
MMMM I ■ I lillllKiiWIIIIiMHIIIi

AD -770 241

SYNTAX DIRECTED ON-LINE RECOGNITION
OF CURSIVE WRITING

Yung Taek Kim, et al

Utah University

Prepared for:

Advanced Research Projects Agency

July 1968

DISTRIBUTED BY:

im
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST

QUALITY AVAILABLE.

COPY FURNISHED CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

ffr

Technical Report ^-8

■4"

Yung Taek Kim
David C. Evans

(N
O

SYNTAX DIRECTED ON-LINE RECOGNITION OF CURSIVE WRITING

July 1968

l

COMPUTER SCIENCE £lUf .)

Information Processing Systems

University of Utah

D D C

Salt Lake City, Utah

unq rrpf^:

NOV 1 ^ ; •

Mo7
lElSED ti tHJU

1

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE

*

Advanced Research Projects Agency • Department of Defense • MPA order 829

Program code number 6D30

**m:

Apf ii-'^i iif pr.biic J«*«W9;

üMrÜMiÖoa U^h^■■;lited

r,

tat WHAI

t

t

TABLE OF CONTENTS ———————————^

CHAPTER
PAGE

LIST OF TABLES fiJ

LIST OF FIGURES ^^ ty

ABSTRACT "/*

I. INTRODUCTION

1.1 Motivations

1.2 Scope and Depth

II. DATA FILTERING PROCESS .
' * ■ • • • ■ o

2.1 System Requirements a.

2.2 Noise Filtering and Curve Smoothing 7

III. FIGURE EXTRACTION ...
••••■• ±2.

3.1 Wr'.tlng Cutting and Stroke Breaking Algorithm ... 12

3.2 Stroke Naming and Relative Position Coding

Rule
 14

3.3 Character Decompositions 17

IV. SYNTAX FOR CURSIVE WRITING RECOGNITION 37

4.1 A Hierarchical Organization by the Stroke

Characteristics -., 37

4.2 Syntax SpecitIcations 39

4.3 Semantic Interpretations 40

V. IMPLEMENTATION OF THE SYNTAX ANALYZER 4£

5.1 System Analyzer /.£>

5.2 Character Compositions 55

5.3 Local Discriminating Routines 70

 --■— , "iTmrrnmrr „„.ir- lilUll'llillll'lilfllllllliHHlllliilill nwilinw wwüiniMWiiiMWfi» ■IIIIIIIIIIWUIIMüII

■

CHAPTER PAGE

VI. SELF-CORRECTING ALGORITHMS 78

6.1 Self-Corrections by Iteration 78

6.2 Stability of the Self-Correcting Algorithms 81

VII. CONCLUSION 84

7.1 Accuracy of Recognition 84

7.2 Further Work 85

VIII. BIBLIOGRAPHY 86

IX. AfPENDIX 87

9.1 Listing of Program „ 87

11

t LIST OF TABLES

TABLE pAGE

I. Syntax specifications for handwriting recognition

with self-correcting loops 41

II. Stroke combinations for circled characters 57

III. Stroke combinations for first-fixed characters 58

IV. Stroke combinations for relative characters 61

I Hi

 ~— i

I

LIST OF FIGURES

FIGURE PAGE

1. Display of handwritten word and Its recognition 5

2. X-value correction for low Initial value 10

3. X-value correction for high Initial value 10

4. Y-value correction for low Initial value 11

5. Y-value correction for high initial value 11

6. Cutting algorithm for writing "^fct" 13

7. Breaking algorithm for writing "O," 13

8. Codings and boundaries of major diagonal directions 16

9. Example of stroke naming algorithm 16

10. Example of normal sized stroke 18

11. Comparison between normal sized stroke and above

positioned stroke 18

12. Comparison between normal sized stroke and down

positioned stroke 19

13. Comparison between normal sized stroke and full

sized stroke , 19

14. Character structures by the stroke feature 21

15. Character structures by Che stroke name 31

16. Stairing characteristics for character 'z' 49

17. Stairing characteristics for character 's' 49

18. System analyzer diagram 51

19. Characteristics for the circled character 52

I w

FIGURE
PAGE

20. Characteristics for o-correction

21. Characteristics for b-correction
 • 54

22. Characteristics for osculated character 54

23. Tree organization for the relative stroke 30-1 ^

24. Tree organization for the relative stroke 302-1 64

25. Tree organization for the relative stroke 32-1 66

26. Tree organization for the relative stroke 3202-1 68

27. Characteristic evaluation for CCHEK

28. Characteristic evaluation for CVSE

29. Characteristic evaluation for GVSO y " 73

30. Characteristic evaluation for HKVSL
 73

31. Characteristic evaluation for HVSK

32. Characteristic evaluation for PCHEK

33. Characteristic evaluation for RCHEK
 76

34. Characteristic evaluation for SCHFK .
 76

35. Characteristic evaluation for VCHEK

36. Block diagram for error correcting system 82

I V

i

ABSTRACT

A syntax organization for recognition of handwritten connected-

word is studied in this work.

Each writing is cut into strokes at the middle point of every

down cave of the writing, and the strokes are named using their dir-

ectional characteristics and relative size among the strokes.

A syntax is organized using the hierarchy of the stroke charac-

teristics and self-iteration for the error corrections.

The strokes are classified by the hierarchy and processed to

combine the strokes into characters by the hierarchical characteristics.

The lowest level of hierarchy collects those strokes which can

not be combined into characters by their solid stroke characteristics

anJ organizes a two dimensional family relation for relative combina-

tion of the strokes into characters.

The local classifying routines are called for those stroke rela-

tions which require the evaluation of the relative characteristics

between the strokes for the optimal decision.

V/

i.
CHAPTER I

INTRODUCTION

1.1 Motivations

Two dimensional input devices of the computing machines attract

many new studies in the man-machine communication field.

Although a two dimensional computer input is very attractive, a

limited pattern recognition capability surely restricts its practical

value.

For this reason, those works directed toward high dimensional

interactive computer studies in software as well as in hardware have

been discouraged.

Various experiments have been performed in recognition of hand-

written, single characters and symbols on two-dimensional computer

input devices during the past decade (2,3). Experiments were also

conducted in the recognition of connected words of handwriting, using

dictionary-driven word matching programs for limited combinations of

characters (2,5).

In contrast, the object of the experiment reported here is to

recognize arbitrary, handwritten connected words as well as single

characters. In order to achieve this result, a different approach

was required.

For the recognition of cursive writings without dictionaries or

large tables, the writing was cut at the middle point of each down

cave of the writing, and a syntax was organized for these strokes

using a hierarchical system which is determined by the characteristics

of all characters.

(

I

A semantics is implemented for each level of hierarchy to eval-

uate the characteristics for more efficient discrimination at each

level of the hierarchy.

This organization produced a strong flexibility for many effi-

cient alternatives and large room for decisive factors requiring only

simple logic evaluation. In one use of this flexibility, self-

checking and self-correcting algorithms were implemented for the

specified types of errors. The criteria for stability of such itera-

tive processes were determined experimentally.

In operation, the hand-writing from a Sylvania Tablet was dis-

played on the screen of the graphic system as the characters were

written. After recognition, printed symbols were also displayed on

the screen. The tice between completion of the writing of the word

of six characters and display of the printed word was less than two

seconds.

The program was written in Algol 60 of UNIVAC 1108 and had been

run in real time and on-line under the UNIVAC 1108 EXEC II system of

the University of Utah (10).

1.2 Scope and Depth

Because the range of the handwriting pattern is broad, and

the manner of various writers is different, many syntax entries must

be examined, and many difficult organizational problems must be solved.

The accuracy of recognition and efficiency of the program is a

function of such factors as the number of syntax entries and other

complexities by improper writing.

 iminiifiiiniiiifiiiTimiiTifiT ■iniiiiiiiiiiii nr-w—11—rrWi-nnr-- n um ■ Mnl»mijmm*.^''mitmtmm^im^tiWMt*MmtmmmHmi&mmWfmKm

This experiment is concerned with recognition of cursive writing

of the twenty-six lower case letters based on Palmer's method of

penmanship (7). These letters are coded along with other popular

characters as written by normal writers for broader applicability.

Well-written Palmer's penmanship requires only a short program

for recognition without a mistake. For such writing, the cutting

algorithm would work completely. The coding of the direction of the

strokes and the relative height of the writing would no. ause any

difficulty for such good writings. The syntax would be organized in

a simple pattern and the semantics would be implemented with a rela-

tively small number of entries, which reduces the number of discri-

minating algorithms automatically.

For a relatively uncarefui writing, errors are made in cutting

the writing into strokes. Coding errors would also occur because of

the difficulty in recognizing the direction of the stroke and the

relative positions of the strokes.

The most difficult part in organizing a program for such imperfect

writing is the syntax organization and stmantic implementation. For

such writing, the syntax must have some types of and some number of

correcting algorithms, which require changes in hierarchy of the system

and cause each iteration to contain complicated feedback loops.

In this experiment, relatively broad correcting algorithms were

implemented and quite diverse writings are recognized by this algorithm.

Figure 1 shows the display of the handwritten word and its

recognized symbols on the display screen of the graphics system at

the University of Utah.

■

■

.

Figure 1. Display of handwritten word and its recognition

■ - ■ ■! ! —

MlHMMniilMiliMI

CHAPTER II

DATA FILTERING PROCESS

2.1 System Requiremeuis

The graphics system at the University of Utah for cursive

writing recognition consists of a UNIVAC 1108 as the central computer

and a PDP-8 as the terminal machine with an Information Display inc.

system to generate the picture and a Sylvania Tablet as the two-dimen-

sional data input device.

The UNIVAC 1108 has 36 bit words and 3 control bits for each

input channel anci output channel. The PDP-8 has 12 bit words for each

input and output channel, and skip bit and interrupt bit for its

input-output system. The two machines are coupled together through a

linkage logic which modifies the word size of each machine and controls

the order of transmission of the words.

The analog outputs of the Sylvania Tablet are connected to analog

to digital converter to sample them into digital outputs and are trans-

mitted to the PDP-8 accumulator. The display system and typewriter are

also connected into the FDP-8 accumulator for communication during the

processing. Since many machines are connected together, many alter-

natives in nhe system programming as well as seme limitations for

efficiency have to be considered for this graphic system.

The speed of machine and efficiency of the system program must be

considered with higher priority in designing the system especially f r

the interactive design.

7

The resolution of the tablet was another important factor in

designing experiments because it determines the minimum size of the

writing which can tolerate tie distortion of the sampling process.

The resolution of 1% per inch is required for normal writing, and

higher resolution reduces the filtering part of the program such as

noise filtering, density control, and curve smoothing processes.

A swapping mode is available from the graphic system at the Uni-

versity of Utah, written for the UNIVAC 1108 EXEC II system. Under

this mode, the user takes only the running time from the central com-

puter, which provides a good flexibility during the experiment.

The program was compiled and coded into relocatable language at

a secondary memory of the central computer awaiting the next swapping

interruption. While waiting for the 1108 to run the program, the

terminal machine, the; PDP-8, is running to pick up data from the tab-

let and display the writing on the CRT. As soon as the central com-

puter is interrupted to swap with new data which is provided by the

terminal machine, the swapping mode is executed to run the program

with the new data.

2.2 Noise Filtering and Curve Smoothing

The locations of the stylus on the tablet are sampled by the

analog to digital converter and transferred to the PDP-8 accumulator.

The density of the sampled data can be controlled by the system pro-

gram and by the filtering program simply checking the distance between

the two consecutive samples.

8

The rate of the sampling process and the speed of system program

for th?; collection of the sampled data are very important factors for

filtering purposes. The speed of writing is always slow enough for

the converter to sample the writing at any point. The system progra;.»

has to be fast enough to look at every sampled point. These factors

are the main limitations to the density of handwriting sampling.

Finite resolution of the tablet, as well as noises due to hard-

ware failure require the checking and correcting algorithms which vary

depending on the purpose of the experiment. A four-point noise check-

ing and correcting rule was implemented for the cursive writing recog-

nition experiment.

This algorithm operates as follows:

In Figure 2

if X(l) less than X(2) and X(2) greater than X(3) and X(3)

less than X(4)

then CX(2) = X(l);

In Figure 3

if X(l) greater than X(2) and X(2) less than X(3) and X(3)

greater than X(4)

then CX(2) = X{1);

In Figure 4

if Y(l) less than Y(2) and Y(2) greater than Y(3) and Y(3)

less than Y(4)

then CY(2) = Y(l);

9

In Figure 5

if Y(l) greater than Y(2) and Y(2) less than Y(3) and Y(3)

greater than Y(4)

then CY(2) - Y(l);

Other algorithms can be compared to the four-point algorithm

regarding the reliability of the system. For instance, the three-

point correcting algorithm is quite strong for checking and correcting

purposes, but there would be a high probability of destroying informa-

tion by changing the values at the sharp edges or sharp curves.

A curve smoothing rule could be implemented using some interpo-

lating algorithms. This idea is generally the same as the three point

rule except using the median value Instead of current value. Espe-

cially for the iterating cases, thery would be a big chance of destroy-

ing the original information producing wrong codings.

10

*('/>

C*(l)(-

Original Curve

Corrected Curve

Figure 2. X-value correction for low initial value

X(V)

Original Curve

Corrected Curve

K(1)<C ^"^

Figure 3. X-value correction for high initial value

11

Y(t)
Original Curve

Corrected Curve

Yd) cyci)

Figure 4. Y-correction for low initial value

Y(t) Original Curve

 Corrected Curve

__CY(2)

YM

Figure 5. Y-correction for high initial value

/Ä-

CHAPTER III

FIGUEIE EXTRACTION

3.1 Writing Cutting and Stroke breaking Algorithm

The normal writing of a word consists of several segments of

piecewise continuous writing. In this experiment each discontinuity

is marked at the discontinuous point by the third dimensional variable

in the data structure. Each segment of writing is then cut into

strokes at only the lowest point of every down cave of the writing, and

each piece of stroke is indexed for further processing.

This low point cutting algorithm carries more information for

later evaluation than any other algorithm because all high point and

middle point information is completely available as in the original

data.

The low parts of writing are always less important for the recog-

nition than any other part of the writing, because nearly every written

character ends by tailing down the last part of the last stroke of the

character.

Each stroke is broken into branches at the points where the first

difference of the X or Y variable changes the sign. Each branch is

indexed and a two dimensional marker is used to point to the boundaries

between branches.

This marking algorithm carries all data of the original system

without losing or destroying any part of the feature, and this method

13

mu
X

"«►A^l " Figure 6. Cutting algorithm for writing "TLÄ.

4
MMAXM

I MMAXf/.O) I
MM Ay (2,1;

C—MMAX (»A)

Figure 7. Breaking algorithm for writing 'bu'

•»MU

M MM -■■■••.'-. WMM

14

enables the programmer to operate a large amount of data even with

small capacity of memory.

The cutting and breaking algorithms are shown in Figure 6 and in

Figure 7.

3.2 Stroke Naming and the Relative Position Coding Rule

Each stroke was broken into several branches to code the direc-

tion of the branches for naming of the stroke.

As soon as the stroke changes its major direction, a new direc-

tional code is assigned, which is added to the previous code multi-

plied by ten; this is repeated until the coding of the entire stroke

is completed.

Fr.'.-x Jiagonal major directions are used in this work, and they

are defined below:

if X and Y both decrease then Code = 0;

if X decreases and Y increases then Code = 1;

if X increases and Y decreases then Code = 2;

if X and Y both increase then Code = 3;

The horizontal stroke and short stroke were specially coded using 7 in

this work.

In this procedure the stroke coding has less than six or seven

digits because normal hand writing itroke does not have more than five

or six directional changes.

The diagonal direction rather than rectangular direction was

employed in this work because it has many advantages compared to other

15

directional coding algorithms. The checking and correcting algorithm

for the directional code aud boundary marker would have great advan-

tage because of the characteristics of the diagonal direction.

The definition of major diagonal directions and the boundary of

the four directions are shown in Figure 8 and the examples of the

named strokes are shown in Figure 9 with their names.

Another important feature in hand writing is the information of

relative stroke sizes and the relative positions of the top parts and

bottom parts of the neighboring strokes. This idea may be implemented

in many different manners depending on the writing. For careful writ-

ing, the absolute normal size might be implemented for the program

efficiency, but for poor writing the relative normal size might be

used to check the normal size for each character.

The relative size and positions were classified as following:

1. Normal sized stroke;

Every character has this size of stroke as the first part

or last part except the characters as '-&', ^p', l/', yjfc\

The normal size and position of stroke is shown in Figure 10.

2. Above positioned stroke;

Some strokes are significantly large because of the upward

extension compared to normal sized strokes. For example,

the second stroke of the character let is larger in upward

direction compared to a normal sized stroke.

This example is shown in Figure 11.

16

^ major dirciction

Boundary of
major direction

Figure 8. Codings and boundary of the major diagonal directions

IOX
302

Figure 9. Example of stroke naming algorithm

17

3. Down positioned stroke;

Some strokes are longer in the downward direction compared

to the normal sized stroke.

An example using character '«■' is shown in Figure 12.

4. Full sized stroke;

The character ^' is the only character having a full sized

stroke out of lower case alphabets, which extends above and

below a stroke of normal size and position.

The example is shown in Figure 13.

In the program, the positions were named as following:

if normal sized then pocode - 1

if above positioned then pocode = 2

if down positioned then pocode = 3

if full sized then pocode = 4

else then pocode = 0;

3.3 Character Decomposition

The writing cutting algorithm and the stroke breaking algorithm

are implemented for each different pattern of each lower case letter

of the alphabet. The patterns of each character are picked up from

Palmer's note (7) and from the commonly used writings.

The range of patterns which were implemented in this coding

determines the capability and the reliability of the system.

The features of decomposed characters are shown in Figure 14.

Nearly all writing patterns of lower case alphabets generated by the

normal writers who did not have any writing training for the standard

writing are coded.

X

Figure 10. Examples of normal sized stroke

18

■^r

Figure 11. Comparison between normal sized stroke
and above positioned stroke.

X

Figure 12. Comparison between normal sized stroke
and down positioned stroke

Figur« 13. Comparison between normal sized stroke
and full sized stroke

-*■■ '■ ' ■' ■-

20

The first stroke in the figure is the first part of the character

and the second stroke or the last stroke in the figure is the next

part of the character for the character composition.

In Figure 15, the possible stroke combinations for each charac-

ter composition which was listed in Figure 14 by the stroke feature

is shown using the stroke name.

There are several different types of character composition in

stroke combinations. Some characters have only a single column of

strokes and others have two or three columns of strokes. The charac-

ters which have a single stroke column will be recognized by the

characteristics of the stroke in Chat column, and the characters which

have two columns of strokes would be recognized by identifying the

stroke combination between any stroke in the first column and any

stroke in the second column. The three column characters would have

every possible stroke combination using any one stroke from each

column and the characters would be recognized by identifying one of

the characteristics in the combinations.

Each stroke is classified by two coding names, the first name

is the directional coding and the second name is positional code.

The strokes which do not have the positional code are classified by

only the directional coding and the positional code is not considered

for the particular stroke combination.

The stroke which is m eligible in character structure is listed

as 'neglected' and the stroke which is negligible in stroke combination

and is significant for evaluation of stroke characteristics is listed

as 'optional' in the stroke column of Figure 15.

 >«■■> ■■■ --■ I..I.—..

a-l a-2 a-3

21

First Stroke (a-2)

< /cr A J A
First Stroke (a-l) Second Stroke (a-l)

A /f A A A A
Second Stroke (a-2)

Z^
First Stroke (a-3)

zz
b-1 b-2

First Stroke (b-1)

A /! A
Second Stroke (a-3)

^Z
Second Stroke (b-1)

9
Second Stroke (b-2) Second Stroke (b-2)

Figure 14. Character structures by the stroke feature

f * nxx
c-1 c-2 c-3

22

CJC
Strokes (c-1)

ZXZ
Strokes (c-2)

27
Strokes (c-3)

d-1 d-2 d-3

crr^-r
First Stroke (d-1) Second Stroke (d-1)

X23
First Stroke (d-2) Second Stroke (d-2)

Figure 14. Continued, the second

^T
First Stroke (d-3)

£.
e-l

z
Second Stroke (d-3)

23

I.

Strokes (e-l)

f-1

First Strokes (f-1)

g-1 g-2 g-3

C^C I
First Stroke (g-1)

Second Strokes (f-1)

Second Stroke (g-1)

Figure 14. Continued, the third

^zs
First Stroke (g-2)

zzz
First Stroke (g-3)

h-1

First Strokes (h-1)

A.
i-1

Second Stroke (g-2)

Second Stroke (g-3)

A^Ä
Second Strokes (h-1)

24

First Strokes (i-1) Latter Stroke (i-1)

Figure 14. Continued, the fourth

t
J-l

First Stroke (j-l)

X^
k-1 k-2

Ö
First Strokes (k-1)

/

1-j

25

Latter Stroke (j-l)

7r~7f
Second Strokes (k-1)

First strokes (k-2)

^2
Middle Strokes (k-2)

ZV^X
Last Strokes (k-2)

Figure 14. Continued, the fifth

V

Strokes (1-1)

m-1

TT^,
First Stroke (m-1)

7L
n-1

First Stroke (n-1)

Gr/O S
o-l 0-2 o-3

First Stroke (o-l)

4__Z
Middle Stroke (m-1)

Ak/i/IA
Last Stroke (m-1)

/i i n \nkTTTK
Second Stroke (n-1)

U c r \o \ A K
Second Stroke (o-l)

26

Figure 14. Continued, the sixth

A /i ii loy-m
First Sttoke (o-2)

^^

First Stroke (o-3)

FE
p-1 p-2

First Stroke (p-1)

First Stroke (p-2)

fW
q-1 q-2 q-3

27

Second Stroke (o-2)

^XX_A
Second Stroke (0-3)

Second Stroke (p-1)

V
Last Stroke (p-1)

Second Stroke (p-2)

Figure 14. Continued, the sevenr'.

< /c r
First Stroke (q-1) Second Stroke (q-1)

ZZ5
First Stroke (q-2) Second Stroke (q-2)

^1_2
First Stroke (q-3) Second Stroke (q-3)

.

ZL
r-l

^ZK^Z^
Strokes (r-l)

2IX
ä-l s-2

23 V X
First Stroke (s-1) Last Stroke (s-1)

J7LLK
Strokes (s-2)

Figure 14. Continued, the eighth

t
t-1

First Stroke (t-1)

H
u-1

First Strokes (u-1)

V
v-1

First Stroke (v-1)

w-
w-1

29

Second Stroke (t-1)

^ J A \A7n\
Second Strokes (u-1)

lUÄXJZJl
Second Stroke (v-1)

4/1(1 \A TTA
First Stroke (w-1) Middle Stroke (w-1)

Figure 14. Continued, the ninth

A r

x-l

Last Stroke (w-1)

'N < r / -

First Stroke (x-l)

y-1

Second Stroke (x-l)

A/fA/l A 1

30

First Stroke (y-1)

Tl
Second Stroke (y-1)

8-1 z-2

5
strokes (z-1)

2Z
5Z2

First Stroke (z-2) Second Stroke (z-2)

Figure 14, Continued, the tenth

31

Character
Patterns

First
Stroke

Second
Stroke

Third
Stroke

CL
02-1

01-1

102-1

10-1

302-1

30-1

32-1

Neglected

<X
302-1

30-1

3202-1

302-1

30-1

32-1

Neglected

&

202-1

20-1

302-1

30-1

32-1

Neglected

I
3102-2

310-2

302-2

30-2

312-1

32-1 Neglected

J-
3102-2

310-2

302-2

30-2

312-1

32-1 Neglected

C 102-1

02-1

Neglected

c 302-1

30-1

3202-1

Neglected

Figure 15. Character structures by the stroke name

32

Character
Patterns

First
Stroke

Second
Stroke

Third
Stroke

t 202-1

20-1

Neglected

ol
102-1

02-1

10-1

0-1

302-2

30-2

32-2

Neglected

<L
302-1

30-1

3102-1

302-2

30-2

32-2

Neglected

t 202-1

2.0-1

302-2

30-2

32-2

Neglected

X 3102-1

302-1

Neglected

/

3102-4

302-4

310-4

30-4

Optional

^

102-1

10-1

02-1

0-1

30-3

Optional

Figure 15» Continued, the second

Character
Pattern

f
^

/

X
f

i
^

i
m.

First
Stroke

302-1

30-1

3202-1

202-1

20-1

310-2

30-2

302-1

32,-1

30-3

310-2

30-2

310-2

30-2

3102-2

302-2

30-2

30-1

20-1

320-1

1

33

Second
Stroke

30-3

Third
Stroke

30-3

3202-1

302-1

32-1

Optional

Optional

Neglected

Neglected

Optional

3102-1

302-1

320-1'

30-11

Neglected

32-r

12-13

2-11

320-1

30-1

3202-1

302-1

320-1

30-1

32-1

Figure 15„ Continued, the third

The positional coding is not required in stroke combination

34

Characrer
Pattern

First
Stroke

Second
Stroke

Third
Stroke

30-1 3202-1

71
20-1

320-1

302-1

320-1

30-1

Neglected

32

02-1 3102-1

&

0-1

102-1

312-1

302-1

Neglected

10-1 32-1

/&

302-1

30-1

3202-1

3102-1

312-1

302-1

Neglected

' 32-1

X 202-1 3102-1

d- 20-1 312-1 Neglected w 302-1

32-1

p 30-4

30-3

320-11

30-11
12-11

2-11

■ps 30-4 320-1 Neglected r 30-3 30-1

P 30-4 32,02-1 Neglected

\ 1 30-3 302-1

Figure 15. Continued, the fourth

I
The positional coding is not required in stroke combination

35

J Character
Pattern

First
Stroke

Second
Stroke

Third
Stroke

02-1

0-1

102-1

10-1

302-3

30-3 Optional

^

302-1

30-1

3202-1

302-3

30-3 Optional

^

202-1

20-1

302-3

30-3

Optional

/V 3202-1

32-1

Neglected

f
1

^
30-11

320-11
12-11

2-11
Neglected

>

30-1

320-1

Neglected

\ ^

302-1

3202-1

Neglected

X
302-2

30-2

32-2

Neglected 3-1

7

^

302-1

30-1

32-i

302-1

30-1

32-1

Neglected

Figure 15. Contj inued, the fifth

The positional coding is not required in stroke combination

36

% #

r

Character
Pattern

First
Stroke

Second
Stroke

Third
Stroke

V
320-1

30-1

20-1

3202-1

302-1

302-1

32-1

Neglected

■ur
302-1

30-1

02-1

0-1

302-1

30-1

32-1

302-1

32-1

90 32-1

302-1

Neglected 0-11

7

^

302-1

30-1

3202-1

320-1

30-3

Optional

If 32020-31

3020-31

Optional

1 320-1

30-1

320-31

30-31

20-31

Optional

Figure 15. Continued, the sixth

"'"The positional coding is not required for the stroke combination

.

r
7-

i

7

CHAPTER IV

SYNTAX FOR CURSIVE WRITING RECOGNITION

4.1 A Hierarchical Organization by Stroke Characteristics in the

Character Structure

The characteristics of character structure which were described

in the previous chapter are used in this section for the construction

of a syntax for cursive writing.

The group of strokes for each level is selected by the stroke

characteristics and stroke functions. The selection is made such

that a processing at a given level is independent of any lower level

process that may exist.

The highest level is processed first using its own strong char-

acteristics with highest reliability for recognition of the writing.

Then the next higher level is processed in the same manner using its

own characteristics with a high reliability for the recognition ard

without further reference to any higher levels.

The other lew levels would follow the above routine for their

individual processing steps until all the strokes were processed.

The Baye's theorem (8) can analyze this organization of writing

recognition in terms of conditional probability. As long as the higher

level keeps better reliability, this syntactic organization would

promise optimal reliability for the entire experiment.

Each characteristic of the stroke is classified and the system

hierarchy is listed in the following:

38

^y» I. Unique characters:

Some stroke can occur in a particular character and this charac-

ter can be recognized immediately. Such strokes are independent of

.my other stroke in the system. Characters containing these strokes

are recognized at the highest level of priority. An example is the

letter 'a.'

IIo Stairway characters:

Some characters have a stroke which has another stroke positioned

just underneath cf the first stroke to build a stairway.

Examples: '^ ', L^', • p-', 'X'

III, Intersecting characters:

Some cttoke intersects another stroke to build a character.

Examples: V£ ', '#-'

IV, Pointed characters:

A short stroke points certain positions regard to some strokes to

specify some characters.

Examples: L^/', '^'

V Circled chaia.ters:

Some characters begin with a circle and the first stroke of the

circle is required to be the normal sized stroke.

Examples: ' CU', ' (£'* * ft \ ' #" , ' £'

VI, First-fixed character

Some strokes are employed to build a character only as the

first stroke of the character The size of this group can be varied

by changing the order oi the hierarchy.

Examples: 'A.\ 'Ji*

39

VII. Osculated characters:

Checking the osculating property between the neighboring strokes,

it is possible to realize whether they are members of the same

charactti..,

Examples: 'TTZ,', '72/

VII, Last-tixed character:

Some strokes are employed to build a character only as the last

stroke of the character. The size of this group will vary depending

on the priority of this level

Examples: ''V', 'if'

IX, Relative Characters:

Other strokes which do not belong to the above groups are called

relative strokes. They will be processed as relative strokes by the

intormation which they carry for further decision. The algorithm will

be discussed in later chapters using more complicated routines,

4 2. Syntax Specifications

The organization of syntax would vary depending on the system

specifications such as the range of writing pattern and carefulness

of wrictrs, even for the same text„ This specification would be very

complicated tot the writings of uncareful and untrained users, be-

cause a correcting system has to be implemented in addition to the

basic system.

A self correcting algorithm was used in an early paper (6) for

character recognition using a reference generator for the feedback

lOOp;

v/-

40

A different implementation for the correcting loop is used for

this cursive writing recognition using syntax-directed logic.

In Table 1 the syntax specifications are shown using a list

procedure language in a formalism similar to Bakus normal form (1).

The first classification, second classification, third classifi-

cation, fourth classification, fifth classification, sixth classifi-

cation would form a complete routine for writing recognition in case

of the users who write well

A correcting loop which includes the third and fourth classifica-

tion is inserted between the second classification and the fifth

classification of the above system to correct errors in third classi-

fication and fourth classification of the system.

A new system was necessary, because the priority of operation is

changed by the new considerations The complexity of an error correc-

ting system is a function of the error priority which is determined by

the types of error and the levels of error considered.

In this work the characters 'y^' and •*-' are checked and correc-

ted for some users who fail to give enough down cave of the second

stroke of the character .

A correcting loop is shown in the syntax specifications of Table I,

and the iteration idea is also shown in the entries of the specifica-

tions. The semantics is explained in the next section.

^-3 Semantic Interpretations

The figure extracting procedures are applied to the structure of

the sampled data system to name each stroke for the next recognizing

dIgor 11hm .

Al

i

TABLE I

Syntax specifications foi handwriting recognition
with self correcting loop

<characters>

^correcting loop-

<o-covrection'

<b-correction-'

^first classificatton>

<second cla3sification>

<third classification-

<fourth classification

<fifth cla3sification>

<sixth classification:^

''unique character^

<stairway character:-

<intersecting character?

<pointed character^

<clrcled character■•

<first-fixed character--

•osculated character^

<last-fixed character^

<relatlve character-

: = <first classificationxsecond classifica-

tionxcorrecting loopxflfth classifica-

tion><sixth classification

:=<o-correct.ionxb-correction>

:=<third classificationxfirst classifica-

tionxsecond claesificationsi

:=<fourth classificationxfirst classifica-

tion--'second classificationxthlrd

classlfication>

-unique characterxstairway character>

=<intersecting characterxpointed character

=<circled character>

= <-first-fixed character>

=<osculated character><last-fixed character>

=''relative characters

- '/3 I

- '2'/'*'

= •tf^7,^,/,ö'7,^7,^,

= *& rt** r JL* r & r & rX> rv iw

42

^p After each stroke is named by the early procedures, the routines

of classification are called to check the characteristics of each

stroke and classify the strokes by their individual characteristics.

Each level of classification is studied and explained in the

following, displaying the structure and characteristics of the level.

<first classification^:

The string of the strokes is cuecked and classified for the

first time during this routine, and tie following characters are

recognized:

<unique character>:

The following strokes are coded as the unique characters. The

symbol SD(I) is defined as the Ith stroke of the string and

CHA(I) is defined as the Ith character of the string,

if SD(I) = 320201 or 3020i or 2020

then CHA(I) = 'z'

<stairway character":

The stairing property is checked between the neighboring strokes

for certain strokes, and the following stroke sequences are recog-

nized as the stairir.g characters,

if SD(1) = ^O1 or 301

and SD(I+1) = 320 or 30 or 20

then CHA(I) = 'z'

and SDd+l) = 32 or 12 or 2

then CHA(I) -'s'

^hese strokes do no-, have positional code and they are used regardless
of the positional value.

43

and SD(I-l) - 30 or 310

and SD(I+1) = 32 or 12 or 2

then CHA(I) = 'p' or 'k'

Each sequential combination might require further classifying

routines depending on the number of members in that class.

<8econd classification

After the first classification, the second classification follows

to check the second level characteristics. The following characters

belong to this level.

intersecting characters

The intersecting property is checked in this step and the strokes

were coded as following:

if SD(I) = 0 or 7

. / and <other strokes which are intersected by above strokes>

then CHA(I) = 'x' or V

<pointed characters

The pointing property is checked during this step and the follow-

ing strokes are coded as the pointed characters:

if SL(I) = 7

and <other strokes which are pointed by above stroke>

then CHA(I) = '1' or 'j'

<o-correction>

The characteristics of character 'o' are checked and other errors

will be corrected which were generated by the character 'o'.

44

<thlrd classifications

The circled characteristics are checked for this level characters.

<circled characters

The following strokes were coded to the characters of this level,

if SD(I) = 0-1 or 10-1 or 02-1 or 102-1

then check character ,^" and recognize it

and correct the related informations

and SD(I+1) = 30-2 or 32-2 or 302-2

then CHA(I) = 'd'

and SD(I+1) = 302-3

then CHA(I) = 'q'

and SD(I+1) = 30-3

then CHA(I) = 'g1 or V

and SD(I+1) - 30-1 or 32-1 or 302-1

then CHA(I) = 'a'

if SD(I) = 302-1 or 3102-1 or 3202-1 or 30-1 or 202-1 or

20-1

then check the character 'P' and recognize it

and correct other related informations

and SD(H-l) = 30-2, 32-2, 302-2

then CHA(I) = 'd'

and SD(I+1) = 302-3

then CHA(I) = 'q'

and SD(I+1) = 30-3

then CHA(I) = 'g' or 'q'

.

45

ü and SD(T+1) - 30-1 or 32-1 or 302-1

then CHA(I) ■ 'a'

Some classes might require further discriminations depending on

the complexity of the class.

■

<first classification^<second classification in this level is

same as defined at early step.

<b-correction>:

The characteristics of a character l^' are checked and the distorted

information by the character ,>ö^', is corrected during this procedure.

<fourth classifications

The strokes which are the first stroke of each character are checked

to be classified as this level of character.

<first-fixed characters

The following strokes are coded as the first-fixed characters

if SD(I) = 3102-2 or 302-2

then check the characteristics of the character ,xV', and

recognize it. Correct all related informations

if SD(I) = 310-2 or 30-2

and SD(I+1) = 32-1

then CHA(I) - 'h' or V

correct informations related to J/V*'

and SD(I) - 3202-1 or 302-1

then CHA(I) - 'h' or 'k' or 'b'

correct informations related to l
>^

J

r'

j
46

and SD(I+1) = 30-1

then CHA(I) = »h» or 'b'

correct informations related to *J/%

else check character 'b' and recognize it

correct informations related to \J(r*

and <first claSSification>, Second classification>, <third classi-

fication> are same as defined at early steps.

<fifth classifications

The osculating characters and the last-fixed characters are

checked during this step.

<osculating chai,tcters>:

The following strokes are coded to be the characters of this level

if SD(I) = 32-1 or 320-1 or 30-1 or 20-1

and SD(I+1) = 302-1 or 3202-1

then CHA(I) = 'n'

and SD(I+1) = 32-1 or 320-I

then CHA(I) = 'n'

and SD(I+2) = 30-1 or 32-1 or 302-1 or 3202-1 or 320-1

then CHA(I) = V

<last-fixed character>:

The following strokes are coded as the last-fixed characters

if SD(I) - 312-1

and SD(I-l) = 320-1 or 302-1 or 30-1 or 202-1 or 20-1

then CHA(I) = 'v'

;

47

<8ixth classifications

This step collects all other strokes which are not processed

previously until this step.

<relative characters

The following strokes are coded as the relative character. The

detailed coding procedures for this particular character are

analyzed in the next chapter,

if SD(I) - 32-1

then CHA(I) - 'r' or V or V or V

if SD(I) = 320-1

then CHA(I) = 's1 or 'r' or V or 'y'

if SD(I) = 3202-1

then CHA(I) - 'r' or 's' or V or 'y'

if SD(I) = 30-1

then CHA(I) = 's' or 'u' or 'v' or V or 'y'

if SD(I) = 30-3

then CHA(I) = 'p'

if SD(I) = 302-1

then CHA(I) = 'c' or V or 'r' or 's' or 'u' or V or V

The entire program is listed in Appendix 9.1.

w

, CHAPTER V

IMPLEMENTATION OF THE SYNTAX ANALYZER

5.1 System Analyzer

A string of strokes iti e-i- to be processed by the recognizing

algorithms after a writing is completely coded.

The first classification checks the entire string of strokes as

a beginning part of the recognizing algorithm. The unique characters

are encoded from the stroke characteristics and the stairway charac-

ters are coded from the stairing characteristics.

The stairing properties are defined for a couple of different

cases as following:

In Figure 16

if (Y(3)-Y(2))/(Y(1)-Y(2)) less than 0.7 and

(Y(3)-Y(2))/(Y(3)-Y(4)) less than 0.7 and

(X(3)-X(l)) less than (Y(l)-Y(2)) then

stairing is true.

In Figure 17

if X(3) less than X(l) and

X 4) greater than Y(3) then

stairing is true.

In the second classification level, the intersecting characters

and the pointing characters are coded by their characteristics.

The intersecting characteristic is a geometric intersection

between any two strokes, and the pointing characteristic is a simple

.
49

Figure 16. Stalring characteristics for character 'z'

Figure 17. Stalring characteristics for character 's1

50

checking for the distance between the point and a head of the strokes.

Such an algorithm can be checked by evaluating a simple arithmetic

feature for the characters.

The complete system Is shown In Figure 18 and the correcting

algorithm will be discussed at the next step.

During the third classification the circled characteristics

will be checked before any correcting procedure Is applied.

The circled characteristic is defined as follows:

In Figure 19

if position (2) - position (1) is less than NY/4

then circled is true.

After the circled property is checked, the character o-correction

algorithm is called and the other errors are checked and corrected.

In Figure 20

if OX is greater than NY/5 or NY/OY is less than 2.0

then o-correctlon is true.

As soon as the o-correction is checked, the neighboring stroke

will be redefined and the number of the Iteration will be incremented

by one for each correction.

This additional iteration will recall the classifications which

were previously made. Since the error is corrected and the neigh-

boring information is corrected, it is very necessary to scan the

system again and reprocess the entire string.

The b-correction routine is processed at the next classification

step. The characteristics of the character 'b' are checked and then

Figure 18. System analyzer diagram

52

HY

1~

X

Figure 19. Characteristics for the circled character

™ Figure 20. Characteristics for o-correction

53

äL other correcting routines are called for the correction of the distor-

ted information which was generated by the error in the character Vv''.

The characteristics of the character yJr* are defined as following;

In Figure 21

if (position (2) - position (1)) is less than

(position (1) - position (3))/4

then b-correction is true.

As soon as the b-correction is suggested by the error checking

routine, the neighboring stroke would be checked and corrected and the

number of the iteration is incremented by one. During this iteration,

the higher classification level will be called to recheck the entire

string including the newly corrected strokes.

At the fifth step of classification, the osculated characters

1 and the last-fixed characters are checked and processed.

The osculating property is defined as following:

In Figure 22

Measure ND at each point of the line from point 1 to 2

count the number of times for the following cases:

case Is ND less than NY/5

case 2: ND greater than NY/5

if case 1 is more than case 2 then osculation is true.

The character VW* requires another osculating operation for the

next stroke to identify the property of character '^ from character

5A

Y

/)

A 1 HY

0 X

Figure 21. Characteristics for b-correction

A.

Figure 22. Characteristics for osculated character

55

The last-fixed characters are coded from the stroke characteris-

tics and stroke functions for the particular strokes.

The remaining strokes which were not processed by the previous

classifications are collected to be processed by the local analyzer

to use the Idea of the relatively discriminating classification.

5.2 Character Compositions

Most characters are recognized by the combination of the matched

strokes during the classifying steps. The syntax organization is

specified for the optimal combination of strokes by their characteris-

tics in this work.

The combinations in higher level strokes are more solidly defined

and the recognition is more reliable than that of lower level groups.

The unique characters, the intersecting characters and the

pointed characters would have special combinations for the character

composition because their classifications are specified quite uniquely

by their characteristics as pointed out in the section on semantic

explanation.

For the stairing characters, the characters Vrt', '/*'', are

discriminated from the characteristics of character '/ä^' using the

local routine HKVSL and the character 1^' or Vrtt' is identified by

the local routine HVSK for the final decision of recognition.

The local discriminating routines are studied in the next section

of this chapter in more detail.

T^.

irm

y

56

The possible number of stroke combinations for the low level group

of strokes is increased and the discriminating algorithms are more

complicated for each class of combination in this lower level.

The circled characters have the fixed stroke combination for the

character composition, and the stroke combinations for this classifi-

cation are defined in Table II. The row strokes are the first strokes

of the characters defined in the boxes and the column strokes are the

last strokes of the characters defined in the boxes.

In Table II, most boxes are well defined with a single character,

and soniB other boxes have two characters. For the boxes having char-

acters 'ö- ' and 'Ä/ ' together in that box a discriminating routine

GVSQ is called to evaluate the comparative characteristics between

the characters and for the boxes having characters 'A/* and *&%

together in that box, the character o is picked out by the o-correc-

ting routine before getting any other process for this level.

The local routine GVSQ is presented in next section for further

discussions.

For the first-fixed characters, the character combinations are

shown in Table III. This table is similar to Table II except that it

has a parent node. This parent node will build a tree using other

strokes in the same column as the children nodes.

From the Table III, the column strokes 02-1, 102-1, 310-4, 3102-4,

30-4, 302-4 have only one character as the parent node without any

children node. The parent strokes would be coded as the characters

in the boxes«

w

u
0)
4J

6
T)

OJ
^H
O
M

•H
U

O

Ö
O

2

■ 1 i
CM d o o
O rt X) •CT CTl O O o TJ
CM oq cd cd
CO

1 1
CM d o o
O at T3 •CT Ol O O o •a
rH oq td cd n

I a o o
CM nj 13 •CT CT O O O •CT
O M ni cd
CO

1 cr o

o o tfl -d •CT CT O o O •CT
CO M cd cd

iH
CT1 o o

CM (d TS •CT cr o 0 O •CT o 6£ cd cd
CM

1 CT o o o cd T3 rr* CT o o O •CT
CM « cd to

rH
1 CT o o

CM td •a TJ CT o o o "0 o M (d cd
.H

1 CT o o o td t3 •CT CT o o o TJ
rH til cd cd

H
1 CT o o

CM td T> T) CT o o o •CT o 00 cd td

rH CT o o
1 !d T) •o CT 0 o o •CT

O M td td

i-4
iH CM CO H 1 iH

I
CM

1
CO

1
I

CM
1

CM
r

CM
1

o
CM
o 1

CM
rH

I
CM

I
o 2 O O O O r-t rH H CM CM
CO CO CO CO CO CO CO CO CO CO CO

57

JM

58

Z

1

M

1
eg U-4
o
CO

(N CM
1 ja

cs
o ai
fO

1 1
O m
fl

CM
CM

1
43

xi
^5

J3
M

o o< ja Xi

CO
U ^s-
01 l
4J eg
CJ o H-l
ca iH
M cn
cd

X!
CJ

1 CM -a CM JQ
0) O
X r-l c>J

•H CO

4J
M co ■J-
M U 1
H O o IH

w CO
hJ

o 1 "
H cs CM n

a
1 o rfi

ja
M

J3
M

o
•H

H
CO

o< X J3
4J
8 a

•H H ^ 1 -H i-H
§ CM

O It s s
U rg > ;>
0) •i
M iH r^ ■H 4-> 1

o
eg

^ 3
> >

1 1
CN
O •J
r-l

1 1
CM a
O

4J H
C rH 1
a) a; r-t 1 H CM
Ü 'S 1 CM 1 o

.
2 2 o O CM CM o. c JLI CO CO

a
a o
o
(U
M

•H
^
00
o
o
0)
M

O
4J

&
(U
*J
CO

Vl
a»

X!
4-1
o c
nj

CD
(U
n

•H
3
O"
0)
M

-a •
e a 3 x

u
4J •H
•H M

O
<U 00
N H

•H CO
^H

CC 00
<!i c
U •H

4J
o Ü
4J 0)

u
■a u
(U o •u u
<u

tH (U
a £i ^ 4J
o
o CO

(U
4-1 M
o •H c 3

cr
CO <u

•H C
3 x
M u
cu <u
4-1 4J
a u
0) n)
M u
cd CO

CM

f
ä

'

59

The columns 20-1. 202-1 have only children nodes without having

any parent node like the columns in Table II. The local routine

VCHEK will be called to discriminate the characters V and V which

were in the same box.

The columns 3102-2, 302-2 have two characters in the parent node

without having any children node. The b-correcting routine would be

called to check and recognize character b and correct the neighboring

informations which might have been distorted by the character b.

For the column strokes 310-2. 30-2, a tree is built and analyzed

as in the following:

if SD(I) = 310-2 or 30-2

and SD(I) is the last stroke of segment of string

then CHA(I) = '1'

and SD(I+1) = 30-1 or 32-1

check *JbA* calling HKVSL

if true then CHA(l) = 'h'

if false then check and correct calling BCOREC

and SD(1+1) = 3202-i or 302-1

check ^Jbjv calling HKVSL

if true then compare lA' and '^' calling HVSK

if false then check and correct calling BCOREC

else check and correct calling BCOREC

The osculated characters and last-fixed characters do not have

many classes to build any tree analyzers and the stroke combinations

which were explained in the semantic explanation section can be imple-

Inented without any other considerations for the characters of the

classes.

-

€

60

The relative characters have more complicated relations among the

strokes for the character composition and the stroke combinations for

the relative characters are defined In Table IV.

This table Is similar to Table III except that the row strokes are

the earlier stroke in the tree organization, and the column strokes are

the next stroke to the row atrokes. Each stroke can be any side of the

character depending on the neighboring conditions.

From Table IV, the stroke 30-1 has a parent node which can be

recognized as the character 's' or can be first side of any character

having the children node as the next side of the character depending

on the neighboring conditions.

The following list shows the summarized program for the priority

in stroke combination and evaluation of the characteristics of each

stroke for the tree of the stroke 30-1 as shown in Figure 23.

if SD(I) = 30-1

and SD(I+1) = 30-1

check l^l/ calling SCHEK

if true then CHA(I) = 's'

if false then check '^r' at children nodes calling VCHEK

if true then CHA(I) = 'w'

if false then CHA(I) = V

and SD(I+1) = 30-3

check VO/' calling SCHEK

if true then CHA(I) = V

if false then CHA(I) = 'y'

and SD(M-l) = 302-1 or 32-1

check ,
/<^

, calling SCHEK

TABLE IV

Stroke "lombinations for Relative Character

61

30-1 30-3 302-1 3102-1 32-1 320-1 3202-1

s c e r
s

c e r s r r s

30-1 u w P u w u w

30-3 y y y y

302-1 U V w P u >/ q U V w V

3102-1

32-1 U V w u v w U V w V

320-1 P

3202-1 P

62

'*.»

i

I
u
m

•d

2

.0

I
■u

M
O

(U

CO

fH

*

f »

63

if true then CHA(I) = 's'

if false then check '1/" calling VCHEK

if true thm CHA(I) = 'v'

if false then check "J^' at children nodes calling VCHEK

if true then CHA(I) - V

if false then CHA(I) - 'u'

The stroke 302-1 has a parent node which could be coded into

several different characters depending on the characteristics of the

parent node and four children nodes which could be coded as second

stroke of the character with the parent stroke as the first part of

the character depending on the decision for the parent node during the

beginning execution of the tree shown in Figure 24.

The following is the summarized program for the stroke 302-1;
«■

+ P if SD(I) = 302-1

and SD(I+1) = 30-1

check 'XJ/' calling SCHEK

if true then CHA(I) = 's'

if false then check '/& ' calling CCHEK

if true then compare '/C/' to 'jÄ-' calling CVSE

if false then check 'y/L' calling RCHEK

if true then CHA(I) = 'r*

if false then check Vy' at children node

if true then CHA(I) - 'w'

if false then CHA(I) = 'u'

and SD(I+1) - 30-3

check V^/' calling SCHEK

if true then CHA(I) - 's'

64

If

t f

, w
«

-5 ̂

„ T
O n -H

CS

8
T 0!

■ c<* M
CO 2

4J
T CO

Ö s n I
•w I to

-o (U

CO M

0)

T 5 s 1-1 o
T IW

g
fi

o
•H

CO

|

N

M

T O

I <u

T

^
•

CN

s i
00

•H ^ fn
1
w
(^

^
O
cn

^

f

65
m

%p if false then check '^C calling CCHEK

if true then cotnpare '/£/ to L^' calling CVSE

if false then check ' p' at children node calling PCHEK

if true then CHA(I) = 'r'

if false then CHA(I) = 'y'

and SD(I+1) = 302-1 or 32-1

check Vc/1 calling SCHEK

if true then CHA(I) = 's'

if false then check '/V calling VCHEK

if true then CHA(I) - V

if false then check '/C/' calling CCHEK

if true then compare * <►' to ,-^-', calling CVSE

if false then check 'yi.' calling RCHEK

if true then CHA(I) = 'r'

if false then check W at children nodes

if true then CHA(I) = 'w1

if false then CHA(I) = 'u'

The stroke 32-1 has a parent node which could be coded as the

character '/t' or as the first stroke of a character having the

children nodes as the second strokes of the characters as shown in

Figure 25.

The tree would ' i analyzed by processing the parent node first

and then the children node will be processed along with the parent

node. The following is the summarized program for the tree of the

relative stroke 32-1.

66

■v

T
«
CO

M

T i

W 0)
^ o

T 4J

fi
to

>
•H
U

T S
N 0)

W VJ

Q)
■ JS 1 4J

W
^ •4-1

^

A
N

T •H

o s m S)
n

1L O

s (U

T £
N
8 «

in
CM

cp 2
o So
W £

7 o
(«>

■ Ir

I 67
if SD(I) = 32-1

and SD(l+l) = 30-1

check '/U' calling RCHEK

If true then CHA(I) = 'r'

if false then check V^' at children node

if true then CHA(I) = V

if false then CHA(I) = 'u'

and SD(l+l) = 302-1 or 32-1

check '/IT' calling VCHEK

if true then CHA(I) • V

if false then check W calling RCHEK

if true then CHA(I) = 'r'

if false then check V' at children nodes

if true then CHA(I) = V

if false then CHA(I) = 'u'

The stroke 3202-1 hes . parent node which could he coded Into

severel different charecters depending on the characteristics of the

node end three children nodes which could be coded as the aecond

stroke of the character haulng the parent „ode as the first stroke

of the character.

The tree is shown in Figure 26 and the analyzer is li8ted as

following:

if SD(I) = 3202-1

and SD(I+1) = 30-3

check VQ,1 calling SCHEK

I if true then CHA(l) = 's'

68

T
<V
O
T ^1

1

9 o
tn

CO

^ q) I ^ä

b o
4J
M

mm» g
1 •rl

Ä ^1

"T 2
K o

R 4J

o o • «4-1

c5S g
•H

T U

* N

1
60

Ä o
0)

I <u

« •

T
oi 0) o 2 c^ i.

^

fe

'

*>•

I

■
■

69

if false then check 'p' at children nodes calling PCHEK

if true then CHA(l) - 'r'

if false then CHA(I) - V

and SD(I+1) = 302-1 or 32-1

check '/*'" calling SCHEK

if true then CHA(I) = 's'

if false then check '/IT' calling VCHEK

if true then CHA(I) = V

if false then CHA(1> = V

The stroke 320-1 has a parent node and two children nodes as

shown in Table IV. The following is the list for the summarized

program for the tree of stroke 320-1,

if SD(1) - 320-1

and SD(I+1) = 30-3

check V^' calling SCHEK

if true then CHAU) = 's'

if false then check '/O^1 at children node calling PCKEK

if true then CHA(l) ^ 'r'

if false then CHA(I) - 'y'

and SDd+l) = 32-1

check '/tT' calling VCHEK

if true then CHA(l) • 'v'

if false then check '<^' calling SCHEK

if true then CHA(l) -'s'

if false then CHA(J.) = 'r'

70

The parent stroke 30-3 does not have the parent node and the

direct combination is suggested to combine the strokes for character

composition

The parent stroke 3102-1 does not have any children node and the

only routine CVSE is requested to identify the difference of the

characteristics between the characters~

Those local routines which were used in this saction will be

presented in the next section.

5,3 Local Discriminating Routines

The hierarchical organizatiün of the major characteristics of

the strokes classified the strokes of the writing into several levels

of priority tor the character compositions. The stroke group of each

level is classified into further discriminated gr ups by the order

in character combination,

To get the final decision for the recognition of the characters

from the stroke combinations which already are classified by the char-

acteristics of the strokes and orders in combination of strokes, some

further discriminating routines must be applied for complete recogni-

tion of :he groups which still have more than one member.

These routines dc not have complicated functions to complete the

recognition Each routine has only independent operations from other

routines, and the operations are simple and fairly short because only

specified parts of the characteristics are checked by the routine.

Each routine might take a simple logical evaluation to compute

the relative characteristics comparing the characteristics of the

members in that clut>0

-

71

The evaluations of the characteristics In each routine are listed

briefly as following.

1. CCHEK

In Figure 27

If XD greater than NY/5 then check = true

else check = false

2. CVSE

In Figure 28

check the curve 1-3 compare tc dashed line 1-3

If the curve Is lower than the dashed line

and the maximum YD greater than NY/8 then

CHA(I) = 'e' else CHA(I) = 'c'

3. GVSQ

In Figure 29

check the locations of the curve 1-2 regard to curve 2-3

If curve 2-3 Is left v.o curve 1-2 then CHA(I) = 'g' else

CHA(I) = V

4. HKVSL

In Figure 30

check the XD between the point 1 and point 2

count two counters when

(D XD Is greater than NY/5

(D XD Is less than NY/5

If counter @ Is less than counter ® then check = true

else check ■ false

■■

71

I ^ The evaluations of the characteristics in each routine are listed

briefly as following.

1. CCHEK

In Figure 27

if XD greater than NY/5 then check = true

else check = false

2. CVSE

In Figure 28

check the curve 1-3 compare to dashed line 1-3

if the curve is lower than the dashed line

and the maximum YD greater than NY/8 then

CHA(I) = 'e' else CHA(I) = 'c'

3. GVSQ

In Figure 29

check the locations of the curve 1-2 regard to curve 2-3

if curve 2-3 is left to curve 1-2 then CHA(I) = 'g' else

CHA(I) = V

4. HKVSL

In Figure 30

check the XD between the point 1 and point 2

count two counters when

® XD is greater than NY/5

@ XD is less than NY/5

if counter 0 is less than counter (J) then check = true

else check = false

«*

72

X

.

Figure 27. Characteristic evaluation for CCHEK

Figure 28. Characteristic evaluation for CVSE

mm

73

X

Figure 29. Characteristic evaluation for GVSQ

n
X

Figure 30. Characteristic evaluation for HKVSL

V..., -

74

5. HVSK

In Figure 31

if (X(1)-X(2))/(X(4)-X(3)) greater than 1.5 and

the tangent of point 4 toward point 1 Is less

than 1.0 then CHA(I) - 'k' else CHA(I) = 'h'

6. PCHEK

In Figure 32

if the curve 3-4 is right side to dashed line 3-4

and the curve 2-3 is left "o the dashed line 2-3

and X(4)-X(l) is less than MYD/6 then check = true

else check ■ false

7. RCHEK

In Figure 33

if XD greater than NYD/5 then check ■ true

else check = false

8. SCHEK

In Figure 34

if the slope of dashed line 1-2 is less than 10 and X(l) is

greater than X(2) then check = true else check ■ false

9. VCHEK

In Figure 35

if X(l)-X(3) greater than NY/4 or

Y(2) greater than Y(3)-NY/2 then

check = true else check = false

75

T

Figure 31. Characteristics evaluation for HVSK

X

Figure 32. Characteristics evaluation for PCHEK

76

Figure 33. Characteristic evaluation for RCHEK

X

Figure 34. Characteristic evaluation for SCHEK

^ '

77

I ^*

X

Figure 35. Characteristics evaluation for VCHEK

7^

CHAPTER VI

SELF-CORllECTION BY ITERATION

6.1 Self-Correction by Iceration

The syntax organization for this system has dealt with the error

corrections of cutting algorithms and the error corrections in stroke

combination for character compositions.

The major types of error in this experiment are classified as

the following cases; the relative position coding error, the writing

cutting error and the decision error in relative discriminating

routines.

The regular writing would match the bottom of each character to

the base line of the writing except the strokes of position code 3 and

position code 4.

The iterative algorithm for this position coding routine cover

the wider range of writings which do not match the base line of the

writing.

The iterative coding routine for positional code is designed

as following:

Pick the lowest point out of a group of the highest points from

each stroke, and define it as the upper base line. Pick the highest

point out of a group of the lowest points from each stroke and define

it as the lower base line. Define the allowable margin as half of the

difference between these two base lines.

Check the highest point of each stroke to determine whether the

point belongs to the upper region which is bounded by the upper base

79

line as the bottom side line and the upper base line position plus

allowable range margin as the upper side line of the region. Eval-

uate the average of the highest point using the highest points of the

strokes which belong to the upper region. Define this average as the

new upper base line.

Check the lowest point of aach stroke to determine whether the

point belongs to the lower region which is bounded by the lower base

line as the top side line and he lower base line position minus the

allowable range margin as the lower side line of the region. Eval-

uate the average of the lowest point using the lowest points of the

strokes which belong to the lower region. Define this average as the

new lower base line.

This routine is repeated a number of times for tVi iteration and

then the position coding is determined through the rules explained in

earlier chapters.

The writing cutting algorithm works well just as it is defined

in earlier chapters, except for the characters 'b', 'o', V, V,

because of the uncareful writings.

The corrections for writing cutting algorithms were implemented

in syntax organization for the characters 'b' and V and the hierarchy

was reorganized from the un-correcting syntax and the analyzer was

adjusted for the reorganization of the syntax.

The error from this cutting algorithm generates an improper com-

bination of the strokes for the character compositions. The feedback

loop is designed to cover this early level of hierarchy for the itera-

tion of this algorithm.

f

The correcting routines for the characters V and 'b' are quite

similar except the local organization of the priority for the compar-

ative discriminating routines.

The combination of the strokes is checked by the characteristics

of the character and the correctly 3f the distorted information is

followed for the neighboring strokes.

The major distorted information of the neighboring stroke is the

stroke coding error. The stroke can have wrong stroke parts which

belong to the previous character.

The character correcting routine will regenerate the lost stroke

after checking the character characteristics, and other information

which was lost because of the error in writing cutting algorithm for

previous stroke will be restored by the correcting routine.

The decision error in relative discriminating routines co^es

from the threshold value of the characteristic evaluation.

Since each routine is for the comparative evaluation of the

characteristics of the members of the classified group, there are

always many relative characteristics to give solid information for

the decision.

The threshold value can be fixed by making some learning experi-

ment, and since the routine is relatively referenced only for the

member of the class which the routine is related, the threshold value

can be locally relative without considering the entire system for the

optimizations.

81

6.2 Stability of the Self-Correcting Algorithm

Feedback theory has been studied in many engineering aspects to

control the stable output of the analog system.

The analog computer is another system which applies the feedback

theory to simulate a mathematical model.

A digital system can be substituted for the analog system or pare

of the analog system for control purpose or computing purpose. Digital

Differential Analyser can be a typical example for the digital feedback

system.

The »ability „f th. 8ystem has „.„ dlscii6aed ^ ^ ^ JU ^^

the a„alog syste. and sampled data ayate. for tha h.r*,.r. „rganl2attoa.

The faadback theory for the atabillty of the aoftware Iterating

ayatem haa bean Implemented In this experiment during the organization

of the syntax and the criteria of the stability for Iteratlye aoftware

system Is discussed In this sect.on.

m Figure 36. the block diagram for the «cognition scheme „as

shown and the feedbsOc from error correcting bioclc to error checking

block Is designed for this experiment.

After the procedures of figure extraction, the program „111 start

to recognize the stroke comblnetlons as the character compoaltlon by

checking the errora in character recognition, and It „onld correct

the rest of the Information If any error Is found by the syntax

analyzer.

The corrected Information requlrea another Iteration to check any

possible error and take n„ stroke combination for tha recognition.

o 82

a
a
3
O

u
4J

a
M

•H
Q

s
u
CO

. N-' J f
r '- 1

u
N

00 1
■u
o

'S 1 g a
% DM

S
yn

t

i

O
M
M
M

[
J

h

1
s
1
f <

00
C

•H i
13 i 2 >. ig w H

f ^ —

§

F
ea

tu
re

T

■U

M

a
_

s

1
/-s

—i

« ^
t} 0
«a w
Q

v-/

m

o

g
o
o

o

•H

a
o

(JO
•H

V..'

83

The number of iterations is decided by the error correcting algorithm.

To design a general control system, the stability of the hard-

ware system may be checked by the Routh Criteria (9).

For the self-corrective system by iteration, the stability will

be designed by the syntax organization, and the priority of the charac-

teristics has to be studied for each stroke, and the level of error

has to be qualified by the types of errors. The hierarchical organ-

ization for such work is always complicated, but a good solution gives

always a reliable recognition.

?f

CHAP1ER VII

CONCLUSIONS

7.1 Accuracy of Recognition

The syntax-directed algorithm for handwriting recognition was

constructed using self-correcting loops to check for writing errors

and to correct the errors made by normal writers. A simple experi-

ment without feedback loops for ha idwriting recognition was constructed

during the early period of laboratory work and the recognition was

highly reliable for writers who had short training using the standard

styles.

For more reliable recognition for uncareful writers, the feedback

loops were implemented to eliminate the major failures in recognition

by the first system. The recognition i ate for the system with feed-

back loops was quite reliable and the types of error which were the

major errors in the early system were eliminated, and the variations

in allowable writings for normal users were much broader.

To improve the recognition for all types of writing, a number of

feedback loops should be implemented. Such increased capability to

recognize all types of writing may be of limited value because of

increased cost of operation.

The feedback loops were implemented in such a way as to widen

the range of users and also keep the efficiency of the program high.

The present degree of feedback iteration is quite reliable for the

interactive communication experiment for recognition of cursive writing.

85

7.2 Firther Work

For further efficiency and broader applications, the probable

future work in organizing this system can be discussed as follows.

The data tablet is required to have increased resolution for

writing recognition. The present 3% per inch resolution limits the

size of characters and the larger character, are inconvenient to

write neatly for the writers. A higher resolution tablet is impor-

tant for reliable and accurate recording of inputs.

Since the system program for the sampling procedure in the PDP-8

is linW with other system programs in the graphics system, the speed

of the data sampling is forced to be slower than in a single purpose

graphic systen. The speed of sampling procedure is another important

factor for the higher resolution system, which usually varies depend-

ing on the size of program instruction.

A hierarchical organization with feedback loops for the positional

code may be suggested for the relative normal size coding algorithm to

correc. in the positional code which usually arise from unknown noises.

It is suggested to design the feedback loops independent of the loops

of the recognizing procedures to avoid the complexity of the system.

Also more loops can be added to the recognizing routines without

interfering with the existing loops to check the minor errors.

Simple learning procedures may be used for some particular entries

of the syntactic organization which do not receive the reliable thresh-

old value for the decision in local discriminating routines.

This syntactic organization can employ such conventional ideas in

pattern recognition (4) in any part and as any application.

?c

L

BIBLIOGRAPHY

1. Backus J.W. "Revised Report on the Algorithm Language Algol 60 "
tTiZ * Machinerv CSSgiSicgtlong Vol. 6 Jo. 1, pp 1-17.

2. Eden, M., "Handwriting and Pattern Recognition." IRE Trans on
Infomation Theory. Vol. IT-8, pp. 160-166. 1962.

3' TJlTrl'ti0'*''* y/1-1*** Recognition of Hand Printed Text," Am.
rnt t r ^ Infomation Processing Soc. (AFIPS) - Fall Joint
Computer Conference Proc. pp. 591-601, 1966.

4. Highleyman, W.H., "Linear Decision Functions, with Apnlication to
Pattern Recognition," IRE Proc.. Vol. 50, pp! IsOl-lSU, 1962?

5. Memelstein P and M. Eyden, "A System for Automatic Recognition
?L a'TP^611

 l0^8i Am- Federation of Information Procesflng
PP?'333-3L! iZl JOint COmPUt:er Conferen- P— . Vol. 26. g

6. Nagy, G and G.L. Shelton, Jr., "Self-Corrective Character Recos-
tli: 2

SI5
S!S: Iffp^s. on information Theory. Vol^Ä

7' ^^^r¥^7iMj£JL1^p^Noble and Noble Publi8he"
8* ^P0Uli^ t" Probabilitv. Random Variable *„* Stochagtic Pro-

SBsses, McGraw-Hill Book Company Inc., New york, N.Y.. 1965 "

9' mn3!' t'r^ Automatlc Redback Control Rv^.n. Sznthgsii. MeGraw
Hill Book Company Inc., New York, N.Y., 1955.

10. UNIVAC 1108 Multl-Processing System EVP. TT P^grgmdng Prfrrrnn
Manual, UP-4058. UNIVAC Division of Sperry ^and8C^:"8l966

37
APPENDIX

9.1 Listing of Program

ISA RUN PATTERN»i*96606»2»9Ü Y. T, KIN! SYMTAX
ii ASG A=Süt.VOh.1

(it ASG G=2,$Sf;2S
IS XQT CUR

IN A
BEGIN
EXTERNAL FORTRAN PROCEDURE BLANK»CHAR»CHRINT»6ETCHR»6ETTAB#

IDIrIüL£,lNTL"fJ»LlNE»LNTYPE»RELOAD»SeTBUF,SET.MAX»SETMIM,
SETSIZrSETSWprSNOFLEfSWAPfTABAbL^TABINTrTABTOLS

INTEGER ARRAY ÖFILE(1:3000),X(0:3000)»Y(0:3000)»Z{1:3000)$
INTEGER A»Ü»DL!MMY»JfK»Kl»K2,KMAX»L,LMAX»N»SW$
STRING CHA(30)»CX(1)»PCHA(2)»SCHA(8)$
LOCAL LABEL CHR»ENIT»ID»MAIM»0T»XY$

RELOADS
IÜI(DFILF»DUNiMY)i
INTEN(2)$
SETMAX {«♦)$
SETMINS
TABABLS
SETSWP(^^000)i
TABlNT(i,XY)'i
CHRINT(l»CHrt)$
TARTOL(3)$
SETSlzms

OT: J=0$ SETBUF(5»DUMMY+3)i
SNDFLE;(ÜFIlErDUMMY)$ IDl (OFlLE»DUMMY) $

IDI IDLES b»AP$
GO TO IUf

XY! GETTAÜ(A»R»SW)$ •
IF SW NEQ 0 THEN BEGIN J=J+1$ X(J)=X(J-1)$

Y(J)=Y{J-1)S Z(J)=1$ END*
IF SW EOL 1 THEN LNTYPE(O) ELSE LNTYPE(3)«
IF SW EUL -1 THtN GO TO MAINS

LlNE(DFlLE»ArR»DUMMY)S
J=J+1$ X(J)=As'Y(d)=ßl Z(J)=2S
GO TO XY$

CHR: GETCHR(CX(I))5
IF CX(1) EOL »X» THEN GO TO ENIT$
IDI(CFlLE»DUMfY)$
GO TO OTs

88

MAIN: LMAX=J3.
IF J LSS bü THEN GO TO OTS
COMMENT DATA FILTER **«**;M****************************** <%

FOR J=(3»l»LMAX-2) DO
IF Z(J-l) EGL 2 AND Z(J) EQL ?. AND Z(J+1) EGL 2 THEN BEGIN

IF X(J) LSS X(J-l) AND X(J) LSS X(J+1)
AND X(J+2) LSS X(J+1)

OR X(J) GTR X(J-l) AND X(J) GTR X(J+1)
AND X(J+2) GTR X(J+1)
THLN X(J)=X{J-1)3.

IF Y(J) LSS Y(J-l) AND Y(J) LSS Y(J+1)
AND Y(J+2) LSS Y(J+1)

OR Y(J} GTR Y(J-l) AND Y{J) GTR Y(J+1)
AND Y(J+2) GTR Y{J+1)
THEN Y(J)=Y{J-1)$

ENDS
N=LMXS L=J.$ LMAX=1$

FOR J=(2»lrN) DO BEGIN
IF X(J) F.QL X(L) AND Y(j) EQL Y(L) AND Z(J) EQL Z(L)

OR Z(J) EQL 1 AND Z(L) EQL 1 THEN GO TO LL$
L=L+ll LMAX=LMAX+li
X(L)=X(J)$ Y(L)=Y(J)$ Z{L)=Z(J)i

LL: ENDS
KMAX=LMAXS

IF Z(KMAX) FQL 2 THEN BEGIN X (KMAX+1)=X{KMAX) 3.
Y{KMAX-»-l)=Y(KMAX)$ Z(KMAX+1)=1» KMAX=KMAX + 1$ ENDS

COMMENT BREAK WRITING ********»^************************# $
ÖEGIN
INTEGER ARRAY CHEK(0:20)»DX(0:2000)»DY(0:2000)»JMAX(0:20),

LMAX(i:20)rLXD(i:20»l:7),LXI(i:20,l:7)»LVD{l:20»i:7)»
MMAX(l:2ü»0:7)»OMAX(l:2ü).PD{i:20),PMAX(l:20»0:7)»
SCnD(i:20»i:7)»SD(i:2ü),Y.1AX(i:20)»YMIN(i:20)$

REAL ARRAY SSCOD(i:20)S
INTEGER DEC,DXDLC»DXINC»DYDEC,DYINCrI,IMAXrINC»Jl»J2rLX»LY»

M»MXrfU»NEnE»NEIN»PODE»POiN»Yl3rYDEC»YDElN»YlNC»YINDE»YT$
BOOLEAN ARRAY XCOD(l:20»1W)»YCOÜ(l:20»l:7)$
LOCAL LAbEL LL^S
FOR K=(2»lfKMAX) DO BEGIN

DX(K)=X(K)-.X(K-1)S DY(K)=Y(K)-Y(K-1)$ ENDS
I=IS IMAX=1S JMAX(0)=0S Ni=4S

FOR K=(Nl+H,l,Kf.,AX-l) DO BEGIN
IF Z(K) NEG 2 THEN BEGIN
INTEGER YbiG» YSMA»K3»K^S

ÜMAX(I)=K$ MMAX(I»i):=K*
IF K LGL KMAX THEN GO To LL3$

1 = 1+1$ lMAX=IflAX+lS
YBIG=0S YSMA=0S

FOR K3=(K+1»1.KMAX) DO BEGIN
IF Y(K3) GTR Y(K3-1) THEN YBlG=YDiG+lS
IF Y(K3) LSS Y(K3-1) THtN YSMA=YSMA-H$

89

IF Yfl« FEJ Ö OK y , Us ,■, ■. 8 Lit.:: CO To LLi
IF /.(^.) NL.U 2 THL.M üLCIt; K4=K.oi K3=KM/.X+1.. E.MOS ^rs;-

IF- Yu>]G L^S 0 AND YSjviA L^S ü THLN
;.LGII\i bL(I)=7a> LMAiC(I)=lS KsK^-lS E.lDS

GO TO LLJi LI Jx
IF DY(K-2) LEO C AND DY(K-x) Lr 0 Ü AfJD DY(K) GTrv 0 THE"! BEGlf.

YlNL=ul YDFCsOS YlNuL=u% .'i ..1^=01
FOR K2=(K-l»-l»JMAX(i-l)+^) DO tCGl.l

IF DY(K?) LSb 0 THEN YüECsYütC+lS
IF DY(K2) GTK 0 THEN YDEIN=YDEIN+1S

IF YÜLC r,Eft Jj OK YDEIN GtO 2 OK Z(K2) NEO 2 THE.J
K2=Ji«lAX(I-l)i ENUS

FOR KlstK»!»KMAX-D JO BEGIN
IF DY(Kt) LSS 0 THEN YIr'lJE=Y INOE+IS
Ih DY(K1) GTK 0 TnuN YlNC=YliJC + li

IF YlNC CEO 2 OK YI.JOE GE) 2 OK Z(K1) NLO ?. OR
^(M + i) Nra ü OK IUI+A) MEO 2 THLN Kl=KMAX'i ENDS

IF YOLC oL< 2 hND YINC GEu J THEN BEGIN I=I+li IMAXSlMAX+11
JMAX(I)=Ki

IF JMAX(I-l)-JMAX(l-2) L5S * AN.) bLj(I-l) NEQ 7 THEN PEGIM
1 = 1-13. IMAXsIMAX-15 ENDS ENDS. ENDi

wt_i; JMAX(I)=Ki MMAX(I»1)=KS
ENDS

IF VIMAX(IMAA)-JMAX(IMAX-1) LSS 6 AND SD(IMAX) NfQ 7 THEN
iMAXsiMAX-iS

FOR ISiipitW'A) DO BhGIN CHA(I)S, + ,S CH£K(I)=2I>
PD(I)=Üi ; .Di

COMMENT bKi ,-K CURVE ♦*♦♦♦»♦♦*♦♦♦*♦♦♦**♦**♦*♦**♦♦♦**♦♦*♦** S
MMAX(l»u,-<'i

FOR I=(l»l»ir,AX) DO BEJIN
FOR L=Ufl.7) DO BEGIN

LX:(I,L)=0i LXDlIfL)=0.f. LYD(i»i-)=0$ ENDS
IF I GTK 1 THEN MMAX(1»U)=MMAX(1-1»LMAX(1-1))S
IF SD(I) EOL 7 THEN GO TO LL5$
L=1S LMAX{I)=14 MMAX(I»l)=J,-lAX(I-l)+7$

FOR J=(JMAX(I-i)+7fl.J1AX(1)) DO BEGIN
IF DX(J-^) LEO ü AND JX(J-I) LEG 0 AND DA(J) GTR 0 THEN -^

NEu£=0S I^LIN=0i PODE=&T> POINzOi
FOR Jl=(Jrlf JHAX(-l)) DO BEGIN

IF DX(J1) LSS 0 THEN POOE=PODL+lS
IF ÜX(J1) GTK Ü THEN POir^POlN+l*
IF POIN GLQ 2 Or POQE GFQ 2 THEN J1=JMAX(I)+1S ENDS

FOR J2=(J-l»-l»MMAA(i»L-l)+2) DO l.ESlN
IF ÜX(J2) LSS 0 THEN NEDE=NEüC+lS
IF DX(J?) GTK b THEN NEINSNEINfiS
IF NEOE GLQ 2 Ou NElN GEti 2 THEN J2=MMAX (I »L-l)S ENDi

IF NEOE GEQ 2 AND POlN GEO 2 THEN LXI(IrL+1)=IS ENDS
IF DX(J-2) GEO 0 AND DX(J-l) GEO 0 AND DX(J) LSS 0 THEN BEGIN

NEuL=0$ NLINSOO. PODEsOi, POIN=ül.
FOR Ji=(J»l »JMAXdU DO BEGIN

90

IF DX(J1) LSS 0 THEN PODE=PODE*l$
IF DX(Jl) ÜTR 0 THEN P0I.>i=P0lN+15
IF PuiN GEÜ 2 OR PODE OEQ 2 THEN J1=JMAX1I)+l$ ENDS

FOR Ja=(J-lf-l»MMAX{I»L-l)+2) DO BEGIN
IF ÜX(JP) LSS 0 THEN NEDESNEDE+lS
IF DX(J?) GTR 0 THEN fJEIN=N£IN+l$
IF NEIN GEQ 2 OR NEOE GE» 2 THEN J2=MMAX(I»L-l)$ ENDS

IF NEIN GEO 2 AND PODE GEQ 2 THEN LXD(I »L-H)=l$ ENDS
IF DY(J-2) GEO Ü AND DY(J-1> CEO 0 AND DY(J) LSS 0 THEN BEGIN

NEDE=0S NEIN=0$ PODE^O« POINrOS
FOR Jl=(J»3»JMAX(I)) DO BEGIN

IF DY(Jl) LSS 0 THEN P0DE=P0DE+1$
IF DY(J1) GTR 0 THEN P0IN=P0IN+1S
IF POIN GEQ 2 OR PODE GEQ 2 THEN J1=JMAX(I)-»-l$ ENDS

FOR J2=(J-lr-l»MMAX(I»L-l)+2) DO BEGIN
IF DY(J2) LSS 0 THEN NEDE=NEDE+1$
IF DY(J2) GTR 0 THEN NEIN=NEIN+1S
IF NEIN GEQ 2 OR NEDE GEQ 2 THEN J2=MMAX(I»L-l)S ENDS

IF NEIN GEQ 2 AND PODE GEQ 2 THEN LYD(I»L+1)=1S ENDS
IF LX1(I»L+1) EQL 1 OR LXl)(X»L+l) EQL 1 OR LYD(I»L+1) EQL 1
THEN BEGIN L=L+1$ LMAX (I) =LMAX(I)-»-IS MMAX(I»L)=J$ END
ELSE MMAXafL)=JS ENDS

LL5: ENDS
COMMENT NAME CURVE *♦»♦♦**♦♦**♦***♦♦♦*♦****♦♦♦***♦*♦*♦*♦♦♦ S
FOR I=(1»1»IMAX) DO BEGIN IF SD(i) EQL 7 THEN GO TO LL^S
FOR L=a»l»LMAX{I)) DO BEGIN

DXINC=0li DXDEC=0i DYlNC=ÜI DYDEC=0$
FOR K=(MMAX(I»L-1)+2»1»^AX(I»L)) DO BEGIN

IF DX(K) GTR 0 THEN ÜXINC=DXINC+1$
IF DX(K) LSS 0 THEN ÜXDEC=DXDEC+1$
IF K GTR MMAXa»L-l)+2b THEN K=MMAX (I »L)+1S ENDS

FOR K=(iV|N*AX(l»L-l)+2»l»MrAX(I»L)) DO BEGIN
IF üY(K) GTR 0 THEN üYINC=DYINC-»-1S
IF L)Y(K) LSS 0 THEN ÜYDEC=DYDEC+1S
IF K GTP WMAX(I»L-l)+25 THEN K=MMAX(I»D+1S ENDS

IF ÜXINC GTR DXDEC THEN XCOL)(I rL): TRUE ELSE
XCOD(I»L)=FALSES

IF UYINC GTR DYDEC THEN YCOD(I»L)=TRUE ELSE
YCüD(I»L)=FALSES

IF XCüD(I»L) AND YCOD(I.L) THEN SC0D(I»L)=3 ELSE
IF XCODII»!.) AND NOT YCuDd.L) THEN SC0D(I»L)=2 ELSE
IF NOT XC0D(I»L) AND YC0D(I»L) THEN SC0D(I»L)=l ELSE

SCüÜ(I»L)=6S ENDS
FOR K=(l»lf3) DO BEGIN

M=LMAX(I)-1$
FOR L=(1»1»M) DO

IF SCOD(I»L) EQL SC()u(l»L+l)
OR SCOD(I»L) EQL 1 AND SC0D(I»L+1) EQL 3 THEN BEGIN

FOR J=(L»1»M) DO BEGIN
MMAX(I»J)=MMAX(I*J-»-l)S

91

SCOD(I»J)=SCODU »J+l)i t.NO$
LMAX{l)=LMAX(I)-li ■'=uMAX(I)-1$ EMOS

ENDS.
FOR L=(l»i»LMAX(I)) DO bLGlh

IF ÖCÜÜ(I#1.) EQL 6 FHtN SCHA(L) = «6» ELSE
IF SCüüdrl.) t'.OL 1 THEN BCHACLJs»!» ELSL
IF SCGü(I»L) LüL 2 THEN SCHA{L)=»2' ELSE
IF SCOOlI»L) EIOL ii THEN SCHA(L) = »3» ELSE
IF SCODdrL) EQL 7 I'MLN SCHA(L) = '7"t
SSCÜD(l)=SSCüÜ(i)+SCOü(l»L)*10**(-L)$ ENDS
SD(I)=SbCOD11)*X0**LMAX(I)I

LL4: FUR J=(LMAX(I)+lfl»8) DO SCHA<J)=» •$
SCHA(n)=»A,$
LNTYPE(0)a,

Kl=bOi K2=500-I*3Gi
LINE C DFILE» Kl»K2»DUMflY) 4
CHAR(DF iLE r SCHA,DUMMY)%
ENDS
FOR I=(1»1»IMAX) DO üEGiN

OMAX(I)=LMAX(l)'ii
FOR L=(Ü»1»LMAX(I)) DO PMAX(I»L)=MMAX(I»L)$ ENDS

CwMMENT BEGIN OF PROCS ♦♦♦♦*»♦**♦*♦****♦♦******♦♦♦*♦♦♦*** S
bEGIN
INTEGER ARRAY Xb(1:20)rYAV(1:2ö)fXAV(1:20)»FYMI(1120)$
INTEGEK 3ACK»RMlN»DIST»HDrlC.lX»IR»JJ»JX»KY»LXrMl»M2»MJ»NYD»

SUD»SLIrSMAXrTlNrTlX#TMAX»TMlN»XL»XR$
BOOLEAN CLOS»CYESrFEED»HKYEiüSCLfPYESfRYES»SYESrVYESS
PROCEDURE SORMAA(T»I»JMAX»T!1AX»MJ)S

INTEGER ARRAY T»JMAXrTMAXn,
INTEGER I»MJ$
BEGIN

INTEGER J»TBI6S
TDIGrOS

FOR J=(jMAX(I-l)+3fl»JMAX(I)) DO
IF T(J) GTR TßIG THEN QEGIN TalG=T(J)S MJ=J$ ENDS

TMAX(I)=TBIGS
ENDS

PROCEDURE SORMlN(T»I-»JMAX»TMIN)$
INTEGER ARRAY T»JMAX»TMlNÄ
INTEGER 1$
BEGIN

INTEGER J»TSMA$
TSMArlÜOÜS

FOR J=(JMAX(I-1)+3»1»JMAX(I)) DO
IF T(J) LSS TSMA THEN TSMA=T(J)S

TMIN(I)=TSMAS
ENDS

PROCEDUKE AVSO(XfYrLMAX»MMAX»CHA»I»CHEK»NYD)$
INTEGER ARRAY X»Y,LMAX»MMAX»CHEK$
INTEGER I»NYDS

ES^

G

■

92

STRING CHA«
BEGIN

INTEGER XO»XD» !.■;»KV#M»i-ll»M2»COf^T»MT»MRS
XB=0y XO=Ü$ YB=0J KYSOS CONTsOS

FO« Ms(MMAX(H-l»0)+2*l»MMAX{I+i#LMAXIl4'l)»U) 00 E'EGIfJ
IF Y(M) 6TR YB THcN BEGIN Yfi=Y(M)4 MTXMS EriDS
IF X(M) GTR XH THEN HEGIN X[;=X(M)l MRrys £ND$ END3.

FOR M=(MR,l,MMAX(I + l,L,1AX(I + l))-5) DO
IF X(M+1) LSS X(M) ANO Y(M+1) GTR Y{M) THEN
CONTsCONT+ls

FOR M2=(MT»l»MMAX(I + l ,LMAX(I-H))-5) DO
FOR Mls(MT»-l»MMAX(I+ltOH5> DO

IF Y{M2) GEQ YCMl) AND UtA2) LEQ Y{Ml + l) THEN
BEGIN
IF X(M1)-X(M2) GTR XD THEN XD=X(Ml)-X(M2)$
M1=MMAX(I+1»0JS ENDS

FOR M=(MTfi»MMAX(I rl,L,.lAX(I + l))) DO
IF Y(M) LSS Y(MMAx(I+lfO)+l)+NYD/2 THEN BEGIN

IF X(M) GTR Xb+NrD/8 ThEN KY=lS
MaMMAX(1+1,LMAX(1+1))+1* ENDS

IF XD GTR NYD/5 OR KY EQL 1 OR CONT GEQ * THEN
CHA(I)='0» ELSE CHA{I)S»A»S

CHA(I+l)S»-»$ CH£K(l)=i4 CHEK(I+l)=li
ENDS

PROCEDURE ÖCOREC(X»Y,LMAX»OMAX»MMAX»PMAX»CHArI»CHEK»FEEO»SO»
NYD) $

INTEGER ARRAY X»Y,LMAX»OMAX»MMAX»PMAX»CHEK»SD$
INTEGER IrNYD$
BOOLEAN FEEDS
STRING CHA$
BEGIN

INTEGER Ml»Mil»MB»ME r hü . DI ST»L r LE f M»T Y» YBS
DlSTslOOOS BOS1000S Ybr.O$

IF LMAX(I+1) GTR 1 THEN MB=2 ELSE MB=lJ
FOR M2=(MMAX(I+lrO)+l,lfMMAX(I+l,MB)) DO
FOR M1=(MMAX(I#0)+1»JL»MMÄX(I»1)) DO BEGIN

OIST=SüRT((X(Ml)-x(M2))**2+(Y(Ml)-Y(M2))♦*2)S
IF DIST LSS BD THEN BEGIN BD=DIST$ ME=M2$ ENDS ENDS

IF BD LSS NYD/<+ THEN BEGIN
FOR L=(1»1»LMAX(I+1)) DO

IF ME GEQ MMAX(I+i,L-l) AND ME LEO MMAXfl+lfL)
THEN BEGIN LE=L-1S
M1=10**(LMAX(I+1)-LE)$
SD(I + 1)=S[)(I + 1)-(SD(I + 1)//M1)*M1S
L=LMAX(I+1)+!<!; ENDS

FOR L=(LE»1»LMAX(I-H)) DO
MMAX(H-1»L-LE)=MMAX(I+1»L}S

LMAX(1+1)=LMAX(1+1)-LES
FOR L=(1»1»0MAX(I+1)) DO

IF ME GEQ PMAX(I + j,L-l) AND ME LEQ PMAXd + lrL)

93

THEN BEGIN LE=L-15- L=OMAX(1 + 1)+lS ENDS
IF PMAX(I + l,i.»lMit LSS 5 THEN LE=LE+1$
FOR L=(LEfl»OMAX(l>l)) DO

PMAX(I+1fL-U)rPMAX(1+1»L)I
OMAX(1+1)=OMAX(I+l)-LE$
IF CHEK(I) EQL 2 THEN BEGIN CHA(I)='B»$

CHEK(l)si$ ENDS
IF 0MAX(I+1) GTR i THEN FEED=TRUE ELSE FEED=FALSES

END ELSE ÜEGIN Cl IA (I) = «L»3. CHEK(I)=1$ ENDS
IF OMAX(I + l) LEO 1 AND BD LSS NYfJ/f THEN BEGIN

Ml=ME+i$ M2=MMAX(I+1»LMAX(I+1))-lS
FOR M=(M1»1»M2) DO r>EGlN

TY=Y(Mi)+(Y(M2)-Y(Ml))*(X(M)-X(Ml))/(X(M2)-X(Ml))$
IF Y(M)-TY GTR YB THEN YB=Y(M)-TY$ ENDS

IF YR/NYD GTR 0.3 THEN CHA(I+1)=»R»$
CHA(I + l) = '-»3, CH£K(I + l)=i$ ENDS

ENDS
PROCEDURE CCHEK(X»Y»LMAX»MMAX.I»CYES»NYD)$

INTEGER ARRAY X»Y»LMAX»MMAXS
INTEGER IrNYDS
BOOLEAN CYES$
BEGIN

iNTEbER M»ML#MR» XBrXD. XSMA»XTEMS
XbzOi; XSMAslOOOi Xü=0:6

FOR M=(MMAX(IfO)+lfl»MMAX{I»2)) DO
IF X(M) GTR XB THEN BEGIN XB=X(M)S MR=M$ ENDS

FOR M=(N'MAX(I»l)+lrl»Hi1AX{I»LMAX(I))) DO
IF X(M) LSS XSMA THEN BEGIN XSMA=X(M)$ ML=MS ENDS

FOR M={MR+l»lfML-l) DO BEGIN
XTEM=X(MK) + (X(ML)-X(MR))*(Y(Ni)-Y(MR))/(Y(ML)-Y{MR))S
IF XTEM-X{M) GTR XD THEN X;D=:XTEM-X(M}$ ENDS

IF XD GTR NYD/5 THEN CYES=TRUE ELSE CYES=FALSES
ENDJ

PROCEDURE CLOSE(XfYrOMAX»P|v(AX»I»XR»NYD»CLOS)S
INiEGER ARRAY X»Y»OMAX»PMAX$
INTEGER I»MYüiXR$
BOOLEAN CLOSl
BEGIN

INTEGER M.MB»ME»XB»DSi01STS
DS=10ÜÜS Xb=0S

IF OMAX(I+l) GTR 1 THEN BEGIN
FOR M=(PMAX(I»0)+l»l»PtMAX(I»XR)) DO

IF X(M) GTR XB THEN BEGIN XB=X(M)S MB=M5 ENDS
FOR M=(PMAX(I-n,l)+l,l,p,-lAX(I + l»OMAX(I-»-l))) DO BEGIN

DIST=SQRT((X(MB)-X(M))**2+(Y(MB)-Y(M))**2)S
IF DIST LSS US THEN BEGIN ÜS=DIST$ ME=MS ENDS ENDS
IF X(M£)-X(MB) LSS NYO/S THEN CLOS=TRUE ELSE

CLOS=FALSE£ END ELSE CLOS=FALSE$
ENDS

PROCEDURE CVSE(X r Y»LMAX f MMAX t CHA»I»CHEK»NYD)S

94

INTEGER ARRAY X» Y »LMAX»MM/\X. CHtKl
iNTtGLR I»NYD$
STRING CHA%
BEGIN

INTEGER M r Ml»M2 »ML» MR,MB» YD»YT» XS»XB f CYE»EYES
XbzSOOUS Xl3=ür£ YU=Oa, CYE=Ü4 EYE=0$

FOR M«(MMAX(I»0)n»l»MMAX{J»2)) 00
IF X(M) GTR XB THEN BEGIN XB=X(M)3» MR=M$ ENDS

FOR MrU'.MAXdrD+lrl.N'MAXdrLMAXd))) DO
IF X(M) LSS XS THEN BEGIN XS=X(M)S ML=M$ ENDS

FOR M^<MMAX(I»0)+lfl»MMAX{I»2)) DO
IF X(M) GTR X(ML) THEN BEGIN MB=MS M=MMAX{I»2)+l$ ENDS

FOR M=(N-B + l»i»MR-l) DO BEGIN
YT=Y(Mb)+(Y(MR)-Y(M;n)*(X(M)-X(MB))/(X{MR)-X(MB))S
IF Y(M)-YT LSS 0 THEN EYE=EYE+1 ELSE CYE=CYE+1$ ENDS

FOR Ml=(MRrl»ML) DO FOR M2=(MR-1»-1»MB) DO
IF X(M1) GEQ X(M2) AND X(M1) LEG X(M2+1) THEN BEGIN

IF Y(M1)-Y(M2) GTR YD THEN YD=Y(M1)-Y(M2)$
M2=M8-iS ENDS

IF YD GTR NYü/8 AND EYE GTR CYE THEN CHA(I)=»E» ELSE
CHA(I)='C»S CHEK(I)=1S

ENDS
PROCEDURE FIYMIN(T»I»JMAX»TMIN»YB)S

INTEGER ARRAY T»JMAX»TMlNS
INTEGER IrYbS
BEGIN

^ INTEGER JrTSMAfSLYl
TSMAslOüOi

FOR J=(JMAX(I-1)+2»1»JMAX(I)) DO BEGIN
SUY=T(J)-T(J-1)S
IF SLY GEQ 0 AND T(J) LEG YB THEN GO TO LL7S
IF T(J) LSS TSMA THEN TSMA=T(J)$

LL7: ENDS
TMIN(I)=TSMAS

ENHS
PROCEDURE 6VSQ(XrY»LMAX»MMAX.CHA»I»CHEK»NYD)$

INTEGER ARRAY XfY»LMAX»MMAX»CHEK$
INTEGER IrNYDS
STRING CHAS
BEGIN

INTEGER M»M1»X6»XQ»YS$
XGrOS XQ=OS YS=2000S

FOR M=(MMAX(I-H»l)rlrM;iAX(I + l»LMAX{I + l))) DO
IF Y(M) LSS YS THEN YS=Y(M)$

FOR Ni:(N,MAX(H-2»0)+lrl»MMAX(I+2»l)) DO BEGIN
FOR yl=(MMAX(I+l»LMAX(I+l))»-lrMMAX(I+l#

LMAX(I+l)-l)+5) DO
IF Y(M) GEQ Y(MH-l) AND Y(M) LEG Y(Ml) THEN BEGIN

IF X(M) GTR X(M1) THEN XQ=XQ+1 ELSE XG=XG+lS
M1=MMAX(I+1,LMAX(I+1)-1)$ ENDS

#- 95

IF Y(M) GTR YS+NYü/2 THEN M=MMAX(1+2»!)+!$

IF XG GTH XQ THEN CHA(I) = »G» ELSE Cf^A(I) = »0«S
CHEK(n=il CHEK(I + i)=l^ CHA (1 + 1) = »-»S

ENOi
PROCEDURE HKV5L{X»Y»LMAX»MMAX,I»HKYE»NYD)S

INTEGER ARRAY X»Y,LMAX»MMAX$
INTEGER I»NYD$
BOOLEAN HKYES
BEGIN

INTEGER M.iVll»M2»YS»XK.XLS
YS=200ÜS XK=0$ XL=05

FOR M=(MMAX(l+l»0)+l»l,MMAX(I+lfl)) DO
IF Y(M) LSS YS THEN YS=Y(M)s;

FOR M2=(MMAX{I-»-l,0)+i»l,MMAX(I + l,l)) DO BEGIN
FOR Ml=(M,viAX(I»LMAX(I))»-l»MMAX(I»LMAX(I)-l)+2) DO

IF Y(M2) GEÜ Y(M1+1) AND Y(M2) LEG Y(M1) THEN BEGIN
IF X(M2)-X(M1) LSS 5 THEN XK=XK+1 ELSE XL=XL+1$
M1=MMAX(I»L(V1AX(I)-1)$ ENDS

IF Y(M2) GTR YS+NYn/3 THEN M2=MMAX(I+l#l)+l$ ENDS
IF XK GTR XL THEN HKYE=TRUE ELSE HKYE=FALSE$

END*
PROCEDURE HVSK(X»YrLMAX»MMAX»CHA»I»CHEK)$

(INTEGER ARRAY X»Y»LMAX»MMAX»CHEK$
INTEGER 1$
STRING CHA$
BEGIN

REAL T$
INTEGER M,ivll,M2»M3»Mx»XL»XU»XBS

Ml=MNiAX (I»LI^.AX (I) -1) S M2=MMAX (I»LMAX (I)) $
M3=MMAX(I+l»LWAX(i+l)-l)S XB=0$

FOR Ms{M2-H»lfM3-l) DO IF X(M) GTR XB THEN BEGIN
XB=X(M)i NiXsMS ENü$

FOR M=(M1+1»1»M2) DO
IF Y(MX) LEG Y(M) AND Y(MX) GEQ Y(M4-1) THEN BEGIN

XU=X(M)$ M=M2+19, ENDS
FOR Ni=(Ml + l»l»M2) DO

IF Y(M3) LEG Y{M) AND Y(M3) GEQ Y(M+1) THEN BF6IN
XL=X(M)$ M=M2+11 ENDS

T=(Y(K3-3)-Y(M3))/(X(M?S-3)-X{M3))$
IF T LSS 1.0 AND (XB-XU)/{X{M3)-XL) GTR 1,5

THEN CHA(I)=»K» ELSE CHA(I)=»Hti
CHA(I+1)=»-«S CHEK(I)=1S CHEK(I+1)=1$

ENDS
PROCEDURE OCOREC(X»Y,LMAX»OMAX»MMAX»PMAX»SD»I»NYD»FEED»XR)S

INTEGER ARRAY X»Y»LMAX»OMAX»MMAX»PMAX»SDS
INTEGER I»NYD»XR$
BOOLEAN FEEDS
BEGIN

INTEGER Ml,M2»MC»ME»MT»L»LErXB»XGrOD»DIST»YD»M»YB»TYS

.

■■;sv«

FOR Mia(PMAX<I,Q)+la»PMAX(l,XR)) DO
PöO Li!2iL?IH XG THEN ,lEölN XG=X(M1)$ MT=MII ENDS
FOK ^-(PMAXd + ^D+i^.pMAXd + l^OMAXd + l))) DO BEGIN

re nf^l
Tic(X(lv12,'X('a,)**2+(Y(M2>~Y(MT))**2)$

IF DlbT LSS Oi) TH£N BEGIN 0D=DIST$ MC=M2$ END$

MESMMAX(I+l#LMAX(I+l))s
XP=X(MC)+NYü/5ib

FÜR M2=(MCrl»MMAX(I+i,LMAX(I+l))) DO
IF X(M2) LEQ XB AND XCM2+1) GEQ Xil THEN BEGIN

Ywy^r?Sv^2=",MAX(I + 1'LMAX(I + 1,,+15 ENDS
Yü=Y (ME)-Y{MMAX(Ul,0)+!)!£

IF YD LFU 0 THEN Yü=21>
IF £inC)rTJti^i{1*i''01*i})/*° LSS 2.0 THEN FcED=TKUE ELSE FEED=FALSES
IF FEED AND OD LSS Nru/4 THEN BEGIN

FOR L«(1»1»LMAXU*1)3 DO
IF ME GEQ MMAX(I+i,L-l) AND ME LEG MMAX(I+1,L)

THEN BEGIN LE=L-1$
L£=L-1S
M1=I0**{LMAX(I+1)-LE)S
SO(1+1)=SD(I+1)-(SD(1+1)//Ml)*M1$
L=LMAX{I + l)+lii FNDS

FOR LsCLErl^LKAXd + l))" DO
MMAX d + 1, L-LE) aMMAX d + 1»L) S

L.-1AX (1 + 1) =LMAX (1 + 1)-LES
FOR L=d»l»oyiAXd + l)) DO

IF TLSEQ PMAX{I
+

 1'L-1) AND ME LEQ PMAX(I+1,L)
THEN BEGIN i_E=L-l$ L=OMAX(1+1)+!$ ENDS

If- PMAX(l-fUL£+l)-ME LSS 5 THEN LE=LE+1S
FOR L=(LE»1»0MAX(I+1)) DO

PMAX(I+1,L-LE)=PMAX(I+1»L)$
OMAX(I+i)=OMAX(1+1)-is

ENDS
IF OD LSS NYD/4 AND ul'iAXd + 1) LEQ 1 THEN BEGIN

M.1=ME + 1S M2=MMAX(I + 1»LMAX(I+1))-1$
FOR M=(Ml»i-»M2) Do BEGIN

Ir=y!MVT!Y^xo,"Y(Mi,)*(X(M,-X(V,1))/(^M2)-X(Ml))S
IF Y(M)-TY üTR YB THEN YD=Y(M)-TY$ ENDS

IF YB/NYD GTR 0.3 THEN CHAd + l) = tRf$
^ HA(I+1,='-*$ CHEK(I+1)=1$ ENDS ENDS

PR05Sr?E OSC,,L^X»YrLMAXrMMAXd#NYDrOSCL)S
INTEGER ARRAY XPY,LMAXrMMAX$
INTEGER I»NYDi
BOOLEAN OSCLS
BEGIN

INTEGER M»M1»XB,XS»YSS
XB=0S XS=0S YS=2000;£

tranwmpwnitnmnBBH

97

c

FOR M=(MMAX(I+I.,MI
yj-'"-"»

IF rw Awn iNo^'^re'.1;-1^' M
IF X(M).X(M"PLM S THr2 ««.I Mi' THEN REei

PR3gRr-x;---«.i,PyES.NyD.y8)I
BOOLEAN PYFSs
BEGIN

FOR Äx^^-i'^^^JN XSMAZX.MU
IF Y(ML) LEO r(M) AND r(«U le« TIM*,.

«OP LE/
M
ANü LE 1

r^,V^XNE+11 ew«

ML=M$ ENDS

THEN BEGIN

THEN BEGIN

IF

ENOl

INTEGER ^/'^AXrMMAXS
BOOLEAN PYFSs
BEGIN

INTEGER M^MUMTrYörXüS
YösOs

FOR M=(MMAX(I,0)+lM,^AX(Ir2)) DO
FOR M-L J1 ?TS Yß THtN RPG^ YB=??M)$

ÄxL?!J,1T^sr^ THEN ßEGlN ML=^
MT=M$ ENDS

\, 98

^^ifjl^MU't-mwu DO
Ä^(M^ AW ^^ 6EQ Y^^> THEN BEGIN
W=MMAX(I,LMAX(I))+1$ ENDS

IF XO GT« NYÄ/8 THEN nyrS=TKUE$ELSE „rESzr.LSE,

PROCEDUKE SCHEK«.t,MM*X,I.Srei,»«

BOOLEAN SYFSs
BEGIN

INTEGER M»N$
REAL SLOP!
IF lF.(SD(f?Mf ?S SD(I, EQL ^ THEN M=2 ELSE lycm EQL 326 ÜR SD(I) E^ 326, «H|NE^|S

LSC; N=N+lf

ENDS SYES-TRUt ELSE SYES=FALSE$ 1'0

INTEGER IrNYus
BOOLEAN VYESs
BEGIN

INTEGER M,MJUMT,Y#,Me$

fti,LLSS Y(MT)^YtD/2 THEN BEGIN

F ^N C^r^ff.^^}!,!^ |«| OR S0(I, EOL 2626 T„EN

FOR^-nT^^'^«1'20"«»» END!
IP cn7,J'i'IM*X) D0 8ESIN

* 99

i26 OR Si,(i + i) EQL 36 0R SD(I + 1) EQL 26

IF
IF
XR
IF

£OL 2 THEN

IF SD(l+i) LUL
THEN REGlrj

c«o
Y?::0$ XL=0S XRSO« FOR MrCMMxa+i 0,^^,.^^^^^^

RMc^1#J^2-^ D0 BEGIN

IF cSlotiT^i1^4"?5 10 THE:N »"IN CHA(I)..2,$ CHMd.Dz..^ CHEK(I,=1s CHEKCUD^IS

KY=Ü$ YMAX(I+i>=YMAX(I)S. ENOS ENDS ENDS ENDS

BEGIN R ^^♦t» E0«- 12 OR SDd+i)

FOR M=(^AX(l,0)n,l,M(MAX(I,l,, DO

X?(I).XB(ln) m 5 AND YMAX(I+1)-Y(MX) LSS 3 THEN
IF KY EQL 1 THEN BEGIN

•f,1 ®E? 2 THEN UEGIN

IF " N lif.^'i*)'11? **> ELSE SEsfN1'' *

ENDS ENDS ENO$ ENDS ^'^ ^-^IN{I+1)$
COMMENT NAME POCODE ♦♦*******.,****.

BMIN=0$ SMAX=2000$ *******♦*♦****♦*♦***•**♦*♦* $
F0R

TJ=<l'i»IMÄX) DO BEGIN

OR lülll EEOLL L^R^f},^. 3 °R S0(I> SOL 13

IF

c
GTR
L5S

BMIN
SMAX

THE.M
THtw

MMIN=YMIN(I)$
bMAX=YMAX(I)$

r
IF

MW

100
IF YMlN(l)
IF YMAX(I)

LHil ENDi
FOR d=(lrl»3) DO btGIN

HDzCSMAX-bMIN)/^^
PHD

1
^^:

0
? IIX::0$ ™I'J=^- TINSOS FOR I=(1»1,IMAX) DO BEGIN

OR lnn\ fS.L I 0R S?(I) EQL 3 0R SD(I) EQL 13
np cS,?^^"1- 12 0R So(I) EQJ- 2 OR SD(I) EOL 23

tp(ii 5^ 6 0R SD(I) EOL 1 THEN GO TO LN2S
TMK

X
^.

}
"
SMAX

LSS H0 THEN BEGIN

TpT^!;TtlAX+YMAX(I)$ TIX=TIX+U ENDS
IF BMIN-YMINd) LSS HD THEN BEGIN

LN2: J^^M^^MINd)! TIN=TIN+1$ ENDS

J?-T^v^r 0 0R TIN F-QL 0 THEN GO TO 0T$
ENoI TIX$ rSa™^/TlN$ NYD=YT-.YB$ SMAXcYTi BMIN=YB$

H0=NYD/2$

^X^SDIJI'^^^O
1
? 9HfK(I) EQL 2 THEN BEGIN

cStKmrOs. 0R SÜ(I, EiJL 13 0R SD(I) EQL 23 THEN
FlYMIN(Y»I,JMAX»FYMl,YrJ)S
PDaI=^YMAX(I,, LSS Hn AND ADS(YB-FYMI(I)) LSS HO THEN

ELSP0mIaAXm"YT 6TR hD AND ABS^B-FYMI(I)) LSS HD

EL5PD{I>=3S(YT"YMAX(I,) LSS HD AND YÖ-FYMI{I)
ELSpOcJ)iJAX(I)*YT GTR HD AND YB-FYMI(I) GTR HD THEN
ELSE PD(I)=0S
IF PD(I) EQL 0 THEN

FD(I) EPL 1 THEN
FOCI) EQL 2 THEN
POm EQL 3 THEN
PD(1) EQL 4 THEN

PCHA(2)=»A»S
LNTYPE(0)$

Kl=90ü$ K2=50ü-I*3üi
LINE(DFILE»K1»K2,DUMMY)$
CHAR(0FILE»PCHA,DUMMY)$
ENDl

FOR^icS^tf!0«,^1*1' E0^ THEN BEGIN

FOR M2-(UMAX(I)+1,1,JMAX(1+1)) DO
IF X(M1) LEG X(M2) AND X(M1) 6EQ X(M2+i)
BEGIN

THEN

HD THEN

IF
IF
IF
IF

PCHA(lJs»0» ELSE
PCHA(1)=»1» ELSE
PCHA(1)=»2» ELSE
PCHA(1)=»3» ELSE
PCHA(l)s»^»$

THEN

101

IF r(Ml)-Y(M2) LEG NYn/10 THEN Kl=Kl+l ELSE
K2=K2+1$ MP=JMAX(I+1)+11 ENDS

IF X^M^tlH-XMl) GTR NYDA THEN M1=JMAX{ 1-1)$
ENDS

ENni^Nii018 K2 TH£N BeGlN CHA(I)=.-.$ CHEK(I)=1$ ENDS

F0RIK=??(J,TS?^6nSR S0(I, EQL 7 THEN CEGIN

IND Y^/rrS^ ^li fND X(L) LEQ X(JMAX(I-l)+2) cno MV ;.(L) GTR r<^AX(l)-l) THEN BEGIN
IF « lifJ'^X^i! ü0 F0R M=(^X(I)-l,-l,JMAX(I-l)+2) DO IF X Ml) OtQ X(M) ANO X(Ml+l) LEO X(M) OR

rl vf2,?(.MLAi;ü X(Mi+^ GEQ X(M) THEN BEGIN IF Y(Ml) LSS Y(M) THEN BEGIN
^tZly'*'* CHA(I) = »-»$ CHEK(K)31S CHEK(I)=1$

I- ,^v^J"^MAX(K)+ia' END$ M=JMAX(I-.1)$ ENDS
_L-JMAX(K»+1S K=IMAX+1$ ENDS

^IF^IL)'
1
^?! St/,0/ ^(JMAXCK-Dn.lrJMAXtK)) JO

ANn Yr. /.(ccAJ I^1,^, AND X(L, LEQ X(JMAX(I))
firno M? yi

(L) LSS Y(JMAX{I-n+2) THEN BEGIN
/ IF J vi' r

|
J-5Xi^JnJ)0 F0R M=<^AX(I-l)+2,lrJMAX(I)) DO _! 1F J(MiJ L^G X(W) ANL» X(H1+1) GEQ X(M) OR

X<I
'

1
TP 5f2i?(!5iB

A!!fn X(M1+1> LEQ X(M) THEN BEGIN IF Y(M1) GTR Y(M) THEN KY=1$
IF KY EQL 1 AND Yiill) LSS Y(M) THEN BEGIN
M?

A(
^W!J

,
?^

HAII,

=

,
"
,$
 CHEK(K)=1$ CHEK(I)ri$

i-1MAv^T^AX<K!i)+l!8 END:B M=JMAX(I>+1$ ENDS L=JMAX(K)+1$ K=IMAX+U ENDS
ENDS

IF SD(1) EuL 7 THEN BEGIN
DIST=10üOS

Po» rY-?
AV

1
(IJfiXfJMAX(I-i)+I»+X(JMAX(n))/2$

FOR IX-(l,lfIMAX) DO BEGIN
IF IX EQL I THEN IX=IX+1S
IF AÜS(XAV(I)-XD(IX)) LEQ DIST THEN BEGIN
IF PDtIr?B^|

XAy('i:XB(iX),S IC:=IX4 ^D$ ENDS IF FDCIC) EQL 1 THEN CHA(IC)=»I» ELSE
IF PD(IC) EQL 3 THEN CriA(IC)=»Jis

rOMMP^^n':14 CHE:K(I)=15 CHA(I) = .-.$ ENDS
SACKES

L00P *♦*♦•*******♦*♦***♦*♦***♦***♦***♦♦** $
FOR IR=(l»lr8ACK) DO BEGIN

Frf={i:{^jAxc^?E
Dr"**+*********************-*--*-$

IF CHEK(I) EQL 2 THEN BEGIN

;

102

L

IF SD(I) EuL fS ANÜ Pü(I) EQL 1

OR Süd) LÜL 62 AND PD d) EOL 1

ftrJr
CL0S THlIN Bt'GlN

I|
C
^^T1

AX
'
0KAX

'
MMAX

'
PMAX

'
SD

'I'^
Y
D'FEED,I)$

üACKrüACK+lS ENDS

IF inr^I/fS? AND CHEK<I+1) EÜU 2 THEN BEGIN

o2 lo J1J ^L 32 ANL) P^I+1) EQL 2
rSMT!, EÜL 362 AN{) PDtI+1) EQL ? THEN BEGIN

ELS^^'?:^'1*1' ='-^ CHEK(l).lSNCHEKGa + l)=lS END
rwAiT? .T15 LGL 362 A;JD PD(I+1) EQL 3 THEN BEGIN

ELSE JF SDa!f,CFn(I:1, = ,"fj> CHEK(I>=^ CHEKan" i' END

CHEK(lf-lf JHS/^? N
1
CHA(I, = ,9,$ CHA(I + 1) = ...$ i-Mt.Mi}_i$ CHLK(I + 1)=1$ END ELSE

tLSE IF cny??i(?rpA1
LMJX'MMAX'CHArjE'CHEK'NYD)$ END

CHiaT? AI.1 r^Vr36/^ PD(I + 1) EOL 1 THEM BEGIN
ELSE IF^n T!?»Cci.an)S,",$ CHEK(I)=1$ CHEK(I+l)=lS END
OR In/rxf?^^1* EQL 3i62 ANQ PDd+D EQL 1
0R ! - " ^ ---a - J -EN BEGIN

IS
FORTEa^^x:trDr""*+""***^^^-*^-*--^
IF JnM?Ec.<

i
n £GL 2 THEN DEGIM IF Süd) EuL 3ö2 AND PD(I) ECL 1

OR ln!?i ^ 3J62 AND PD(I, ^ 1 OR SDd) EQL ?2b2 AND PD(I) EQL 1
OR SDd) EQL 36 AND Pud) EGL 1

no InlH LäL 262 AN0 PÜ(I) E^L 1
C.oL^Lv2S ANÜ PD(I, eGI- i THEN BEGIN
CLÜSL(XrY»01viAX»PMAXdr2,NYU»CLOS)3.

IF CLOS THEN BEGIN

i»" FtED THEN BEGIN CHAd) = »0»$ CHEK(I)-1$
BACK=BACK+1$ ENDS wntMilsiS

IF SDrtSl/fn? ^Ö CHEKII + 1) EQL 2 THEN BEGIN IF SDCI + l) EQL 36 AND Pud + 1) EäL 2

o2 IniiHl fQL 32 ANÜ pü(l*l) EQL 2
OR SO(1+1) EQL 362 AND PDd + D EQL 2 THEN RFGTM

ELSE^
1
^;?:?)^

1
^

2
:-

18
 ^dfj^v^j^D^s END tLSE IF SDdn) EQL 362 AND PD(I+1) EQL 3 THEN BEGIN

C^ 103

COMMENT FIRST nTur^c ..*
FOR I=(1,1,IMJX? DO ******+***************************** $

M Inir.5?'1' E0L 3l6 AND PD(1) ESL 2

"Kvit ^.Ä?^,^!«.^^ ! TH.N RESIN Jo Ä^
IF NOT HKYt THEN

BC0SD'TO)iLEl5S'0MAX'MMAX,PMAX'CHA'1'CHEI<"r«D,

* F ' r?"A"?'"^^"L' THEN BESIN

lFNOTfcHKTTHH^K,)t'r"-MAX,HHAX'CHA"":HEK)«
BCOSD^D!f;I-^'OMAX'MMAX'PMAX'CHA'I'CH«.FEEO.

3CO
SO'N?D';

L
E^'

üMAX
'
MMAX

'
PMAX

'
C
^'I'CHEK,FEED.

ELS|o'!S?o"(X'r'LMAX,-0"A1<'KMA)<'PH*)<^HA.UCHEK,FEED.
ENO^

6
"

THFN BACK-aA<:Kn» ENDS

(,

104

re c^lT^uI, EQL " AND C^^I + D EQL 2 ThEtJ BEGIN IF SD(I) E^L 2ü ANu PD(I) EQL 1
0R Tr^^T01-,2^ AND PD(I) F^ i THEN BEGIN IF Sü(I + i) EuL 32 AND P,)(I+i) EQL 1

Sr^J!1! FSL 362 ANU ^D(I+1) EQL 1 THEN BEGIN
VCHEK(X,Y»LMAX»MMAX,I»wYFS»NYD)$

IF VYES THEN BEGIN CnA(I)=»V'$ CHA(I+l)rt.ij
CHtK(I)=l$ CrieK(I+l)=i$ END

ELSE IF CHEK(I+2) EQL 2 THEN BEGIN
VCHEK{X»Y»LMAX»MMAX,I+1,VYES»NYÜ)$

IF VYES THEN BEGIN CHA(I)=»W»$ CHA(1+1)=»-»$
rK!n^(i)=1S CHEK(I + i)=U CHEK(H-2)=1$ CHA (1+2) = »-»$ ENDi ENDS END

CHtK(I+2) EQL 2 THEN BEGIN
vCHEK(X»Y,LMAX»iMMAX»I + i,VYES»NYD)4

IF VYES THEN BEGIN CHA(I)=»W»$ CHA(1+1)r»-»$
CH^Mnl=^CHEK(1 + 1, = 1$ CHEK(I+2)=1$ CHA(I+2) = »-»s ENDS EN03. ENDS E^Di

tr in,TVEK(I, E(*L 2 THEN BE6IN IF SD(I) EQL 62 AND PD{I) fcQL 1
0R JS!!!^01- 162 AND PDm EQL i THEN BEGIN

CHA(I} = »c»<f; CHEK(I)=ls END
^S|nlTtSP(1) ^QL 36 AND Pi)(I> EQL H . OR SD(I) EUL 316 AND PD(1) EQL 1

l- 0« SD(I) EQL 3162 AND PD(I) EQL H
0R r21J},E?l: 362 AND P0<I, EGL ^ THEN BEGIN CHA(I)=«F»$ CHEK(I)=ls ENDS

ENDS ENDS

Fsn=(2T,i^jAxr^r************************************-$

Jc en/?!1* .EQL 2 AND CHEK(I-I) EQL 2 THEN BEGIN
?c(cn EUL.31-2 A^D PD(I, EGL A THEN BEGIN IF SU(I-l) LQL 316 AND PD(I-l) EQL 2
OR SD(I-l) EQL 3162 AND Pu(I-l) EQL 2
OR SDd-D EQL 36 AND Pi)(I-i) EQL 2

rSfJT1!.2®1- 362 AND P'^I-l) EQL 2 THEN BEGIN
IF SD(^7} rß,a,^HJMi,::,,"S ^EKd-D^S CHEK(I)=1$ ENDS iF bD(I-l) EQL 326 AND PD(I-l) EQL 1
OR SD(I-l) EQL 3262 AND Pü(I-l) EQL 1
OR SD(I-l) EQL 362 AND PD(I-l) EQL 1
OR SDd-l) EQL 36 AND PD(I-l) EQL 1
OR SD(I-l) EQL 262 AND PDd-l) EQL 1

EN^i ENDS CHA(I-1)-,-S CHEK(I)=1$ CHEKd-DaiS ENDS

IL£hI£K(I) EQL 2 AND CHcK(I+l) EQL 2 THEN BEGIN
OSCULA(XrYrLMAX»MMAX,I,NYD,OSCL)$

105

re erwJf 0SCL THEN öi£ü^
1* IS { E<ä,L 32 ANÜ PDll) ^L 1
n2 QM } ^L 3ii6 A,V|D PD<I> EGL 1

CHi i -."' ?^T^? F,^I + 1> ""- 1 THEN BEGIN
n ^F ri ^!r $ CHA<I+l?s»«i$ CHEK(I)=1$ rwr^/r^i

rÜL?!^ THEN atGlfJ CHA(I)s.N»$

IF OSCUIT+^rßEOlNHEK(1,=1$ CHEK(I+i>=" ^DS

OR ln!f+f! EQL 36 AND P0(l+2) EGL l
OH SD 1+2) EQL 32 AND P0(I+2) EQL 1
OK SD 1+2) EQL 36^ ANü P0(I+2) EQL 1
OH ^n f^i EQL 3262 A'JD PD 1+1) EQL 1

CHA n-.M?t r
3S6/WD,PD(I^> EQL /THEN BEGIN

rupiJiT^I* c^(I+l)s»-ts CHA(I+2) = »-t$
ENDS END* ENDS ENDi CHE*<WL* CHEK(I+2)=U ENDS ENDS

f? tiMA^i?6! 0R SD(i> tQL 3262 THEN BEGIN

IF SD(1) EQL 26 OR InM f .vP CHEK(2) E(5L 2 THEN BEGIN
IF Z^^W^ "- --QL " ™EN BEGIN ■

CHAT - PIS cil p?i:X(1,^YMIN(1,, LSS 0-5 THEN BEGIN
ENDS EWU* ENDS CHA(2,=,-5 CHEK(l)=lS CHEK(2)=1$ ENDS

FOR I=(1»1,IMAX) DO BEGIN

re ln,C^Kil) EQiL 2 THEN BEGIN

IF CHEK l!n ^P,^;^0 .K;D<n Eal- » THEN BEGIN
ELIE REGIN " ' TH£N BeGIN CH*<I»?'R'» CHEK(I)=1, END

if 5?lI+1, S«IL 32 AND Pu(I+l) EQL 1

: cvHrEEKs
(^-8!^(^)'iin^cHA,i+i,s-»

IF NOT VYtS THEN BEGIN
RC^KiX'Y'LMAX»MMAX,I,RrES»NYD)S

BEGINTHEN 3EGI" CHA(I) = ,R^ CHEK(I)=1$ END ELSE

106

IF CHEK(I+2) NEO 2 THEN BEGIN CHA(I)=»U»$
CHEK(I)=li LH£K(I+1)S1S CHA(I+l)=»-»$ ENDS

IF CHEK(I+2) EülL ? THEN LEGIN
VCHEK (X»Y»L.'^Ax r MMAX # i + 1» VYES»NYD) %

IF VYES THEN BEGIN CHA(I)=»W'$ CHA(1+1)r»-tj
CHEK(I)=16 CHLK{I + 1)=13, CHEK {I-»-2)=lS
CHA{1+2)s«-i4 fi^os

IF NUT VYES THEN BEGIN CHA{I) = 'U»J CHA{I+l) = »-»5,
CHEI<tI)=li CHi::K(I + l)=l$ ENÜS ENÜ%

ENDS t:.NDi END
E
D5L3^

SB(1
1 + i) ^^ ^ A!J'' PD(I+1) EQL 1 THEN BEGIN

RCHEK (A» Y, LMAX * MMAX »I».< Yt-.S»NYD) $
IF KYES THEN tJEGU ChA(I) = »R»S CHEK(I)=1$ ENO ELSE BEGIN

IF CHcK(I+2) ME.J ,> THEN BEGIN CHA(I) = »1)»$
CHEK(I)=1* CH(-K(I + l)=ll CHA(I+l) = »-»$ ENDS

IF CHEK (1+2) EQL Z THEN tJEGlN
VCHFK(X # Y»LMAX»MMA<,1+1» VYES f NYD)S

IF VYES THEN UEGIN CHA(I)=»W»i CHA(1+1)=•-•$
CHA(I+2)s»-fi CHEK(I)=1$ CHEK{I+1)S1$

CHEK(1+2)=1* ENDS
IF NOT VYES THEN BEGIN CHA(I)=»U»$ CHA(1+1)='-»f

CHEK(I)=il CHEK(I+i)=lS ENDS
ENO» ENDS ENü ELSE

c. c?E?iN C^^^'R'« CHEK(i)=li, ENüS E;JD$ END
{ re bÜ(I, EGL 'i26 AND f,')(I) t-Qi- I THEN BEGIN

IF CHEK(I+1) NEQ 2 THEN PEGIN SCHEK(X»Y»MMAX»I»SYESfSD)3
Je vhL-N bEÜIN CnA{I) = »S»$ CHEK(I)=1S ENDS
Ah NUT SYLS THEN ÜE&il; CHA{I) = »R»$ CHEK{I)=1$ ENDS END

ELSE iJEoIi>l
Iw^S^(I + 1> C:QL ,ä2 ANLJ

P"(I*i) I-.JL 1 THEN BEGIN

VCHEK (X, Y , LMAX »MMAX» i »y/YES»NYÜ) $
IF NOT VYES THEN HEGIN SCHEK(XrY,MMAxrI»SYES»SD)$

IF SYLS THEN BEGI.M CHA(I)S»S»S CHEK(I) = 1$ ENDS
IF NOT SYES THEN UE3IN CHA(I)=»R»$

CHEK(I)=li ENOi ENDS
IF VYES THEN BEGIN CHA(I)S»V»S CHA (1 + 1) = t»f,,

CHEK(I)=14 CHEK(i+l)slS ENDS FND ELSE
I!^.:l?(I + 1, ^^ 36 AN1J pD(r + l) EQL 3 THEN BEGIN
SCHEK(X» Y r MMAX »I»SYES»SO)$

IF SYES THEN dEGlN CHA(I)S»S»$ CHEK(I)=1$ ENJS
IF NOT SYES THEN BEGiH
PCHEK(X,Y »LMAXr MMAA,I+1»PYES»MYD» YB)S
IF NOT PYES THEN nEilN CHA(i) = »Y»'i CHA (1 + 1) = »-» $

CHEK(!)=!$ CH£K{J+i)si$ ENDS
CM« - H PYI:-S THEN jt£Giu "HA(I) = »K»$ CHEK(I)=1$ ENDS ENDS
END CLbE BEGIN SCHEK(Xr- , iMAXrI,SYES»SO)$

IF SYES THEN BEGi.. CIIA(I) = »S»S CHEK(I)=1S ENDS
cK.nf -N<?T SYLS TH£N Be:GlN CHA(I) = »R»$ CHEK(I)rl$ ENHS ENDS cNu* ENÜ

ELSE IF SOCI) EUL 3262 AND PJ(I) EQL 1 THEN BEGIN

(.

107

IF ChEKd + l) NEQ 2 THE.. LHGIN
SCHEK(X»Y,MWAX•i »SYES»SO)S

*F SYES THEN BEGIN CHA{I)='S'i CHEK(I)=1$ ENDS
IF NUT SYES THEN BEGIN CHA(I) = •!<•$ CHEK(I)=1$ ENDS END

ELSE BEGIN
IF Sü(I + l) EüL ÖZ AND PL)(I + 1) EQL 1
OR SD(1+1) EQL 362. AND PI)(I + 1) EQL 1 THEN BEGIN
SCHEK(X»Y »MMAX»I»SYES»SD)$

IF SYES THEN BEGIN CHA(I)='S'$ CHEK(I)=1$ END ELSE
BEGIN VCHEK(X»Y»LMAX»MMAX»I.VYES»NYD)S
IF VYES, THEN UEGlu CHA{I) = »V»1 CHA{I + 1) = »-'S

CHEK(I)=11 CHEK(I+1)=1$ ENDS
IF NOT VYES THEN BEGIN CHA(I) = »R»S CHEK(I) = .l$ ENDS

ENDS END *
ELSE IF SDd + l) EQL 36 AND PD(I + 1) EQL 3 THEN BEGIN
SCHEK(X,Y»MMAX rIr SYES»SD)$

IF SYES THEN BEGIN CHA(I)=»S»$ CHEK(I)=1$ END ELSE BEGIN
PCHEK(X»Y »LMAX tMMAX,I + 1f PYES»NYD»Yb)S

IF PYES THEN BEGIN CHA(I)s,R»$ CHEK(I)=1$ ENDS
IF NOT PYES THEN BEGIN CHA(I)S»Y»$ CHA(I+1)=»-»S

CHEK(I)=1S CHEK{I+1)=1S ENDS ENDS END
ELSE BEGIN SCHEK (XfYiMiv.AX» I rSYES»SD) $

IF SYES THEN BEGIN CHA(I)=»S»$ CHEK(I)=1$ ENDS
IF NOT SYES THEN BEvilN CHA(I) = »R»S CHEK{I)=1S ENDS ENDS

ENDS END
ELSE IF Sü(I) EQL 36 AND Pü(f) EQL 1 THEN BEGIN

IF CHEKd + 1) NEQ 2 THEN BEGIN
CHAd) = »S»i CHEKd) = lS END ELSE BEGIN

IF SDd-H) EQL 32 AND P.)(I + 1) EQL 1
OR SDd+1) EQL 362 AND PDd + 1) EQL 1 THEN BEGIN
SCHEK (X»Y,MMAX» I »SYES»SfDS

IF SYES THEN BEGIN CHA(I)=»S»S CHEK(I)=1S END ELSE BEGIN
VCHEK(X»Y»LMAX»MMAX»I,VYES»NYD)S

IF VYES THEN BEGIN CHAd) = »V»'S CHA (I + 1) = »-»S
CHEK(I)=1S CHEK(I+i)=lS END ELSE BEGIN
IF CHEKd+2) NEQ ? THEN BEGIN CHA(I) = »U»S

CH£K(I) = 1S CHl--Kd + l) = l$ CHA(I+1) = »-»S ENDS
IF CH£Kd+?) EQL 2 THE,., LiEGIN

VCHEK(X» Y »LMAX»MMAX,1 + 1» VYES»NYD)$
IF VYES THEN BEGIN CHA(I) = »W»S CHAd-H) = »-»$

CHEK(I)=12, CH£Kd+l)=l$ CHEK(I+2)=1S
CHA(I+2)=»-»5 ENDS

IF NOT VYES THEN BEGIN CHA(I) = »U»$ CHAd + l) = »-»?
CHEK(I)=1S CH,-Kd + lJ=l$ ENDS ENDS ENDS

ENDS END
ELSE IF SDd+1) EQL 36 AND PDd+1) EQL 1 THEN BEGIN
SCHEK(X»Y»MMAX»I»SYES»SD)S

IF SYES THEN BEGIN CHAd)=»S»S CHEK(I)=1S END ELSE BEGIN
IF CHEMI+2) NEQ 2 THEN BEGIN CHA(I) = »U»$

CHEK(I)=1S CHEKd + l)=lS CHA (I + 1) = »-»S ENDS

'

108

IF CHEMI+2) EQL ? CHEN ÜLGIN
VCHPKCXrY^LMAXiMyiAX.I + lrVYESiNYDJ'B

IF VYEb THEN ÜtöTN CHA(I)r«W»$ CHAd+Da'-'S
CHEK(I)=li CH::K(I+1)=1$ CHEK(I+2)=li
CHA(I+2) = '-»4 E.iOS

IF NOT VYLS THEN HEGIN CHA{I)=»U«$ CHA{I+I)=
,
-»$

CHEK(I)=1S CHFK(I+l)=l« END$ ENDli END'S END
ELSE IF GD(I+i) EQL 30 AND PD(I+1) EQL 3 THEN BEGIN
SCHEK{X»Y.MMAX»I»SYES»SD)S

IF üfES THEN BEGIN CltA{I) = 'S'$ CllEK(I)=l$ ENDS
IF NOT SYES THEN BEGIN CNA(IJ=»Y'$ CHA(1+1)=»-,S

CHEK(I)=l'i CHEK(I + l)=i$ ENDS END ELSE
BEGIN CHA(I)='S«$ CHEK(I)=1S ENDS ENDS END

ELSE IF SÜ(I) EGL 36 AND Pj(I) EQL 3 THEN BEGIN
IF SD(I + 1) EQL 326 AND Pi)(I+l) EQL 1
OR SD(I+1) EQL 3262 AND PJ(I+1) EGL 1
OR SD(I+1) EGL 36 AND P|)(I + i) EQL 1
OR SDd + l) EQL 362 AtiD PD(I + 1) EQL 1 THEN BEGIN

CHAd) = »P»S CHAd + l) = '-»i CHEK(I)=1$ CHEKd + l)=l$ ENDS
END

ELSE IF SDd) EQL 362 AND PD(I) EQL 1 THEN BEGIN
IF CHEKd + 1) NLQ 2 THEN PE6IN
SCHEK(X»Y»MMAX r11SYES»SD)$

IF SYES THEN BEGIN C,iAd) = »S»i CHEKd)=l$ ENDS
IF NOT SYES THEN BEGIN CCHEK(X»Y»LMAX»MMAX»I»CYES»NYD)$

IF CYES THEN CVSE(X,Y»LMAX»MMAX»CHA»I»CHEK»NYn)$
IF NOT CYES THEN BEGIN CHAd^'R'S CHEK(I)=1$ ENDS

ENDS ENDS
IF CHEKd + i) EQL 2 THEN ßEftl.j

IF Süd + l) EQL 32 AND POd + 1) EQL 1
OR SDd + l) EQL 362 AND PDd + 1) EQL 1 THEN BEGIN
SCHEK(X»Y,MMAX d »SYES»SO)S

IF SYES THEN BEGIN CliAd) = »S«S CHEKd)=l$ END ELSE BEGIN
VCHEK(X»Y.LMAX»MMAX d »VYES»NYD)S

IF VYES THEN REtillM CHAd) = ,V»S CHA(I+X)S»-»$
CHEKd)=lS CHEKd + lJalS END ELSE BEGIN

CCHEK(X»Y»LMAX»Mf.iAXd»CYES»NYD)S
IF CYES THEN CVSE(X»Y»LMAX.MMAX»CHAd»CHEKrNYD)
ELSE BEGIN «CHEK(X»Y»LMAX»MMAX»I.RYES»NYO)S

IF RYES THEN BEGIN CHAd^R'S CHEKd) = l$ END
ELSE BEGIN

IF CHFKd+2) NEQ 2 THEN h^GlN CHAd) = »U»$ CHA(I + l) = »-»$
CHEK(I)=14 CHEK(I+1)=1S ENDS

IF CHEKd+2) EQL 2 THEM hEGlN
VCHEK(X»Y»LMAX»MMAX,I + 11VYES»NYD)S

IF VYES THEN BEGl.M CHAd) = «W»S CHAd + Ds'-'S
CHEK(I)=1S CHEK(I+1)=1$ CHEK(I+2)=1$
CHAd-»-2) = »-»S ENDS

IF NOT VYES THEN BEGIN CHAdU'U'S CHAd-d) = «-»$
CHEKd)=l$ CHEKd-H)=lS ENDS ENDS ENDS ENDS

109

E.ND1 CND-B t.NO
^SFn-^ SD(1 + 1) EQI- 36 ANO PD(I + 1) EQL 1 THEN BEGIN
SCHEK(X,YrMMAXrI»SYESrSD)$

IF SYES THEM BEüIN CHA(I)=»S»J CHEKCI)=1$ END ELSE BEGIN
CCHEK(X»Y»LMAX tMMAX.I^ C YES»NYD)$

IF CYES THEN CVSE(X,Y»LMAX»MMAX.CHA»I»CHEK»NYD) ELSE
BEGIN RCHEK(X»Y.LMAX»MMAX»I»RYES»NYD)$
IF RYES THEN BEGIN CHA(I)=»R»$ CHEK(I)=1$ END

ELSE BEGIN
IF CHEK(l+2) fJEQ 2 THEU UEGI.N CHA(I) = »U»$ CHAC 1*1) = t-»$

CHEK{i)=ii CH£K(I+I)=I$ ENDS
IF CHEK(I+2) EQL 2 THEN tiEGlN

VCHEK(X ^ Y»LMAX»MMAX.1 + 1» VYES»NYD)$
IF VYES THEN BESlN CHA(I)=»W»$ CHA(1+1)=»-»$

CHEK(I)=1S CH£K{I + 1)=1$ CHEK (I+2)=1'B
CHA{I+2)=»-»l ENOS

IF NOT VYES THEN BEGIN CHA(I)=»U»$ CHA(1+1)=»-»$
CHEK(I)=i$ CHEK(I+1)=1$ ENDS ENDS ENO$

LNüS ENDS END
ELSE IF SD(I+l) EQL 36 AND P0(I+1) EQL 6 THEN BEGIN
SCHEK(X»Y,MMAX»I»SYES»SO)$

IF SYES THEN BEGIN CMA(I)=»S»$ CHEK(I)=1$ END ELSE BEGIN
CCHEK(V»Y»LMAX»MMAX»I»CYESrNYD)$

IF CYES THEN CVSE(X»Y»LMAX»MMAX»CHA»I»CHEK»NYD)
wwE BEGIN

IF wt»£K(I+g) NEQ 2 THEN BEGIN CHA(I) = »Y»$ CHA(I + l) = »-»$
CHEK(I)=1$ CHEK(I+l)=li ENDS

IF CHEK(1+2) EOL 2 THEN BEGIN
PCHEK(X»Y»LMAX»MMAX»I+1,PYES»NYD.Y8)S
IF PYFS THEN BEGIN CHA(I)=»R»$ CHEK(I)=1$ ENDS
IF NOT PYES THEN BEGIM CHA(I)=»Y»S CHA{1+1)=»-»$

CHEK(I)=1$ CHEK(I+1)=1$ ENDS ENDS
END$ ENDS END

ELSE BEGIN SCHEK(X»Y»MMAX»I»SYES»SD)S
IF SYES THEN BEGIN CHA(I)=»S»S CHEK(I1=1S FNDS
IF NOT SYES THEN BEGIN CCHEK(X»Y»LMAX»MMAX»I»CYES»NYO)$

IF CYES THEN CVSE(X»Y»LMAX»MMAX»CHA»I»CHEK»NYD)$
IF NOT CYES THEN BEGIN CHA(I)=»R»$ CHEK{I)=1$ ENDS

ENDS ENDS ENDS ENDS
ENDS ENDS
ENDS
FOR I=(IMAX+1»1»30) DO CHA(I)=» •$
CHA(30)=»A»S
LNTYPE(Ü)$

Kl=X(10)s K2=YMAX(1)+100S
LINE(DFILE»K1»K2»DUMMY)$
CHAR(DFIL£»CHA»DUMMY)$
GO TO OTl
ENOS
ENITI END$
0 XQT PATTEN

