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PROPAGATION OF DISCONI'INUITIES...
IN HETEROGENEOUS ANISOTROPIC PLATES

By

A. S. D. Wangl and D. L. Tuckmante12

ABSfRACT

Elastic stress waves propagating in thin, laminated composite
plates are analyzed on the basis of a lamination theory. The theory
is based on the Kirchhoff asstmtptions, but it includes the effects
of shear defonnationand rotary inertia, similar to Mindlin's theory
for homogeneous isotropic plates. The individual layers comprising
the plate are assumed to possess different thicknesses and material
properties. In particular, each layer may be arbitrarily anisotropic.
Thus, a general coupling in shear, bending, twisting and extensional
effects is present in the plate constitutive relations. This coupling

results in simultaneously coupled stress waves p~opagating in the
plane of the plate. Several numerical examples involving laminated
fiber-reinforced composite plates are presented.

lAssociate Professor of Applied Mechanics, College of Engineering,
Drexel University, Philadelphia, Pennsylvania 19104.

2Research Associate, College of Engineering, Drexel University,
Philadelphia, Pennsylvania 19104.
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I. INrROnuCfION

The dynamics of heterogeneous anisotropic solids has been an

important field of study in recent years. Increasing popularity in
the use of modern composites as a structural material has necessitated

intensive research into their material characterization. Their
intrinsic properties are being investigated from both a phenomenological

and microscopic point of view. This effort has resulted in the

development of various lamination theories describing laminated

anisotropic plate structures. The papers by Yang, Norris and

Stavsky [1], and Whitney and Pagano [2] are among the most notable

works. The former concerns plates made of layers possessing arbitrary
anisotropy; the latter, with some JOOdifications*, is valid for plates

made of monoclinic layers, i.e.,. each layer of the plate possesses
a mid-plane material syrrnnetry. Both of these theories follow the

basic approach set forth by Mindlin [4] for homogeneous isotropic
plates, and include transverse shear deformation and the effect of

rotary inertia'. Recently,Ch0uand Carleone [5] improved the
asstnrrptions concerning the transverse shear deformation.

Such lamination theories, however, describe the macro-character­

istics of the plate rather than the micro-characteristics that are

effected by the inhomogeneous nature of the composite. Generally

speaking, the macro-theory is accurate for plates subjected to static
loading, but is deemed inaccurate when applied to stress wave problems.

This is true in so far as the wave lengths are short compared with,
say, the thickness of the material layers of the plate. But for low

frequency waves with length longer than, say, the plate's thickness,
the macro-theory may be regarded as a valid basis of analysis.

Based on this asstnrrption, MJon [6] recently investigated stress
waves in a specially laminated fiber-reinforced composite plate,

using the effective modulus theory which uncouples the transver~e,

bending and extensional displacements. A wave surface approach was

used to describe the propagation of plane acceleration waves. This
method yields the wave velocity surfaces in the plane of the plate.

*A comparison of. the two theories is contained in Ref. [3].
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The present paper is concerned with stress waves in laminates

that are composed of layers possessing arbitrary anisotropy. General

shear, bending, twisting and extensional coupling is present in the
plate constitutive relations, resulting in simultaneously coupled
wave surfaces in the plane of the plate. We follow general laminated

plate theory and apply a control volume approach for the analysis [7].

Explicit solutions for the coupled wave surfaces and their velocities

are obtained. Several numerical problems involving laminated fiber~

reinforced composite plates are presented and their unique features

discussed.

II. ANALYSIS

Let us consider a thin laminated plate of thickness h, Figure 1.

The laminae comprising the plate are assumed to be individually
homogeneous and anisotropic. Thus the in-homogeneity of the plate
occurs only in the thickness direction. The constitutive relations
for anyone of the laminae are given by

cr. = C.. e.
1 1J J

i,j = 1,2,3,4,S,6. (1)

where the Cij's are the elements of the stiffness matrix, the stresses,

cr i , are defined as crl = crx ' cr2 = cry' cr3 = crz ' cr4 = cryz ' crs = crzx'
cr6 = crxy' and the strains, ej , are defined in the same manner as the
stresses.

Following the theory developed by Yang, Norr~s and Stavsky [1],
we assume the displacement field,

u = uO(x,y,t) + z 1/Ix(x,y,t)

y = yO(x,y,t) + z 1JiyCx,y,t)

w = wO(x,y, t)

(2)

where the coordinate system (x,y,z) is shown in Figure 1 and u, v
and ware the displacements in the x,y and z directions, respectively,
uO, vO and wO are the displacement components at z = 0, in the x,y and
z directions, respectively and 1/Ix and 1/1 are rotations about the yy .
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and x axis, respectively.

The stress and moment resultants are related to the displacements

by (c.f. Equation 14, Ref. [1]).

where

=

All A1Z A14 A15 A16 Bll BIZ B16

AlZ Azz AZ4 AZ5 Az6 BIZ BZZ BZ6
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AZ4 A
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A45 A46 B14 BZ4 B46
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Bll BIZ· B14 B15 B16 Dll DlZ D16
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B
Z6

B
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B
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66

D16 DZ6 D66

u 0
'x
o

V'y

o
W'y + Wy

w,~ + w](

o 0
U'y + v'x

tPx x,

1/iy,y

(3)

(4)

(A .. , B.. , D.. ) = I+h/Zc.. (1, z, zZ)dz
1J 1J 1J -h/Z 1J

i,j = 1,Z,4,5,6 (5)

and the notation Wx,y' e.g., represents partial differentiation of 1}Jx

with respect to y.

We now consider a wave which originates at an arbitrary point

in the plate, for convenience let us say at the origin of the ex,y , z)

system, and propagates in the x,y plane. At any given instant, the

wave surface is denoted by S, as shown in Figure 1. , Let :Ii be the

normal of S at·a point, A, on S, and let 5 be the tangent of S at
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the same point. The wave surface S is assmnedtopropagate in the

direction nwith a constant speed c~
- - - -0 -0 -0Let u,* v, w, u , v , w , wn and Ws be the displacements (see

Equations (2) ) referred to the local coordinates (n,s,z). The

kinematic (continuity) conditions across S at any given point on S

require (see [7]),

and (u,v,W,ljJn,ljJ) =0s ,s

where [ ] represent a discon~inuity.of the enclosed quantity across

S.
With these conditions, the plate constitutive relations,

Equations (3), when transformed to the local coordinates (n,s,z)
yie1d**

(6)

Nn An A16 Bn Bl6 A15
- 0
u'n

N Al6 A66 B16 B66 AS6
- 0

ns v'n

Mn = 13n 1316 DU D16 1315 t/Jn n
(7)

,
M B16 B66 D16 D66 B56 t/Js,nns

Qn Al5 A56 1315 BS6 ASS
- 0
w'n

To establish the dynamic relations. across the wave surface,

let us define a control volume which is located on S at point A,

*Quantities with a bar on top are referred to the (n,s,z) coordinate
system.

**For the transformation of A •• , B.. and D.. from the (x,y,z) system
to the (n,s,z) system, refer1J to 1J Ref. 1J [8].
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as shown in Figure 1. Since the control volwne moves with the wave

front, an observer fixed with it sees a nonnal influx of mass entering
with a speed Up and a nonnal efflux of mass leaving with a speed UZ'

UI = c -
- ul t

(8),

U = c -
Z • Uz t,

where the subscripts 1 and Z refer to the properties in front of and
behind the wave front, respectively. Thus the steady-state con­
servation of mass for the control volwne yields,

(9)

where P is the mass density of the material, U is the particle velocity
relative to the wave front and the subscripts 1 and Z refer to
properties in front of and behind the wave, respectively. ;

It is noted that condition (9) is satisfied by a more restrictive
condition, resulting from the classical thin plate assumptions,
namely;

(10)

The force and moment resultants acting upon the control volwne must
satisfy the equations of balanced momenta. These are,

(11)

[~~sJ = J +h/Z PlUl (vZ - vl)zdz = Rc2 [v,~J + Ic2 [~s,nJ
-h/2

f+h/2-0 -o)d 2 Iw-,01[QnJ PIUI (wz - WI Z = Pc . IT'

-h/2
9



In obtaining the above relations, we have retaIned only the linear

tenns of the displacements, consistent with the plate theory. In
addition, we have asstuned density to be a ftDlction of z alone in

presenting the following quantities

f
+h/2 2 - (+h/2 2

(P, R, I) = PI (l,z,z )dz = J Po (l,z,z )dz
·h!2 -h!2

where P is the undisturbed density of the laminae.o .
Using the relations (7), (8) and (10), we obtain from

Equations (11) a system of five linear algebraic equations relating

the discontinuities in the normal derivatives of ti°, vO
, ;;P, *n

(12)

and *s

- 2 A16
- . 2 B16

- 0All - Pc Bll - Rc Als [u'n]

A16
- 2 B16

- 2 A.s6 [v,~]A66 - Pc B66 - Rc

Bn - Rc2 B16
- 2 D16 1315
Dn - Ie IlJJn,n] = 0

1316
- 2

°16
- 2 13 56

(13)
B66 - Rc D66 - Ic [lJJ s n],

Als As6 1315 Bs6
- 2

[w,~]ASS - Pc

In order for a non-trivial solution to exist, the determinant
of the coefficient matrix of Equations (13) must· vanish. Thus, five
possible wave front speeds, c, may be detennined for any given
direction n.

Since the vanishing determinant represents a fifth order equation
in c2, ntunerical, rather than analytical, techniques must be used to
obtain a solution. However, it is of interest to note that, if the

laminated plate has, for each lamina, a monod inic synmetry (i. e. a
plane synnnetry with respect to the mid-plane of the lamina) the

constants A15 = A56 = 1315 = B56 = 0 for all directions in the x,y­
plane. In such a case, [w,~] is tDlcoupled from the system.
Consequently,

(14)



where Cs represents the propagation speed of the discontinuity

[w,~] in the direction n.
Furthennore, if, in addition, the plate has a symmetry with

respect to the x,y-plane, the bending-extensional couplings B..
1J

. become zero for all i and j. Then,Equations (13) separate further
yielding two quadratic equations whose roots are

(15)

(16)

In the particular case, such as that considered by Moon [6], the

extensional and the bending rigidities are proportional, i.e.,

A. ./fJ .. = PII = constant,, 1J 1J i,j = 1,2,6

Equations (14) and (15) are identical causing cl ' 2 and c3 4 to, ,
coincide (see Equations (17) and (23), Ref. [6]).

III. NUMERICAL ILLUSTRATIONS

For the numerical illustrations, plates which are laminated with
unidirectional fiber-reinforced composite layers'are considered.
The material properties of these layers are described by the following
engineering constants*:

I1.. = 25 x 106 psi, Er = 106 psi, GLT = 0.5 x 106 psi

\lLT = 0.25, , \ITT = 0.35, Po = 0.·073 pci

*These values are typical of high modulus graphite-epoxy composites~

Such material layers may be considered as being square symmetric.
The computation for the plates' rigidities and their transformation
to local coordinates was carried out following the outlines in
Refs. [2] and [8].
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where E is Young's modulus, G is the shear modulus, v is Poisson's

ratio, and the subscripts L and T indicate directions parallel and
normal to the fibers, respectively•.

We have considered four plates each of which is made of four
layers having different 1ay~up angles and/or lamination sequences,

namely: a) (0°/90%°/90°), b) (0°/90°/90%°),
c) (+30°/-30°/+30°/-30°) and d) (+30°/-30°/-30°/+30°), where the

angles are positive when measured counterclockwise from the x-axis
to the fiber direction.

The roots of the vanishing determinant of Equations (13) are
determined by the Newton Raphson technique. In general, five distinct
roots representing five possible wave speeds exist in any given

direction. However, in certain preferred directions, the material
properties are such that repeated roots may exist.

Figures 2 - 5 show the wave velocity surfaces in the first
quadrant of the x,y-plane, for (0°/90%°/90°), (0°/90°/90%°),
(30°/-30°/30°/-30°) and (30°/_30°/-30°/30°) laminates, respectively.
The velocity is non-dimensionalized by a factor of (Ey/po)1/2., It
is pointed out that the slowest velocity surface, which is associated
with the transverse displacement w, is uncoupled, from the other four
surfaces, since the material is monoclinic. However, all the other
four velocity surfaces may be severely coupled. On each of the

corresponding wave surfaces, discontinuities in normal forces, shear
forces and bending and twisting moments exist simultaneously. Their
relative magnitudes may be determined from Equations (13) once the
wave'speeds, c, have been determined.

Multiple coupled one-dimensional stress waves in a heterogeneous
plate were first treated by Wang, Chou and Rose [9] using the method
of characteristics. Subsequent experimental investigations in the
same problem has not, as yet, confirmed the multiple wave nature
associated with laminated plates. Recent experiments conducted at

Drexel University using a low frequency u1trasonic transducer, to
produce norma1-to-the~p1atepulses showed only two distinct wave
groups traveling in the plane of the plate. At present, a definitive
conclusion cannot be drawn due to the limited data available.
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ticular, each layer may be arbitrarily anisotropic. Thus, a general coupling in shear,
bending, twisting and extensional effects is present in the plate constitutive rela-
tions. This coupling results in simultaneously coupled stress waves propagating in
the plane of the plate. Several numerical examples involving laminated fiber-rein-
forced composite plates are presented.
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Composite materials
Wave propagation
Graphite-epoxy composites
Heterogeneous laminates
Coupled stress waves
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