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FOREWORD

The test program reported herein was conducted at the Arnold Engineering
Development Center (AEDC) under sponsorship of the Department of Transportation
(DOT), Office of the Secretary, Washington, D. C., under Interagency Agreement
DOT-AS-20024, Progrem Element 921K, The DOT test program was monitored by Mr,
A. K., Forney, Prograni Manager, Federal Aviation Administration (FAA), 800
Independence Avenue, 8, W,, Washington, b, C,, and technical llasion was provided by Dr,
A. J. Broderick and Dr. M, J. Scotto, DOT Transportation Systems Center, 55 Broadway,
Cambridge, Massachusetts.

The test hardware, emission instrumentation, support hardware, test planning, test
procedure, and data analysis, exclusive of the J85-GE-5 turbnjet engine, and supersonic
inlet, were provided by AEDC, The turbojet engine was stippiied by the Air Force Aero

" Propulsion Laboratory (AFAPL), Air Force Systems Command (AFSC), Wright-Patterson
Air Force Base, Ohio, The supersonic inlet was provided by NASA Lewis Research Center,
Cleveland, Ohio,

The results of the test program were obtained by AROQ, Inc. (a subsidiary of
Sverdrup & Parcel and Associates, Inc.), contract operator of AEDC, AFSC, Arnold Air
Force Station, Tennessee. The test was conducted in the 16-Foot Supersonic Wind
Tunnel (16S) of the Propulsion Wind 'Tunnel Facility (PWT) during the period from
December 15, 1972, to January 10, 1973, under AR¢) Project Nos. PA038 and PB038. The
manuscript was submitted for sublication on April 25, 1973,

Special appreciation is expressed to R, F. Lauer, Jr,, project engineer, who was
responsible for the installation and test activities and who wrote the sections of the
report to do with the engine, inlet, and test facility. The authors also wish to express
special appreciation to J. N. Kemp, project instrumentation engineer, whose tireless effort
in maintaining and operating the emission analyzer system made the successful
measurement of the engine exhaust emissions a reality.,

This technical report has been reviewed and is approved.

L. R. KISSLING FRANK J. PASSARELLO
Lt Colonel, USAK Colonel, USAF
Chief Air Force Test Director, PWT Director of Test

Directorate of Test
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' ABSTRACT

Exhaust cmissions were measured in the plume of a JB8S-GE-§ turbojet engine as
part of an investigation to determine the impact on the climate of a fleet of supersonic
atreraft flying in the stratosphere, Measurements were made at three axial stations (0,22,
9.3, and 19.9 nozzle dlameters) downstream of the nozzle exit for both military and
partial afterburning power at Mach numbers and simulated altitudes of Mach 1.6/55,000
ft and Mach 2.0/65,000 ft. A continuous sampling technique was used to measure carbon
dioxide, carbon monoxide, total unburned hydrocarbons, oxides of nitrogen, and
particulates, The experimental results were compared with the calculated emission profiles
and were in good agreement. The results represent the only available full-scale turbojet
engine emission data to date which have been obtained at simulated high altitude with
4 supersonic external stream,
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... .8ECTION ). . ..
. INTRODUCTION .~ -

The unknown environmental impuct of a fleet of supersonic aircraft operating in
the stratosphere has resulted in a Department of Transportation (DOT) investigation names!
the Climatic Impact Assessment Program (CIAP), The results from this program will be
used to nesess the climatic impact of exhaust emissions from turbine-powered aircraft
operating in the stratosphere as projected to the year 1990 (Ref. 1). The CIAP will provide

a data base for six monographs:
1. "The Natural Stratosphere of 1974"
2. "The Sngine Emissions on the Stratosphere of 1990"
3. "The Perturbed Stratosphere of 1990"
4, "The Perturbed Troposphere of 1990 and 2020"
5. "The Biological Effects of the Tropospheric Changes"
6. ™The Social and Cost Measures of thc Biological Changes"

The exhaust emission data presented in this report will provide valuable information for
the second monograph and should add greatly to the state of the art of aircraft turbine
engine emissions. The data presented are the only known emission data which have been
obtained at simulated high altitude, using a full-scale, turbojet engine.

The test was conducted in the Propulsion Wind Tunnel (PWT), Supersonic (168) for
DOT using a General Electric J85-GE-S turbojet engine (Ref. 2) mounted in an isolated
nacelle with a NASA/Lewis Reseatch Center, mixed compression, axisymmetric, supersonic
inlet (Ref. 3). The objective of the PWT test was to determine the influence of the .nixing
of the engine exhaust gases with the external supersonic free-stream flow on the exhaust
emissions of a full-scale turbojet aircraft engine,

A special rotating sampling probe was designed by PWT engineers to withstand the
2000°K (3600°R) engire exhaust as well as to maintain the gas sample at 422 ¢ 5.6'K
(760 * 10°R) while it was pumped through a 3.5 to 42.6 m (110 to 140 ft) length
of gas transfer line to the gas analyzer. The gas analysis system used was originally designed
(Ref. 4) and used by the Engine Test Facility (ETF) to measure the exhaust emissions
at the nozzle exit of General Electric J93-GE-3 afterburning turbojet engine (Ref. 5).
A continuous sampling technique was used to obtain measurements of catbon monoxide
(CO), carbon dioxide (CO3), nitric oxide (NO), nitrogen dioxide (NO;y), other oxides of
niirogen (NOy), and the total hydrocarbons (THC). The particulate emissions were also
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wﬁca‘sured. using-gr'awmetric filters und electrostatic. grids. All. measurements were. made
“in genaral accordance with SAE ARP-1256 (Ref, 6).- A continuous-sample of the flow

approaching the inlet was also maintained to monltor the concentrations of CO4 and THC
recirculated In the wind tunnel,

A method of calculating the exhaust plume characteristics and the emisston
concentration profiles Is vresented, and comparisons with the experimental data are shown.

SECTION 1
APPARATUS

2.1 TEST FACILITY

Tunnel 168 is a closed-circuit, continuous-flow wind tunnel that can be operated
over a nominal Mech number range from 1,50 to 4.75. For this test, engine exhuust
products were removed from the tunnel atmosphere by a 183-m (6-ft) diameter open,
sharpsllp, scavenging scoop located 10.62 m (34.9 ft) downstream of the engine nozzle
exit as showrn in the installation sketch (Fig. 1, Appendiy 1) and in the photograph (Fig.
2).

2,2 TEST ARTICLE
2.2,1 Inlet/Engine Model

The inlet used in this investigation was as axisymmetric mixed-compression inlet (Fig.
3) on loan from the NASA Lewis Research Center, and its performance and description
has been well documented in Refs, 3, 7, and 8. External compression was accomplished
with a 12.5-deg haif-angle conical, remotely translatable centerbedy. Inlet boundary-rayer
removal was accomplished by suction through porous sections on the centerbody and cowl
surfaces with the bleed flow being discharged overboard. The aft porous section of the
cowl bleed was scaled closed, and only the forward cowl bleed was used. There were
provisions for engine cooling by the remotely operable ejector bypuss valves which
discharged into the engine nacelle. Inlet/engine airflow matching was accomplished with
overboard bypass doors, A control system was designed and fabricated that permitted
the inlet shock position to be maintained during engine transients by appropriately
controlling the position of the overboard bypass doors.

The engine, a General Electric J85-GE-5, S/N E230336, (the same engine used during
the sea-level tests of Ref. 9) is a single-rotor, afterburner-equipped turbojet. The engine
compressor is an cight-stage fixed-stator unit with interstage bleced valves which extract
air from Stages 3, 4, and 5, the bleed air was discharged overboard, Variable inlet guide
vanes operated in conjunction with the interstage bleed valves. An ejector nozzle shroud
which had an exit diameter of 0.455 m (17.9 in,) was litted to the primary exhaust
nozzle as shown in Fig, 4,
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"The distances to the three axlal pos'tions of the emission sampling probe (Fig, 1)
" were 'measured from the plane of the rozzle shiroud 2xit; but the primary nozzle exhaust -
plinc was aboui 0.14 m (5.5 in,) upstréam of the shroitd plane af military power levels
and about 0.157 m (6.2 in,) upstream at the augmented power conditions, A more detalled
engine description may be found in Ref, 2,

ST TR
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The engline nacelle and model support system were designed by Boeing Company for a
previous test requirement. Al fire-fighting equipment, fuel, externally sugplied eit, clectrical
_nontrol cables, pressure and electiical signals, ete., were supplied through the support strut
N (see Figs, 1 and 2). The inlet wus mounted to thc engine nacelle using a PWT-designed
- adapter which provided a cylindrical flow path for the primary enginc alr from the inlet and
' additional pussage. for tho inlet cjector/engine nacelle cooling airflow (see Fig, 3b). A
frecestream gas sample probe was provided in the support system, immediately above the
inlet (Fig. 1), so that the tunnel atmospheric concentrations of €O, and THC could be
periodically mmpled during the test, thereLy ensuring that the scavenging scoop was
capturing all of the sngine exhuaust produc.h and that the tunnel atmosphery was not
being vontaminated,
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2.2.2 Exhaust Emission Sampling Probe

i

A sketch of the PWT-designed exhaust emission sumpling probe is given in Fig. 5.
The rotary probe arm could be positioned from the vertical plane of the support strut
to 180 deg. The probe support strut could be rotated approximately 130 deg from {
the vertical, except in axial position one, wherc travel was limited to between -+19 and
+34 deg (looking upstream) (o prevent interference with the cngine nacelle. By
g appropriately positioning the main probe support strut and the rotary probe arm, exhaust
3 gas emissions in 4 2.3-m (7-ft) diameter circle and over an arc length of 3,96 m (13
- ft) could be sampled in a planc perpendicular to the free-streamn airflow at probe axial
position two (mid position) (Fig. 2) und probe axial position three (aft position) (Fig.
0a). At axial probe position one (nozzle oxit position) (Fig. 6b), the area was reduced,
but the complete exhaust stream could still be sampled, The radlals which were surveyed
at each probe position arc shown in Fig. 7.

kb

The sample line was constructed from 304 stainless steel tubing 1,27 cm (0.50 in))
OD by 0.089 ¢m (0.035 in.) wall thickness and was maintained at this ID except at tiree
locations where it was required to enlarge the 1D to 1.27 em (0,50 in,) for short distances

! through bends in the probe support structurce. Bends in the sample line were kept ‘o i
a minimum with the smallest bend radius being 1.5-in, radii in the motor drive assembly. A !
special flow splitter was designed to divide the fiow between the gaseous emission and the ;
particulate emission instrumentation with a minimum of disturbance, i
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2.2.3 Sample Conditioning System

A unique sample probe design was required in that not only was the probe to be
cooled to withstand the 2000°K (3600°R) engine exhaust, but the gas saraple must be
quenched very rapidly and must be maintained at 422 + 5.6°K (760 £ 10°R) as it is
pumped along the long transfer lines to the analyzer to prevent condensation of the various
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gascous constituents (particularly the unburned hydrocarbong), The exhaust gas transfer
line from the sample probe to the analyzer had lengths of 38,0, 39.6, and 4.6 m (118,
130, und 140 ft), respectively, for probe positions 1, 2, and 3. The eatire length of the
transter lne from probe tip to the analyzer was concentrically water-jucketed to maintaln
the gas temperature constant with the exception ot two short sections (approximately
0.305 m) (1.f0) where a 1.27-¢m (0.5+n) inside diameter Teflon® fine was used and
wrapped with external hester tupe, A schematic of the sumple conditioning svstem is shown
in Fig, 8.

Within the anaiyzer, the sumple temperature was maintained at 422 ¢ 5.6°K (760
t 10°R) up to the hydrocarbon apnalyzer which was located nearcst the shalyzer inlet,
The exhuust sample was then muintained at 339 + 2.8°K (610 £ 5°R) throughout the
remainder of the analyzer, Bellows pumps, located at the analyzer inlet, were used to
pump the gas sutiple from the probe inlet at a pressure of 2,07 to 3.45 N/em? (3.0
to 5.0 psin) to the analyzer indet at the 10,32 N/em? (15 psia) required by the
instrumentation. A back pressure regulutor located on the downstream end of the sample
line in the analyzer consoly was used to control the line pressure from the bellows pumps,
The sample line and eoch of the emission instraments utilized a common overboard vent
through which the emission sample was discharged.

2.3 INSTRUMENTATION

Steady-state data obtained during this investigation were digitized and scanned, and
raw data inputs were recorded on magnetic tape by the PWT Raytheon 520® digitai
computer. The raw data were reduced. selected parameters were printed in the Control
Room on u line printer operating ire conjunction with the computer, and computed
parameters  were  written on magnetic tape,

2.3.1 Inlet

The 32 centerbody (spike) surfoce static pressures and 20 internal cowl surtace static
pressurcs on the inlets were measured by the PWT pressure system and were monitored
in the Control Room for inlet operation. Compressor-fuce total-pressure recovery,
distortion, and primary engine airflow were computed from six, ten-tube, total-pressure
rakes with static taps at the cowl and atterbody walls of cach rake. This instrumentation
array (Fig. 9 was located in the subsonic dittuser of the inlet, upstream of the engine
compressor face (Fig, 3b), Additionally, the centerbody bleed, cowl bleed. ejector bypass,
and overboard bypass Hows were metered using appropriate pressure instrumentation,

Two imodelamounted strain-pape transducers were used Tor inlet operation, The one
sensing the total pressure in the subsonic diffuser was uscd for monitoring inlet stability,
and the other trinsducer sensed a cowl surlace static pressure downstream of the normal
shock in the subsonic diffuser For inlet overboard bypass control.
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The overboard bypass doors could be operated either manually or in a closed-loop
mode with the feedback beiug the signal from the cowl surface pressure transducer, This
systeny controlled the position of the inlet normal shock by maintaining a pre-set surface
static pressure. This was accomplished by opening the bypass doors when the pressure
began to rise and conversely, 1o close the doors when the pressure. began to decrease.

Spike axial position, each ot the six overboard bypass door positions, and the ejector
bypuss door positions were monitored and recored by the PWT data’ systems,

23,2 Engine

The engine had the minimum amount of instrumentation required for safe
engine/facility  operation,  Measured  were:  power lever angle; nozzle and
interstage-blecd-valve/inlet-gulde-vane positions; engine rotor speed; vibratlons from the
forward, main, and turbine {rames: primary at-d total fuel flows; temperature, and pressures
which include oil temperatuies und pressures, compressor discharge static pressure, turbine
discharge temperature, engine skin, and nacelle environment temperatures,

2.3.3 Gas Sample Probe

Both the main probe support strut and the rotary probe arm were insttumented so
that the angular position of cach was displayed in the Control Room and recorded on
the data. The total temperature (TTJ) of the gas sample was mcasured Ly an
iridium-iridium/rhodium thermocouple located 5.09 cm (2 in.) from the sample orifice
on the rotary probe arm (see Fig, 5). There was sufficient instrumentation along the sample
conditioning line so that the gas sample ternperature could be maintained at the required
422°K (760°R), and instrumentation was also available to sense the probe structural
temperature so that sufficient cooling water flow was maintained,

The impact pressure in the exhaust stream, PTI, was measured with the sample probe
and was recorded by a transducer located just below the lower probe strut assembly,
The flow of the gas sample was stopped by valves located in the sample line at the bellows
pump inlet when an exhaust impact pressure survey was being taken,

23,4 Gaseous Emission

The gascous emissions contained in the engine exhaust were measured with scven
instruments designed to identify and measure the concentration of six gas constituents,
A photograph ot he instrument console is shown in Fig. 10. The constituents measured
were total unburned hydrocarbons (THC), nitrogen oxide (NO), nitrogen dioxide (NO,),
oxides of nitrogen (NO,), carbon monoxide (CO), and carbon dioxide (CO,). The
instruments used cmploy various techniques to measure the censituents of interest, and
each is briefly described below, Each instrument is identified in Table 1 (Appendix 11).
A more detailed description of the operating principles of the instruments can be found
in Ref. 4.
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= 2.3.4.1 Hydrocarbon Measurement

b = Unburned hydrocarbons were measured with the Beckman Model 402 Hydrocarbon
] % Analyzer. This instrument is classified as a flame loniza ion detector (FID) and utilizes
& a hydrogen-rich flame (l'rough which the sample gas is passed. Tlic unburned hydrocarbons
é | in the sample gas are Lurned and an increase In ionized puarticles results, The fons are
{ , § collected on a plate inserted in the area just above the hydrogen flame. An electrical
;. Z current proportional to the hydrocarbon concentration is induced on the collector plates
i : § by the ionized hydrocarbons. The magnitude of the current is umplified and measured
3 £ for concentration calculation. The current magnitude s also displayed on a meter located
8 on the analyzer counsole for test monitoring, A schematic of the hydrocarbon instrument
g is presented in Fig. 1la,

] E 2.3.42 Oxides of Carbon Measurement

3 f The instruments used to measure concentrations of carbon monoxide and carbon
] dioxide are classified as Nondispersive lufrared (NDIR) detectors, This type of analyzer
3 uses an infrared source, sample and refcrence cells, a detector, and an electronic signal
4 ’ processor. Figure 11b is a schematic of a typical infrared detecior. An infrared light ig
£ shown to a detector through two cells containing gas. The gas in the reference cell (nitrogen)
2 : is nonabsorptive in the infrared band while the sample gas passing through the other cell
- 5: absorbs energy proportional to the values of CCO or CCO,. Because of the energy
é absorption in the sample, the gas within the two detector chambers is unevenly hcqtcd, :
5 and a pressure difference results. This pressure diffcrence is proportional to the ’

concentration of the compound of interest in the sample cell,

L

Three nondispersive infrared detectors were used to measure CCO and CCO;. Two 3 .4

of the instruments, Beckman 315B and 3)1SBL, measured CCO. The difference in the ! "

two instruments lies in the length of the cells. The longer cell length is used to measure !

! lower values of CCO. The CCO4 was measured with 4 Beckman 315B. The long cell : 4
. instrument was not necessary for CCO, measurement because the value of CCO; in a i -

turbojet exhaust is always verv high,

2.3.4.3 Oxides of Nitrogen

e A o

A chemiluminescence analyzer was used to determine the values of nitrogen oxide
(CNO) and the oxides of nitrogen (CNOy). This analyzer utilizes the principle that ozone
(03) when combined with certain compounds produces a luminous emission. The emitted
light is proportional to the number ol reacting molecules which can be related to
constituent concentration if pressure, temperature, and flow rate are maintained constant
through the analyzer, and an excess of O3 exists. :

MLOTSUTE,

Both CNO and CNOy were measurced using a Thermo-Electron Corporation (TECO)
10A chemibluminescence instrument. The instruments differed only in that for the CNO,
measurement the instrument had a CNO; to CNO converter which broke CNO, down
to CNO, A schematic of the TECO 10A analyzer is shown in Fig. 1lc,
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2.3.4.4 Nitrogen Dioxide (NO.)

A nondispersive ultraviolet (MDUV) analyzer (Beckman 255 BL) was used to measure
the value of CNOy., This type of analyzer is similar to the nondispersive infrared analyzer
described earller with the exception that an ultraviolet light source replaces the infrared
source, and the light beam energy is measured directly using » phaio cell detection device
rather than sensing pressure changes as deseribed in the infrured system. The rutios of
the recelved energy from the two beums s proportional to the value of CNO; in the
, sample gas. A schematic of the NDUV snalyzer is presented in Fig, 11d. All emission
- 1 instruments operuted well except the NDUV, The physical method of measuring the signul
was sensitive to many things. The limitations of this instrument is discussed in Appendix
L.
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2.3.6 Particulate Emission

Two nmethods of determining particulate concentration in the turbojet emission were
5 used, The two methods are described below, §

: 2.3.5.1 Gravimetric Filters

k- £ Five-micron absolute filters which had been autoclaved and weighed prior to use were !
employed in conjunction with a gas flow totalizer (wet test meter) to determine the weight :
of particulates per standard cubic foot of emission gas (Fig. I0). The total particulate .
accumulation was determined by substracting the weight of the exposed filter from its '
welght prior to use and by dividing this delta weight by the total gas flow passing through
the filter,

2.36.2 Electrostatic Capture Grid

! An clectrostatic precipitator is used to charge the particles contained in the sample
stream, These charged particles are drawn onto a grid of opposite charge and are captured,
Particle size and distribution can be determined from the grid with the aid of an
electron-microscope, Data were obtained by manual analysis which was performed by the
DOT.

2.3.6 Gas Constitutent Measurement Variances

Table 11 presents the instrument accuracies based on information provided by the
instrument manufacturer with the exception of the CNQ, CNO,, and CNO» instruments
which were taken from Ref, 10, The wominal accuracies quoted are from 1.0 to t5.0
pereent of full-scale reading depending upon the range of interesi, which is within the |
accuracies specified by the SAE Committee -31 (Ref. 6) for measurements excluding
sampling technique inaccuracics,
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instrument caused by water present in the sampling gas, instrument sensitivity to
constituents other than the constituent being measured by a given instrument and, In
the case of nitrogen dioxide (NO3) and carbon dioxide (CO3), conversion in the sample
Hne from the dioxide state to the monoxide state. Table LI lists the results of NO, and
CO, conversion checks conducted for this Investigation, The gas was introduced at the
sample probe, and measurements were taken at two gas sample line temperatures (150 ;
and 300°F), Sample line temperature had a pronounced effect on the amount of conversion
from NO; to NO; however, the effect of temperature was less pronounced on the
conversion from CO; to CO, The conversion investigation conducted also revealed an effect
of time on the percent of conversion, As time increased, the percent conversion for both
NGO, and CO, decreased, Insufficiant data were taken, however, to make a definitive
statement other than to observe that the phenomenon exist:
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Water interference and cross constituent interference cnecks (effect of vne constituent
on an instrument designed to measure another) were conducted, and no interference on
any of the instruments was observed.

At the conclusion of the test, a commercial calibration gas cross-reference service
was also used at the request of DOT to verify overall operation of the emission neasurement
system. This service provides gases having the same tvoncentration of predetermined !
constituents to each of its users, The certified values of the concentraticns are not made
available to the user until after the results have been submitied to DOT. The concentrations )
were measured with the instrumentfation system and calibration gases used during the test,
and a report of the results was made to DOT. The results of the cross-reference service
check show very good agreement in Table IV with the suppller as well as the majority !
of the users of this service (Refs, 11 and 12),

P T T A T ¢ e O AT

N T S S AR R T

i

et i 5 )

SECTION 1H
PROCEDURES

o AL

Prior to the test, a fuel sample was taken from the single batch of JP-5 fuel that
was used during the test and was analyzed by the AEDC chemical laboratory to determine
the hydrogen-carbon ratin and the trace element content. A report of this analysis is given
; in Table V., Military JP-5 fuel was used throughout the test program and is quite similar
to commercial Jet A-1.

T S T

x Engine inlet pressure and temperature settings during the test program were
determined from the geopotential altitude values of the U, S, 1962 standard Atmosphere
Tables,
Flow visualization of the engine exnaust was accomplished at tunnel stations 13.7 i-;
é and 24.4 by the use of a shadowgraph for selected test conditions, ; =
] |
. 'f 3
3
8
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31 TEST-OPERATION

T T e

: During the tunnel starting sequence, the inlet was munually controlled with the spike ]
oxtended and the overboard and ejector bypass doors open, After supersonic flow was
established 'In the wind tunnel, which occurred at low tunnel total pressure, the tunnel [
pressure was gradually increased to the desired level, and the spike was gradually retracted '
to keep the inlet from operating too supercritically, When the tunnel was at the desired T
test conditions (Mach 2,00/65,000 ft, T,_ = 390°K {702°R) or Mach 160/55,000 tt, T, = i '
: 328°K (590°R)), the scavenging scoop suction was set, and the inlet spike was translated to P 5
the desired position. The ejoctor bypass door was then closed to-set the inlet normal shock ; :
at the desired position. At the point, the inlet wos placed in an automatic control mode so {
E that the overboard bypass doors modulated automatically to maintain the inlet diffuser :
pressure, and hence, the normal shock position. At both the conditions, enging ignition was
possible from the windmill condition with the JP-5 tuel required for the test. All testing was
accomplished with the model at O-deg angle of attack. '

After the engine was brought to the desired power level (military or partial
afterburning power), the exhaust gas sample probe was positioned into the exhaust gas
stream, and data were taken at discrete locations in horizontal, vertical, and/or diagonal
planes through the exhaust plume. [t was normally possible to obtain data in a given
plane of interest (10 to 15 data points) in one-half to one hour, This could be accomplished
in one continuous time period for the military power settings; however, In afterburning
power, it was not possible to maintain the cngine setting tor morc than about 15 min
without exceeding the enginc skin temperature limits, Therefore, during afterburning, the
engine was reduced in power after each four or ilve points for cooling. It normally required
three periods at afterburning power to obtain one complete plume survey.

00 2 0 5T 0 0 B g gt o

Care was taken to set the total fuel flow at the samc level during each test period
at a given power setting to ensure compatibility in the data when making varlous ==
comparisons, Regular ~amples of the free-stream flow entering the inlet were taken to '
check tie possible contamination of the tunnel air with the exhaust constituents which =
were not captured by the capture scoop. Measurements of the levels of CCQ4 and CTHC :
were used as indications of contamination,

3.2 GAS ANALYZER 2

The emission sample transport line was temperature corditioned to 422°K (760 *
10°R) approximately four hours prior to testing and was maintained at that temperature : E
throughout the test period. Calibration of the seven instruments for measuring the gas :
constituents was accomplished immediately prior to the start of the test period and at : e
approximately two-hour intervals during the test period using calibration gases consisting
of a mixture of known concentrations of each constituent of interest (CTHC, CCO, CCO,,
= CNO, and CNO3) in nitrogen. The calibration gas concentrations used in data reduction
are presented in Tuble 11, These certified calibration gases were provided by Scott Research
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Laboratory, Pldmstéadvillc,. Pennsylvania. Instrument zero levels were sot using a "zero"

cdlibration gas which consisted of "bone-dry" (99.998 percent pu-ity) aitrogen. A
calibration curve on each instrument, provided by the manufacturer, which established
a millivolt/concentration relationship for each instrument range was prcgrammed into the
on-line digital computer. A single point calibration on each Insirument range was obtained
with 1 calibration gas and was applied to the millivolt/concentration relationship.

The procedure followed during the test after the instruments were calibrated was
to set the gas sample pressure at approximately 10.32 N/em2 (15 psig) using the bellcws
pumps (Fig. 8) and to check that the gas temperatures were maintaineJ at 422°K (760°R)
for tke hydrocurbon instrument and at 339°K. (610°R) for the remaining instruments, Orce
engin: conditions and probe position were established, the analyzer instruments w:ce
observed until steady-state was established, at which pomnt data were obtzined through
the on-line digital computer. At sclected test conditione, sample boftles were also filled
with- exhaust gas for futurc analysis by the Universicy of Californiz at Los Angeles,
Califomia,

The free-stream gaseous emissions, CTHC and CCO;, waich wer: monitored regularly
2 the engine inlet station were found not to exist in sigaificant concentrations during
she test, except during long periods of afterburning pouser when a noticeable increase
(10 to 20 ppmv) was noted in CTHC, The normz! tunnel operating level produced
approximately 10 ppmv. This influence on the data was minimized by limiting the engine
power setting when in afterburning to 15 min, The free-stccam levels of CTHC are noted
on the results where it exceeded 20 ppmv.

3.3 PARTICULATE SAMPLING

The gravimetric filters used for determining particulate concentration were autoclaved,
weighed, and placed in sealed pewter dishes by the AEDC Chemical Laboratory. After
one of the prepared filters was placed in the filter holder, the gas flow totalizer was
set to zero, and the gas sample flow was then established tiwrough the filter. Each filter
remained in the filter holder until an entire probe survey (horizontal or vertical) was
completed. After a probe survey, which required from one-half to one hour, the gas flow
was terminated, the gas flow totalizer was read and recorded, and the filter was removed
from the holder, replaced in the pewter dish, and sealed. The filters were then returned
to the Chemical Laboratory for weighing to determine the mass of the particulates captured.

The electrostatic grids were prepared by the DOT and were sealed in test tubes.
To obtain an electrostatic grid samplc, the grid was removed from the test tube and was
inserted into the retainer on the electrostatic precipitator. A potential of 40 v was
maintained on the precipitator for a period of 60 sec while engine exhaust was passed
through the unit, After the 60 sec, the grid was removed and sealed in the test tube
once again, The exposed grids were returned to the DOT for analysis. A minimum of
seven electrostatic grid samples were taken for either the horizontal or vertical probe survey
at each engine power setting, Mach number/altitude condition, and axial probe location.
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 USECTION IV
RESULTS AND DISCUSSION

Exhaust emisslon data were obtained at three axial statlons downstream of the nozzle
exit of a J85-GE-5 turbojet engine [XP/DN = (.22 (nozzle exit station), 9.3 (mid station),
and 19,9 (aft station)] at two simulated flight conditions (Mach 1,6/55,000 ft and "Aach
2.0/65,000 ft) for two engine power settings (military and partial afterburning). A
theuretical calculation and measured total temperature profiles of the exhaust plume for
Mach 2.0/65,000 ft are shown in Fig. 12. A discussion of the more slgnificant results
obtained is given in the following sections.

mwmummm«wmwmmmmmmmw&mmmmmﬂm

41 INLET/ENGINE CONDITIONS

The engine was operated at military power (92-deg power lever arile) and at partial
afterburning power (107.5-deg power lever angle) which were held constant (constant fuel
flow) throughout the test for each of the two free-stream test conditions. The inlet was
operated at a fixed operating point for each free-stream Mach number, The nominal
free-stream and engine/inlet operating conditions are listed in 'Tuble VI, Any slight variations
in the inlet or engine operating conditions werc essentially eliminated by the presentation
of the data in the form of an cmission index which normalizes the data, The steady-state
distortion at the compressor face produced by the inlet is shown in Fig. 13 for the two
Mach/altitude conditions.
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42 GASEOQUS EMISSIONS

The primary objective of the test was to determine the influence of an external
supersonic free stream on the emission characteristics in the exhaust plume of a turbojet
engine which was capable of operating at conditions similar to those of supersonic
transports, One of the first steps taken to investigate the exhaust emissions was to calculate
the cxpansion of the exhaust plume into an external supersonic flow field using known
engine exhaust performance parameters. The plume boundaries and profiles shown in Fig.
12 were calculated using the procedure discussed in Appendix [V. K
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4,2,1 Comparison of Axial Probe Position

The variation of the emission characteristics for values of CCO, CCOA, UNOy, CNO,
and (CNOj)carLc shown in Fig. 14 for Mach 1.6/55,000 ft, follow the trends of the
temperature in Fig. 14a. It is noted that a rather uniform distributicn of these parameters
exists at the nozzle exit station, but the concentrations and temperature decrease toward
the outer edge of the plume for the mid and aft stations. This is the result of the mixing
region that exists in the downstream plume, The concentrations of THC are not uniform
at the nozzle exit for the military power setting (Fig. 14b) because of continued burning
which occurs at a radial position cqual to the location of the afterburner flame holders,
Complete burning takes place on the nozzle centerline, The CTHC profile changes as the
flow moves downstream in the plume,
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.~ Measured and calculated valy'ules of éN(’); (catculated CNO; =.CNO§ - CNO) are shown

in Fig. 14d. Although the measured values of CNO;, are in error for most of the data
presented, they have been shown to give other investigators a feeling for the problems
which occur in attampting this measurement using continuous sampling techniques with
existing instrumentation. The performance o the CNO; instrument is discussed further
in Appendix Ill. Correcvions can be applied to some of *he measured CNO; data by
accounting for a zero drift initially and a contamination of the measuring cells beyond
the centerline point for values of -Rp /Ry (sampling moved from + to - values of Rp,/Ry).

The calculated emission indices which are presented in Figs, lde through g show
similar trends to the concentraiions results, however, the values of El did not drop off
to their free-stream values at the same value o7 Kp/Ky as did the concentration parameters.
This is believed to be the result of the small magnitude of the parameters at military
power, and because of the variations in CTHC. The cnussion index number which s
discussed in Section 4.2.7 is a mass-flow integration of the concentration profiles (see
Appendix V) and gives » mote accuratc number than can be obtalned from a weighted
average of the profile plots of the emission index,

4.2.2 Effect of Mach Number and Altitude

Although the results from only two Mach number and altitude test conditions are
available for comparison, a comparison of the Mach 2,0/65,000 ft data in Fig, 15 with
the Mach 1.6/55,000 ft data in Fig. 14 for military engine power shows some changes
in the temperature and pressure proliles as a result of additional pluine expansion at higher
altitudes. In general, the oxides of nitrogen were higher for the Mach 2.0/65,000 ft
conditions, but the CCO levels are nearly the same at the exit plane for the two conditions,
The Mach 1.6/55,000 ft mjd pusition CCO level was considerably higher than the Mach
2.0/65,000 ft level. This ievel was also higher than that obtained at the exit plane, and
the reason for this is yet unexplained. There seemed to be little ditference in the measured
hydrocarbons for the two conditions. Plots of the emission indices show no appreciable
change.

The same general comments made for & comparison of the data for a military power
apply to the afterburning power data shown in Figs, 16 and 17

4.2,.3 Effect of Engine Power

A comparison of the military and afterburning power for either Mach 1.6 or 2.0
shows that the temperature on the nozzle centerling is slightly higher at the mid station
(Fig. 162) This can be accounted for by continued burning that occurs in the plume,
as evidenced by the large reduction in THC on the centerline at the mid station. The
additional plumc expuansion at Mach 2.0/65,000 ft also results in more of the hydrocarbons
being burned as shown in Fig. 17b, The other concentrations follow very closely the
variation in total tcmperature.
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42.4 Effect of Radial Probe Position

A question of the valldity of a single radlul survey through the plume arose early
in the test program, Because of this more than one radial across the plume at a given
probe station was surveyed to obtain un accurate indication of the emission profiles. Figure
18 shows & three<dimensional comparison of the horizontal und vertlcal surveys at each
probe gtation fcr Mach 1.6/55,000 ft. This shows a vivid varlation in the profiles at the
probe stutions, To obtain a more accurate comparison of the variation of the concentrations
at more than one plane at a given station, selected comparisons are made at each probe
station. Flgures 19 and 20 show these variations at Mach 1,6/55,000 ft for military and
afterburning powers, respectivelv, at the exit statlon, Mach 2.0/65,000 ft data are also
udded to Fig. 20 for comparison. These show little if any vadation in the emission
characterdstics at the nozzle exit, with the exception »f the measured CNO, (Fig. 20d)
whosu results are in question,

At the mid probe station (Fig. 21), a change in the profiles is noted, It is beleved that
the decreased concentration at +Rp/Ry for the verticai survey (which is in the top
quadrant) is the nacellz strut efteet. This is further verified by the pressure data in Fig. 21a.
At the af't station, (Fig. 22) complete mixing has occurred to remove any noticable variation
in the emission characteristics for the planes investigated,

4,25 Comparison with Sea-Level-Static Tests

A direct comparison of the wind tunnel exhaust emissions results reported here and
the statlc results reported in Kef. 10 is difficult since the emission data reported in that
reference were the first obtained at AEDC and used a different probe and instrumentation
system. The data are presented here primarily to point out that emission data does exist
for the General Electric JBS-5 turbojet engine at both sea-level-static and high altitude
flight conditions, Considerable experience was gained by the investigators of Ref, 10 as
well as by the investigators of the emission mcasurements for the J93 turbojet engine
(Ref, §) which greatly aided in preparing for the test program reported herein.

The free-strcam conditions and an estimate of the burner inlet conditions for the
JRS turbojet cngine used during the exhaust emission tests are given in Table VII, The
pressure and temperature were calculated from data obtained for the J8S during earlier
tesis at AEDC. Also shown are the exit plane values of the emission indices for cach
freesstream condition at u military power setting. In general, with the exception of the
carbon monoxide (CCO), the wind tunnel data are all lower than the sca-level data, at
least in terms of concentration on « parts per million vasis. Neither of the parameters
shown will correlute all of the data; however, the parameter \/E Ti3 does give a fair
corrclation for the two wind tunnel date points (excluding CCO and CCQOy). 1t is
worth noting that the emission index for CCO does tollow the general trend of
decreasing with increasing p1v as shown in Ref. 13, This would indicate alower combustion
enticiency for the wind tunnel operating conditions, On the other hand, the unburned
hydrocurbons emitted per 1000 pounds of tuel burned is considerably higher at the sea-level
operating condition, indicating a less efficient combustion procers,
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Comparisons of the exit plane profiles for the gaseous emissions are shown in Fig, -~
23, The CCO, levels measured during the wind tunncl tests agree very well with those
calculated from Eq. (V-7) (Appendix V) and the measured f/a, CCO, and unburned
hydrocarbon concentrations, “owever, the measured value of CCO, at sea-level appears
to be approximately 0.5 ncrcent by volume higher than that calculated using the same
procedure, The sea-level calculation was adjusted allowing for the small difference in the
H/C ratio between JP-4 und JP-5 type fuels. The f/a ratio giver in Ref. 9 for the military j
power setting was u.ed in the calculation. Since the data do not correlate well, not a
great deal of effort was expended in trying to reconcile differences ot to search for more
appropriate correlations,

426 Comparison of Experimental Data and Theoratical Predictions

The theoretical values of the properties «n the plume were computed using the method !
described in Aprendix IV. The analysis and theoretical calculations were performed and
presented primarlly to show consistency of the measured species and plume properties.
As will be shown, the overall agreement tetween theory and experiment was good, and '
the experimental data can be seen to be very consistent at least in the trends which were g
measured, Several deficiencies exist in the theory which could be corrected, but such ;
£ modifications were not within the scope of this project. As pointed out in Appendix |
4 IV, tiie turbulent mixing calculations made for the exhaust plume assume that the exit l
plane profiles (the plane from which the mixing layer calculations were started) are uniform., :
It is ovbvious from the data presented that this was not quite the case at military power
and was never the case when operating the engine at a partial afterburning power setting.
In making comparisons of the plume properties at the exit plane, an inviscid core flow l
] is combined with the mixing region. The inviscid core flow was computed by a Method ,
of Characteristics solution (Ref. 14) which has a uniform total temperature across the i
exhaust (i.e. ideal gas assumed at appropriate value of the specific heat ratio). Although }
theoretical calculations were made for the four conditions at which emission data were !
{
i
i

=

7‘ obtained, only the Mach 2.0/65,000 ft, military and partial afterburning conditions are
; shown, The agreement (or lack of ayreement) is the same for the Mach 1,6/55,000 ft
conditions. Figure 24 shows the comparison between thzory und experiment for the three
axial locations of the probe with the free-stream conditions of Mach 2,0/65,000 ft and
military engine power setting, The engine parameters corresponding to this power setting
are shown in Table VI. Shown in Fig. 24 are the variations of impact pressure, total
temperature, and concentrations of carbon dioxide (CO;), carbon monoxide (CO), and
the oxides of nitrogen (NO and NOy) with both exhaust plume radius and axial position,
Figure 24a shows the comparison of the measurcd and predicted impact pressure. This
parameter was presented to illustrate that a complex shock wave pattern may exist in
§ the wind tunnel. The impact pressure (pitot pressurc) is sensitive to Mach number through
the pressure recovery and, hence is sensitive to expansions or recompressions in the flow,
As 2 tesult, the agrcement oetween experiment and tneory is not gooi at the two
down-stream probe positions. An estimate of the shock wave pattern which may exist
is chown in Fig. 25, Unfortunately the shadowgraph coverage of a region approximately
3 ft square on the tunnel centerline, was not adequate to obseive the shock waves as
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picturcd, with the exception of the Mach number 1.6 cowl lip-inlet spike reflection, This
reflection passes just aft of the engine exit plane and was observed in the shadowgraphs
obtained, The obvious question is whether the presence of reflected shock waves affect
the concentration of pollutants in the exhaus: plume, The good agreement shown in Fig.
24 shows no discernible effects of the shock wave structure, A comparison of the
experimental with the thcoretical results in Fig. 24 shows total temperature profiles in
guod agreement. The outer radius of the plume, where the temperature approaches free
stream, was somewhat larger than that predicted by the theory, However, the radius of
the plume implied by the point where the concentrations approach the free-stream levels
agree very well with the theoretical prediction of the plume radius, The CCO reaches
a peak at a higher value at the plume centerline for the probe in the mid position than
at the exit plane. The frozen chemistry assumption does not appear to hold for the CCO
in the inviscid portion of the plume. The CCO,, CNO, and CNO, agree very well with
the theorctical predictions and exhibit cluassical fully mixed plume profiles. There does
not appear to be any afterburning in the exhaust plume because of the low levels of
unburned hydrocarbons that were measured, No conparison of the hydrocarbons is made
since the levels measured arc near the lower limit where the flame ionization technique
can be considercd reliable and arc also near the free-stream level of the wind tunnel.
The static temperature and flow velocity are shown in Figs. 24g and ). Both the static
temperature and flow velocity are computed from the experimentally measured values
of the impact pressure and the total temperature measured by the method described in
Appendix V for computing the ¢mission indices. The results show that agreement of the
profiles at the exit plane is noi very good, but as the plume mixing continues the theoretica!
calculations are in better agreement. There are two sources of possible error in obtaining
the static temperature and flow velocity: one is in the inaccuracies in the theoretical
analysis, and the second is the inaccuracies involved in computing properties in front of
the shock wave from tlie measured impact pressure and total temperature. The centerline
decay of the concentrations and the total temperature are shown in Fig. 26 compared
with the theoretical predictions. Again, except for two data points, the plume properties
agrec quite well with the turbulent mixing calculations. Note that the plume becomes
fully mixed at approximately 3.05 m (10 ft) downstream of the exit plane.

A comparison of the theorctical and experimental results is made in Figs. 27 and
28 for the Mach 2.0/65,000 ft conditions and the partial afterburning engine setting
conditions given in Table VI. Because of the continual combustion taking place outside
the engine in the inviscid portion of the plume, the ¢ was very poor agreement between
the theory and the experiment so that only a comparison of the impact pressure, total
temperature, and CCQ, are shown. In order to make accurate theoretical predictions of
the plume behavior, it becomes necessary to take into account the effect of combustion
on the conditions at the internal boundary of the mixing region. It is interesting to note
that the plume appears to become fully mixed in approximately the same axial distance
tor afterburning as the military case. Once the plume is mixed, it behaves similar to the
military case for the downstream positions. If the profiles at the mid and aft probe positions
and the plume ridius arc normalized with the centerline values of the properties, they
agrec with the corresponding normalized theoretical profiles. The effect of afterburaing
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on the concentration levels and total temperature are shown clearly in Fig. 28 by
comparison of the experimental and theoretical centerline decay of the flow properties.

An additional check on the validity and consistency of the afterburning data can be
made by compuring cither the fuelair ratio implied from the measured CCO,, CCO, and
unburned hydrocarbons used in Eq. (V-7) of Appendix V, with that implied by the
measured total temperature; or by comparing the CCO;, levels computed from Eq. (V-7)
using the tuel-air ratio implied from the total temperature and the measured values of CCO
and unburncd hydiocarkons, Figure 29 shows the CCQ, levels computed with those
measured at the exit plane for the Mach 2,0 afterburning case. The fuel-air ratlo necessary,
at 100-percent combustion, to produce the meusured total temperatures across the exhaust
is ovtained from combustion temperature versus fuel-ait ratio curves for a hydrocarbon fuel
with the same heating value as JP-5, The fuel-air ratios along with the measured CCO and
unburned hydrocarbons are substiruied into Eq. (V-7), It is secr: that the agreement is good
both in level and shape, which implies that the measurements of total temperature, CCO,
and unburned hydrocarbon levels are consistent with one another. One additional comment
might be made concerning the unburned hydrocarbon levels at the exit plane for the
atterhurning condition, Figure 17b shows a local fuel-air ratio of approximately 0.0078 at
the centerline of the engine. If one computces the temperature rise that results from the
combustion at that fuel-air ratio and adds that to the centerline value of the exit plane
temperature (from Fig. 27, TTJ = 2040°F) a value ol 2600°R s obtained. It can be seen
from the middle position profile in Fig. 27 that a valuc of approximately 2570°R was
measured, indicating that combustion was nearly complete at the centerline before the
exhaust plume became fully mixed,

Finally, it should be noted that all of the experimental data that have been compared
with the theoretical predictions were obtained with the probe being swept in the horizontal
plane. Also these duta are shown as distance from the tunnel centerline to which the
probe was referenced. It can be seen that peak values of the plume properties are displaced
from the tunnel centetline. It was found that the engine installation was slightly yawed
(= 0.3 deg) in the tuanel cavsing the plume to be off the tunnel centerline. The theoretical
profiles were shifted so that the theoretical centerline values were matchad with the peak
values of the experimental data. The fact that the exhaust was slightly yawed ca - further
be seen in the CCO, of Fig. 24 by observing that levels to the left side of the tunnel
centerline are slightly higher than the theory, thercby exhibiting the behavior observed
when a jet is placed in a cross flow. The experimental data obtained at Mach 1.6 does
not chow as much skewness since the tunnel dynamic pressure was considerably higher
anu prevented the exhaust from penetrating the tunnel flow as much, thereby reducing
the cross-flow component to almost zero,

4,27 Emission Indices

Since the plume profiles were not completely uniform, the emission indices were
calculated using an integrated mass technique. The gas properties were calculated from
the measured impact pressure and total temperature. i he mass flux of the species being
emitted was then divided by an integration of the experimental point-by-point values of
CC0,, CCO, and CTHC which respresented the fuel flow. The method and procedure
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is described in Appendix V. This procedure is complicated by the relatively few
experimental points taken across the plume which makes numerical integration difticult:
however, it was lelt that an integration of the emitted species provided a more realistic
evaluation of the emission index. An analysls of the calculated emission index as a function
of the axlal distance from the exit plane provides information on the influence of external
stream mixing on emission characteristics, If the emission Index of a species is nearly
constant as a function of axlal position, then there has been a conservation of species
and either no significant reactions have taken place during the plume mixing or no
afterburning occurred outside the engine. Table VIII' shows the values of the emisslon
indices obtalned at cach axlal location for each gaseous emission measured. (Values for
the military cuse from Ref. 9 are shown for comparison.) Several observations can be
made concerning the values shown starting with the first column and proceding across
the table. The EICO; is, as expected, nearly constant since the CCO, level depends
primarily on the tuel-air ratio and combustion efficiency. Very good agreement is seen at
military power for Mach 1.6 and 2.0,

The EITHC at the exit plane is very low for military power although the Mach 2
conditions are almost a factor of two higher. The results show that the EITHC also increases
with axial distance. This can be attributed to the entrainment of hydrocarbons from the
tunnel flow, which for the military power setting had tunnel levels (6 to 10 ppmv) that
were a significant fraction of those measured at the exit plane. An ¢stimate of the increase
in EITHC at the mid and aft probe stations for the Mach 2.0, military condition was
made by using the tuanel levels of the THC measured at the engine inlet and the theoretical
entrainment rates for the turbulent mixing calculations, The calculated EITHC values,
considering those CHTC entrained (shown in parenthesis), show that the increase is not
unexpected, The difference in the value calculated and that found by integrati™ . profile
at the aft position is probubly due to the fact that the theoretical plume racic  is smaller
than that used in the integration of the experimental data. This would give less entrainment,
and hence, a lower valuc for EITHC, The level of the CTHC in the tunnel was not significant
enough to affect the EITHC computed for the afterburning power setting, During
afterburning power, the EITHC increased from the exit to the mid plane probe station,
One possible explanation for this increase can be given even though combustion takes
place, It appears that the cngine may have emitted significant level of unburned
hydrucarbons around the periphery of the nozzle that were not detected at the exit plane
because the radial probe travel was limited. Evidence of this can be seen from Figs. 16b
and /b which show isolated points ot high levels of unburned hydrocarbons out near
the edge of the jet. These were mixed with the colder external stream and were not
consumed during combustion, The unburned hydrocarbons were then mixed and
subscquently measured at the next two axial locations. The most reliable EITHC for these
particular conditions would probably be that measured at the aft position since the amount
entrained from the tunnel flow was very much lower than the levels in the plume,

The EICO valucs are tuirly consistent tor o given power sctting showing an increase
with afterburning. At the present, no good reason can be given for the apparent increase in
the CO levels at the mid position for the military conditions since no instrumentation errors
occured during these measurements,
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The emisslon Indices of the oxides of nitrogen are almost the same for cach axial

location and show the correct trends between the different tunnel and engine conditions,
The EINO, for each condition shown exhiblts the best behavior as far as being constant
for each axial location and, as discussed in Section 4.2.5, correlating with the parameters
shown. Since trouble was experlenced with the NOj instrument, the EINO, values are
obtained for the CNO;, levels computed from the measured CNO and CNOy. This results
in a well-behaved trend which follows the EINO and EINO,.

[t is felt that the emission indices given in Table VIII as computed from Eq. (V-5
Appendix V, are very reliable since any errors involved in numerical integration and in
computing. the gas properties tend to cancel out when the two Integrals in Eq. (V-5)
are divided. A check on the numerical integration was made by comparing the integrated
fuel flows at the exit plane with those measured by a flowmeter during the engine
operation. The best agreement was a calculated fuel flow within 2,7 percent of the meusured
value at the Mach 2.0 military condition, and the worst was a 20-percent difference at
the Mach 1.6 military condition with the calculated values always being higher, These
errors are traceable to not being able to properly define the edge of the plume where
all of the flow propertics return to their free-stream values,

4.3 PARTICULATE EMISSIINS

The results of the particiilate ¢mission measurcments using the electrostatic grid
(Section 2.3.5) will be the subiect of a later report by DOT, Although the analysis of
the electrostatic grid witii an electron-microscope are not available for inclusion in this
report, DOT has reported verbally that initlal analysis of the grids indicates a very low
particle distribution. This agrees also with the gravimetric filter results. A very low ratio
of particle weight to mass flow through the filter (g/SCF) resulted during the test with
the highest weight-mass flow occurring at the nozz'e exit station during afterburning. The
results of the gravimetric filter analysis are shown in Table [X. An attempt was made
to plot the results as a function of axial probe position, engine power, and test condition
in Fig. 30. Although there is a general trend toward a decrease in the weight-to-mass
flow ratio with ayial position downstream of the nozzle exit, the results are inconclusive
because of certain uncontrolled variables such as the amoun: of time the probe was at
a given sampling point for each test condition, The requiremernt to cool the turbojet engine
every 15 min during afterburning and the probability of generating a different particle

distribution when a return to the power setting was made on a given survey also introduce
a variable in the analysis.

During an investigation of the particulate emissions at static sea level for this same
eng ne (Ref, 10), it was reported that no visible smoke was produced. Fosttest inspection
of the sample line also revealed no major accumulation of carbon deposits.
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SECTION V
SUMMARY OF RESULTS

The exlaust emissions were measured at three axial stations in the exhaust plume
of a JBS-GE-5 turbojet engine while operating at two simulated high altitude test condltions
with a supersonic external stream. Two Mach numbers and two engine power settings
were investigated for cach axial sumple probe position. A continuous sampling technique
wias used to measure the cmission constituents, The experimentul data were compared
with thcoretical predictions of the emission characterlstics. The major results of the test
progriam are summarized below:

. The consitituents of the exhaust including concentrations of carbon dioxide,
catbon monoxide, total unburned hydrocarbons, oxides of nitrogen, and
particulates were measured successfully at three axial stations (0.22, 9.3,
and 19,9 nozzle diameters) downstream ot the nozzle exit for both military
and partial afterburning engine power at Mach numbers and simulated
altitudes off Mach 1.6/55,000 {t and Mach 2.0/65.000 ft.

2. The mixing with the external free stream did not result in further reaction
of the gas constituents, other than the conditions where combustion was
occurring in the exhaust plume, A calealation of the emission indices at
the three axial stations in the exhaust plume indicate that no significant
reaction ol the oxides of nitrogen occurred,

3. The effect of the external supersonic stream and resuiting mixing on the
exhaust emission concentrations was predicted theoretically and wus in good
agreement with the experimental concentration profiles. This should provide
validity to the experimental results,

4, The existence of the reflected shoceks in the tunne!l had no discernible eftect
on the emission coneentrations,
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Fig. 2

Installation Photograph with Sample Probe at Posit'en 2 (Mid Position)
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Fig. 4

485.GE-b Ejectc?

Nozzle Shroud Schematic
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A, Axial Probe Position 3 (XP/DN =~ 19.9), Aft Station
Fig. 6 Sample Probe insta.fation 3
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o TABLE 1X
RESULTS OF GRAVIMETRIC FILTER ANALYSIS
E 1
: . Welght ,

. Mm Altitude; PLS XP/DN welght, g FiltEr }.‘low, Fuel Flow 7 E-
g ft scf g/scf ]
E MIL | 0,22 & x 10°5 15,2 0.53
1.8 | 55,000
- A/B | 0,22 218 x 1079 20,0 10.9
2.0 | 65,000 | MIL | 0,22 30 x 10~5 15.0 2,0
A/B | 0,22 249 x 1079 14,2 17,6
3 MiL | 9.30 5 x 1075 (8 0.67
3 9,30 31 x 1079 13.0 2,48

1,6 | 55,000 - .
A/B 9. 30 55 x 10-2 12.0 4,58 =
| 9. 30 44 x 10-9 5.3 8. 30 _
1 = - hn ' ?
& MIL | 8,30 16 x 1073 12,4 1,29 e
2.0| 65,000 -
A/B | 8.30 31 x 1079 16,0 3.1
: L 35 x 10~ 13.8 2.54
MIL | 19.90 | 44 x 10~5 13, 25 3,32 -
: 1.8 | 55,000 !
- ‘ Al/B | 19.90 38 x 1079 10.0 3. 80
2 : | 10 x 103 5.0 2,00
- i MIL | 18,90 33 x 1079 10,75 3.06 -
. 2 ! ! 40 x 1078 14.175 2,71
g ; A/B | 19,90 80 x 103 9.0 6.67
| | B9 x 107° 13.0 6.85
:L ‘
120
!
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APPENDIX 111
ATROGEN DIOXIDE INSTRUMENTATION DEFICIENCIES

The Beckman Nondispersive Ultraviolet long path analyzer, which was used to measure
concentrations of nitrogen dioxide (CNO;), was the only instrument that gave questionable
results, Since there was no consistent method of correcting these results, they are presented
as measured without any corrections,

The results indicate that the instrument exhibited both zero shifts and an increase
In the measured value with time because of some contamination of the sample cell, A
typical plot of these characteristics is shown in the following figure:

140 ¢~
Mach 2,0/65,000 £t
120 F O Military
O Ppartial A/B
Open Symbol: Measured
10 -
Leo Ciosed Symbol: Calculated
" §
& 80 ¢~
)
£ 60 |
3]
Contamination
40
Zero
20 Shitt
] 4
9 i L J
-4 -3 -2 -1 ¢ 1 2? 3 4

A comparison of the measured and calculated CNO, shows a greater shift in the results
at afterburning power, Checks of the instrument scnsitivity to water vapor prior to the
test did not show an appreciable influence on the performance of the instrument, Table
1l shows considerable conversion (16.2 to 34,3 percent) of the CNO, into CNO in the
sampling line and analyzer. This does not explain the increase in CNO, with time,

Modifications were madc during the test to increase the rigidity of the light source

and of the phototube which greatly decreased the zero shift sensitivity, However, the
contamination effect was not improved. Calibration of the instrument every two hours
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was not sufficient to eliminate the shift and in many cuses the contamination effect was
noted immediately sfter calibration. A further check of the sensitivity of the instrument
to methane Introduced in the sampling probe did not affect the instrument. During the
test, an accumulation of a yeliow deposit in the sample line approaching the NO;
instrument was observed. The instrument's performance showed a noticeable improvement
when the lines were cleaned.

It should be noted that the manufacturer replaced the gold anodized sample cell
with & Monel steel sample cell at the beginning of the test to correct irregularities in
the operation which were attributed to pitting of the anodized gold on the sample cell,
This change resulted in increased sensitivity to the unbalance in light reflectec through
the gold reference cell and the Monel steel sample cell. It is, therefore, understandable
that any accumulation of deposit on the sample cell would cause a further shift in the
calibration, It is recommended that a sysiematic investigation of the instrument's sensitivity
to contaminants (such as heavy hydrocarbons that can condense in the sample cell at
338°K (61C°R) be made before the instrument is used to measure CNOj in the exhaust
of a turbojet engine. '
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APPENDIX IV
THEORETICAL CALCULATIONS OF EXHAUST PLUME PROPERTIES

Theoretical predictions of the exhaust plume propertias (i.e. total temperature, impact
pressure, concentrations) as a function of both the axial distance from the engine exit
plane and the plume radius were made using the turbulent mixing layer version of the
turbulent boundary-layer calculation procedure given in Ref, i 6, The calculation procedure
utilizes a numerical, implicit, finite difference method to solve the equations of continuity,
energy, and conservation of species. Boundary-layer assumptions are uszed in derlving the
conservation equations, and a Prandtl mixing length-eddy viscosity model is used to relate
the mean flow properties to the fluctuating flow properties. Since the solution is an implicit
difference scheme, it {s necessary to supply a set of {nitial conditions in terms of mixing
region profiles (total temperature, velocity, and concentration), initial thickness of the
mixing region, and the conditions at the edges of the mixing region. The initlal conditions
for the tests reported herein were computed using a flow model shown in the following
sketch,

Tunnel
Froe-Stream Flow

Nacelle SETTII

Noxzle Shroud R
Cooling Alp ———w

Primary Nozzle ——H—T

Engine Core ¥low r————on
M~ 1.0
Engine ¢ -

Nucelle / Awsumed Viscoue Flow
e Rref Fleld
(Not to Scale)

\

Nozzle Shroud
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The inviscid flow fleld was generated under the following assumptions:
1. Tunnel free-stream conditions existed on the engine nacelle ahead of the
nacelle boattail,
3 2. Because of the short length of the boattall, a simple Prandtl-Meyer expunsion
gave the boattail cenditions,
¥
2 3. The internal nozzle cooling alr was neglected in the nozzle flow,
J 4, The flow between the nacelle and nozzle shroud was neglected
3 (measurements of the total and ~tic pressure at point A showed that little
or no flow existed in the annuus),
3
§ 5. The Internal nozzle flow was generated from a Method of Characteristics
£ : solution (Ref. 14) using the engine manufacturer's spesifications for the
. = . H
: engine core tlow, ]
9 g 6. The pressure at point A (pa ) was matched between the externe. and internal é E
2 flows, i =
v g ¢ :
K f The viscous flow was computed by caleulating the turbulent boundary layer along the :
engine nacelle and the internal nozzle wall. The initial profiles for the velocity, temperature, !
and concentrations were generated by matching error functions at the reference radius ]
(Rrer). The point at which these indtlal profiles were calculated was somewhat arbitrary
! and in the cases considered was 2.54 ¢m (1.0 in.) downstream of the nozzle shroud exit. ;
This position becomes more critical when trying to compure mixing 1egion properties ot
the first axial location probed, which was 10,13 c¢cm (4.0 in.) downstream of the nozzle
shroud exit, Unfortunately the probe was not traversed through the mixing region at that
' plane, and a direct comparison is not possible. The tollowing table gives the values of
: the flow propertics used as initial conditions for the plume mixing calculations: ;
: - —— %
[ Frea-Straam I Initial Conditiong {51 Plume hixing l ;
| __Cunditiona e e et ety < mn s et . . 4
| I R U A e s r oo |
g, i Pa, : iy, H P i . ’) N
M, | Alttlude, T4 [ K |n\/uec | ‘l\u ! \'I:mzlml;ec | 'Kl I Ng : . :Df ! lnl , : :n : m Im‘# ! i
) (*R) ' {ft/sec), (*R) : {pnfa} l(l!/seu) 1) | (f\lPLc), (f!) I [{41] l[ L () S R T ) I(ln) 3
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where the inltial profiles are given by:

Rier €« R < R, u

i

R.R
Um (U - up) erf (———5—55-{->

’ Ryer - R
Ri < P < Ror u=um+(u;-um)crf<'°:) )
Ryer- R
R € R;e¢ T=Ts + (Ty - Ty) erf (-—r-?—::-'—‘)
R < Ryf T=T,

The concentration profile was assumed to be similar to the temperature profile with X,
= 0,0 and X, = 1.0, and U, was arbitrarily set st 30.5 m/sec (100 ft/sec). This was
the approximate minimum value needed to eliminate numerical instabilities in the
computations. It should be emphasized that, although the numerical procedure allows for
the inclusion of finite-rate chemlstry, only frozen ciiemistry Is programmed and all the
calculations were carried out assuming frozen chemical composition, By assuming that
the turbulent transport coefficients (l.e., the turbulent Schmidt numbcrs) are the same
for all the species in the exhaust plume and froren chemistry, only one conservation of
species cquation necds to be solved since the initial exit plane values may be normalized
to unity, An obvious assumption made in the viscous mixing calculations is that of uniform
properties in the inviscid tlows (both internal and external), As shown in Flg. 27a and
b this assumption s grossly in error for the afterburning power setting,

The thermodynamic properties of the mixing veglon are computed as if the entrained
air and exhaust gases are a mixture of thermnally and culovically perfect gases, Real gas
curve flts are utilized for the alr since they were existing In the numerical program, und
curve fits are used for ihe specific heat variation with temperature for the exhaust gases,
The real gas curve fits for alr, being developed for high temperatures, arc in error at
low temperatures, for example, at 700°R, theyv are 23°R too low, Comparisons of the
thoorctica! predictions made with the above method and the cxperimental data are
discussed In Scetion 4.2.5,
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‘ : APPENDIX v
INTEGRATED EMISSION INDEX CALCULATION PROCEDLRES

Since, in most aircraft turbine engines, the values of the Mow properties across the
exhaust exit plane are not uniform, an integrated mass flow of each species will give
a more accurate evaluation of the pollutants being emitted, The usual definition of th.
emission index can then be applied to the integrated mass flows of each species. This
can be done in the following manner: -Let Cp = the concentration of the pth species
(given In ppmv - mole fruction) then,

(@]
he]

3
:l::
»x (O

where ny, is the number denstiy of the pt" species and ny is the number density of the
mixture. The flux of the p'h species across any exhaust plume plane in terms of particles
per unit time s

R
p
no= 2mf npugrdr (V-1

P

and if m, represents the mass of a p'h particle, then the mass flew is

R
])
N ow 9 (V-2)
m "(;{ n, m, nHrdr

'\

Let my be the average particle mass of the gas mixture: then since

Eq. (V-2) becomes

m R p

’hp w 2n —”fC PPy’ dr (mass/unit time) I (V-3)

I'he tuel burned on a molar basis is the sum of the moles of the species containing all
of the carbon atoms (the carbon emitted in the form of particulates will be neglected)
so that the fuel tlow is

my Rp
WET e 277;!I (CCO + CCO, + CTHC]p,‘ugr dr (mass/unit time) (V-4)
n O v

n_u

The mass of species "p" emitted per miass of fuel burned is the ratio of Egs. (V-3) and
(V-4)., If the product of pyugrdr is given ir g/ssc ((bm/sec), then the emission index is
given as
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: - Rp
K3 M : [Cppgugrdr
EIC,) = 1000 £ = 1000 F‘T‘ . °
m
' ‘[ [cco + ccoy + cTHCp u rdr
o

(V-5)

(g/kg fuel), (1bm/10° 1bm fuel)
where the molecular weights have been substituted for the particle masses.

The integrals in Eq. (V-5) are evaluated using a simple trapezoidal integration of
the experimental data. The bulk exhaust gas properties are computed from the measured
total temperature, impact pressure, and static pressure at the plane where the measurements
were made. An iteration across the normal shock wave ir front of the sample probe is
used to compute the free-stream conditions ahead of the shock wave (pg and ug). The
values of the CCO, is input in percent by volurie, and tne remaining species are input
as parts per million by volume., If no reactions tuke place in the exhaust, the EI(Cy)
"5 will reinain constant at any axial location downstream of the engine exit plane. In addition,
= if all the flow properties arc uniform, Eq. (V-5) reduces to the usual definition of the
. emission index.

3 : M c,

BIC) = 0.1 &5 .
P Mg cco | CCo, + cTine (V-6)

104 104

- where C,, CCO, and CTHC are given in ppmv and the CCO; is given in percent by volume,
- _ Equation (V-5) has bLeen used in this report to calculate the emission indices with the
following values of M,/Mg:

pth Species M, M, /Mg
' IP5 Fucl 14 1.00
' CcCeo 28 2,00
g CCO, 44 3.14
CNO (as CNO») 46 3.20
CNO, (as CNO3) 46 3.29
CNO, 46 3.29
: CNO 30 2.14
CTHC 14 1.00

where the fuel has been assumed to have nearly a C/H ratio of 2.0 so that My = 12
+ 2 = 14, These values are in agreement with those recommended by the SAE Committee
E-31 to be issued in SAE ARP 1256 (Ref. 6).

Equation (V-4) may also be used as a means of checking the experimental data for
consistency. As noted, if the profiles are uniform across the exit plane of the engine
exhausi, Eq. (V-4) becomes:
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s My , R .
WF1 » 2n =M=;[CC0 + CCO,y + CTHC]J pgujtde

v
K

which reduces to

it Tl

M
WET « o1[CCO + CCO, + CTHCI(WFT + ®,)
8

i

M

ol R e

By taking the usual definition of the fuel-air ratio (f/a = WFT/W,), the above equation can
be solved for the CCOj.

=

CCO, » <& L L [CCO + CTHC) (V-7)

M[ 1+f/a

Since the fuel-air ratio is usually known to a greater degree of confidence than the measured
concentrations, Eq. (V-7) can be used to estimate the CCO, levels expected from the
measured f/a, CCO, and CTHC. The usual procedure of calculatinp a fuel-air ratio and
comparing that with the measured value can also be uscd as a check. Equation (V-7)
can also be applied locally in the exhaust flow If local value of the tuel-air ratio is deduced
from the measured total temperature profile. This approach can be used for afterburning
power scttings where some combustion takes place externally to the engine, The methods
described were applied to the experimental data obtaincd during the tests reported hercin,
and the results are discussed in Section IV,
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