:=SHP":=S““PP:=0.n;
LOIAV:=LC2AV:=0,0;
STATEINTEOPAL::=CPIDLF: =01AYV:=M2AY:=|0INIFe=n, 1,
FOP K:=1 STFP 1 UMTIL 21 pp
PFGIHN
TRANSITPIST(K):-°FPVIPFPIQT(V):=STATFPPﬂ”(K):=0;
PATACY., 1) e=PATA(K,2):=9.0;
cih;
FED OF PPOCENUP . PESET:

BERS Bal. om L e i R P —— WYy e Ny Py ST ST T TP I
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ACTIVITY USER(PRIORITY) ; INTTCEP PPINPITY;
REGI!I!
RFAL APRIVALTIHE,SERVICFTINF,LSUMP,FXlTPDﬂ",TPIHKTIMF,CVCLFl;
INTEGER INTERACTIONS, HUMPEOUFSTS ;
BOOLEAN PASSI;
THINKTIVE:=HEGEXP(1.0/30.O,SFFD);
EXITPROR:=IF UMTFORM(0.0001,1.0,SE%N) LEN 35 TiEw .5
FLSF 1.0/26.n;
HUSEPS:=NUSFRS + 1;
HUHREﬂUESTS:=UNIFORN(0.0,20.0,SFFP) + 1.0;
Ul:SERVICETIME:=CYCLE1:=0,0;
PASS1:=TPUF;
AFPIVALTIME:=TIMF;
HISTO(STATEPROB,INTS,STATF,(TIHE-HAPK)*IO0.0);
ACCUH(STATEINTEGRAL,MAPK,STATF,1);
ACCUM(PIAV, HMAPKL,01,1);
HAPR:=HARP+1.0;
IF IPLE(PROCFSSOR) THE! ASTIVATE PPrOrFEgSnp AFETFP CUPPENRT,
VAITCCPOUREUE(PRIORITY));
TEMP:=TIME=ARRIVALTIMF;
LSUIR:=LSUMR+TENMP;
SUMR :=SUMP+TENP;
SUMPR:=SUMPR+TENP*TFMP;
SUMS: =SUMS4SERVICFTIME;
SUNSS:=SUMSS+SERVICFTIMF*SFnVICFTIPF;
SUHC:=SUHC+CYCLEI;
SUMCC:=51MCC+CYCLEL#CYCLET;
SUNMNS: =SUI'RS+TEMP*SFPVICETIMF,
HISTO(TRAMSITDIST,IHTI,TFHP,I);
HISTO(SERVICEDIST,INTZ,SERVIPFTIMF,I);
HISTO(STATEPROR,INTS,STATE,(TIVE-HAPK)*IOO.ﬂ);
IHPEX :=SEPVICETI!E*10.0+1.0;
ACCUH(STATFINTFGRAL,HAPK,STATE,-1);
ACCUM(N2AV,MARKS,02,=1);
IEDEX:=IF II'DEX LFO 21 TI'EN INNEX EpSF 21;
DATA(IHDFX,I):=DATA(INDFX,1)+TFHP;
DATA(IHDEX,Z):=HATA(INDFX,2)+1.0;
COUNT:=COUNT+1;
INTERACTIONS : =INTERACTINNS 4+ 1%
IF INTERACTIONS LSS MUMPEOUFSTS THEN
REGIN
UOLD(UHIFORH(0.0,2.0*TPINKTIPF,SFFP));
GO TN Ul;
Fr.b;
RUSERS:=NUSEPS - 1;
IF (DENMIED GFO 1) AMD (NUSFPRS LSS MAXCUSTOMFPS)
THEN REACTIVATE GENUSEFS AFTFFP CURPPFNT;

END OF ACTIVITY USER;
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ACTIVITY ESTINATOR;
BEGIN
RCAL U1,U2,L,EPNFY, LAMNEV, FSHY, FSH2;
E1:FESLAH:=(ESLAM*T1+NARP)/(T1+NELT1);
FSM1:=(FSM1*«T1+N1AV=-LCIAY)/(T1 + DELT1);
ESM2 :=(ESH2+T1+02AV-LN2AV)/(T1 + NELTY);
ESR:= [SM1 + ESM2;
ESPF:=(ESPF*T1+NPF)/(T1+DELT1);
IF (ESN LSS LOWPESPOMSFE) AMD (HISFPRS GEM MAYCUSTOMERS) THER
BEGIN
Ul:=FSPF/FS"1 + FESPF;
2 :=FSPF/FES"2 + FESPF;
LAMNFV:= (MUSERS + 1)+ESPF/MNUSFERS;
EPNEW: =LAMMEW*(1.0/ (U1=-LAMNEY) +1.0/(U2=-LAMNEL));
IF (EPHEW LSS HIGHRESPOMSE) AMD (DENIEN GEN 1) THEN
BEGIN
NEMIED:=DEMTED-1;
MAXCUSTOMERS : =MAXCIISTNMFRS + 1;
ACTIVATE MHEY USER(1) AFTEP CUHPPFMT;
ELD:
END
ELSE IF (ESR GFO HIGHRFSPAMNSE) AND (MAXCUSTOMERS GFN MIISFPRS)
THEN MAXCUSTOMERS :=MAXCUSTOMFRS=1;
WRITE(MNUSERS,MAXCUSTOMERS, ESFP, ESLAM, ESPF,U1,12);
NARR:=HPF:=0.0;
LO1AV:=01AV;
LO2AV:=02AV;
REACTIVATE CURRENT AT TIMF + DELT1 PRIOR;
GO TO E1;
END OF ACTIVITY ESTIMATOPR;

ACTIVITY GEMERATOR;
BEGIN
G1:HOLD(NEGEXP(LAM,SEED));
IF NUSERS GFO MAXCHSTOMERS TI'EM
REGIN
PENMIED:=NFNIED+1;
GO TO G1;
END;
ACTIVATE MEW USER(1) AFTER CUPRENT;
GO TO G1;
END OF ACTIVITY GFNFRATOR;

R ey M - R i L WA b e e e e s ey s L e m e i B e e T, e
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ACTIVITY COMPUTER;
REGINM
REAL OVERHEAD,NUAMTA;
C1:EXTRACT FIRST(CPAUEUF(1)) WHFI' USEP NN
BEGIN
C2:0VEPHEAD:=,05 + STATF=*,.003;
IF PASS1 THEN

SECIN

CYCLEL:=TINF=ARRIVALTIME+OVEPHFAD,

PASS1:=FALSF;

END;
QUANTA:=UMIFORM(0.00001, . 1,SFEN);
SERVICETIME : =SERVICFTINE+PUANTA;
HOLD(OVERHEAD+QUANTA);
INCLUDECUSER, LOOUFEUF(PPIORITY)):
ACCUM(QIAV,MARPKL,Q1,-1);
ACCUM(D2AV,MAPKS,02,1);

IF IDLECIOSYS) THEM ACTIVATF 10SVYS AFTFR CURRENT;
END

OTHERWISE BREGIN
ACCUM(CPIDNLF,MARK2,CPRFST,1.0);
PASSIVATE;
ACCUM(CPIDLE,MARK2,CPREST,-1.0);
END;
GO TO C1;
CHD OF ACTIVITY COMPUTER;

ACTIVITY 10PROCESSOPR;
REG N
REAL I10SERVICF;
I101: EXTRACT FIRST(I0OUEUE(1)) WHFN USER DO
REGIN
NPF:=MPF+1;
I0SERVICE:=UNIFOPM(0.0, .2,SEEN);
HO'.D(10SERVICE);
TEMP:=UNIFORM(0.0,1.0,SEFD);
IF TEMP LFO EXITPROR THFM ACTIVATE USER AFTER CUPPENT
FLSE BFGIN
INCLUNE (ISER, CPOUENE(PRINRITY));
ACCUM(G2AY,MARKS, 02,-1);
ACCUM(CIAV,MAPKYL,N1,1);
IF IDLE(PPOCESSOR) THFN
ACTIVATE PROCESSOP AFTEP CUPPEET;
END;
END
OTHERWISE BEGIN
ACCUMCIOIDLE,MARK3, IDREST, 1.0);
PASSIVATE;
ACCUM(I0IDLE, MARKS, IDPEST, -1.0);
END;
GO TO 101;
END OF ACTIVITY 10PROCESSOR;
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READ (SEEn,STAPTUP,HAXPFOUFSTS);
URITE(? SEED', SFFD,! STAPTUP',STAPTUP,'HAXPFHHFSTS',HAYP"PHFSTS);
LAM:=1,0/10.0;
LOWRESPONSFE : =3, 25;
IGHRESPONSE:=3,5;
MAXCUSTOMFRS:= 30;
INITIALIZE:=TRUE;
T1:=50.0;
NELT1:=25,0;
FOR K:=1 STEP 1 UMTIL 20 PO
_BEGIN
INT1(K):=1.5%K;
INT2(K):=,1#k;
INT3(K):=K-1;
Fp;
PROCESSOR := NF\! COMPUTER;
10SYS :=NEW 10PROCESSOR;
UPDATE :=NEW ESTIMATOR;
GFHUSERS:=NEV/ GENEPATOR;
ACTIVATE UPDATE AT TIMF +NCLT]1 + T1;
ACTIVATE GENUSEPS AT TIME +100;
MAIN:=CUPRFEMT;
FCR K:=1 STEP 1 UMNTIL 20 nPn
ACTIVATFE MEV USER(1) AFTFP CUPPFNT,;
FOP SNAP:= 1 STEP 1 UMNTIL 15 np
BEGIN
HOLD(400.0);
ACCUM(STATEIHTEGPAL,MAPK,STATF,O);
ACCUM(CPInLE,HAnkz,CPPFST,0.0);
ACCUH(IOIDLE,HARK3,InPEST,O.n);
WPITE(' TIME AT RNNM COMPLFTION IS',TIUF,' MIIMPER OF TACKS PDOACFSSFED 1<,
COUNNT);
WRITE(' CUPRENT STATE 1S, STATL, "AVCPACE STATF e,
STATEIMTFGPAL/(TIPF-STATTI”F));.
TEMP:=SUMS/COUNT;
OUT:=SORT(SUHSS/COUHT-TFHP*TFHP);
HRITE(C' SAMPLE AVEPACF AMPM SP OF SEPVICF TIMrS ARF', TFMP, AT ;
TEHP:=(COUNT*SUHRS-SUHR*SHPS)/(FOHHT*GUHQQ-S”HS*SU“Q);
OUT:=(SUNR~TEHP*SUHS)/COUNT;
WRITE(' REGRESSION ESTIMATF OF SLAPF AMD \MTFPCFPT ANEY _TEMD, ONT);
TEMP:=SUMC/COUNT;
OUT:=SORT(SUNCC/COHHT-TFUP*TFPP);
WPITE(' SAMPLE AVERAGE AP sn pr FIPST UAITIMR TIMFS APEY _TrvD, AnT);
TEHP:=SUMR/COUNT;
OUT:=SORT(SUHPR/CDHUT-TFH"*TF“P);
WRITF(' SAMPLE AVEPAGE AtD SD OF RESPOMSE TorES A“F',T‘”P,G”T);
URITE(' PPORARILITY PROCFSSOR |§ IPLF IS',CPI“Lr/(Tlﬂr-RTﬂTTI“f));
UPITE(' PPOBABILITY INSYSTEM 1S | PLF IS',Inl"Lf/(TlP“-ﬁT"TTI“V));
UPITEC' AVFRAGE PUMPFP II' SYSTFM 1 AP 2 APF',FIAV/(TI”"-STﬁTTI“r),
C2AV/(TIME=-STATTINFF));
URITF(' TI'F TARLE NPISPLAYS RFSPNYSF A A FireTior ne STPYVIre?)
URITE(! INTERVALY, "AVFPACE Pl haumeep oF PNIVT]YY
FOF K:=1 STFP 1 UNTIL 21 PN
BEGIH
TEMP:=1F DATA(K,2) CFP 1,0 TI'CY DATA(Y, 1) /NATA(Y,2) Flar n.n;
onT:=K/10; .
1JRITF(OUT,TEHP,DﬁTﬂ(K,2));
END;
PESET;
FHp;
END OF SIMULA BLOCK:

.
’
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