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Annual Review Introduction 

We continue to engage in large multi-person re- 
search projects and in individual research. Two of our 
largest projects are the design of hardware and soft- 
ware for our multi-mini-processor computer system 
(C.mmp) and the building of the Hearsay speech 
understanding system. 

By June 1973 C.mmp had grown to *hree proces- 
sors and four memory ports. By the end of summer 
the It x 16 switch will be ready, giving us the 
potential of a 16-processor configuration. The kernel 
of the operating system is running on the prototype 
and is being driven by test programs. A piece of the 
speech system is now up on the C.mmp. 

The Hearsay system is now operational and was 
demonstrated live at several workshops. This system 
demonstrates the use of context, syntax, and seman- 
tics in a speech recognition task and represents a 
significant milestone in the cooperative speech under- 
standing research effort that is presently underway at 
several universities and research institutions. 

We vie\7 workshops and symposia as one of our 
major links for research communication with the rest 
of the world. 

A nine day Workshop (joint with Psychology) 
explored New Techniques in Cognitive Research. The 
"new techniques" are programming systems that em- 
body within themselves significant psychological 
theory which one explores and uses to construct new 
theory interactively. The nine days were spent on-line 
and a major purpose of the Workshop was to assess 
the advantages of this sort of scientific communica- 
tion rather than the usual talk-intensive workshops. 
The Workshop was a success and we are engaging in 
seven smaller but similar workshops this summer. 

Other workshops dealt with Architecture and Ap- 
plication of Digital Modules and with Segmentation 
and Classification of Connected Speech. 

A group of IBM scientists and managers visited for 
a two day CMU-IBM Minisymposium on current com- 
puter science research at the two institutions. A 
Symposium on Complexity of Sequential and Parallel 
Numerical Algorithms provided a forum for the pre- 
sentation and discussion of recent research results and 
surveys on topics such as the interdependence of 
machine organization and algorithms, and algel raic 
and analytic computational complexity. 
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Design Augmentation 

Charles M. Eastman 

In 1963, Steven Coons described the potential of the 
computer in design as follows; 

"We outlined . . . j system that would in effect 
join man and machine in an intimate cooperative 
complex, a combination that would use the crea- 
tive and imaginative powers of the man and the 
analytical and computational powers of the ma- 
chine each with the greatest possible economy and 
efficiency. We envisioned even then the designer 
seated at a console, drawing a sketch of his pro- 
posed device on the screen of an oscilloscope tube 
with a "light pen", modifying his sketch at will, 
and commmding the computer slave to refine the 
sketch intc a perfect drawing, to perform various 
numerical analyses having to do with structural 
strength, clearances of adjacent parts, ;md other 
analyses as well ... " '2'. 

it is now ten year:- later; a wide variety of graphic 
terminals have become civciilable, yet this conception 
has been realized in only vary limited areas. One can 
attribute a variety of causes to the failure of Coons' 
image being realized. Among them must be included: 
a. poor understanding of most design tasks. In most 

areas we still lack a clear picture of the informa- 
tion typically available for use in decision-making, 
the sequences of decisions ren jired due to external 
requirements, and the mcue of problem solving 
normally used by designers in a particular field. 

b. restricted system designs. Little effort has been 
devoted to the matching of design tasks to CAD 
system capabilities. The generality of d-~ta struc- 
tures, operations, and forms of analysis has been 
limited, at least in part, to technical problems of 
software organization. 

c. an arbitrarily restric ted view of the contribution of 
the computer to design. Most efforts in CAD have 
begun by partitioning design into two sets of tasks, 
those   •jlgorithmically   defined   subtasks,  and  all 
others,  as Coons has done above. The machine 
undertakes the first set while the human designer 
"fills in'' to complete all the others. This partition- 
ing is often an  inefficient use of both man and 
machine and inevitably leads to questionable sys- 
tems organization assumptions. 
Since about 1967, a group o' faculty and students 

at CMU has been addressing thn ahove technical issues 
associated with computer-aided design, particularly as 
applied to architecture, civil engineering, and indus- 
trial equipment i'esign. In this paper, I review these 
efforts and outline what  I believe to be their con- 
tribution to date. 

Task Analysis 

Design is often considered an art, particularly if it 
is oriented towards buildings or other public prod- 
ucts. Case studies and more rigorous analyses of the 
process of design, as carried out traditionallv, have 
only begun tr clarify for computer system designers 
the tasks involved in design and their possible organi- 
zations. 

Design is a process of long duration; a complex 
design may take several years to complete. The range 
of activity involved in such an extensive process re- 
quires a carefully structured analysis. Analyses of the 
design process have been attempted at three levels of 
detail. The first and most general level might be called 
the molar level. Its duration is the total length of 
design (months or years), and the decisions it ex- 
amines are usually collected through a case study (I.e. 
recall) or diary format; the actions characterized are 
most often those of a group. The kinds of informa- 
tion normally collected at the molar level include the 
general sequence in which major design decisions are 
made, what those decisions are, the sequence in 
which important information is received, and from 
whom. 

It is also possible to analyze subsets of design 
decisions. Design problems can be defined that are 
the appropriate province of a single decision-maker. 

ui^u^^m^^uuii^. 
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In this research context, the information brought to 
bear, the external representation of informafon, and 
other processing of information by an individual de- 
signer can be carefully monitored. This level of detail 
might be called the molecular level of design analysis. 
Usually this level of analysis is characterized as design 
"problem-solving" and is amenable to the techniques 
of analysis Newell has developed for problem solving 
research I15'. Design actions at the molecular level 
assume as primitives both standard methods of analy- 
sis, where these are formalized, and cognitive proc- 
esses, where no formalization exists. Each design 
problem analyzed at this level also is assumed to be a 
single element in the analysis of case studies. Thus 
this intermediate level of analysis relates primitive 
perceptual and cognitive processes to the global or- 
ganization of design. 

The lowest level at which design has been studied 
may be called the atomic level (in accordance with 
our physical science analogy). At this level, the re- 
searcher is concerned with tho» primitive capabilities 
required to analyze and synthes.ze physical systems. 
Many of the analytic primitives have received much 
attention, e.g., procedures for predicting the behavior 
of a structure to static loads. Others are of a psycho- 
logical nature and have only begun to be explored. 
These include: 
a. the structure of human memory about the physi- 

cal and visual world and strategies for accessing 
information within this structure; 

b. matching a verbal description of a condition with 
a graphic pattern corresponding to that condition, 
or vice versa, deriving a verbal description of a 
graphic pattern - in general, creating a description 
or deiiving a correspondence in one kind of lan- 
guage from another language; 

c. testing visually if an object fits within a given 
space. 

The study of primitive operations normally involves 
laboratory experimentation. 

Several studies here have contributed to the body 
of knowledge regarding the process of design. East- 
man and Yessios have undertaken type two, or molec- 
ular level studies 13,4,5,181 Ba||ay and Moran have 
studied type three processes I1-13', Studies under- 
taken elsewhere have focused on molar studies. These 
studies have allowed us to elaborate our understand- 
ing of design and to determine the context for future 
studies. 

Rather than relate the results of particular studies, 
I shall attempt to generalize from them. Of necessity, 
the;e generalizations are interpretive, but suggest im- 
portant criteria for the design of CAD systems. In 
particular, no single sequential structure is likely to 
be adequate for use by different designers in different 
contexts. While a common set of operations may 
eventually evolve, the unique information gained 
from the application of each will lead to a different, 
possibly unique sequence '4' . 

Also, design problems are usually both ill-struc- 
tured and ill-defined. That is, they are not easily 
characterized within any one representation and they 
initially are only partially defined. The designer is 
responsible for both structuring the problem and 
completing its dethition. He normally does so today 
through an iterative process of partial definition and 
resolution. Solutions are used to prompt his experi- 
ence for the purpose of elaborating the problem defi- 
nition, This method of problem solving benefits from 
displays of partial solutions in multiple repre- 
sentations '31. 

The strategies used by desioners correspond closely 
to the general problem solving processes called heuris- 
tic search. Generate-and-test, mear-ends analysis, 
and planning all can be observed in design protocols 
collected at the molecular level; often they are inter- 
mixed. These results suggest that a CAD system 
should incorporate capabilities for tests, means-ends 
tables, and the mapping capabilities needed for plan- 
ning 131 

As recognized by others, intuitive design is hier- 
archical and sequential; the subset of variables having 
global effects are abstracted for early decisions, while 
others of only local significance are generally resolved 
later. Decision sequences are also influenced by the 
external constraints upon variables posed by a partic- 
ular coif ct. Because each design problem comes 
with e unique set of constraints, different variables 
are initiolly bounded in different problems. The se- 
quence of alignments to variables is partially deter- 
mined by thei, binding; those tightly bounded are 
assigned early (before they become overconstrained). 
Thus the intuitive sequence of decision-making used 
by humans in each design problem may vary l3'131. 
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Many design problems are underconstrained and 
have no precise objective function. Without greater 
information regarding goals, a great range of solutions 
is possible. Moreover, the search of the problem space 
for a specific solution is potentially inefficient, due to 
the lack of constraints for partitioning the domain 
down to manageable size. In this context, designers 
often add constraints to simplify their own problem 
solving. These constraints reflect subjective concerns 
and are a major component in the art of design. 
Traditionally, the adding of constraints has been an 
important prerogative of designers. 

The mental representations of form and the opera- 
tions on them used by individuals correspond closely 
to their perceptual and manipulative experience. 
Sculptors manipulate forms in terms of the carving 
operations required to generate them from a simple 
block, draftsmen use projeotive geometry, and an art 
histi rian is likely to use historical analogies. The 
internal representations used by humans in c'esign 
thus evolve from perceptual and tactile experience 
[1'. These representational differences are an impor- 
tant source of variation in human design. 

System Configurations for Computer-Aided Design 

System design research here at CMU has followed 
an evolution represented by a sequence of programs 
for computer-aided design. To facilitate later refer- 
ence to them, i shall first give their names. The first 
large erfort completed here was Grason's GRAMPA, 
implemented in 1970. This was followed by East- 
man's  GSP   l7-8!   and Pfefferkorn's DPS   |161.  In 
1972, Yessios implemented FOSPLAN i20), then in 
1973, SIPLAN I211. Several small programs have also 
been implemented during the same period. Below I 
review each of these systems in terms of their repre- 
sentation of space and treatment of constraints. Last- 
ly, I out'ine research in design languages. 

A basic issue to be resolved in the design of any 
computer system is the organization of data for easy 
manipulation. The issue has broad implications, as 
different characterizations of the original design task 
lead not only to different data structures, but afso to 
nonisomorphic operators thaf may cause drastic dif- 
ferences in problem solving difficulty. I am speaking, 
of course, of the ubiquitous representation issue. A 
variety of representations of the physical elements 
and space involved in design have been developed and 
explored here at CMU. A common property of all of 
them has been their explicit treatment of the integer 
constraint regarding allocations in the space-time con- 
tinuum - any point in space may be occupied by 
only one element at a time. 

One of the earliest representations used was the 
variable domain array t6-8!. See Figures la and lb. It 
is a two- or three-dimensional array, each variable 
with non-zero subscripts representing a rectangular 
domain. The dimensions of the domain were defined 
in the zero vectors in each dimension; the X and Y 
dimensions of Qjj were a/oand «0/,respectively. The 
values of the non-zero variables characterized the 
state of each space, e.fl'., whether empty or filled and, 
if filled, by what object. This representation, while 
limited to rectangular domains, incorporates certain 
features which seem highly desirable for CAD systems 
and which have been incorporated into representa- 
tions developed later. Both filled and empty space are 
characterized, allowing the easy locating of new ob- 
jects in non-overlapping airangements. The value 
stored to depict an occupied domain is also a pointer 
that may be used to reference properties, spatial or 
non-spatial, not defined in the array. It also shows the 
relation between domain locations and sizes;; a com- 
plete description of size allows derivation of location 
through proper summations. The converse is not true; 
in the general case, all locations do not allow deriva- 
tion of sizes. The mapping from sizes to locations is 
from many variables to one. An early program using 
the variable domain array was written by Moran in 
LISP [141. Later work has relied on ALGOL and 
FORTRAN 181. 

An alternative representation was developed in 
John Grason's thesis research I111 and consisted of a 
dual, colored, a,id directed graph. See Figure 1c. 
Instead of representing domains, each varish - depicts 
adjacencies between empty or filled spaces. The 
dashed edges depict west-east adjacencies, while the 
solid edges depict south-north adjacencies. Direction 
of the edges, e.g., to or from a node, depict orienta- 
tion. A node depicts a space. Locations are altered by 
reconnecting edges. Overlaps never occur as long as 
the graph remains planar. This colored and directed 
graph is the dual of a graph in which edges depict 
walls in the standard manner. The coloring and direc- 
tions impose a one-to-one mapping between a floor- 
plan and this form of graph. This representation has 
many similarities to the variable domain array. Notice 
the correspondence between edge values in the dual 
graph and the zero vector values in the variable do- 
main array. Yet the dual graph introduces many 
unique efficiencies not available in the array. These 
will be described more fully later. Both of these 
representations are limited to rectangular approxima- 
tions of more complex shapes. Both are also easily 
extended to three dimensions. 
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Figure 1 Spatial Representations (c) Dual Colored Graph 

More recently, Charles Pfefferkorn developed a 
general two-dimensional representation in DPS, as 
part of his Ph.D. thesis l16l. It consisted of a set of 
convex domains, each described in terms of its perim- 
eter edges. The map of the data structure used for a 
single element is shown in Figure 2. A new domain is 
added by entering its edges one at a time to partition 
the current domains. This representation may spatial- 
ly characterize any two-dimensional shape and checks 
overlaps by restricting the partitioning of domains to 
those that are empty. 

Each of these representations has associated with 
it facilities for describing objects and spaces, and 
operators for generating arrangements. While each is 
conceptually quite simple, each provides quite dis- 
tinct capabilities when particular types of problems 
are considered. In terms of a two-dimensional repre- 

sentation, Pfefferkorn's is general and provides the 
capabilities needed  for  CAD. Only integrating the 
representation of objects in a wa" that compliments 
the treatment of constraints - asGrason's GRAMP/ 
has done - would be an improvement. 

All problem formulations used to date have ben 
in terms of constraints, that is, tests which return a 
Boolean predicate. These tests may reflect technologi- 
cal requirements (maximum distance between a 
memory box and CPU), public safety or building 
code criteria (width of a stairway), or good design 
practice (all offices should have windows,. In the 
most general case, these constraints are Boolean func- 
tions of unlimited complexity and undefined internal 
structure. Constraints regarding adjacency, access, dis- 
tances, sightlines, and orientation have been imple- 
mented in this fashion. 
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Figure 2 A Map of a Single Object Description in Pfefferkom's DPS( 16l 

It was quickly learned that at least two structural- 
ly distinct kinds of constraints were involved in de- 
sign problems. Consider a constraint regarding ad- 
jacency. Once two elements are adjacent they will 
only become not adjacent if one of the adjacent 
elements is moved relative to the location of the 
other. Consider now a sightline constraint between 
two elements. The relocation of any element may 
alter the value of this constraint. We call the first type 
local and the second global l9l. Local constraints are 
much easier to deal with; they need be tested only 
when an object which is a predicate of the test is 
altered. Corrective operations when a local constraint 
fails are also much simpler to diagnose. It seems 
possible in many cases to redefine global constraints 
so that they become local, without loss of generality. 
For example, once a sightline required between two 
locations is satisfactory, the program may assign the 
space  required to be clear between them as (in a 

sense) solid. No other objects can then be located 
there and the test need not be repeated. Development 
of a general set of local constraints is an important 
objective in both computer-aided and automated 
design. 

Each of these Boolean functions can be computa- 
tionally expensive. Moreover, it seems unlikely that 
one can define a reasonably small set of tests that 
would satisfactorily define different design problems, 
even if they were all limited to a restricted domain! 
An alternative approach was incorporated into 
Grason's GRAMPA. The properties of the dual graph 
have an interesting relation to a particular set of 
spatial constraints. Specifically, there is a one-to-one 
correspondence between many constraints and single 
or small sets of variables within the dual graph repre- 
sentation. Adjacency, in the general sense, is denoted 
by the existence of an edge. The value of an edge 
denotes the length  of common be der among ad- 

' 
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jacent elements. Dimensions of a space are denoted 
by the sum of edges of one direction and color 
attached to a node. Orientation is denoted by color. 
In this representation, a problem is defined as a 
partially specified graph. A solution is a complete 

planar grapli satisfying constraints regarding the value 
and ordering of edges to a node. This representation 
reduces constraint testing to triviality, but with the 
added cost of a more complicated evaluation of 
planar feasibility. 

A third approach for dealing with constraints is 
called Constraint Projection. Instead of a Boolean 
function for each constraint, the system incorporates 
procedures for defining *he spatial domains of feasi- 
ble locations and the corresponding range of feasible 

12 orientations. Multiple constraints are treated by de- 
fining the domain and orientation range for each 
constraint, then the appropriate set function, combin- 
ing them to result in a final feasible domain. Thus, a 
set of constraints can be reduced (without ever apply- 
ing them to the arrangement) to a single one. Reduc- 
tion is a very desirable capability for automated de- 
sign systems, as it is for other types of problem 
solvers. 

Each of the above methods of treating constraints 
imposes strict restrictions on the design representa- 
tion. Generality of the shapes characterized by a 
representation is only the first criterion in the devel- 
opment of data structures for CAD. Another issue is 
the base language for its ir.v'ementation. Yessios has 
explored a range of data structures for computer- 
aided design, their specifications regarding shape and 
arrangement, and various grammars for comb.ning 
them t20.211 , His work can be considered in two 
different but equally valuable perspectives. Ore is 
that these languages will provide the primitives for 
higher level CAD systems; this is a traditional perspec- 
tive. The second view is that a major task in design is 
translation. A design problem first is an existence 
question regarding the mapping of a set of statements 
in one representation into a spatial one. If a mapping 
exists, e.g., the design is feasible, then the iterative 
step is one of (a) examining the spatial realization of 
the first design problem and redefining the original 
problem statement based on this new information, or 
(b) applying more complex analyses to the statement 
and using the results to generate a new problem 
statement. This second view marks an advance in the 
conception of man-machine organization, for it parti- 
tions design tasks according to the formal definition 
of their complicatedness, o.g., those problems that are 
syntactically resolvable within restricted grammars 
and all others. 

Expansion of the Contributions of the Computer 
to Design 

The description by Coons at the beginning of this 
paper implicitly partitions the tasks between man and 
machine. The machine does analysis and numerical 
studies; the man uses his "creativity" to solve design 
problems. This a priori conception of the two part- 
ners' contribution is too limited. We believe that a 
computer has at least the potential for p.oviding the 
same skills as a "dumb" draftsman and chat some 
analyses will forever remain the province of visual 
examination. In the former case, t^e computer should 
be able to respond to the description of simple, well 
structured design problems and generate .solutions for 
them. It should be able to modify its solutions as new 
information is received from the designer "looking 
over its shoulder". 

A good portion of our research has focused on the 
automatic generation of the spatial arrangement of 
physical elements. The general formulation is given: 

s : : =        a  space,   bounded  or un- 
bounded; 

a set of elements of fixed 
or variable shapes; 

a set of constraints defin- 
ing required relations be- 
tween two or mo-e ele- 
ments and the shape of 
single elements; 

a set of operators for map- 
ping elements into the 
space in different ways 
and possibly for altering 
their shape; 

an    initial    arrangement, 
which may simply be s; 

{e'¥'le'+' 

bj.bi, 

Cl.Cj, 

di,d2 .dr 

find: (e',b'+',d l+U (C|,C2, :n)) 

where <* is a matchinc operation. This formulation 
presents space planning as a state space problem in- 
volving a search through the ubiquitous OR tree. The 
task is the efficient search of this tree. In contrdst 
with other heuristic search tasks, at least four unique 
issues are involved in the above formulation: 
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a. Location operators - if there is more than one, 
there are a countably infinite number of locations 
for any element within a space. Which subset of 
locations is worth considering at any state of a 
design problem, that is, how should the location 
operators be specified? Manual design gives no 
direct answer to this problem. 

b. Similarly, there may be countably infinite shapes 
satisfying the shape constraints of an element, but 
far ,ewer when all are considered in a single ar- 
rangement. What shape operations are effective in 
finding this subset, and how should they be com- 
bined with the location operations? 

c. Given effective operators, what search strategy is 
most likely to lead to a solution quickly, with 
minimal states being generated? 

d. Given the large number of variables required to 
describe a state (six for location of each object in 
3-space plus an undefined number for its shape), 
what bookkeeping procedures are most effective in 
guaranteeing that search will proceed without 
looping? 

Each of these issues has received attention in CAD 
research here at CMU. 

The location problem has been treated by a variety 
of heuristic methods and one exact one. Pfefferkorn's 
DPS, for instance, identifies each convex corner of 
the empty space as a possible location and places its 
reference on a list to try I161. Grason's program tries 
adjacencies (of rectangular objects) with corners 
aligning |121. Both of these are heuristic. Constraint 
Projection provides an exact method for dealing with 
the location problem |91. It derives a reduced do- 
main from the set of domains characterizing the con- 
straints of an element. The reduced domain depicts a 
homogeneous region within which any location satis- 
fying the orientation requirement is equally ac- 
ceptable. 

The shape definition problem is the feasible solu 
tion to two sets of constraints, one set defining the 
"internal" and constant requirements delimiting ac- 
ceptable shapes, and another imposed exogenously on 
this set by context, delimiting the locations the shape 
may occupy. Two types of shape generation opera- 
tions have been tried. The first was initially imple- 
mented by Sutherland in SKETCHPAD and consisted 
of a set of (possibly non-linear) equations specifying 
properties of the set of points used to define the 

perimeter of an object. Whenever a new context de- 
limits the location of one or more points, the shape is 
redefined using a least-squares, iterative convergence 
method l17l. We at CMU have explored an alterna- 
tive method of variable shape definition based on 
generative assumptions. Using a primitive which en- 
larges a portion of an object so that the resulting 
form satisfies a group of (variable) tests within the 
primitive, we have been able to develop sequences of 
calls to this expansion operator so that one, or a 
whole set, of variable shaped elements are formed 
that satisfy both internal and relational criteria. The 
sequence of expansion is ag.iin a tree (AND - OR) and 
the objective is to search it with minimal backtrack- 
ing. Our efforts have been directed toward pipe and 
duct layout, circulation, and room arrangement [101. 

Given the large set of variables which describe a 
design and the complex relations among some of 
them, an important question arises concerning the 
general method for bounding them that will fulfill a 
set of constraints imposed by a user. As described 
earlier, this question has been formulated within a 
state-space heuristic search representation. 

Any OR-tree is easily considered as a Boolean 
function. Using minimal assumptions regarding the 
final distribution of elements, we have developed 
search decision rules which minimize the cost of 
evaluating this form of Boolean function. The search 
is efficient in finding a solution if one exists; this is 
the criterion driving the search process. But if no 
solution exists, our procedures resort to implicit 
enumeration and may waste much time fruitlessly 
191. Currently, we are trying to develop a practical 
failure criterion. 

A very large number of variables is required to 
describe any state in CAD. In order to guarantee that 
a program does not generate equivalent states and 
therefore loop, some trace of past states is required. 
A single general approach has been used in the pro- 
grams developed at CMU, with different variations. 
All have only considered arrangement variables with 
no shape variation and are based on an assumption of 
a depth-first search. Given a lexiographic ordering of 
locations for each element and a fixed sequence for 
manipulating each element (corresponding to a level 
in the tree) a pointer to the current location of each 
element defines both the current state and all others 
that have been considered. 

13 
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Pfe erkorn relied precisely on this technique in 
DPo. When initially considering each element a 
IHY-list was generated and ordered heuristically 
Backtracking requires only a pointer to the current 
location of each element and an ordering of the 
elements, Different orientations of an element were 
ried at each location. Eastman's program relied on 

location operators which automatically generate a 
single next alternative in a lexiographic order. Boo"- 
keeping requires that each operator internally identi- 
fy whether or not it is able to define a location, and 
that the program keep track of the first location 
generated when the process is moving down the 
search tree. 

These  tVpes of  approaches greatly  simplify the 
state description hut lead to other complications   In 
particular, the location operators we have used gener- 
ate different locations for each arrangement of ele- 
ments, This means the TRY-list must be regenerated 
each   time an element higher in the search tree  is 
relocated. This is done in both of the above programs 
But   it also means that different orders of objects 
generate different locations and thus result in differ- 
ent search trees. Eastman's GSP does not allow ele- 
ment reordering and is limited to searching arrange- 
ments resulting from the program's estimation of  he 
most efficient ordering. Pfefferkorn's allows limited 
reordering. 

The Direction of Future Research 
in Computer-Aided Design 

Few of the problems reviewed above have been 
completely resolved. We have only begun to consider 
the requirements for CAD systems implied by analy- 
ses of the tasks of design. 

Current research is proceeding in a variety of areas 
described above, including data structures for three 
dimensional objects, the development of a constraint 
language for describing any kind of spatial relation- 
ship between elements, and problem decomposition 
In addmon we are exploring alternative methods for 
bounding the search process in large arrangement 
Problems That is, when should a program "give up- 
looking for (a) feasible arrangement(s). Two ap- 
proaches to the bounding problem show merit. The 

first is to use information found in a partial enumera- 
tion of the tree to generate a proof that a solution 
cannot exist in other parts. This requires that axioms 
be induced from a set of failed search states For 
example, m Figure 3 it is intuitively easy to see that if 
the sum of the areas of A,B,C,D, is smaller than X + 
Y but greater than X, then one or more of the objects 
must fit in space Y for an arrangement to be feasible 
We are exploring how arithmetic analysis over various 
partitions of the problem space may be used to guide 
and bound search in CAD. 

SPACC r OBJECTS: 

Y I A 

Figure 3 

A second approach to bounding search is in terms 
of cost effectiveness. Can the probability of finding a 
solution be dynamically estimated as search proceeds 
to allow derivation of an expected cost of search? If 
so, this also would be an effective criterion for stop- 
ping search after partially enumerating the tree of 
possibilities. 

Computer-aided design, particularly when it in- 
cludes synthesis capabilities and spatial considera- 
tions, has a richness of issues possibly unparallelled 
among the problems now being investigated by the Al 
community. Moreover, results have many applica- 
tions, including the direct ones for CAD but also for 
robotology (representations of the physical environ- 
ment, the planning of manipulation tasks) in both 
space and industrial applications. The design implica- 
tions range from architecture, to computer design to 
regional land use planning, to controlling pollution 
effects. We at CMU expect to continue our program 
ot research in augmentation of the design process. 
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On the Scheduling Aspects of 
Timing Concurrent Processes 

A. N. Habermann 

Introduction 

The design and development of operating systems 
has enriched computer science with interesting 
studies on control and data structures. Two such 
contributions are the studies of phenomena associ- 
ated with concurrency and of the design and imple- 
mentation of scheduling strategies. 

The purpose of this paper is to examine briefly the 
impact of scheduling on programming timing con- 
straints in concurrent processes. A variety of aspects 
related to this topic have been discussed in a series of 
papers and reports in recent years; tnis paper reviews 
and summarizes the overall result of this work. 

The first section shows what sort of flexibility is 
desirable in programming timing structures on behalf 
of process scheduling. In the next section two general 
timing structures are discussed that allow imple- 
mentation of arbitrary scheduling rules. Subsequently 
some of the verification methods are reviewed that 
are based on using the properties of timing rules and 
the structure of control programs. Finally, the class 
of problems is considered that asks for an imple- 
mentation of priority rules by means of timing struc- 
tures. A recent study showed that these problems can 
be solved by means of one unifying principle of 
representation. 

Timing Concurrent Processes 

The fact that concurrent processes share resources 
in the form of devices, programs, and data gives rise 
to possible conflicts of interest. Dijkstra has shown 
how such conflicts can be resolved using critical sec- 
tions '5' . It was shown in a series of papers '4' that 
these can be implemented using the "read/write 
cycle" of a machine as the most elementary critical 

section. Critical sections of arbitrary length are often 
programmed by means of two simpler critical sec- 
tions: one at the beginning guarding the entrance and 
one at the end controllirg the exit. The function of 
the simple one at the entrance should be to grant or 
deny its caller permission to enter. The function of 
the one at the exit should be to record that a process 
is leaving, and to grant entrance permission, if pos- 
sible, to one or more of the processes which was 
denied earlier. 

Because of this general structure it seems appropri- 
ate to devise two standard critical sections, one for 
entran ;e and one for exit, and to use these for pro- 
gramming critical sections of arbitrary lenpth. Various 
proposals to this effect have been considered and a 
variety of such "primitive critical sections" have been 
implemented. There are even proposals to base the 
whole timing issue on such primitives I1'. Repre- 
sentatives of two major categories are the operations 
LOCK and UNLOCK [23! and P,V operations '^ . 
An advantiine of primitives is that a waiting process 
does not waste any time of a processor that it possi- 
bly shares with the very process that will wake it up. 
Another advantage of P,V operations is that these can 
easily be extended to hapdle critical sections of which 
several may be executed simultaneously (Dijkstra's 
counting semaphores), whereas LOCK and UNLOCK 
do not allow such an extension. Finally, a difference 
between the two (which might not be seen as an 
advantage) is that the order in which processes pass a 
P operation is fixed by the chosen implementation, so 
programs could rely upon that order, whereas it is 
hard to predict which process will pass a LOCK 
operation when several are trying to do so. 

The use of standard primitives, however, is ab- 
solutely inadequate for large critical sections such cs 
those needed for allocation and use of resources. 
Using the primitives is inappropriate, generally speak- 
ing, if the situation has one of the following three 
characteristics' 
1. it matters which process is selected when one of 

seve-al is considered for entrance permission; 
2. it may not be wise to grant permission because of 

a possible deadlock; 
3. the decision to grant permission may be regretted 

if later permission must be withheld from a 
process for which entering is more urgent. 
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Ari example of resource managemen' illLiätrates 
such characteristics. Suppose ten identual magnetic 
tape drives are pooled among three tv;ies of proc- 
esses: 

P-type processes need one tape unit at a time; 
Q-lype   processes   need   two   units  during   some 

period of time {e.g., foi copying); 
R-type processes need three units during some 

period of time (e.g., for updating or tape cor- 
rection). 

We spot easily the deadlock which will occur if, for 
instance, five R-type processes should succeed in 
seizing two drives each ',01. Also, it mey he wise to 
select a p'ocess from the processes waiting for tape 
diives based on an external priority and the number 
of drives it already has in use. But when such a 
selection strategy is implemented, another problem 
may arise, namely, that of permanent blocking l18| . 
for example, an R-type process may never be selected 
because a P-type or Q-type piocess happens to be 
waiting at all times. Finally, the decision to grant 'he 
last free drive to a newly arrived R-type process nay 
be regretted if, shortly afterwards, another R^ pe 
piocess requests its third drive. It is not surprising 
that [he impact of scheduling on timing structures is 
not always correctly appreciated '' 7'. 

LOCK and UNLOCK would not provide any 
means of dealing with these issues. Progrpmming the 
use of drives within a critical section P(drives) - 
Vldrives), where "drives" has the initial value 10, 
would mean that special algorithms for dealing with 
the particular circumstances would have to be pro- 
grammed as part of the P,V operations themselves. 
Thus, extrarjolating to other situations, there w-uld 
be a need for as many versions of P,V operations as 
there are different circumstances, but this is in con- 
flict with the idea of standard primitives. 

On the other hand there is an important type of 
critical section for which a standard implementation 
with primitives is perfectly adequate. This is the type 
for which the probability that more than one process 
will be waiting when an earlier one reaches the exit is 
close to zero. We will use in this paper the attribute 
"small" for a critical section that has this property. 
Small critical sections are usually short pieces of code 
without potential delay or repetition with a large or 
unknown bound. Any of the primitives is suitable for 
programming small critical sections, but P,V opera- 
tions are still preferable when a CPU is multiplexed 
161. 

Cooperating Processes 

The term "cooperating" describes the situation 
that a process P may have to wait until another 
process signals the occurrence of an event E. This is a 
fairly common relation between processes, e.g., when 
processes communicate I14' or when one process 

controls another. Processes related through common 
critical sections can even be viewed that way, because 
once a process has entered a critical section, it must 
cause the event of leaving it before another process 
can get permission to enter. 

Cooperation of processes can be described in terms 
of operations "wait" and "signal" that operate on 
eventnames. It is possible to implement these opera- 
tions as P,V operations, but we must realize that the 
delay in such a P-operation is even less predictable 
than when used to enter a critical section. We must 
asrume that the process that waits on an event cannot 
find out when another process will signal the occur- 
rence of that event; it may not even know from 
which process a signal can be expected. This means 
that standard primitives are also inadequate for imple- 
menting wait and signal operations because of prob- 
lems with selection, deadlocks and regrettable deci- 
sions. 

It has been shown that these problems can general- 
ly be solved by applying "private eventnames" '121. 
The attribute "private" means that an eventname 
E[i] associated with a process Pli| will exclusively be 
used by other processes to signal P(i], whereas P[i] is 
the only process that will ever wait on the occurrence 
of E[il. The point about private eventnames is that 
the selection problem is entirely separated from the 
implementation of the wait operation, because, no 
matter how long a delay is caused by wait (E[il), 
there is only one process that ever will wait on the 
occurrence of E|il and thus, this is the only one that 
could be selected! 

Greater flexibility for implementing the necessary 
scheduling is now achieved by either one of the 
following methods: 

1. implement wait and signal not as P.V operations, 
but as critical sections in which scheduling can be 
programmed as needed; 

2. have the processes involved send requests and 
completion notices to a controlling agent that acts 
as a policeman regulating the traffic according to 
well established rules. 
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Note that the socond method does not eliminate our 
task of programming cooperation among processes; it 
only moves the intcidction from pairs of processes 
having equal rights to individual members of the 
community that must cooperate with a central 
agency. (It is the difference between placing STOP 
signs or traffic lights at a street intersection.) 

When the first method is applied, entrance is pro- 
grammed as a small critical section followed by a wait 
operation on the private eventname of its caller. The 
program within this critical section is small enough to 
allow the use of P,V operations for delimiting it. Its 
function is to investigate whether the process can 
enter; if not, the process will be delayed in the 
subsequent wait statement. Exit is also programmed 
as a small critical section for which P,\/ operations are 
adequate open- and close-brackets. Its function is to 
see whether the change of state, c > issd 'jy leaving, 
would allow one of the processea that is waiting on its 
private eventname (if any) to continue. 

It has been shown that such constructs as entrance 
and exit behave as P,V operations and so these are 
certainly sufficient to implement arbitrary critical 
sections [121 gut the great advantage gained over 
plain P,V operations is that we have not committed 
ourselves to the progr& ns for permission or selection 
and, thus, we have not made decisions which are 
unnecessary for implementing large critical sections. 
The only restriction on programming permission and 

selection is that the critical sections for entrance and 
exit should be small (in the technical sense of this 
paper). 

The second method of dealing with selection, 
deadlocks, and priority rules by means of a central 
agent is appealing because it seems to separate those 
issues nicely from the structure of the programs to 
which they apply. It is certainly true that those 
programs will have a simpler structure, but overhead 
is likely to increase due to the additional calls on the 
agent, and the possible need to reconstruct lost infor- 
mation. A process may have to call the agent for 
various reasons, e.g., when requesting a resource and 
when releasing one. At the place where the agent is 
called, the reason for calling is perfectly well known. 

However, this information must be transmitted ex- 
plicitly with the call, and the agent must find out for 
what reason its services are required. Thus, informa- 
tion that is present is lost through a uniform call on 
the agent and must be reconstructed when the agent 
is activated. In order to preserve the idea of allowing 
the environment of the processes to hindle selection 
and other issues, one could split the agency into 
individual agents each to be called for a particular 
task. This indeed seems an acceptable solution under 
some circumstances '7', but in other cases such a 
solution is not feasible, as for instance in case of 
peripheral device control. The hardware makes it nec- 
essary that only one agent controls a peripheral de- 
vice and it must regulate all requests for device opera- 

tions. 
Working with an agent, however, still does not 

remove the task of programming timing structure for 
processes of unequal rank, because cooperation must 
then be programmed between the processes and the 
agents. It seems that the use of an agent is to be 
recommended for complicated hierarchies or a great 
variety of ranks or complicated priority rules. But it 
also seems worthwhile to pay special attention to the 
effect of timing rules on the cooperation of processes 
partitioned into a small number of fixed ranks, as is 
the case with an agent and its wallers. 

Verification of Timing Rules 

The additional complexity caused by concurrency 
prohibits a straight-forward extensior. of Floyd's 
method  of  inductive  assertions   '8'   to concurrent 

processes [191 .  The  number  of states to  be con- 
sidered explodes even for trivial systems. Not only is 
there the problem of finding the right assertion, but it 
could easily be the case that the correctness proof 
itself is much longer and an order ot magnitude more 
complicated than the programs involved '20'. 

A more promising method was found in the same 
spirit as the axiomatic approach for proving program 
correctness '16' and proving the correctness of APL 
programs '9'. The approach that these methods have 
in common is to exploit the structure of the given 
programs in the correctness proof. In Hoare's system, 
properties of control structures are expressed in the 
form of axioms and can be used in that form in a 
correctness proof. In Susan Gerhart's thesis, prop- 
erties of APL operators are formulated precisely and 
thus lead to a more concise and tractable correctness 
proof '9'. 
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Since "the state" of a system of concurrent proc- 
esses is a rather vague notion in any case, it makes 
more sense to show that there is an abstract repre- 
sentation which has certain desired properties that 
will not get lost when going to more detailed versions. 
Some success was scored in this way with respect to 
properties that can be derived from timing structures 
in concurrent processes l11-12). it was 'ound ihat 
the working of P(E) and V(E), or wait(E) and signal 
(E), can be characterized by the fact that a certain 
relation remains invariant under these operations. The 
relation says that the number ol times permission was 
granted to continue after a wait(E) equals the mini- 
mum of the number of attempted wait(E)'s and the 
number of executed jignal(E)'s incremented by an 
initial constant. 

The verification method using the invariant rela- 
tion was applied to a useful communication system. 
Not only could it be proved that the communication 
was deadlock free, but other interesting properties 
also emerged from the analysis. For example, it was 
shown that senders and receivers could access the 
bounded communication buffer at the same time 
without getting into a conflict when the buffer was 
empty or when a first message was placed. Moreover, 
a natural simplification of the crntrol programs was 
found for the cases that either the group of senders, 
or the group of receivers, or both, were reduced to 
one process. It was later shown that the Invariant 
could also be used to verify the correctness of a more 
complicated communication system in which senders, 
or receivers, or both, may get ahead of one another 
(24) _ 

The property verification method was modestly 
successful when applied to the Cigarette Smokers 
Problem '221. A solution of this problem was pre- 
sented in the form of a Petri net and it was shown 
that this problem could not be solved with a re- 
stricted form of Dijkstra's semaphores without the 
use of some form of conditional statement. But a 
solution using semaphore arrays was soon found '21' 
and the property verification method was applied to 
that solution I13'. The method proved to be rather 
successful in that a generalization of the problem 
could be proved as easily as the given one. Moreover, 

its application clarified considerably the relation be- 
tween the problem specification and its solution, with 
the result that other interpretations of the problem 
statement could be analyzed as well. The result is 
nevertheless rated as modest mainly for two reasons: 
first, the proofs are rather long, and second, there Is 
no precise model or formal description. 

It seetm not satisfying that the verification Is so 
much longer than the program text it is trying to 
verify. The cause in this case is not so much the 
number of states to consider, but the comblnatoricl 
problem of showing that participating processes can- 
not get into, or remain in, certain states when certain 
events happen. So thi? problem can ultimately be 
reduced to the second one: the lack of a precise 
model or formal description. 

Another consequence of this second deficiency is 
that one Is aever sure whether or not the proof Is 
complete and exhaustive. It is never clear what may 
be assumed as obvious and what must be proved. In 
going over the proof one must be reconvinced each 
time that nothing has been omitted. A solution for 
both problems may be found in recent results which 
offer a representation of some classes of timing prob- 
lems in an abstract model; this allows a more precise 
and concise treatment. A brief discussion follows in 
the next section, 

An Abstract Model for Some Timing Structures 

Considerable activity was aroused recently by the 
Readers and Writers Problem '21. The basic charac- 
teristic of the problem Is to implement certain pri- 
ority rules by means of a timing structure. The prob- 
lem Is that two groups of processes perform an action 
exclusively, but one of the groups has preference over 
the other, or more precisely: 
1. when a process P of group P performs action A, no 

process Q of group Q Is permitted to perform 
action A in an overlapping time interval; 

2. If neither a P nor a Q is performing A, any one of 
them must be able to start action A; 

3. (preference rule) if there are processes of group P 
waiting to perform action A, at least one of these 
should get permission to do so as soon as the 
processes currently executing A are finished. 

.—JJU.- .,  ^^u^^^^^^^^^^^    
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In addition to these rules one can specify whether 
or not processes in one group havo to perform action 
A exclusively among one another. The Headers and 
Writers Problem is stated in two versions: one in 
which preference is given to Readers and another one 
in which Writers have priority This accounts for two 
of the four possible cas",, hdcause Readers do not 
have to perform action A exclusively, whereas Writers 
do, The other two cases are, using the same terminol- 
ogy; two groups of Readers of which one has pri 
ority, or two Writer groups one of which has prefer- 
ence over the other. 

In the original paper the programs for Readers and 
Writers were presented and their correctness was rea- 
.•onec! in an informal way [21. Other solutions were 
proposed in which an attempt was made to design 
symmetry in the prognims for both groups l15' , but 
the authors of the original paper showed the in- 
adequacy of such a solution'3' . 

Since solutions of such problems depend on timing 
structure, the invariant for P,V operations mentioned 
in the preceding section was tried to show that the 
presented programs indeed have the necessary proper- 
ties to enfoice the required rule of preference. The 
result was as in previous cases: analysis clarified some 
deficiencies of the presented programs, but involved 
rather long proofs based on an informal model. 

More recent investigations may overcome the 
earlier difficulties. These gu quite naturally in the 
direction of a formal model in which timing struc- 
tures can be represented. The timing structure of a 
process is represented in this model as a regular ex- 
pression in which the terminal symbols are brackets 
representing the wait and signal operations. The tim- 
ing rules are very .simply expressed in terms of state 
transitions of an automaton with the ground rule that 
only one process at a time can cause a state transition 
oy pacing a bracket. If counting semaphores are not 
considered, the additional rules are: 
1. an open-bracket can be placed at any time; 
2. a close-bracket cannot be placed unless the cor- 

responding open-bracket is present; 
3. when a close-bracket is placed, it cancels out the 

corresponding open-bracket and both are deleted. 
Considering counting semaphores means that a mul- 
tiplicity of brackets of one kind is allowed, and in 
particular tiie initial state of the automaton may 
contain several open-brackets of one kind. Verifica- 
tion of properties due to timing structures can be 
carried out in a more precise way using this model 
and the proofs seem to be significantly shorter for all 
the cases mentioned here. 

Nummary and Conclusions 

Implementation of timing structure in concurrent 
processes results in a need for scheduling. The use of 
standard primitives such as P.V operations is inade- 
quate in circumstances where selection of a process is 
based on a priority measure, deadlock situations, and 
likely decisions in the near future. Sufficient flexi- 
bility can be achieved, however, when timing opera- 
tions are programmed as combinations of small criti- 
cal sections and operations on private eventnames. 

Programming a central agent that performs the 
scheduling task can bring about more clarity in the 
structure of the system, but the task of implementing 
cooperation in accordance with certain preference 
rules remains present. With respect to such an organi- 
zation, one should consider the sorts of scheduling 
which can be achieved by timing rules for a small 
number of preference classes. 

Combinatorial explosion prohibits a useful applica- 
tion of the notion "state" as a composition of the 
states of the individual processes. For the same rea- 
son, there is little hope that Floyd's inductive asser- 
tions method can be usefully extended to concurrent 
processes. Instead, a more promising approach seems 
to be to prove that an abstract model of the concur- 
rent processes has certain desired properties that will 
not get lost in more detailed versions of the programs 
for these processes. Some results were obtained in 
this way, first by applying an invariance rule to pro- 
grams with a given timing structure, and more recent- 
ly by means of an abstract model for the timing 
structure of concurrent processes and an automaton 
that simulates their behavior. Satisfactory verification 
appears to be feasible using this model and it seems 
worthwhile to investigate what class of timing prob- 
lems can be treated in this way. 
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Some Practical Uses For Analytic Models 
in the Study of Computer System Performance 

John W. McCredie 

Introduction 

At the 1973 national meeting of the ACM Special 
Interest   Group   on   Measurement   and   Evaluation, 
authors presenting analytic models of computer sys- 
tems were under constant attack from a large group 
of practitioners. Two labels ("academics", and "those 
i the ditches") quickly entered the local jargon. In 

puuiic sess ons and in small informal groups, debaters 
presented   classical   arguments   about   the   relative 
merits of theoretical and empirical studies. The focus 
of  these  discussions was the analysis of computer 
system performance, but many of the arguments had 
been presented time and again in other domains. The 
argument that overly simplified analytic models are 
misleading was countered with the charge that reels 
of experimental data without an underlying theory 
are useless. The "Scientific Method" presents a funda- 
mental  interaction between theory and empiricism 
that is apparently lacking in many current perform- 
ance evaluation studies. 

Two reasons why "academic" analytic computer 
system models often remain unused by "those in the 
ditches" are: (a) reports describing them seldom con- 
tain discussions about their validity for describing 
empirical observations and (b) often the results are so 
complicated that users are not willing to invest the 
time needed to understand the model and its be- 
havior. The main purpose of descriptive models is to 
account for observed phenomena of physical systems. 
However, the complexity of most actual systems re- 
quires that any particular model must address a lim- 
ited and constrained subset of state variables. Thus, 
each model is an abstraction of a particular set of 
important features of interest to an analyst or de- 
signer. Simplifications required to make an abstrac- 

tion manageable by a particular solution technique 
limit both scope and power. Since analytic models are 
characterized by symbolic formulations and deduc- 
tive derivations, they require many simplifying as- 
sumptions. The consequences of these assumptions 
must be explored before one applies such models. 
The following paragraph outlines some of the general 
ways analytic models may be useful in computer 
system performance analysis, and the body of the 
article contains a number of specific analytic ex- 
amples developed at Carnegie-Mellon. 

Probably the two most common techniques used 
by performance evaluation practitioners are: 
(1) the   design,   implementation,   and   analysis   of 

empirical investigations; 
(2) the construction and use of specific, large, com- 

plex simulation models. 
These two methodologies have areas of applicability 
which interact with those of analytic models. For 
example, analytic models often expand to the point 
where large computational effort is required to calcu- 
late results. Often a point is reached when a modest 
simulation may be a more cost-effective approach. 
Large simulations may grow into system prototypes. 
Empirical investigations can provide insight required 
to design better models, and these models can indi- 
cate which of many possible parameters or sub- 
systems are good candidates for more detailed study 
via simulation and experimentation. Other important 
uses for analytic models are as reference systems to 
aid in both the debugging and statistical analysis of 
simulation experiments. 

To be really useful, analytic formulations should 
include the essential features of a system, or sub- 
system, and should have solutions that are readily 
understandable. The necessity of spending excessive 
computer effort to solve for each parameter value of 
an analytic model casts doubt upon its usefulness 
since simulations typically can handle more detailed 
cases with similar effort. The conclusion from these 
considerations is that analytic models, empirical in- 
vestigations, and simulation studies should comple- 
ment ore another. Each technique serves a useful 
purpose when applied properly. 

25 
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The goal of this article is to illustrate, with three 
specific examples, that even though most analytic 
computer system models are highly simplified ab 
stractions of actual systems, they can be very useful 
in performance evaluation studies. The first example 
is a discrete-time Markov model that illustrates the 
effects of priority scheduling in a closed cyclic service 
network. The primary uses of this class of model are 
for educational or demonstration purposes. The 
second model is a modification of a classic multi- 
server queueing system. This model is helpful in 
studying different scheduling algorithms for load 
leveling in computer networks. The final model al- 
lows an analyst to explore economically part of the 
large design space of a multiprocessing computer 

26 system in order to focus attention on areas which 
need further study. 

The level of detail in the following paragraphs 
varies with each model. The purpose is not to present 
detailed derivations, but to describe the structures of 
three different types of models and to summarize the 
results of the detailed analysis. Since the first model 
is not too complicated the interested reader should be 
able to derive the results presented in equations (1) 
through (7). The second model is more involved, but 
the reader with some background in queueing theory 
should be able to derive equations (8) through (10) 
with little effort. The last model is an application of 
an important theorem concerned with networks of 
queues. Both the classic reference for this theorem, 
and the details of the theorem's application to this 
model are rather involved. Thus the results of this 
analysis are presented as an ALGOL procedure so 
that the interested reader may use the model directly 
and then check the derivations from the references. 

Discrete Markov Model 

The basic concepts of a Markov process a\e system 
state and state transition. For a discrete-time Markov 
process it is convenient to assume that the time 
between transitions is a constant equal to unity. Let 
there be N states in the system numbered from 1 to 
N. Then for a simple Markov process the probability 
of a transition to state j during the next time interval, 
given that the system now occupies state i, is a 
function only of i and j and not of any history of the 
system before its arrival in i. Thus one may specify a 
set of conditional probabilities, p,], which are the 
probabilities that a system which now occupies state i 
will occupy state j after its next transition. The transi- 
tion matrix for a Markov process is the N by N matrix 
whose elements, Pjj, satisfy the following equations. 

(1)      N 

i=i 

(2)      0<pij 

Consider the following model of a simple multi 
programming system. At every point in time there are 
two  jobs  in  the  system  receiving, or waiting for, 
service from one of two subsystems:  (a)  a central 
processing   unit    (Pc),   and    (b)    an   input/output 
(M.drum)   system  with  characteristics similar  to  a 
drum. The entire system is synchronized to schedule 
jobs at the end of every timing interval which is equal 
to one revolution of the drum. The two jobs which 
cycle through the system ';ome from two different 
priority classes. If there is a job from priority class 1 
at the Pc, the probability that it will require another 
interval of Pc time is (1-ul) and the probability that 
it will make a request to the drum subsystem is u1. 
The corresponding probabilities for jobs of priority 
class 2 are (1-u2)  and  u2.  If a job makes a drum 
request, it is blocked from additional Pc processing 
until the request is satisfied. When a job from class 1 
is  receiving  service  from  the  M.drum  system, the 
probability  that  it will require another  interval  of 
service is (1-wl) and the probability that it will finish 
and return to the Pc for additional processing is wl. 
The corresponding probabilities for jobs from priority 
class 2are (1-w2) and w2. 

Whenever a job completes its work and leaves the 
system, it is immediately replaced by a new job from 
the same priority class having identical parameters ui 
and wi. Figure 1 illustrates the structure of this 
model. 

. 1-u 
1 

2 jobs 

0   0 PC     | 
1 

l-w, 
w, M.drum r 

Figure 1    Discrete-Time Markov Model 
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Define the following configurations as the states of 
the system: 

SI:  Both jobs are requesting service from the Pc. 
S2:  Both   jobs   are   requesting   service   from   the 

M.drum system. 
S3: A job from priority class 1 is requesting service 

from the Pc and one from class 2 is requesting 
service from the M.drum system. 

S4: A job from priority class 2 is requesting service 
from the Pc and one from class 1 is requesting 
service from the M.drum system. 

To specify the system completely we must determine 
a scheduling rule to decide which job will receive 
service from a subsystem if two jobs are simultane- 
ously requesting service for the next service interval. 
Assume that class 1 has the higher priority and when- 
ever two jobs are waiting for service the one from 
class 1 will be chosen for processing. 

The following matrix contains the transition prob- 
abilities for this system. Each element, pjj, is the 
probability that if the system is in sta e i at the end 
of a timing interval it will be in state j at the end of 
the next interval. 

J    1 

(1-ul)       0 0 ul 

0 (1-wl) wl 0 

(1-u1)w2  u1(1-w2) (1-u1)(1-w2) u1w2 

(1-u2)w1   u2(1-w1) u2w1   (1-u2)(1-wl) 

The steady state probabilities, pj, that this system 
will be in state j, after a large number of transitions 
may be calculated from the following equations. 

(3)     Pj 
N 
2 Pi 
i=1 

j= 1 N 

(4) 
N 
Spj = 1 
i=i 

One may now eliminate variables so that all of the 
steady state probabilities may be expressed in terms 
of just one state probability. The followinn equations 
are the results of expressing all state variables of this 
system in terms of P4. 

(5) Pi = (u2 + w1 -u2w1 -u1u2) P4/UI 

(6) P2 = (Ulu2-u1u2w2 + u2w2- u2w1w2) P4 
(w1w2) 

(7)      P3 = u2p4/w2 

These results may be used in equation (4) to deter- 
mine P4 directly. One may now compute various 
performance parameters of the system. For example, 
Pc utilization (the probability that the Pc is busy) is 
Pi + P3 + P4 = 1—P2 and M.drum utilization is p^ + 
P3 +P4 = 1-pi. 

The effects of different scheduling algorithms may 
be illustrated with this model by assigning different 
parameter values to the different priority classes. As 
examples consider the cases of "expected-shortest- 
job-first" and "expected-longest-iob-first" scheduling 
disciplines. Since jobs from priority class 1 are always 
processed first we can model these two scheduling 
algorithms by properly assigning ul, u2, wl and w2. 
The mean number of service quanta a job will receive 
from the Pc 2nd M.drum systems are 1/ui and 1/wi 
respectively. If ul > u2 the Pc will process the job 
with the shorter mean service request when both jobs 
are requesting Pc service. If ul < u2 the Pc will 
process the longer request. When ul = wl = .5 and u2 
= w2 = .1 (case 1) Pc utilization and M.drum utiliza- 
tion are both .75. When the scheduling is reversed by 
letting ul = wl = .1 and u2 ^ w2 = .5 (case 2) the Pc 
and M.drum utilization drop to .58. One measure of 
job throughput is the steady state probability that at 
the end of a timing interval a job will be leaving the 
Pc to request M.drum service. Wher; the shorter jobs 
are given high priority (case 1) the probability is .25 
that a class 1 job will be completing Pc service and 
.025 that a class 2 job will be finishing. When the 
longer jobs are given high priority (case 2) these 
probabilities become .05 and .04. Thus in the latter 
case, short job throughput is reduced by a factor of 
five, total throughput is reduced by a factor of three, 
long job throughput is increased by sixty percent, and 
Pc and M.drum utilization decrease by more than 
twenty percent. 
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There have been a number of empirical and simula- 
tion studies that have demonstrated the effects of 
"shortest-job-first" scheduling rules in multiprogram- 
ming systems. A recent article by Sherman, Baskett, 
and Browne I6' reviews the results of some of these 
experiments. Using a trace of real service requests as 
input, they built a simulation model of an actual 
multiprogramming system. They found no counter 
example to the hypotheses that the "best" way to 
schedule the Pc in such a syst'.,, i. to give it to the 
job that will compute for the shortest period of time 
before issuing an M.drum request and the "worst" 
way is to give the Pc to the job that will compute for 
the longest period. The objective functions used for 
their evaluation studies were based on utilization and 

28 throughput measures. They did not consider dispatch- 
ing rules which delayed tasks when resources were 
available to process them. 

The model developed in this section illustrates 
important fundamental ideas of scheduling theory in 
a way that is easy to understand, derive, and manipu- 
late. The model may be easily modified to become a 
continuous-time Markov model of a fully preemptive 
scheduling policy. Many other illustrative variations 
are possible. This model has been used successfully in 
classes at Carnegie-Mellon as the focal point for lec- 
tures on scheduling and as the basis for more com- 
plicated simulation assignments. 

Scheduling Model 

One of the important goals of networks of com- 
puter systems is load sharing. Jobs from a heavily 
utilized facility may be shipped to a lightly loaded 
one in order to improve overall system performance. 
There are many interesting problems concerned with 
the properties of different scheduling policies for 
such configurations. A recent paper by Balachandran, 
McCredie, and Mikhail 11' outlines a number of math- 
ematical programming approaches to some of these 
problems. The analytic model presented in this sec- 
tion focuses upon one small problem from the general 
area of load leveling policies in computer networks. 

Consider a simple network of two computers 
having processing rates ul and u2 jobs per unit time. 
Each of these machines may process any job sub- 
mitted to the network. The machines are functionally 
homogeneous, but their rates differ. Although the 
following scheduling policy seems rather complicated, 
it is conceptually very simple. The basic idea is to 
process all work at machine 1 until the backlog at this 
processor is equal to (C-1) jobs and then utilize 
machine 2. This policy seems counter productive at 

first glance because network capacity will be idle 
when there are jobs waiting for service. However, if 
the rate of machine 1, (ul), is ureater than the rate of 
machine 2, (u2), it may be advantageous to build up a 
backlog at machine 1 before utilizing machine 2. By 
setting C=2 the policy will direct bn arriving job to 
machine 1 If it is idle, and will immediately assign a 
new job to machine 2 if it is idle and machine 1 is 
busy. By setting C=1, machine 1 will process all work 
and machine 2 will always be idle. Figure 2 illustrates 
how this system works. 

The scheduling policy under study Is the follow- 
ing: at arrival time, schedule a job (1) for machine 1 
if it is idle or if there are less than (C-1) jobs in the 
queueing system; (2) for machine 2 if there are (C-1) 
jobs in the queueing system, machine 2 is idle and 
machine 1 is busy; (3) for machine 1 if there are (C-1) 
jobs in the queueing system and machine 2 is busy; 
(4) for no particular machine if there are C or more 
jobs in the queueing system (for this last case the job 
will be kept in an "order-of-arrival" waiting line until 
there are less than C jobs in the queueing system and 
then it will be dispatched according to the rules 
presented above). The basic decision problem for this 
scheduling algorithm is to choose C, as a function of 
ul, u2, and the job-arrival rate, so that some measure 
of system performance is maximized. 

An analytic model may be used to investigate this 
scheduling policy to determine under what circum- 
stances, if at all, it is advisable to allow some system 
capacity to remain idle when work is available for 
processing. Let the input to the system be from a 
Poisson process with rate X, and let the service times 
at each machine be exponentially distributed random 
variables with parameters ul and u2. Define the fol- 
lowing system state probabilities: 

Pk,o = probability that there are k jobs waiting for 
service from machine 1, and machine 2 is idle 
(k=0,1,...C-1) 

Pk,i = probability that there are k jobs waiting for 
service from machine 1, and machine 2 is busy 
(k=0,1,...C-2) 

Pk = probability that there are a total of k jobs in 
the system waiting in the common ordered 
queue and waiting for or being serviced by 
machines 1 and 2 (k=C,C+1, .. .) 
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Figure 2    Scheduling Model 

Using standard techniques for the analysis of ex- 
ponential queueing systems {e.g., as presented in the 
book by Saaty'0') one may derive the following 
steady state recurrence equations for the state prob- 
abilities. These equations apply only when a steady 
state exists {i.e. when the input rate is less than the 
total processing capacity ul + u2). 

(8) (X+u1)pkro = ulpk+1,o + ^Pk-l,0+'j2Pk,i 

k=1,. . . C-2 

(9) (A+u1+u2)pk,i =Xpk_1 •, +u1pk+1>1 

k-1,2 C-2 

(10)   (X+u1+u2)pk = Xpk_i + (u1+u2)pk+i 

k=C+1,C+2, . . . 

It is beyond the scope of this article to describe 
the solution of these equations in detail. However, 
one may use generating functions to reduce the in- 
finite set of equations of relation (10) to one simple 
expression. Then all that is required is to solve 2C 
linear equations by standard numerical techniques. 
Although a simple closed form for the result has not 
been found, the computations are straight-forward 
and easy to perform. 

It is also beyond the scope of this article to de- 
scribe in detail the many interesting results which 
may be obtained by solving these equations for vari- 
ous parameter settings. However, a few conclusions 
are easy to summarize. The expected value of the 
time spent in the system, both waiting for and receiv- 
ing service, was the performance index used for the 
following comparisons. When the ratio of the rate of 
machine 1 to machine 2 is small (2 to 4), then the 
optimum value for C is also small (2 to 4) and the 
performance curve is relatively flat. Thus the im- 
provement one could expect from implementing this 
type of policy in this type of situation is only a few 
percent. But as the ratio of the processing rates in- 
creases to ten for example, improvements of the 
order of twenty to twenty-five percent are possible 
by increasing C from 2 to six or seven. Around the 
optimum value of C the performance curve is again 
relatively flat. In this latter type of situation it is 
often better never to use machine 2 than to set C=2. 

The model described in this section may be used 
to examine a number of theoretical scheduling ques- 
tions. The results of this kind of analysis can help to 
formulate realistic policies. The performance of oper- 
ational scheduling algorithms should be examined by 
simulations and measurements of prototype systems. 
However, the construction of these more expensive 
studies can be guided by insights gained from the 
analytic results. 
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Figure 3   Memory Inttrference Model 

Memory Interference Model 

One of the crucial problems in the design of a 
multiprocessing computing system is the interference 
which occurs when more than one processor requests 
information from the same shared memory (see Wulf 
'81). Performance will be degraded in such circum- 
stances due to queueing delays. Strecker '7' studied 
this problem and presented a number of models to 
approximate the effects of memory interference. 
Bhandarkar and Fuller I2' have recently surveyed 
techniques for analyzing this type of interference in 
multiprocessor systems. The analysis which follows 
differs from these other reports in a number of ways 
and represents an alternative framework for analytical 
study. The present model is based upon different 
assumptions than those used by Sti scker, Bhandarkar 
and Fuller. It allows one to consider ihe effects of a 
cache memory for each of the processors, as well as 
the situation in which one of the memory modules 
has a different speed and probability of being ac- 

cessed than all other modules. The model discussed in 
this section was presented in greater detail in a paper 
by McCredie [41. 

Figure 3 illustrates the structure of the model. 
There are N processors each of which may access any 
one of B memory banks through an INI by B cross 
point switch. Strecker '7' defines an abstraction 
called the "unit instruction", and shows how more 
complicated instructions may be synthesized from 
various combinations of unit instructions. Each unit 
instruction consists of one memory reference and a 
random interval of processor activity. The perform- 
ance of a particular organization of memories and 
processors may be measured in terms of the mean 
unit execution rate (UER) which is the mean speed at 
which the configuration can execute unit in- 
structions. 

For the model of Figure 3, the time required to 
decode and execute a unit instruction will be an 
exponentially distributed interval having a mean of 
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1/LAM nanoseconds. At the end of this time the 
processor must access memory. The probeb'lity that 
one of the B hanks of main memory will be refer- 
enced is R and the probability that the reference will 
be to the cache memory associated with each proc- 
essor is (1 —R). The cache will be assumed to have an 
access time that is much smaller than the processor 
delay and will be ignored. Since the probability of 
accessing the cache is independent of state informa- 
tion (such as how many accesses have already been 
directed to the cache) the number, X, of consecutive 
unit instructions the processor may execute before 
referencing main memory is geometrically distributed 
with mean 1/R. 

The sum of a geometrically distributed number of 
exponential random variables is another exponential- 
ly distributed random variable. Thus, for each proc- 
essor, the time from the completion of one reference 
to main memory until the next access to main 
memory i. exponentially distributed with mean 
1/(R»LAM'. If there is no cache memory for each 
processor, R is equal to unity. The value of R will 
decrease as the size of the cache increases. 

Assume that the time that a module of main 
memory is blocked while an access is completed is an 
exponentially distributed random variable with mean 
1/u nanoseconds for all memory banks but the first 
which will have a mean of 1/v nanoseconds. This 
exponential delay represents the total cycle time of 
main memory for the different classes of accesses as 
well as any switching delay required to link N proc 
assors with B memories. Define f to be the probabil- 
ity that a request to main memory will be to the first 
memory bank. Assume that requests to all other (B-l) 
modules are uniformly distributed and thus the prob- 
ability that a request goes to any particular memory 
bank is: 

(11)   P (reference to module j when a reference is to 
main memory) 

f, 

1-f 

EPI 

j=1,0<f<1 

1=2, ,B 

A processor may not issue a request to any memory 
module until it has received and processed the in- 
formation from the preceding memory access. 

The assumptions st; ted in the previous paragraphs 
may be modified slightly to adjust the model to more 
realistic situations such as processor utilization of 
words from memory immediately after memory ac- 
cess and during memory rewrite. However, most of 
the assumptions are required to keep the mathematics 
reasonable. Using a powerful theorem originally pre- 
sented by J. R. Jackson I3' one may solve this model 
to determine the mean unit execution rate, UER, as a 
function of all of the parameters defined above. The 
details of the application of this theorem to the 
present situation are contained in the previously 
referenced paper by McCredie. Although the equa- 
tions are rather complicated, the solution may be 
evaluated by a straight-forward, fast algorithm which 
has a running time of a few milliseconds and is 
proportional to (N2). The algorithm is presented 
below in ALGOL to demonstrate that it is computa- 
tionally quite simple. 

REAL PROCEDURE UER(LAM, V,U,N,B,R,F); 
REAL LAM,V,U,R,F; 
INTEGER N,B; 

COMMENT LAM,V,U, and N must be positive, R and 
F must be probabilities and B, the number of mem- 
ory banks, must be greater than 1; 
BEGIN 

REAL REFPROB,DENOM, EM; 
REAL ARRAY W(0:N),T(0:N),A(0:N),P(0:N); 
INTEGER K,J; 
r.EFPROB: = (1.0-F)/(B-1); 
W(0):=T(0):=A(0):=DENOM: = 1.0; 
EM:=0.0; 
FOR K: = 1 STEP 1 UNTIL N DO 
BEGIN 

A(K):=A(K-1HB+K-2)/K; 
W(K):=W(K-1).R*LAMMN-K+1); 

T(K):=0.0; 
FOR J:=0 STEP 1 UNTIL K DO 

T(K):=T(K)+A(J)MF/V)t(K-J)» 
(REFPROB/U)tJ; 

DENOM:=DENOM+W(K)-T(K); 
END; 
P(0):=1.0/DENOM; 
FOR K: = 1 STEP 1 UNTIL N DO 
BEGIN 

P(K):=T(K)*W{K)/DEIMOM: 
EM; = EM+K«P(K); 

END; 
UER: = (N-EM)»LAM; 

END OF PROCEDURE UER; 
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Two of the necessary assumptions for this model 
were that both the processor execution times and the 
memory cycle times were exponentially distributed 
random variables. A uniformly distributed processing 
time and an approximately constant memory cycle 
time are closer approximations to the hardware per- 
formance data of multiprocessor configurations such 
as Carnegie-Mellon's C.mmp I8'. To check the effects 
of these assumptions we built a simple simulation of 
the system and compared the results for different 
parameters. The simulation curves were similar to the 
analytic results over a wide range of values. 

Summary 

The primary goal of this article is to show that 
analytic models are valuable in the overall study of 
computer system performance. Even though they are 
usually simplified abstractions of actual systems and 
constitute only one dimension of the total space of 
available techniques, they do have advantages in cer- 
tain areas. To capitalize on these advantages, systems 
analysts should be exposed to both the power and 
limitations of current analytic techniques, and re- 
searchers in the area should strive to communicate 
their results in more usable ways. 

' Man- 

Multi- 

References 

1. Balachandran, V., J. W. McCredie, and 0. I. Mikhail 
"Models of the Job Allocation Problem in Computer 
Networks," Proc. Seventh Annual IEEE Computer So- 
ciety International Conference. 1973, 211-214. 

2. Bhandarkar, D. and S. Fuller, "A Survey of Techniques 
for Analyzing Memory Interference in Multiprocessor 
Computer Systems," Computer Science Dept CMU 
April 1973. 

3. Jackson, J. R., "Jobshop: Like Queueing Systems, 
agement Science, Vol. 1, No. 1, 1963, 132-142. 

4. McCredie,   J.   W.,   "Analytic  Models  as   Aids  in 
processor Design," Proc. Seventh Annual Princeton Con- 
ference on  Information Science and Systems, Princeton 
University, 1973. 

5. Saaty, T. L., Elements of Queueing Theory with Applica- 
tions,  McGraw  Hill  Book  Co.,  Inc.   New York   N   Y 
1961. '     '     •' 

6. Sherman, S., F. Baskett and J. C. Browne, "Trace-Driven 
Modeling and Analysis of CPU Scheduling in a Multi- 
programming System," CACM, Vol. 15 No 12 De- 
cember 1972, 1063-1069. 

7. Strecker, W. D., "An Analysis of the Instruction Execu- 
tion Rate In Certain Computing Structures," Ph.D. Dis- 
sertation, Computer Science Dept., CMU, 1971 

Wulf, W. A., "C.mmp: A Multi-Min'i-Processor," Co/npufer 
Science Research Review 1971-72, Computer Science 
Dept., CMU, 37-69. 

8 



'swawBii^appiiBiWBBin^B^Bwppiiff^ppwBiWiP^W^^ 

^^  ffflfL^ timtff«        mnttit wm*        wwiP        iü Preceding page DlanK    ^luru      l)(i))U)      mkükk      uuuut      «MJ^ 
fiwffr       mmm       itflftttf       imntti       mw      "^"^      n 

dMMi '     umuu        iiiiiiiii        iuiiiiu        iÜUUii        uumu        «üMMk 
titmtft        mntw       iftHnti        rmtrni       '*,^Fro       ^w» 

mm*      man.      mm      mm\      tuima      uwaü      »^^ 
ftfttmr^      t^nmn       'tuvm      fttntni       nintnt      iww      'ws 

ijii.*m       iiaiim        iiHMiu       lioiiiii        uuiiiu   ,    uumu       UMiii 
trmtm       tfmmt        nmrni       nmfffi       !T!tn?t1       ,mT1fm 

Uiiiujj tiiitud itiium iiiiiiiii uiuuu itiuiin MWU«» 

mw      intffftf       "?mm      fmfmf       ","t,,,      TmTmt      "^ 
emuai aaiiijj UUiUU mmm ütuüii aiiltui utuiu« 

intmff        mmm        "tTnm        fftiffffl        fpp        tT?mT?T 

iumui iiiwiui iJiutiu nujhu UUUUi liUiUii iuwm 
ifp       pp        Ttfmm        mtttm        mmtft        nnttttt        i«mTm 

uuiiut        uuum        uiitttii        uwaui        utumi        iiUliiil        MUtt 
rvfm itnnnr ^r?^ mmm mmm »TTi»fm mnnn 

JiiUlJU UiiUiU MiÜM Uiimw UUitiM -I'iiuii ituitih 

»f??mr      inmm       rnnw       MTmm      TwmM       f^W        "tT! 

UiiUiU UUiiii' UUUM» u*t4iu» iuaia» iiiiiiiH »UiUiü 

iüllUi) iiimii/ litiuu* mmi*J UUtfM ÜiaUÜ UUiUM 

iiüuiii uhiiu> ««4uiu ttttttW i'.»ui*« tilÜUli UmiUi 
m^fr^^iffiwfl       mrtmi         '        '        nuiU"       ,,'t,?,M       w 

auiuii        iüuaü        wuiui»        aurni.        iu.t».)        uuiun    umuu 
•um        mmm        ""'^         f,t        ',■,,""        ,M,"m        ! mn 

tiiUUli UiilUll tiiuau tujuiu aiuaii UuiUU iUiUiU 
mtmf       mnmr       ffmrrfi        —       ' '        'Mm,n       M,,nm 

dmm        UiUiiU iUUmi IWMÜ atiiiiii iiiiuitj     uui»*u 
mmn       mrmrr      »mnifr       mmm       mm       mm       mtmff 

MmU itoii """W HaUm UUUm ..„ UUUUi mmm ^^ r«. wm       mmnr       nmtm        nmtm       rttmm        mm       mm 
iaüllli iUÜWi WmUi tUUi »HiUUJ JlWUii i^^m 

^"^mrr        mrnm        rmmrr        nmmr        mttmr        rmw 
muiiii        iiiiiiia        iUWUU        iiwaa        nuiiai        taaaa        vmm 

mm     mm     mm      mm      mw      mm      mnmT      m 

äiüku       awaa       waaa       nwwi       »'«l'Jl^       "WMU       ^««W 

«wifff      fltW      !m?mt      mnmt       ,m,,,n 

^^       iaaaa       waiat       IHlliUi       liiiü»«       umm*   WM.1W^ 

  -■-   -■■■-- .-.--.^—.■-- -..-..-       ■■ -wm -....„ ... —  „ __,_  -.-■■    ^ 



WHiWUlJIUWliNi ^mmmm'rmmrm^Bmim^mw^m^mf^mmn^rmm^rm^ww^wimBwm'^m'^v^^^^<'Vfms^miimmmmmmm m/wmmnmummiH'immimi' ""««w 

Lessons from Perception for Chess-Playing 
Programs (a/7cy l//ce l/ersa) 

Herbert A. Simon 

Introduction 

For nearly twenty years, artificial intelligence and 
cognitive psychology have maintained a close sym- 
biotic relationship to each other. It has often been 
remarked that their cooperation stems from no logi- 
cal necessity. That a human being and a computer are 
both able to perform a certain task implies nothing 
for the identity, or even similarity, of their respective 
performance processes. Each may have capabilities 
not shared by the other, and may build its perform- 
ances on those peculiar capabilities rather than upon 
those they hold in common. 

In spite of this logical possibility of total irrele- 
vance of the one field for the other, during the last 
two decades there has been massive borrowing in 
both directions. Artificial intelligence programs capa 
ble of humanoid performance in particular task do- 
mains have provided valuable hypotheses about the 
processes that humans might use to perform these 
same tasks, and some of these hypotheses have subse- 
quently been supported by evidence. Bobrow's '21 
STUDENT program, for example, which translated 
story problems into algebraic equations, provided a 
model, later tested by Paige & Simon M1 ] (for some 

of the human syntactic processes in performing that 
task. 

Conversely, hypotheses and data about human per- 
formance have been important inputs to artificial 
m elligence efforts. The General Problem Solver for 
example, received its early shape from analyses of 
human thinking-aloud protocols in a problem solving 
task l8'. H 

The distance between Al and cognitive psychology 
has not been the same in all task domains. Until quite 
recently, for instance, Al research on theorem prov- 

ing developed in directions quite different from those 
suggested by the study of human behavior in theorem 
proving tasks. There is little that is humanoid about 
resolution theorem proving. 

In the domain of chess playing, the distance be- 
tween Al and cognitive psychology has been neither 
so close as in the GPS example, nor so distant as in 
theorem proving. The early chess playing programs, in 
their reliance on brute force and machine speed, 
borrowed little from what was known of human chess 
playing processes 191. The clear demonstration by 
their relatively weak levels of performance, that speed 
was not enough, produced a gradual movement 
toward incorporating into the programs some of the 
selective task-dependent heuristics that humans rely 
heavily upon in their chess playing. However, the 
strongest chess programs in existence today still' rely 
heavily upon extensive rapid search, usually over 
thousands or tens of thousands of branches of the 
game tree I7'. 

I should like to describe here some efforts on the 
other side of the line - attempts to explore chess 
playing mechanisms that can explain human chess 
performance. These mechanisms may turn out to 
have important implications for the future of chess 
playing programs motivated by Al goals. Their own 
motivation, however, was largely psychological. 

MATER 

The story begins with an examination of those 
kinds of chess positions where appropriate search will 
disclose a checkmating combination against which the 
opponent has no defense. We have good evidence that 
strong human players discover these checkmates in 
over-theboard play after exploring trees of positions 
having (generally) only a few dozen branches. S;mon 

& Simon US) hand-simulated a program that 
achieved this kind of performance, and which dis- 
covered checkmates as deep as eight moves (16 plies) 
This program was further developed and implemented 
by Baylor & Simon '11 in several versions of the 
MATER program. 
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MATER relied, first of all, on being able to detect 
attack and defense relations among pairs of pieces on 
the board, and to use this information to guide its 
search. On the offensive side (in its simplest version), 
it examined only checking moves — that is, moves 
attacking the king; but on the defensive side, it ex- 
amined all legal replies. (This is essential in orde; to 
demonstrate that the checkmate cannot be escaped.) 
MATER's second important heuristic was to employ 
a search-and-scan strategy — at each stage it explored 
first that branch on the as-yet-unexplored portion of 
its game tree which allowed the opponent the fewest 
replies. The combination of its selectivity in consider- 
ing attacking moves, and its priority ordering for 
attention o restricting moves gave it great power 
with modjst amounts of search. In one of its most 
impressive performances — rediscovering the eight- 
move maV. from a game of Edward Lasker against 
Thomas — ,he search tree grew to only 108 positions, 
and in most positions it was much smaller. 

PERCEIVER 

The claim that selective search could account for 
many aspects of human performance in chess was 
challenged by a number of psychologists who thought 
that perceptual processes, enabling a master player to 
see "at once" a whole multitude of meaningful rela- 
tions in a position placed before him, held the key to 
skilled human chess playing. The Russian investiga- 
tors, Tichomirov and Poznyanskaya I16', for ex- 
ample, recorded eye movements of a strong player for 
the first five seconds after he was shown a chess 
position with instructions to find the best move. 
During these five seconds, there were about twenty 
eye fixations, and almost all of these fixations were 
aimed at "important" squares of the board - those 
that a skilled player would regard as important for 
the position. The edges and corners of the board 
received almosi no direct attention. Moreover, the 
sequence of fixations could not be correlated with 
any possible tree of moves. Saccadic movements of 
the eyes from one fixation to the next generally 
passed along lines of potential action between pairs of 
pieces. Thus, the eyes might move from one piece to 
another that attacked or defended it, or was attacked 
or defended by it. 

To interpret the results of Tichomirov and 
Poznyanskaya, we need a few facts about the nature 
of vision. The eye has a central area, or fovea, aboul 
1° in radius, of very high resolution, surrounded by a 
much wider peripheral area (about 7°) in which famil- 
iar objects can usually be recognized, but no detailed 
information about them can be acquired. Since the 
angle between successive fixations is usually several 
degrees, the Information that directs the saccadic 
movements must be acquired peripherally. 

Simon & Barenfeld I12' set out to demonstrate 
that a serial processor could simulate the observed 
eye movement phenomena without requiring the as- 
sumption that large amounts of Information can be 
acquired instantaneously and in parallel over the 
whole visual field. Their simulation program, PER- 
CEIVER, used a stripped-down version of MATER 
(removing the executive routine that guided its search 
for mating combinations) to detect attack and de- 
fense relations between pairs of pieces. These rela- 
tions, jnce detected, drove the eye movements. 

More specifically, PERCEIVER assumed the eye 
to be fixated, initially, on some prominent piece in 
the position. The attack and defense relations be- 
tween that piece and other pieces would be detected 
(presumably by a combinaton of foveal and peripher- 
al vision), and the eye would then move to a new 
fixation at one of the squares so related to the point 
of previous fixation. Successive saccadic movements 
would carry the eyes around the board, but would 
tend to move them most often to those parts of the 
board where the network of chess relations among 
pieces was densest. Hence, PERCEIVER had many 
fixations on the "important" squares, and seldom 
strayed out to the corners of the board. In fact, its 
fixations and their sequence were indistinguishable 
from the human eye movements. 

PERCEIVER showed that the basic perceptual 
processes required for the initial reconnaissance of a 
chess position were just like those that had already 
been incorporated in MATER for the search of the 
tree of moves. The amount of visual information to 
be acquired during the initial "perceptual" phase was 
not more than could be accounted for by this kind of 
scanning process. There was no evidence that the 
Gestalt of the position was seized "instantaneously". 
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Reconstructing Chess Positions 

Another chess perception phenomenon, first dis- 
covered in 1925 in Moscow I5', studied in detail by 
de Groot [4! in Amsterdam in the 1930's, and repli- 
cated again in our laboratory within the past couple 
of years, raised a different set of questions about how 
the mechanisms incorporated in MATER and PER- 
CEIVER could account for the perceptual abilities of 
skilled chess players. This phenomenon was the re- 
markable ability of chess masters and grandmasters to 
reproduce a position from an actual game (not pre- 
viously known to them) after they had seen it for 
only five or ten seconds. 

In brief, the empirical findings are these: take a 
position 'typically, with about 25 pieces on the 
board) fn m a game between strong players. Allow a 
master to examine it for five seconds. He will then be 
able, with about 80% accuracy, to replace the pieces 
correctly on the board. Let a weak player axamine 
the same position for five seconds, and then try to 
reconstruct it. He will be able to place only six or 
seven pieces correctly on the board: about 25%. 

But an equally surprising result is obtained if we 
now perform the same experiment with a board on 
which the pieces have been placed at random. Now 
the performance of the master falls to the level of the 
amateur, while the latter does slightly less well than 
before. That is to say, both master and amateur will 
now recall the positions of only about one quarter of 
the pieces, and the master will do no better than the 
weak player. 

The first part of the experiment might seem to 
suggest that the chess master has unusual powers of 
visual imagery - a hypothesis about chess players 
that has been widely believed. But the second part of 
the experiment shows that these visual powers evapo- 
rate when the situations are different from those 
encountered in actual chess play. Evidently, the chess 
master's superior perceptive powers rest on special 
chess knowledge, and not on any unusual properties 
of his visual or imaging system. 

This experiment seems at first to conflict with 
what we know about short-term memory t1 0! . There 
is a large body of evidence to show that one can hold 
only about a half dozen "chunks" of information in 
short-term memory. The information - up to about 
that amount - can be kept there indefinitely, but 
transfern g it to long-term memory (to free up the 
short-term memory for other information) requires 
about five or more seconds for each chunk. 

The term "chunk" in this theory is not quite as 
vague as might appear. A "chunk" is any unit of 
information that is already familiar to the subject, 
and which he can therefore recognize as an old friend.' 
Thus, for a native speaker of a language, any common 
word is (at most) a single chunk, and even common 
idiomatic phrases (e.^. "make or break") may be 
chunks. Hence it is often possible to estimate in 
advance the number of chunks contained in a given 
stimulus - a string of words or numbers, say. 

The findings in the chess perception experiments 
could be reconciled with the hypothesis of limited 
short-term memory if the chess master could recog- 
nize a chess position as a configuration of a half- 
dozen chunks of three or four pieces each, while the 
amateur recognized each piece as a separate chunk. 
The master's chunks would be configurations familiar 
to him from having seen the same arrangenents of 
pieces in many previous positions. 

This hypothesis has been explored by Chase & 
Simon t3' in a series of experiments in which they 
videotaped players reconstructing positions and timed 
the intervals between successive placements of pieces. 
Long intervals (over two seconds) were assumed to 
represent chunk boundaries; short intervals (less than 
two seconds) were assumed to be within-chunk inter- 
vals. The data gave support to several aspects of the 
hypothesis: the chunks so defined were in fact clus- 
ters of pieces of kinds that occur with high frequen- 
cies in games. Several kinds of evidence reinforced the 
plausibility of the two-second criterion for chunk 
boundaries. 

The master's chunks were, in fact, larger than 
those of the weaker players - perhaps fifty per cent 
larger, on average. To that extent the short-term 
memory hypothesis was supported. However, con- 
trary to the hypothesis. Chase & Simon found that 
the master held more chunks in memory (also by a 
margin of about fifty per cent) than did weaker 
players. Hence the master appeared to have a some- 
what larger short-term memory capacity, measured in 
chunks, than did the others. This discrepancy be- 
tween theory and data remains unexplained at pres- 
ent, and constitutes one of the important targets of 
our continuing research on this subject. 
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MAPP 

If we take, for the moment, an optimistic position, 
and assume that further investigation will reconcile 
the chunking hypothesis with the observed data, we 
still have to discover what kind of organization of 
processes would produce these phenomena. In the 
interest of parsimony, we don't want to invent ex- 
planations acl hoc for this purpose, but wish to limit 
ourselves to processes that are already known to exist 

38       from other psychological experiments, 
The MAPP program was written by Fimon & Gil- 

martin '14' to simulate the phenomena of the posi- 
tion-reconstruction experiment with the help of well 
substantiated mechanisms. MAPP can be regarded as 
the offspring of a marriage between the PERCEIVER 
program, used to simulate the eye movements, and 
EPAM, a venerable simulation program first devised 

by  Feigenbaum to explain the main results from a 
whole  range  of  standard rote-learning experiments 
[61 

Since the 19th century, psychologists have been 
studying the processes for memorizing syllables, 
either in the form of paired associates (stimulus = 
BYX, response = GOV) or in the form of series (CEV, 
DAR, CUJ, et cetera). Meaningfulness and familiarity 
of items have been shown to have major facilitative 
effects on learning (as much as a three-to-one increase 
in learning rate for meaningfulness); similarity of 
items, a deterrent effect. In a list, the items at the 
ends are generally learned vith fewer errors than the 
middle items (serial position curve). For materials of 
a given kind, amount of learning is roughly propor- 
tional to total time. These are illustrative of some of 
the main findings from roteict ning experiments. 

The EPAM program gives correc, predictions — 
and in many cases quantitatively correct predictions 
— of the effects of these and other learning variables 
'13'. It is a reasonably well verified first approxima- 
tion to a theory of rote learning. The MAPP program 
combines the main EPAM mechanisms with the 
mechanisms embodied in PERCEIVER in an en- 
deavor to explain the chess position-recognition data. 
Since not all of the detail of the two parent programs 
is relevant to these data, MAPP incorporates some- 
what stripped-down versions of EPAM and PER- 
CEIVER. 

MAPP has two main components: (1) a learning 
program and (2) a performance program. The learning 
program is exposed to many configurations of chess 
pieces (two to seven pieces each) of kinds that occur 
frequently in chess games. It grows, through this 
exposure, a large discrimination net that allows it to 
recognize these configurations when it encounters 
them again, and which stores the information needed 
to reconstruct each of them. The net-growing 
processes are essentially the processes of EPAM, and 
the configurations that become recognizable through 
this learning are the chunks to be held in short-term 
memory. 

The performance program of MAPP scans a chess 
position that is presented to it, looking for salient 
pieces. It fixates on each salient piece, and uses the 
previously grown EPAM net to recognize the largest 
possible configuration of pieces around it. If it suc- 
ceeds in recognizing a configuration, it stores in short- 
term memory the address in the EPAM net where the 
information about the configuration can be found. 
Up to six (or whatever number is specified by the 
parameter) such chunks can be stored simultaneously 
in short-term memory. 

After short-term memory has been filled - or all 
salient pieces have been scanned, whichever occurs 
first - information about the board is removed, and 
MAPP is instructed to reconstruct the position. It 
takes the chunk addresses stored in short-term mem- 
ory, recovers from the EPAM net the configurations 
corresponding to each of these chunks, and recon- 
structs the position (or as much of it as it has stored 
in memory) on the board. 

How successful is MAPP in accounting for the 
superior ability of chess masters to reconstruct posi- 
tions? The largest EPAM net that MAPP has grown 
thus far contains 1,144 configuration«1, of two to 
seven pieces each, selected more or less unsystemat- 
ically from diagrams in standard chess works. We 
cannot be sure that these are the configurations that 
occur most frequently in chess games, but they cer- 
tainly include a large fraction of the configurations of 
high frequency. Using this EPAM net, MAPP was able 

to replace 55% of the pieces in nine positions. In 
experiments with the same nine positions, a master 
replaced 81% of the pieces, while a Class A player 
replaced 49%. 
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Thus, given familiarity with 1,144 common con- 
fiqurations of pieces, MAPP performs twice as well as 
a beginner, a little better than a Class A player, and 
not nearly so well as a master. We can now ask how 
much the EPAM net would have to be expanded to 
bring the performance of MAPP up to master level 
Since the net already contains the configurations that 
occur most frequently, each new configuration we 
add will be somewhat more rare than those already in 
the net - hence will make a less than proportional 
contribution to Performance. We cannot estimate 
what that contribution will be without making some 
assumption about the frequency distribution of pat- 
terns. It is probably not unreasonable to assume that 
this distribution is much like the frequency distribu- 
tion of words in natural language. The latter distribu- 
tion is highly skewed, and is closely approximated by 
the so-called harmonic, or Zipf, distribution. In the 
harmonic distribution, when words are arranged by 
the frequency of their occurrence, the kth most fre- 
quent word occurs about 1//c times as often as the 
most frequent word: f^ = (]/k) f,. (Interestingly 
enough, when authors are ranked by the numbers of 
their publications, or cities by their populations, the 
distributions also conform approximately to the 
harmonic law.) 

If we assume that the frequency distribution of 
patterns of chess pieces is also a harmonic distribu- 
tion, then we can estimate the size of the EPAM net 
required to match the master performance. Taking 
the continuous approximation to f, /i, the cumulative 
distribution is the log function: F; - klogei. From the 
MAPP simulation data, .55 = kloge1144. Solving this 
equation, we find k = .078. Using this value of k, we 
now calculate the size of the net for a performance 
level of .81 by logeN = .81/.078, whence N = 32,000. 

How reasonable is it to assume that a chess master 
is familiar with 32,000 configurations of chess pieces? 
First, there are a number of other indirect ways for 
estimating the size of the net, all of which yield 
estimates of the same order of magnitude. Further, 
the estimate computed above is of about the same 
size as the natural language vocabulary of a college- 
educated adult. Such a person might be expected to 
have a recognition vocabulary in his native language 
of 25,000 to 100,000 words. When we consider that 
no one becomes a chess master without some years of 
intensive application to the game (grandmaster status 
is never achieved in less than a decade), the estimate 
becomes quite plausible; for, a chess master has spent 
about as many hoiKs staring at chess positions as 
other educated adults have spent staring at the 
printed page. 

There are other tests of MAPP besides the relation 
between its vocabulary of chess patterns and quan- 
titative performance as on the recognition task. We 
can compare the nature of the chunks it recognizes 
with those recognized by human players in the same 
positions. The agreement is generally good. Hence, 
MAPP must be taken seriously as an explanation of 
the phenomena, and it would be desirable, as soon as 
possible, to test it with an EPAM net grown to 
25,000 or 50,000 configurations. Since the smallest 
net grown for the experiment occupied about 
100,000 words of PDP-10 memory, and since the 
time required to grow the net was more than an hour, 
the experiment will probably not be attempted until 
memories become somewhat larger, faster, and 
cheaper. 

Prospects 

To understand the implications of the research on 
cness perception for the design of chess-playing pro 
grams, one other phenomenon should be discussed. It 
is well known that when strong chess players engage 
In rapid-transit games, taking only a few seconds for 
each move, their play is weaker, but only moderately 
weaker, than when they take a longer time for their 
moves. Masters and grandmasters can play dozens (or 
even hundreds) of simultaneous games against strong 
amateurs, and win almost all of them. 

Drawing upon what has been learned about chess 
perception, we can provide a plausible, though as yet 
untested, explanation for such feats. Consider a pro- 
duction system programmed to play chess. The condi- 
tion part of each production is a configuration of 
pieces on the board - just such a configuration as is 
stored in the EPAM net. The action part of the 
production is a move that is to be considered when- 
ever that configuration occurs. The productions are 
arranged in priority order, with the most important at 
the head of the list. Thus, an attack on a queen will 
be noticed before an isolated pawn. The program 
then takes the first action whose condition is satis- 
fied. 
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Such a program will undoubtedly not play good 
chess. It will certainly play rapid chess. What would 
have to be added to it to permit it to play plausible 
chess must be determined by experiment. Notice that 
for a "fair" test, a very large number of productions 
- tens of thousands - would have to be provided. 
But the real point at issue is not whether a program 
that is "nothing but" such a production system can 
be a strong chess player. Rather, the point at issue is 
whether any program that does not incorporate a 
range of chess knowledge like that imbedded in the 
production system can play good chess. 

The experiments I have described bring us face-to- 
face again with one of the central issues of artificial 
intelligence: tc what extent can intelligence be made 
general and independent of knowledge about particu- 
lar subject-matter fields? To the extent that artificial 
intelligence is to be modelled on human intelligence, 
these experiments suggest that general mechanisms, 
however powerful and indispensible, are no complete 
substitute for the ability to recognize a very large 
number of quite specific features imbedded in com- 
plex situations: if the skilled man is an intelligent 
man, he is also a learned man. 
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each publication. In cases of multiple authorship 
where more than one author is in the Computer 
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Aygun, B. O., "Environments for Monitoring and 
Dynamic Analysis of Execution," Proc. Sym- 
posium on the Simulation of Computer Systems, 
National Bureau of Standards, Gaithersburg, Md., 
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Balachandran, V., J. W. McCredie and 0. I, Mikhail, 
"Models of the Job Allocation Problem in Com- 
puter Networks," Proc. COMPCON 73, New York 
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Barbacci, M., C. G. Bell and A. Newell, "ISP: A 
Language to Describe Instruction Sets and Other 
Register Transfer Systems," COMPCON 72, San 
Francisco, Ca., September 1972. 

Barbacci, M., C. G. Bell and D. P. Siewiorek, "ISP: A 
Notation to Describe a Computer's Instruction 
Set," Computer, Vol. 6, No. 3, March 1973 
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Siewiorek, -, and C. G. Bell. 

Bauer, M. J. and J. W. McCredie, "AMS: A Software 
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Control," First Annual SIGME Symposium on 
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February 1973, 147-160. 

Bell, C. G., L. Gale and C. Kaman, "Some Effects of 
LSI on Minicomputers," NEREM 72 August 
1972. 

Bell, C. G., J. Grason and A. NeweW, Designing Com 
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Transfer Modules,   Digital  Press, Maynard, Mass., 
September 1972. 

Bell, C. G. and P. Freeman, "C.ai-A Computer Archi- 
tecture for Al Research," Proc. FJCC, Anaheim 
Ca., 1972,770 790. 

Bell, C. G, and M. Knudsen, "PMS: A Notation to 
Describe Computer Structures," Proc. COMPCON 
72, San Francisco, Ca., September 1972,227-230. 

Bell, C. G., R. C. Chen, S. H. Fuller, J. Grason, S. 
Rege and D. P. Siewiorek, "The Architecture and 
Applications of Computer Modules: A Set of Com- 
ponents for Digital Systems Design," AVoc. COMP- 
CON 73, New York, N. Y., February 1973. 

For other references by C. G. Bell, see D. P. Bhandar- 
kar et al., and D. P. Siewiorek, -, and J. Grason, 
and D. P. Siewiorek, M. Barbacci and -, and W. A. 
Wulf and -. 

Bhandarkar, D. P., C. G. Bell, P. Goel and J. Grason, 
"A Simulator for Register Transfer Modules," 
Proc. Fourth Annual Pittsburgh Conference on 
Modeling and Simulation, Pittsburgh, Pa., April 
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For references by D. Bihary, see D. R. Reddy etal. 

For references by W. Broadley, see D. R. Reddy etal. 

Brooks, C, L. D. Erman and R. B. Neely, "JABBER- 
WOCKY: A Semiautomated System for the Tran- 
scription of Verbal Protocols," Behavioral Re- 
search Methods and Instrumentation, May 1973. 

Chase, W. G. and H. A. Simon, "Perception in Chess," 
Cognitive Psychology, Vol. 4, January 1973 
55-81. 

For references by R. C. Chen, see C. G. Bell et al. 

Cohen, E. S., "Symmetric Multi-Mini Processors: A 
Better Way To Go," Computer Decisions January 
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Computer Science Departmental Review Committee, 
"The Computer Science Ph.D. Program at CMU," 
SIGSCE Bulletin, Vol. 5, No. 2, June 1973, 33-40. 
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Eastman, C, "Automated Space Planning," Artificial 
Intelligence, April 1973,41-64. 

Eastman, C, "Requirements for Man-Machine Collab- 
oration in Design," to appear in Environmental 
Design Research, W. Preiser (ed.), Dowden, Hutch- 
inson, and Ross, Inc., Stroudsburg, Pa. 

Eastman, C, "Automated Space Planning and a 

Theory of Design," Prac. International Computing 

S/mpos/f/w, Venice, Italy, April 1972. 

Erman, L. D., D. R. Reddy and R. B. Neely, "The 

CMU Hearsay Speech Understanding System," In- 
vited Paper, Seminar on Artificial Intelligence. 
American Nuclear Society, November 1972. 
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-, and R. B. Neely, and D. R. Reddy, -, and R B' 

Neely, and D. R. Reddy ef a/. 

Fajman, R. and J. Borgelt, "WYLBUR: An Inter- 
active Text Editing and Remote Job Entry Sys- 
tem," C4C/W, May 1973. 

Flesig, S., D. Loveland, D. Smiley and D. Yarmush, 

"An Implementation of the Model Elimination 
Proof Procedure," to appear inJACM. 

Fuller, S. H. and F. Basken, "An Analysis of Drum 
Storage Units," to appear in JACM. 

Fuller, S.^ H., "An Optimal Drum Scheduling Algo- 
rithm," IEEE Trans, on Computers C-21, No- 
vember 11, 1972, 1153-1165. 

Fuller, S. H., "Performance of an I/O Channel with 

Multiple Paging Drums," ACMSIGMESymposium 
on Measurement and Performance Evaluation, Palo 
Alto, Ca., March 1973, 13-21. 

Fuller,   S.   H.,   R.  J.   Swan and W. A. Wulf,  "The 

Instrumentation   of   C.mmp: A   Multi-Mini-Proc- 
essor," Proc.   COMPCON 73, New York, N   Y 
March 1973, 173-176. 

For other references by S. H. Fuller, see C. G. Beil et 
al.. and H. S. Stone and -. 

For references by C. M. Geschke, see D. S. Wile and 

Gillogly. J. J., "The Technology Chess Program," 
Artificial Intelligence, March 1973, 145-163. 

Habermann, A. N., "Integrated Designer," presented 

at the SIGPLAN/SIGOPS Interface Meeting Harri- 
man, N. Y., April 1973. 

For other references by A. N. Habermann, see D. L. 
Parnas and -. 

Hansen, P. B., P. J. Courtois, F. Heymans and D. L. 
Parnas,   Comments  on   "A  Comparison   of  Two 
Synchronizing   Concepts," Acta   Informatica   1 
1972,375-376. 

Johnsson, K. 0. and R. K. Johnsson, "Stopping 
Engine Run-on," Popular Electronics Vol 3 No 
3, March 1973. 

For references by R. K. Johnsson, See R. 0. Johnsson 
and -,and D. R. Reddy era/. 

Klein, S., J. D. Oakley, D. J. Suurballe and R. A. 
Ziesemer, "A Program for Generating Reports on 
the Status and History of Stochastically Modifi- 
able Semantic Models of Arbitrary Universes," 
Statistical Methods In Linguistics, August 1972 
64-93. 

For references by M. Knudsen, see C. G. Bell and -. 

Kung, H. T., "A Bound on the Multiplication Effi- 
ciency of Iteration," Proc. Foirth Annual ACM 
Symposium on Theory of Computing, Denver 
Colo., May 1972, also m Journal of Computer and 
System Sciences, June 1973. 

Kung, H. T., "The Computational Complexity of 
Algebraic Numbers," Proc. Fifth Annual ACM 
Symposium on Theory of Computing, March 
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Lesser, V. R., "The Design of an Emulator for a 
Parallel Machine Language," presented at ACM 
SIGPLAN/SIGMICRO Interface Meeting, Harri- 
man, N. Y., May 1973. 
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Lesser, V. R., "A Dynamically Reconfigurable Mul- 
tiple Microprocessor," presented at International 
Workshop on Computer Architecture, Grenoble, 
France, June 1973. 

For references by D. Loveland, see S. Flesig et al. 

McCredie, J. W., "A Tandem Queueing Model of a 
^ime-Shared Computer System," Proc. of the 
ACM, Vol. 2, August 1972, 991-1000. 

McCredie, J. W., "Analytic Models as Aids in Multi- 
processor Design," Proc. Seventh Princeton Con- 
ference on Information Sciences and Systems, 
Princeton, N. J., 1973. 

For other references by J. W. McCredie, see V. Bala- 
chandran, 0. I. Mikhail and -, and M. Bauer and 

Newell, A., "You Can't Play 20 Questions with 
Nature and Win: Projective Comments on the 
Paper: of this Symposium," in William G. Chase 
(ed.). Visual Information Processing. (In press) 

Newell, A., "Production Systems: Models of Control 
Structures," in William G. Chase (ed.). Visual In- 
formation Processing. (In press) 

For other references by A. Newell, see C. G. Bell, J. 
Grason and —, and M. Barbacci, C. G. Bell and —. 

For references by J. D. Oakley, see S. Klein et al. 

For references by R. B. Ohlander, see D. R. Reddy et 
al. 

53 

Moran, T. P., "The Cognitive Structure of Spatial 
Knowledge," Proc. Fourth Environmental Design 
Research Association Conference, Vol. 2, Dowden, 
Hutchinson & Ross, Inc., Stroudsburg, Pa., 1973. 

For references by R. B. Neely, see C. Brooks, L. D. 
Erman, and -, and L. D. Erman, D. R. Reddy and 
-, and D. R. Reddy, L. D. Erman and -. 

For references by J. Newcomer, see D. R. Reddy et 
al. 

Newell, A., "A Note on Process-Structure Distinc- 
tions in Developmental Psychology," in Sylvia 
Farnham-Diggory (ed.). Information Processing in 
Children, Academic Press, New York, N. Y., 1972, 
125-139. 

Newell, A., "A Theoretical Exploration of Mechan- 
isms for Coding the Stimulus," in A. W. Melton 
and E. Martin (eds.). Coding Processes in Human 
Memory, Winston and Sons, Washington, D. C, 
1972,337-434. 

Newell, A., J. Barnett, J. W. Forgie, C, Green, D. 
Klatt, J. C. R. Licklider, J. Munson, D. R. Reddy 
and W. A. Woods, "Speech Understanding Sys- 
tems: Final Report of a Study Group," (Published 
for Artificial Intelligence), North-Holland/Ameri- 
can Elsevier Publishing Co., New York., N. Y., 
1973, 

Parnas, D. L, "On The Criteria to be used in De- 
composing Systems into Modules," CACM, Vol. 
15, No. 12, December 1972. 

Parnas, D. L., "Sample Man-Machine Interface Speci- 
fication — A Graphics Based Line Editor," in 
Display Use for Man-Machine Dialog, Wolfgang 
Handler, Joseph Weizenbaum, Carl Hanser (eds.). 
Springer-Verlag, München, 1972. 

Parnas, D. L., "Information Distribution Aspects of 
Design Methodology," Information Processing 71, 
North-Holland Publishing Co., New York, N. Y., 
1972. 

Parnas, D. L. and A. N. Habermann, "Commen; on 
Deadlock Prevention Method," CACM, Vol. 15, 
No. 9, September 1972. 

For other references by D. L. Parnas, see P. B. Hansen 
etal. 

Reddy, D. R., D. Bihary, W. J. Davis and R. B. 
Ohlander, "Computer Analysis of Neuronal Struc- 
ture," in Kater and Nicholson, Neuronal Analysis 
and Dye Injection Techniques, Springer-Verlag, 
New York, N. Y., February 1973. 

Reddy, D. R., "Segment-Synchronization Problem in 
Speech Recognition," presented at 78th Meeting 
of the Acoustical Society, JASA. 
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Reclcly, D. R., L. D. Erman and R. B. Neely, "A 
Model and a System for Machine Recognition of 
Speech," IEEE Trans, on Audio and Electroacous- 
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Graphics System for Document Generation," In- 
formation Processing Letters, 1972, 246-251. 
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Erman, -, and R. B. Neely and A. Newell etal. 
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Shaw, M., "A System for Structured Programming," 
SIGPLAN Notices, Vol. 8, No. 6, June 1973. 

Shaw, M., "Immigration Course in Computer Science: 
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Shaw, M. and J. F. Traub, "On the Number of Multi- 
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Symposium on Switching and Automata Theory, 
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For other references by M. Shaw, see W. A. Wulf 
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Siewiorek, D. P., C. G. Bell and J. Grason, "Register 
Transfer Modules (RTMs) for Understanding Dig- 
ital Systems Design," Proc. COMPCON 72, San 
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Siewiorek, D. P., P. Goel and J. Grason, "Structural 
Factors In Fault Dominance and Test Bounds for 
Combinational Logic Circuits," 797.3 International 
Symposium on Fault Tolerant Computing, Palo 
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Siewiorek, D. P. and E. J. McCluskey, "Switch Com- 
plexity in Systems for Hybrid-Redundancy," IEEE 
Trans, on Computers (Special Issue on Fault-Toler- 
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