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ABSTRACT 

A faster method for computing optimal three dimensional  tra- 

jectories  that maximize the  landing  footprint of a  lifting re-entry 

vehicle has  been developed.     The method utilizes energy approxima- 

tions based on the assumption  that  the flight path angle  is small 

and the flight path angular rate is  zero.    Thus,  the vertical com- 

ponent of lift is  considered equal   to the weight minus centrifugal 

relief,  and  the equations of motion are reduced in order from six 

to four.    Because of this simplification,   the  classical  indirect 

method of the calculus of variations  is used to compute  families 

of optimal  solutions.     Utilizing data corresponding  to one of the 

space  shuttle configurations,   computations have been carried out 

for both unconstrained  trajectories  and for solutions  that have 

aerodynamic  heating rates and   lift coefficients limited   to speci- 

fied values.     During the investigation,  several interesting ana- 

lytical finds we-e uncovered  that could be used as a basis  for an 

onboard guidance  scheme. 
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■ INTRODUCTION 

•• The  Introduction of energy approximation methods   (Refs.  1-5) 

rr In 1944 has  taken the science of high-speed aircraft performance 

"* calculations out of the realm of quasi-steady state analysis and 

Into  the framework of dynamics and  the calculus of variations. 

** These early attempts of extreme reduced-order approximations were 

applied only to  two dimensional minimum time to climb problems and 

* * resulted In solutions   that were plagued with subarcs consisting  of 

unrealistic climbs and dives and large Instantaneous  flight path 

changes.     Nevertheless,   these solutions did resemble actual opti- 

mum flight paths and provided pilots with procedures  for improved 

* ' aircraft performance. 
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During the past  twelve years  the use of optimization tech- 

niques developed specifically for modem digital computers   (Refs.  6- 

10)   has   gone  to  the other extreme,   that of generating numerical  so- 

lutions  to complex three dimensional  trajectory problems  involving 

specified  terminal conditions and  inequality constraints on control 

and state variables.     Although these solutions are realistic and 

provide a good reference of maximum possible performance,   it is 

difficult to obtain an insight to  the general characteristics of 

optimum aircraft maneuvers,   and the high cost of computer usage 

makes  it prohibitive  to carry out any extensive aircraft parametric 

design studies.     It would be desirable to have available a simpler 

and more efficient method that could overcome   the preceding diffi- 

culties . 

One promising approach that has been revived and extended is 

the energy-state or energy-maneuverability approximation  (Refs.   11- 

14) .     The essential feature of the energy approximation is  the re- 

duction in order of the differential equations of motion,   and 
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therefore a corresponding reduction in the Euler equations and the 

number of multiplier Initial values.    Although  the reduction may 

not be sufficient for deriving analytic solutions it should facili- 

tate use of  the classical indirect method of the calculus of varia- 

tions for efficiently computing many families of optimal solutions. 

This approach has been successfully carried out recently in a 

series of studies for calculating optimum turning maneuvers of air- 

craft at constant altitude  (Refs.   15-18)   and in three dimensions 

(Refs.   19-22). 

The research investigation described  in this report extends 

the energy type of approximation to   the computation of optimum 

three dimensional  trajectories   that maximize the landing footprint 

of a lifting re-entry vehicle.     The  footprint may be considered as 

a locus of points;   for each point the terminal  condition is speci- 

fied and the   crossrange   for any value of  downrange has been maxi- 

mized.     The approximation is based on the  assumption that the 

flight path angle    y    is small     (cos 7 c  1)    and the angular rate 
■ 

y    is zero.     Thus,   the vertical component of lift is equal   to the 

weight minus centrifugal relief.    This has  the  effect of elimi- 

nating  the skipping  type of trajectory, and instead results  in an 

equilibrium type of optimum glide.     It should be noted that it is 

the long duration skipping motion that plays, havoc with the conver- 

gence of iterative optimization techniques. 

In addition to maximizing  the  landing  footprint,   the computer 

program also satisfies inequality constraints on underbody tempera- 

tures and maximum lift coefficient.     No attempt has been made  to 

optimize  trajectories that terminate  inside the  footprint;  however, 

this could conceivably be achieved by decreasing  the value of the 

maximum allowable underbody temperature. 
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** Because of the reduced order of the system, there is a problem 

~~     of transitions from and to specified end conditions. As in the 

■*      earlier minimum time to climb problems (Ref. 4), where energy is a 

state variable and altitude (or velocity) is employed as a control 
14      variable, a discontinuity in the control variable is mathematically 

permissible and results in instantaneous altitude/velocity changes. 

What is needed to correct these unrealistic maneuvers during re-entry 

is a method rfor getting on and off the optimal equilibrium glide path 

in an optimlu. manner. Since the reduced-order modeling eliminates 

the higher frequency motion, these fast transients have to be re- 

introduced and superimposed on the slowly varying motion in order 

to satisfy the boundary conditions. These transitions are suitable 

for treatment by singular perturbation theory and the "boundary 

layer" correction given as solutions of differential equations also 

of reduced order (Refs. 13 and 22-24).  Some preliminary work along 

these lines has been carried out, but is not included in this re- 

port. 
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MATHEMATICAL MODEL 

A computer program has been developed to optimize the three 

dimensional  turning  flight of a lifting re-entry vehicle,   taking 

into account constraints placed on underbody temperatures and maxi- 

mum lift coefficient.     A spherical nonrotating earth with an inverse- 

square gravitational field and an exponential atmosphere is assumed. 

Rigid body dynamics are neglected,  and throughout the flight the 

vehicle executes a coordinated turn maneuver of zero side force. 

Angle of attack and bank angle are  the  two control variables for 

the original model;  however,   for the reduced-order model,  altitude 

replaces angle of attack as a control variable.     The aerodynamic 

data are independent of Msch number. 

Equations of Motion 

The  flight path equations before reduced-order approximations 

are made have  the  form 

V « -   - - g sin y (1) 

1 '       L g ,   V ,0N 7 = -j^y cos  u  - -^ cos  7 + - cos 7 (2) 

Lsin^V . .,- /<i\ y a __ cos Y sin y  tan  9 (3) 
^      mV cos  7      r 

r = V sin 7 (4) 

cp » _ — cos 7 cos Y                                                                  (5) 
r 

A = ^ cos  X  sin t (6) 
r         cos  «P v / 

_       r     n i itf—m        '—~- — - 
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where V is velocity, y    flight path angle, y heading angle, 

r geocentric radius,  qp latitude, A longitude (see Figs. 1 and 
2 2 

2) , and the gravity g ■ g r /r . These equations are derived in 

Appendix A. 

The specific energy    E    replaces velocity through the defining 

relationship: 

0 ■•£■$ Bo 

The choice of specific energy (foot-pounds per pound) as a state 

variable steins from the intuitive reasoning that E should be more 

slowly varying than either V or h. This would be particularly 

true if reduced-order approximations were not used, resulting in a 

skipping motion that can be thought of as an interchange of kinetic 

and potential energy about some equilibrium energy level. There is 

another reason for the preference of E over V.  Because E de- 

creases monotonically it is possible to reduce the order of the 

system by one by eliminating time and employing E as the indepen- 

dent variable. As shown in Appendix B, the order of the system is 

further reduced from four to three, thereby resulting in an analyti- 

cal solution for the unconstrained case. 

Substitution of Eq. (4) into (1) eliminates the sin y terms 

fron the equations of motion, and 

0 
□ 
D 

V.-Mr (8) 

This is significant, since the small angle approximation to be made 

for y    applies only to the cos y    terms, i.e.,  cos 7 « 1. The 

sin 7 terms do not have to be approximated by sin 7 » 0 in order 

to derive exa... expressions for E and E. Differentiating Eq. (7) 

and combining with Eq. (8) results in 

■ 
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where  the weight    W 

variable defined by 

E        w 

mg  ,     and    V   has been reduced to an ordinary 

2gr2 

2g E + -2-2 Oo r (9) 

Based on the assumption that    cos 7 - I    and the angular rate 

0,     Eq.   (2)   is converted to an algebraic expression 

WV 
go   COS   [X 

Vo 
Vr 

V 
r (10) 

r  ,     is now employed as a control vari- where  the altitude,    h * r 

able  in addition to the angle of attack    a    and bank angle    M- 

system of equations  is reduced  to fourth order: 

-■f 

Y  s 

CP 

A 

g  L sin  p. o  

V 
—  COS    Y r 

V sin x 
r cos   <p 

- sin Y  tan q r 

The 

(11) 

(12) 

(13) 

(14) 

Because of Eq.   (10)   the  three control variables  are not inde- 

pendent of each other.     Instead,    h    and    n-    are  to be considered 

as  the  two primary control variables for the reduced-order system 

and    a     is  to be determined from Eq.   (10)   and 

■ 

— - ■ ..   ...  . 
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p    - Po e 
-ßh 

CL- Ws 
a    -  .145 +  .737 tan(1.33 CL) 

where  the numerical expression for    a    versus    C, *    with 

(15) 

(16) 

(17) 

CT  lim- 
li 

ited to 0.535, corresponds to one of the early space shuttle 

orbiter configurations.  Other equations and data are: 

O ^2. 
(18) 

y 
u 
D 
D 
D 
D 
■ 

D    =  CD'pV S (19) 

where ,028, 'D 
C, 

p    ■   .0034 slug/ft  ,     ß 

1.69,     W - 211,170 lbs. 

.0000421 per ft,    r    - 20,908,800 ft, 

g    = 32.174 ft/sec2    and    S = 6100 ft2. Oo 

Boundary Conditions 

At  the start of re-entry    E -  11,717,000 ft,   v    = 7r/2 radians 

(heading east),     cp    = 0     (on the equator)  and    A    «0.     The initial 

condition for    E    corresponds  to a velocity of    24,000 ft/sec    at 

an altitude of 40 nautical miles.     However,  since altitude  is a 

control variable,   to be determined optimally,  only    E      remains 

fixed for each member of  the  footprint family, whereas  the numeri- 

cal values of altitude and velocity at    t ■ 0    will vary while 

satisfying Eq.   (7) . 
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Tlio   final  conditions of  the   turning  flight re-entry are 

and |f  =   -  20.800.000  ft. vr     is open .ind A.    are  arrived at 

optinuilly such  that  the nroa of   the  landing  footprint has  heen maxi- 

Mixedt     Hie value of     K.-     cor 

nt an altitude of    50,000  ft. 

Mixed.     Hie value of     lü.-     corresponds   to a velocity of     2000  ft/sec 

[ne<^ual [ t^ JOOMtTB ints 

Tlu»  undcrhody  temperature constraint  is   taken   from  Ref.   25, 

ami   for  this   investigation   is  considered  to he   typical   for  those 

cases where  the houndary  layer   is  assumed  to he   in   thermal   and 

chemical   equilibrium.     The  constraint  is given as  boundaries   in 

altitude-velocity space   (Fig.   3)   such  that all  underbody  tempera- 

tures  aft of  the    20-foot  station  are  limited   to     1800  F.     At 

higher altitudes  the maximum temperature would be  less   than     1800 F 

and at  lower altitudes  the maximum  temperature exceeds     1800 F. 

The  boundaries are defined by  laminar heating at  the   forward  sta- 

tions  during   the  initial  portion of entry.     The break  in   the  ini- 

tial   slope  of  the boundary is due   to  the onset and realization of 

turbulent heating at  the aft stations. 

An  inequality constraint  is  also  imposed on  the   lift coeffi- 

cient which  is   limited  to    C,   = 0.535. 
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VARIATIONAL TREATMENT 

Unlike the early energy approximation studies where only one 

differential equation had to be analyzed, the present Investigation 

Involves four differential equations of motion and two Inequality 

constraints on the control and state variables.  This more complex 

problem requires the application of optimal control theory (Ref. 26) 

to formulate the necessary conditions for a maximum crossrange turn- 

ing re-entry.  These conditions, together with the state equations 

(11) to (14), form a two-point boundary value problem that must be 

solved numerically/iteratively for a specific set of boundary con- 

ditions. 

I 
Necessary Conditions 

The Hatniltonian for the unconstrained problem is 

x K <t * /goL sln i;  v .   ,   N H Ä - W + \ V—wv 7 SLn * tan V 
(20) 

-  A    ß cos v) ♦ \ fi-iS-S) 
9\t *'        A Vr cos cp/ 

and the augmented Hamiltonian for  the constrained problem is 

" = H + v»«i» + v«.'m (21) 

where     A  ,   A  ,   A      A      are undetermined multipliers,  CTra » h - h..-  > 0 

is  the underbody heating constraint,     (!_  ^ L        -  L > 0    is   the 

maximum lift constraint,    h.—    is given by the thermal boundaries 

in Fig.   3,     L is  the maximum lift with maximum    C.  ■ 0.535, 0 max L 
and    v     ,   v        are undetermined constraint multipliers  that must 

UB      ML 
satisfy the  following conditions 

" 
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VUB " 0  lf  CUB * h " hUB > 0 

VUB ^ 0  lf  CUB " h " ^B ^ 0 

v^ » 0  if  C^- - L   - L > 0 
MB ML   max 

(22) 

(23) 

- > 0   if  (^ - L MB - max L < 0 

The  two additional terms  in the augmented Hamiltonian correspond 

to  the  treatment of inequality constraints by the technique of 

Valentine   (Refs.  27 and 28). 

Substitution of Eqs.   (10),   (16),   (18),   (19)   into Eqs.   (20), 

(21)  and differentiation of    H    with respect to the four state 

variables  leads  to the following Euler equations: 

%x n      PS    2   ,   ,     sin Y tan  cp cos  y      ,       sin Y 

ED2W x r 9r Ar cos  cp 

+  >.  C % E^D ?   pS 
CL 

-,,,2 r 2r 
3V o o 
~2"T " "FT ' ' 
gor        V r        gor 

hV        2 
i^E  SeC  ^ 

ÖV 

(24) 

1 . 

+   A 
goro   ,   1 
X2       r V r 

^V .. ^ tan u - . 
ÖCUB_V      öSfL 

UB   ar        ML   ^E" 

i   D A     ■ 
Y 

.; A    tan  CP -   A -' Cos  v -   A    sin Y 1   Y A cos  cpl <P ^ 

» > %       . V sin Y 
9      !   Y A r        2m cos  <p 

A,  = 0       ;       A« constant A ' A 

(25) 

(26) 

(27) 

12 
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where,  by differentiating Eq.   (9), 

51 
g _o 
V (28) 

The partial derivatives    Sc^/^E    and    öCL-ZöE    are given In Appen- 

dix C.    Since    C.m    and    CL-    are not functions of    x»   $>    or    A, 

their partial derivatives do not appear In Eqs.   (25)   to   (27). 

For optlraallty,   the Hamlltonlan must be stationary with re- 

spect  to  the  two control variables.     The Hamlltonlan,   for the un- 

constrained case,  or unconstrained portion of a trajectory,  can be 

written as 

H 
2 

A + B sec ^L + C tan p. (29) 

where 

A =  - AECDo i v3  "   \ 7  tan f Sin * 

\    v >     v sln  X A^  -   COS   Y   +   A  
cp r *        Ar cos  cp 

(30) 

B = * C 
ED 

2WV 
 1 
?H1 

2 
goro 

Vr 

y 
r (31) 

2 
Vo 
Vr 

y 
r (32) 

Bank angle Is determined by the partial derivative    öH/äp. ■ 0, 

and is obtained by differentiating Eq.   (29).    The result is 

13 
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Substitution of Eq.   (33)   Into Eq.   (25)  results In 

c2 
H - A + B - |g (34) 

which Is now a function of only one variable,    r.    The value of    r 

which minimizes  the Hamiltonian   [Eq.   (34) ]  is determined by a one 

dimensional search. 

The Hamiltonian as given by Eq.   (29)   assumes a parabolic  drag 

relationship;  however,  a similar investigation can be carried out 

for a fourth-order drag model.     The Hamiltonian,  Euler equations, 

and optimum bank angle for this more realistic drag model are given 

in Appendix D. 

For the case  involving  the underbody heating constraint,   the 

Hamiltonian    H    must also be stationary with respect  to  the control 

variables.     This results in 

S-^-UB^-O "3) 

^c. 

I IM^UB-^-0 W 
Similarly,   for  the maximum lift constraint portion of a trajectory 

8-^v^-o <37>     ■ 

: 

:: 

14 
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Eq. (41) was used as a check on the accuracy of the numerical pro- 

cedure.  As previously mentioned, the Initial conditions of E, y, 

9, A, t are specified as well as the final value of E; final 

values of y,y,A,t    are open. The integration forward in time 

can proceed once appropriate choices are made for the initial 

values of the undetermined multipliers.  One of these multipliers 

is selected by the scaling condition, i.e.. ■ - 1; a second 

multiplier can be determined from Eqs. (29) to (32) and (41), 

which at t  reduces to 

i: 
i. 

: 

:: 

- 

A 4B  B 
psv- 
2W 

(42) 

Since ^A  is a function of r,  the Hamiltonian har to be mini- 

mized before computing VL from Eq.   (42) .     A family of  trajec- 

tories can be generated in terms of the remaining two multiplier 

initial values     ^m      and    A    .     A point on  the footprint is ob- 
0 ^o 

tained by selecting    A 

of     A 

conditions and for which the final value of 

versality condition).    A m ighboring point on the footprint is ob- 

and iteratively searching for that value 
^o 

which results in a solution that satisfies all necessary 

,       is zero  (trans- 
vf 

tained by varying A and    ? utilizing continuity properties 

of the state and multiplier variables with respect to boundary con- 

ditions. 

The constraint multipliers  for the constrained portion of the 

trajectory are obtained from Eqs.   (36)  and  (38), resulting in 

UB "   "  ör dr~ 

OF    /   ÖCML 
ML 8 ör 

(43) 

(44) 

16 
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For the case where both constraints apply at the same time, 

Eqs. (39) and (40) are solved simultaneously 

UB 

ML 

ÖC UB 
ar 

aCML 
an 

-1 

äCML 
Sr  1 

an 
Sr 

(45) 

At each time interval a one dimensional search is made for 

the altitude that minimizes the Hamiltonian.  For each altitude 

during the search Eqs. (33), (10), (16), and (17) are used to com- 

pute the unconstrained optimum bank angle and angle of attack, and 

the results compared with the heating constraint given by Fig. 3. 

If the heating constraint is violated the unconstrained numerical 

results are discarded in favor of the nearest angle of attack that 

will satisfy the constraint.  This is accomplished by the follow- 

ing iterative procedure, initiated with the numerical value of the 

unconstrained angle of attack: 

öh. 
l' Aai ■ (h -v .)/ 

UB 

i-1 
eta 

2. a. • a. , + Aa. 
1    i-l    i 

3-  X " hUB(V V> 

4.  Test  |h - h^ | < 

where  c  is an arbitrary small number, hT_  is a double table 

look-up with data taken from Fig. 3, and öh.ra/äa is a plecewlse- 

constant function taken from the data stored in the double table 
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look-up.    The four steps are repeated until the altitude difference 

is less than    e.    The    cosine    of the bank angle is then computed 

from Eqs.   (10)  and  (15)  to  (17),   i.e.. 

cos ii WV g 

?(f) V 
r (46) 

If cos u > 1,  an impossible equilibrium flight condition exists 

for that altitude and the next value of attitude is selected in 

the search to minimize H.  If cos |i > 1 for all values of alti- 

tude, the heating constraint cannot be satisfied and the run is 

terminated. 

The maximum lift coefficient constraint is satisfied by com- 

puting lift from Eq. (10), maximum lift from Eq. (16) using 

CL ' CL  ' 
max 

and verifying that L < L  .  If L > L  ,  the un- max max 

constrained values of bank angle and angle of attack are discarded 

and,   instead,  Eq.   (46)   is used to compute the constrained bank 

angle with    L = L      ,     and,  the search is continued for the value max 
of    r    that minimizes    H. 

I LI 

, 
18 

mi ■■ Jmir   ' " 



^r 

.■- 

- 

:. 

D 
D 
D 

NUMERICAL RESULTS 

The numerical data employed for the re-entry vehicle corre- 

sponds to one of the early (1970) space shuttle orbiter configura- 

tions. A FORTRAN IV digital computer program was used to calculate 

iteratively bo"h unconstrained and constrained optimum trajector- 

ies.  The footprints for both are shown in Fig. 4 as a locus of 

terminal latitudinal and longitudinal points for a fixed terminal 

energy state.  The unconstrained footprint was traced from the 

easily determined maximum downrange point  (^ • y « |i ■ ^m " ^v " ^' 
back along the north branch and past the maximum crossrange point. 

No attempt was made to define the rear of the footprint, which is 

believed to involve zigzagging paths. The effect of the heating 

constraint is to shrink the footprint, as would be expected, with 

the maximum downrange and crossrange reduced by 64 and 450 

nautical miles, respectively. 

Figures 5, 6, and 7 show the trajectory characteristics for 

typical high and low crossrange solutions, with and without heating 

constraints.  For the sequence of runs that include the heating 

constraint, the trajectories are initially constrained, remain so 

most of the time, and thereafter continue to be unconstrained. 

The high sensitivity of the final state conditions with re- 

spect to the initial conditions of the multipliers is demonstrated 

in Fig. 8.  Optimal runs have zero bank at the terminal conditions. 

This can be shown by substituting Eqs. (31) and (32) into Eq. (33) 

tan \x 
A pSg2 
Y  O0 

AX
E
WCD 

Vo V_ 
r 

(47) 

. 
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lt and noting that the transversallty condition calls for V, - 0. 

Neighboring solutions have hard right or hard left maneuvers de- 

i: 

D 
!. 

ü 
|Q 
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lo 
D 
:: 

pending upon the sign of A  at the specified value of 

Ef - - 20,800,000 feet.  Fortunately, in spite of this sensi- 

i *       tivity, it is clear-cut how to change iteratively the numerical 

D 
value of ^m  to achieve  A  =0. 

^o xf 

The maximum lift constraint was added to the computer program 

in the anticipation that large bank angles at high altitudes, or 

high altitudes resulting from the heating constraint, would call 

for excessive lift capability. However, this never occurred.  In- 

stead, it was noted that the lift constraint was necessary at the 

end of some of those trajectories that involved hard turning maneu- 

vers.  For those trajectories with Av = Q,  i.e., \Lm  * 0, the 

lift constraint was never required. 

In Appendix B it is shown analytically that the optimum angle 

of attack for the unconstrained case, or unconstrained portion of 

a trajectory, is that which maximizes L/D.  Substitution of the 

numerical data into Eqs. (B-22) and (17) produces an angle of 

attack of 15.6C. No attempt was made to capitalize on this ana- 

lytical result when writing the computer program; however, all of 

the numerical solutions for the unconstrained cases, as well as the 

unconstrained portions of the constrained cases (see Fig. 9), con- 

sist of angle of attack time histories that remains constant at 

15.6 ,  thus verifying the analytical finding.  It has been shown 

in the classical literature that for two dimensional flight over a 

flat earth maximum L/D will provide the most range.  The analytic 

solution of Appendix B and all of the numerical results of this re- 

port (without constraints) show that maximum L/D is also the op- 

timum control that maximizes range and crossrange for three dimen- 

sional turning flight over a spherical earth with an inverse-square 

gravity field. 
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Throughout Che Investigation and computer programming no de- 

liberate effort was made to minimize machine time. However, there 

are several worthwhile approaches that could be exploited.  The 

first is to take advantage of the analytic solution, maximum L/D 

angle of attack, for the unconstrained re-entry and unconstrained 

portions of the trajectories. The optimal controls are given ex- 

plicitly in Appendix B by Eqs. (B-22) and (B-24) .  No numerical 

search is necessary to minimize the Hamiltonian; however, a simple 

iterative procedure may be required to determine the altitude from 

Eq. (B-7). The second approach at streamlining the computer pro- 

gram would be to utilize the constants of motion from Noether's 

theorem (Appendix E), together with the constant, zero value of 

the Hamiltonian.  These four constants, given by Eqs. (C-l), (C-2), 

(C-3), and (41), eliminate the need to numerically integrate 

Eqs. (24) to (26).  A third approach would be to utilize a system 

of differential equations where energy is used as the independent 

variable (Appendix B).  This would eliminate the need to numeri- 

cally integrate Eq. (11). Although the Hamiltonian would no longer 

be constant, this would be compensated by the elimination of the 

energy multiplier,  A 

L 
n 
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APPENDIX    A 

DERIVATION OF EQUATIONS OF MOTION 

The flight path equations of motion could be derived from 

first principles;  however, a rigorous development would be rather 

lengthy and not In keeping with the purpose of this report.     In- 

stead,  utilization will be made of Ref.  29 which provides a thorough 

derivation and requires only a few additional substitutions to ob- 

tain Eqs.   (1)   to  (6).    Since many of the variables of Ref.  29 have 

definitions  and symbols different from those of this report,  only 

Appendix A will employ the symbols of Ref.   29. 

The curvilinear coordinates X and Y are related to longi- 

tude T and latitude > (Flg. A-l) by simple arc length formulae 

given by Eqs.   (6)  on p.  61 of Ref.   29 

X = r T 
o Y = r ^ o (A-l) 

where the constant    r      is the radius of the earth.    The resulting 

curvilinear velocities are 

X = r T 
o r * o (A-2) 

The angular velocities of the wind axes  (p , q , r ) centered at 

the vehicle's eg (Fig. A-2) are related to earth fixed axes cen- 

tered at some point on the surface of the earth (Fig. A-l) by 

Eq. (17) on p. 63.  Substitution of (A-l) and (A-2) into this equa- 

tion results in 

»w 

% 

r w 

1     0      - sin 7 

0    cos M  sin p. cos y 

0      - sin M  cos M cos y 

I 
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Fig. A-l Coordinate Systems for Flight Over Spherical Earth (Ref. 29) 
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Fig. A-2 System of Rotations from Local Horizon to Wind Axes (Ref. 29) 
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1 
cos y  cos x cos y  sin x 

1 
sin p. sin y  cos Y sin M. sin y  sin y 
- cos p. sin x + COS [i  cos x 

cos |t sin 7 cos x cos p sin 7 sin x 
+ sin ^ sin x - sin [i  cos x 

- sin y 

sin M- cos y 

cos p. cos 7 

T COS Ä 

T sin ^ 

(A-3) 

I 

ii 

! 

where x    is the azimuth heading angle  (0° due west, 90° due 

north, etc.)» T  is the flight path angle above horizontal, and 

[i    is the bank angle (positive right wing down). The kinematic re* 

lationships, which when Integrated defines the vehicle's position 

with respect to the earth, are given by Eqs. (22) on p. 64.  Sub- 

stitution of (A-l) and (A-2) into this equation results in 

V cos 
r 

7 COS X 
COS A 

X • * cos 7 sin x 

h = V sin 7 

(A-4) 

(A-5) 

(A-6) 

where h is the altitude and r = r + h is the distance of the 
o 

vehicle from the center of the earth.     Gravity,  the usual  inverse- 

square  law,   is given by Eq.   (25)   on p.  65 

g » g. (r-Th) (A-7) 

The dynamical relationships are given by Eqs.   (26)  on p. 65.     Sub- 

stitution of  (A-7)   into this equation and assuming no thrust, a 

coordinated turn with no side force,  and a nonrotating earth re- 

sults in 

. 
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- (D/m) - g sin -y 

rw ' (g/V)sln (i cos 7 

«^ - (L/mV) - (g/V)cos || cos y 

(A-8) 

(A-9) 

(A-10) 

Substitution of rw and (^ from (A-3) into (A-9) and (A-10) 
becomes 

v cos n cos 7 - 7 sin n + (V/r)cos y  sin M- 

+ (V/r) cos 7 cos y cos u. tan A 
(A-U) 

(g/V)sin |i cos 7 

V sin n cos 7 + 7 cos n - (V/r)cos 7 cos M- 

+ (V/r)cos 7 cos y sin |i tan A 

= (L/raV) - (g/V)cos n cos 7 

(A-12) 

Multiplying   (A-U)  by    cos 11    and  (A-12)  by    sin n    and then adding, 

and similarly multiplying  (A-ll)  by    - sin u    and (A-12)  by    cos \x 
and ther adding,  results  in 

2 
X cos  7 +  (V/r)cos 7 cos v tan A ■   (L/mV)sin n (A-13) 

7 -   (V/r)cos 7 =   (L/mV)cos \i  -  (g/V)cos  7 (A-14) 

The six degree of freedom equations are composed of (A-4), (A-5), 

(A-6), (A-8), (A-13), and (A-14). Since h » r, these equations 
can be summarized as: 
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V - - ^ - g sin 7 (A-15) 

I1: Li 
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L 

L        8       V 7 ■ —- cos I-L ~ » cos 7 + — cos 7 (A-16) 

L sin M,   y 
Y ■ T; cos 7 cos y tan A (A-17) mV cos 7  r v   ' 

V sin 7 (A-18) 

V cos 7 cos Y 
T « 5  (A-19) r   cos A v   ' 

V A » - cos y  sin y (A-20) 

The differences between the above six equations and Eqs. (1) to 

(6) are due to differences in definitions and symbols. The longi- 

tude T increases heading west (Fig. A-l), whereas A in (6) 

increases heading east; the bank angle \i    above is positive right 

wing down, whereas in (2) and (3) it is positive left wing down; 

and the azimuth heading angle in (3), (5), and (6) is 0° due 

south,  90° due east, etc.  If the following four changes are 

made, Eqs. (1) to (6) will be obtained 

T -* -A  ,   11 -* -u. 

A ^ CP   ,  w 270° - Y 

An almost identical system of equations of motion can also be 

found in Ref. 30. 
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APPENDIX B 

CHANGE OF INDEPENDENT VARIABLE FROM TIME TO ENERGY 

Based on the somewhat limited numerical result? of this report 

It Is possible to convert the Independent variable from time to 

velocity, or heading angle, or latitude, or longitude, since all of 

these state variables have been noted to vary monotonlcally for the 

reduced-order solutions.  However, energy Is the only state variable 

which is certain always to vary monotonlcally for all unpowered 

flight problems, even for the complete six degree of freedom equa- 

tions. From Eqs. (11) and (1) to (6) 

dt    _W. 
dE = " DV (B-l) 

d7  d7 dt    L8o      . Wg w ,„ 0v 
dE ^ dT dE = " ^2 C0S ^ + ^ COS 7 " OF COS 7     (B-2) 

dv  dv dt    L^o sin |i   w 
dE " dF dE = " ^2 ^TV + 5? C0S ^ Sin Y tan »     (B-3 

dE  dt dE    D Sln y (B V 

d(?  d9 dt  W 
dE ~ dt dE '* Dr cos 7 cos x (B-5) 

dA ^ dA dt ^  _W_ cos 7 sin x 
dE " dt dE ^ " Dr   cos <p (B-6) 

Utilizing the same previous assumptions, that the flight path 

angle 7 is small and the angular rate 7 is zero, (B-2) and (B-4) 

are converted to algebraic expressions 
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D "   D 

«or 

(gr - n 
cos u. (B-7) 

r = r    + h o (B-8) 

The  system of differential equations  is reduced to third order: 

dE *   D 

8o 8o  r— cos   ^ sin  v tan  V - -rr sin  ^ 
(gr  -  V^) VZ 

(B-9) 

(B-10) 

(B-U) 

The  coefficients  involving gravity and velocity are  converted with 

the use of the energy equation   (9) 

d; 
dE 

= 
L 
D 

8o 

(gr - V' h 
cos l-L COS V 

dA L   8o COS ti sin \ 

dE D(gr - v2) < :os 9 

g. -1 

(gr - V^) 
(B-12) 

2E + -S 
r 

r 

2(E + f) 

(B-13) 

Equations   (B-9)   to   (B-ll)  become 

d_ 
dE 

COS 

2E+ ^ r 

sin v tan cp - 
sin n 

2(E + f) 

(B-14) 
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d? 
dE ' ' 

L cos \i 
D     r2 

C08 

2E + f 

dA  L 
dE  D 

cos M^ sin x 
2 cos <p 

2E + ^ 

(B-15) 

(B-16) 

and the Hamiltonian can be written; 

H « ^ 
cos ii    /sin \   f 

2 \cos  <p 1  A 

2E + ^ r 

^    sin cpl -  A    cos 
X J        * 0 

(B-17) 

sin ia 

2(E ♦ f) 

<* ) 
X 

Although there are three control variables In  (B-17),   namely    r,  M-, 

and    Q     (L/D    is a function only of    a),    r    plays a very insignifi- 

cant part, almost  like a constant.    This  is vastly different from 

the Hamiltonian given by Eqs.   (29)  to  (32), where the air density    p, 

which  is strongly dependent on    r,    appears  in the    A    and    B    terms. 

For example,  at a typical  initial condition of    V = 24,100 ft/sec 

and    h » 233,000 ft,    a rather large change in    r    of    10,000 ft 

results  in a    52%    change  in    p    and only a    0.38%    change in 
2 2 

(2E + r /r)    and a    0.11%    change  in    2(E + r /r) .     Advantage can 

be taken of this property by employing the following different pro- 

cedure for minimizing the Hamiltonian while satisfying the    T ■ 0 

condition,   i.e.,   (B-7). 
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Equation (B-17) can also be written as 

H - -[A cos [i + B sin  MJ (B-18) 

where 

2  \cos qp / A - * sin <pl - X cos x)      (B-19) 

2E + -^ r 

B 

2(E ♦ f) 

(B-20) 

First, a reasonable guess for r would be made; e.g., the value 

of r from the previous integration interval. Then the Hamiltonian 

is minimized with respect to a, which results in maximizing L/D. 

For drag polars, as given by Eq. (18), it can be shown that 

Max L/D = | (cD CD )'* 

CL(Max L/D) = (cD / C^    )' 

(B-21) 

0   A 
(B-22) 

The Hamiltonian is then minimized with respect to M- 

Consequently 

ff(- A sin M- + B cos [i] 

B 

(B-23) 

tan ^ ^ (B-24) 
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The 7 " 0 condition Is then satisfied by Iteratlvely computing a 

new value of r from (B-7) .  This procedure of computing A, B, M-, 

and r can be repeated, If necessary, until the change of r Is 

less than some small specified value. 

I. 

. 

37 

- m iinr -—"-  - -- - 



e 

;. 

D 
D 
i. 
D 
I . 

I. 

I, 

i: 

: 

D 

i: 
• 

APPENDIX    C 

DERIVATION OF PARTIAL DERIVATIVES 

The partial derivatives of the augmented Hamiltonlan    H   with 

respect to the four state variables    E,  x>  CP»  A    are easily derived 

and result  In the four Euler equations,   (24)  to  (27).    All of the 

other derivatives required fcr the computer program are obtained by 

partial differentiation of    H,     C.-,     C^.    with respect to    E,  R,  M- 

Rules of partial differentiation,   concerning which quantltes are 

fixed or variable,  are the same as  those governing the development 

of the Euler equations. 

Partial derivatives taken with respect to    E    are carried out 

for fixed values of the control variables    r,  \i, and the state 

variables     y,   9$  A.    All other variables,  such as    V, a,   C-,   L,  etc., 

are not  fixed.     Repeating Eq.   (22), 

CUB ' h  "  hUB <C-1) 

where    h = r  - r ,    and    h,—     is given by the thermal boundaries 
o UB e -^ 

in Fig.   3.     Differentiating   (C-l) with respect to    E, 

UB  ÜB öV      _UB ^a        L oV fr 9v 
~^F "  "    5v    ÖE  "    ha    hCL ÖV   ^E ^'Z) 

where    ah.^/hV    and    öh.— Zöa    are plecewise constant functions com- 
Ub UD 

puted from ht_ data stored in the double table look-up.  From the 
In 

energy equation (9), 

If - V te.« 



m 
r 

u 

h. 

From the angle of attack equation (17), 

ha 
98 sec (1.33 CL) 

Combining Eqs. (10) and (16), and differentiating. 

CT * 

he. 

2W 
\       2 
Vo       1 

rSgo cos \i V2r2      r 

AWr' 

^V 

Repeating Eq. (23) , 

3 2 
pSV r cos |i 

SlL " L   " 1- max 

where L    and L are obtained from Eqs. (10) and (16) max -!■>.•     x  / 

L   * T C.   pV S max     L max 

L = 
W 

go cos |i 

S r    2 so o  V 

Differentiating (C-7) to (C-9) with respect to E, 

"ML         ULJmax hV 
äE           c^V     Si ÖV ÖE 

^.cL     PVS 
max 

^L                       2WV 
öV                g r cos M- 

(C-4) 

(C-5) 

(C-6) 

(C-7) 

(C-8) 

(C-9) 

(C-10) 

(C-U) 

(C-12) 
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Partial derivatives taken with respect to r are carried out 

for fixed values of the multipliers, the state variables E, x>   ^> 

A,    and the control variable \i.    All other variables, such as V, 

a, C-, L,  etc., are not fixed.  The Hamiltonian is given by 

Eq. (29) 

H = A + B sec M. + C tan \k (C-13) 

where A, B, C are given by Eqs. (30) to (32).  Differentiating 

(C-13) with respect to r, 

i ÖH  c»A , ^B   2    ÖC „ 
57 = 37 + ä7 sec ^ + B7 tan ^ (C-14) 

i. 

Since A, B, C,  as well as C, , L  , L that follow, are functions 
L  max 

of r and V,  the partial derivatives are derived by 

(C-15) 
V 

where the subscripts Indicate which variables are fixed. 

Eqs. (9) and (15) 

From 

3v 'A 
Sr " Vr2 

br ' - ßp 

Thus, 

(C-16) 

(C-17) 

M= > c £!Z 
dr   E^D 2W 

o 
^W 

Vr3   r2 
K tan cp sin y + ^ cos y 

40 

- X A 
sin Y 

cos (p 
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4B 

M. . A c  _2w_ 
•»( 

2 4 
Vo 
Vr4 

2Vg r &o o 
«3 6 8oro 

r2J  V3r6 

2Vo+
3VVo      2V3 

Vr r r 

(C-19) 

n 
.. 

: 

:. 

0 
I 
u 

or 

2 2 
goro /goro      ^   .   V 

Vr V r r 
(C-20) 

The derivative    dC.— Zor    is obtained by differentiating Eq.   (C-l) 
UD 

^UB Ä  I   . ^UB oV .  ^UB Sa    ^L 
ör    ^       "     dV    ör Sa    oCT   or 

Li 

(C-21) 

where,  by differentiating Eq.   (C-5) 

bC 2W 
ör        pSg    cos ti 

0      2 /       2      „2 \ 2 2gr(gr-Vr) ,              ^r        .. Oo o \0o o /_ , 1   .  r    Z2-2.     ik\ 
„4 4"             + 2 + p V, 2  2  " r/1 

V r r               V r 
(C-22) 

All other derivatives  in  (C-21)  have been previously defined. 

The derivative    oCL^/ör    is obtained from Eq.   (C-7) 

5L 

Sr ör 
max 

(C-23) 

where,  by differentiating Eqs.   (C-8)   and  (C-9) 

ÖL max 
^r - - I psc, 

max 
^4+ßv2 

(C-24) 
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gor cos [i 

a(H' CUB' W^ 

Partial derivatives taken with respect to \JL    are carried out 

for fixed values of the multipliers, the state variables E, x>   fi 

A,  and the control variable r.  Since V is a function only of 

E and r,  both of which are fixed,  V also is fixed.  All other 

variables, such as a, C., L,  etc., are not fixed.  Differentiating 

Eq. (C-13) with respect to  4, 

jj = [2B tan u + Cjsec u 

Differentiating Eq. (C-l) with respect to M- 

ÜB _ _  ÜB da L 
Sii     oa öCT oil 

(C-26) 

(C-27) 

where the first two derivatives have been previously defined and, 

by differentiating Eq. (C-5) 

aa 2W 
5ii " psg. 

2 
goro 

w2 2 
V r 

[tan u sec \i] (C-28) 

Combining Eqs. (C-7) to (C-9) and differentiating with respect 

to u results in 

dCML   | 
5M ' grt r 

8oro 
tan \x  sec |i (C-29) 
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APPENDIX D 

DRAG POLARS OF FOURTH ORDER 

The mathematical formulation and computer program described in 

this report applies only to those cases where the aerodynamic data 

are represented by parabolic drag relationships, as given by 

Eq. (18). Because of the uncertainty in the aerodynamic data, par- 

ticularly during the preliminary design phase, this simple drag 

polar should be adequate for many studies.  However, as more wind 

tunnel data become available, it may be necessary to improve the 

polar curve fit by adding a fourth-order term 

CD "  CD    + CD A + CD  A 0 'I 
(D-l) 

where    C D is  always positive,  both  for straight and swept wing 

re-entry vehicles.     In the following analysis,   this  is not only 

important,  but  fortunate.    For this  fourth-order drag polar,   the 

Hamiltonian  is 

2 U 
H = A+Bseca+C tan [i + F sec \i (D-2) 

where    A,  B,     and    C    are given by Eqs.   (30),   (31),   (32),   and 

.4 

F "  "   ÄECD 
8W' 
3  3 A PVV Vr2       8or 

(D-3) 

The Euler equations for    X .   A  ,   A        as given by Eqs.   (25)  to  (27) 

do not change;  however 

■   , 

I 
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E       )     E D 
pSVz       .     sin Y tan <p      .     cos x 

+   A i +   A 
2W 

E^D 2  pS 
CL 

,„2      r4        2r2 

3V o o 
2 2      4ir2 3 r v     g r 8or o    j 

<P      r 

SE sec ^+\ 

A   
sln x 1 öv 

A r cos  «pj  öE 

goro , 1 
v2   2      r 
V r 

|| tan |i    (D-4) 

+ Ar 8W' 
1 V P

3
S

3
V

2 

where,  as before. 

f!o+3V_ 
Vr2      8or 

lo        JL. 
Vr2  " Sor 

ÖV        4 ^sec H 

§1 
8 

■?      -      »•     /280(E + ^) 

Bank angle is determined from    öH/öM. = 0    and results  in the 

following cubic equation: 

-     3     s   fB+2Fl   „ ,    C        n tan \i +  [—^"J  tan n + ^r = 0 (D-5) 

where 

B + 2F 
2F = a = 

2  2  2 

4 Vr 8or 

7+l 

4F ' b = 
\g0P3s3v 

32 VL W" 

2 
r o 

Vr^ gor 

(D-6) 

(D-7) 
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* •      Thus tan i 

0 
Thus tan ^ + a tan PL + b - 0. The roots of this cubic equation 

depend on the sign of (b /4 + a3/27).  It can be shown that this 

quantity is always positive, providing both Cn   and Cn   have 
2       4 n ^      < 

' • the same sign, and therefore there is only one real root (the other 

two are imaginary and can be Ignored) . Since both of these coeffi- 

cients are positive, there is only one solution, namely 

I. 

t . 

D 
G 
D tan..G= /-|+/^+fJ   +   /-|-   /^+fj    (D-8) 

[I 

3/u      ^JT*     s/\      /T~   3 

where a and b are given by Eqs. (D-6) and (D-7) . Substitution 

of Eq. (D-8) into (D-2) results in 

H = A + B + CG + F + BG2+ 2FG2 + FGA (D-9) 

which, like Eq. (34), is a function of only one control variable, 

namely, r. 
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APPENDIX    E 

CONSTANTS OF THE MOTION FROM NOETHER'S THEOREM 

Noether's theorem (Ref.  31)  applies to varlatlonal problems 

that possess symmetry.    Symmetry exists  If one can subject a system 

of equations of motion to a certain operation  (transformation)  and 

the system appears exactly the same after the operation.    For ex- 

ample, Noether's theorem shows that If the coordinate system that 

defines the state variables can be translated,  rotated, or shifted 

In time without changing the dynamics of the problem then for each 

transformation a constant of the motion can be derived.    This ap- 

plies not only to the varlatlonal formulations of classical and 

quantum mechanics,   for which the theorem was originally derived 

(Ref.  31),  but also to modern optimal control problems  (Ref.   32), 

for which the constants of the motion involve both state and multi- 

plier variables. 

The coordinate system for Eqs.   (1)   to   (6)   and the reduced sys- 

tem (11)  to   (14)  are such that rotations about the three axes of 

the reference system which define    A,   <P,    and    Y    can be made with- 

out affecting either the dynamics or the optimal solutions.    This 

would not be true for the case with earth rotation,   since a change 

In orientation of the earth's axis of rotation would result In 

different optimal trajectory solutions. 

Using Noether's theorem,  H.  G.  Moyer of the Grumman Research 

Department derived the  following three constants: 

A    cos A sec qp A. cos A tan qp + A^ sin A A 9 

Co *   A    sin A sec  cp -  A.  sin A tan qp -   A    cos A 
2 x A qp 

C3"   AA 

(E-l) 

(E-2) 

(E-3) 

J.. ,-.■ *■■■ *. 
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Writing these three equations In matrix form and Inverting the 

square matrix, the multipliers are expressed In terms of latitude, 

longitude, and the three constants □ 
D 
!. 

D 
IG 

I 
i 

i 

i. 

\ ■ C,   cos  A cos  cp + Cj sin A cos  «P + C3 sin qp (E-4) 

A
A « C3 (E-5) 

X    ■ C,   sin A - Cj cos A (E-6) 

where the determinant of the matrix given by (E-l) to (E-3) Is 

sec <P, which is singular only when cp ■ ±90°  (crossrange exceeds 

5000 nautical miles). 

Equations (E-l) to (E-6) have been verified analytically for 

the complete system (1) to (6), the reduced system (11) to (14), 

and the reduced system (B-14) to (B-16) with energy as the inde- 

pendent variable. 

The significance of the three constants of the motion is two- 

fold.  First, it eliminates the step-by-step numerical integration 

of  A  and A   Since K  « Co, Eqs. (B-17), (B-19), (B-20) and 

(B-23) can be expressed in terms of the constants and state vari- 

ables, thereby completely eliminating the use of multipliers for 

the energy-independent-variable system.  Similarly, if advantage 

is taken of the fact that the Hamiltonian is constantly zero, the 

use of the multipliers for the time-independent-variable system is 

also eliminated. The difficulty in determining iteratively the 

numerical values of C,, C«» C« is no greater than determining 

the initial conditions of the multipliers, since 

Cl * Ay   C2 * " \        C3 " \ o 00 
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Care must be taken, however, that the right side of (E-A) goes to 

zero at the end of each optimal solution.  Secondly, since the 

three constants are valid for the sixth-, fourth-, and third-order 

systems, as well as problems with any constraints imposed, it is 

possible to predetermine the values of the constants as a function 

of target conditions and store them in the vehicle's computer to 

be used as a basis for an on-board guidance scheme.  The diffi- 

culty here is that the constants apply to a nonrotating earth and 

may have to be modified for the real world situation. 

i: 
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