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ABSTRACT
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systems, and systems from component failure
data. The main features of the mndel are:
1. Performs goodness-of-fit tests to deter-
mine the best fit mrobabilitv distribution
of component failure times, 2, Comnutes
maximum likelihood estimates of distri-
bution parameters, 3. Comnutes noint esti-
mates cof reliability for the renewal non-
constant failure rate case, and 4. Comutes
lower confidence limits for commonent,
subsvstem, and system reliability for the
constant failure rate case.
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RELIABILITY DATA ANALYSIS MODEL

INTRODUCTION

Current Armv resulations |1] reauire the snecification of auanti-
fied reliability gnals in the develorment of new weanon systenms,
lhese reliability goals must also he verified bv tests nrior to Fiqal
acceptance and fielding of the syvstem. DReliability, bv definition,
is a probabilistic quantitv. In addition, the amount of testing that
can be conducted is limited by cost and time considerations and conse-
quently reliability assessment must be conducted within a statistical
framework. To assist in this assessment effort a statistical data
analysis computer model has been nremared and is described in this
report. Essentially, the model computes noint estimates and confi-
dence limits for reliability of components, subsystems and system
from component test data.

The snecific reliability index considered is the mission relia-
bility defined as the nrobability that a given system will success-
fully perform its intended function witheut failure for a srecified
period of time under a given set nf cnnditions. Time can be given
in terms of clock time, rounds, cycles, miles, etc. The svstem may be

required to nerform a number of missions over its exnected 1life.

1Army Regulation AR7NS5-50, "Army 'fateriel Reliability and 'faintain-

ability," Headquaters Dent. of the Army, Washington, D.C., 8 Januarv
1968,




PURPOSE OF THE RELIABILITY COMPUTER MODEL

The reliability model is intended to serve a numher of useful
purposes., First, reliability analyses for the realistic situations
encountered in weavnon system testing and for all hut the simplest
assumptions made for computation entail rather comnlicated mathemati-
cal formulation and tedious computation. The computer model conse-
quently provides a systematic means of incornorating more comnlex
anaiyses with less restrictive assumntions into a routine data analy-
sis procedure. Second, the model provides greater speed in obtainine
results of data analvses. Third, the mathematical procedures and for-
mulations incorporated into the model provide a means of standardizing
reliability assessment among design agencies, test apgencies and the
user. Finally, the model provides a basis for determining the tvpe
and amount of test data required to perform a narticular kind of
analyvsis. This provides insight into nlanning of tests and data

collection procedures required.

TYPE OF DATA CONSIDERED FOR ANALYSIS

.

The type of data considered for analysis is failure and susnen-
sion data on a component or a number of components making up a sub-
system or system., Definition of failure depends on the particular
requirements and the mission profile of a given system and can

include part breakape, out-of-tolerance nerformance, incipient




failure, safety hazard, etc. Susnended data is obtained when a comro-
nent is removed from the test without failure, the test is terminated
without failure or when the failure of a commonent is attributable tn
the failure of anonther comnonent or cause.

Since failure rates and resulting mission reliabilities are
generally transient, all data is assumed cnllected as a function of
system age, Snecifically, the ape given in terms such as rounds, time
or miles on individual cemmonents within a syster at failure or sus-
pension is required. In genrral it is not enough to record onlv the
total test time and number »f fajlures excenrt in the case of constant

failure rate,

TYPE OF INFORMATION GEMERATED

The tvne of information generated bv the model includes results
of analyses for each individual comronent within a subsvstem, for
each subsystem making ur a given system and for the entire systen.
Component information includes resnlts of distribution selection
procedures, Kolmogorov-Smirnov poodness-of-fit tests, maximum likeli-
hood estimates of distribution narameters, nonint estimates of the
mission reliability as a function of svstem ape “or the non-constant
failure rate case and confidence limits on averape mission reliabilitv
over the systen life for the constant failure rate case. Subsystem
and system information gemerated ircludes rnint estimates and confi-
dence intervals on mission reliability for the constant failure rate

case,




A more complete descrintion of reauired input data for the model
and the resulting output information will be nresented in subsenuent

sections dealing with the computer nrogram.

USUAL ASSUMPTIONS FOR DATA ANALYSIS AND THEIR LIMITATIONS

It is worthwhile at this noint to review the usual assumntions
made in nerforming a reliahility assessment for a given system gnd
the desirability of relaxing these assumptions for some of the realis-
tic cases encountered in weapon system testing. Undoubtedly, the most
common assumption made in reliahility data analysis is the assumntion
of constant failure rate for components and systems. The most signi-
ficant imnlication of this assumption is that the nrobability of
failure of a component or system is indenendent of its age. Components
are assumed to fail at completelv random points in time. This, of
course, does not permit the full treatment of the cases of early
failures and wear-out failures common to mechanical components.

There are a number of reasons why the constant failure rate
assumption is so often made. First, the constant failure rate is
often assumed primarily to simplify analysis and computation. Second,
straightforward techniques for determining confidence intervals on
comnonent reliability from test data are readilv available for con-
stant failure rate. Third, testing nrocedures are greatly simplified
since only the total number of failures and total test time are re-
quired for data analysis. Also, the amount of data required for each

component is not as critical as in those cases where theoretical




distribution selection must be considered. Finally, for system relia-
hility verification tests, individual comnonent data is not required
with all failures being treated as system failures. This is true

onlv if all commonents have eaual test times,

Assuming a constant failure rate can lead to three tvnes of
errors; the first is in the computation of reliability for fixed TR
(mean time between failures), the srcond is in the computation of
confidence limits, and the third is in the estinmation of ‘TBT when
susnension or censored data has heen generated. The magnitude of the
error in comnuting reliahbility for fixed MTBT carnot he determined in
general. Tor illustrative nurroses, however, consider » hvmothetica!
case in which a system is made up of enrunal components in series.
Assume further that each comronent has a Weibull distribution and an
MTBF (mean time between failure) enual to twice the exnpected systen
life, The number of missions over system life is assumed to be 150,
The magnitude of the error in assuming constant failure rate can now
be determined for this particular case, Table I lists the results of
average system reliabhility for different numhers of components in the
system and for various values of the Weibhull shape narameter 8. For
a shape parameter B equal to 1.0 the Weibull distribution reduces to
the exponential which describes the distribution for constant failure
rate. For values of B greater than 1.7 the failure rate is an increas-
ing function of time characteristic of wear-nut rhenomena. The greater
the value of R the more neaked the distribution is about the mean.

As can be seen from Table I, large differences can he ohtained when

-
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assuming exponential or constant failure rate for Weihull compnnents
that in actuality have g values greater than 1.0, For examnle, a svs-
tem of 50 equal comnonents, each comnonent having a Weibull shane para-
meter equal to 3.0 would have an averase svstem reliabhility of n,972,
Assuming a constant failure rate nn the other hand would yield a com-
puted reliabilityv of 0.846 which is sismificantly different than the
true value for this case.

Reliability for the Weibull distributior withf>1 was comruted
using renewal theory where, in this case, a commonent is rerlaced or
renewed unon failure. The mathematical formulation fnr the renewal
case is described in the Analvtical '"ethods section of this rerort.

The second source of error in assuming constant fajilure rate is in

the computation of confidence limits. Consider as an examnle nroblem

a test sample of failure times given as 200N, 2200, 1800, 1900 and
2100, For this nroblem the MTBF is 200N and the standard deviation is
158, Lower confidence limits on the true MTBF can readily be computed
assuming different underlying distributions of failure times. For
examnle, the lower 9n% confidenced means for the exronential (constant
failure rate)and the normal (increasing failure rate) distributions
are 1250 and 1758 respectivelv, It is common in reliabilitv verifica-
tion tests to rcnuire that the lower confidenced ‘fTBF (or reliahilitv)
exceed a given fixed value for accentance. If the renuirement in the
above nroblem were 1500, the assumntion nf the exponential distribution
would lead to rejection and the assurmtion of the normal distribution

would lead to accentance, Although the above is an oversimnlification,

11




it does indicate the nossible error in assuming the wrong distribution
in determining confidence limits.

The third source of error in assuming constant failure rate lies
in the unrealistic handling of suspension data in estimatinn nonulation
narameters. Consider as an examnle nroblem a test samnle of failure
times given as 3800, 3900, 4100 and 4200 and a samnle of susnension
times given as 350N, 4000, 4000 and 4500. In this examnle, eipht dif-
ferent components were tested but onlv four failed. The point esti-
mates of MTBF assuming exnonential and Weibull distributions are 800N
and 4130 respectively., As can be seen the MTBF for constant failure
rate is nearly twice the value for the nonconstant failure rate Weibull
distribution.

In the first two sources of error discussed above the comnuted
reliability is generally conservative for components and systems that
wear out. Reliability and lower confidence limits are conservative in
that lower than true values are comnuted. In the third source of error
the resulting reliability is generally nonconservative. The unrealis-
tic handling of suspension data seems to be the most significant
source of error in assuming constant failure rate for testing of
mechanical systems,

A second assumntion or requirement which is often made in relia-
bility analysis is that the data sample be comnlete. Consequently
only the failure times in a given test are considered for analysis.

The main reason for this assumption is that statistical methods that

treat suspended data along with the failure data are in many cases

12




restrictive, complicated or not available. It is clear, however, that
susnended data, narticularly data involving susnension times that are
greater than some or all of the failurr~ times should contribute signifi-
cant information toward determining the unknown nonulation narameters.
This was observed in the ahove discussion of the constant failure rate
assumntion. Suspended data can resnlt in manv ways. In weanon svstem
testing, for examnle, it can arise from the removal of a comnonent from
test without failure, comnletion of a system test nrior to failure or
through failure resulting directly from the failure of another comron-
nent or cause such as accident.

A third assumntion which is often made in determininc confidence
limits on system reliability from system tests is that the svstem can
be treated as if it were a single comonent with no differentiation
being made as to which comnonent within the svstem actually fails,

All failures are treated as svstem failures. A necessarv underlving
assumntion for this anrroach is that either all comnonents have con-
stant failure rate or all comnonents have failed a number of times so
that steady state conditions prevail. In this instance confidence
intervals on system reliahility are readilv derived using the theory
applicable to the constant failure rate case., A limitation of this
assumntion is that results of individual commonent or subsvstem tests
cannot be included with the system test results. Also, if comnonents
are redesigned during the course of a test, which is often the case in
large weapon system testing, total test time on the redesigned comno-

nents are not the same as the total system test time. The usual

13




methods of analyzing system test data consequently do not apnlv in
this case.

Finally, large sample theory is often assumed in computing confi-
dence intervals since methods to handle small samnles may not exist

or are too difficult to use.

MAIN FEATURES AND STATUS OF THE PRESENT MODEL

The reliability data analysis model presented in this renort con-
tains a number of general solutions to overcome many of the limitations
of the usual assumptions discussed in the previous section. The main
features of the model are summarized as follows:

a. Performs goodness-of-fit test to determine the hest fit
probability distribution of comnonent failure times. The theoretical
distributions considered are the exponential, normal, lognormal,

Weibull and gamma,

b. Computes maximum likelihood estimates of ponulation para-

meters for general theoretical distribution of failure times.

¢, Can handle suspmended data which results when a component is

tested without failure.

d. Computes npoint estimates of reliability for the renewal case;

that is, for the non-constant failure rate case.

e. Computes lower confidence limits on comnonent, subsystem

and system reliability for the constant failure rate case,

14




The present version of the reliahility data analvsis comnuter
model does not contain all of the fcatures ultimately nlanned for in
the final version. ‘'ost simificant of the limitations is the assumn-
tion of constant failure rate in determining confidence intervals
although npoint estimates of reliahility are determined for the general
non-constant failure rate case. In addition components are assumed tn
be in series for system reliabilitv comnutation and no provision is
nresently made for nreventive maintenance narts renlacement of comro
nents., The analytical methods section of this renort describes the
techniques to he emnloved in removing these limitations with work on
future versions of the model nresentlvy being undertaken.

The remainder of this renort contains a discussion of the analvti-
cal methods used for commutation followed bv a nresentation of the

computer program with examnle innut and outout information.

ANALYTICAL METHODS

The purnose of this section is to briefly outline the mathematical
and statistical methods used or planned in the reliabhility data
analvsis model., A comnlete discussion of nrobability and statistical
theory will not be presented in this renort and the reader is referred
to the references cited for more comnlete discussions. Much of the
theory nresented is straightforward and readily found in the litera-
ture., However, some of the statistical and computational methods used

are the result of research efforts at the Watervliet Arsenal and will

LS




be the subject of forthcoming renorts and nublications.

There are a number of good texts on the general subiject of reli-
ability., The texts found narticularly useful to this writer are those
by Lloyd and Linow [2], Barlow and Proschan [3], finedenko, Belyayev

and Solovvev [4] and Pieruschka ([5].

Computation of Comnonent Mission Reliability.

Although one of the computational goals in the model is system
reliability it is necessary to develon the analytical methods for
computing system reliability by considerinpg the individual components
or elements making up the svstem, This is particularlv true in the
case of non-constant failure rate comnonents,

At the nresent time there is considerable confusion among desipn
engineers on the definition of comnonent reliabilitv when the commo-
nent is nart of a system, The confusion lies primarilv on the time
reference used in computing reliability. Many texts on reliability
consider time in terms of component age. llowever, for system reliabi-
lity the system age is the imnortant time reference. Since comnonents

that fail within a system are renlaced or renewed at random noints in

2Lloyd, D.K., and Linow, ‘1., '"Reliability: Manapement, ‘lethods, and
Mathematics," Prentice-Hall, Englewood Cliffs, New Jersev (1962).

3Barlow, R.E., and Proschan, F., 'Mathematical Theory of Reliability,"
John Wiley § Sons, New York (1965).

4Gnedenko, B.V., Belyayev, Yu.K., and Solovyev, A.D., '"athematical
Methods of Reliability Theory," Academic Press, New York (1969).

sPieruschka, E., "Princinles of Reliability," Prentice-Hall, Enplewood
Cliffs, New Jersey (1963).
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time, comnonent ages are generallv nnt known a =riori as a function nf
system age., In this instance renewal theorv must he emnloved to
determine the transient mission reliahility as a function of =<ystem
age., This asnect of the nroblem will he considered in the followinge

sections.,

(a) Component Reliabilitv Based on Comnonent Agre,

Consider first a sin~l2 comm-nent where the time reference
is component age, Let

£(t)

Probability densitv distributinn of commanent failura
times or time betwern failures,

it
[ £(t)dt = cumilative distribution function,
0
= Probabilitv that the commenent will fail in the time
interval (0,t).

REE)

R(t)

Reliability defined as the nprobahilitv that the comno-
nent will not fail in the time interval (0,t) where
the comnonent is assumed new at time 0,

= 1 - F(t)

A(t)

Conditional failure rate where ) (t)dt is the nrobabilitv
of failure in the time interval (t,t+dt) riven that the
comnonent has survived to time t.

The conditional failure rTate }(t) defined above is a useful and

descrintive quantity in reliability theorvy. It can be determined from

the probability distribution of failure times as fnllows:

A(t) = f(t)/(1-F(1)
= f(t)/P(t) (1)

Figure 1 shows descrintivelv the failurr rate for three tynical cases

in reliability; decreasing, constant and increasing failure rate,

17




Increasins Tailure Rate
(Wear Out Tailures)

Component
Failure
Rate Constant
: (Indenendent of Age)
MTBF

Necreasine
(Earlv Tailures)

Comnonent Ape
0

Figure 1. Commonent Failure Rate vs Commonent Age

The decreasing failure rate implies that the longer a component survives
the lower its probability of failure. This is tynical of early failures
in which comnonents containing manufacturing or material flaws tend to
fail early. The increasing failure rate is tynical of components that
wear out where the longer a component survives the higher the prohabi-
lity of failure. Mechanical commonents in which early failures have
been eliminated generally have increasing failure rates caused by such
phenomena as fatigue, corrosion, erosion and ahrasion. The constant
failure rate is tynical of components which have a probability of
failure independent of its age. This can result, for example, from

a situation in which excessive loads can cause failure where load

fluctuations are vurely random in time such as wind loads.

18




Examnles:

1. Exponential Distribution

For this case

TR

FE) = et

T b

A(t) = 2 = constant (2)

The exnonential distribution describes the constant failure rate case.

2. Weibull Distribution

|
B . e_(tmn

f(t) = 3 ET

F(t) = 1 - e‘(t/n)B

R (1) e-(t/n)R

At = %E—B-I (3)

in which B and n are distribution or nonulation narameters. Note that
for the Weibull distribution B values less than, equal to and greater
than unity yield failure rates which are decreasinfl, constant and
increasing resmectively. This characteristic makes the Weibull distri-

bution a useful one in reliahility analvsis.

(b) Mission Reliabilitv of a Component Within a Svstem [3,

4, 5],

Consider next the situation of a component within a system.

The aquantity of interest here is the reliabilitv of the comnonent for

19




3Barlow, R. E., and Proschan, F., '"Mathematical Theory of Reliabilitv,k"
John Wiley & Sons, New York (1965).

4Gnedenko, B. V., Belyayev, Yu.K., and Solovyev, A, D,, '"Yathematical
Methods of Reliability Theory," Academic Press, New York (1969).

S
Pieruschka, E., "Princinles of Reliabilitv," Prentice-Hall, Englewood ‘
Cliffs, New Jersey (1963).
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a mission time interval of (t, t + T) where t is the system age and T
is the mission length. Prior to time t the commonent could have
failed and been replaced one or more times, Figure 2 denicts the
conditionrl failure rate A(t) of a component within a svstem showing

failure noints for an increasing failure rate.

Commonent
Failure Failures with Suhsenuent
Rate Renecwals

N-.a

n Svstem Age

Figure 2. Component Failure Rate vs System Age For The Case
Of Ideal Renair

In general the failure times of components within a system are not
known in advance as depicted in Figure 2 and conseauently must he
treated nrobabilistically. This is accomnlished by defining another
quantity h(t) called the renewal rate or unconditional failure rate
which is an ensemble averapge of the failure rate over the ponulation
of all systems. The renewal rate is defined such that

h(t)dt = unconditional nrobabhility of commnonent failure

in system time interval (t,t+dt).

21




The renewal rate for a given component is a function of the

underlying failure distribution given by the following equation:
h(t) = f£(t) + ét h(x) F(t-x)dx.

Derivation of this equation is nresented in references (2], [3] and

elsewhere. Logically, equation (4) can be derived from the theorems
of total and conditional probabilities [6] along with the definitions
of the terms in equation (4). Multinlying both sides of equation (4)

by dt and considering the integral as a sum we have

f(t)dt = Probability that the original component fails
in the time interval (t, t + dt).

h(x)dx = Probability that a failure and subsequent renewal
occurred in time interval (x, x + dx).

f(t-x)dt = Conditional nrobability that a component which
was renewed at time x fails in the time interval
(t, t + dt).

h(x)f(t-X)dxdt = Unconditional nrobability of failure in time

interval (t, t + dt) for a commonent which could
fail at time x,

f(t)dt +

fth(x)f(t-x)dxdt = Total nrobability of failure which is the sum of
n
all possible conditions which could lead to
failure in the time interval (t, t + dt),

= h(t)dt by definition.

The mrission reliability can now be determined from the renewal
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2Lloyd, D.K., and Linow, M., "Reliability: ‘fanapgement, “fethods, and
Mathematics,'" Prentice-Hall, Englewood Cliffs, New Jersey (1962).

SBarlow, R. E., and Proschan, F., "Mathematical Theory of Reliability,"
John Wiley & Sons, New York (1965).

. 6Pa_rmulis, A., "Probability, Random Variables, and Stochastic Processes,"
McGraw-Hill, New York (1965).
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rate h(t) using the relation from rcference [4]

R(t,T) = I1-F(t+1) + ft[l-F(t+T-x)]h(x)dx (5)
in which )

R(t,T) = *“ission reliability at svstem time t for a

mission length T,
= Probability of no failure in (t, t+T).
1-F(t+t} = Probabhility that the original comnonent in the
system has not failed at time t+T.
1-F(t+Tt-x) = Probability that a comnonent which failed at

time x has not failed at time t+T.

h(x)dx = Prohability of failure at time x,

Typical examples of the renewal rate and mission reliability of an
increasing failure rate component are denicted in Figures 3 and 4. As
can be seen the renewal rate increases with svstem age mtil about a
system time equal to the MIBF (mean time between failure) of the
component. The renewal rate then annroaches a constant value equal to
the recinrocal of the MTBF, The reliability on the other hand de-
creases from a value of 1.0 at t=0 and annroaches a constant value,

The asymptotic values of h(t) and R(t,t) can be derived directly from
equations (4) and (5) by passing t to the limit infinity. These

values are given by the relations

h () = 1/"TBF

fm[l-F(x)]dx.
T (6)

R(oo’-[-) = MTRF

4Gnedenko, B.V,, Belyvayev, Yu.K., and Solovvev, A.,D,, '"fathematical
Methods of Reliability Theory," Academic Press, New York (1969).
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For the exponential distribution (constant failure rate) the
renewal rate and reliability are both constant throupghout system life
AT "
and are equal to )} and e respectively.

It should be noted at this point that for a hipgh reliability sys- .

tem (say .85 or greater) the MTBF of the components comnrising the
system should be of the same order of magnitude as the expected or
required system life. Consequently, the components within a system
are essentially exercised within the transient nortion of their lives
thus indicating the general importance of considering renewal theoryv

in determining component reliability for hirh reliabilitv systems.

(¢) Numerical Solution for the Renewal Rate.

A number of numerical techniques were investigated to
solve the integral equation (4) for the renewal rate h(t). The most
computationally efficient solution investigated thus far was through
the use of finite difference methods [7]. Finite difference yields a
direct solution for the renewal rate. Other more general techniaues
investigated which give comnlete solutions to the renewal problem
(e.g. probability distribution of total number of failures or time to
nth failure) involved the use of orthogonal expansions of Lanlace
transforms. Two sets of orthogonal functions considered were trigono-

metric and Laguerre nolynomials. The finite difference solution,

although limited to solution of the renewal rate, generally reauired
less computer time for given accuracy. The solution is also quite
general in that it can be used to determine renewal rate for most

theoretical distributions of failure time annlicahle to reliability

McKelvey, R, W., "An Analysis of Approximate Methods for Fredholm's
Integral Equation of the First Kind,'" December 1956, AD650530,
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theory.

In solving equation (4) using finite differences, the density
f(t) and the renewal rate h(t) are discretized over a fixed time inter-
val generally the system life. In this case f(t) and h(t) are written

as

£(t) £ (kAt) £

|3
h(t) = h(kAt) = hk
t = kAt where k=0,1,...,n.

The integral equation (4) can then he written as

4 A Kol
[ f(t-x)h(x)dx = ‘%‘ 7 [f(kAt-iAx)h(jAx) +
0 i=0
+£(kAt- (7+1)Ax)h ((i+1)Ax)]
kel
A
- & 3
J=1 (£ _shs *+ £, 5 jhiyy] (7)

for k = 1,:..5N0

= 0 for k = o,

Substituting into equation (4) then gives

A Kl
hy = £ + =5 jgo [fy_5h5 * fojoaPjer]
o1 K = Lones B (8)
= f for k = 0,

Equation (8) renresents n+l equations with n+l unknowns which can be

readily solved using Gaussian elimination.
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A difficulty is encountered in some situations where f(0)) = =
such as in the case of the Weibull distribution with shape narameter

B<1l. In this instance f(0) is fixed at a finite value such that the

actual area under f(t) in the interval (0, At) (i.e. F(At)) is made

equal to the finite difference area (f(0) + f(At))At/2.

(d) Numerical Solution for Mission Reliability.

Once the renewal rate is determined the transient

mission reliability can then be computed from equation (5):
R(t,T) = 1-F(t+1) + [T [1-F(t+1-x)Th(x)dx.
0

Numerically, this equation is difficult to solve since the integral
must be evaluated over the whole interval (0,t) for each different
value of t. By making use of the renewal equation an equivalent
equation for R(t,T) can be derived which is comnutationally more

efficient. Integrating the renewal equation (4) from 0 to T gives

T
H(T) = F(T) + [ H(T-x)f(x)dx (9)
0
where H(T) = fTh(t)dt.
0

Making the substitution T=t+t in equation (9) gives the followinp
equation:
t+T

H(t+1) = F(t+1) + [ H(t+T-x)f(x)dx. (10)
J .

Integrating by parts and using the fact that H(0) = 0 and F(N) = 0

then gives
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t+1T

H(t+t) = T (t+1) + f F(x)h(t+1-x)dx
0
T T
= T(ter) + [ T (t+T-x)h(x)dx, (11)
n

From equation (11) the followine enuation ca bhe readily derived:

t T
[ [1-F(t+1-x)Th(x)dx = F(t+1) - | [1-F(t+1-x)Th(x)dx
N t
(12)
t:
where the definition li(t) = f h(x)dx was used.
. &

Substituting enquation (12) into equation (5) for mission reliability
finally yields
t+T
R(tst) & 1= f [1-F(t+1-x)Th(x)dx (13)
t
Note that in this equation the intepral is evaluated onlv over the
interval (t, t+7) and that the value of T (v) is renuired onlv over

the interval (0,t). This simplifies the numerical solution for mission

reliability.

(e) Average Mission Reliahility.

Interval reliahility as discussed in the nrevious
section is a transient function of system age. Weanon svstem renuire-
ments, however, generally srecifv one value of mission reliability for
the system, This snecified value could renresent the lowest reliahilitv
to be experienced by the system or an average value over system life.
In the computer model average system reliability is comnuted using the

relation
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= 1 0
Ry = = J B (14)

n o jal
in which
Ri(T) = Reliability for the ith mission
n = Expnected number of missions over system life.

Comnutation of System *ission Reliahility.

In general, system reliability can be computed directly from
the component reliabilities using an aprronriate reliability mndel
[2,8]. For example, for the series reliability model, svstem reliabili-

ty Rs(t) is determined from

n
Rg(t) = TT Rj(t) (15)
i=1
in which
Ri(t) = Reliability of the ith comnonent
n = Total number of components.

A series model is annlicable whenever the failure of a single
component within a system results in a failure of the svstem, This
model has been initially chosen for the data analvsis computer model.

In the more general case where redundancy and load sharing are
inherent in the system, reliability models are more comnlicated but

can be derived in most given situations [2,8].
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Lloyd, D. K., and Lipow, *f., "Reliability: Management, ‘fethods, and
Yathematics," Prentice Hall, FEnglewood Cliffs, New Jersey (1062},

8Bazovsky, I., "Reliability Theorv and Practice," Prentice-llall,
Englewond Cliffs, New Jersev (1062},
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Probability Distribution Selection.

One of the more difficult and questionable asnects of data
analysis is the selection of a theoretical distribution applicable to
a given set of data. This is narticularly true for small data samnles .
where information is ultimately required at the tails of the distri-
bution. In the case of comnonent failure data, theoretical considera-
tions, prior history and exnerience play a large part in distribution
selection. For example, for particular failure modes such as fatipue
the lognormal and Weibull distributions have been found to vield good
characterizations of the data {9, 10].

The data analysis computer model includes a distribution fitting
program to assist in the selection of a hest-fit theoretical distri-
bution for use in reliability comnutation. Essentially, this nrogram
computes the standard error for a number of different candidate
distributions. The standard error is a measure of the deviation of
the data from the theoretical cumulative distributions,

The Kolmogorov-Smirnov statistical goodness-of-fit test is also
used to determine which of the theoretical distributions can be
rejected for given confidence level. Final selection of the distri-
bution can then be made based on the comnuter results, theoretical

considerations and/or nersonal exnerience and judgment.

(a) Candidate Distributions.

Following are the candidate distributions considered
for characterizing component failure times. In order to standardize

terminology used to describe the distribution parameters, the terms

32



9Dolan, T. J., "Basic Concents of Fatigue NDamage in “fetals,” 'fetal
Fatigue, ’icGraw-Hill, New York (1959), Chanter 3, nn. 3 =67,

1Ol”~reudent:hal, A. 1., and Shinozuka, ''., "Structural Safety linder

Conditions of lltimate Load Failure and Fatigne," Columbia Universitv,
. New York, N.Y., October 1961, WADD Technical Renort £1-177,
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scale, shape and location parameters are used for all distributions

and are defined below,

(1) Exnonential

1
f(t) = —e g (16)
n
where n = MIBF = scale parameter
= 1/A
A = constant failure rate,
(2) Normal
] t-M 2
1 = o (—p]
f(t) = e 2O (17)
/2T o
where 4 = MTBF = scale narameter
0 = Standard deviation = shane parameter.
(3) Weibull
B
t-v
Bty B-1 i
gy =68 e (18)
where u = MTBF =y +nl'(1+1/B)
2 ) 2
g = Variance = n“[I'(1+2/B)-T (1+1/8)]
n = Scale parameter
B = Shane parameter
Y = Location parameter,
(4) Lognormal
i 2
1 - =z (An(t-y)-n)
£(t) = e 2R (19)

(t-y)/2m B
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+8°/2)

where = MIBF = Y+e 5 )
02 = Variance = e(2n+8-)(e8~-1)
n = Average {f%n t} = Scale parameter
B = Standard Deviation {fn t} = Shape parameter
Y = Location parameter.
(5) Gamma
f(t) = Eflzlfli. e‘(Eilé (2n)
r(sn®
where W = MTBF = v+fin
¢° = Variance = an
n = Scale parameter
R = Shape parameter
Y = Location parameter.

More detailed discussions of these distributions can be found

in the literature [6,11].

(b) Least Squares Fit of Data [12].

For each distribution other than famma a least
squares fit of the data to the distribution is made. Cenerally, the
theoretical distribution is linearized as far as rossible to simnlify
cemputation. In the case of the fiamma distribution maximum likelihood
estimates of marameters are used rather than solving the more difficult
nonlinear nroblem,

The cumulative distribution function F(t) is used in fittine the
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6 . s : .
Papoulis, A., "Probabilitv, Random Variables, and Stochastic Pro-
cesses,' Mchraw-Hill, New York (1965).

Ireson, W. G., Editor, '"Reliability Handboo}'" McGraw-l{ill, New York
(1966), Chapter 4.

12Draper, N. R., and Smith, H,, "Apnlied Repression Analysis,'" John
Wiley § Sons, New York (1966).
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data with the median ranks being used as the true values of the cumula-
tive distribution associated with each ordered data noint [13]. The

median ranks for a comnlete data samnle are comnuted using the relation

- i-0.3
MR, = 2]
] n-N.4 (21)
where n = DNata sample size

Y= L

= Order numbers for the data where the data is

sorted in increasing order,

When suspended data has been penerated along with failure data,
the median ranks are determined for the failure data onlv with the
suspension times being used to modifv the median ranks [13]. In this
instance the failure and susnension data are sorted in increasing
order. The sample size n in equation (21) is now the total number of
failure and suspension data items. The order number j associated with
each failure item is determined as follows; initiallv j is set equal
to zero. An increment is then comnuted which is to be added to i to
give the order number for the first failure item using the general
relation

n + 1 - (Previnus Order Numher)
New Increment =

1+ (Number of Items Tollowing the Present
Susrension Set).
(22)
I[f there are no susnension data nrior to the first failure, then the

increment is 1.0 and the order number for the first failure item is

1.0. This nrocedure is repeated for cach subscauent failure item

13Johnson, L.G., "Theory and Technique of Variation PResearch," Elsevier,
New York (1964), Chapter 8. 37




using equation (22) in each case. The median ranks are then comnuted
using equation (21).
The median ranks are considered to be the true values of F(t)

associated with the ordered failure times ti. The distribution nara-

meters for a given theoretical form of F(t) are then determined by
minimizing the sum of the squares of the error between the theoretical
distribution evaluated at the failure times and the median ranks or
between the transformed distribution and median ranks.

Consider as an example the Weibull distribution., In this case

- t-Y)B
F(t) = 1-e M- (23)

Rearranging equation (23) and then taking douhle logs gives

nfn(1/(1-F(t))) = B(&n(t-y)-2nn). (24)
For fixed Yy, this equation is linear in g¢n(t-Y). The error between

the transformed theoretical distribution and the data is then given hy

Ei = B(Rn(ti-y) - inn) - ann(I/(l-WRi)) (25)
where ti = ith failure time
MRi = ith median rank,

The pvarameters B, n and Y are then found which minimize the total
square error ez = zeg. A similar anproach is used for other distri-

butions.

(c) Computation of the Standard Error [12].

In general, the standard errnr in the fitting of

12Draper, N.R., and Smith, H., "Applied Regression Analysis'" John Wiley
& Sons, New York (1966),
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a theoretical distribution to data is not the same as the error dis-
cussed in the previous section. The standard error is a measure of
the difference hetween the untransformed theoretical distribution and
the median ranks. The standard error is defined by the following

equation:

n
(I w2
i=1 3 g

s.e. = Standard Error = (26)
n-n-1

Theoretical distribution evaluated at the failure

where F(ti)
"R. = ‘fedian ranks

n = Number of failure »oints

p = Number of nonulation parameters estimated in
determining F(t).

The smaller the s.e. the closer the data fits the theoretical distri-

bhution.

(d) Kolmogorov-Smirnov fioodness of Fit [14],

A non-parametric distribution has been derived bv
Kolmogorov [15] and Smirnov [16] for a particular statistic d which
is a measure of the fluctuation of sample data about the theoretical
distribution from which the sample is drawn. The statistic d is de-
fined as the maximum absolute deviation between the theoretical and
observed cumulative nrobahility distributions. The theoretical distri-
bution is fixed by specifying both the functional form and the nara-

meters.

14

Siegel, S., "Nonparametric Statistics for the Behavioral Sciences,"
McGraw-Hill, New York (1956}, Chapter 4.
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lsKolmogorov, A., "Confidence Limits for an tInknown Distribution
Function,'" Annals Mathematical Statistics, Vol. 12, (1941), nn, 461-
463,

16Smirnov, N. V., "Table for Estimating the foodness of Fit of
Empirical Distributions," Annals Mathematical Statistics, Vol. 19,
(1948), pn. 279-281.
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In anplication of the K-S statistic, a given set of data is
hynothesized to have been drawn from a given theoretical distribution,
The statistic d is then determined from the data and compared to the
K-S distribution of d. That is, for given significance level a or
confidence level (1-a) the theoretical value dq is determined from
K-S tables and compared to the computed d. If d>dq , the hypothesis
is rejected. If d<da then there is no sufficient reason to reject the
given theoretical distribution and the hypothesis may bhe accented.

The statistic d is determined for the candidate distributions
in the computer model to nrovide bases for rejecting distributions and

to help indicate the hest-fit distribution.

Maximum Likelihood Estimates of Parameters [17].

Maximum likelihond estimates of population narameters are
determined for each component within a svstem for which failure data
has been generated. There are a number of reasons for generating
maximum likelihood estimators as part of the reliability model. First,
maximum likelihood yields estimates of parameters which have a number
of desirable attributes, For example, if an efficient estimator for
small samples exists (i.e. one with minimum variance), then maximum
likelihood nrovides such an estimator. In general then minimum con-
fidence intervals can be derived in this case. “aximum likelihood
estimators are also consistent in that thev annroach the true para-
meter values as sample size increases. In addition, maximum likeli-

hood estimators are asymptotically normal as sample size increases

7 .
1 Mood, A.M., and firaybill, F.A., "Introduction to the Theorvy of

Statistics," MMchraw-Hill, New York (1963), Chapter 8.
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for most cases., This simplifies determination of confidence intervals
for large samples.

A second reason for determining maximum likelihood estimates is
that they can be computed for relativelyv general underlying nrobabilitv .
distributions through the use of routine mathematical nrocedures.
Finally, the numerical procedures planned to be used in the comnuter
model to determine confidence intervals require the maximum likelihood
estimates of parameters to imnrove comnutational efficiency.

The basic idea behind maximum likelihood estimation is relatively
straightforward. One assumes first that a samnle of ne failures and
ng suspensions have been generated from a given theoretical distribu-
tion with parameters a = (al,az,...,ap). The failure and suspension
data are designated as te; (i=1,...,np) and t_. (i=1,...,n)) Tespectively.
The joint probability distribution of the random sample of failure and

suspension times can be written as

L(t;a) = gt(tf1'°°"tfn ’tsl""’tsn 30} (27)
== £ s
where L(t;a) = Defined as the likelihood function
g = Joint distribution of the samnle outcome
z; = Vector of the samnle data values
a = Vector of parameters for given underlying

distributions of failure times.

It is next assumed that each failure and susnension time is a
statistically independent outcome. Equation(27) can then be written

in terms of the failure density f(t) and the cumulative distribution
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F(t) as follows [6]:

T Thy
L) = € | ] flgm || N-F o] (28)
" — 3 -~ 1—
i=] i=1 &
where C = Normalizing constant such that the area under
L(t;a) is unity
f(t;g) = Theoretical density distribution of failure times,
F(t;a) = Cumulative distribution function
= [* fxo)dx
0
[1-F(t;a)] = Probability that the failure time is greater than

t. This term is used to represent the nrobability
of obtaining the suspension times,

As can be seen, the likelihood function L is defined as the
multivariate probability distribution of the random failure and sus-
pension times. Solving for the parameters a such that L is maximized
consequently gives the highest probability density for the given sample
outcome t. The parameter values which maximize L are denoted as é
and are called the maximum likelihood estimates of a.

In practice n L given by equation (29) is maximized rather than
L to simplify computation., This can be done since the maximum of

any positive function and its log are equivalent,

n
fn L(t;0) = &n C + § n f(tfi;g)
i=1

n

S
+ ) n[1-F(t ;)] (29)
j::l XJ o=

6Panoulis, A,, "Prohability, Random Variables, and Stochastic
Processes,'" McGraw-Hill, New York (1965).
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Consider the Weibull distribution as an examnle. Tor this case

B
e t-y
g wp PY =)
F(esg) = =6 e
B
t-
- (=5
F(t;a) = 1 -e n
where o = (n,B,Y).

The likelihood function can then be written as

n

f
fnL = nC+ [2n8-2nﬂ+(8-1)(£n(tf,-Y)
i=1 1
— =y B
tfi Y ng tsj Y
- nn) - ( Y= J § ) (30)

n j=i

Solving for n,B and Yy which maximize fn L vields the maximum likeli-
hood estimators for the Weibull parameters.

Likelihood functions such as given by equation (30) are maximized
in the computer model using Rosenbrock's algorithm [18] which is a
general solution of the unconstrained minimization problem for non-
linear functions. Minimizing the negative of fn L maximizes the
function.

Once point estimates of the failure distribution parameters are
generated for a given component, the mission reliability can be com-

puted using the methods previously nresented,

18Rosenbrock, H.H., "Automatic Method for Finding the freatest or
Least Value of a Function,'" Comnuter Journal, Vol, 3, (1967),
pp. 175-184,
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Bayesian and Classical Confidence Intervals for Comnonent

Reliability.

Classical methods of confidencing component mission reli-
ability for small samples are generallv available only for the constant
failure rate case. In this instance the xz distribution renresents
the inferencing distribution for the TBF from which confidenced reli-
ability can be derived [2]. Bayesian methods will consequently be used in
the computer model for the non-constant failure rate comnonents since
this method provides a systematic means of determining confidence inter-
vals for more general nrohblems. A comnlete discussinn of Bayesian
statistics will not be presented in this rerort and the reader is
referred to the books by Lindley [19] for a more cnmplete discussion
of this topic.

Bayesian inferencing is based, as the name imnlies, on Bayes'
probability theorem which is essentially a conditional nrobability

sStatement:

Bayes' Theorem:

fly,x) = f(y;x)f(x) = £fx;y)E(y) (31)
in which
f(y,x) = Joint probability density of random variables
x and y.
f(y;x) = Conditional probability of y given x
f(x;y) = Conditional probability of x given v




2
Lloyd, D, K., and Lipow, M., '"Reliability: ‘*/anagement, Methods, and
Mathematics," Prentice-Hall, Englewond Cliffs, New Jersey (1962),
19L:lndley, D.V,, "Introduction to Probability and Statistics from a
Bayesian Viewpoint," Part 1: Probability and Part 2: Inference,
Cambridge University Press, Cambridge (1965).
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f(x), £f(v) = 1Marginal distribution of x and y resrectivelyv,
From equation (31)
£(y)
fly;x) = f(x5y) g (32)
(x
In the Bavesian annroach the unknnwn narameters of the distribu-
tion of failure times are considered to be random variahles., The
samnle outcome t from a given test are also random variahles which
are dependent on the distribution narameters. Bayes' theorem, eauatinn

(32), can be written in this instance as

f(a)
flosx) = f(x30) (33)
f(x)
in which
f(a;x) = Density distribution of narameters given the
test sample X.
f(x;a) = Density distribution of the samnle outcome
given the narameters n.
f(a),f(x) = Marginal densities of o and x resnectively.

In equation (33) the distribution f(x;n) is iust the likelihood
function L(x;a) by definition. The distribution f(n) is called the
prior of o and f(a;x) is called the nosteriori distribution of a
since it is determined after the samnle x is determined and is con-
sequently cnnditioned by the test results,

The prior distribution f(n) generally reflects nrior knowledge
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or prior data on the nonulation narameters o before the test results
X have been generated. For the case of weapon system comnonents there
is at the present time little or no prior information and consequentlv
f(a) must reflect in some way our nrior ignorance of the values of .
Choosing the nrior distribution to reflect deprees of ipnorance is one
of the more difficult and questionable aspects of Bayesian statistics.
Much research work is nresently being conducted on the question of
prior distribution selection. Priors which rerresent maximum ignorance
for some of the simnler problems have heen found [19,2n]. It has also
been found, however, that a uniform nrior on the narameters yields
confidence intervals that are generally close to exact in a classical
frequency sense for a number of reliability indices. The uniform
distribution assigns equal nrobability tn all values of a random
variable over a given range. The robustness of uniform nriors is
discussed somewhat in reference [19]. Uniform nriors have consequently
been used in our reliability statistics work and have also been found
to be generally robust.

The distribution f(x) in equation (33) is considered to be a
constant and is determined so that the area under f(a;x) is unity.

Equation (33) can now be rewritten in the following form:

fla;x) = C L(x;0) (34)
where f(g;z) = Ponsteriori distribution of g_niven X.

C = Constant such that area under f(2;X) is unity,
The constant C contains the constant terms
f(x) and f(a).
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Lindley, D. V., "Introduction to Probabilitv and Statistics “rom a

Bayesian Viewpoint," Part 1: Probhability and Part 2: Inference,
Cambridge University Press, Cambridre (1965).

20Jaynes, E. T., "Prior Probabilities," IEEE Transactions on Svstems
Science and Cybernetics, Vol. SSC-4, No. 3, Sent. 1068, nn. 227-241,
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L(x;%) = Likelihood function.

In computing confidenced reliability our interest is not on the
parameters themselves but rather on a function of the narameters,
From probability theory [6] the cumulative distribution of any function .

z of the random variables o is determined by the relation

Fo(z3x) = [[[ £la;x)da (35)
D
Z
in which
Fz(z;z) = Posteriori distribution of Z
DZ = Domain of Z such that Z(2)<z
f(a;x) = Posteriori distribution of 2 riven by

equation (34}.

Once the posteriori distribution F(z;x) is known confidence
intervals can be constructed on z for any given confidence level CL
by determining the apnronriate nercentags points directlv from F(z;x!.
For example, a lower confidence limit is determined by solving the

following equation for z

L
FZ(ZL;E) = 1 - CL (36)
in which
z; = Lower confidence limit.
CL = Confidence level.

Since component mission reliability is a direct function of the

failure distribution and hence of the narameters, confidence intervals

Panoulis, A., "Probability, Random Variahles, and Stochastic
Processes,' McGraw-Hill, New York (1965).
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on mission reliability can be determined using the above formulation.
Solution of equations (34), (35) and (36) for confidence limits can

be accomplished numerically using comnuter routines.

Bayesian Confidence Intervals for Svstem Reliahilitv,

(a) Constant Failure Rate Commonents In Series.

Confidence intervals on comnonent reliabilitvy for con-
stant failure rate can be determined using the x2 distribution [2].
For a system of commonents in series, however, classical confidence
intervals can be readily determined only if all comnonents have eaual
test times. In this instance the system can be treated as if it were
a component with all failures being counted as system failures repard-
less of which components fail. The x2 distribution can again be used
to determine confidence limits.

For series components with unequal test times, however, classical
methods do not generally annly. For this case Bayesian statistics, as
discussed in the nrevious section, can be emnloved to determine confi-
dence intervals.

Consider the series svstem

Ne

|| R (37)
i=]

in which Rs Svstem reliability.

M, = Number of commponents.

Ri = Reliability of the ith comnonent.

2Llo_vd, D, K., and Livow, *., "Reliability: *fanapement, ‘lethods, and
Mathematics,'" Prentice-Hall, Englewnod Cliffs, New Jersev (1962),
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4 -A.T
For constant failure rate, Ri =e 1 and the system reliability

becomes
n
c
— -)\iT —)\ST
R = | ]e = e (38)
s q
i=1
where Ne
by = A
= iél 1

The system failure rate As is enual to the sum of the individual
component failure rates. The posteriori nrobahility density of the
individual component failure rates can be determined using equation
(34) by letting a = Ai. Since As is equal tn the sum of independent
random variables, the distribution for AS is equal to the convolution
of the individual component distributions [6]. Performing the required
convolution is generally tedious and it is at this noint that a simnli-
fying assumption is made. Using the Central Limit Theorem for sums of
random variables [6] it is assumed that the nosteriori distribution for
As is Gaussian. Consequently, all that is required is the mean and

variance of As to define the nosteriori distribution. These are deter-

mined using the relations

n

c
BRLY = igl E(A) (39)
Ne
Var(ks) = Z Var(ki) (40)
i=1
Where E(*) = Exnected value
Var(*) = Variance

6Panoulis, A., "Probability, Random Variables, and Stochastic
Processes,'" McGraw-Hill, New York (1965).
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Confidence intervals can now be constructed for As and hence for system
reliability using eauations (39) and (40).

The accuracy of making the faussian assumntion was checked and it
was found that a system with about ten comnonents and one to three fail-
ures experienced ner comnonent yielded relatively accurate confidence
intervals in comparison to true values. In the examnle nroblem consi-
dered test times for each comnonent were assumed equal which rermitted

the computation of classical confidence limits.

(h) Non-constant Failure Rate Components In Series,

For the series svstem enuation (37) annlies:

Equation (41) renresents a sum of indenendent random variables
and consequently the nosteriori distribution of lnRS can bhe determined
using the Gaussian assumntion as discussed in the nrevious section.

Confidence intervals can then he constructed from this distribution.

COMPUTER PROGRAM

Two comnuter programs have bheen nremared to rerform the comnu-

tations required for reliability data analvsis. One nrngram called
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DISTSEL performs goodness-of-fit comnutations and is used to assist in
distribution selection given comnonent failure and suspension data.
Included in this nrogram are comnutations of the standard error and
Kolmogorov-Smirnov statistic. At the nresent time, the theoretical
distributions that can be handled are the exnonential, two and three
parameter Weibull, two marameter lognormal, two narameter ramma and
the normal,

The second comnuter nrogram called RELIAB nerfnorms commutations
required to determine reliability and confidence 1imits for comnonents,
subsystems and system given comnonent data. The comnonent data in-
cludes failure and susnension times and the assnciated theoretijcal
distributions to be assumed.

The fortran listings of the comnuter nrograms are lensthv;
DISTSEL and RELIAB contain 17 and 25 subroutines resrectivelv, These
listings are consequently not contained in this rermort but can be
made available unon request. The innut data format for both nrograms
is presented in Appendix I and output data for a samnle prohlem are
given in Appendix II.

As a final note, it should be emnhasized that the comruter models
are flexible. Innut and output data formats can readily be chanced
for particular situations, rerhans to render the nrosrams comnatible
with a given computer data file system. Imnroved versions of the

programs will also be generated in the future.
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APPENDIX 1

INPUT FORMAT TFOR PROGRAMS DISTSEL AND RELIAB

The following listings give the card by card descrintion of the

innut data and format required by the reliability data analvsis

programs.
(a) Overall System And Subsystem Data Cards
Card Column
No. No. Descrintion Format
1 1-80 Overall svystem identification. Alnhanumeric
2 1-10 Number of missions over svstem life. I11n
11-20 Specified system life. F10.0
21-30 Desired confidence level for relia- F10.0
bility.
3 1-40 Number of components per subsvstem 4I10
for which data is supnlied. Un to
four subsystems can be handled.
4 to 4 1-80 Subsvstem identification. NSUB is the
+NSUB number of subsystems where one card

is used to describe each subsystem, Alphanumeric

(b) Element or Component Data Cards

The following data cards are renquired for each element

starting with the elements of the first subsvstem down to the elements

of the last suhsystem:
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Card Column Descrintion Format
No. No.
1 1 Theoretical distribution code number*, I1
2-10 Element identification code numher. 19
11-80 Description of element, Alnhanumeric
2 to ne 1 Code number for determining if data I1
* g on card is a failure time, a susren-
sion time or last card for current
element**, n_. is the number of
failures and n_ is the number of
suspensions.
2-11 Failure or susnension time. If this r1Nn.N
is the last card then the remaininr
columns are blank.
12-80 Descrintion of the failure or susnen- Alvhanumersc

sion.

*

* %

(c)

1

N UTE LN

il
2
5

Distribution Code Number:

- Exnonential

- Two parameter Weibull

- Three narameter Weibull

- Two narameter lognormal

- Three narameter lognormal
- Two parameter gamma

- Three narameter gamma

- Normal

Failure or Suspnension Cnde Number:

- Suspension
- Failure
- End of data

Sample Problem

The following is a listing of data irnut for a hvnothetical reli-

ability data analysis problenm:
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SAMPLE PROBLEM TO DEMONSTRATE RELIABILITY DATA ANALYSIS “YODEL
10 2000.,0 0.7n
& 1 1 0

SAMPLE PROBLE™ SUBSYSTEM A

SAMPLE PROBLEM SUBSYSTEM B

SAMPLE PROBLEY SUBSYSTEM C

1100000001 SAMPLE PROBLEM ELEMENT Al

2 1200.,0 SPACE FOR TAILURE DESCRIPTION
2 9n0,0 SPACE TFOR FAILURE DESCRIPTION
2 15n00.0 SPACE FOR TFAILURE DESCRIPTION
2 1300,0 SPACE FOR FAILURE DESCRIPTION
2 1350.0 SPACE FOR TFAILURE DESCRIPTION
2 1000.,0 SPACE FNR FAILUPE DESCRIPTION
2.13n0,0 SPACE TOR TAILURE DESCRIPTION
2 1100.0 SPACE FNOR FATILIRE DESCRIPTION
2 850.0 SPACE FOR FAILUPE DESCRIPTION
3

1100000002 SAYPLE PROBLE'f ELEMENT A2

2 15n0.0 SPACE FNR FAILURE DESCRIPTION
1 8000.0 SPACE FNR SUSPENSION DESCRIPTION
]

1100000003 SAMPLE PROBLE'Y ELEYENT A3

1 9000.0 SPACE FOR SUSPENSION DESCRIPTINN
3

2200000001 SAMPLE PROBLEM ELE“ENT Bl

2 1200.0 SPACE FOR TAILURE DESCRIPTION
2 900.0 SPACE FOR TFAILURE DESCRIPTION
2 1500.0 SPACE FOR FAILURE DESCRIPTION
2 1300.,0 SPACE FOR FAILIRE DESCRIPTINN
2 1350.0 SPACE FNR FAILURE DESCRIPTION
2 1000,0 SPACE FOR FAILURE DESCRIPTION
2 1300.0 SPACE FNR TFAILUPE DESCRIPTION
2 1100.0 SPACE FOR FAILURE DESCRIPTION
2 850.0 SPACE FOR FAILURE DESCRIPTION
3

4300000001 SAYPLE PROBLEM ELEMENT C1

2 1200,0 SPACE FOR FAILURE DESCRIPTION
2 9n0.0 SPACE FOR RAILUNE DESCRIPTION
2 1500.,0 SPACE FOR FAILURE DESCRIPTION
2 1300.0 SPACE FOR FAILUPE DESCRIPTION
2 1350.,0 SPACE FNOR FATLURE DESCRIPTION
2 1000.0 SPACE TOR FATILURE DESCRIPTION
2 13n0,.0 SPACE FNR FAILURE DESCRIPTION
2 11n0,0 SPACE ¥OR FAILIIRE DESCRIPTION
2 850.n SPACE ¥0OR FAILURE DESCRIPTINN
3
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APPENDIX II

OUTPUT DATA TNOR SAMPLE PROBLEY

The following pages contain outnut data renerated bv nrorrams

DISTSEL and RELIAB for the samnle innut data nresented in Apnendix I,
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RESULTS FROM PROGRAM DISTSEL

FAILED SPECIMENS AND “EDIAN RANKS,..

850,0

Iinn.n
1000.0
1100.,0
1200.0
13n0.N
1300,0
1350.,0
1500.n

N.07447
0.18085
0,28723
0.39362
0.50000
0.60638
0.71277
0.81915
0,92553

SPACE
SPACE
SPACE
SPACE
SPACE
SPACE
SPACE
SPACE
SPACE

FOR
roR
FOR
rOn
FOR
FOR
FOR
FOR
FOR

FAILURE
FAILURE
FAILURE
FAILURE
FAILURE
FAILURE
FAILURE
FAILURE
FAILURE
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DESCRIPTION
DESCRIPTION
DESCRIPTION
DESCRIPTION
DESCRIPTION
DESCRIPTION
DESCRIPTION
DESCRIPTION
DESCRIPTION




STANDARD ERROR OF ESTIMATE...

DISTRIBUTION Sl
EXPONENTIAL n.280808E N0
NORMAL N.566338E-N1
LOG-NORMAL 0.657507E-01
WEIBULL-2 PARY, 0.5318N6E-01
WEIBULL-3 PARM, N.642205E-01
GAMMA-2 PARM, 0.832nN0E-N1
DISTRIBUTION SELECTED... WEIBULL-2 PARAMETER

K-S STATISTIC ( 0.141) IS LESS THAN TABLE VALUE ( 0.388)
THEREFORE MAY ACCEPT HYPOTHETICAL DISTRIBUTION AT 10 PERCENT LEVEL




1339

1195

1067

352

850

SAMPLE PAOBLEM TG DEMONSTRATE RELIABILITY DATA ANALYSIS MODEL MAACH 1973
|
100000000 SAMPLE PROBLEM ELEMENT A1

EXPONENTIAL DISTAIBUTION...LEAST SQUARES ESTIMATE MEAN LIFE = 1148.173

—— X
X
X | X
—+ x
X
X
X
—4— X
.00l .1 .as .10 .20 .40 .60 .80 .B

CUMULATIVE DISTRIBUTION



DATA
1500

1370

1240

1110

980

BS0

SAMPLE PROBLEM TO DEMONSTRATE RELIRBILITY OARTAR ANALYSIS MODEL MARACH 1973

——

——

—

100000000 SAMPLE PROBLEM ELEMENT A1
NORMAL OISTRIBUTION...LEAST SGUARRES ESTIMARTES MEAN LIFE = 1166.665 ‘
STANDRARD DEVIARTION =24S5.0730

X

i " n
" e s T — B Ll T T

+ -

.001 .01 .05 .10 .20 .4 .60 .80 =230, .98 49

o CUMULATIVE DISTRIBUTION
Y



SAMPLE PROBLEM TO DEMONSTARTE RELIABILITY OARTA ANALYSIS MODEL MRACH 1973

100000000 SAMPLE PROBLEM ELEMENT A1
0ATA LOG NORMAL DISTAIBUTION...LERAST SQUARES ESTIMATES  MEAN LIFE = 1175.337
STANDARAD DEVIATION =259.4438

1500 X

1358 L

1195 L

1 L

ssz L

8s0 L

.001 .01 .05 .10 .20 .40 .60 .80 .90 .95 .99

aE CUMULATIVE DISTRIBUTION




SAMPLE PROBLEM TO DEMONSTRATE RELIABILITY DATA ANALYSIS MODEL MARCH 1373

1U00o00au SAMPLE PABBLEM ELEMENT A1
0aTA 2-PARM. WEIBULL...LEAST SQUARES ESTIMATES  SHAPE = S.587
‘ SCALE = 1259.00
1500 o X
/
1339 _L
118S +
1067 L
352 4
8S0 il 18 DY
+ + t + + + + e

.001 o5 | .0s 10 .20 .40 .60 .BD .80
CUMULATIVE DISTRIBUTION



SAMPLE PROBLEM TO OEMONSTRATE RELIABILITY OATA ANALYSIS MODEL MAACH 1873

100000000 SAMPLE PROBLEM ELEMENT Rl

TR 3-PAAM. WEIBULL...LERST SQUARES ESTIMATES  SHAPE = 2.9y
’D i SCALE = 6uB.B66

803 4 LOCATION = 597.253

700 L

S43

yer L

326 1_

253 | "

i
T

: i n

05 .10 .20 .40 .60 .80 .90
CUMULATIVE DISTRIBUTION

at
—

.001 .
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SAMPLE PROBLEM TOQ OEMONSTRATE AELIABILITY OATA ANALYSIS MOOEL MARCH 1973

100000000 SAMPLE PAROBLEM ELEMENT A1l
GAMMA OISTRIBUTION...2-PRAAMETER MAXIMUM LIKELIHOOU ESTIMATES ALPHA = 30.714
BETR = 37.984

CUMUL

1.00

0.88

0.75

0.25

0. 13

. 00

G. G0

90.00

100. 00

.
110.00

DATA
68

120.00
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-
130. 00

140. 00

150. 00
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