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1. Introduction

The military services have been interested for some time in
missile designs that have tube-launched applications. Wrap-around fins
(WAF) have always been a promising means of stabilizing missiles with
tube-launched constraints. Their use has been limited, partly because
they induce unique aerodynamic rolling moment and side forces, and they
have been observed to cause a reversal in roll moment direction at

transonic speeds for unguided direct fire type missiles. Prior avail-

able information has been insufficient for the missile designers tov make

accurate estimates of roll moment coefficients for missiles with WAF.

It has generally been assumed that the aerodynamic static stability could

be estimated from a planar fin with a planform area equal to the pr- ected

area of the WAF, but this has not been demonstrated by making comps:isons

under controlled testing.

Because cf the continued interest in tube launched missiles, a
need exists to adequately define the parameters that influeace the
aerodynamic behavior of WAF by a systematic parametric approach. This
report presents a summary of the results accumulated from a series of
wind tunnel tests designed to study various parameters of WAF. An
attempt has been made to obtain data for the purpose of defining the
importance of each parameter on the aerodynamic rolling moment and side
force induced by WAF, and provide the aerodynamic designer adequate

information for preliminary estimates of rolling moment coefficient
induced by WAF.

2. Discussion of Test Conducted and Model

Wind tunnel tests were conducted at two facilities. Transonic
tests were conducted at the AEDC-PWT 4-foot tunnel (1, 2, 3], and the
supersonic test at the Langley UPWT 4-foot section number 1 [4].

The angles of attack were varied between -6 and 6 degrees. Mach
numbers were from 0.3 to 2.86 for several configurations. Roll angles
were varied by rolling the model, balance, and sting with a remote roll

mechanism. A complete matrix of configurations tested is contained in
Table 1.

The model was supported by a 6~component strain gauge force

balance, and each fin was instrumented with a 3-component force balance
{1, 2, 3, 4}.

The mocdels consisted of a 2-caliber secant ogive nose with an 8-
caliber cylindrical aftertody with three afterbody shapes and sixteen
fin configurations. The basic body configuration had a streight cylin-
drical afterbody, 4 inches in diameter, and two zlternate afterbody
shapes stepped down to a diameter of 3.6 inches over a length of 7 and
4 inches, respectively, from the base (Figure 1).
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The exposed semi~span b/2 for the WAF was chosen to be approximately
the chord length for the arc that encloses a quadrant of tubular body
cross section, or 0.707 D. This description is shown in Figure 2, and
the complete fin dimensions are given in Table 2. The exposed semi-
span, therefore, was approximately the same, 2.658 inches for all fins.
Aspect ratio for fins with unswept leading edge then was varied simply
by changing the chord length. The geometric parameters varied are:

3 chord lengths (rectangular planforms), 4 leading edge shapes, 3
thickness variations, 4 leading edge sweep angles, 1 fin body gap,

1 tip chord alteration, and several fins tested on the stepdown body
configurations. Figure 3 shows the WAF model in the AEDC 4T wind
tunnel test section, and Figure 4 shows the fins tested.

3.  Comparison of WAF to Flat Fin Stability and Drag

The major concern of the effects of WAF has been the self
induced rolling moment; however, a comparison of static stability param-
eters was made for a flat fin and WAF. The flat fin had the same total
exposed span and projected area as the WAF. There two fins were tested
through the Mach number range of 0.3 to 2.86 on a body of revolution.
The normal force coefficient slope at zero angle of attack and the
center of pressure are shown in Figure 5 for both the flat fin and WAF.
Any difference on total configuration static stability coefficients
appears to be within the uncertainty of measurement accuracy.

The flat fin and WAF were also compared by testing both on a splitter
plate (Figure 3) at transonic speeds. Figure 6 shows the flat and WAF
basic fin lift curve slope at zero angle of attack along with the
longitudinal and lateral center of pressure for the fin on a flat plate
and on the body of revolution. The only significant difference between
the splitter plate data and the data for fins on the body of revolution
is the increase in normal force coefficient caused by body upwash. The
upwash factor obtained from the ratio of these two curves ranges from
1.4 to 1.7 through the Mach range of 0.3 to 1.3. This is comparable to
the slender body factor of 1.39 for this fin with a body diameter to
total span ratio of V.43.

The zero angle of attack forebody axial force coefficients for
several of the geometric parameters tested are shown in Figure 7. The
forebody axial force coefficient showing a comparison btetween the WAF,
flat fin, and the body alone is included. The fin drag curve in
Figure 5 is a comparison of the fin drag with the body alone subtracted
out. The WAF is shown to be approximately 10 percent higher which
corresponds to the additional frontal area that the WAF has due to the
curvature.
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The other geometric parameters (leading edge sweep, thickness,
leading edge shape, and aspect ratio) show their influence on drag to
be as expected for flat fins with the same shape changes.

4. Rolling Moment Coefficient

It appears from the previous section that the static stability
derivatives are not significantly different for the flat and WAF. There
is, however, a significant self induced roll moment produced by :he WAF
even at zero angle of attack. This missile rolling moment is t.e result
of the normal force which the WAF induces at zero angle of attack that
is not reflected in the stability gradients, The bias normal force is
relatively small when only one panel is considered and for the data
from the above test could not readily be isolated from other test

anomalies such as tolerances in the angle-of-attack mechanism and fin
cant.

The main objective for this study was to investigate the effects
on rolling moment of the various geometric parameters of WAF. The
variation of rolling moment is considered for three flow parameters:
Mach number, Reynolds number, and angle of attack for several geometric
variations. Featherstone [5] and others [6] have shown the WAF to have
self induced normal forces at zero angle of attack. Figures 8 through
16 show the effects of the various fin geometric parameters con the zero
angle-of-attack rolling moment coefficient for Mach numbers 0.3 to 2.86.
The most significant effect with Mach number appears to be at transonic
speeds where, in general, a change in sign occurs for rolling moment.
Featherstone has suggested the self induced force is directed toward the
center of curvature at subsonic speeds and away from the center of
curvature at supersonic speeds with the cress over occurring close to
Mach = 1. This was demonstrated for those fin configurations with a
CR/D 1.75 with the exception of the fin with maximum thickness

t/C = 0.045. This trend exists for fins with rectangular planform,
those with leading edge sweep (Figure 10). on both straight and step-
down body (Figure 12), for leading edge profile modification (Figure 8),

and for modifications to both root chord gap fin and the tip chord
(Figure 14).

a. Geometric Parameters

Two geometric parameters that show significant variations
expecially at higher Mach numbers are the unsymmetrical leading edge
and the stepdown body. The majority of fins were tested with a 45-degree
symmetrical leading edge wedge; however, four leading edge variations
were made. The symmetrical leading edge wedge included angles tested
at 45 degrees, 20 degrees, and blunt (Figure 2 and Table 2). The
rolling moment coefficients are presented in Figure 8. Only the unsya-
metrical leading edge shows significant effects on rolling moment. It
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has little effect at low speeds; however, at supersonic speeds a large
effect on rolling noment was observed. The 22.5-degree beveled leading
edge is expected to act as a wedge in supersonic flow. The WAF leading
edge wedge pressures are expected to have magnitudes somewhere between
those on a two-dimensional and three-dimensional wedge perhaps closer
- to ‘the values of the two-dimensional. For a two-dimensional 22.5~

degree wedge the shock is not attached below approximately Mach 2.0,

but the three-dimensional shock is attached at Mach 1.3, From Mach

1.0 to 1.3 the leading edge is behind a detached shock and is in subsonic
flow, and between Mach 1.3 and 2.0 the leading could be exposed to mixed
. subsonic and supersonic flow. Beyond Mach 2.0 the shock is attached

and the leading edge is exposed to full supersonic flow. These transient
conditions in flow regime along with shock wave interaction with adjacent
fins are most likely responsible for the large variutions between Mach
1.1 and 2,0. An analytical method to predict or describe this trend is
not available at this time.

Another geometric parameter that did show significant effect on
WAF self induced zero angle-of-attack rolling moment was aspect ratio.
The aspect ratio was changed by a change in root chord length for fins
with unswept leading edges.

Figure 9 shows how aspect ratio effects the zero angle-of-attack
rolling moment coefficient for fins with unswept leading edge. The
higher aspect ratio appears to cause rolling moment to become more
negative at low speeds, but at supersonic speeds the effect is insignif-
icant over the range considered. Changing the aspect ratio by sweeping
the leading edge did not show the differences (Figures 10 and 1l) as
the unswept case did (Figure 9). These trends indicate that an important
parameter on the WAF self induced rolling moment at least for low speeds
is the fin chord length at the body fin juncture. Also shown in
Figure 11 is the effect of fin thickness on rolling momemt for fins
having t/C = 0,015, C.03, and 0.045. The thickest fin (t/C = 0.045)
shows some deviation from the other two which are near identical. A
WAF of this type with t/C = 0,045 is a heavy structure and most probably
would never be used. A t/C in the range of 0.015 to 0.03 is more
reasonable, and for this spread it does not appear that the WAF self
induced rolling moment is affected by thickness.

The remaining geometric parameter investigated was the step down
body (Figures 12 and 13). The body step down equal to the thickness
of the 3 percent fin with a CR/D = 1.75. The only significant differ-

ence noted for the step down body occurs in the supersonic range, where
the step down tends to cause a positive shift in roll moment coefficient.

b. Flow Parameters

Reynolds number (Figures 15 and 16) did not show any
significant alteration of the rolling moment sign reversal at transonic
speeds for the range 2 to 5 million per foot.

5
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The variation of rolling moment coefficient with angle of attack
for several representative configurations are shown in Figures 17 through
22, Figure 17 shows that the flat fin has small change with angle of
attack throughout the Mach number range; however, the WAF (Figures 18
through 22) configurations show a distinctive rolling moment coefficient
variation with angle of attack. The rolling moment coefficient remains
fairly constant over an angle of attack, «, range of -2.0 to 2.0 degrees.
For the lower Mach numbers through the transonic range the rolling moment
generally becomes more positive at -2 degrees > > 2 degrees, and for
the supersonic Mach numbers the rolling moment decreases at -2 >a > 2.
This trend is typical and is shown for three aspect ratios (Figures 18
through 20), two leading edge shape variations (Figures 18 and 21), and
two leading edge sweep angles (Figures 18 and 22).

The data presented herein show that while the variation of rolling
moment coefficient with Mach number can be significant, only small
changes occur for 2 degrees > > -2 degrees. Many tube launched
missiles equipped with WAF fly direct fire type trajectories where the
angle of attack envelope is well within +2 degrees, T[light cimulations
can be simplified to use only the zero angle-of-attack self induced
rolling moment coefficient.

5. Accuracy of Rolling Moment Coefficient Data

Some questions have arisen concerning the accuracy and
repeatability of the rolling moment coefficient data. The magnitudes
of the self induced rolling moment coefficients of the WAF are quite
small relative to the size of coefficients of fins with large cants.
The only ready means of obtaining force data in a wind tunnel is with a
strain guage balance. The balance must be sized to meet special
requirements, but- it must be capable of handling the forces and moments
of the complete model in the test facility to be used. To obtain sensible
rolling moment coefficients induced by WAF, both wind tunnel dynamic
pressure and fin sizes must be made large within practicable limits.
Both cause larger aerodynamic loads on the model which results in
requirements of larger strain gauge balances. To date strain gauge
balances are not ideal for measurement of these small rolling moments;
however, from the available balances one can be chosen that is optimum
for given requirements. A composite plot of rolling moment data pre-
cision is shown in Figure 23. At transonic speeds the rolling moment
gauge was large because of the requirements dictated by normal force
and pitching moment loads. As a result the data precision, as quoted
by Arnold Engineering Development Center (AEDC) {1, 2, 3] are larger
than desirable; however, as shown later the repeatability from duplicate
points during the same test and from separate entries show that the
data are reproducible well within these precision limits. An attempt
was made to measure the cant of each fin during the transonic testing
[1, 2)., These neasurements of 76 fin installations had a mean cant of
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0.011 degree with a standard deviation of 0.142 degree, with a quoted
measurement accuracy of +0.1 degree. If all four fins for one configu-
ration have a 0.l-degree cant, the rolling moment coefficient would be
0.004 to 0.006 which is well within the quoted -(Figure 23) data pre-
cision for the transonic test and just slightly above the data precision
for the supersonic test. Because of the uncertainty of the cant
measurements and the small magnitude of fin cant induced rolling moment
relative to the data precision, corrections to rolling moment coefficient
caused by fin cant are not presented.

Comparisons are made from the numerous duplications and other
geometric similarities. From these one can decide where these results
can be beneficial in making predictions of the WAF self induced rolling
moment. Several specific cases where comparisons are made are as follows:

a) Direct reruns - A separate test [3] was conducted explicitly
to check rolling moment obtained in earlier test [1] at transonic speeds.
This test was conducted with a balance that had a 100-inch-pound roll
moment gauge. The normal force and pitching moment gauges were also low
capacity and angle of attack was restricted to less than 2 degrees. The
quoted data precision for the rolling moment coefficient is shown in
Figure 23, indicated by the AEDC report [3]. The main purpose of this
test was to observe the self induced WAF rolling moment coefficient at
zero angle of attack, and compare these to previously obtained coeffi-
cients with the less sensitive balance. Comparisons of three configura-
tions are shown in Figure 24.

b) Roll angle - The models were tested at 0O- and 45-degree roll
angles (Figure 1) throughout the Mach number range at angles of attack
of -6.0 to 6.0 degrees. The outcome of the rolling moment coefficient
should be the same for any roll angle at zero angle of attack frem a
flow and model symmetry viewpoint. Differences between roll position
can be attributed to data instrumentation repeatability. Figures 25
and 26 show self induced WAF rolling moment coefficients at zero angle
of attack throughout the Mach number range for two roll angles of 0 and
45 degrees. This does not necessarily indicate the precision of the
data, but these results are typical of the repeatability of the data for
both the transonic and supersonic phases of testing. Tests were conducted
for other roll angles during the transonic phase, and all results were
compatible with those shown in Figures 25 and 26.

c) Computed roll moment from fins - Each fin was mounted on a
3-component strain gauge balence. These balances were designed to
accommodate the loads experienced during the transonic testing, but
were used also for the supersonic test where the loads were far below
the design maximum. Total missile rolling moment coefficient was com-
puted from the measured fin normal force and root bending moment coef-
ficient and compared to the rolling moment coefficient obtained from the
main balance. Typical comparisons of the WAF self induced rolling moment
coefficient at zero angle of attack for the transonic test are shown in




T

DTN R T, YT T VR AT ST T

TR

TR

TP

g i L R A

Gkt

o kel

g

e e e ——

e e ———

Figures 26 and 27. Fin data exist for the supersonic phase and are
adequate for obtaining the usual normal force coefficients for stability
considerations, but data scatter prohibits a meaningful computation of
total missile rolling moment coefficient for angles of attack near zero.
The data most questionable are the transonic phase, as shown in

Figure 23 [1, 2], where comparison between the two methods of obtaining
rolling moment coefficient are better than expected.

As usual in experimental data there are some cases where results
.do not reach desired quality; however, the data presented in this
report are believed to give one a basic knowledge of the characteristics
of the WAF for several of the geometric and flow properties.

6. Side Forces and Moments

It has been suggested [6] that in addition to inducing rolling
moments, the WAF causes side force and moment variations with pitch angle
of attack. Nothing was observed during this series of testing that
substantiate the generation of cross derivatives of significant magnitude
over the angle of attack range +6 degreec for standard opening direction
and angles. Figures 28 through 33 present a sample of typical side
force variation with angle of attack for the flat ’'in, and several of
the geometric changes made of the WAF. Figure 28 shows the side force
coefficient variation with angle of attack for the flat fin, and
Figure 29 shows the WAF with identical prejected planform area and profile
to the flat fin. It can be seen that very little difference exists
betwean the two and that essentially no side force change with angle of
attack occurs for the WAF. The small bias shown can easily be due to
wind tunnel flow and model misalignments, and are present in all con-
figurations. The yawing moment is not shown, but similarly the moment
remains <onstant throughout the angle-of-attack range tested. Side
forces are shown for the three aspect ratio variations for the WAF with
rectangular planforms tested in Figures 29, 30, and 31, Figures 32 and
33 show that neitlier the unsymmetrical leading edge or leading edge
sweep on the WAF cause aerodynamic cross derivatives below 6 degrees
angle of attack. These are al’ shown at a roll angle with the fins
vertical and horizontal (¢ = 0) or in the + configuration. The model
was tested at roll angles of 22,5 and 45 degrees (Figure 1), and side

forces and moments were not observed to change for any of these cases
at any Mach number below 2.86.

7.  Typical Missile Roll Rate with WAF

The unusual roll rate behavicr of wrap-around finned missiles
during flight has been observed among missile designers since the
inception of the WAF. This report has shown data substantiating that
the WAF induces a roll moment coefficient even at zero fin cant; how-
ever, the magnitude of these roll moments appear to be small, and it aas
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been difficult to measure them by conventional wind tunnel testing. The
reason that these small moments cause roll rate variations in flight to

be conspicuous is that missiles typically also have small mass moments
of inertia in roll.

To illustrate the effects during flight of the zero lift rolling
moment coefficients of missiles with WAF, several comparisons between
the roll effectiveness of flat fins and WAF were made. A computer program
written for the purpose of obtaining roll rate information was used.
Trajectory data (Mach number and altitude versus time) and roll mass
moment of inertia for a typical missile were used a< inpnts.. The Mach
number ranged from 0.0 to 3.0, and the roll moment of inertia ranged

from 0.2 at motor ignition to 0.l4 lb-ft-sec2 at motor burnout (M =
3.0). The aerodynamic inputs are restricted to the roll moment coef-
ficient due to cant, the roll damping coefficient and the self induced
WAF rolling moment. The only assumption is that these three roll moments
can be combined linearilv  Figure 34 shows the roll race variation for
the flat fin case with an initial roll rate of 10.0 cps at three fin
cant angles of -1.0, 0.0, and 1.0 degrees., Figure 35 shows the same
except the self induced roll moment coefficient for the WAF has been
included. It can be seen that the effects of the WAF self induced roll
moment is approximately equal to the effects of rolling moment due to a
1.0-degree caat at the higher Mach numbers.

A recent test has been conducted where an attempt was made to
obtain roll damping for saveral fin configurations. Included in this
was a compairson between a flat fin (F9) and a WAF (Fl, see Figure 2
and Table 2). These data have not been published at this time. The
model was spun up in the wind tunnel by an internal hydraulic motor.
At a prescribed rolli rate the motor clutch was released and the model
was allowed to free spin until the steady state roll rate was reached.
Figure 36 shows the measured steady state roll rate for the WAF with
fin cant angles of 0 and 1 degree at Mach numbers from 0.3 to 1.3. A
comparison of the flat {in and WAF is shown for the 1 degree cant. The
roll rate for the flat f£in and WAF remains approximately the same through
Mach number 0.8. Above Mach 0.8 the WAF deviated sharply away decreasing
until at Mach 1.3 the roll rate was essentially zero. Thus the free
spinning results substantiate the abrupt negative shift in rolling
moment shown by the static data (Figure 8).

8. Conclusions
The general characteristics of a number of WAF on a body of
revolution at Mach rumbers 0.3 to 2.86 have been presented. The effects
of geometric and flow parameters have led to the following conclusions:
a) The static stability derivatives at @ = 0 of missiles with

WAF are essentially the same as with equivalent planar fins and may be
estimated by using the flat fin techniques.
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projected planform area. This increase is approximately a factor of 1.1,

for the fins tested, which corresponds to the increase in frontal area
of the WAF over the flat fin.

4 b) Drag of the WAF is larger than the flat fin with the same
'

¢) The WAF does induce roll moment to the missile at zero
angle of attack and zero fin cant.

d) The WAF self induced roll moment can change direction
as a function of Mach number, with the cross over occurring near Mach
1.0. The resulting moment direction is determined by the fin force
directed toward the fin center of curvature at subsonic speeds and away
from the center of curvature at supersonic speeds.

Bl 1o

s

e) The WAF rolling moment variation with total missile angle
of attack is small for absolute angles of attack less than 2 degrees.

: Above 2 degrees the rolling moment may deviate significantly from the
& zero angle of attack case depending upon fin geometry and Mach number.
3 f) Cross derivatives induced by the WAF do not appear to be

significant at any Mach number below an angle of attack of 6 degrees.
This may not be the case for WAF configurations where fin opening direc-
tions are alternated, or for higher angles of attack.

] g) Accurate measurement of WAF rolling moment requires

sensitive roll moment measurement instrumentation, and smell tolerance
on the individual fin geometric incidence.

h) The WAF moments do not appear to be intolerable, and

missile roll rates can be tailored by proper geometric design and fin
incidence for many applications.
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