IMMUNOLOGIC INVESTIGATIONS OF MENINGOCOCCAL DISEASE. I. GROUP-SPECIFIC 'NEISSERIA MENINGITIDIS' ANTIGENS PRESENT IN THE SERUM OF PATIENTS WITH FULMINANT MENINGOCOCCEMIA

Earl A. Edwards

Naval Medical Research Unit No. 4
Great Lakes, Illinois

5 October 1970
Immunologic Investigations of Meningococcal Disease. I. Group-Specific Neisseria meningitidis Antigens Present in the Serum of Patients with Fulminant Meningococcemia

Abstract

Data presented show that patients with fulminant meningococcemia which resulted in death have a readily detectable level of soluble group-specific meningococcal antigen present in their serum. Patients with meningococcal meningitis and who recovered did not give a positive test for meningococcal antigen under the conditions of the test described. The test is rapid, sensitive and specific for meningococcal group-specific antigens. Three patients were found to have a level of 1.5 µg/ml to 4.5 µg/ml of meningococcal antigen present in their acute blood sample. These levels may signal the onset of fulminant meningococcemia. An important relationship yet to be determined is the threshold level of circulating meningococcal antigen in the serum and the reversibility of the disease process. Preliminary observations made at this laboratory indicate such a level may exist.

The rapidity and specificity of the counterimmunoelectrophoresis test for meningococcal antigen should permit its use in studying spinal fluids, as well as serum, for rapid identification of the infecting organism. To date, eight spinal fluids have been examined for Neisseria meningitidis antigen. The counterimmunoelectrophoresis test results all agreed with bacterial isolation and identification.
UNCLASSIFIED

Security Classification

<table>
<thead>
<tr>
<th>Key Words</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROLC</td>
<td>WT</td>
<td>ROLC</td>
</tr>
<tr>
<td>Pulmonary meningococcal meningitis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N. meningitidis antigen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Counterimmunoelectrophoresis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunodiffusion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meningitis</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INSTRUCTIONS

1. **ORIGINATING ACTIVITY:** Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity, or other organization (corporate author) issuing the report.

2a. **REPORT SECURITY CLASSIFICATION:** Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.

2b. **GROUP:** Automatic downgrading is specified in DoD Directive 5205.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.

3. **REPORT TITLE:** Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.

4. **DESCRIPTIVE NOTES:** If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.

5. **AUTHORS:** Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.

6. **REPORT DATE:** Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.

7a. **TOTAL NUMBER OF PAGES:** The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.

7b. **NUMBER OF REFERENCES:** Enter the total number of references cited in the report.

8a. **CONTRACT OR GRANT NUMBER:** If appropriate, enter the applicable number of the contract or grant under which the report was written.

8b, 8c, & 8d. **PROJECT NUMBER:** Enter the appropriate military department identification, such as project number, subproject number, system number, task number, etc.

9a. **ORIGINATOR'S REPORT NUMBER(S):** Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.

9b. **OTHER REPORT NUMBER(S):** If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).

10. **AVAILABILITY/LIMITATION NOTICES:** Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 1. "Qualified requesters may obtain copies of this report from DDC."
 2. "Foreign announcement and dissemination of this report by DDC is not authorized."
 3. "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through DDC."
 4. "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through DDC."
 5. "All distribution of this report is controlled. Qualified DDC users shall request through DDC."

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

11. **SUPPLEMENTARY NOTES:** Use for additional explanatory notes.

12. **SPONSORING MILITARY ACTIVITY:** Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.

13. **ABSTRACT:** Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached. It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. **KEY WORDS:** Key words are technical meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, roles, and weights is optional.
IMMUNOLOGIC INVESTIGATIONS OF MENINGOCOCCAL DISEASE

I. Group-Specific Neisseria meningitidis Antigens Present in the Serum of Patients with Fulminant Meningococcemia

EARL A. EDWARDS

From the Immunology Division, Naval Medical Research Unit Number 4, Great Lakes, Illinois 60088

Received for publication October 5, 1976

Patients with fatal fulminant meningococcemia had readily detectable levels of soluble group-specific meningococcal antigen in their sera. Patients with meningococcal meningitis who recovered did not give a positive test for meningococcal antigens with the test described (counterimmunoelectrophoresis). The test is rapid, sensitive and specific for meningococcal group-specific antigens. Three patients had levels of 1.5 μg/ml to 4.5 μg/ml of meningococcal antigen in their acute-phase blood samples. Such levels may signal the onset of fulminant meningococcemia. An important relationship yet to be determined is the threshold level of circulating meningococcal antigen in the serum and the reversibility of the disease process. Preliminary observations indicate such a level may exist. The rapidity and specificity of the counterimmunoelectrophoresis test for meningococcal antigen should permit its use in studying spinal fluids, as well as serum, for rapid identification of the infecting organism. Eight spinal fluids have been examined to date for Neisseria meningitidis antigen. The results all agreed with the isolation and identification of meningococci by bacteriologic methods.

The laboratory diagnosis of meningococcal disease is generally accomplished by isolating the organism from the spinal fluid, blood, petechiae and/or from joint fluids. Neisseria meningitidis is identified by the Gram stain, agglutination reactions with grouping antisera and biochemical tests. Cultural procedures are time consuming and technical problems often result in failure to isolate or identify the infecting organism. A rapid, reliable procedure which could be used to identify group-specific meningococcal antigen directly in the body fluids would greatly aid the diagnosis of meningococcal infections. Several investigators have demonstrated meningococcal antigens in the spinal fluid of patients with meningitis by using a standard precipitin technique (1-3). Because of the generally poor agreement between the results so obtained and clinical diagnosis, this method has not been accepted as a routine laboratory procedure.

This paper describes detectable circulating soluble group-specific meningococcal antigen in the sera of patients with acute meningococcal disease. To date, circulating antigen has been demonstrated only in those patients who expired soon after hospitalization.

MATERIALS AND METHODS

Since June 1967, approximately 10 ml of blood have been taken within 24 hr of hospital admission from all patients with meningococcal disease. For our study the sera were stored at -20°C until they were tested, the time of testing ranging
from 1 week to 2.5 years from the time the sera were collected. Sera from 23 patients were available for study, five of whom had expired shortly after admission to the hospital. The sera of two of these five patients were collected post-mortem. None of these men had received antibiotics before blood was collected. Twenty-two of the 23 cases were confirmed by isolation of meningococci from the spinal fluid. None of the spinal fluids were available for the present study.

Immunodiffusion studies. An Ouchterlony double-diffusion precipitin test was performed using regular microscope slides covered with 3 ml of a 1% agarose (Fisher Scientific Co., Pittsburgh, Pa.) in 0.1 M barbital buffer, pH 8.6 (LKB 3276-VB Stockholm). A circular pattern of wells around a central well was made in the agar, the center-to-center distance of the wells being 7 mm. Each well was 3 mm in diameter. The slides could be used immediately or stored in a moist chamber for several days and remain satisfactory for use. The central well was filled with rabbit meningococcal group C antisera (Difco Laboratories, Detroit, Mich., lot 538071) and the wells around the central well were filled with the sera from patients with meningococcal disease.

Sera were applied to the wells in the agar at least three times over a period of 1 hr, since a single application did not prove satisfactory. The multiple applications were accomplished by adding more reagent to the wells as the reagents diffused through the agar. This occurred more rapidly if the slides were at least 24-hr old. The slides were then incubated at room temperature in a moist chamber.

Counterimmunoelectrophoresis. Slides were covered with agarose as outlined above. Kodak projection slides were also made, as described by Goette and Howe (4). Parallel rows of wells, 3 mm in diameter, were cut 1.5 to 3 mm apart. Serum samples for testing for meningococcal antigen were diluted 1:1 with 0.15 M NaCl and 10 μl of each serum were placed in one row of wells and 10 μl of antisera in the opposite row of well. The slides were placed in a simple electrophoresis apparatus (Kallested Laboratories, Minneapolis, Minn.) with the wells containing antisera near the anode side of the chamber. Electrophoresis was carried out at room temperature for 15 min using a constant current of 3 mA microscope slide or 12 mA Kodak slide. Strips of Whatman No. 1 filter paper were used for electrode wicks.

Sensitivity of counterimmunoelectrophoresis:

Figure 1. Demonstration of Neisseria meningitidis antigen in the acute sera of patients with meningococcal disease. The center wells contain rabbit meningococcal group C antisera. Each of the peripheral wells contains serum from a patient with meningococcal disease. The five positive precipitation bands occurred with the sera from patients with fulminant meningococcemia who expired within 24 hr after hospitalization. Two sera were obtained post-mortem.

Twofold dilutions of group C meningococcal polysaccharide vaccine were made and 10 μl of each dilution were added to a row of wells cut on an agarose-covered Kodak slide. Rabbit anti-meningococcal group C serum was added to the row of wells on the opposite side and electrophoresis carried out as described above. The highest dilution of the meningococcal antigen, showing a precipitate which could be observed with the aid of a 3 X hand lens and a viewer (Kallested Laboratories), was considered to be the minimal concentration of this antigen that could be detected by this procedure.

RESULTS

Figure 1 shows that 5 of 23 sera tested had a level of meningococcal antigen that could be demonstrated by the Ouchterlony double-diffusion method. The five reacting sera were obtained from patients who expired rapidly (within 24 hr after admission). The 18 sera that failed to react were from patients who had recovered normally from their infection after receiving penicillin treatment. By close observation, precipitin lines were detectable within 6 hr, and were completely developed in 18 hr.

Figure 2 shows the pattern observed using counterimmunoelectrophoresis. This method is

1. E. R. Squibb & Sons; meningococcal vaccine; antigen prepared for Walter Reed Army Institute of Research, containing 100 μg carbohydrate/ml, lot C, January 7, 1969.
more sensitive and rapid than the double-diffusion method, i.e., 15 min to 4 to 6 hr (and longer depending upon the antigen concentration), and required only a single application of serum instead of at least three in the double-diffusion method. Five of the sera were from patients who had expired from 7 to 24 hr after admission with fulminating meningococcemia. Two of these samples were obtained post-mortem. No difference could be seen in the precipitation of antigen from the serum collected before the patient expired and that collected post-mortem.

Figure 3 demonstrates the sensitivity of the counterimmunoelectrophoresis method. A level of 0.015 μg/ml of polysaccharide could be detected by unaided visual observation. However, by using a 3 x hand lens and a viewing box, this sensitivity could be increased at least fourfold.

Quantitative studies on sera from three patients who expired from fulminating meningococcemia revealed levels of 1.5 to 4.5 μg/ml of meningococcal antigen.

The specificity of the counterimmunoelectrophoresis method is shown in Figure 4. The Neisseria meningitidis A and B group antigens used were those described by Edwards and Driscoll.
The *N. meningitidis* group C antigen was from an acute-phase blood sample taken from a patient who expired 9 hr later. As is seen, the test provides a rapid and specific method of detecting and identifying meningococcal antigen.

DISCUSSION

Vincent and Bellot (1) were among the first to demonstrate the precipitation of soluble meningococcal antigen from the spinal fluid of individuals with meningococcal meningitis. They performed a precipitin test with the supernatant of centrifuged spinal fluid and polyvalent horse meningococcal antiserum. This test required 6 to 12 hr before a final diagnosis could be made. Using a similar technique, Alexander (2) was able to relate the rapidity of the precipitin reaction to the prognosis in cases of meningitis. The more rapid the appearance of the precipitin (within 10 min), the greater the mortality rate. Rak (3) found a good correlation between the intensity of the precipitin reaction and the number of organisms present in the spinal fluid sediment.

Of the two techniques used here, counterimmuno-electrophoresis provided a more rapid and sensitive test for detecting meningococcal group-specific antigens. The detection of soluble antigen in the serum of patients in the acute phase of meningococcal disease is probably related to the concentration of organisms in the blood. The findings in this study, however, strongly suggest that if the serum from a patient with meningococcal disease shows a precipitate under the conditions of testing described, the prognosis is poor. Three patients were found to have levels of 1.5 µg/ml to 4.5 µg/ml of meningococcal antigen in their acute-phase blood samples. These levels may signal the onset of fulminant meningococcemia. An important relationship, yet to be determined, is the threshold level of circulating meningococcal antigen in the serum and the reversibility of the disease process. Preliminary observations indicate that such a level may exist (E. A. Edwards and P. Muehl, to be published).

The rapidity and specificity of the counterimmuno-electrophoresis test for meningococcal antigen should permit its use in studying spinal fluids, as well as serum, for rapid identification of the infecting organism. To date, eight spinal fluids have been so examined for *N. meningitidis* antigen. The results all agreed with the isolation and identification of meningococci by bacteriologic methods. However, the results using counterimmuno-electrophoresis were available within 30 min after the samples were received.

REFERENCES