
-mmmmm mummmmmm.

AD-764 073

THE IMAGE PROCESSING DATA MANAGER

Robert E. Nimensky, et al

System Development Corporation

Prepared for:

Advanced Research Projects Agency

22 June 1973

DISTRIBUTED BY:

urn
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

 "-^-^-^ ■'-- ^^-^■^^■^^....,...., .._.. ..,.. - ■■._.■■,- ----'—--^

mm^mmm

r

P^VELOPMEMT
CORPORATION

D D C\
OF ^s^jn

THE IMAGE PROCESSING
DATA MANAGER

R. E. NIMENSKY

JOAN BEBB

22 JUNE 1973
Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of Commerce
Springfield V^ 22151

TM-5068/003/00
.^L

MM—Ifiiihiiiini im

- ■-■

 *mui iv-mmm^mmmmm*******

I UNCLASSIFIED
Security CU«>iHc>Upn

DOCUMENT CONTRCL DATA -R&D
(Stcutlly clmulllcallon of Uli», body of mbilncl mnd Indulnj annolmUon muH b» Uttmtä »hwn tfi» owmtmll nporl 1« elmiiHM)

i ORisiNATiNC ACTIVITY fCoiporat« auffior;

System Development Corporation
2500 Colorado Avenue
Santa Monica, California 90406

1 HEPOUT TITL«

The Image Processing Data Manager

I«. REPORT SECURITY C L AMI FIG * TION

16. CROUP

« DESCRIPTIVE norm* (Typm olnpcn and InelutlTm auto»)
Special Technical

s AUTHORISI r^(»(ncna, mlddl» Inlllml, ImSTäSSS)

Joan E. Bebb, Robert E. u'lmensky

6 REPORT OATt

22 June 1973
•a. CONTRACT OR GRANT NO.

DAHC15-73-C-0080
6. PROJECT NO.

ARPA Order No. 2254, Program Code 3D30

Ta. TOTAL NO. OF PAOCf

-gag.
7t. NO. OF REFS

•a. ORISINATOR't RKPORT NUMBERIS)

TM-5068/003 '00

»6. OTHER REPORT NOI5) (Any olhor numbmn Mat mmy ba aa«<*iad
»111a npori) w

10 DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited

II SUPPLEMENTARY NOTES

13 ABSTRACT

12. SPONSORING MILITARY ACTIVITY

ARPA/Inl'ormation Processing Techniques

L
DD ,'r..1473

/ UNCLASSIFIED
Security dlassirication

-^^..■...., ■.■...~^^J^^ainil^,. - . .nnrnmWnfilii-lii-MBii^MIIMBlM(MtilBiliMIBa

mmmmmm'im^mm*^mmm*^*mmmmmmm**>mrm*>.

Security ClaBsification

KEY WONOt

HOLC WT

LINK ■

ROLI WT

LINK C

ROUE

Security Cl.nificetion

iniiMilirri iirii-iif »■■"-'-»--■■■ -^->-.J--../..^... -.1..... .,.,..^...„^J^j«^^^.^->„.^.^i„-w.^^J.^..M^„.'.i.^.M.. .,^.,>,,;.Ji.-...^j .. r.,„»^,-..,,..., —■..^.^>.^^^>3,.J^,^,:-Ja^JM»-jBiiLjMja<t

jwpiv.iwji.." i vc^ww^mmim^mm **m wmmmmm

I
I

DEVELOPMENT
CORPORATION

--

THE IMAGE PROCESSING
DATA MANAGER

R. E. NIMENSKY

JOAN BEBB

22 JUNE 1873

TM-5068/003/0G

lllfllMllllllit Ml MMMMMa^MMnM^MIMHIi IIHiaa,vM«i " " ■

TABLE OF CONTENTS

Section
 Page

1. INTRODUCTION p # ,

2. HIERAKCHTCAL DATA BASE „ 1

3. THE QUERY LANGUAGE 3

3.1 FLEXIBILITY

3.2 POWER . 4

4. REMOTE PROCESSING 4

5. DATA BASE CREATION STATEMENTS 5

5.1 OBJECT CREATION STATEMENT 5

5.2 GROUP STATEMENT , ' 6

5.? GROUP ATTRIBUTE QUALIFIERS 7

5.4 SYNONYMS 7

5.5 USER DEFINED EXPRESSIONS 8

6. QUERY STATEMENT 11

6.1 THE KNOW ATTRIBUTE -^2

6.2 POINTER ATTRIBUTES -^

6.3 REVERSAL OPERATORS 13

6.4 NOISE WORDS 23

7. REMOTE PROCESSING 14

7.1 PREPARING THE DATA BASE i4

7.2 CREATING A JOB THROUGH QUERY 18

8. SYSTEM INTERACTION 20

8.1 $SOURCE 20

8.2 $OUTPUT . .* 20

8.3 $TREE , 20

8.4 $UNTREE 20

8.5 $BACK 21

8.6 $NOBACK 21

ill

-''-^—■---■—" iHfgiiMat ~M*ä M

mmimm mmimmmmtmm

TABLE OF CONTENTS (CONT'd)

^S^SIL Page

9. #COMMENT 21

10. SAVE 21

11. SUMMARY 21

12. FUTURE AMPLIFICATIONS 21

APPENDIX A. SAMPLE DATA BASE 23

APPENDIX B. SAMPLE CREATED JOB 27

ILLUSTRATIONS

^21^ Page

Figure 1. HIERARCHICAL STRUCTURE 2

IV

/

 MMMMMM^flMMt^MM -■- i __..

"ra™

1. INTRODUCTION

This document describes a model of an image processing data management system
called the Image Processing Data ilanager. The Data Manager is an interactive
program which, using a data base, aids the user in performing selective image
processing. It answers his queries and allows him to specify conditioned pro-
cess operation and data retrieval. The user communicates with the Data Manager
using a language which is a combination of English and algebra. The system
has an underlying formal syntactical language (which may be used), but also
incorporates a set of flexibility-introducing techniques which allow natural,
English-like communication.

Th-i Data Manager is implemented for the IBM/370 using the ICOS time-sharing
system and the CWIC meta-compiler languages. It is readily transferable to
operation under either IBM TSO or OS.

The data base associated with the Data Manager is a catalog of what is available
to the image processor in terms of resource images; processed pictures;
processing programs; and other data sets, such as specialized or general
transformation matrices. It does not contain the actual image data or programs.
Descriptions of processing techniques, individual program parameter descriptions,
and job creation information may also reside in it. The processing programs
or systems described need not be an integral part of the Data Manager; they
may, in fact, operate on a different computer under a foreign operating system.
The Data Manager creates jobs, as a user might. The current test data base is
structured to create jobs for the IBM 370 Operating System and to use specific
image processing programs which operate on these machines (VICAR*, for example) .

■ ;

The Data Manager can be used as an experimental tool for: (1) studying
the language requirements of a user-oriented query language for image
processing, (2) studying the data structure necessary for efficient
storage and retrieval of pertinent information about images, and (3) learning
how to organize a data base and library of programs so that all the parameters
necessary for program execution can be extracted from the data base.

2. THE HIERARCHICAL DATA BASE

To the Data Manager, an image is an object; objects belong to one or more
abstract classes of objects. Thus, in the hierarchy in Figure 1, all the
objects, Ml, M2, VI, V2,..., L3, belong to the class ARRAY; Ml also belongs
to the sub-classes PICTURE and MARINER.

A specific object is described by its attributes, attributes are
delineated in attribute-value pairs. For example, ROW=1000 is an attribute-
value pair describing how many rows of pixels there are in picture Ml.

 1
*A generalized image enhancement system developed by Jet Propulsion
Laboratories, Pasadena, California.

.,..-. ..,..J.^.^..,A^.,^^.^.^a.^..,i.^J...^...^-.,.,.........-.^.^^^w
■"-^■^•"-^— • —-"■

.^.^.-^^ ..■,.-..^^^^-^;.,^t.....-.^»-,

ii. IHJHIIIWPJIJIIIII f^^mmmmmmmm ■■J v\.viUMtmmm^m^^mmm^^mmmi}

w

I
o

o
o
o

I
§

m
s

o
Ü
o l
M w
Ä 1
o H
ü CM

O O K
O o £ O in
rH r-i u
II II N •s- ■3 ij

o H
K u h

CN
W

II n

U

0)

I
I
s
I
H
(0

EM

/

In-- ■. ..-^.-L.,.^^..--- J^,.,.- :— „..^■-.^■■M.. n ■'« -n il i«ii y jaüMMrüMMii ■ — -

^m^mmim*mmmmm^***

I

^

ARRAY: PICTURE, FILTER;
PICTURE: MARINER, VIKING;
FILTER: HP,LP;
MARINER: M1,M2,M3;
VIKING: V1,V2,V3;
HP: H1,H2;
LP: L1,L2,L3;

Attribute-value pairs are similarly defined:

Ml: ROW:=1000,COL:=1000,riLTER:=H2, CHAR3:=S2;
VI: ROW:=2000,COL:=2000,FILTER:=L2;

flexibirv"/^ r!lationshiPs ^ be expressed with these forms. They are a
flexile list structure which allows members of a list to ooinrTn „1*7
lists. With the attribute-value pairs PlSffiR -n/roa« S? , r

lists, which may in turn point to still othfr Ust T; * T *** ^
Physical descriptors (suciTas ROW, T^!^^^^^^^ **

3- THE QUERY LANGUAGE

Ars; s: ^rtatiOT °£ • *- -hj
h^^i^rition of

3
>i FLEXIBILITY

The Data Manager's query language is English-oriented. Most questions are a
combxnatxon of English and mathematical notation. A synonym ^ability allows
a user to specify many spellings of a word. For instance, the attribute COL
may also be specified as COLUMN, COLUMNS, or COLS (if the^e words are defined

can also^ dSÄ "°iSe WOrdS (WOrdS Which are ^^ ^ the D^ta M^ger) can also be defined by the user to make queries more natural. Consider an
example To obtain a list of pictures which are in a given region alona

no^^t^r3' ^ ^ ^ ^ a — - - answeTdLc^ using

PIC REGIONA^>C ")RD

He may, however, use synonyms and noise words. This same query can be made as;

FOR ALL THE PICTURES IN REGIONA LIST THEIR COORDINATES

 - ■- --■ ■HI" n—ai« i i ■mn • - ■ ■ - ^^.M^^^.

 iwmmmmmmmmtm \

3•2 POWER

The query language has a powerful boolean expression capability to suit a wide
range of potential users. The simple statement above may involve a complex
boolean expression, REGIONA, which determines if the coordinates of a picture
lie within a given region:

REGIONA: Rl OR R2 OR R3 OR R4 OR R5

REGIONA is an Rl or an R2... or an R5. Rl is a boolean expression, as are
R2, R3, R4, and R5. Each Rn expression is a comparison of a coordinate of
a picture in the data base with the coordinates of a given region. Each
picture is assumed to have five such coordinates specified—the corners and
the center. If any of the Rn's is true, the REGIONA expression is true- the
picture is in the region.

A porsible Rl expression is:

Rl: 300000<LT1<700000 AND 1400000<LG1<1800000

LT1 and LG1 are the first latitude and longitude coordinates of the picture
being tested. Rl demands that the first latitude must be greater than
30° 00' 00" and less than 70° 00' 00" and that the first longitude must be
greater than 140° 00' 00" and less than 180° 00' GO". R2 through R5 may
make similar conditions on other picture reference coordinates.

Once written, these expressions may be saved in the data base; any user may
now exercise the query (or a variation of it) with little awareness of the
specifics of the expressions.

4. REMOTE PROCESSING

One of the most powerful features of the Data Manager is its ability to obtain
program execution parameters directly from the data base. It can, as one of
its options, generate a complete image processing job (to be executed external
to the Data Manager). As a model, the existing implementation of the Data
Manager creates VICAR jobs.

The Data Manager finds all the data base entries that meet the conditions of
a query. For the query concerning pictures in REGIONA, every picture which
has at least one latitude and longitude coordinate in the defined region
qualifies. The list of entries is passed on to the answer processor. If job
creation is indicated in the answer portion:

PICTURES IN REGIONA=>MOSAIC

and MOSAIC is a job, the job processor obtains the information required for
job formation from the data base itself. This information includes the

.^■.....^..^„u..-.. .■-,^..-.«....-..^.....- J_J.^M^.... ^:...J,.„.^^ ^■^.J. _ ■., J.J.., „...,- ...,.,.-„.,~-,^—.■.-W

M mm

locations of data sets, their file numbers, and the programs that are to be
executed and their parameter requirements. In this way the Data Manager serves
as a front-end processor for foreign image processing systems.

5. DATA-BASfi CREATION STATEMENTS

There are four data base creation (or amplification) statements. With thtm
the user can create hierarchical data structures, assign attributes to objects
or groups and provide synonyms for his own defined terms or for system operators.
These statements are permissible at any time during operation of the Data
Manager. There is no unique data-base-generation mode; at any time the Data
Manager operates on its current information, permitting modification or
extension.

5.1 OBJECT-CREATION STATEMENT

Form:

)

Object name; OBJ:= identifier [, attribute-pair]

An object has a referent in the real world such as a picture, a camera- or
a lens. An object statement identifies this entity to the system.

Attributes describe properties of an object and are associated with the object
as attribute-pair descriptors. An object may have any number of attribute pairs.
An attribute pair consists of an attribute name (which identifies the attri-
bute) and an attribute value. The attribute value may be an identifier (which
is interpreted as a pointer to an object), a number, a quoted string of
characters, or a list of these values.

Attribute nane:=

number
text
identifier
list

For example, to describe the picture. Ml, the following object-creation state-
ment could be used:

Mil OBJ:= -Ml, RDW:= 1000, C0L:= 1000,

FILTERS (F2, F3, F4), C0MMENT:= 'SLOT IS A DEFECT IN

The picture is named Ml) its attributes are ROW, COL, FILTER, and COl r.
Attribute values are expressed as numbers (1000), a list of identifiers oointers
(P2, F3, F4),and a text string.

i I

• — ■ - - - — •AUkfe, ii in ifiiiiiMrBi.liXiitMiMliMitillriMIKH^Ii •'■• ■-■- '■- —- M

An obj«act must have an OBJ attribute to identify it as such. The identifier
associated is usually the same as the objec: name but may be any name (as will
be seen in the section describing the creation of jobs for remote processing) .

5.2 GROUP STATEMENT

Form:

Group name: identifier, identifier [identifier]

The group statement collects a list of identifiers and assigns the group
attribute to the list. This statement is used to create hierarchical da'-a
structures; the list of identifiers may include names of groups or objects,

To buil^ the following structure:

DATA

ARRAYS NON-ARRAYS

TABLES

/IN
Tl T2 T3

PASS PASS /\ A
PI HP2 LP1 LP2

APOLLO MARINER VIKING / \ /K ,/1\
Al A2 Ml M2 M3 VI V2 V3

the user issues the following group statement:

DATA: ARRAYS, NON-ARRAYS
ARRAYS: PICTURES, FILTERS, TABLES
PICTURES: MARINER, VIKING, APOLLO
FILTERS; HIGH-PASS, LOW-PASS
MARINER: Ml, M2, M3
VIKING: VI, V2, V3
APOLLO: Al, A2
HIGH-PASS: HPl, HP2
LOW-PASS: LP1, LP2
TABLES: Tl, T2, T3

- - - - ■-- MwM^MMiMaUlriH — mttm» --"-■'"^'-••'li-ii-i-rliiliiMi'rlirtfMi'liii'lltM

^mmmmmm

■

5.3

Form:

GROUP ATTRIBUTE QUALIFIERS

Group-statement, attribute-name:= attribute value

[, attribute-name:= attribute-value]

Attribute pairs, consisting of an attribute name and an attribute value, can
be added to any group statement. These attributes apply to all groups and
objects contained in the group unless they are overridden in a lower (less
inclusive) attribute assignment. Specifically, an attribute such as date may
be applied to a whole set of entities by assigning the date at the group level,
Or, if all MARINER pictures have been acquired using the same scanner, the
scanner attribute can be attached at the group level, rather than to each
individual picture. If, however, a few of the MARINER pictures were scanned
with a different device, these few pictures can have that attribute attacned
to the individual pictures, overriding the group attribute.

For example:

MARINER: Ml, M2, M3, SCANNER:= SC32M,

DATE:= [10, 11, 73]

The group consists of Ml, M2 and M3; the SCANNER and DATE attributes have been
added.

5.4 SYNONYMS

Form:

5.4.1

identifier: identifier [: identifier]

Synonyms for Groups, Objects, and Attributes

The synonym statement enumerates synonyms for the name of an object, group or
attribute. One and only one identifier in the list must have been used to
create a group, object, or attribute. All other identifiers are stored in the
data base with:

\t

SYN:= identifier

The identifier is the previously known item. When a word with a SYN attribute
is encountered, the identifier's value is substituted.

Miiliiiirrfiiini'riniiiiin -"'J *'■" '"■*■■■* ■■ ■- - ■ ■niiiniiMi mm .v^^^. .,.-^-..-...:■..-.■..^.■1.._^.^^
'■— - -" ■

- ■■-. .■■■ ixmiiMummmivm t mmmm*m w-wwr mmmmm&mmm

For example:

COL: COLS: COLUMNS: COLUMN

If COL is previously defined, COLS, COLUMNS, and COLUMN each acquire a SYN
attribute rfhich points to COL. When COL-,, COLUMN, or COLUMNS is used, COL
is substituted.

5.4.2

Form:

Synonyms for Operators

Identifier: OP:= identifier, RELOP:= known-identifier

Words may be made synonymous with some of the special symbols the system uses

Se'ide tif- '''S 0Pern0rS- ThiS iS d0ne b* usi"9 ^e form abov^'e"
the identifier la the user's word, the known identifier is the system mnemonic
for the particular relational symbol, and RELOP and OP are the key attributes
necessary for synonymous operator definition. «crioutes

SS S^eSnySSS^StSSeS^lf ^ SyStem ^^ ^ °**^s that

= EQ
< LS
> GR

For example:

EQUAL: 0P:= EQUAL, RELOP:= EQ

INPUT PHASE ROW EQUAL COL

EQUIVALENCE: HOK = COL

5.5 USER-DEFINED EXPRESSIONS

As part of data base creation, the user may define arithmetic or boolean
expressions to be used as part of subsequent user query statements.

5.5.1

Form:

Arithmetic Ex-press ions

label: operand operator operand

lagtfS!!1""81'10 eXpreSSion sPecifi^ a value in a way similar to ordinary

■•"'-•-■•■■ ; ' — ^...; .,'^.;.^,-.-.,..- -■ ■ v,^- -■—'-'■"■- fii.hiriiii.iiirrJ-■■^ ..:.^*-**iM**~i~***c■^^.-^i.tti^a

mm*** wm

It is a laLeled combination of operands and operators. The label is any ooia-
bination of letters and digits beginning with a letter.

5.5.1.1 Operands

The operands of an arithmetic expression may be numeric-valued attributes
constants, or previously defined arithmetic expressions. An attribute used
as a value in an arithmetic expression may appear by itself or in combination
with an object or group. If it appears by itself, it will take on the value
of the attribute for each object being evaluated; if it is paired with an
object, it is a single value; if it is paired with a group, it takes on the
value of the attribute for group members. An arithmetic expression is evaluated
for each object in the range of the expression.

For example:

DIM: ROW * COL

PICTURE DIM

In this example, the arithmetic expression named DIM contains two attributes-
ROW and COL. When PICTURE and DIM are paired to form another expression, every
object in the PICTURE group has its rows multiplied by its columns to evaluate
the operand.

Within arithmetic expressions, constants may be written either in standard
mathematical notation or in linearized power-of-lG notation:

10.35 +11.3 -18.65 500

.365E-4 .4987E+7 328

In the above example, E-4 indicates multiplication by 10

5.5.1.2 Operators

I

-4

Arithmetic operators are used to combine operands into arithmetic expressions.
The arithmetic operators are:

*

/
ABS(-)
SIN(-)
COS(-)

addition
subtraction
multiplication
division
absolute value
sine
cosine

ARCSIN(-)
ARCCOS(•)
LN(-)
AT0BX(a,b)
MAX(-)
MIN (•)

arcsine
arccosine
natural logarithm
ab
maximum
minimum

Within arithmetic expressions, multiplication must be explicitly stated.

aaüHÜii ■ - ■ : *- -'-■"■-'■-''•''iiriirilliiiiiilti'rMitiiliiiiliiiriliriiliiliirliii i ^^^.

VffnHHPMflWH1'""'' ' - -1' ' , umrm» iwm.i. iKniynj^iiii,. JWMW* ""»' immm'f.m'i-mim»

5.5.2 Boolean Expressions

A boolean expression is one which evaluates to one of two values: true or
false. An arithmetic expression is a special ca3& of a boolean in that it is
true if the attributes in the expression exist for the entity being tested.

5.5.2.1

Form:

Relational Expressions

Label: operand relational-operator operand

whert each operand is an arithmetic expression or the name of an arithmetic
expression and the relational operators are:

= equal
/- no*- equal
< less than
> greater than
< = less than or equal
>= greater than or equal

For example:

5.5.2.2

Form:

RECTANGLE: P0WS/=COLS

SQUARE: ROWS=COLS

Logical Expressions

Label: operand logical-operator opevand

where each operand is a relational expression or the name of a relational
expression and the logical operators are:

AND

OR

For example:

Rl: LAT>100 AND LONG> 175

BIG-RECTANGLE: RECTANGLE AND DIMENSION>5000000.

In the first example, two relational expressions are combined. In the second,
BIG-RECTANGLE is defined as a RECTANGLE (a previously defined expression) and
a new relational expression (using a previously defined arithmetic expression).

!

10

'■■ -^-"""-"aitinritfl-mrliltiliinnillliiiriiiiliftfirffiMlirt -'-'-"J--J-- - - ^"-'-

/

— -A-------

«iiiMWW n« « i\i iiiyiuiiimipi i(!>««pvpBpifniinpipwj*<uu(PJ>ipmuuuHwiuuj«fM<Mi|!ii, iiijjj,i.,i|.<ppiPMmtn!nfnRPWUupii i.rjauij(i,t.Muii>ij,iu<gii-. «man

I

6. QUERY STATEMENTS

A query to the Data Manager is stated in the form of a conditional function. The
function consists of two parts: the condition portion and the answer portion.
The condition portion is a boolean exprepsion which, in use, produces a list
of names of data base entries satisfying the condition of the expression. The
answer portion (optional) structures the Data Manager's response. It defines
a series of arithmetic expressions which are evaluated; a value for every
member of the list is returned.

boolean-expression [=>arithmetic expression [,arithmetic expression]]

The answer portion is signaled by the arrow (=>). The word LIST or PRINT may
be used in place of the arrow to serve the same function.

If a query consists of only a boolean expression, the names of those objects
satisfying the expression are returned (along with the last attribute of
the expression).

For example: A query

PICTURE ROW > 2015

returns:

PICTURE ROW

M2 2300
M5 3015
M6 2016

Since an arithmetic expression may be simply the name of an attribute; the
answer portion can contain a list of attributes to be printed for each hit.

For example:

PICTURE RDW>1050 ■> COL, DIM

would cause to be printed

PICTURE

Ml
M2
M5
M6

ROW COL DIM

1100 1100 1210000
2300 2000 4600000
3015 3000 9045000
2016 2000 2016000

11

- - —— "-'—' — ■ n -HIT r nrrriiirWiiiiTii —■-■■"""'-"" ..-,.-...- ■^-. K iMMMimmiiiiiWinii

wmmm mmmmmmm
I

6.1 The KNOW Attribute

If the user desires to know all the attributes of a particular object, he can
use the special KNOW attribute.

For example:

P3 KNOW

will return:

ATTRIBUTE VALUE

OBJ P3
ROW 100
COL 100
OWNER ROB NEMO
DATE 12

15
73

FILTER F:

6.2 Pointer Attributes

The values of certain attributes may be pointers to other objects. In the
example above, F5 is another object. Without knowing the value of FILTER (F5),
FILTER can be indirectly addressed and FS's attributes retrieved.

For example:

P3 FILTER ROW

returns the value of the ROW attribut . of F5, not the ROW attribute of P3.

Pointer attributes may be added indefinitely to a group or object as long as tne
previous attribute is a pointer attribute.

For example:

P3 CAMERA LENS APERTURE

This attribute search finds the CAMERA attribute of P3, then the LENS of that
CAMERA and finally the APERTURE of that LENS.

12

^ _. -^ — — -■~—^^w—->— .. . '■--""■"--■—■ -^ - - - --^-**

i tmmmm immmmmmt* mmm
mmm

6.3 REVERSAL OPERATORS

I

It is more natural to express the query in the iens aperture example in
reverse order. The words OF or IN may be used to reverse the order of any pair.

For example:

APERTURE OF LENS OF CAMERA OF P3

is equivalent to:

P3 CAMERA LENS APERTURE

However, since some natural usages of the word IN maintain the sequence of
object attribute' or 'object condition' rather than reverse it, such as in

the phrase: '

PICTURES IN REGIONA

where REGIONA is a boolean expression, the Data Manager performs reversal only
if the first element of the triple:

WORD IN WORD

is not an object or a group.

6.4 NOISE WORDS

To make queries more English-like and more natural, the user may extend his
query vocabulary by defining a set of noise words. This is done by assiqnino
the NOISE attribute to these words. Noise words are ignored. ass:L*™<3

To define noise words, create an object with a NOISE attribute and then a list
of synonyms for that object.

For example:

FOR: NOISE:= NOISE

FOR: ALL: WHAT: IS: THE: USED

Now the aperture previously asked for can be requested by:

WHAT IS THE APERTURE OF "HE LENS IN THE CAMERA USED IN P3.

13

-j >..■..■.,J-„-.JJJ,--,....SL.r.,.-.^„.,.,.-J„.^. ■^^^,,^,^i*u**e^**U**i^.^^**Ml^^UJ^*~l*~^-i^a^^ ...■^■.-..,.„-.„.....-1- , ^--.■.

—m mi nm^mmm^ ■PHpajtwili. m.mm.K.Mmi.'mmimm Lijuijiimtjf|i|jigiw,a'ija..ju|i.L II,ILI,IJ mm» mi.iil ^Jl.HMIMII

: I

7. REMOTE PROCESSING

The answer to a query might be the creation of a computer job to be executed
subsequently. This job may call on programs distinct from the Data Manager,
but available within the total system. The VICAR image processing sub-system
comprises such a set of programs. Through its facility to generate jobs for
remote processing, the Data Manager can be made to serve as a front-end data
management system for an image processing laboratory.

7.1 PREPARING THE DATA BASE

The Data Manager generates the job control language (JCL) and all parameters
required for the job to be executed. The data base creator stores the defini-
tion of the JCL and parameters in the data base. The JCL may be added to or
changed by modifying the data base; there is no need to reprogram the JCL
generation program. The subsequent sections describe how the JCL is stored in
the data base using standard data-base-creation statements. Use of the JCL
attribate is essential to this process.

Consider a job called MOSAIC, which produces a mosaic of all the pictures in a
given region. Each picture wilt be projected by the program PROJECT and then
all of the projected images will be input to the MOSAIC program, which produces
the final mosaic. The region is defined by the latitude and longitude coordinates
of a rectangle wilich encompasses the area. A picture is considered in the region
if any of the reference points in the picture have latitude and longitude
coordinates which lie within the rectangle. Query interpretation supplies a
list of pictures falling in the region; the answer processor creates the job.

7.1.1 Defining the Objects and Condition

Data base entries for each picture follow the "pattern of two samples, PI

and P2.

P1:0BJ:=LT1:=605000,LG1:=1474500,LT2: = 545000,LG2:=1481500,
LT3:^615500,LG3: =1533300,LT4:=550000,LG4:=1541200,
LT5:=581000,LG5: =1510000, ROW: =775,COL:=900,
FORMAT: =F0RMATB,VOL: =' SER=TAPE1' ,FILE: =3,ID:=TAPE1;

P2:OBJ:-P2,LTl:=544000,LGl: = 1541000,LT2: = 533400,LG2:=15459OO,
LT3:=555200,LG3: =1595200,LT4:=535400,LG4:=1605800,
LT5:=520600,LG5: =1573500,ROW: =775,COL:=900,
FORMAT: =F0RMATB, VOL: =' SER=TAPE2' , FILE: =6, ID: =TAPE 2 ;

The LT and LG attributes are coded names for five reference latitude and
longitude coordinates for each picture (the comers and the center) . The
FORMATE attribute specifies the JCL parameters for tapes, VOL is another
JCL parameter (tape volume), FILE is the file number on the particular tape,

and ID is the name of a tape.

14

KL, -'—"■- ■ '■ ^ -'- .-■-■.'■-^—.—...^.■..■» ~....--^— _.,-...^, [■ini-niin»«^-""■ ■-■ .i.^.-^.—-.-^.'i. t.- .-,w -•'-^•——^" --«■i"--*'--"-^"-^"»"«

IHIJI.MIIHI.I« *mmmmm mmm Wim jyi-i r**Kw*Ht*mmmm mmmm*

A PICTURE or PICTURES (synonym) is defined as a group:

PICTURE:P1 ,P2 ,P3 ,P4 ,P5 ,P6 ,P7;

A REGION is defined to be the boolean expression:

REGION :R1 OR R2 OR R3 OR R4 OR R5;

Rl through R5 are definitions of coordinate relationships for each of the five
coordinates of a picture. The first three are shown below:

Rl: (EXTENT COORD LT2<LT1<EXTENT COORD LT1) AND
(EXTENT COORD LG2<LG1<EXTENT COORD LG3}

R2: (EXTENT COORD LT2<LT2<EXTENT COORD LT1) AND
(EXTiTNT COORD LG2<LG1<EXTENT COORD LG3);

R3: (EXTENT COORD LT2<LT3<EXTENT COORD LTi; AND
(EXTENT COORD LG2<LG3<EXTENT COORD LG3);

EXTENT: OBJ: =EXTENT, COORD :=PROJl;
PR0J1:TYPE:=MERCATORfLTI:=700000,LG1: =1400000

,LT2:=300000,LG2:=1400000
.LT3:=700000,LG3:=1800000
.LT4:=300000,LG4:=1800000;

7.1.2 Defining the Job

The following object creation statement sets up the MOSAIC job.

MOSAIC: VICAR:=MOSAIC, JCL:=VSETUP,PGM:=(PROJECT,M0SAIC2) ,OUTPUT: =
(SYSTEM, USER, OUTNAME)

The job uses components of the VICAR system (PROJECT and MOSAIC2) , the JCL list
is called VSETUP (and is, in this example, directed to the IBM OS system),
and the OUTPUT is specified indirectly. As a convention, a listed value for
certain attributes signals that the value is to be interpreted indirectly (just
as with the range in a boolean expression). In this case, the OUTPUT specifica-
tion is found by looking at the SYSTEM entry. SYSTEM'S USER attribute points
to a specific user. USER'S value points to another attribute which finally
determines the output file description. This indirect addressing built into the
job description allows each user to define his own output destination without
generating a separate MOSAIC job description.

For example:

SYSTEM:USER:=NIMENSKY,•

NIMENSKY:JOBID:='(08648,98312,3325)',OUTNAME:=BOBOUT;
BOBOUI: FORMAT: =FORMATB, VOL: =' SER=BOBOUT' , ID: =BOBOUT;

,

15

- HMMMMMIMMMMMIttl 11 nrrriiiim ilniiWlitiMlilliiniliMttwMll'iiiiiWi tMMMaMrt WMMM

im jimi.jMiiiijumiLiiijiiiiiw);!, «|il>S«SK- wmmmmmmmmmmmmm ^^VI^H

are the data base entries which specify a particular user, NIMENSKY. The Data
Manager knows how to locate all the variable data in the job description,
relieving the user of the necessity of defining data over and over again. The
Data Manager goes from SYSTEM to NIMENSKY to find that OÜTNAME is BOBOUT; if
another user were operating the system, he could change SYSTEM: USER to his
name (in his copy of the system) so that his JOBID and OUTNAME would be used
in the generated JCL.

For every VICAR job, there are eight standard JCL statements. These are defined
in VSETUP, the data base entry pointed to in the MOSAIC definition.

VSETUP:VICRUNX,JOBLIB,STEP1,SYSOUT,SYSUDUMP,FT06F001,FT07F001,VSYSOO;
VICRUNX:JCL:=JOB,BLANK:=(SYSTEM,USER,JOBID),BLANK:=

(SYSTEM,USER),CLASS:=D,TIME:=15,•
JOBLIB: JCL^DD^oN^'IPLl.VICARLIB' .DISP^SHR^OL:^ SER=000530 ',

UNIT:=2314;
STEP1:JCL :=EXEC,P01:=VMAST,REGION: = '250^,TIME:=15;
SYSOUT: JCL:=DD,SYSOUT^'A1,DCB: = ,BLKSIZE=3520I ;
SYSUDUMP:JCL:=DD,SYSOUT:='A';
FTO6F001:JCL:=DD,SYSOUT:^A';
FTO7F001:JCL:=DD,SYSOUT:='B';
VSYS00:JCL:=DD,UNIT:=2314,SPACE: = ,(TRK,2) ' ;

Other jobs using programs from other subsystems generate different JCL;
the job definition need only refer to a different list. In this case, the
first JCL statement, VICRUNX, is a JOB statement (modeled after SDC's standard
job card). The attribute pairs coincide with the keyword and value orientation
of the OS JCL format. The translation from data base entry to specific JCL
statement is primarily one of editing and interpretation of indirect addressing.
Within the Data Manager, a convention has been instituted to take care of unique
JCL formats. For instance, in the OS JOB statement, there is no keyword for
the job identification field. Within the Data Manager, the BLANK attribute is used
to indicate 'no keyword'. Since quoted textual strings are legal attribute
values, the SYSTEM USER JOBID is entered as JOBID:='(08648,98312,3325)' in the
NIMENSKY entry. The general rule for JCL generation is to use the name of the
statement as the statement label, ignore the 'JCL' but print its value as the
statement type, and then using the remaining attribute pairs, print the keyword,
an equal sign (=), and the value. Separate all successive pairs by commas and
adjust for end of line. The following JCL will be generated from the VSETUP
information when the MOSAIC job is exercised.

16

U^teMuiaMtiUiaküMlMHriiMi —- ■ - ■-—^— -- ■•■■

i i JHPKp|pnnul|JuHl>lPll^lnpl■nRlnmwJUlll^l■u.ll■lJ■lv.I «PPWW •*mmim^mt*immm m*

I

1 :

//VICRUNX JOB (08648,98312,3325) ,NIMENSKY,CLASS=D,TIME=15
//JOBLIB DD DSN=IPL1,VICARLIB,DISP=SHR,VOL=SER=000530,UNIT=2314
//STEP1 EXEC PGM=VMAST,SEGION=250K,TIME=15
//SYSOUT DD SYSOUT=A,DQJ=BLKSIZE=3520
//SYSUDUMP DD SYSOUT=A
//FT06F001 DD SYSOUT=A
//FT07F001 DD SYSOUT=B
//VSYS00 DD UNIT=2314,SPACED(TRK,2)

Next, for each data set that lies within the region, a data definition (DD)
statement must be generated. Because PROJECT has the REPEAT attribute, a
temporary data set will be established for eaih output picture. The basic JCL
for tape units (input to PROJECT) is generated from the FORMATB statement; the
temporary data sets are directed to disk arid are generated from FORMATA. The
data base statements for this JCL followi

PKÜJECT:PGM: =PROJECT, INPUT: =' @ ' ,OUTPUT: =TEMP,PARAMS: = (PARAM1,
PARAM2) ,REPEAT^'^OUTSIZEtMl,1,2000,2000);

PARAM1:PARAMS: = (EXTENT,COORD);
PARAM2:PARAMS: = ('(3' ,COORD) ;
MOSAIC2:PGM:=M0SAIC2,INPUT: = (TEMP) ,OUTPUT:= (SYSTEM,USER,OUTNAME) ;
FORMATA:JCL:=DD,UNIT:=2314,DCB:=,(BLKSIZE=6000,LRECL=2000)',

SPACE:='(6000,(0710),,,ROUND)';
FORMATB: JCL: =DD, LABELS* (,BLP) ' ,DISP: = ' (OLD,KEEP) ' ,UNIT:=TAPE7 ,

DCB^' (BLKSIZE=0,LRECL=0,DEN=2,TRTCH=C) ' »VOLl-Ce1 ,VOL) ;

The generated JCL will be:

I

//VSYS01 DD LABEL=(,BLP) ,DISP=(OLD,KEEP) ,UNIT=TAPE7,
// DCB=(BLKSIZE=0,LRECL=0,DEN=2,TRTCH=C) ,V0L-SER-TAPE1
//VSYS02 DD LABEL=(,BLP),DISP= (OLD,KEEP),UNIT=TAPE7,
// DCB= (BLKSIZE=0,LRECL=0,DEN=2 ,TRTCH=C) ,VOL=SER=TAPE2
/ASYS03 DD LABEL=(,BLP) ,DISP= (OLD,KEEP),UNIT=TAPE7,
// DCB=(BLKSIZE=0,LRECL=0,DEN=2,IRTCH=C) ,VOL-SER-TAPE3
//VSYS04 DD LABEL=(,BLP) ,DISP= (OLD,KEEP),UNIT=TAPE7,
// DCB= (BLKSIZE=0 ,LRECL=0, DEN=2 ,TRTCH=C) ,VOL=SER=TAPE4
//VSYS05 DD UNIT=2314,DCB=(BLKSIZE=6000,LRECL=2000) ,
// SPACE=(6000, (0710) ,, ,ROUND) ,DSN=Sl&S5

//VSYS06 DD UNIT=2314,DCB=(BLKSIZE=6000,LRECL=2000),
// SPACE= (6000, (0710) , , ,ROUND) DSN=S1&S6

/ASY07 DD UNIT=2314,DCB=(BLKSIZE=6000,LRECL=2000) ,
// SPACE=(6000,(0710),,, ROUND),DSN=&&S7

//VSYS08 DD UNIT=2314,DCB=(BLKSIZE=6000,LRECL=2000) ,
// SPACE=(6000,(0710),,, ROUND),DSN=&SS8

//VSYS09 DD LABEL=(,BLP),DISP= (OLD, KEEP),UNIT=TAPE7,
// DCB= (BLKSIZE=0 ,LRECL=0, DEN=2 ,Tr.rCH=C) ,VOL=SER=BOBOUT

17

Hitiiiiriirii-Wniliiiiini'ii'hhiiii — ' - --- „.i^.. ,J.,.j..J^ii-.JJ.l. ■..- .—.-^—"-iiriimi iiiivnii iiiiijftiiMiiiiiiMrriir^rtriiiiiiiiitfiiiMiiiil

mnMUlLHHUilUlJIiJIMIIlli (H IMWWlll. I J«.W IJL W

Setting up the actual job (which is a parameterized call to the VICAR
driver, VMAST) begins with the standard input (SYSIN) file definition. The
input files and output files are determined from the VICAR description. The
specific parameters «re taken from the data base.

The parameters for PROJECT are described by its PARHS attribute: PARAM1,
PARAM2. Proceeding down another level, PARAM1 is defined as m indirect
address, EXTENT COORD—that is, the value of the COORL attribute of EXTENT.
Tha definition of EXTENT is:

EXTENT: OBJ s =EXTENT, COORD: =PR0J1 ;
PR0J1: TYPE :=MERCAT0R,LT1: =700000,LGL: =1400000

,LT2:=300000,LG2:=1400000
,LT3:=700000,LG3:=1800000
,LT4:=300000,LG4:=1800000;

The COORD of EXTENT is PROJ1. Thus, the actual set of parameters are the values
of PROJ1. When generating parameters, all the attribute names are ignored.
PARAM2 is defined using 'Q'. This signals an indirect reference to the input
data set; the coordinates of the input picture will be used for the second set
of parameters. A sample portion of the parameter generation for PROJECT is:

// SYSIN DD *,DCB=ejJKSIZE=80
SI FILE 3 1

1 PROJECT VTESTX 1 1 2000 2000 lOOOOOOOObGuO
MERCATOR 7C.00.0C 140.00.00 30.00.00 140.00.00 70.00.00
180.00.00 30.00.00 180.00.00
60.50.00 147.45.00 54.50.00 148.15.00 61.55.00. 153.33.00
55.00.00 154.12.00 58.10.00 151.00.00

The parameters and job control for the mosaicking step are generated similarly.
The complete data base is contained in Appendix A. a complete example of
JCL generation is in Appendix B. All the JCL is generated based upon
the particular data base entries satisfying the query conditions or upon the
data base definition of the job.

7 2 CREATING A JOB THROUGH QUERY

Once the proper data base entries have been configured, the user exercises the
system's job creation facility with a simple query:

FOR ALL PICTUREä IN REGIONA =>MOSAIC

The system finds those pictures which lie within a particular region (REGIONA) .
The range of all pictures is the group, PICTURE; REGIONA is a rather complex
boolean expression (given previously).

18

,..-. ^ :■..,-..,-i—^..^...-- -- -^....-^ .. ,. ^-^j,—^.-.■-.„ ..—^^^M»»—^.-^..^.,, innnninn-mn- , ■ m ■■ J^^jM^A1ui„k»iM«<aiaMM»*aiUaaiM^>

i'

The query is parsed so that the noise words FOR and ALL are ignored and the
reversal operator IN is recognized, byt also ignored, because PICTURES,
synonymous with PICTURE, is a group. Every member of PICTURE — PI, P2, P3,
P4, P5, P6, and P7 — is tested against the boolean expression, REGION. If
the boolean expression is true, the r.ame of that picture is passed on to the
MOSAIC processor.

Consider this evaluation as it proceeds for Lhe first phrase in expression
REGIONA: Rl (given previously). First, EXTENT COORD LT2 is evaluated. The
value of COORD attribute of EXTENT is PROJ1. The LT2 attribute of PR0J1 is
30°00'00". The t ph-ase in Rl is <LT1<. LT1 is an attribute without an
object} therefore the current object (picture) is used. The first picture,
PI, has an LT1 of 60°50'00". The next phrase is EXTENT COORD LT1. The LT1
attribute of EXTENT is 70°00'00". The first part of Rl is evaluated as
30000,00"<60050,00"<70000,00". Hence, the first coordinate of the first
picture satisfies the expression; the picture PI is put on the list of
entities satisfying the query. Continued evaluation of all the pictures
against the exp^jssion REGIONA produces a list of PI, P2, P3, and P4.
Because MOSAIC (the desired response) has a VICAR attribute, the list of
pictures is passed on for JCL generation.

The equations Rl through R5 could have been written incorporating the values
of the coordinates, rather than using a complicated pointer (EXTENT COORD LT2
is a constant). Instead, EXTENT COORD's value is given as PROJ1, the coordi-
nates of a particular region. There is a strong reason for the more involved
specification. MOSAIC is a general process and REGIONA is a general boolean
expression which could be used to find pictures in any region. If 50 regions
were specified in the data base as PRDJ1,. .. ,PROJ50, the user need only set
EXTENT COORD's value to the particular region he wants to process to MOSAIC
any one of them. If constants were used, 50 versions of expressions Rl
through R5 would have to be written, each with 20 constants, to accomplish
the same facility.

Within the OS system, generating job cont-rol language on the appropriate data
set will cause automatic execution of a job. Hence, the Data Manager may
conditionally create and cause execution of a remote process using previously
stored information in a very flexible manner.

19

ih ^w^..-^»^^^. ---—•--■ -■->-■—.-.--.■.—.— . iniiiini-riT iiiilllirif"^-1 M ■■-■- - ■---- ■ - ■ .-■ ^

8. SYSTEM INTERACTION

Once the Data Manager has bean loaded, it asks the user to specify the
location of his source (data base):

SOURCE=

The user responds with a file description, if he has a previously prepared
card image file of data base creation statements and/or queries, or with

TERMINAL

if the data base is to be created from scratch. It a previously prepared
file is signaled, the program reads this file, typing out any comments (see
Section 9). On completion, it reverts to the user's terminal to request
input. Its desire for input is signaled by ein outputted asterisk (*).

During the course of using the system, the user may wish to amplify his data
base from additional remote files or to reinitiate suppressed output. Such
communication is achieved through a set of special commands of unique form.
This form is a dollar sign ($) , followed by a keyword. These commands are
enumerated below and axe permissible at any time that the program is
requesting input by the asterisk prompt signal.

8.1 $SOURCE

This statement allows amplification of the data base or queries from remote
files. The system will request a file description (as above) and read in
the specified card image file.

8.2 $OUTPUT

This command restores the printing of output, if it was previous!/ suppressed.
That is, during the course of printing, the user is asked how many more lines
of output are desired. If he responds NONE to this question, subsequent
output is suppressed. He may restore printing the next time the system
requests input by typing $OUTPUT.

8.3 $TREE

This is a debugging statement which causes the values input to the PRINTREE
routine to be printed.

8.4 $UNTREE

This commanc? turns off tree printing.

. 1

20

 ^^•^^•^•^—■■ .^.-,...-^- .„^-.■^..^.-..' - —.. ...>...-...~^—-^^^^ ,. -.^.-.■^^.-.■-■^..J^....^...^^

mmmtmm mi'itm «imifjuj ji.i jijitjtipH^^inifff ■HI»»»»'»«.»".'.!'»-"«»1

8.5 $BACK

This is a debugging statement -/hich permits tracing of the Data Manager's
execution in the case of a program error.

8.6 $NOBACK

This command suppresses tracing.

9. #COMMENT

The comment following the # will be printed. This is a device available for
generating printed comments while the Data Manager is loading a data base
or test queries from a SOIRCE file.

10, SAVE

This command allows saving of the current program (data base). it stops the
Data Manager in a restartable manner and returns control to the system
monitor. The program and its current data base can now be named and saved.
When the program is reloaded (by using its saved name), it will continue
operation from the point at which it was saved. This command does not create
a file re-readable using the SOURCE facility. Note that this ^^a^d"does
not use the $ signal. =■

11,

,

SUMMARY

The Data Manager demonstrates the feasibility of a solution to the image
processing data management problem. The hierarchical data base can be
easily queried with an English-based language. The user can define his own
arithmetic and boolean expressions (which may be saved in the data base).
The Dob generation portion of the system demonstrates the feasibility of
automatic retrieval of parameters from the data base and the direct execu-
tion of a complex task based upon a query statement with no further inter-
vention by the user.

12. FUTURE AMPLIFICATIONS

The Data Manager was designed, in part, to allow exploration of the possibi-
lity of semantic parsing of a queiy language. We will continue to develop
the language so that meanings of words (as defined in the data base) deter-
mine the interpretation given a statement. The dependence on rigid syntax
will be iteratively relaxed.

To further enhance the use of the Dc . Manager for applications other than
image processing, a hierarchical atl ibute definition capability can be added,

21

.v,-^..^,^--^- - - —^ . . -. . — ■miiirMii itiii'iiiminiiiiiii'ii*iiMaii*Mi tMÜMMMlMIrii "'-"~

mmmm <mm*m

i

To simplify user interaction with the data base, an assignment statement can
be incorporated which allows the user to set a single attribute to a value or any
number of attributes to a value based upon range and boolean condition.

The Data Manager can be made able to help the user find his way to the solu-
tion 'of a problem through Incorporation of more refined "help" procedures
than are now present.

The current model keeps its list structured data base in core memory. Obviously,
this is very constraining. The problem of handling remote data storage must
be solved. The model will be used to explore feasible ways of organizing such
a large data base.

Finally, we plan to make many data bases of information from other disciplines
to determine the applicability of the Data Manager concept to these areas.

.

22

.^. .. . ;^-....^.J:I.V.^J-.,.^.^.:-^. ^.... . . ,. ..- -, ■ -^-„..-^»■.^.u^^-^^a.. —"-^- - ■ iMti mimiiTMiil^Mi mill -* J

HMW Ulli UUIMl'IMIIIJI Mill »ilililLlJiniMJ« mmmm mmmmrn»

APPENDIX A

SAMPLE DATA BASE

23

 '■ -■—"■- ^-■•.-"' :...,»..-^ .■■v-....„^l-:.,.:,.^.>„-..;J..-M^^—.. ■ .^^^.. v..^»..^^^--!:^—.^^-J..^^..-,...-.-.J.

R4

P5
(EXTI-NT
(EXTENT
(fcXTF.N1

RFG10N'\:Rl

CÜOP.O
COORD
COOKO
R5;

LC:-»)
LTD
LGi)

: = 2,ID: = T\I^7
AND"

ANO

It FT07F j'Jl

bbO*

FORMATl-FnRMATBfVaL^'SER'TAPETt.Fii i:
FfJF COORO LT2<LT4<fc:XTE:NT COORO LT1J

CnOHU LG?<I.G4<EXTFNT
CCORf) LT2<LT5<EXTtNT
COURD LG2<LG5<EXT£NT
OR R2 OR R3 OR R4 OR

EXTENT :UHJ: = EXTE NT,COi'RI):=PKC)Ji;

VSFTUPSVrCRUNX,JOBLIB.STEPl,SYSUUTfSYSllü(JMPfFT06Ft

V iaUNX:jCL: = jne,HLANK: = (SYSTEM, USER. JUbIIJ)fRLANK:-(
SYSTFMfUSFR),CLASS:«D,TIMe:=15! '•"LÄ^--<

jnBLI.:ja: = DO,USN: = MPLl.VILARLrB.,OIS.: = Sh.,VOL:..sr..o

STEPl:JCLl = CXEC,P6M:«VMAST,REGlüN:««25ÜK'. riM'-'-m-
SYSOUT:JCL:=DD,SYSUüT: = .A. DCU: = .RLKSI7L=l3lo *'

FT06F0Jl:JCL:=ü[>,SVSüljr: = 'A«;
FTJ7F0Jl:jr,L: = DtT,SYSnUT: = «d':
^v.Y?MÜ:

lr
J^'L:=D0,UNIT:=2;nA♦SPACf-: = ,^1■«'<^>,;

SYb.JN:jCi.: = uj,rtl ANK:«««»fr>CB:«»aLKSIZE«ej« •
HnsAIC!V,CA"!r^s;^^:^TÄn"!MPRoJ'CT'Mü"'«''c-uT'-

■

BO^nUl : FItRMATsxC'iRMiTB.vnL :
SYSTEMriJSEi- :=NIMFNSKy;
»MOSAIC TL.ST 4/lc/n;

TERMINAI

SER-BOBOUT«,Iü:=RüBai IT

25
(Page 26 blank)

- -— ' ^ ■ — — -— — -" I

PC^Ü m

APPENDIX B

SAMPLE CREATED JOB

27

L
■— -- -■ mMmä^ummmk^m^mn^m m —- — - ■■ ■-- -—üüi ü i «MU,

