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LOGISTIC ANALYSIS OF BRUCETON DATA

By
L. D. Hemptons G. D. 3lum, J. N. Ayres I

ABSTRACTs A detailed study of the Bruceton test is presented when
the logistic distribution rather than the Gaussian is assumed. Included
are: recapitulation of underlying statistical concepts; discussion of
the stretegy and technique for performing logit Bruceton tests; details
of logit Bruceton data anlysis, derivation of asymptotic equations for
the logit Bruceton analysis; and Monte Carlo tests which show good
age•ement with theory for very large samples, but considerable differ-
ences when ordinary sample sizes are used,
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EXPLOSIONS RESEARCH DEPARTMENT
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LOGISTIC ANALYSIS OF BRUCETON DATA

Previous work has shown that there are numu ous occasions where
sensitivity data should be interpreted with the logistic rather than
the normal (Gaussian) an the assumed distribution function. One of
the tools for collecting and assessing sensitivity data is the
Bruceton test and analysis method. The analysis, as it was
originally developed, assumes the normal distribution.

This report contains a theoretical development and study of a
Bruceton analytical method assuming the logistic distribution
function. Also, Monte Carlo techniques wore used to study the
accuracies of the estimating parameters and how the accuracies are
affected by sample size. Although the work was begun over seven
years ago under the HERO (Hazards of Electromagnetic Radiation to
Ordnance) Project, Task NOL-443/NWL and completed somewhat lateri
under ORDTASK ORD-033 234/092-l/F008-08-1l Problem 001, Reliability
and Gap Sensitivity of Explosives, it was not published because two
of the authors left the Laboratory. The methods described are of
continuing utility however and warrant publication.

Since the Bruceton test method is widely used for collecting
sensitivity data for predictions of safety and reliability, this
work should be of interest to systems analysts as well as to those
working directly with explosives in the fields of research, design,
and mannfacturing quality control.

ROBERT WILLIAMSON II

C. J. ARONSON
By direction
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I. INTRODUCTION

1. The statistical treatment of experimental results in which the
response of an item to a stimulus is of a quantal (yed or no) nature
is becoming an increasingly important problem in current research.
The Bruceton test was designed to handle Aust such exL)eriments when
the stimulus is continuously controllable *. Its sequential, "up-
and-.down," method of testing is ideally suited to destructive testing
(any situation in which each item can only be tested once) becausl it
tends to be economical in the number of items consumed in testing
This economy has led to its being used extensivoly in explosives
technology arnd, to some degree, in the field of experimental bi~ology/
medicine.

S.!

2. Another recent development in statistical data analysis is the
increased use of the logistic lietribution'. The expression for the
cumulative logistic probability is

x I 1

r(x) -cosn ' ' (9)

ill

This distribution hao been shown to be preferable to the normnl** in
,aertain applications '.

j. Earlier work on tho Bruceton test has based the cnlculations on

the asbumption that the populetion from which the items under test are
drawn is normally distributed '2. Part II is a recapitulatiol of the
stattietical concepts that we use in the ensuing presentations. Those
with an Ictive familiarity with the field of statistics of attributes
can skim or skip thie• section. Part III i& a discussion of tre
strategy and technique for carrying out a Bruceton test and analyzing
the results. The dl,stimilarities between thi Gaussian-Bruceton and
the logistic-Bruceton analyleh -- e pointed out. Two numerical examples
are used to demonstrate the of a Bruceton analysis. The graphs
and tables used in carrying ou a logistic Bruceton analysis are
collected into one place (Appendix A) along with a summary of appro-
priate equations to aid in the carrying out of the analyses of
experimental data. Part IV of this paper is a redevelopment of the
calculational procedure of the Bruceton teit using, as a basic
assumption, the hypothesis that the population is logistically distri-
buted. Part V is a report of an extensive serLes of MoXte Carlo tests
of the logistic-Bruceton analysis, showing the effects of finite
sample size and related factors on the theoretical assumptions.

• eferences are on page 4..

"*The comparable expression for the Gaussian distribution is

p(x) -exp .. Lx-u d27 (2)

7- T1



NOLTp 73-91

II. STATISTICAL BACKGROUND

Critical Level

4. Impli.cit in the following methodolcgy in the concept of "critical
level". An explosive system will respond if the appropriate
triqgsring signal is large enough. There ii some signal amplitu~e
below which the system will not respond but at which, or above, it
will respond. Thia signal amplitude id the critical level. A group
f explosive systems, even when made as nearly identical to each

other as humanly possible, caninot be expected to have identical
critical levels. In general the critical levels wi.11 be grouped
around a central value, some being further away (above and below)
than others. 1

Distribution,

5. Experience has shown that this grouping, or distribution, can be
represented by a bell-shaped plot, as in Fig I. Here p(x) represents
the relative probability of encountering a device whose critical
level is precisely equal to the stimulus, x. If the curve is

LL

FIG. A PROBA 'L'TY D•.SI1 jNC:C FP!.JE CV r)."'

2
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symmetrical, the median, mode, and m2-an* all fnll on the same
stimulus level (p in Fig 1). The Greek letter w in defined as the
mean of the populations the population being all possible devsices
that have been made, that exist, or that will be made.

Dosage vs Stimtlus

6. We distinguish between dosage and stimulus. The term 'dosage'
is ieserved to designaue the magnitude of the physical parameter
which the experimenter adjusts to apply the desired signal to the
explosive system. The stimulus, which is some Conformal function
of the dosage, serves to transform the probability density function
to some assumed distribution, which in the 2resent cas is the logistic.
Without this transformation the statistical method to be used would inot be val:,~d. 1'

7. As an example of this differences BED's can be fired from a
charged capacitor. The dosage might be the potential to which the
capacitor is charged, or the stored energy. But from the properties
of the logistic p.d.f. (probability density function), namely that
the curve approaches zero probability as x approaches the limits of
minus and plus infinity, we are confronted by a logical inconsistency. I
The idea of firing an EED with negative energy has no meaning. By
taking the logarithm of the energy as the stir.ulua we force the
lower asymptotic limit to'be zero energy. While there are many
other transforms which could be used this is one of the simplest and
has been used quite widely.

*The mean is defined as (Ex)/n. That is, if we have a group of
values, observations, or measurements (xI,xg,xs,etc) the mean would be
the total of the magnit'2des of the observations divided by the number
of cbservation3. The mode is the particular x (or interval about x)
for which there is the greatest number of observations. The median is
the particular x which divides the group into upper and lower halves.
Unless we are dealing with an absolutely symmetrical distribution we
cannot expect these three measures of central tendency to be the same
(especially for small groups). For instancte, in this group of fifteen
numberas

6,6,7,7,7,7,7,8,9,9,9,10,12,15,16
we find that the mean is 9, the mode is 7, and the median is 8. There-
fore, the level of stimulus in a Go/No-Go test at which 50% response
is observed (or expected) is the median. To refer to this level as
the mean is correct only if the distribution is symmetrical about the
median.

3., , .
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Probability Density Function

8. The probability density function is not particularly useful when
working with explosives since we can never know the critical level
of each individual explosive unit. For instance, let us take b
representative sample from the population of Fig 1. To each member
of the e ýmpla we apply a particular stimulus, x1 . Those embers whose
critical levels are equal to or less than x, will respond. The nuaber
of members responding is represented in Fig 2 by area a. The
remaining members of the sample will not respond (area b).

NON

SG. 2 RESPONSE TO A PARTICULAP ýTI W LUS

But once the members of area a have responded they no longer exist.
We, therefore, cannot find, for any member, whether or not it would
have responded at a lower level. Nor can we assume (without some
independent source of information) that the members which did not
respond were not changed as a result of being subjected to stimulus x1 .
We can only assume that they may have been changed ant thexefore are
no longer members of the population from which the original sample was
dr3wn.

Cumulative Probability Function

9. To compute area a, Fig 2, we need to integrate the p.d.f. from the
negative limit up to xi. A plot of the integral of the p.d.f. for all
values of x ranging from x - -- to x - +m gives a cumulative curve,
such as in Fig 3. From this curve we can deduce the proportion of
the population that would respond if the entire population were sub-
jected to a particular stimulus level.P The population proportion that
would respond can be considered as either the expecied Tractionl
response of a finite sample to a given stimulus or the expected proba-
bility of response of a particular ite;n to the same stimulus.
*DerLving the cumulative form by integration of the p.d.f. applies
strictly to the Gaussian distribution since, as a m~ttrr of history,
ýqujO~itij di3tribution was conceived and is only used in the

a orm.

i~l- !- .11l~l! !1 1 11 1"1I.... w4



NCLTR 73-91
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The Gaussian and Logistic Distributions

10. 'n Table 1 we compare the mathematical expressions for the
p.d.f.'s and their integrals for the time-honored Gaussian (or normal)
distribution and for the logintLc function that we will employ in
this paper.

Table 1

Comparison of the Gaussian and Logistic Functions

Gaussian p.d.f. Logistic p.d.f.

1 (4)Px W (3) p(x) = - (4)

j Gaussian~ Cumulative Form Logistic Cumulative Poi'm

Sex " l-exd"
pWx L dx (2) p W) (1)

The evaluation of the Gaussian integral, in tabular form, is
available in many collections of mathematical tables. Because the
integral. cannot be evaluated in closed form the use of the Gaussian
function in high-speed computer programs depends upon either tabular
look-up (which is apt to be inefficient in computer storage space and
processing timt) or else approximation expressions (which have to be
devised or found). on the other hand, the logistic cumulative and
its transformations involve only logarithmic and exponential functions
which are already available in most machine languages.

Probability Space

11. Even the cumulative curve shown in Fig 3 is not in its most
aseful form. The vertical axis can be transformed so that the 'ess"-
shaped curve changes to a straight line, as in Fig 4. we shall use
the symbol, L(x), to indicate the logit of x ... the value of the
transformation of p(x). The logit transform can be expressed in a
number of equivalent forms:

= •. m .i,=.== • -=='* - m,= ,L"= = r • i": I ' l ... .•"|i i i i~ llll I l u i • ,- , . . . . •... ::6
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L x) - (5a)

- W (5b)

- • (5c)

where $a is the mean and y is the vaziability parameter. By simple i
algebraic manipulations the preceding equ3tions can be sclved fcr

ptXx),

p exp (6)

p(x) - 1 (7

which can be differentiated, as in shown in Appendix B, to yield the
probability density function, Eq (4) or Eq (B-13). Even though
Berksona expressed the logit transform a6 a 2onventional linear
equation, L(x) - Ax+B, we prefer and will use the form of Eq's (5).
The nature of the straight-line transformation can be better under-
stood by making substitutions in the equations. If we Lmt p(x) - 0.5
then the logit of x will be the natural logarithm of 1, or zero.
If we let x be larger than u by one gamma-unit (this is cowparable
to "one sigma above the mean" in the normal distribution) we would
find that

L(x)- - 1

As a consequence, p(x)/q(x) -exp(1) -2.71828. Hence, p(x) wust be
0.73106.

12. A similar y-Lxis transformation cart be made to produce a straight
line for the Gaussian cumulative function. The units of the vertical
coordinate usually have been designated normits, with zero normits
being made to correspond to a probability of 0.50. Finney, in his
probit analysis, uses units of probits which are numerically 5.0
greater than the normit.

7
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Slope and Variance

13. The slope of the normal cumulative curve (in the normal proba-
bility space) is 1/0 where a2 is the variance. The slope of the
logistic cumulative curve (in the logistic probability space) is
1/Y. The expression for the variance of the logistic distribution
is given by the following equation

(The derivation of this expression, as well as other moments of the
p.d.f., is given in Appendix B.) Table 2 has been included to show
the relationships between the logistic and two Gaussian straight line
coordinate systems and their corresponding probabilities.

Table 2

Various Y-Axis Parameters for the Gaussian and
Logistic Probability Spaces

Gaussian Probability Loglstic Probability
N P Cumulative L Cumulative

Normit Probit Probability Logit Probability

4 9 0.999683 4 0.982014

3 8 0.998650 3 0.952574

2 7 0.977250 2 0.880797

1 6 0.84134 1 0.731059
0 5 0.500000 0 0.500000

-1 4 0.15866 -1 0.268941

-2 3 0.022750 -2 0.119203

-3 2 0.001350 -3 0.047426

-4 1 0.000317 -4 0.017986

i 8
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III. BRUCETON METHODS FOR DATA COLLECTION AND ANALYSIS

14. The Bruceton plans for collecting and analyzing data &re
described in the literature'12 . However, at least some of these
sources mpy not be readily available. We have decieed to include
an exposition of the procedures so that this report can be self-
sufficient. Some of the notation has been changed to exploit the
advantages of the logistic distribution.

StrategyL

15. The goal of the test method is to concentrate the trials at a
few levels centered about i, the stimulus which will cause 50%
repponse. The units are tested one at a time, the test level beingii
selected in a manner which is most apt to cause a response opposite
to the one just observed. The Bruceton data collection plan is
carried out in the following ways

a. Select a number of equally spaced stimulus levels x1, xg,
x%) .x where the lowest and highest are about
equidistant fpom the expected R (50% response level.) Let d
represent the step size (the difference in magnitude of
stimulus between any two adjacent levels).

b. Choose a level (closest to the expected 50% point) and test
the first item at this level.

c. Test all succeeding items, one at a time, by repeated 4
applications of the following process:

(1) Note the level at which the last item was tested and

note the behavior of this item;

(2) If the item responded, test the next one at the next
lower level; or

(3) If the item did not respond, test the next one at the
next higher level.

(4) Record the result as a response or non-response at the
appropriate level.

16. Recalling that stimulus is defined in such a way that we expect
a greater probability of response with an increased (higher level of)
stimulus we see that the above procedure concentrates the testing around
the 50% response point. If, for instance, we happen to be far above
x, the probability of response will be quite close to 1.0 which means
that (by application of rule c.(2) the succeeding test level will
probably be closer to x. similarly, a trial far below x would be
expected to cause the succeeding level to be higher thon the pre-
ceding test level. Use of the Bruceton method causes a hovering
around i leading to a zig-zag pattern when the results are recorded
sequentially on a tally sheet such as in Fig 5.

mC
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FIG. 5 TALLY OF TYPICAL RESULTS OF A BRUCETON TEST

10
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Initial Conditions for Bruceton Test

A

17. Three ... '-' must be made before a Bruceton test can be
perfcrined t

a. the proper dosage-sti:nulus transform (paragraph 6);

b. the starting level; and

c. the step size.

18. In order to use the Bruceton method for analyzing the data, the
test levels must be set at equal spacinqs of increasinq intensity
of stimulus. Under actual testing conditions we sometimes find
(particularly when the step size is small compared to the mean)
that there is no practical difference between liri.ar and locarithmic
steps. In such a case no transform is necebsary. In some caser
logarithmic steps would complicate the experiment, as for instance,
adjusting the drop height on a stab primer test machine which has a
ratchet-detent mechanism with stops at quarter-inch intervals. In
such cases, it sY,,uld be possible to choose a set of logarithmically
spaced numerical values which will have a minimum deviation from
the experimental levels. This will introduce an error which will have
to be lived with.

19. For best efficiency the starting level should be close to x. Data
obtained previous to the first alternation of responses and non-
responses should not be used in the data analysis. For example, in
Fig 5 trials 4 and 5 are the first alternation (reversal), and, as a
consequence, trials 1, 2, and 3 must be di.1carded. The early encounter I
of the first reversal is made more likely by starting the test close

to the 50% point. Also, as has been brought out in a previous study*,
a starting level some distance away from the mean tends to bias the
estimate of the mean for small-sample Brucetons.I

20. The choice of d, the step size, depends upon what kind of
information is needed and often entails a compromise. If a close
estimate of the mean is desired without much accuracy in the estimate
of the standard deviation, then d might be 1/4 to 1/2 of 1 (if a
Gaussian distribution is assumed) or 1/2 to 1 of Y (for a logistic
distribution). A better estimate of the standard deviation with a
corresponding sacrifice of an accurate estimate of the mean would
require the use of d about equal to 2C (or 4Y). When one desires
estimates of both parameters then the best compromise seems to be
to set d about equal to a (or 2y). As a passing note we caution that
a single run of six or more steps with obviously different 50% points,
before and after the run, may indicate that the experiment is out of
control.

21. If the step size is very large compared to the variability
parameter, an alternating two-level pattern may be obtained. This
will happen when one level is far below x and the next higher level
is far above R. The probability of observing any responses at the
lower level or any non-responses at the higher level is very small.
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On the other hand, a three-level pattern may evolve when the middle
level is close enough to R that a mixed response can be expected, and
the other levels are so far removed from R that the probability of
observing all responses on one and all non-responses on the other is
very large.

22. In either of these cases (where the step size is large) we can
deduce that we have found the limits within which R i located. We
also may ba able to guess at an upper limit for the size of the
variability parameter. But these estimates and guesses may' not be
very informative unless the size of the step is small enough,
physically) compared to the desired accuracy.

23. Confidence limits can be assigned to a stimulus, Xp, associated
with an expected response of p as follows. (A numerical example is
given in steps 9 and 10 of the first illustrative example, paragraph
26.) The quantities mm and s are calculated in the first part of
the analysis and from these ws derive Sp using the variance* equations

s2 - a' + L(x) . (9)

Having obtained mv we can then write the lower and upper confidence
limits for sp as

L = xp - top (10a)

U - Xp + tsP (10b)

where the t is the Student's t with the assumed confidence and with
the proper number of degrees of freedom. For 95% two-sided confidence
limits we should enter a t table with P - 97.5% since this gives us
2.5% outside each side of the stated limits. The authorsof Reference
I assumed a very large sample, therefore they used t with an infinite
number of degrees of freedom. For small samples which are actually
used in experimental work it would be better to use the value of t
with the number of degrees of freedom equal to the number of fires
or fails observed (whichever was used in the computations). For
high-speed computer use we can approximate the values of t quite well
by the algorithm

t w R + (11

Sand , are the variabilitiefi of the estimate of Y, of the

mehn, and of aMy particular per cent response point respectively.
The variance equation referred to can be found on page 6 of Ref. 6.

12]
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where f is the number of degrees of freedom and the values of R, S,
and V depend upon the desired value of p. *rhe following are examples:

P R S V

90 1.282 1.2228 1.1345

95 1.645 0.6602 0.6279
97.5 1.960 0.4210 0.4774

The resulting values agree in general with the tabulated values of
t when f_? 6 for P - 97.51 for f2 7 for P a 951 and for f > 9 for
P - 90. Table 3 gives t values for five values of P and compares the
results of using the algorithm with published tabular values. Note
that the constant R is actually t. We emphasize that the tabular
values are the correct values and that this algorithm is an approxi-
mation designed for computer use.

The Bruceton Analysis Method

24. The objective of any Bruceton experiment is to obtain R and g
(the estimates of the population parameters w and Y) and statistical
parameters which can be used to give the probable error of these
estimates. Note that the Greek letters " and Y are reserved for the
population parameters whose values are, in real life, not available
to the experimenter. The computational procedure is quite simple,
starting with a tabulation of the usable fires and fails observed* at
the various test levels. As an example, the data of Fig 5 would be
tabulated as follows:

Stimulus Number of Responses Number of Non-
__X nxai Responses noi

4.00 1 0
3.80 2 1
3.60 9 2

3.40 7 10

3.20 1 7

3.00 0 1
S-no -21

25. For the analysis a choice is made between responses or non-
responses, whichever has the lesser total quantity. In the example the
responses therefore are chosen. Each test level is assigned an index
*In this report the number of fires at a particular level (the i-th
level) will be represented by a double subscripts nx ii and the number
of fails, similarly: noi' J

-M
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TAiLE 3

ALGORITHM FOR COMPUTATION OF t WITH f DEGRE!•S OF
FREEDOM FOR SELECTED VALUES OF P

Equations t-R+l/ (sf-V)

P:90t PU95 P097.5 P-99 P=99.5%
S1.0703 .645 1890 20326 2.576

1 1.2228 0.6602 0.4210 0.26687 0.20276
V 1.1345 0.6279 0.4774 0.37980 0.33618

f Calc Tab Calc Tab Calc Tab Calc Tab Calc Tab I
5 1.4828 1.476 2.U190 2.015 2.5744 2.571 3.3736 3.365 4.0518 4.032
6 1.4432 1.440 1.9450 1.943 2.4481 2.447 3.1447 3.143 3.7119 3.707
7 1.4166 1.415 1.8954 1.895 2.364', 2.365 2.3979 2.998 3.4992 3.499
8 1.3976 1.397 1.8598 1.860 2.3059 2.306 2.8958 2.896 3.3537 3.355
9 1.3833 1.383 1.8331 1.833 2.2619 2.262 2.!!206 2.821 3.2477 3.250

10 1.3721 1.312 1.8123 1.812 2.2279 2.228 2.7629 2.764 3.1672 3.169
15 1.3401 1.341 1.7528 1.753 2.1313 2.131 2.6020 2.602 2.9457 2.947
20 1.3248 1.325 1.7245 1.725 2.0859 2.08b 2.5277 2.528 2.8449 2.84525 1.3159 1.316 1.7079 1.709 2.0595 2.060 2.4849 2.485 2.7873 2.787
30 1.3101 1.310 1.6971 1.697 2.0422 2.042 2.4571 2.457 2.7500 2.750
40 1.3029 1.303 1.6837 1.684 2.0211 2.021 2.4231 2.423 2.7046 2.704
50 1.2986 1.298 1.(758 1.616 2.0086 2.009 2.4031 2.403 2.6780 2.678
60 1.2958 1.296 1.0706 1.671 2.0003 2.000 2.3900 2.390,7.660• 2.660
80 1.2923 1.292 1.6641 1.664 1.9901 1.990 2.3737 2.374 2.6390 2.639
00 1.2902 1.290 1.6602 1.660 1.9840 1.984 2.3640 2.365 2.6262 2.626
00 1.2861 1.286 1.6526 1.653 1.9719 1.972 2.3449 2.345 2.6009 2.601
00 1.2836 1.283 1.6480 1.648 1.9647 1.965 2.3335 2.334 2.5859 2.586

1.2820 1.282 1.6450 1.645 1.9600 1.960 2.3260 2.326 2.5760 2.576

Note: This is a single-s'.ded t table.

I
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number, i, which increases in integral steps per level with increasing
intensity of stimulus. Customarily the zero-th level (i - 0) is
assigned to the lowest level at which tests were carried out, but it
can be put wherever the experimenter wishes. By setting i - 0 at the
level at (or near) which the largest number of observations was made,
the sizes of the numbers are reduced, often making the computations
possible by inspection or simple mental arithmetic. The two methods
will be carried out side by side to facilitate comparison. The
derivations of the equations and detailed explanations of such
variables as M, D, E, 6, G, and H will be given in Part IV of this
report.

Illustrative Computations, First Example

26. Step .. Assignment of indices, xo and d.

d - xl-x 0  (12)

*.. d w 0.20

.x i nx Xi x i n C. i

4.00 5 1 4.00 2 1

3.80 4 2 3.80 1 2

3.60 3 9 xo" 3.60 0 9

3.40 2 7 3.40 -l 7

3.20 1 1 3.20 -2 1
xO" 3.00 0 0 3.00 -3 0

Step 2. Computations of N, A, and B.

_ n__X_ i inxi 0. _ _i _i _. __ in i ion xi

5 1 5 25 2 1 2 4
4 2 8 32 1 2 2 2
3 9 27 81 0 9 0 0

2 7 14 28 -1 7 -7 7

1 1 1 1 -2 1 -2 4

0 0 0 0 N-20 A- -5 B-17
-- 20 A-55 BS=167
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(26. Illumtrative Computations, First" Example, Continued.)

Step 3. Computation of g, the stimulusi for 50% response.

If N E Enxi (for the fires) then x - x- . (13a)
if N "r (for the fails) then R - xo+d(+ + . (13b)

using the firest

: :3.:0+0.2 - :1 3.6:+o.2 0 - [2
S-3.45 ff=3.45

Note that x is the same for both sets
of indices.

Step 4. Computation of 14.

2- - (A -, (14)

3 a
167 - (55- 17 -

X - 8.35 - 7.5625 M - 0.85 - 0.0625

M - 0.7875 M - 0.7875

Note again that the difference in indices did
not che 7s the final answer. .?

-f
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(26. Illustrative Computations, First Example, Continued.)

Step 5. Determination of D.

D - (15)

where x° is the test level closest tO X.

D = 13.40-3.451 0.25
0.20

The value of D will have the limits 0.0 . D 1 0.5 and
will not be needed if M is greater than 0.65, which is
the case in the present example.

Step 6. Determination of E.

E - M, for the limits of 0.65 < X < 10, (16a)

E - M + 6, when M S 0.65 . (16b)

The correction term 6 is a function of both X and D
and can be found either from Fig A-2 or in Table A-1.
For M greater than 10 the value of E begins again to

depend upon both M and D. However, when M approaches
10 it is known that a much too small step size is
being used. Since the results of such a test are
apt to be very misleading we have stopped the tables
at this point.

17

-. Ohl
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(26. Illustrative Computations, First Example, Continued.)

Step 7. Computation of g, am' and a ,

g E.d , (17)

a (m.g)//•, and (18)

* (H.g•)/'¶ , (19)

where 0 and H are functions of E alone, when E > 0.65.
When E < 0.65, a and H are functions of both E and L.
The values of G and H are given in Tables A-2 and A-3
and plotted in Figures A-3 and A-4 in Appendix A.

For the numerical exampleo

g n (0.7875) (0.2) - 0.1575

a a (1.630)(0.1575)/(4.472) - 0.05741

• - (1.626)(0.1575)/(4.472) - 0.05726

Step 8. Computation of stimulus, Xp, at a specified
probability, p.

Eq. (5), L(x) - n - can be rewritten in

terms of p and the estimates of the population parameters

and solved for Xp:

X -X
In -i (20)

p"xp + g. -I+g- x

For example, suppose we wisi' to estimate the 99% point:
= ~99

x - 3.45 + 0.15751(n 99N
p T1

- 3.45 + 0.1575(4.5951)

- 4.174

Note that L(xp) = 4.5951.
p
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(26. Illustrative Computations, First Example, Continued.)

Step 9. Computation of a

The variance associated with the estimated stimulus, xp.
is given by applying Eq. (9)o

&a a + L(x) *•p m L p. g

The term, L(x ), has been evaluated in Stop 8. The
standard deviftions of the moan and of g have been,
determined in Step 7. (Note that when p - 0.50,
L(Xp) - 0 and s,.go properly reduces to s ) Follod-
ing along with the illustration we find tNat

p- /(0.05741), + (4.595l),(0.05726)- 0. 2 6 9 3 .

Step 10. Two-sided confidence interval about x p'

If, for instance, we wish to find the two-sided 95%
coifidence interval about the 99% point we would use
(LU), 5 - (Xp - tg*.5 sp, Xp + t,*.% Cp) (10)
where xp is the 99% point and t is the 97.5% Studmnt's
value, with f degrees of freedom where f-N-20. The
value of t (from Table 3) is 2.08591 and Xp, from
Step 8 above, is 4.174. Hence,

" s - 4.174 - (2.086) (0.2693) - 3.61

Us - 4.174 4 (2.086)(0.2693) - 4.74

step 11. Singlc-sided limit on x .

If, instead of an error band or tolerance interval
about x , we wish to find only an upper limit (or only
a lower limit) for the estimate of a particul3r response
level we would use either

bib _ - ' • -ii...
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(U).. p + ttasp, or (22a)

(L)x. p - tisp a (22b)

Thus for the example we would use a value of t
(with 20 degrees of freedom since N - 20) of
1.725 which would give

"') (U)oe - 4.174 + (1.725) (0.2693)

-"4.64

SNotico that t%12 sin~le-sided upper 95% limit -- 4.64 Is!l

closer to the value of x.- 4.174 - than the upper
tw-•-ided 95% limit -4 This is as it should be.

Illustrative Computations, Second Example

27. A second example is included to show the procedure when M happens
to come out les than 0.65. The data are shown in Fig 6.

Step 1. Assignment of indices, xO and d.

X i n.,!

3.80 2 0 Note: Use "fails" since there
3.60 1 2 are fewer "fails" than "fires".

x0  3.40 0 13 Xo - 3.40t d - 0.20.
3.20 -1 1

Step 2. Computation of N, A, and B.

2 0 0 0
1 2 2 2
0 13 0 0
-1-. -1 +1

20
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3.60 x x x _x 0x x IxI
_ 3.40 0 0 0 o o x o

3.20 - - -o

TRIALNO i 8 9N,0 1 ,4 35 45 ,617

3.80 ! 1 V ! x
_ 3,60 x x x I x o, x x x
z 3.40 0 0 0 0 1 0 0
*- 3.20

TRIAL NO, Is19 2021 2212324 25262728129130 I32[33

FIG. 6 TALLY SHEET FOR SECOND BRUCETON EXAMPLE

21
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(27. Illustrative Coraputationa, Second Example, Continued.)

Step 3. Computation of R.

R - . + (A+ 1(13b)

- 3.40 + 0.2( 1 + 1>

- 3.5125.

Step 4. Computation of M.

a4 9 -1 WNA (14)

- (3)(16)-l

- 0.1836.

Step 5. Determination of D.

D X -" Id

1 3.60-3.51251
0.2

- 0.4275.

Step 6. Determination of E

From the graph, Fig A-2, or by double interpolation

from Table A-1, we find that 8-0.0409 and E-0.225.

22
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(27. Illustrative Computations, Second Example, Continued.)

Tabular 6 Values

D0.1800 0.1850

0.4000 0.0399 0.0384
0.5000 0.0456 0.0440

we show the actual process of interpolation:

D0.1800 0.2836 0.1850

0.4000 0.0580 0.0388" 0.0384
0.4325 0.0409**
0.5000 0.0456 0.0444* 0.0440

*First Interpolation
"*Second Interpolation

Step 7. Computation of g, amp Ag.

g - Ed (17)

- (0.225) (0.2)

- 0.0450

From the graph, Pig A-3, or by double interpolation
from Table A-2, we find that G - 2.4930.
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(27. Illustrative Computations, Second Example, Continued.)

Tabular G Values

S0.2000 0.2500

0.4000 2.666 2.265
0.5000 2.769 2.306

(2.4930) (0.0450; (18)

16

" 0.028

Similarly from Figure A-4 or Table A-3, H - 1.146:

Tabular H Values

0.2000 0.2500

0.4000 1.141 1.174
0.5000 1.105 1.140

S(1.1458) (0.0449)

" 0.0129

24
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(27. ZLlustrati,*,e Computations, Second EXample, Continued.)

step 8. Cowputmtion of xp.

Tske p, lot us say, as 0.95 (the 95% point)s

X p - + g.,•.• r4(21)

- 3.5125 + 0.0449 (In 19)

" 3.6447

step 9. Computation of ap.

- (oo)'+ Lj )], -(oo)'

1/0 2 + 2 4) (0.0129)9

" 0.0472

25
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(27. Illustrative Computations, Second Example, Continued.)

Ste 10. Two-sided confidence interval about the 95% point.
Take the confidence level to be 90%. The student's t value
will be at a 95% level for f - N - 16

* •t - 1.645 + (0.6602) (161 - 0.629()

"- 1.7457

L - 3.5125 -(1.7457) (0.0472)
30

- 3.43

U a 3.5125 + (1.7457) (0.0472)to

a 3.60

Step 11. Single-aided lower limit on the 95% point at j
90% confilence

We find thats

t -1.282 +1 (1.2228) (16) - 1.1345

- 1.3363

The lower limit, then Lut

L - 3.5125 -(1,3363) (0.0472)
00

"n 3.45

2

26
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IV. THEORETICAL STUDIES FOR THE LARGE SAMPLE LOGIT BRUCETON

28. In Section IIZ procedures, tables, and graphs were given to
estimate the statistical parameters *, g, am, and s from Bruceton
data on the assumption of a logistically distributes population.
The tabular (and graphed) values of 8, G, and H are asymptotic
valuesy that is, they were computed using large-sample statistical
theory and taking into account the properties of the Bruceton
data collection method. The approach is patterned after the
original work done by the Applied Mathematics Panel assuming the
Gaussian distribution (references I and 2).

29. The computations of the 50% point should be the same for either
distribution, since the assumption that the distributions are
symmetrical about the mean is valid for both. Consequently, the
Bruceton estimate of the mean isi

(M Einx± _)d +X 0  (23.)mB (-r•, i-

or

(T i n,,1 ±mB Eno + 1 d + xi (23b)

These are equivalent to equations 13a and b of the previous
section a

R XK0 + d A (for the fires), or (13a)
2"

9 X0 +d(A 1 (for the fails) (13b)£~ ~~ I -X+d -- + - ,

30. The intermediate parameter, M, for estimatir.q variability
porataeters was defined in the save way for tho lo.(stic Bruceton ax
for the Gaussian:

M (24)

4

Where, in the asymptotic cast, either nax,i or nxo car, be used
for n-.

27
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This is equivalent to equation 14 in th. previous section.

S-B ----- (14)

The value of q (the estimate of V) would be found by app~.ying
equation 16 followed by equation 17:

X = + 6 (16)

where 8 0 when 0.65 4M<10i and

g n Esd. (17)

31. The variance of R, (Vp), and g, (V ), can be estimated
using the method of maximum likelihood'. The likelihood function is

N N
P- nr Pil qj (25)1 1

&nd its logarithm N N

L *~in Pi + F, n qi (26)

where Nx is the number of responses at all levels, and N is the
0

number of non-responses at all levels. Maximum likelihood theory
gives the asymptotic variance of R and g as

- 1
V an6 (27)

28
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V g , 1 (28)

The symbol e is used to indicate the expected values of the
derivatives. The expeuted values for these derivatives can be evaluated
to give

V - - and (29)rPliqi

V 7Y
Vg " --- '-- , where yi is defined as (30)

g iYi xi-u
Yj - and

where the summation is over all trials at a level as well as over
all levels of the Bruceton test. Since for the usual Bruceton
notation the summation over i moans a summation only over the levels,
the above equations must be rewritten for consistency: doing thisand solving for the standard deviation gives

a * and (31)
m 1" (n ,i + no,i)piqi

S - -. where (32)
g g rnxi+ nl~~~

am ahd sR are used interchangeably.

As with the case in which the normal distribution is assumed, we
should be able to express the values of sm and s aSb

m n. and (33)

X (34) 1

Here N is the sinaller of the two values N and N , but in the
asymptotic case N o so that either o~e can ge used. Solving

29
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(31) and (33) for 0, and solving (32) and (34) for H, gives

3 N and (35)

H, * (36)~En i + p~pqy

The parameters 0 and H would then be used in equations 18 and 19 to
compute s and .9"

5m - (0.)/1 n i)
and

Sg - (Sg)l./" . (19)
g

32. We derived numerical values for the correction terms 6, G, and H
by generating expected very-large-sample Bruceton results for varioes
combinations of step mine and spacings of the mean from the closesttest level. By expressing the step size in units of the populatica
y, and the spacin of the mean in units of step size, we geaerateddimensionless variables which are independent of the actual distrtbu-
tion 0 and •. From the expected Bruceton results for each combina-
tion of stop size and mean spacings 6, 0, and H were computed using
equations 15, 17, 24, 35 and 36.

33. Arbitrarily we chcee ý. to be 1000 and N to be 10. we then
chose step sizes ranging from d - 0.I• to d w ION. For each of these
center levels we then set up an array of levels Xi (spaced d unitsapart) above and below the center leval and including the center level.
For each of the levels in the ray we then computed the logit value,
ofYL, associated with Xi by

Xi - 1000

The expected Pi and qi for each level was computed from y by equa- • I
tion 5. We then chose arbitrarily a level several steps below
the mean. At this bottom level, Xi, we stipulated that there would

30
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be one trial which would be a fail.* (As will be seen, this level
must be chosen far enough below the mean that the probability of fiis
is quite small.) The expected number of fire* at the next higher
level is equal to the number of fails at the previous level.t*
That is, for all levels we can say that

nx,(i + 1) " no,i t37)

At any level above the lowest the expected number of fails will
depend on the probability of firing at the level and the expected
number of fires as generated by equation (37). The expected number
of fails is

A
nx,(i + 1) q(i + 1) (38)

no,( )+ +)

in our work no was rounded off tr. the nearest whole number. If the
Bruceton test size was less than 100,000,000 the process was repeated
starting at lower levels. Also the process wad iterated similarly
until successive values of 6, a, and H showed no chanqes in the
first four significant figures.

34. A specific computation is included to show the process:

We remember that 0 - 1000 and > - 10.
We wish to generate the values for the case w0-n the step

size is 40, that is, when y/d - 0.41 and when the central
level (the level closest to the mean) in 0.4 of a step
away from •. The central level is therefore, 1016.

We assign i - 0 to the central level and then set up an
axry of levels and indices below and above x. The levels
are 40 units apart: 896, 936, 976, 1016, 1056, 1096;
the corresponding indices are -3, -2, -1, 0, +1, +2.

*We could have started with two or more fails (and no fires) at the
bottom level without changing the results provided the proba-.
bility was small enough.

"**There are certain properties of the Brucwton data collection plan
which can be seen by inspection. First we define a closed Bruceton
test as onc irn which the test at the last level would lead to the
same level as the one at which the test began. For iny closed
Bruceton test the total number of fires is equal to the total
number of failas also, the number of fails at any level is equal
to the number of fires at the next higher level. If the test is
not closed, the number of fails at one level will differ from the
number of fires at the rnext higher level by no more than 1. However,
with a large number of trials at all levels except the top and
bottom an assumption of eq:uality will introduce negligible error.

7I
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At each level, xi, the values of Yi' , and are computed.

Using the algorithm of equations 37 and 38 and starting at
i - -3 the values of n xi and no0 1 are computed at each
level, yielding the results given in Table 4.

The various summations overall levels are computed3FYnx, i' I Lnx, i^I^Ei nx, i I E(nx, i '+ no, i) k
n +npx,i + no'i)piqiYi

The values of M, G, and H are computed using equations
24,35, and 36.

When the lowest levwl is set at 856 rather than 896 an eight-
level pattern is generated. The values of the summations and M,
0, and H for this latter case are also shown in Table 4. There
&re differences between the six-level and sight-level results, the
greateat difference being less than 0.05%. Since the eight-
level pattern results were the same as larger-level patterns they
can be used as the asymptotic values.

35. The process described abovs was carried out for values of
V/d ranging from 0.1 to 10.0. Even though the algorithm would
work outside of the above range we elected not to go further
because we see no pra-tical use for the results. In fact, either
with such extremely large steps (y/d <0.1) or with extremely small
steps (y/d >10.0) a Bruceton test would be of dubious value.
For values of v/d from 0.65 to 10.0,M was equal to y/d to six
significant figures and independent of D (the spacing between the
central level and A). For y/d running from 0.1 to 0.60, cal-
culations were made for values of D of 0.0, 0.1. 0.2, 0.3,
0.4, ainr' 0.5. V ,, H .v:,r similrly depenlent upcn D for v/, 'helcw
approximately 0.65 and otherwise independent of D. The asymptotic
values of M, G, and H are plotted in Figures , , and g.

36. These graphs should not be used to find values for use in
Bruceton computations, because they have been made to show the
complete range of values and to show the shapes of the functions.
Detailed plots can be found in Appendix A. There are some other
differences between the two sets of graphs. The asymptotic
graphs (Figures 7, , iri' 9) are of the various pdrameters
versus Y/d. But of course in an actual Bruceton test we cannot
know -'r we can compute x from equation 13, M from equation 14,
and D from equation 15. The variable E has been defined an
the ratio of the expected value of g to the step size, d (equation 17).
When M is less than 0.65 it will be a function of both E and
D as can be seen from the following typical values:

]

3?i
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TAfALE 4 TYPITAL CALCULATICNS OF ALY?,SP''OTIC VALULS FOR M, Gr & H

x Pi n xn 0 i

2 1096 9.6 0.999932 5 0

1 1056 5.6 0.996316 1339 5

0 1016 1.6 0.832018 6634 1339

-1 976 -2.4 0.0831727 602 6634

-2 936 -6.4 0.0016588 1 602

-3 896 -10.4 0.0000304316 0 1

six levels eight levels*

-, n 8,581 281,984,179
x~i

FinX,i " 745 24,496,639

- 1,965 64,572,209

E(n + n'po 'q-•i . 1,672 05 54,946,457

,(n- +• n y 6,226.62 204,614,821

M - 0.221456 0.221455

G - 2.265092 2.265388

H - 1.173932 1.173439

*See .xplaination in latter part of paragraph 34.

33
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D o0.20 0.250 0 266

.0-6 0.2806 0.2860 0.291

0.10 0.2724 0.2789 0.2856

0.20 0.2!17 0.2605 0.2694

0.30 0.2271 0.2386 0.250ý

0.40 0.2080 0.2214 0.234

0.50 0.2058 0,2150 0.228

However during an ordinary Bruceton data analysis it is necessary
to derive E from the value of M obtained from equation (14). By
a four-term Lagrangian interpolation the numbers can be A

reorganized into a table of E values:

0,200 0.220 0,240 0,260 0.280 0.30d
00 - - - 0.1890 0.2588 0.272E

C,•1037 0.1352 0,1787 0,2189 0.2517 020

0,20 0.1810 0.2036 0.2265 0,2494 0, 8 0 293
0,30 0.2170 0 2339 0.2512 0.2689 0.2871 0,5
0.40 0,2342 0.2489 0,2642 0.2799 0.2962 0. 3
0,50 0.2394 - 0.2536 0.2682 0.2834 0.2991 0.3 5

We found that a better graphical presentation could be made by plotting
5 - f(M,D) rather than E - f(M,D) where E - M + 5. The values of
6 which correspond to the E values above are:

0.200 1 0.220 0.240 0o.60 0.280 0.309

0,00 1 - - -0.0710 -0,0212 -0.0271

g.10 -0.0963 -0,0848 -0,0613 -0,0411 -0.0283 -0.020d

0.20 -0,0190 -0.0164-0135 -0,0106 -0.0082 -0.006A

0.30 +0.0170 +0,0139 +0.0112 +0.0089 +0,001 1 +0.0054

0.40 +0.0342 +0.0289 +0.0242 j0.0199 +0,0162 +0.013

0,50 +0.0294 +0.0336 +0.0282 +0.0234 +0.0191 +0.015i

The tabular and graphic values of G and H are given as functions
of E and D rather than of M and D because, once E is found, it is
the best available estimate of N/d and should be used as such.

V. MONTE CARLO STUDIES

37. In order to check the results of the theoretical work a Montq
Carlo investigation was carried out. A program for the IBM 7090
computer was prepared to generate random numbers with a logistic
distribution to represent the sensitivities or critical levels of
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the test items. The distribution parameters, - and N, and the
sample size, Ns, were adjustable. A run of one hundred Bruceton
tests was made for each combination of the quantities investigated.
The sample mean, ms, and the variability, gs, were computed for
each test. The starting level was fixed at 20.0 and the atep
size at 1.0. For each Brocetn, tem, the estimates ms an& M as
defined in the previous seo-'on, aquations 23 and 24, were obtained.
(Subscript B indicates an eotimate obtained from a Bruceton test
and subscript a refers to , value for the sample.) For each run
the average and standard 6Aviation of each of the quantities mB
and M was found.

38. We showed in the previous section that g/d can be taken as equal
to M if M > 0.65. For this computer study (and for that matter in
ordinary testing), -/d can be taken as equal to M if M > 0.4. It was
convenient to use this relationship for the Monte Carlo studies.
Since the step size, d, was chosen as unity we can therefore tak-.-
M, in this range, as equal to 9 B' the Bruceton estimate of ga.
In this case, then, the average and standard deviation of M will
be the average and standard deviation of NB. The computation of
gs when N/d < 0.4 depends upon the relative po0ition of the mean
and the nearest step level, For each run we know this for the
population mean. If the sample mean were the same as the population
mean we could use the curves of figure 7 to estimate YB from the
value of M. Inspection of the curves of figure 7 shows that the
relative position of the mean is not as critical when the mean
is midway between step levels as when it is on a step level. For
the runs in which the population mean was midway between step
levels the valuesof the mean and standard deviation of gB were
estimated from the mean and standard deviation of M by using t'he
curve of figure 7 for the case with this position of the mean.
The values of the mean and standard deviation of g given in the
tables of Appendix C for y/d less than 0.4 were obhained in this
way. Since d - 1, the value of -*/d is to be found in the second
column, headed by -y. These values of gB are too large and their
standard deviations are too small since the means of the individual
tests do not fall midway between the step levels. (This can be
seen by comparing the results which would be obtained from the
curve for m - h - 0.3 with the results obtained from the assumption
that the mean is midway between levels.) We did not estimate
the mean and standard deviation of gB for tests with y/d less
than 0.4 and with the population mean on a step level.

39. For each run of 100 trials the average and standard deviation
of the obee'ved mB and gB were calculated. But the standard
deviation of mE is the o served su, and similarly the standard
deviation of g is a . Substituting am and a into equations 33
and 34, using •he average gB for y and settin• N (the number of
fires or fails) equal to one half of Ns permits us to find values
of G and H which are representative of the experimental conditions.
This is because t-he experiments must use observed values since
we cannot knov the population parameters.
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40. Since theoretical development in the previous section assumes
large samples the first interest in the Monte Carlo investigation_
was the effect of sample size on these results. Runs were
therefore made with samples as small as ten and as large as
five hundred. It is not difficult to see that for small samples 1a few unexpected results in the early part of the test could
influence the estimates of the mean and the dispersion unduly.
This would be especially the case if the step were small or, 11
in other words, if the value of gamma were large in comparison
with the step size. In our program the step size was always one.The effect of the relation of step size to the value of gamma wasr
investigated by using population values of gamma from 0.1 to 100.
(d/-y from 10 to 0.01) The effect of choice of starting level was
investigated by using population means of 19.5, 20.0, 20.5, and
25.0. Since the starting level was always at 20.0 these gave
tests in which the starting level was one half-step above, on,
one half-step below, or five steps below the mean. The results
obtained are summarized in the tables of Appendix C.

Bias in the Estimate of Gamma

41. Other Monte Carlo investigations have shown that the Bruceton
test, based upon the assumption of a normal distribution, gives
a biased estimate of the standard deviation (references 7, 8).
It is evident from our results that a similar bias eyists in the
estimate of gam=a for the logistic distribution. The amount of
thic bias is shown in the last column of tables Cl to C20 as the
ratý.n of g. to gB" Tables 5 and 6 are condensations of these
* retts. We observe that: the bias decreases as the sample size
is increased, the bias is greater as the ratio -'/d increases.
that is, as the step becomes small with respect to the value of
garnTa. Our results do not show a bias when Ns - 20 with starting
l-"el at thc.) mean and the ratio •i'd equal to or greater than one
(medium or s.,ali step size). This should not be taken as a recom-
mendation for a test plan since uncertainty in the knowledge
of the value of the mean would make it impossible to plan
a test so that the mean would be on a test level. It is a
temptation to use the bias ratio, gs/gB, as a fudge factor to
try to improve the estimate of -. We counsel strongly against
such a measure because the individual g. values are scatterec
so greitly about their average.

Effect of Sample Size on Estimates of G and H

42. The values of G and H as obtained from the Monte Carlo
investigations agree well with the values predicted by the
theoretical computations when the sample size was large (five
hundred items) and the step size was not extremely large or
small. The computation of the values of G and H was based upon
the values of gamma obtained by the Bruceton analysis. For
samples of less than five hundred the Monte Carlo values of
G and H were greater than the theoretical values. Part, but
not all, of this variation is due to the fart that the value of
gamma is underestimated for these smaller samples. The Monte
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Table 5 Bias in Estimate of Gamma

7-.O. -. 0 2.0___ 3.0__
0.5 1.02.0 3.0 Upper figure

1.2015 1.3300 1.7119 1.987 - 19.5

0 1.1954 0,9992 0.9965 1.002E u - 20.0

1.1099 1.4242 1,8175 1.9508 L - 20.5

1.0828 1.1754 1.2577 1.3794
50 1.0881 1.1185 1.2921 1.425

1.0255 1.1252. 1.2274 1.378¢

1.0402 1.0533 1.1411 1.1933

100 1.0914 1.0634 1.1860 1.2209

1.0476 1,0667 1.1071 1,1979

0.9988 0.9871 1.0068 1.0330

500 0.9920 1.0252 1.0498 1.0367

0,9914 1.,0198 1.0302 1.040 -

Table 6 Bias in Estimate of Gamma
for Sample Size of Twenty

-y7/d •--19.5 4-20.0 :1 U-20.5 -2 5. q
0.5 1.215 1.1954 11099 1.1391
0.7 1.2915 1.2603 1.2267 1.128

0.85 1.3939 1.2124 1.1624 1.132

1.0 1.3300 0.9992 1.4242 1.0022

1.5 1.7225 0.9982 1.6289 1.011

2.0 1.7119 0.9965 1,5175 1.021

2.5 2.0594 0.9989 2.0226 1.125

3.0 1.9870 1.0026 1.9508 1.455

4,0 2.4999 1,0050 2.5306 1.352]

'C,.
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Carlo investigations indicate that values of am and a will be
seriously undcrestimated when the formulas bared on t~e assumption
of large samples are used with smaller samples.

43. As an examp2e of tids underestimation take the results for a
sample size of 50 with the population mean at 20.5, population gamma
at 1, as given in Table C-li. In this case the average estimate of
gamma obtained from the one hundred tests was 0.89. From Tables A-2
and A-3, we would then get 1.585 and 1.745 as values of G and H for
this value of gamma. Using equations (18) and (19) with N - 25 (half
of the sample), we would obtain am - 0.282 and ag w 0.311. Table C-li
qives am n 0,274 and ag - 0.346 so that we have reasonable agreement
for sm, but the value of sg an obtained from use of Table A-3 istoo small.

44. Tables 7 ana 8 give the effect of sample size on the values
of G and H as computed from the Monte C 1rlo investigations. The
theoretical values are yiven under the infinite sample size entry.
Since there is no reason to expect the values of G and H to be affected
by the position of the mean when the ratio Y/d is greater than 0.4,the
observed differences between values for the same sample size and Y/d
ratio can bo considered to be due to random error. The three values
in the tables were therefore arrayed. It can be seen that within the
estimate of random error noted above the values of o for larger
samples agree with the theoretical values. As the sample size de-
creases the value of G increases. The values of H also agree well for
large samples. However, for values of V/d of 1.0 and 2.0, the value
of H decieases for small samples. This is due to the fact that in I
these cases the step is so small that the test does not have time to
cover the full range of levels before the sample is exhausted. The
result is,therefore,that an artificially piecise,but quite inaccurate,
determination is made of gamma.

"2ffect of Starting Level

45. The effect of a poor choice of starting level was investigated
bý Monte Carlo runs in which the mean of the population was at 25.
The starting point of the test was kept at 20.0. As might be expected,
the value of the mean as computed from the Bruceton tests tended to be
near the starting point when a small number of items was tested and
also for a la:ge value of the ratio Y/d, that is, when the distribu-
tion function was relatively flat. When a small number of items is
tested the estimate of the dispersion parameter is too small and shows
more variation from sample to sample than would be expected `,om the
large sample theory. The results are given in Tables C-4, C-8, C-12,
C-1S, and C-20. The comparative effect on the mean is shown for three
step sizes in Table 9 which gives the values of (u - ms)/Y and the
corresponding true percent response of the estimated fifty percent
point. The effect on the value of gamma is shown in Tables 10 and 11.
Table 10 gives the values of the bias factor gs/gB. Comparison with the
values of this bias found in tests with better choice of starting point
shows little difference. Table 11 gives the values of H, which is a
measure of the variability of the estimate of gamma. It will be
seen that for small samples these are larger than when a good choice

Al
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Table 7 tffect of Sample Size on vaLie of G

SaI ple .•-19.5 .- 20. j .- 20.5 average

10 2.6980 2.5871 2.7994 2. 6 9 4 8

20 2.4133 1.9499 2.0331 2.1321

50 1,7944 1,7714 1.9956 1.8538

100 1.6856 1.5412 1.8502 1.6923

500 1.9019 1.5720 1,4675 1.6471

Inf1nite - - L_.

Y/d 1.0

Sample 71§. 5 ý.20.0 [ -20.5 average

10 3.4533 2.6696 3.2983 3. 4=4

20 2.1599 2.1014 2.0653 2,1089
50 1.8659 1.7569 1.5375 1.7201

100 1.7452 1.7947 1.7345 1.7581

500 1.3624 1.7222 1.4635 1.5160

Infinite - - -

•/d - 2.0

Sample •-19.5 k-20.0 .- 20.5 aveorage

10 3.1579 3.5380 3.6335 3.44=3

20 2.5096 2.7503 2.3119 2.5239

50 1.7646 1.7569 1.5577 1.6931

100 1.6388 1.6205 1.4989 1.5861

500 1.5508 1.4057 1.5202 1.4922

Infinite 1- 1.501
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Table 8 Effect of Sample Size on value of H

- --/ d 0 . 7 a e
,Sampe ý-9, i•20.0 i p-20. 5 _ vrgo

10 2.4122 1.7636 1.4802 1.8853

20 1.7724 1.3645 2.0666 1.7345

50 1.7218 1.6561 1,7294 1,7024

"100 1.4804 1,7171 1.4852 1.5609

500 1.5743 1.5356 1.6419 1.5839

InfinitO - - 1,577

z2iiie=, 20,0 k=20.5
10 1.9087 1.5850 1.7838 1,1591

20 1.7603 1.7916 1.5^60 1.6926

50 1.6482 1.8939 1.V407 1.0276

100 1,4554 1.7629 1.7095 1.6426

500 1.6723 1.9354 1.8860 1.8312

Infinite - I - - 1, 745

/d- 2.0

Sample-• 16-19.5 -6.h20.0 1.-2015 average
10 2.3629 1.6225 1.6173 1.8676

20 2.0225 1.6898 1.7771 1.8298

50 2.0313 1.6939 2.0827 2.0026

100 2.0174 2.1640 2.1115 2.0976

500 2.1511 2.3735 2.1579 2.2275

Infinitl - - - 2.240
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of starting level was ,',iade. Similar effects were observed in Monte
Carlo tests with populations having a normal distribution.
(Reference 8).

Table 9
Effect of Poor Starting Point on Determination of the Mean

(Table gives values of (G - m;)/- below the line
and the corresponding true rcent point above
the line for -/d values of 0.7, 1.0, and 2.0)

.. 7 1.0 2.0

Startin, 22erent point 0.10 0.67 7260

$ample size 10 .6 0*0-" 70.

5000 .006. 01 oZ.o. 2

50 0.07 2 007 1 0 -150 L0-•-U! 0o0 0Tj

.t

5 1
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Table 10

Effect of Poor Starting Point on the Determination of Gamma

(Valuea of thQ Bins Factor g*/g 8 )

Samp e 017 1.0 2.0

10 1.6500 1.3934 2.4678

20 1.1288 1.0028 1.0211

50 1.0649 0.9842 0.9453
100 1.0200 1.0162 0.9655
500 0,9881 1.0104 1,0158.

Table 11

Effect of Poor Starting Point on Value of H
(Values of the Bias Factor g6/g 3 }

Samole ./ .07 1.0 2.0

10 3.2567 3.3538 2.9715

20 2.2232 2.4274 2.4228
50 1.7776 1.9905 2.0749

100 1.6393 1.8627 2.2386

500 1,7682 1,6963 _2.0778
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Choice of Step Size

46. Some generalizations can be made. The choice of the step size
to be used in the test depends upon what is already known about
the distribution and upon whether we are more interested in deter-
mining the fifty percent point or the value of gamma. The following
points should be noted.

a. For large steps (larger than five times gamma) the value
of gamma becomes indeterminate if the fifty percent point falls on
a test level (Figure 7). For this reason large steps should be
avoided unless the position of the fifty percent point is at least
approximately known.

b. A small step size would not be good with a test of as
few as twenty items unlearn we can be sure that the starting level
is near the population fifty per cent jýint. For example see the
Monte Carlo determination of the fifty percent point for tests
of twenty items with the population mean at 25 and a value for gamma
of 2.5. Here the starting level is at the 12 percent point of the
population and the step size (d/N) is 0.4. The average of the
Bruceton means was 23.827 which Js the 38.5 per cent point of the
populat ion.

47. The precision with which the values of the mean and ganrra can
be measured under ideal conditions for different step sizes can bo
deduced from the shape of the G and H curves (Figures - " ^;.

a. The values of G show that the most precise measurements
of the mean are obtained for small steps. However these ideal
conditions are not ordinarily met. An we have just shown a small
step qives a poor estimate of the medn when we have a short test
with a poor choice of starting level.

b. The minimum value of H occurs when ,/d is equal to 0.5 if
the mean is on a test level or 0.2 when the mean is midway between
test levels. This gives the most precise determination of gamma
when the step is two to five times the value of gamma depending
upon the position of the mean with respect to the test levels. If
we know the mean well enough so that we can be fairly certain that
it in nearly halfway between at*; levels and if we expect to test
enough items to obtain a good determination of the response at
the two levels nearest the mean a step size as large as five times
the expected value of gamma will be best for measuring the dispersion
parameter. In this case we would be testing at the estimated 8 and
92 percent points. This would mean that the test should include at
leaat fifty items if we expect to get fairly good estimates of
these points. If we cannot tese as many as this a smaller step
size must be chosen.

I - • i ii i i i [ I
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APPIMDIX A

Appendix A is a summry of the process for carrying out a
logistleno testes analysis, Figure A-I is I flow chart giving the
various operations and equations to obtain x, g, am, and ag.
Fýquwres A-2j A-3, and A-4 present graphically the vprious relation-
apf needed for the computations olled out in the flow chart.

Tables A-Is A-2, and A-3 from which tigures A-2j A-3, and A-4
were constructed, can be used for greeter accuracy. Table A-4 is a
compilation of the equations needed to compute any desired response
stimulus level and associated one- and two-sided confidence limits.
The student t approximation equation, and constants for various
percentage levels, are also included in this compilation.

A-i
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TABLL A.4 com4rInmoQ 01, EqUA~'i0Ns m= To COHet~rE THE
LOGIT "M0NSE LEVEL AND C0NFI~iCE LIMITS

I.. To compupte response stimaus~ level, xlj Probabil.ity of response is p,

31 + G - in (-- I + a -LVX)
1-p

L(zY) . in

2. To ooqpube the standa~rd deviation or zr,.

3. To approximate the value of Student's t.

t 0 R +4
S f-v

sin&le-Sided TWo-Sidod Usable
Confidence Level, Confidence for

90 1.2820 1.2229 1.1345 so 9
95 1.6450 o.6602 0.6279 go 7
97.5 1.9600 0.21.20 o.47714 95 6
99 2.3260 0.26687 0.3798c 98 7
59.5 2.5760 0276 0.33618 997

4. To coepute two-sided interval abmA t at a confidence of P%:

(L,U) - [(xp -tss), (xP + * )3

At the 50% Points2

(L,tJ) - [( t-am), +. +-m]

5. To compute the lover single-sided limit at a confidence of P%t

(L) - x - t-sy

6. Tlo compute the up~per single-sided limit at a confidence of P%:

(U) - X + ta

A-10
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APPENDIX B

DERIVATION OF VARIOUS MMNTS OF THE LOGISTIC DISTRI:UTICN

1. Ordinarily the logistic distribution is expressed in the cumulative formt

L(2-px x)-i B1

where p is the cumulative probability at a stimulus level of x. The p.d,f.
(probability density ftunotio) is Oefined am the derivative of the cumulative
probability:

p ( ) x ) . _____x (B-P)
dx dx

Equation (B..) can be molved for p to Live

X z) .iL. ...1L.. , where (3-3)

•_ Y

By letting u I 2 + ey, the equations can be made less avwkwrd to write

p(x) (B-4)
U

The p.d.f., then, becomes

(x)d x

and the individual derivatives can be seen to be

n M 5) (B.6)

du , .Y, and (B-7)

d~p(x)] I (B-8

Thus,

dpx) p. di. f.~ *)(~ (B-9)

B .1Y
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Sm

24-2(- .Z

) (B-12)

Y

2. The integral of the p.d.f., between the liaits of - and 01, ioud be
equal to 1 for a well-behaved distribution function:

4,M

A 2 I__ Q !I (B-14)

X-a

mince

dy \

-Y

U ~. (B-15)

d (B-1.6)
2

let w eY, & .Yd.y

(B -17)

0 %3t5

L Iilmits
L-y i
+04- +
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0

0 -o - (-I)
-- * 1. .... .Q .3.D.

3. By definition, the man should be the first uovent about the origin:

M4 . mean j (p.d.f.)md . (B.18)

In our notation ve shotJd be able to shov that 14 equals P. Since x = 1 + Yy
equation (B-18) bee•e,,

S(=~)y (B-19)

I

+ (B..20).. 1+000h y 2JXQe-

But the secood term in an odd function. The integral of an odd funaction tetween
Uinits wbich are sytric about zero, is itself zero. The first tezr. of the
above equation is the aime as equation (3-15), multiplied by k. Hence

14~* w.1  ~Q.E.D.

4. By definition, the variance should be the second mment about the mean:

Y41 * rpd.f.)(z - mean)gdx (B-21)

+0

-(B-22)

Y i
Again, since x *k + yy the precedin~g equation becomes

_?dy and (-3
2 J l+couh Y (-3

(B-24)

B-3
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but,

+co-h y " ) 7

MAn thus

o ( 0 +) 2

By breaking (B-26) into 9s and .L-L. and, integrating by parts the e~ression
boom*&

But the term, - .L.,is zero at ym o and becoisme ser as y e * thu~s

as. hy ..s

0 eY+1

If nov y is transformed by 7 m 1n u, tb-n dy azd

let •

u

u v
0 dv

3B-

3•-4
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0 1+v

Break•n• this into in v and and Integrating by pats, yields

ON 149[..inV) in ( .+V) +fIln(1+v) &VI.

The term (ln v)ln (1+v) is saro Aen v u 1 but beemes indeterminate at v * 0.
By rewriting the teru in the form

2Z

in (,.v)
1tu

0

Ncjv, a well. kjiow series exists:

The integral between the limits of zero %nd one gives

fan~l+v~dv . v' vO Ar
vVr2-

o 0

Therefore

B-5
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5. The preceeding derivation of the variance of the logistic distri-
bution was performed by Dr. A. H. Van Tuyl of this Laboratory.
Yndependent of his effort were two other pieces of work. One of
these w3s a derivation of the variance (by Mr. Blum) following a
markedly different chain of logic. The other was an experimental
verification using a high-speed Monte Carlo simulation. A description
of the second derivation and of the Monte Carlo experiment follow,
in that order.

b. Derivation of Standard Deviation of Logistic Distritution

N-0

= (x-")"p (x) dx P(x) - Y -

. (x-u)'e-'-VMgL dxr '%

iY. l+y(x-U)

as *Yare y~eydy

.-= , 1+e-y -•-V " '-a. - d

,-" (ae-e-Y)17 Y lim - --- dy

I Y2 li fo ý2 (_______ dyK- -rl+e-Y12/

S*
a u" e-y (X-B)e-YdK -- i Y2 -i (i +L-Y)2
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as ys Ai As' ux1 lot U - 0-,du - -- d

go Ys Ai 80 D'IC,2-K) B(m,n) xr M-d

B(m,n) a - lrn
VA (rM+n)

as a sAi rx (2-Kj r1f(n) - (n-l)!K -0 [r(2) J

fl(x+l) - xr(x)

r(2c)r(l-2c) Tr

x 01

as- y" Aim r ~ (-~o¶K
K K B7~

an' M ye Ai cooarYx uiniTK (fr coonli- (K-1) rm sinrr) -2 (K-~1) ?TO cons ¶1(1

K siin K J

F~eo (2'X~-l-cos' (M~) +r (K-1) &;in (2vrK)'a YeAim [2coo an) by L'Ro16pitaius
K* 3sin T1XcoaYK rule

B. .7
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a a a ye.2 1- in2TI+r (1-K) co@2",•
K I. m in2T'K

3 eroYO " 3.2898Y

Reference: Apotolo, Mathematical Analysis. [Theorem 14-24 ed
The order of differentiation and improper integration may be exchanged
under the following conditions.

(1) ý exists for all a,b in 1--,-1•

;: eKdy
(2) (1 +0 y)' converges pointwise for all K in [c,d] for some

cdj

(3) L_ & a * must be continuous on the strip

S (4) I •: [.ir YK. dy must converge uniformly on (c.d).(4,) . - 4 L.-Y)•,

"(1) and (2) follow by limit-comparison with spy for appropriate values
of p [theorem 14-4]1 (3, follows from the continuity of the sumj
product, and quotient of two continuous funictions [theorem 4-10], and
(4) follows from a Cauchy condition [theorem 14-18a if we choose any
c, d satisfying O<C4dm2.

B-8
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7. Monte Carlo studies on asymptotiq convergence of the variance
of the logistic distribution function.

We wished to verify the algorithm for producing numbers distributed
randomly in the logistic distribution and at the same time demonstrate the nature
of the effect of the smp4ae size on the sampling error of the variance.

We assume that we know the critical levels of the devices being tested.

Furthermore, we set the population parameters to convenient values... ýk w 0 and

Y 1 1. The logistic equation reduces to:

L(x) I.n x
1-p Y

Using a high-speed computer it is possible to generate a sequence of numbers
Pi, pr,, p ],N ........ which have the property of falling between the limits of
zero and one and having a rectangula distribution. Ohat is, if any particular

value is chosen between zero and one that value will be the same, in the limit,
as the decimnl fraction of the numbers that will be generated which will fall
between zero and that particular value. For instance if a value of .85 is chosen
and if many hundreds of the random numbers are generated and classified according
to whether they are larger or sma.ler than .85 we will find that 85 out of 100 on
the average will fall in the lower classification.

The random rectangular distribution was converted to a random logistic
distribution of values of x (with a 4 of 0 and a Y of 1) merely by letting

xP

In the Monte Carlo experiment 100 trials were run on each of 9 sample sizes where
the sample size, N, took values of 15, 20, 40, 63, 80, ioC, 200, 500 and 1000. For
each trial of NA samples a variance was computed using the equation

When one hundred such variancen ha been obtained the avrage of these was comuted
as well a nhe 95% confidence band about the average. We also noted the smallest
and largest value of v for each of the 9 different sample sizes. The observed
values given in -able B-1 have been plotted in Figure B-I. To facilitate
comparison with the theoretical value, IP/3, the observed value, normalized by
dividing by L0/3,which is 3.28987, are also tabulated.

13-q

i -' I" ' .--, '
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T-Ai3LE L-I

A-SYi4PTOTIC CON RG-'N; OF THAW L4.GZSTIC L;ZSTRZ8U.'IQN FU.;C'TI0N

14 1w
N 44 >'"4 0 -44

snize 0~

15 1.070 2.936 3.040 3.143 8.518I

20 1.162 3.161 3.286 3.411 6.736

40 1.766 3.156 3.260 3.363 7.732

60 1.893 3.240 3.318 3,396 6.392

80 2.139 3.288 3.351 3.414 5.099 Variance

100 1.962 3.362 3.428 3.404 5.353 Vle

200 2.362 3.263 3.300 3.338 4.161

500 2.748 3.268 3.293 3,119 3.906

1000 2.719 3.262 3.282 3.300 3.694

15 .325 .862 .924 .986 2.5a9

20 .353 .925 .999 1.073 2.048

40.537 .929 .991 1.052 2.350

60 .575 .962 1.008 1.055 1.943 values

80 .650 .981 1.019 1.056 1.550 gorm~alized

100 .596 1.003 1.042 1.081 1.627

200 .718 .981 1.003 1.025 1.265

500 .835 .986 1.001 1.0).6 1.187

1000 .845 .986 0.997 1.009 1.123

B-10)
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