GRAFH INFORMATION RETRIEVAL LANGUAGE; PROGRAMMING MANUAL FOR FORTRAN COMPLEMENT

\ NAVM SHIP RESEAR(}H AND DEVELOPMENT GENTER

Bethesda, Maryland 20034

GRAPH INFORMATION RETRIEVAL LANGUAGE;
PROGRAMMING MANUAL FOR FORTRAN COMPLEMENT

LIBRARY
| _ by |
aps 81 1903 S. Berkowitz, Ph.D.

U.S. NAVAL ACADEMY

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

COMPUTATION AND MATHEMATICS DEPARTMENT
RESEARCH AND DEVELOPMENT REPORT

|
June 1973 Report 415/

Y4

The Naval Ship Research and Development Center is a U. S. Navy center for Iaboratory
effort directed at achieving improved ses and air vehicles, It was formed in March 1967 by -
merging the David Taylor Model Basin at Carderock, Maryland with the Marine Engineering
L.aboratory at Annapolis, Maryland. ') i

Naval Ship Research and Development Center
Bethesda, Md. 20034

MAJOR NSRDC ORGANIZATIONAL COMPONENTS

®REPORT ORIGINATOR

NSRDC
COMMANDER

00
TECHNICAL DIRECTORm

OFFICER-IN-CHARGE

OFFICER-IN-CHARGE

CARDEROCK ANNAPOLIS
SYSTEMS
DEVELOPMENT
DEPARTMENT .
SHIP PERFORMANCE AVIATION AND
DEPARTMENT SURFACE EFFECTS
15 DEPARTMENT
STRUCTURES COMPUTATION
DEPARTMENT AND MATHEMATICS

SHIP ACOUSTICS

DEPARTMENT 8

PROPUL SION AND-
AUXILIARY SYSTEMS

DEPARTMENT 19 DEPARTMENT

MATERIALS CENTRAL

DEPARTMENT INSTRUMENTATION
2 DEPARTMENT

NDW-NSRDC 3960/ 44 (REV. 8/71)
. GPO 917-872

DEPARTMENT OF THE NAVY

NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER
Bethesda, Maryland 20034

GRAPH INFORMATION RETRIEVAL LANGUAGE;
PROGRAMMING MANUAL FOR FORTRAN COMPLEMENT

by
S. Berkowitz, Ph.D-

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

June 1973 Report 4137

TABLE OF CONTENTS

ABSTRACT. . . - .« v o v L e e s e e e e e e e e e e
ADIINISTRATIVE INFORMATION.
I. INTRODUCTION.« . . ¢ o v o v i i v i e v e

II. A GRADED PROGRAM OF EXAMPLES. . . . « « v v v v v w v vt ..
IDENTIFIERS, FUNCTIONS © & » « v v v v e e e e e e
INSERTION. e e
RETRIEVAL, INDEX R L
TRANSFER © « © v v v e e e e e e e
DELETION « v v v v v e e e e e e e e e e e
DATA, SEQUENTIAL SPACE . . « v v v v v e e e e e e,
INELUSION e
RECOGAITION AND GEMERAT /i . o v v e e e e e

IIT. THE SYNTAX OF GIRL/FORTRAN. . . . v v v v v v v e e e e vt
THE GIRL/FORTRAN PROGRA' . . .+ v v v v v v v e v e .
BLANKS &+ o o v o t v e e e e e e e e e
DEFINITIONS, IDENTIFIERS+ + © v v v v v v e v v o
NUMERIC, HOLLERITH DATA. © « . v v v v v v e v v v e e u
TRANSFERS, LABELS, COMPARISCHS+ + v v v v v v . . .

UNPARENTHESIZED STATEMENTS « . v v v v « v « .
Identification.00
Insertion . . e e e e e e e e e e e e e e e e e
Retrieval e e e e e e e
deletion. L . . e e s e e e e e e e e
cComparison. L L L L e e e e e e e e e e
. Inctusden.. . . L L L . L e o s e e e e e
Indication. o e e e e e e

PARENTHESIZED STATEMENTS « v « v v v v v o
GIRL STATEMENT v v v v 0 0 v v v v e e e

NO OIS DS —

IV. TWPLEMENTATION AND OPERATIONAL REQUIREMENTS
CIRL/FORTRAN TRANSLATION « . o o o o v v v ..
MEMORY ALLOCATICHN.« o o o . o o o v o ..
GIRS FUNCTICM EXECUTIOM TIMES.

ii

GIRL DECK SETUPS.

Batch-Entry Deck Setups for a GIRL/FORTRAN Program. .
Batch-Entry Deck Setup for Cataloguing a Graph Prior to

Compression or Expansion. . S

» . -

Batch-Entry Deck Setup for Graph Memory Compress or

Expansion L. ...
NOTATION. Ce e e
CHANGES IN THE MANUAL

ACKNOWLEDGMENTS.

APPENDIX A ~ EXPRESSIONS IN GIRL
APPENDIX B - GIRL MNEMONICS CARDS.
APPENDIX C - PARENTHESIZED STATEMENT BNF SYNTAX.

.....

ABSTRACT

| GIRL (Graph Information Retrieval Language) is a
programming Tanguage designed to conveniently manipulate
informatibn in graph structures. As such, the language
will play a key role in the construction of. the organizational
schemes found, for example, in information retrieval, pattern

- recognition ‘problems, Tinguistic analysis, and process
scheduling systems. The language is written to complement
an algebraic language, in the sense that GIRL statements are
distinguished from the statements of the algebraic language
~and the statements may be interleaved. The primary advantage
of separating symbolic and numeric statements is that the
programmer is afforded a Tinear, one-one trace of graph

operations in~the code description.

ADMINISTRATIVE INFORMATION

The ‘work of this report was carried out in the Computer Sciences Division

under the sponsorship of SHIPS 00311, Task Area SR0140301, Work Unit‘l

- 1-1834-001. .

I. INTRODUCTION

GIRL (Graph Information Retrieval Language) is a programming language
designed to conveniently manipulate information in graph structures. As
such, the Tanguage will play a key role in the construction of the
organizational schemes found, for example, in information retrieval, pattern
recognition problems, linquistic analysis, and process scheduling systems.
The language is written to complement an algebraic language, in the sense that
GIRL statements are distinguished from the statements of the algebraic
Tanguage and ‘the statements may be interleaved. The primary advantage of
%eparating symbolic and numeric statements is that the programmer is afforded
a Tinear, one-one trace of graph operations in the code description. From
an opposing pointof view, Feldman and Rovner's LEAP] and Ross' AED-02, for
“exampte, are extensions of ALGOL in the sense that graph or 1list operations
are interspersed with numeric operations. The result is that code sequencing

“of graph operations is bound by the infix, phrase substitution nature of the
algebraic language, and does not Tend itself to an easy scan of the graph.

On the other hand, the ALGOL extensions offer a uniformity of notation

necessarily missing from GIRL.

1 Feldman, J.A. and Rovner, P.D., "An ALGOL-based Associative Language,"
Communications of the Association for Computing Machinery, Vol.12,
No. 8, pp. 439-449 (1969).

2 Ross, D.T., "A Generalized Technique for Symbol Manipulation and Numerical
Computation," Communications of the Association for Computing Machinery,
Vol. 4, No. 3, pp. 147-150 (1961).

2

Graphs are composed of structures of (source node)-(Tink)-(sink node)

triples, one of which is illustrated here. One may think of such

a structure as a function B of argument A, and value C, read as: "B of A

is C". Moreover the function can be multivalued in which case B points to

“an ordered set of sink nodes, a list.

The function of GIRL is to insert, identify, retrieve, delete, aﬁd
compare node-1ink-node triples. One purpose of GIRL is to serve as a base
for a more sophisticated 1ahguage ca‘Hed‘PIRL3 which will genera]ize the
GIRL range of arguments from nodes and lists to arbitrary, directed graph
structures. Nonethelkss, GIRL is a powerful and efficient language in its
own‘right,‘comparab1E‘1n‘scopé'say‘tO"LISP4. Whereas LISP is based on 6
recursive function structure—in theory at least—=GIRL acknowledges the
need for indexed iteration and labelled transfers, while at the same time
permitting recursive functions if they are permitted by the complementary
algebraic language. In-addition, the arithmetic-capability of GIRL/FORTRAN
or GIRL/ALGOL s as good as that of the algebraic language, whereas the

arithmetic capability of LISP has been traditionally awkward at best.

3 Berkowitz, S., "PIRL - Pattern Information Retrieval Language - Design
of Syntax," Proceedings of 1971 National Conference of the Association
for Computing Machinery, pp.496-507.

4 McCarthy, J., et al., "LISP 1.5 Programmers Manual", MIT Press,

Cambridge, Massachusetts (1962).
3

Perhaps the best way to-learn GIRL 1is by studying and working out

‘examples. Accordingly, the next Chapter presents a graded series of.

"example graph problems, some worked out, some not. 'The alternative approach
- would be to study the syntax and to work the examples by deduction. The

- deductive approach“iS"notirecommended“sinCE“the“Tanguage‘can provide very

- .comptex code. The inductive.approach, on the other hand, begins with simple

~Tinguistic structures which lend themselves well to intuitive generalization.

- Chapter- TII presents the detailed syntax of GIRL. The symbols used

specify the implementation Tanguage. The format of presentation is as
- follows: a fragment of syntax in Backus-Naur form (BNF) or a modification
“thereof, followed by explanatory semantics, and concluded with annotated

“examples-or-a” reference to the examples in Chapter II.

© ~The Tast- Chapter-contains details of implementation, such as publication

“notation; memory allocation, control-cards, run-times. Since the language
“or its implementation may be-expanded or revised, updates to the Manual

" will appear” from- time to time.

o Therrationale for the form of the GIRL Tanguage may be found in the

ﬁorigina1'désignépaper

5,"Since,wrﬁting“the'paper,“moreover,'other considerations

“have shed-more Tight- on" why a graph processing language should have the
“formof GIRL. . Some of these considerations are reviewed 'in the Manual and

“-some will be issued as future attachments.

A version of GIRL has been implemented and operational since 1969. It

“has been-used in-syntactic parsing, pattern recognition, sparse matrix

computation, information retrieval, network design, and an auditing compiler.

5v'Berkow1ti; S.s "é%aph'Ihformation'Retrieva1 Language - Design of Syntax",
~in "Software Engineering! edited by J. Tou, Vol.2, Academic Press,
New York, pp. 119-139 (1971).

IT. A GRADED PROGRAM OF EXAMPLES

This chapter presents a series of examples designed to give the reader
a notion of the power and flexibility of GIRL. The examples are graded
within each section in the sense that they become progressively more
complex, and they are cumulative in the sense“fhat‘an example may require
knowledge gleaned from.previous. examples. However, the examples do not
comprehend all the details. and structural variations of GIRL/FORTRAN.
Rather, if the reader carefully studies each example to see what it presents

that he has not seen before, he is sure to ask a question beginning "What

Jif. 07" It istprecisely:this spark of curiosity that we intend the Chapter

. to enkindle.” A reader with a:question of this software will find the

answer by a-study of the appropriate semantics and syntax (in that order)

-displayedin Chapter III..

"~ In the examptes, a personnel - file is constructed and manipulated. The

reader should ‘understand. that the example system is neither a complete

" nor even a suitable way to approach the problem area. Rather, the example

~ system offers complex data structures that we-use: for convenience in

teaching GIRL." An excellent way for the reader to test his knowledge and

“to appreciate the conciseness.and legibility of GIRL would be to code

more realistic brograms in areas such as information retrieval, job shop
simulation, program management, or syntactic analysis.
For the sake of reference, a table of GIRL expressions is supplied in

Appendix A. -A mnemonics cut-out card is provided in Appendix B.

IDENTIFIERS, FUNCTIONS

1) Create a random node and call it NOUN2:

G $'NOUN2

2) Create the random nodes NOUNT, NOUN2, NOUN3:
G DEFINE NOUNIT,NOUN2,NOUN3

3) Create a random node and call it both X1 and X2:

G $:X1'X2
or G $ §X1,X2)

or G $('X1,'X2)
The identify (sometimes called name, define) operation ' offers a preview
of some basic principles of PIRL/GIRL, namely:

Statements are read and executed strictly from left-to-right,
leaving a value after the execution of each operation. The value
effectively initiates a new left-to-right execution (or statement
termination). In the case of identification, the operation leaves
the previous value unchanged.

A statement may be broken at any point to serve as a prefix to a

parenthesized Tist of suffixes. Since execution occurs strictly

from left-to-right, the value or operation remaining in front of the

left parenthesis serves as the initiator for all the suffixes. Since
- nesting may occur to any level, a GIRL statement is a right-branching

tree.

Identifiers are FORTRAN integer variables whose value is the address
of some node.

4) If RAND(S) is a FORTRAN function which generates an integer from some
algorithm (say a uniform density on [0,MEMSZE] where MEMSZE is the graph
memory size), then name the resulting number, i.e., node, X1 and multiply
it by 2:

G *RAND(S)'X1
X1=X1%2

Unless explicitly stated otherwise, the identifiers used in’the following

examples are all defined.

INSERTION

PERSON

5) Insert the following graph:

G FILE PERSON DOE

6) Add SMITH and JONES to the file graph in (5)
G FILE PERSON (SMITH, JONES)

7) Describe SMITH by 1inking him with the attribute MARRIED to a new node
to be called NO, with the attribute SUPPORT to himself, and with the
attribute SUPERVISES to JONES, DOE, and BROWN:

G SMITH(MARRIED $'NO,SUPPORT SMITH,SUPERVISES (JONES,DOE,BROWN))

8) Simi}ar]y, JONES is not married, supports himée1f, DOE, and two others,

works in PROJECT1 under SMITH:

G JONES(SUPPORT(JONES,DOE,"2"),MARRIED NO, WORKSIN PROJECTI
' UNDER SMITH) ‘

(Note the integer data insertion "2".)

9) What doeslthevfi1e graph look Tike now? How many multivalue Tists ake
there? How many circuits? (e.g., JONES WORKSIN PROJECT1 UNDER SMITH

SUPERVISES JONES is a circuit.)

RETRIEVAL, INDEX ‘

de)‘Retrieve the first and second values of the JONES SUPPORT 1ink, and
call the values V1 and V2, respectively. Find the person V2 SUPPORTs
and call him V3

G JONES+SUPPORT('V1, .2'V2+SUPPORT'V3)
That is, A+B elicits the first value on its value list. Lists are not

named in GIRL! (A+B.1 is the same as A+B in GIRL.)

11) Test whether or not the file graph contains information about DOE's
marital status. If it does, go to statement BOQﬁ otherwise to 400,

G DOE+MARRIED/400/300

12) Find the second person whom JONES SUPPORTs and ask whether it{is DOE.

If not, go to NEXT; if so, continue to find whom JONES SUPERVISES and whom

the‘ first such person SUPPORTs. Call the latter V4. .
JONES+(SUPPORT.2=DOE/NEXT, SUPERVISES+SUPPORT'V4)

Note that a point (.) indicates an operation, just as does the plus (+) sign.

That is, .2 applies not as index to SUPPORT, but to the result of the pre-

ceding - prefix phrase JONES+SUPPORT. Similarly, SUPERVISES+SUPPORT is not

a phrase; rather, SUPERVISES épp1ies to JONES+ and then (in strict left-to-

right scan) +SUPPORT applies to the result of JONES+ SUPERVISES.

Note also that /NEXT is a failure transfer, with "continue" on success.
Similarly, //NEXT would be a success transfer with "continue" on failure.

A11 operations may be tested for success or failure.

TRANSFER

13) 1Is the third person on the file graph married? Ifso,:go to statement
300; if not, go to statement 400.

G FILE+PERSON.3+MARRIED=NO/300/400
Be careful. Compare the transfer here with the previous example. The word
NO has no particular meaning in the graph. The transfer tests only the

success or failure of the previous operation.

14) Name all the multivalue Tists upon which the node JONES can be found.
Will FILE+PERSON.I=BROWN succeed for some value of I?

JONES can be found on:
the PERSON Tist from FILE along with DOE and SMITH
the SUPERVISES 1ist from SMITH along with DOE and SMITH
the SUPPORTS 1ist from JONES along with "I2"
Though the single node JONES can be found on each of these three lists,
each Tist retains its individual structure as iTlustrated in the following

diagrams, so that nodes on one Tist cannot be accessed by indexing another

list. @

PERSON

O DECE

That is, although JONES is on both the Tists diagramed, one cannot access

SUPERVISES

BROWN by writing FILE+PERSON.5 as one might think if he were to draw the

picture as shown below:

<:::::>PERSON
G
T

SUPERVISES

16) Let us give another name to the project that JONES -WORKSIN: we
will call it WORKSIN. Can we still find the project that JONES works
in? If yes, go to 350; otherwise, continue to the next statement.
G JONES(+WORKSIN 'WORKSIN, +WORKSIN//350)

The interpretation of this statement is a matter of definition. In order
to illustrate the definition, we replace each 1dentif1er with its defined
value in a strict left-to-right scan.

Suppose the initial values of JONES, WORKSIN, PROJECT1 are 100, 300,
500, respectively. That is, GIRL identifiers are FORTRAN variables, and
have values which might, by the way, be detrimentally changed in the
complementary FORTRAN program if the programmer were careless. Then the
statement has the evaluation:

JONES+WORKIN: 100+300 has the value 500

"WORKSIN: WORKSIN has the new value 500
JONES+WORKSIN: 1004500 has no value

.. The Tast retrieval operation fails and control passes to
the next statement

DELETION

16) Correct the damage done to the file graph in 15, delete the MARRIED
Tink of SMITH, verify that he is not DOE's supervisor. If in fact he is
DOE's supervisor, go to 350; otherwise continue to ask whom he does
supervise and 1a§e1 the first such person as EE.

WORKSIN=300

I=0

400 I=I+1
G SMITH(- MARRIED, +SUPERVISES.I/450#DOE/350/400)

G 450 SMITH+SUPERVISES'EE
350

10

An equivalent code is'
WORKSIN=300
I=0
G 400 SMITH(-MARRIED, +SUPERVISES."I=I+I"/450#DOE/350/400)
G 450 SMITH+SUPERVISES'EE
350
That is, double quotes may enclose an arbitrary, integer-valued FORTRAN
arithmetic statement—or arithmetic expression for that matter—and thus,

in this case, embody the iteration within the GIRL statement.

DATA, SEQUENTIAL SPACE

17) DOE has BS, MS, PHD degrees (Hollerith data), and received them in
years 1956, 1958, and 1961 . (integer data),respectively. Add this
information to DOE's dossier by interleaving degree and data as Hollerith
and integer data, respectively.

G DOE DEGREE('//BS‘,"1956", '//MS',"1958", '//PHD',"1961")

¢
18) For quicker access, let us repeat the previous example, but rather

put the data into sequential space; i.e., into the array SEQ, beginning,
say at SEQ(31). We might also modify the BS and PHD degrees by the
attribute GRANT, indicating, say, that DOE attained the degree under a
company grant. Note now that the cells in each block of SEQ must be of a
uniform data type. 4
G DOE(DEGREE;31;3 '/30/BSbbbbbbbbMSbbbbbbbbPHDbbbbbbb ',

GRANT (33533 YES, .2 NO, .3 YES),

WHEN(339:;3 ~ "1956", .2 "1958", .3 "1961"))
The indices refer to item locations on the respective lists. It would

have been more efficient to have placed all items except the first of each

list into SEQ by direct FORTRAN statements.

1

If one were to look at the vector SEQ, one would find:

Address Contents Form
SEQ(31) 3 (number of items in block)
" (32): BS (Hollerith)
(33) MS (Hollerith)
(34): PHD (Hollerith)
(35): 3 (number of items in block)
(36) YES (identifier)
(37): NO (identifier)
(38): YES (identifier)
(39): 3 (number of items in block)
(40): 1956 (integer)
(41): 1958 (integer)
(42): 1961 (integer)

Note that although SEQ affords quicker indexing access, it also constrains

one to specify and remember the dimension of each block of SEN beforehand,

thus losing the dynamic storaage capability of nonsequential memory. On the”

other hand, note that any node identifier placed in sequential memory may

be Tinked further just as in nonsequential memory. Thus,
DOE+GRANT+WHEN/FALL

is perfectly legal even though in our case it would FAIL since neither

YES nor NO has yet been given a WHEN LINK.

19) 'Find DOE's second degree, call it DEG, and change its associated date
to 1957 (not for the SEQ internretation).

G DOE(+DEGREE./2'DEG, DEGREE ..2 "1957")
Do the same for the SEQ interpretation.

There are index retrieve, insert, and delete operations at a given
1ist location both for data of ynspecified type and also for specified
identifier, number, and Hollerith data. The operations aré.mu1t1-symb01
and have the following mnemonics: The point (.) indicates an index.

12

The minus (-) preceding an index point indicates a deletion at the indexed
location. (When the deletion follows the Tink identifier of an insertion,
the insertion is destructive at the designated location.) When a minus
(=) follows an index point, it indicates a 1ist location to be fqund by
counting up from the bottom of the 1ist. A slash (/) indicates Hollerith
data, another point (.) indicates numerical data, and an:equal sign (=)
indicates an identifier. Thus, -..3 means "delete third numerical item

on the preceding Tist." Similarly, -.3 means "delete the third item on
the preceding 1ist." Again, coding .-."I=I+1" would mean "retrieve the Ith
numerical item counting from the bottom of the Tlist, where I has been
replaced by I+1." The table at the end of the chapter 1ists the possible
combinations. Note that identifier values (integers) and numeric integer

data are distinguished, even in sequential space.

20) Give at least three expressions that will change DOE's PHD to an MD,
(There are more than three.) One might use the facts that ./M will access
(by index) or insert the Mth Hollerith datum, that -./M eliminates such a
datum, that .M accesses by index the Mth 1fem closes up the 1ist and leaves

as its value the M+1th item.

21) Let us look a bit more closely now into the semantics of retrieval,
insertion, deletion, and indication. |

G DOE+DEGREE
retrieves the first element of a list. But

G DOE+DEGREE.3
increments the retrieval to indicate the third element of the 1ist. Now

G DOE-DEGREE
deletes the whole Tist (and leaves DOE +DEGREE)!! Why not delete just the
first element, to be consistent? Or on the other hand,why should DOE+DEGREE

13

not retrieve the whole 1ist? Indeed, the latter question is the key to
our rationale. We do wish to retrieve the whole Tlist, but in GIRL we have
no means of identifying or stacking the 1ist. In PIRL3 this will be
remedied. How, then, shall we now delete DOE's third DEGREE?

G DOE+DEGREE-./3
How shall we insert MA as the second degree, while at the same time
eliminating the previous MS degree?

G DOE(+DEGREE-./2, DEGREE ./2 '//MA')

or, more concisely, we imbed the retrieval tacftly in an insertion:

G DOE DEGREE -./2 '//MA'

22) Push the DEGREE 1ist down by adding another BS at the top:
G DOE DEGREE ./1 '//BS'
Pop the DEGREE 1ist back.
G DOE+DEGREE-./1'DEG
What is the value of DEG? It is DOE+DEGREE./1 (before deletion).

23) Now replace the whole DEGREE 1ist by an MA.
G DOE DEGREE -'//MA'
That is, minus (-) without index after a link identifier represents a

destructive insertion.

24) Do the following statements mean anything?

G DOE-DEGREE.2
G DOE -.2 DEGREE

No, since .2 is an operational on a list, and as yet the 1ist has not been
accessed. (In PIRL, however, these will be legal since a list may have

been identified by DOE.)

14

25) JONES' monthly expense ACCOUNT is located in a matrix ACNT. Point to
it.
G JONES ACCOUNT "LOC(ACNT)"

26) Now retrieve and update the Ith item in JONES' ACCOUNT by $3000,
presuming ACNT to be in labelled COMMON. Note that LOC is a CDC FORTRAN
EXTENDED function to compute the addreés of its argument.
G JONES+ACCOUNT 'J
K = J-LOC(J)+I
J(K) = J(K)+3000
The matrix ACNT has to be in labelled COMMON in order to preserve its

relative address from execution to execution.

27) Conversely, if JONES' account had originally been put into ACNT,
the ACNT could be inserted into the graph by

DO 1 I=1,N
G 1 JONES ACCOUNT “ACNT(I)"

What if his ACNT held a list of the types of expenses (i.e., identifiers)?

INCLUSION

28) Find out if SMITH is in the PERSONnel FILE.

J=0
G AGAIN FILE+PERSON."J=J+1"/NO=SMITH/AGAIN

or, equivalently,

G . FILE+PERSON :SMITH/NO

29) The inclusion operation : is read as "contains". Which FILE location
contains SMITH?
G FILE+PERSON :SMITH/NO'LOC

15

30) Eliminate SMITH from the FILE.
G FILE+PERSON(:SMITH/NO 'LOC, -.LOC)
or, equivalently, since the value of :SMITH is its 1ist location,

G FILE+PERSON -.:SMITH

31) Put SMITH back into the FILE.
G FILE PERSON .2 SMITH

32) Put SMITH back at the end of the FILE only if he is not already in the
FILE.

G FILE(+PERSON' :SMITH//IN, PERSON SMIfH)
or, in abbreviated form,

G FILE PERSON :SMITH//IN SMITH

33) Replace SMITH by BROWN only if JONES is in the FILE.

G FILE PERSON :JONES/NO .:SMITH BROWN
That is, add to the FILE of PERSONnel which contains:JONES the replacement
of SMITH by the name of BROWN. This is shorthand for

G FILE(+PERSON(:JONES/NO, ZSMITH/NO 'LOC),PERSON .LOC BROWN)

RECOGNITION AND GENERATION

34) Note that the PERSONnel FILE 1is basically a generative 1ist. When a
recognition query is posed, the membership operation is necessary, but if
such queries were common, it might be easier to restructure the FILE as

a recognitive tree. For example, one might insert:

G FILE(DOE FILE, SMITH FILE, JONES FILE)

16

Then asking for SMITH or deleting him would have the respective forms:

G FILE+SMITH
G FILE-SMITH

The foregoing distinction between recognitive and generative memory structures
is fundamental. The inc]usion.operation offers an abbreviated notation for
accessing a list by content rather than by index, and thus offers an
effective, temporary restructuring of a generative 1ist for recognition
purposes. Since indication seems to be the complement of inclusion, one
might think that a restructuring of;a recognitive relationship should be
avéi]ab]e, namely: xpJ meaning generate the Jth link of the node x.

This reasoning is correct, but the underlying hashed-address memory scheme
does not yet permit'such commands to be realized. The situation will be

remedied in the PIRL 1anguage3

, in which subgraphs are handled much as
generalized nodes in the sense that one may query memory as to instances of
a‘subgraph schema of given form but only partially specified node or Tink
component. Due to the structure of the currently simulated associative
memory, if one wanted the link 1ist of a node available, the only practica1

way to handle it would be to explicitly imbed the 1ist in the graph via a

distinguished 1ink.

17

ITI. THE SYNTAX OF GIRL/FORTRAN

THE GIRL/FORTRAN PROGRAM

A GIRL/FORTRAN source program consists of interteaved blocks of GIRL
and FORTRAN statements. The form of FORTRAN statements is specified

e1sewhere6.

GIRL statements are distinguished by a G in the first column. In all
other respects, the statement identification, continuation, statement, and
comment fields for punched-card/tape format are exactly the same as for
FORTRAN.

The Tabels which fill FORTRAN statement identification fields are
restricted to positive integers less than 20000. GIRL labels are discussed
below.

In the syntax, the metasyntactic symbols ::= (is defined to be)
and | (exclusive or) are used as part of the usual Backus-Naur (BNF)
notation. A string of small Roman characters represents a syntactic
category and FORTRAN Hollerith characters form the terminal alphabet.

Phrases enclosed between double lines ||...|| are descriptions of categories
easily understood but not easily represented by a usual syntactic
description. For example,

emp =: ||empty category]| (0)
represents the empty category; i.e., the null alternative when "emp"

appears in the right=hand side of a syntax statement.

MAmerican Standard FORTRAN", American Standards Association, New York
(1966).

18

BLANKS

o Semantics:
Blanks are required only to separate identifiers and/or labels not
otherwise separated by operators or delimiters. Otherwise, blanks may be
used without restriction. The syntax will not formally specify the use of

blanks since they are properly a lexical cohcern.

DEFINITIONS, IDENTIFIERS

o Syntax:
define ::= DEFINE 1idf1 (1)
idf1 1= idf | idf1, idfl (2)
idf ::= | |[FORTRAN alphanumeric identifier]|| (3)
id ::= idsub i (4)
i = 'df | i 'idf | emp - | (5)
idsub ::= idf | $ | * idf (idcf1) | (6)
idcfl ::= idf | cons | idf (idcfl1) | idcfl, idcfl (7)
cons ::= | |FORTRAN constant]| | (8)

o Semantics:
Identifiers must be defined before use as FORTRAN variables by giving

them the value of an internal node of the graph. One way to do this is to
use a DEFINE statement (define), especia]]y‘when'a large numbér of variables
are to be assigned node addresses at once. The DEFINE statement must be the
first executable statement in a GIRL/FORTRAN program, and there is at most one
such statement in the program. The identifier 1ist (idf1) which forms the
argument of DEFINE is of arbitrary length. Although the defined identifierS'
are in fact integer variables, the programmer should not explicitly declare
them to be so. A means of definition by the operator quote (') is given in

Equation (5). Any variables thus defined must be tacitly INTEGER or

explicitly declared to be so.
19

FORTRAN alphanumeric identifiers (idf) and FORTRAN constants (cons) are ‘
defined e]sewhere.6 However, a restriction is that identifiers may not ,
begin with LV. By writing the symbol §, one can generate a random internal
address, not otherwise used, in place of an identifier. Similarly, a uni-
valued function (* idf (idcf1)) may be defined exactly as a (non-recursive)

FORTRAN function subprogram6 and used in place of an identifier.

o Example:
(i) Three ways to have X and Y reference the same randomly generated
node:

*RANDM(START) 'X 'Y , where RANDM generates a
random number between 1 and
the graph memory size.

$'X 'Y

DEFINE X, Y

(ii) See examples 1 through 4 in the previous Chapter.

NUMERIC, HOLLERITH DATA

o Syntax:

data = ::= "aes" | '//hng' | '/integer/ h' (9)

aes ::= | |FORTRAN arithmetic expression or statement]] (10)

hng ::= anq | h ang (11)

h ::=a | ha (12)

anq se=digit [A, 2+ = LX) =] #] ’
AR (13)

a ::=anq | ' (14)

integer ::= digit | integer digit (15)

digit 2:= 0,...,9 (16)

dseq 11= 3ive; dve | emp (17)

ive pi= 9df | int | "aes" (18) '\Ka

20

-

o Semantics:

In Equation (13), the notation A,...,Z stands for a disjunction of the
letters of the alphabet; similarly, for 0,...,9 1in Equation (16).

Sink nodes, besides representing identifiers, also represent graph-
held or matrix-held data (data) expressed as an arithmetic statement or
expression (aes), as an uncounted Hollerith string (hng) without quote ('),
or as a pre-counted Hollerith strifg {(h) possibly including a quote. The
length of the pre-counted string must match the integer between sTashes,
whereas the length of the uncounted stking'is bounded only by the capacity
of memory. Hollerith strings of ten characters or less may be stored in
the graph or in the matrix SEQ. A longer Hollerith string must be stored
in one block of the matrjx SEG, Each SEQ matrix cell holds ten Hollerith
characters except for the last cell of a block which contains ten or less
characters, left-justified. Both identifiers and numeric data occur as
sink nodes either in the graph or in SEQ. In order to set up a data block
in SEQ, one uses the declaration dseq (see Equation (17}) in an insertion
operation, as discussed later for Equations (33) and (34). In Equation (17)
the first integer variable or constant (jyg) represents the address of the
head cell of a SEQ block. The second ivc whose value is stored in the head
block cell, represents the number of items in the block. The data of any
block follows the head cell of the block and its type is homogeneous through-
out the block. The type of data is denoted by the indicator "ivc for
numeric data and the indicator '/ for Hollerith data as shown in Equation
(9). These indicators initiate the data declared by dseq as shown later in
Equation (34). The absence of such indicators signals a block of node
identifiers. Clearly the speed with which one can manipulate block data

must be balanced in use against the rigidity of a block structure.

21

o Example:

Review example (18) in the preceding Chapter.

TRANSFERS, LABELS, COMPARISONS

o Syntax:]
ti =i | iti| /labeli | //labeli | /labeli/labeli | egs °
| eqs'ti | emp (19) .
Tabeli ::= i label i | label i (20)
Tabel = idf | integer (21)
egs = égs eqs | egn divc ti | emp (22)
égn: == | # (23)
dive = data | ivc (24)

o Semantics:

A Tabel (label) may take one of three forms:

(a) relative GIRL address—an identifier (id) of less than six
characters not beginning with V. Relative addresses do not
refer to FORTRAN statements.

(b) absolute GIRL or FORTRAN address—a positive integer less than
20000. . |

(c) variable GIRL or FORTRAN address (for use as the argument
address of a transfer operation only)—a FORTRAN integer variable
beginning with V, having an absolute address as value.

A Tlabel either Tabels a GIRL/FORTRAN statement by residing in the statement
identification f1e1d6 or points to a statement for control purposes as the
argument of a transfer operation.

The two argument addresses of a transfer (ti) indicate the statement

address to which control is transferred upon failure or success, in that

order, of the operation immediately preceding the transfer. If the first

22

(or second) argument address is empty, the occurrence of a failure (or
success) condition indicates that control is not altered; that is, the
remainder of the statement is to be executed. Also, control is not altered
for success or failure if no transfer whatsoever is specified.

Finally note that DO loops may not terminate on a GIRL statement.
Rather, they must terminate on a FORTRAN statement (e.g., a CONTINUE
statement).

Identification (i) is explained in a previous section and comparison
(egs) is described in the next section. The function of identification is
to name the value that precedes it. The function of comparison is to test
the value that precedes it for equality with what follows. These operations
are included here for syntactic convenience since their value is the same

as the value preceding the operation.

o Examples:
(i) Give the name NEW to the preceding identifier and transfer to

the relative address REL if the preceding operation failed, or to
the absolute address 250 if the operation succeeded:

X'NEW/REL/250

(ii) If the preceding operation succeeded, name the resulting value
NEW and transfer to the variable address VAR, otherwise continue:

//'NEW VAR

(i11) Review examples 7, 8, 9 in the preceding Chapter.

23

UNPARENTHESIZED STATEMENTS

o Syntax:
unpar = id usuff (25)
usuff ::= suff | dsuff (26)

suff :% id ti pm ix ti dseq id ti
| + 4d ti pm ixn ti

| bo id ti i
| 'idf ti
| suff suff (27) .
dsuff ::=id ti pm ix ti dseq data ti
| |+ id ti : obj ti
| suff dsuff (28)
bo R IR R E R Lo (29)
ixn 1i= ixo ive:l
| ixo : obj (30)
ix ::= ixn | emp (31)
obj ::= jvc | data (32)
ixo ti= ., pm ixtyp
| . dixtyp pm (33)
pmn SER N (34)
pm 1= pmn | emp (35)
ixtypn = ' | /| . (36)
ixtyp = ixtypn | emp (37)

o Semantics:

GIRL unparenthesized statements (unpar) are evaluated on a strict
left-to-right scan. The evaluation of an operation may be either an
identifier node or a data node. An identifier node may serve as prefix to
a suffix string (suff), but a data node is an evaluation instance of a

data suffix (dsuff) and is terminal. The basic operations are now explained.

24

1. Identification

Although identification has been discussed previously, we now comment
on its use in the context of an operation sequence. Quite simply, the
operation suffix 'idf gives a name to the Tast evaluated node or Tlink.
The operation always succeeds and is transparent to a transfer of control.
That is to say, a success test following an identification refers to the

last non-identification operation.

2. Insertion

A node-link-=node triplet is inserted by juxtaposition of the respective
identifiers. For example, A B C. Insertion is non-destructive, so that
if A B C has been inserted, then inserting A B D will add D to the Tist
linked to A by B. Furthermore, since a multivalued function generates its
value set in the order of insertion—i.e., generates a value list—the
repetition of an insertion triple induces a repetition of sink nodes on the
value Tist. The presence or absence of at least one value on a value list
before insertion may be tested for either directly after the 1ink identifier—

by the first ti of the first alternative of suff or dsuff—or after thé

insertion—by the Tast ti of the first alternative of suff or dsuff. For

example, A B /X C transfers control to X if the value 1ist is empty,
whereas A B C /X inserts A B C and then transfers control to X if the value
list had been empty. The value of an insertion is the identifier or data
inserted. |

By placing an index (ig) after the 1ink identifier, one can insert
destructively or non-destractively at a specific location in“the value
1ist, counting from the top or bottom. The success of the index retrieval

may be tested (ix ti of suff or dsuff). The formalism of the index ix

will be detailed in the description of the indication operation.

25

A sink node may be placed in the matrix SEQ by using the dseq

mechanism (cf. Equation (17)). Each time dseq is used, a new block is
declared, and it is the programmer's responsibility to avoid b1ock'conf11cts.
The gégg_dec1aration stipulates two numbers. The first number ind%catés

the location in SEQ of the head block cell. The second number, which

resides in the head block cell, indicates the location in SEQ of the Tlast
block cell, After the first sink node has been placed in a SEQ b1o¢k by

dseq declaration, other nodes of the same type may be put in the same block

either by a GIRL indexed insertion or by direct FORTRAN store. SEQ storage
and graph storage may be mixed on the same 1ist and the search for a list
cell Qf given index will “traverse SEQ block cells. However, a Hollerith
string of more than ten characters must be stored only in SEQ and a Hollerith
SEQ block is considered to be a single cell as far as an index operation is

concerned. An attempt to insert more than ten Hollerith characters without

a dseq declaration will result in the first ten characters being placed in
the non-SEQ associative store as a single Hollerith cell. The purpose of
SEQ is to allow rapid GIRL retrieval of Tist information for lists of fixed
length in such a way that the GIRL retrieval mechanism is blind to the
storage medium, be it graph or SEQ. (However, for a Hollerith retrieval,

as will be discussed in the next section, a special variable is required to
distinguish between SEQ and non-SEQ storage.) The underlying associative
memory operation is quite sensitive to excursions into SEQ, it is usually
not a good idea to mix short SEQ blocks with graph nodes; nor is it wise

to insert or delete in SEQ by means of GIRL—FORTRAN should be used instead .

A detailed example is in order.

26

o Example of Insertion

Consider the following program of insertions:

3
IIX=X+2 1l

we OO
~ o1 —

//MANY CHARACTERS'

]

ODOOOOD
DI I <
[oxNu~NvoNo-No- Nv- I
O mds

-

we o
we

The resultant graph has the structure:

® 5
D
D . SEQ
SEQ 1 — 4 1
“E MANY CHARA | 2
SEQ 7 LS
— 4
5
6
9 7
F | 8
9

At this point, A B . 7 "3", which attempts to put '3' into SEQ(9), would
fail because of a type error. That is SEQ(7) heads an identifier block.
On the other hand, A B .6 G would succeed—albeit inefficiently—in putting.
G in SEQ(8) and moving F to SEQ (9).

Finally, we note a textual variant; namely, X Y - Z is the same as

X(-Y, Y Z). (The notation X - Y is explained in the description of deletion.)

o Examples:

Review examples 5 - 9, 17, 18 in the preceding Chapter.

27

3. Retrieval

The value of A + B is the first node on the 1ist Tinked to A by B,
if such a 1ist exists. If the list does not exist, then A + B evaluates to
A. The success of retrieval is, as usual, open to testing as specified by

the ti in the syntax + id ti (or bo id ti) of suff or dsuff. Retrieval of

a Hollerith SEQ block has as its value the contents of the first block :.cell.
The COMMON variable LVHOL is used to distinguish SEQ and non-SEQ storage.
For SEQ Hollerith storage, LVHOL contains the SEQ index of the head block

cell; for non-SEQ storage, LVHOL contains a zero.

o Examples:
Review examples 11 - 13 in the preceding Chapter.

4, Deletion
The effect of A - B is to delete any 1ist that might have been 1inked

to A by B. The operation is said to have "failed" only if there was no: Tist
to have been deleted. Again, the success or failure may be detected by

test. The value of A - B is the value of A + B,

o Example:
See example 16 in the preceding Chapter.

5. Comparison

The effect of A = B is to succeed if A and B have the same value.
Similarly, the effect of A # B is to succeed if A and B do not haveithe
same value. The value of either of these operations is A. Note that B
need not be an identifier. For example, if A happens to have the value
"3", then X Y A = "3" //TAG will go to TAG. Actually, X ¥ A =3 //TAG

is just as valid.

. 28

o Examples:
Review examples 12-14, 16 in the preceding Chapter.

6. Inclusion
The effect of A+B:C is to succeed if C occurs at least once on the
1ist Tinked to A by B. The value of A+B:C is the Tist index at which

C first occurs. If it fails, the value is the value of A+B.

o Examples:

Review examples 28-30, 32 in the preceding Chapter.

7. Indication
Executing an indication (ix) after the 1ink identifier of a retrieval
or insertion, accesses the item of stipulated index from the linked Tist

under question. Thus, A+B+.+3 : means: retrieve the third item on

- the list 1inked to A by B; similarly, A B+.+3C -medns: .do A B+i+3

and place C on the 1ist between the third item retrieved and its’ predecessor.
The '+' signs surrounding the '.' may and usually are replaced by emp.

If the '+' preceding the '.' is replaced by '-', the meaning is changed

from retrieval to deletion. Thus, the destructive insertion A B-.3C means:
delete the third item on the A,B 1ist (A=B-.3) and then make C the new

th%rd Ttemk(A B.2C).‘ If the plus (+) following the period'(.) is reﬁ]aced
by minus (-), the indicated ftem.is found by counting up from the botfdm

of thezlfst; 'Thus, for a 1ist of Tength 5, A+B.2 and A+B.-3 retrieve fhg |
same item. Counting up or down the 1ist can é]so be done by index type
(ixtyp). Thus, A+B=5, A+B./5, A+B.5 means: retrieve the fifth identifier,

Ho]]erith, numeric item, respectively from the A,B 1ist.

29

When an index deletion is performed as in X+Y-.I, the value that

remains is the deleted one. If there was no such value, then a failure

is reported and X is left as the value. Similarly, in an index insertion
such as X Y .I Z, the operation succeeds only if the 1ist already has I-1
values or more. The index operation may be tested for this failure, and

Z in any event is left as value.

o Examples:
Review examples 12, 13, 19-24, 28, 30, 31, 33 in the preceding Chapter.

PARENTHESIZED STATEMENTS

o Syntax:

Since the BNF syntax for parenthesized statements is complicated and

illegible, we relegate it for completeness' sake to the Appendix. Instead,
we introduce some new metasyntactic notation that properly fits our intuition
about how parentheses are applied to a Tanguage that scans strictly from

left to right: namely as nests for suffix sequences. Thus, the notation

X(Y will mean

X(Z) | xv
Z::=Y,Z]Y

That is, the parenthesis permits an optional, repeated sequence of that which .
follows the parenthesis. If X is empty in the case W(X(Y, then the second
parenthesis option is void. The following syntax is a direct modification

of unpar in the preceding section.

30

par ::= unpari(psuff | unpari(pdsuff)
unpari = unpar | id |
= id ti(ti pm(pix ti(ti dseq id ti(ti psuff

psuff
: | +(id ti(ti pm(pixn ti(ti psuff

| bo(id ti(ti psuff
| '(idf ti(ti psuff

| usemp

usemp = usuff | emp

pdsuff = id ti(ti pm(pix ti(ti dseq data ti weq
| +(id ti(ti :(obj ti weq
| psuff(pdsuff

ixn ::= pixo(ivc

| pixo(:(obj

pix ::= pixn | emp

pixo =, (pm(ixtyp
| . (ixtyp(om

weq = (idf(weq
| eqn(id ti(ti weq
| “emp |

eqn == | #

o Semantics:
| The formidable syntax given in the Appendix has a very simple
interpretation: namely, that any prefix fragment of a statemgnt may
be followed by a parenthesized sequence of suffixes, any one 6f'which
in turn may be interrupted to establish a prefix fragment to further
parenthesized sequences. Some minor qualifications are necessary.
First, parenthesization must not cdntain the empty string. Thus, (),

((A B C)), and A((B C)) are illegal. There would be no difficulty in

handling these forms, but it seems to be a better debugging aid to spot

useless parenthesis. Secondly, certain categories quite reasonably do

31

(38)
(39)

(40)
(41)

(42)

(43)

(44)

(45)

"not take suffixes. For example, dseq can only prefix a single node,
namely the first item of a SEQ block. Similarly, the symbols of a
transfer operation occur only once for any given test. Finally, data
suffixes (dsuff) may be prefix only to identification and or comparison

sequences.

o Example:
The preceding Chapter is replete with examples of the parenthesized

statement.

GIRL STATEMENT

o Syntax:

GIRL statement ::= unpar | par

32

IV. IMPLEMENTATION AND OPERATIONAL REQUIREMENTS

GIRL/FORTRAN TRANSLATION

A GIRL/FORTRAN program is translated to machine code in two steps:
o a preprocessing phase which translates the' GIRL code to

sequences of FORTRAN subroutines calls and stack manipulations.
o a FORTRAN compilation of the entire program.

A one-pass GIRL/FORTRAN compiler is under consideration.

MEMORY ALLOCATION
In the preprocessing stage,FORTRAN subroutine calls are assembled to

interface an efficient associative memory simulation called GIRS7 (Grpph
‘ Information Retrieval System). GIRS is currently implemented on the CDC

6700 as a hashed-address, direct-chained memory scheme. In the packed

version of GIRS, insertion of a node-link-node triple requires one 60-bit

word; insertion of a 1ist of N triples requires N+1 such words for N>1.

In the unpacked version of GIRS, each triple requires four 60-bit words;

each Tist of N triples requires 4N+4 such words ﬁor N>T. The size of the

graph—i.e., the number of available node addresses—may in no case exceed

015

, and in general will be Timited to a 10Wer bound by thé amount of core
made available to the user. A graph paging facility is now under

development.

/ Berkowitz, S., "Design Trade-Offs for a Software Associative Memory,"

Naval Ship Research and Development Center Report 3531 (May 1973).

33

In addition to the graph memory as such, one may also use a sequential
memory for more rapid access to sink data Tists. For this purpose, one
must declare a vector SEQ in a DIMENSION or COMMON statement.

One may compress or expand the hashed-address memory of a previously
constructed graph. The deck setups for accomplishing this task are given
in a later section.

On the CDC 6700, the preprocessor binary program requires a total of
6736 words, including a‘2416 word buffer., During FORTRAN compilation and
execution, the preprocessor is overlaid and the core memory field Tength
reduced or expanded to meet the program requirements. During execution,
the GIRS binary program occupies 1607 words for the unpacked version, and

2592 words for the packed version

GIRS FUNCTION EXECUTION TIMES

Because of the structure of the CDC 6700 operating system, it is
difficult to give-accurate estimates of average execution times. The
following table, therefore, indicates very approximate times for

“executing INSERT(A B C), FIND(A+B), and DELETE(A-B) functions.

AVERAGE CDC-6600 EXECUTION TIMES FOR GIRS ROUTINES
(in microseconds)

Unpacked Packed
MVL MVL
Minimum | Increment | Minimum | Increment
INSERT 60 0 185 0
FIND 50 15 76 28
DELETE 63 28 192 169

34

The tables 1ists minimum execution times and multivalue increment times

for the packed and unpacked versions. The minimum times refer to

operations on lists of a single node-Tink-node triple in the absence of hash
conflicts. When the memory is o percent full, one may expect hash conflicts
to increase the minimum times by an increment of 12.5p microseconds

as a very rough rule of thumb. For Tists of more than one triple, the
multivalue (MVL) increment time for INSERT represents is zero since the
bottom of the 1ist is accessed uniformly by an up-pointer for Tists of any
length. For FIND or DELETE, the MVL increment indicates the additional

time required to retrieve the nth 1ist item or to délete a Tist of n values,

1th item or to deleting a list of n-1

as opposed to retrieving the n-
values, respectively.

Two final comments on the table are in order. First, the average
minimum time for FIND when the retrieval fails is 32 microseconds for either
the packed or unpacked version. Secondly, the MVL increments for the FIND
routine may be substantially reduced by use of a saved index option.

Indeed, the retrieval times for any item on a 1ist in an iterative search
with saved index are a constant 103 and 141 microseconds for the unpacked
and packed versions, respectively. Basically, the saved index mechanism
retains the last accessed list address for each index variable in the GIRL
code so that each new access search does not have to begin from the head
of the Tist. Thus, in iterating down a list of k items, one can expect

k increments rather than k(k+1)/2. If items are added to or deleted from
the 1ist body, there is the danger that subsequent indexes references to
the Tist will be out of sequence if they have “reﬁained a previous saved
index address. There is a mechanism imbedded in the preprocessor for

circumventing this danger, but it is somewhat bulky. Moreover, operations

35

on short 1ists perform more efficiently without the overhead of a saved
index option. Therefore, one may void the saved index option either for
the entire program—by placing NOSAVE on the opticns control card, as
described in the next section—or for part of the program—by setting the
distinquished variable LVNOSY equal to unity at any point in the program.

Setting LVNOSV=0 restores the saved index option.

GIRL DECK SETUPS

In the following, the CDC 6700 batch-entry deck setups for GIRL/FORTRAN
runs and for memory comprescs/expand runs are presented. Lower case letters
indicate card images that are either described after the setup or are user
dependent (job card, charge card). Upper-case letters refer to character
images. A1l system card images begin in Column 1. Those which are
indented refer to FORTRAN card images whose code begins in Column 7. The

card number is for reference only and need not be typed.

36

Batch-Entry Deck Setup for a GIRL/FORTRAN Program

job

card

charge card

ATTACH, PREP, CAIZPREPBIN, MR=1.

ATTACH, GTRS, CAIZGIRSBIN, MR=1.

PREP.

FIN, I=TAPES.

FTN.

(used only if purely FORTRAN routines are to be run)

LOAD, LGO.

GIRS.

end

of record

memsize optionl option2 ...

or

end

end

end
end

PROGRAM name

SUBROUTINE name

non-DATA specification statements
DEFINE string (optional)

DATA string (optional)

EXECUTE

GIRL/FORTRAN executable code (no END stafement)
COMPLETE

other GIRL/FORTRAN routines
COMPLETE

of record

purely FORTRAN routines

of record
data

of record
of file

37

Card No.
(1
(2)
(3)
(4)
(5)
(6)
(6a)
(7)
(8)
(9)
(10)

ban
12)

(13)
(14)

(L;v)

(16)
(17)
(18)

(18)
(20)

Notes:

1. End of record is accomplished by a simultaneous 7/8/9 punch in
Column 1. End of file is accomplished by a simultaneous 6/7/8/9 puﬁch

in Column 1.

2. In the GIRL/FORTRAN program, GIRL statements are declared by

punching a G in CoTumn 1. Continuation cards are handled as in FORTRAN.

3. The options Card® (10) has the following entries:

memsize - The first six columns store an integer of at most
six digits that stipulates the number of possible nodes that the
graph may contain. There is no default; some integer must be
entered.

*IXX - An integer of at most two digits preceded by an asterisk
(*) declares the file number on which an old graph is stored.
Dafault implies the setup of a new graph.

$IIIIII - An integer of at most six digits preceded by a dollar sign
($) déclares the size of SEQ. Default size is one location.

PACK - Sets up code for packed version of GIRL. Default is
unpacked version.

PRINT - Prints GIRL program on output file. Default is no-print.

COMMENTS - PTlaces GIRL code with a C in Cblumn 1 into preprocessed
FORTRAN code. Default is no-comment

NOSAVE - Eliminates 'saved index' facility, and is thgrefore
appropriate for short multivalue Tists. See the discussion

of 'saved index' in the previous section.

T Except for the first entry (first six columns), the other entries are
optional and may appear in any order, separated by at Teast one space
or comma.

38

Batch-Entry Deck Setup For Cataloguing-a Graph-Prior.to Compression or
Expansion

Compression or expansion of graph memory Teads to a re-ordering of node
addresses relative to the cell address at which node-Tink-node triples

are stored. Therefore, one must save node addresses (which are of special

~interest to .programs that massage the graph) so"that the compress/expand

“program’ (described in the next subsection) can retrieve the node address

mappings. In the following setup, these addresses are represented by
varl,..., varn. The mestasymbol pfhame refers to~a permanent file name to
be assigned by the user.

The deck setup“iS"the'same'aS'for”anﬁ“GIRL/FORTRAN.run'with'the following
additions.

Card.(4) is followed by
REQUEST TAPE17, *PF.

o

o Card (8) is followed by -
- CATALOG, TAPE17, pfname.

o Card (10) should include the option PRINT.

o Card (11) should have (TAPE17,...) following the’PROGRAM-name,
where the dots indicate other files used by' the program.

o Card (15) khould be preceded by

CALL GIRSDMP(0,0,17)
WRITE(17) n, varl,..., varn

Batch-Entry .Deck.Setup~for~Graph Memory: Compression or Expansion

The deck setup .is the same as for-any:GIRL/FORTRAN run with the
following additions:

o. Card (4) is followed by

. .ATTACH, -TAPE99, pfname.
REQUEST, TAPE27, *PF.

39

° Card (8) is followed by
CATALOG, TAPE27, pfname.

o Card (10) should include /IIIIII—an integer of at most six
digits preceded by a slash, declaring the size of the new graph
“memory. The card should also include *99,

o Card (11) should have (TAPE99, TAPE27) following the PROGRAM
name. The deck is completed by

COMMON /LSAVE/ n, varl,..., varn
G EXECUTE
READ(99) n, varl,..., varn
“CALL CONVERT
CALL LVDUMP(0,0,27)
WRITE(27) n, varl,..., varn
COMPLETE
COMPLETE
end of record
end of file

~ oD

NOTATION

The notation used in the preceding Chapters will be used for the
CDC 6700 implementation language of GIRL. The publication Tanguage
notation is proposed to be the same except for the Changes indicated in

~the following table:

CDC 6700
Implementation= Publication
Language Language
#
/ ?
/! !
: =2
1} u]]

40

CHANGES IN THE MANUAL

It is expected that the manual format, programmed Tearning Chapter, and
implementation will be modified and/or expanded from time to time. Those
who wish to be placed on the mailing 1ist to receive such changes should
write the author. Suggestions and criticisms are welcome. Information

related to actual use of the language would be appreciated.

41

ACKNOWLEDGMENTS

The Tlanguage described in this report was implemented on the
CDC 6700 by I. Zaritsky. His comments.and those of G. Gluck and

J. Garner are gratefully acknowledged.

42

APPENDIX A
EXPRESSIONS IN GIRL

43

.
‘ - » .

3poU [eUJdjuUL UP S|

"914e3 Sy3 Jio PUS By} 3B Pada| 10D S4B $SBIOU PY] v

an|eA asoym burais xpgeud e 40 Bpou 82:4nos e Juasaudsd Kew X

*Ssauppe
‘a1qe3 ayz u

X%
UOLIAISUT L
o (01t ”c“m ,.—.—.m.m ‘0°8 ‘0°§ paXxapuj (€ @30N) 2vlva w
0°% "49) (VIVQ XIONIACTIVH/LYLIVA: TIV4/A+)X uoLsniouj SYLYa/X | X3IANI LyLva: A Xj €€
' |
e e 0t ‘o ‘1L ‘et UOL3UISU] (¢ @30N) M
078 °0°S "39) (2YLVQ “A“TIV4/1VLVA: TIV4/A+)X uoLsniou] Zvlva/X | 2vlva Lvlvd: A X{ 2°€
"(vlva 403
0°G “X3ANI 404 0°¢ °"42) A Aq X 03 pajdauuod uotjassug (2 @10N)
ASLL UO UOL3EBOO0L 0 X3ANI ULl Y1yQ 3deld paxapu] v.1va/viva ViVQ X3ANI® A X{ L°€
i (2 @310N)
*(V1v3 404 0°G "39) Viyd 03 A Aq X 393uu0) uoLjuasug v.iva/viva viva A X! 0°¢
(2 @30N)
"A Aq X 03 pa3dauuod 3si| 819|3(uoLislasq X/ A+X A-X| 0°¢
. ("V1vQ@ 404 0°G X3ANI
1 403 0°% "372) A Ag X 03 PI3IDOSUUOD 3SL| BYF UO (L @310N)
VYivd 40 32uUa44Nd320 3sdlj 3yl O X3IONI dYy3 pul4 uotsniouj XIANI/A+X Yiva: A+X{ 2°1
*x(| 210N)
"(X3ONI 404 0°v "42) A £Aq X X3ANI " A+X
03 P3308UU0D 3SL| BYl} U0 WAL y1XIANI 3Y3 pul4 uotiedlpu] [A+X XIANI“A+X; L°1
*A quil syl Aq X 3pou 324nos
03 P23J3UUOD 3sL| dpou Juls ay3 30 doi ayz putd LeAd 438y A+X/X A+X! 0°L
aweN [s$320n§/aun| ey B
BuLuesy | uoLssaudxy uo anjep o4 - m "ON |

*T4I9 NI SNOISS3UdX3

44

,lusuwalels

40 uorssaudxa

o132uy3Lae,

Y3143 {OH 330nb-ou//,

PanuL3UOI—TYIY NI SNOISSIUdX3

* [eULWAI}-UOU y YA Lo/ /u8ba3uL/,
SL J43LjL3uspL 3yz ALup -yiyg apou yutLs eleq = d9L4L3U3pPL Y 0°G
~ (p 230N
pue || "49)
viva:
LJjusuwajels,
,uoLssaadxa,,
algeLaeA
Jue31SUO0d aq
‘Yiyd: 40 *©,3usawdlels, Kew aabajul adaym
¢ ,uoLssaadxa, ‘3|qeLdeAa “juelsuod 4abajuL ue .
SL 419S3L X3IANI @yL -3Istl 3y3 jo (-) wolzoq 1) -
40 (+ 40 @) do3 ay3 wouy burjaunod walL (°°) pabajul)/ +M.” v
[eaLaauwnu a0 “(/°) Y3Lad|OH ‘(=) 4aLsLIuaplL m 1)} B
‘(@°) Aue paxIGNI 3yl (-) 91313p 40 (@) pulL4 Xapu] (L't "39) , o't
.:owuymwmm, AR
‘21 = (L1)b3as ¢(L+L1)d3S aoeds (2 @30N)
Je SS ulL padeld ylyg 03 A Aq X 3d3uu0) LeLjuanbag vlva/viva Yiva 2ICLICA X| 9°€
“(0°LL 0°€ €0°z | uswdde|doy (¢ @30N)
0°8 “2°L "49) (2vlva A°A-°1IV4/1Viva: 1Ivd4/A+)X uotsniouj 2ylva/x | 2viva-<viva: A X| G°€
(2 @30N)
(0°LL “0°€ “0°8 0°2 “0°S "42)(VYLYQ A‘TIV4/A-)X | Jusumde|day vlva/viva Viva- A X | ¥°€
T T "auey $$920NS/a4n| e I
Butueay uoLssauadxy uo angep uio4 ON

45

, = 1= 1-- == | 1=+ | 1=" | Jarst3uep]
== [1+ 17 - | 1/~ | 1/+ | 1/ | wssiion
T-- | 1+ 1-= | 1=" | 1+ | 1-- | 4abagu] !
-~ |+ - | - = |1+ | 1" | Aw
dn [umog | umoq - dn | umog | umog |
91919 . m>w_gu@m

91qe3 Hurmo| |04 3y3 uL Suuoy w:p sey uoL3edLpu] ‘4 330N
‘adnjLey
40 $S820NSs 404 A|3jededas paisal aq Aew YIONI Pue ylyd SIuaAd Aue uj A <P<a ou suieiuod
AlJes|d yoLym 3si| A3dwd ue sploy 31 “s|Ley A+X FI)' "ISLXd 30U PLP YIY(Q: S9IILPUL BN|LB{ "€ 930}
. "1SLX3 30U PLP A+X SIIBDLPUL Bunfley "7 djoN

46

"Juss sL 9beSSAW U0JUU3 UR puR IN|BA IUN|LeY BYT SL X UPYY “ISLX3 J0U $30P A+X 4 | 930
*stsayjuaded 33| Y3 Jo Xxrjaud . \ .
9y} sjudwsa(dwod XLj4Nns yoej -seuwwod Aq pajededas 3ouanbag _ .
pue sasayjussed UL pauLeIUOd BB SIXL}HNS BULULS XL44NS - 1 (¢ ¢ I o1t
"anies ssauppe a(BULS YILM |1BD UOLIOUNS NYHIYO4/TWID | uoigduny e (" “DHY)ONNd«| 0°OtL
"$S94Ppe UWOpues B SII0UIP § BA3UM D13 7,4 A, ¢ X.$ uoLltutjag L - CZEA°X INI43G 076
"uot3do [|LNnu 83y3 ut buruals burLpasdons 03 sassed
[043U0D 9SEBD YOLYM UL [[hu 3q Aew S/ 40 { ~S 03 Jajsuedl _ :
9SIMJ43Y30 fs|ie4 uorjeuado Buipadsud ji 4 (3qe| @3 09 | [eUOLILPUO) - - s/4/X1 08
i SS94ppe BWes 3yj 03 43id4 A pue Y o uos LJaedwoy X/X | A=Xl .07 ¢
. uoty

"X 03 AJWYN Sueu By3 SALYH ; -BOLILTUSPT - AJWEN: Xi 0°S

- _ sliey iSS83oNg/a4niiey . .
butueay UOLSSTudXs uo snie, 1404 i ON

PenULIUCI—THIY NI mzommmemx-

APPENDIX B
GIRL MNEMONICS CARDS

A. Retrieval (0,1,4,6,7,8,9,10) €. Comparison (0,12)
Bet e ¢ . i o
B. Deletion (0,2) F. Conditional Transfer (0,13)
Y-8 B 17/
C. Insertion (0.3.4,5.6,7,8,9.10) G. Random Node/Link (14)
8nanp ¥
D. Identification {0,i1) 4. Suffix Sequences (0 15)
YTRAMES X (+8,U 0, E)F+G,H-1)
NOTES
0. X is a prefix string. 9. _m:é ltls a i;o;;tive or neg:ﬁve !'n:oger—vg!'ued
1. Retrieval A+B means: find top of sink nods 11st Vinked nder request to ! Texpression, Tstatenent”,
o source node A by link 6. 10. st l(Nod Content o 15 an tdentifier, '/intensr/
. n beas
2. Deletion A-B means: delete sink node st Vinked to A e Tno-aots Hollerith .~ o
y S. . "ar(thnet!c expression or statement™
3. Insertfon A B C means: connect A by B to C. 10, A'NAMEY means: qive name NAMEY to node A,
4. Indication/Inclusion a fs null or indicates 1ist ftem 12 A=NAMEY . d MEY ref e nohe?
ndex “we 1) or requests (:p) Index of p if - '~) means: do A and M EY refer to same noce!
on 1ist. 3., 7f0 maran: g0 to iatel ¢ {f preceding overatio:
fa 15, >roescie 2005, F ¢ /S mey be ml in
5. Indicatlon(lndusion 8 1s a or an index fnquiry which case control passes to succeeding sio 13
pncuwe the null operation.
6. Destruction n 1s mull {or +) or - (to delete the .
succeeding indexed {ten). :; :hmea:: gm"mx:a":d:“o“:r:s:;e XED
. n : H H H - .
7. Index type ¢ is mull (to allow any type) or: e string means : v
identifier)
if) / Holler{th)
141) enmbﬂr)
8. Dlrech ¢ fs null or + (either of which searches up)
or - f=7arches down).
A, Reliie sl {0,1.4,6.7,8.9,10) < ’uarisow n,”)
¥+ B L
n. Deletion (0.2) F. Conditional Transfer (0,13}
Deletlon) e
C. Insertion (0,3,4,5.6.7,8,9,10) G. Random Node/Link {14)
neop ‘
D. ldentification (0,11) K. Suffix Sequences (0,15)
TTXRAMEY ‘T‘(‘B‘qt‘n_t G, H-1)
NOTES
0. X is a prefix string. 9. _lnﬁ% 11s a pdsitiva or negath{.e ‘!'nteger-ul_ued
1. Retrieval A+B means: find top of sink node 1ist linked ﬁzg::::&u:z;'?:?' expression”, “statement”,
to source node A by link B. 10 sk Nod sdenti 1 o
2. Deletion A-B means: delete sink node 1ist linked to A - Sin e! te Co"“:;_;u;:ea"m]‘:::th.f" /integer/
Y "arithmetic expression or statement®
3. Insertion A B C means: connect A by B to C. 11, A'NAMEY means: gqive name NAMEY to node A.
4. Indication/Inclusion « is null or indicates 1ist item 12. A=NAMEY means: do A and NAMEY refer to same node?
Tndex (n * w v 1) or requests {:p) index of o 1f p {s
on 1ist. 13. /F/S means: go to label F {f preceding operation
fails; otherwise to 5. F or /S may be ml} in
5. lnd1cat10n/lnc1usion g is a or an index inquiry which case control passes to iucce{dinq string 1n
e the null operation.
6. Destruction n is null {or +) or - (to delete the . -
Succeeding indexed item). i4. $ means; generate a random address.
7. Index t e ¢ 4s null (to allow any type) or: 15. The string means: X+B; X C D: X E F46; X € H-1,
identifier)
11} HoHerith)
iit) nunber
8. Directfon ¢ 1s null or + (either of which searches up)
or - (searches down).
A. Retrieval (0,1,4,6,7,8,9,10) E. Comparison {0,12)
T X+ B ' O ANEY
B. Deletion (0,2) f. Conditional Transfer (0,13)
~X-8 /7 A
C. [Insertion (0,3,4,5,6,7,8,9,10) G. Random Node/Link (14)
nep ¥
D. Identification (0,11} H. Suffix Sequences (0 15)
“XTHAWEY X (+H,C D, EIF+6,H-1)
NOTES
0. X is a prefix string. 9. Index I is a positivg or neglt‘IY.e lnteger-vuluad
tant, variable, “expression statement
1. Retrieval A+B means: find top of sink node 11st 1inked cons q i ’ ’
to source node A by 1ink 8 _E index request :p. ,
2. Deletion A-b means: delete sink node 14st linked to A 10. Sinke‘r:oge Con’t;%_:u;:ean(’;?::nmc’r. /integer/
by B. “arithmetic expression or statemeat"
3. Insertion A B C means: connect A by B to C. 11, A'NAMEY means: give name NAMEY to node A
4. Ind’cation/Inclusion a is null or indicates 1ist {tem . .
T o o e eete (on) tadon of '35 Jtem | 12. A<NAMEY means: do A and NAMEY refer to sanc node?
on list. 13. /F/S means: gc to label F {f preceding gperation
falls; otherwise to S. F or /S may be null in
5 !ndic?uon I"C]"s““ 8 1s a or an index inquiry which case control passes to succeeding string in
o the null operation,
6. Destruction n fs null (or +) or - (to delete the .
Succeeding Indexed ftem). 14, § means: generate a random address.
7. Index t e ¢ is null (to allow any type) or: 15. The string means: X+B; X C D} X € F+6; X £ Y-1.
‘Identifier) .
11) - Hollerith)
11) number)
8. Direction ¢ 15 null or + (either of which searches up)

or - {searches down),

47

48

GIRL

GRAPH INFORMATION RETRIEVAL LANGUAGE
FOR THE CDC 6400/6600/6700

Nuval Ship Research and Development Center
Pattern Recognition Ressarch Group
Code 1834
Bethesda, Maryland 20034

GIRL

GRAPH INFORMATION RETRIEVAL LANGUAGE
FOR THE CDC 6400/6600/6700

Naval Ship Research and Development Center
Pattern Recognition Research Group
Code 1834
Bethesda, Maryland 20034

GIRL

GRAPH INFORMATION RETRIEVAL LANGUAGE
FOR THE CDC 6400/6600/6700

Naval Ship Research and Development Center
Pattern Recognition Research Group
Code 1834
Bethesda, Maryland 20034

par
unpari

usemp
S

sa

W

wpa
sb
cu
wa

cp

wpe
sc

ca
wb

wpf
sd
We
wd

wpg
se

we

wph
sf
wf

wpi
sq

APPENDIX C

PARENTHESIZED STATEMENT BNF SYNTAX

unpari s

unpar | id

usuff | emp

(sa) | w

sa, sa | ti w | ti usuff

id ti wpa | + wpb | bo wpc | ' wpd

(sb) | wa

sb, sb | ti wa | ti pm ix ti cu
dseq id ti usemp | dseq data ti
pmn wpe | . wpf | cp

dseq id ti s | dseq data ti weq

(sc) | wb

sc,sc |wh| .ccaculcu
pm ixtyp

ive ti | :o0bj ti

. wpf | cp

(sd) | we

sd, sd | we | c ca cu
pmn wpg | ixtypn wph | wd
ive ti upi | : wpj

(se) | we
se, se | we | ixtyp ca cu
ixtypn wpk | wd

(sf) | wf
sf, sf | wf | pmca cu
pmn wpk | wd

(sq) | cp
sq, sq | ticpcu | cu

49

wpJ
sh

wg

wpk
Si

weq
seq
wege
wea
web
seb
wec
sec

wpb
sj
cbhu

wpl

wh

wpm
s

wpn
sm
wi
cbp

Wpo
sn

wpp
50
wj

(sh) | wg
sh, sh | wg | obj ti cu
obj ti wpi

(si) | wd
si, si | wd | ca cu

(seq) | wea

seq, seq | ti wea
weq | emp

eqn web | ' wec

(seb) | divc ti weqe
seb, seh | divc ti weqe
(sec) | idf ti wege
sec, sec | idf ti wege

(sj) | id ti wpl
sj, sj | id ti wpl | id ti cbu
pm ixn ti usemp | : obj ti

(sk) | wh
sk, sk | ti wh | ti cbu
pmn wpm | . Apn | : wpo

(s1) | . wph

s, s1 | . wpn | ixn ti usemp

(sm) | wi

sm, sm | wi | ¢ ca usemp

pnn wpp | ixtypn wpq | cbp
ive ti s | : wpr

(sn) | obj ti weq
sn, sn | obj ti weq | obj ti

(so) | wj
so0, so | wj | ixtyp ca usemp
ixtypn wpc | cbp

wpq
SP
wk

wpr
5q

Wps
sr

wpc
$s

wpd
st

(sp) | wk

sp, sp | wk | pm ca usemp

pmn wps | cbp

(sq) | obj ti s

(sr) | cbp

sr, sr | cbp | ive ti usemp |

(ss) | id ti s
ss, ss | id ti usemp

(st) | idf ti s
st, st | Tdf ti usemp

sq, sq | obj ti s | obj ti msemp

51

: obj ti usemp

INITIAL DISTRIBUTION

Copies Copies
1 DODCI 5 NAVPGSCOL
T. Braithwaite 1 M. Woods
1 D. Williams
1 AEPARoberts 1 G. Barksdale
) 1 C. Comstock '
2 U.S. Army Picatinny
Arsenal 1 NAVWARCOL
1 R. Isakower 1 USNROTC & NAVADMINU, MIT
1 U.S. Army Frankfort 1 NAVCOSSACT
Arsenal
D. Frederick 1 ADPESO
1 USAMERDC 1 CGMCDEC
J. Marburger 1 ONR Boston
4 CNO 1 ONR Chicago
1 0P 916 R. Buchal
} 85 81281’ LCDR Poteat 1 ONR Pasadena
1 0P 098TD, L. Aarons R. Lau
5 NRL
1 oM 1 5030, S. Wilson
6 CHONR 1 5400, B. Wald
1 400R, R. Ryan 1 7810, A. Bligh
1 430, R. Lundegard 1 8050, CDR Tatro
1 432, L. Bram
1 437, M. Denicoff 1 COMNAVINT
1 437, G. Goldstein 1 NAVELECSYSCOM
DNL 7 NAVSHIPSYSCOM
8 CHNAVMAT } SHIPS 03, RADM An?rews
1 MAT 0141E, R. Jeske SHIPS 0311, B. Orleans
1 MAT 03 ? 1 SHIPS 03414, A. Chaikin
1 MAT 03A, CDR Booth 1 SHIPS 03423, C. Pohler .
1 SHIPS 0719, L. Rosenthal
1 MAT 03L, J. Lawson
1 SHIPS 08, Nuclear Power
1 MAT 03L4, J. Huth Directorate
1 MAT 03P2, P. Newton rec
1 MAT 03P21, S. Atchison 3 NAVAIRSYSCOM
4 USNA . 1 NAVAIR 5033, R. Saenger
1 D. Rogers 1 NAVAIR 5333F4, R. Entner
1 A Adams T NAVAIR 5375A, J. Polgren
1 Dept of Math 1 NAVFACENGCOM

52

Copies

NAVORDSYSCOM
NAVAIRDEVCEN
CIVENGRLAB

NELC

3 5000, A. Beutel

3 5200, M. Lamendola
3 5300, J. Dodds

NAVUSEACEN

NAVWPNSCEN
L. Diesen

NAVCOASTSYSLAB

NOL
1 H. Stevens

NWL

1 Code K
1 Code K-1

1 Code KO

1 Code KP
1 Code KPS
NAVSEC

3 SEC 6102C, P. Bono -

1 SEC 6114, R. Johnson

1 SEC 6114E, A. Fuller

1 SEC 6178D03, L. Biscomb

AFOSR
Code 423

Rome Air Development Center
WPAFB AFFDL
DDC

NASA Langley Research Center
R. Fulton

Carnegie-Mellon University
Professor A. Newell

College of William & Mary
Professor N. Gibbs '

53

Copies

MIT
Professor M. Minsky

Professor P. Winston
Dr. A. Nevins
D. McDermott

1 G. Sussman

MIT Lincoln Laboratory
R. Rovner

Ohio State University
Professor L. White

Southern Methodist University
Professor R. Korfhage

Stanford University
1 Professor J. McCarthy
1 Professor J. Feldman -

UCLA
Professor M. Melkanoff

Unfversity of Florida
Professor J. Tou

Hughes Research Laboratony
B. Bullock

IBM Federal Systems Division
J. Sammet

IBM Watson Research Laboratory
Yorktown Heights, New York

1 G. F. Codd

1 C. H. Thompson

Stanford Research Institute
1 Dr. C. Rosen
1 Dr. B. Raphael

Systems Development Corporation
Santa Monica, California
E. Book

Xerox Research Laboratories
Palo Alto, California
Dr. D. Bobrow

1
1
- 1 Professor T. Winograd
1
1
1

Copies

NN~ =N =PI~ — = PN — — =

Code

18/1809
1802.1
1802.3
1802.4
1805
183
1832
1833
1834
1835
184
185
1858
186
1863
1867
188
189

CENTER DISTRIBUTION

1891, Central Depository

54

UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA-R&D

Securtey classification of title, bady of ahstract and indexing annotation must be entered when the overal] report is clansificd)

1 ORIGINATING ACTIVITY (Corporate author)

Bethesda, Maryland 20034

Naval Ship Research and Development Center

2, REPORT SECURITY CLASSIEICATION

UNCLASSIFIED

2h. GROUP

3 REPORT TITLE

GRAPH INFORMATION RETRIEVAL LANGUAGE; PROGRAMMING MANUAL FOR FORTRAN COMPLEMENT

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Sidney Berkowitz, Ph.D.

5. AUTHORI(S) (First name, middle initial, last name)

6. REPORT DATE

June 1973

7a. TOTAL NO. OF PAGES

57

7b. NO. OF REFS

0

8a. CONTRACT OR GRANT NO.

o

. prosecT Nno. SR0O140301

2 1-1834-001

4137

9a8. ORIGINATOR'S REPORT NUMBER(S)

this report)

9b. OTHER REPORT NO(S) (Any other numbers that may be assigned

10. DISTRIBUTION STATEMENT

11. SUPPLEMENTARY NOTES

SHIPS 00311

12. SPONSORING MILITARY ACTIVITY

13. ABSTRACT

description.

GIRL (Graph Information Retrieval Language) is a programming language designed
to conveniently manipulate information in graph structures.
will plan a key role in the construction of the organizational schemes found, for
example, in information retrieval, pattern recognition problems, linguistic
analysis, and process scheduling systems.
an algebralc language, in the sense that GIRL statements are distinguished from
the statements of the algebrailc language and the statements may be interleaved.
The primary advantage of separating symbolic and numeric statements is that the
programmer is afforded a linear, one-one trace of graph operations in the code

As such, the language

The language is written to complement

DD F°"" 1473 (PAGE 1)

S/N 0101-807-6801

UNCLASSIFIED

Security Classification

UNCLASSIFIED
Security Classification
" KEY WORDS LiNK A LiINK B LINK C
ROLE wT ROLE wT ROLE WT
Programming languages
Associative memory
Graphs
Lists
UNCLASSIFIED

DD 2%..1473 (eack)

(PAGE" 2)

Security Classification

