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the uniform unperturbed velocity in the free-surface condition is re-
placed by a variable veloclity distribution. The second method leads to
an apparent displacement of the most singular points of the body skeleton.
In both cases the parameter ¢ appears not only in the wave amplitude, as
implied by the thin body expansion, but also in the wave number function.
The nonuniformity of the usual thin body expansion is, therefore, similar
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Fig, 1 Two-dimensional tlow past a gubmerged body.

Fig., 2 The o complex plane.
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iii

Notation

1,a2 - first and sccond order dimensionless ampiitude of
free waves 1in two-dinensional flow

A - wvelocity strainirg function

bz.c2 ~ coefticients in the solution of flow past a sourca-
sink body

B' ~ beam (half)

B - auxiliary function

C - Euler onnstant

D' - wave drag in two dimensions (D =D'/0.5 p'U'?L"')

£'(z") - complex potential in two dimensions (f=f'/U'L")

T RBPYOE T R TP . AT Y T 6 g Twwwmmw'n-mmmmymwww ‘WMFWMWW
> ]

f'{"',2'}) - =ship surface equation in three dimensicns (f=f'/L')

fw(z) - dimensionless free waves potential

g ~ acceleraticn of gravity ?
h' - submergence de»th (h=h'/L')

Im -~ imaginary part

L - reference length (generally body length)

P,Q -~ wave spectrum functions

- wave drag in three dimensions (R=PR'/0.5 p'U'?L'") i
- real part
- maximum half thickness of the body in two dimensions

- Jdimensionless thickness distribution

A NS Rhrs i o P 2
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x -
}!' -
r -
z -
U',V, -
w' -
u* -
00.8 -
S -
§z, 6x -
E -
u -

AsV,T,0,p

0 -
¢’ -
V' -
¢ -
w -
T (x) ~-

iv
horizontal coordinate positive in the direction of
motion of the hody (x=x',/L'}
upwards vertical coordinate in two dimensions:
horizontal, normal to X', coordinate in thrcece
dimensions (v =y'/L")
comple« variable z' =x'+1iy' in two dimensions,
upwards vertical coordinate in three dimensions
(z=2'/L")
complex conjugate of z=x+4 iy

velocity components in x' and y' directions,
respectively (u=u'/L' ; v=v'/L")

complex velocity w' =u'-1iv' 1in two dimensions,
vertical vclocity component in three dimensions
(w=w"/U0")

velocity of uniform flow at infinity upstream

coordinates in the Pourier transtorm plaae
smmall angle
coorainate straining functions

slenaerness parameter (¢ =1'/L' in two dim,,
€ =B'/L' for thin ships)

artifilicial viscosity

auxiliary variakles

water Jdensity

velocity potential (¢ =ao'/0'L’

stream function (¥ =y'/U'L")

Fourier transform of ¢

function related to the exponential integral

slore of the body profile in two dimensions,
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The lincarized theory ot free-surface gravity tlew past sub-
merged or floating podies 1s based on a perturbation expansion of
the velocity potential in the slendecrness parameter ¢ , while the
Froude number F 1is kept fixed. 1t is shown that although the
free waves amplitude, and the associated wave resistance, tend to
zero as PF+ 0, the linearized solution is not uniform under this
limit: the ratio between the second order and first ovder terms
becomes unbounded for F-+0 and fixed ¢ . This nonuvaitormity
(called "the second Froude number paradox" in a previous work) is
related to the nenlinearity of the irve-surface condition, <(ri-
teria of uniformity of the thin body expans<ion, conmbtining ¢ and
F, arec derived for both two- and thren~dimensional flows. These
criteria depend on the shape ot the lecading (and trailing) edge:
as the shape bacomes finer the linearized solution becomos valid

for smaiter F.,

Uniform first corder approximations are derived by two alter-
native methods: velocity straining and coordinate straining,
In the first case the uniform unperturbed velocity in the free-
susface condition is replaced by a variable velocity distribution,
The sccond method leads to an apparent displacement of the most
singular points of the body skeleton, In both cases the para-
meter ¢ appears not only in the wave amplitude, as implied by
the Liiin body expansion, but also in the wave number function.
The nonuniformity of the usucl thin body u»pansion is, theretore,
similar to that encountered in problemsg charactelized by nultiple

scales.
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INTRODUCTION
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i

The linearized theory ot free-surface gravity flow past sub-
merged or

loating bodies is bascd on the assumption that the

;

body causes a small disturbance ot a uniform tlow. Such an appro-

ximation 18 incorporated in a systematic asymptotic expansion ot
the velocity potential by assuming that ¢
for a

(beam length ratio
thin ship, draft/length ratio tov a flat sihip, body length

submergence depth ratio in the case of deep submergenc:) tends to

2ero while the Froude numher ¥ (hacsd an body length o zub-

i

mergence depth . respectively) is kept faixed.

In previous works (Salvesen, 1969; Dagan, 1972a) it has been

A

shown that 1t 1s not legitimate tc let F-+0, for a fixed €, in
or in othcer words that the usual approxi- !
mation is not uniforin in F. ‘iwo "small Froude number paradoxes"

i

the linearized solution,

Iisve been rormulated

. o
....... C in W

his Countext (agan, 1372b) and ad~hoc
uniformizotion procedures have been suggested (Ogilvie, 1965;
Dacan, 1972b), leading to a guasi-linearization of the frec-surface
condition. It has been proved (Tuck, 1965; Salvesen, 1969;

Dagan, 1972a) that the small Froude nunber nonuniformity is
associated with the nonlinearity of the free-surface condition.

In all cases detailed computations have Leen carried cut only

for two-dimensional .lows.

in the present study the »roblem of the small Froude nunber
nonvniformity is attacked in a different way, the results being
alsn different cf those cobiained previously. For the first time
the influence of the bluntness of the kow on the small F sovlution
is discucsed in detail and the analysis is extended to thiee-

dimensional flow in gereral and to flow past thin ships in parti-
cular.
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[ 9]

It is worthwhile to mention herxe that the pioblem 1s related
mainly to thrzae-dimensional applications, since a large class of
ships operate at relatively lo. Froude numbera and in nost such
cases the usual theory of wave re.istance has been found to be
unsatisfacrory. We begin, nevertheless, with studying the two-
dimensional flow because the use cf the powerful teol of analyty-
cal functions in this casc porinits to clarity some haitters of

principle much easicr than in three-dimensions,

Obviously, therc are various possible factors related to the
digscrepancy between wave resistance as measured in experiments and
as predicted by the lincarized theory, like viscous effects or the
bow breaking wave. This should not deter us, huwever, f{rom seekilng

a consistent solution for the wave resistance in the frame o1l the
potential flow theory.

1 Ll bR e
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TWwO-DIMENSIONAL YLOW PAST SUBMERCED BODIES

1, Tnie Thin Body Expansion

We consider a stesdy uniform flow from infinity past a

submerged body (Fig., 1), Let z'=x'+iy' be a complex variable,

w'=u'~-1iv' the complex velocity, f£'=¢'+iy' the complex pcten-
tial, n' the free gurface elevation, 2L' the body length, h’ the
submergence depth, 2T' the thickness anda U’
form flow. First,

the velocity of uni-
variables are wade Jdimensicnless by referring
them to L' and U', i.e., z=2z'/L'; €f=€/L'"; w=w'/U';
h=h'/L"; c=T'/L'  and F?'U'/(gL')l/z.

Under an expansion of the analytical fur.ction f(z;¢,h,F)
in a saell ¢ asymptotic series

f = «~2+ cfl(z;h,F)+t (z;n,F) + ... (1.1)

the following sets of equations are obtained for f and £

1 2
from the expansion of the exact equations (Wehausen and Laitone,

1960)
df1 i
Im(iF- 5;* - fl) = 0 ) {(rL.2) g
(y =0) :
fl + (X »= ; y+~m) (1.4)
vy = Itx) (ix] <1,y =-=ht0) (1.5)
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where n = en;+e’r,+ ... and y = -htct(x) is the eguation of

-

the body profile, assumed to be symmetrical for the sake cf
simplicity;

-~ df-, . N 2 3 2 1 2 . aul )
IM(iF® ===t ,) = P,(x) = -F (3 u) +5 vi) +F'u, go= (1.6)
(y=0)
N, =V, vy (1.7)
£, > 0 (X 72 ; y+-o) (1.8)
vy = Fugt (Ix] <1, y=-ht0) (1.9)

In addition, a Kutta-Jonhovsky condition has to be imposed

in the case of a sharp trailing edge in order to make circulation
unique.,
It ¢

any
(P91

o3

s (S-

Yeroootn i1 :
C SnlwWn u.l.'v-:'acu,

9) that far kehina the body
the stream-function has the expressions

e
G
[eg]

-ix

<
(-
[l

Im{a, e
ES
-i

wz = I.‘.(a2 e

The wave resistance is given by the following expression

) (x + ~-=) (1.10)

Xy + const (x + =) (1.11)

%
3
E
%
i
i
3
g
3
E
E
E
i
X

| o2 2 |
D—Z—F-l-lcala-c azl (1.12) ;
|
where D = D'/0,5 p'U'?’L* . Hence, by expanding D %
.2 3 . 2
D = e’Dy + €°D, + oie") (1.13) i
i
%
S £ = == = = = T = = R e T By Aty X v . S AR m———_ |
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5.
we have
. 1 R _ ] TN
Dl = 3FT [dll H D2 = §Fr Re(alazl . (1.14)

The method of determining f1 and fz , solutions of
Eqs; (1.2)_(108)1

is well known. Let wi and w? be the

first order linearized soluticns of the velocity of flow past

tne body or its image, respectively, in an infinite domain,
i.e.,

l1-ih dz

{ TX_) (1,15)
~1l-1h s 2Tz

"
[}

W§(z)

:1'!":

where z, =X + 1y is the cocrdinate of a point along the

skeleton (]xsl< 1, yo=-n), Re 1 = dt/ax znd
. . rin dz -t
wilz) = - = T(x_) S— = w,(2) . (1.16)
1’ i £l+ih § ,-.3% 1

[
>4

Then, the solution for fl may be written as

£,= fr4fy -2 [wloeEPdr (Imz <imo  (1.17)
where
. w-jo i) © ip
-17 e
= : — d) = 1.18
w(g) = e { =~ d é = do ( )
the A plane being cut along Im 1l =¢ Re A 0

¢, Re A >0, and the p

plane is along Im(p+Z) =0, Re(p+y) >0.

The gecond order solution satisfying (1.6) and regular
in the lower helf plane (we consider here only the free~-surface
second order effect and disregard (1,9), which leads to less

ol

'

L g A
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6.
gevere effects as F+0) may be written as
oo
£,(z) = -lr [p (0) w(Z=F) do (Imz < Im o) (1.19)
2 = TF o 2 F . .

2. The Second Order Solution

(free-surface effect)

We are going now to transform (1.19) such that £, will be
expressed as an integral over analytical functions of

¢ . First,
we have, by integration by parts
@ av . [
I 1 Z-0 _ 2 z2~C _
Lovwe 0FTide = - Fr [ 4y +v)) wlSHeide
© U.v
- f SAta . (1.20)
e 2 a

As far as the free waves are concerned, the last integral in (1.20)
renders the well-known Stokes second order waves of amplitude
O(G-Zh/Fz) Under the limit F -0 these waves are negligible,
as compared to the remaining terms which are O(e—h/Fz

Y, and will
be neglected in the sequel.

Hence, by (1.19) and (1.20) we have under these ccnditions

2 _ 3 2 _ 2~=0. -
ﬁ- Vl f ul l_ulvl) w(-i':?}dc (1.21).

uy and vy ,which are obtained from (1.17),may be written along
the real axis as follows

ey

N S e

o e ————— i e o
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I
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7.
w+i0
1l * u X7 L -~ K=
uy (x) = - e [mﬂo fwy (D w(Spy! +wy (1) 6 (5 1dr (1.22)
. ©+)10
) m ik A o i u X~T, _
Vi) = ilwy () -wy ()] - 5o £w+io (W) (D)
g‘ - .
-wy (1) 0 (55 1dr (1.23)
where o is defined, similaerly to (1.28), as
o i) {
Z)(C) f x——-e dx . (1.24) ;
(o} +3

Substituting (1.22) and (1.23) 1in (1.21) and integrating by

parts we obtain f2 (for details see Appendix I)

in its €ingl
form as
_ i ® _ 1 L A 2
£,(2) = = _i (- = wi(o) =wi(o)]" +
1 L u ® u 01 2=0
+ 5T !wl(o) +wy(0)] _!; Wl(‘r)w\—f-.—r)dr }wt-?-)do (1.25)
Besides the term containing the Stokes second order waves we have

neglected in deriving (1.25)

also the term related to the cunstant
part of vs

(1.11), which is associated with the DC part of
P, {x), and does not contribute to the wave resist

Fals)
ange.

9
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3. Tllugtration of Results: The Source-Sink Body

(i) The gomplete so niion
Rather than pursuing a gensral discussion of the second order

golution under the limit F--0, we begin with a simple case which

can be solved in a closed form,

We consider a closed body generatec by a source at 2z, =1 - ih
and a2 sink at z, = ~1-ih. 1In view of our interest in three-

Ginensional applications we consider only the thickness effect
(the influence of circulation, generated by distributed or con-
centrated vorticity, may be analyzed in a similar way).

This is
the first order representation of

a gtraight thin body with blunt
leading and trailiny edoes,

R} -

Following now (1,1

(S 4

), (1,16), (1.17; and (1l.25) we hLave

Z2-2 <=2 F:

1 . g 1 ) 1 27z
£1 = 37 40 z-z, © W Oi=gr=) - 7 elgr) (1.26)
9 1 1 1 o u_ 1 1 11
Y1 T % EE, %W Tr, 0 Y17 37 5%, T 37 ¥, (1-27)
_ i 1.1 1 ) 12
£ = @ _i t-r [o-z2 o=z, G—EQ'+0-Et o
! ]
+

] 1 1 1 “
A et e | e
% t % t - P72y PTE

xw (T dplu(ipprac . {1,28)

;
|
|
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o

The intagration in (1.28) can be carried out exactly. The
first term, resulting from (wi-—wt) , contributes by the

residues at o = El and o = Et. The last terms are more

intricate, but still tractable, at least foy x -+~ «,

We consider now the expansicn of f (1.26) ard £

1 (1.28)
for small F.

2

e mamasmemnchownacrc s ocnwe

For F2 =+0, w(z-El/Fz) can be expanded in an asymptotic
seriea for fixed 2z as follows

z-z @ 2n
oy v - § RIDLE_ (1.29)

n=1 i"(z-z "

This expansion is valid, however, only for lz-EQI > § and
-+ 8§ < arg(z-ii) < 0, where &§ and & are arbitrarily small
fixea quantities (for details see the discussion of the related

exponential integral funttion in Copson, 1965).

Subsgtitution of (1.29) and the similar expansion of
[z-Et/le into w, , obtaining by differesntiation of f, (1.26),
yields

= WY 4 ? Py . —
Wy =Wy otowy A O(F°¢) (-m+§ < arg(z 21) <0) (1.30)

Hence, Wi degenerates at zerc order into the rigid wall solution,
i.e., the golution of flow past the body in the presence of a rigid
wall at y=0. Hcwever, this limit is not uniform and in parti-
cular is not valid far behind the body, i.e., for x-+- and vy
kept fixed. For arg(z—il) > =n+§ expansion (1.29) has to be

13

|
i
|
|
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10.
-z, /F" =iz/r?

supplemented by the term 2rnie e
precisely the trailing waves.

called the nearfield expansion

which represents
For this reason (1l,39) may be

The rigid wall solution, and the subsequent terms of (1l.:0),

may be obtained also by expanding first the linearized free sur-

face condition (1.2) for F®+0 and solvina term by term. In

contrast with the previous procedure, however. (1.30) is thus
obtained as a uniformly valid solution in the entire z plane.

This difference in results, manifest in the lower half plane
y <0

behind the body, has keen called "the first small Froude
number paradox" in a previous work (Dagan, 1972b). Although

the wave tern is exponentially cmall for y<h,
the powers of F? in (1.30),
tend to zero for x -+ -w

as compared to
it is the only one which does not

, Y=fixed and which is associated with
wave resistance.

€imilarly, the near field expansion of

fz\z) may be
obtained frc¢.. (1.28) for

F?+0 by expanding w(z-0/F?) and
computing the residue contributions at £ " The

z with poles

z, and z
result is O(F®) and is a rational function of
of different orders at z:=22 and
O(e) while e®f, is O(e’F?)

€ is uniform as F2+0.

z2=2z_, Hence, ef, is
and the near field expansion of

(i1t)

*3

(1]

he fres waveés po

The free waves potential is cbtained in (l1.26) and (1.28)

by letting x+-«, The first order solution (1.26) yields

iz, /F? iz /F* . .
f: = 23 (e . -e ¢ e iz/F

. 2
= -4(8in fg)e_h/er_lz/F . Q

. 31)

e i i . o St o e AR 4 1 1

g g L AL bR il N Tl % '

g
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11,

In the second order solution (1.z8) w(z-0/F?)

% 8 is first replaced
by Zni a-lz/F eio/F

. Integration yields (for details see
Appendix I1I)

iz, /F? iz /F* . .2 /P2
f; = - f; [(b2+ic2)e . +(b2-ic2)e € le 1z/F +Of(e h/F

(1.32)

1,1 _ l+h* 1 ,m 1
where bzs; (2-+ 2C+1ln 4 +1ln _F’-) Gy o= (I-arc tg K) and
C 1is Euler constant. If h<<1l, c2==0 and (1.32) becomes

2b

- 2 -3 2 - 2
fg ® = —=r (cos 55) e B/E gmiz/ET Of(e h/F )

(1.33)

Hence, the amplitude of the free waves has, by (1.1i0j, (1.11),
(1.31) and (1,32) the orders

-h/F?

€a, = O(ce ) (1, 34)

2 -h/F?

eta, = O(cle /F%) (1.35)
and althougii for F?+0 and h and ¢ fixed both ea, and
e’az tend to zero, their ratio becomes unbounded like ¢€/F?,

This ncnhuniformity of the thin body e<tpansion has been
called in a previous work "the second small Froude number paradox"
(Dagan, 1972b) and it has been described previously by Salvesen
(1969). Egq. (1.35) shows that the usual linearized theory is
valid, for the source-sink body, only if ¢/F?® = o(1), i.e.,
for large Froude numbers based on thickness,

%
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4. Generalization for Bodies of Different Shapes

Since for an arbitrary thickness distribdution

w% and
are represented by source distributicns (1.15),

W u

1
{l1.16) the results
of the previous section may be extended <o thin bodies of any
shape. It is easy to &scertain that the near field solution,
baged on (1,17) and (1.29), has the rigid wall approximation as a

leading term and is uniform in the sector 1« & <arg(z-1-ih) « 0
as F?-+0,

The nonuniformity of the expansion of the free waves depends
essentially on the bluntness of the leading edge (for the sake of
simplicity we consider bodies of a smooth shape and assume that

viscous effects ensure anyway that the trailing edge has a fine

shape). The free waves, at first order, are represented by

- 1 2 -
£V . pe~i2/F I

. 2
1 w?(u) em/F do

(1.36)

which has been obtained from (1.17), the integration path

circumventing the skeleton of the image of the body

-1 <g-~ih <1
in the upper half plane. For F? -0

the integral in (1.36)
may be expanded in the usual manner, the lowest order term bel.g

provided by <he highest singularity of w;(o), at ¢ = 1+1ih,

We have seen that for a source-like blunt shape

- 2
a1=0(e h/F
For an elliptical shape, (i.e,

wy v 1//G-1I-ih ) of the leading
edge, (1.36) shows that al==O(Fe'h/FA). Similarly, for azwedge
like shape (w? v 1n(o-1-ih)) we obtain a,=O0(F’ln re M/
(see Lighthill, 1964).

).
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13.

To estimate the order of the amplitude of the free waves
at second order we have to use the expression of

f (1.25),
with (z=0/F?)

. - . 2
Ry X 2

replaced by 2mnje *¢/* o FT . e comput.ation

is facilitated by the observation, supported by the detailed

solution of the previous section, that the order of the
is determined by the term [w‘l“(c)]2 in the integral

of f2(z) (1.25), the other terms contributing at an equal or

higher order. Hence, the order of £

lowest
term in F

2 is determined by integrals
cf the type

s 2 . - V2
e 1z/F f [w) (0) ) e10/F° 4o (1.37)

We have, therefore, for an elliptical leading edge i
-h/F? . 2 -h/F*
a, =0(e / ) and for a wedge-like shape a., = O(F'ln’Fe 7/ ).
L
ar waves awplltude, and consequently the wave

resistance, is not uniform for

F? + 0, the nonuniformity

becoming,
however, weaker, as the shape of the edge becomes finer.

The
results are collected in the following table:
TABLE 1
The shape | The singularity | Order of Order of Order of | Order of the
of the of wg a, for a, for ratio straining
L.e. F+0 F=0 cfa,/cay GEQ
- - /F? - e
o) (z-1-ih) " e /T e DT g ¢/F? .
- 2 - 2
P] Yz-1-1h Ebh/F eh/F t /F eF
w2l o 2 .
P In (z-1-ih) Finre ™V e M 2 1ntpl  elnF € FInF

gy By el ol

[
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The colum; beiore the last summarizes the main tindings: the
guantity appearing there has to be small in order to ensure that

the usual linearized thin body approximation is ur:iform, Ii{ 1is
worthwhile to mention that in all the examples in which detailed
computations have been carried out so far (Tuck,

1965, for a
circular cylinder; salvesen, 1969,

for a hydrefoil and Dagan,
1972a for a socurce), the shapes were blunt.

S. Derivation of Uniform Small Froude Number Solutions

(t) Valoaita strainin

The nonuniformity of the free waves expansion is assumed to

originate from the illegitimate expansion in an € power

series of an exponential of type explieF(z)/F?)

such a

for €/Ff=0(1).
terin may lesult trom the straining of the free-surface

velocity due to the presence of the body. To make the idea rnore

precise let us replace the first order free surface condition (1.2)
by

daf

Im[iF? (1+€A) = f} =0 (y =0) (1.38)

where 1l+c¢A 1is a strained velocity. A{z;h,F)

is assumed to be
analytical and A-+0 for x-+

. A is obviously related to w, S
and under the usual thin body expansion (1.1) it is cast in
Pz(x) !1.6). Wwe now keep it in the first order equation and

with boundary conditions (1.4), (1.5)
do not consider the second order body effect (1.9)).

solve for f

(again, we

(™ ‘\f‘\fl\rw\WM\MNHMHHWM‘IWMN”MHH\ L 2

'




R e e

T

[ TR 1 )

LT L)

T

T T

HYDRONAUTICS, lncorperated

15,
Tue suiution is immediatcly obtained as follows
o . ¥4

rel o, gV L B (0) _od du

t=ctfy ety [ wertey o i [ wxmy) el (39
where
£ u £ u
© (w1+w1) {1+ Re A) u © (w1+wl) Re A
B(o) = Y dp = 2im wy(z) +e [ S dr (1.40)

For ¢ = c{(1) we are generally entitled to expand in a power

series the terms B(A) and (1-+eA)hl in (1.39) and (1.40).
This yields

L, 0. .
f= {f,::, T4
& Y

-iz/F2 ( _u, . iA/F? e 2
< J wll.ﬂ,' ¢

]
0
43

z

We did not expand, however, the lact exponential in
under the limit F+0 the ratio e/F*

(1.39) since
is not necessarily small,
Eq. (1.41) proves our assertion on the effect of a first order
velocity straining,

The uniformization procedures of the small Froude nunter

solution suggested in previous works are underlain by similar

ideas. Ogilvie (1968) has arrived to a free-surface condition

similar to (1.38) by intuitive reasoning: as the wave length of

th: free waves becomes small compared to the length scale of the
velocity field wi , the veleccity variation has to be included

in & first order approximation. Moreover, it was suggested that

as F-~+0 A = 2(wi-+w§) for y=0, since for Fz0 w

rates {nto the rigid wall solution wl:=w§-+w§. An ecuation

1 degene-

é
}
i

el
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gimilar to (1.38) is then obtained from the exact free-surface

condition by expandiing with 1-+c(w§+w?) as the basic unperturbed
velocity field.

Dagan (1972b) has arrived at a similar result by using a

guasi-linear equation as a mcdel ©f the nonlinear free-—-surface

condition (in both works the more ambitiocus task of solving the

problem of a small Froude numbter flow past a body of finite
thickness has been undertaken).

Although the arguments are pleusible in principle, the

asgumption that A==z(w§+w¥) is opan to criticism, since it
has been shown here that the degeneracy into the rigid wall
solution is not uniform,

Instead, we are go.ng t> determine here the straining
funcviiun A(Z} in

f

a different way. Wwe assume that for x-+-~o
in (1.41) includes the first order term f1

w (1.36), as well
as the lowest order term in F

appearing in wa (1.23). We

reguire, therefore, that under an additional expansion for
eA/F2 =0(1), (1.41)

should degenerate into the thin body expan-
sion (1l.1).

Expanding the exponential in (1.41l) gives for x *»=-w

-y 2 @ y 2
= 2¢ e T [ W0)er T aa

- 00

ie2 o 2 had o i 2
- B P [ a)as [ witme!™F

- 00 {"

dt +0(e?) (1,42)

recovers the first order solution «¢f

(1.36). The second term may be identified with the F

lw
lowest

2 (1.25), which may be writtcen as

o

Il

. e 1l

|
| . T T
oy o ol ki), sl ke mmmMM ol s

b

ot e Lt i 1

o

3l
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17.
-3 2 o . 2
c'fz = c2e”12/F f {[w§(c)]2elo/F
4i , u % * u ip/F?
- Fr lwy(o) +wy(e)] | w,(ple dp }do (1.43)
o}

Ydentification of A

such that the integrands, i.e., the lowest
F

term of Pz(o), in (1.42) and (1.43), becom2 identical yields

2
jpz W32 et2/F L. u
A(z;h,F) 3 — - + 2(w1+w1) =
J wg e* " Flay
z

]

(wh)?
= T—%————— + Z(Wiﬁ'wg)
wl'“w + W

(1.44)
] 1

Hence, the velocity straining function A is found to be

diff rent than that sujggested in previous works, which included
only the last term of (1.44), but failed to take intou account

the singular term related to (wi-wz) in (1.25). The reaso:

this last term is identically zero for
accord.ng to the rigid wall solution,

is quite transparent:
y=0 The rigid wall
solution is not uniform, however, and the singularities of

(1.17) and of fi+ £Y are different at the location of the

image of the boedy ecross the free-surface,

£

Obviously, for F-+0 and cA/F? = 0(1)

the exponentical

in (1.41) cannot be expanded like in (l1.42). By the same token,

eA into the
right hand side of the second order free-surface condition (1.6)

is not legitimate for small Froude numbers

the transfer of the velocity straining factor

‘'n general,

;
!
|
|

Il
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18.

Computing the wave amplitude with the aid of (l.,41) is a
difficult task in the two-dimensional case and becomes extremely
tediocus in three-dimensions. For these reason we consider sub-

gequently & gimplified procedure for rendering the solution uniform,

(1) ggordinatc atraining

We assume now that the exponential terms which cause the
small Froude number nonuniformity are a result of a coordinate
straining. Lighthill method (see Van Dyke, 1964) implies
an infinitessamal straining of the physical plane and deriving
the straining functinn from the eguations of flow, We adopt
here a modified techpique applied by Van Dyke (1964) to the case
of inviscid flow past airfoils: we carry out the strainiig in

the solution, rather than in the equations, and determine the

(2]

straining function from the requirement that the second orde:
u

a
term should not be more singular than the first.

To illustrate the method we begin with the example of a
source-sink body (Section ¥.3). The straining has as effect a

virtual displacement of the images of the two singularities from

52, ;t to Eg-+622, Et-+62t , respectively, with 622 = O(e)

and 6Zt = 0(e).

The first order tenn of the free wave cxpansion becomes now
by using (1,17) and (1,27) for x-+ -«

_' n2 o . 2
LI L2 Y S S S g L (1.45)
- °~22—GZZ o-zt-ézt

For e=o(l) and F fixed we can expand in (1.45) and obtain

|
i
|
!
|

] W\w"wt‘:‘ !
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l9.
- ot i~ 2
& = % e iz/F ] ( 1- ! ) eAo/F‘ ac +
-0 u-2p =2, -
- - Y Y A §z . 2
% e iz,/F f [ -2 —~- t 2] elU/F do =
- (o-zg) (c-zt)
: F2 iz /F?
_ w26 -iz/F? - 3T t
f1 Fr e (622 e 62t e ) (1.46)
Hence, the first term of (1,46) recovers flw (1.31).

Consequently, the second order term of the free waves potential

will be made up this time from fg (1.32) plus the last term

of (l1.46), provided that the straining is of order €

We determine now 652 and GEt

from the requirement that
the term of order ¢/F?

in the amplitude of the free waves,

which is the origin of the small F nonuniformity, should vanish

in the solution, separately fcr the source and the sink.

We thus
ochtain

§2, = - 2%- (b, +ic,) (1.47)
8z, = 1,‘31; (b, - ic,) (1.48)

where b2, c, are given in (1.32).

The uniform first order solution, valid for

C/Fz = O(l)l
is easily derived from (1,4%)

(S )
o

\\
]

o mz iz, 46 i(z, +6z, ) /F?
= 2i e i1z2/F [ L t t

e - e ) (1.49)

By using (1.47) and (1.48) we finally obtain from (1,49Y)

- [h=(c,e/2m)]1/F? 1- (eb,/27) _. o2
Y = -4e 2 sin Fz e 1z/F

(1.50)

S —-——

e A
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20.

The coefficient <, (1.32) is associated with the second
order interaction between the source and the sink; it has the
effect of diminishing the effective submergence depth of the
body ({(when h+0 this term vanishes), b, is associated with
the nonlinear effects of the leading and tr;iling edges singulari-
ties upon themselves. It manifests in an apparent change cf the
body length and consequently in a shift of the curve of the ampli-
tude (and wave resistance) as function of F,

Again, (1.50) shows that the small Froude number nonuniformity
is a result of an illegitimate expansion of the exponential and
trigonometric functions in (1.50) in an ¢ power series for
€/F* = 0(1). 1In other words, when the straining becomes o©f the
order of the wave length, it has to be maintained in the first
order approximation.

We are going now tc generalize the procedure for a body of
arbitrary thickness distribution T(xs) = dt/dx. The straining
has now as effect a continuous infinitessimal displacement of
the image of the body skeleton from 28 to Ea +628 . The first
orxder solution ({1.16) and (1.17)) becomes

iC’/Fz fl T(XS)

-1 S g-7z_ -68%2

e

-y 2 *®
£¥ = - A8 1Z/FT g, (1.51)

——
p e

it

where EB xs-fih. The straining has been taken into account
only in the dencminator of (1.51), because only the residues at
0-53- 658 = 0 are contyributing to the lowest order terms in F,
An infinitessimal change of the limite of integration or of

T(xs) in (1.15) yields higher order terms.

b A N e
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For 528 = 0(e¢) and F fixed the integrand in (1,51) may !
be expanded as follows

- 2 @ 1 . 2
Y - - %? e 12/F J ao f dx 1 e19/F°
-0 -l

R T T I 1 1 SR TG 1o

—-igz/F? = 1 182 5
- %? e 12/F [ do [ 3x —_— = (1.52) i
- -1 (0~z)?

Al

Lt M

\a s
Rl T(xs)e dxé + 133 r(xg;&zs e dx

¥ 1 iz_/F? o2 1 iz_/F?
o —4ie o i2/F / s de -iz/F { _

| LAIHLMJ‘H Wl

The first term in (1.52) is precisely f1w (1.36); the unknown

straining function GES is now determined frcm the requirement
that the second term of (1.52) should cancel the lowest

F term
of fzw (1.43), i.e,,;

L

1 _ iEB/F2
] tix_)8z_ e dx_ =
A 8'°%s

st s, o Sl s .

N
vl

u,2
2 ® (w)) ) _ ) 2
= G - =+ e w) Wl w( &) de)et?Fac sy
-0 - 00

To determine 658 in a simple wéy, advantage is taken of the
fart that the lowest F terms in

i

(1.53) are assc~-iated with the

singularities of the edges (an intermediate peoint of discontinuity
can be easily accounted). What matters,
Gzt.

b

"
Il

therefore, is 622 ann
Any continuoue straining between the edges i3 acceptable
as far as the most singular terms are concerned,

Assuming, for l

the sake of simplicity, a linear straining we have :
_ 8z, - 6z, 8§z, + 6z
628-——-—2—-—xs+-———2——- . ‘(1.54)

A
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P9
Substitution of (1.54) into the left hand side of (1.53) ;g
yields for the lowest F term oA
_ _ 1 iES/F=
(62, +8z,) _{ T(x_ ) e ax, . (1.55)

i
1
{
i
3

Equating the lowest F terms resulting from the integration in
the r.h.s. of (1.54) and from (l.55) renders in an unique manner

i
|
E
Giz-kéit . An additicnal relationship is obtained from the g
requirement of separate cancelation of the leading and trailing :
edges waves (obviously, for a fine shape of the trailing edge i
6z, = 0). i
The estimates of Section I.4 permit to evaluate the order
of *the straining 652 for different types of leading edge
singularities. The results are given in the last column of l
Takle 1, The straining becowmes weaii 2s the shape nf the leading :

edge becomes fine and it is F dependent, excepting the source-
like case.

6. Ccnclusions

—
‘\

It has been shown that the slenderness small parameter ¢
appears in the expression of the potential of the free waves
generated by a submerged body not only in the amplitude, but
also as the ratio ¢/F? in the wave number. Like in other

precblems characterized by two scales (Cole, 1968) a power

e 1t

expansion in € does not render a uniform solution unless
€/F? = 0(1); this last estimate has been sharpened and shown
to depend .r the nature of the leading (and trailing) edge
singular.ty.

!
%ﬁ
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Two procedures of rendering the small Froude number solution
uniform have beaen suggezted: free-gurface velocity straining and
coordinate straining. The first procedure has the advantagae of
making uniform the second order preesure term, whose integration
yields the amplitude of the free waves; for this reason the
velocity straining is easily expressed with the aid of the first
order solution, Computing the uniform solution is, however,
extremely difficult. The coordinate straining ensures the uni-
formity of the expansion of the free wave amplitude (and the
wave resistance) and the computation of the straining factors is
more difficult than in the first case, Once determined, however,
they provide immediately the uniform first order solution.

Two problems have not been touched: (i)} the second order
body effect,and (ii} circulation. As for (i) it has been shown

that the body correction is uniform as
2

F _ 2
F+0 (e.g., for a source 3h/F )

e?a, = O(e? e . Circulation may
have an important influence on the wave amplitude (Salvesen, 1969).
It can be treated similarly to the thickness with no problems of
principle. We have purposely considered the effect of thickness
solely because the two-dimensional solution serves here only as

a case study for the three-dimensional flow problem. In appli-

cations, two-dimensional flows are generally at high Froude numbers.

|
;
i
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PAZ IX

- THREE-DIMENSIONAL FLOVIS o .

1. The Thin Body Expansion and Fourier Transforms

Let now 2z be a verticel coordinate, while the axis x
and y lie in the horizontal plans of the unperturbed free
surface, ¢ is the dimensionless velccity potential which is
expanded in a thin body approximation as follows

¢(x'YIZ;€lFl"'D) = -x+e¢l(xlyfz;f‘oaoo) +€2¢2(XIY(Z;F,-¢.) '+ ‘e (2.1)

where F = U'/(qL')l/‘ is again the length Froude number,

| The free surface conditions satisfied by the harmonic

functions ¢, @and ¢,, given here for the sakz of completeness,

P T ot L UL I T

- are :
276, 3¢ 20 |
£ l 1l 1l PR A

F axz + 32 u -a'—x"-:: O (‘ 0] (202) .
|
Ly 3%¢ 2 3¢ ‘
£ 2 2 2 - 2 - |
g S LA T W = Pa(xey) !
x du v v 3 3ty

w
PO w2V 5 "M sy s TP w0 (203

where Uy, Vyew, are the first order x,y,z velocity components and
u +0 represants the "artificial viscosity" added in order to

G i e L 1L

R A o e 3 a1
B, e,
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satisfy the radiation condition (we introduce it rather for an easy
account of the integration paths in the complex plane).

The body boundary conditions differ depending on whether one
considers slender or thin, submerged or surface piercing bodies.
2 For this reason they will be formulated separately in the sub-
; sequent examples.,

Again, like in the two-dimensional case, we consider here
the part of the second order solution which is regular in z <0
and satisfies (2.3), and do nol investigate the second order body
correction as well as the line integral correction, gince the

nonlinearity of the free surface condition is the most severe
as F-+0,

We summarize now the different Fourier transforms to be used

: M mmuig
i ne se

t uel: with ¢ denoring the Fourier transform of ¢
with respect to x,y, we have

oL

~ © *® ; 2

§(a,8,2) = 5= [ ax [ ay ¢(x,y,z)e* (OX*EV/F (2.4)
3 ) - 3 2

$(x,y,2) = 5w [ du [ aB3(a,8,z)e t (OXFEY)/E (2.5)

where a,B8 are coordinates in the transform plane. We shall also
use the convolution transform which may be written as

——— — 1

d(x,y)y(x,y) = STFT [ av [ a1 a(v,r)i(u-v,ﬁ-r) (2.6)

2T
-0

where ¢,y are arbitrary functions which have FT (Fuurier
transform),
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lLat now oi represent the first order potential of flow
past the body in an infinite domain ang ¢¥ the same for the
flow past the image of the body across the plane z =0, Then,
the well known (Wehausen and Laitone, 1960) fivat orde- sclution
¢y satisfying Laplace equation and (2.2) becomes

¢l = ¢l - ¢1 + ¢l (2.7)

where

~ e 2
w;(a,B,O)epz/F

8{ = =2F2 (z<0) , (2.8)
al- p = ipa

w) = 36)/9z and p = /AW E’. By (2.5) we have

~Q
L) o
o F 1 ‘- M (a,8,0) -i (ux+Ry+ipnz) /P2 (7 9\
Y1 T T §TT f de ) aB et The © (2.9)
1 1 -5 s a‘=p-lua

being understood that u+0 in the final expressions (¢] is
regular for 2<0 and ¢§-*0 for 2z +-=),

The FT of the second order solution, regular for z <0 and
satisfying (2.3), is similarly given by

- 2
Fsz(a,B) epz/F

¢2(Gp8o2) = - o’ - p - 1u4 (2,10)

From (2.3) and (2.6) ﬁz(a;B) may be written after a few
integrations by parts as follows

ﬁz(a,B) = - i#%v [ av [ dr {[3(a-v)v?+2(B-T)vT + (a-v)T? -

-0 - OO0

- 2(a-v)2v?- (a-u)v“]%i(v,r,O)ai(a-v,s-z,O)}(2.11)

3
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It seems that all the terms of Pz(f,y) (2.3) contribute at the
same F order in the expression of Pz(a,B). It is sufticient,
therefore, to single out one of these terms in order to estab-
lish the asymptotic behavior of 02 as F~+0, Like in the case
of two-dimensional flow (Sec. I5), it is convenient to gselect the
werm wl(awl/Sx) and to write

P, (X,¥,F) * =2F%w, =—= (z =0) (2.12)

being understood that (2.12) expresses the as;mptotic dependence

of P2 on the variable F.

Finally, it is sometimes convenient to operate with polas
coordinates in the transform plane, o = p cos 86 and B8 = p sin 8
Then, if the potential ¢w = e@Y-re?¢g of the far free waves is

written in the following form

P . 2q.; 2 2
¢W = ;rl_ Re I as [(Q(e) +iP(0)]el(x gec O+y sin 6 gec‘6+iz sec 6)'/Fse
-1/2 (2,.13)
the dimensionless wave resistance is given by (Maruo, 1966)
-n/2
- R' 1 2 2 )
R = = = [Q°(6) +P*(6)]lsec’® de6 (2.14)
0.5p|UozL02 T
-n/2
where p' is the fluid density. The amplitude functions P and
result from the thin body approximations ¢1 and ¢2 and can be
written as
= 2
P ePl + € P2
(2.15)
—_ 2
Q - te + £ Qz

c?0 (xrw)

Q

0 gt il o, LB A DS



AR g T

£
3

HYDRONAUTICS, Incorporated

28,
which leads by substitution in (2,14) to

- g2 s
R € Rl + € R2 + . . (2.16)

2. Small Froude Number Solution for An Itsolated Source

(i) First order scolution

- ewh e M e e

Like in the two-dimensional case we begin the study of the
limit F-+0 of the thin body solution with the example of an
isolated source, because of its simplicity and because the source

is the fundamental singularity underlying any slender or thin
body solution.

The potentials of flow in infinite domains are

L 1 1
¢ = - I (2.17)
ls T [x2-+y2-+(z+h)2]1/2

u _ _ 1 1

(x? +y? + (z-h)?)

The source is located at x=y=0, =z=-h

(the reference length
In the frame of the first order approxi-
represents the flow past a slender body of
revolution with a blunt nose and of semi-infinite length

L' 1is left unspecified).
mation ¢ = -x-+e¢1

(-° <x<0). The small parameter € is equal to n(r'/L')?, where

r' is the radius of the body circular cross-section,

s

o

L
1
%%
3
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The expression of @is (2.9) is well known (see, Wehausen
and Laitone, 1960)

. . ® oo e—i[ax+8y+ip(z-h)]/Fz
*1s * TWIFT _i da _i o - p = dua
) n ® e—ip[xcos 8+ ysin 6+ 1 (z-h) ] /F? 2
= InTF -4 ° o p - sec’d - 1y sec? sectt de
(z<h, u=0) (2.1%)

Like in the two-dimensional case, ¢l = @i-—@?-+¢§ can be
expanded as F+0 in a near field solution, For this purpose
let write again ¢§s (2.19) as follows

® e-i[ax+ip(z-h)]/?2
a‘t - p - lux

1 o
¢§s = 3TTFY £ cos (By/F?)d8 _i da. (2.20)

We consider now the complex o plane. The function
p = /a¥ + BZ has its branch lines depicted in Fig. 2 with the
values of the argument selected such that for a, 8 reals p is
real and positive, such that the condition ¢§s-°0 £

is identically satisfied.

- - =
CI &~ T

b A AR b L B, s A

i

il
L

5
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The poles ir (2.20) arxe a = tap = {% [14-(1+4B’)1/2]\1/2

and have to be circumvented from below. We can now swing the

integration path from the real axis in thae a plane to the

bran:h cuts. The result is easily found to be made up of the

s0 called local disturbance ¢§51°C and the free waves term
w
¢ls

loc 1 - 2 ,
tp’iﬁ ='.7;TF[0/ e SM/F cos(By/Fz)dB x

© - 2 '
&% 1XI¥ ((815) *ain [y (2-h) /4%) + v _cos [y (z=h) /8]

T

x| as
o (B+8)" + y?2 :

(2,21)

5|

where Yy = /s* + 28s, and 3

2 . al(z=h)/F 2 ;;

o ~ i . :

ow _ 2 [ 81n(qpx,r Yoos (By/F)e & - ?3

is T o 20 =~ a:l é

/2 E

2 2 =

=2y [ sin{(x cos 64y sin 0 sec?6) /F2]e (TT8EC 8/F 26 g 3

-n/2 ,é

(x <0) (2.22) 3

. . . . r loc .
Like in the two dimensional case ¢, is regular for =z <h

and tends to zero algebraically for |x| +« ., After a change of

variables it can be expanded uniformly in an F?

power series for

F+0 and fixed x,y,z {(with x?+y?+ (2-h)? > 0); as a result
r loc

u z '

il o i b

[

The free wave potential ¢¥q is different of zero only for

X < 0, Because of the exponential term,

regpect to ¢§;°C

it is negligibie with
excepting in an arbitrarily thin wedge z-~h
(x <0, § arbitrarily small)., Again,

I U TN T AW

= 83
like in the two-~dimensional

.
&
i
1
H
]

aw
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1
i
i
x loc . . r :
case °ls is not an uniform approximation of ¢ and for x -+ -= ;

¢:a dominates the solution. g

Summarizing, as F~+0 ¢ls = ¢§8 + ¢§s + O(F?), where
¢is~+¢:s is the rigid wall golution, but the limit is not uniform
for z-h=6x (x<0), where it has to be supplemented by ¢Ys .

(1{1) Sgoond order golution (Eﬁg_fﬁec vrves eotantéal)

In contrast with the two-dimensional case, now it is not
possible to obtain the solution in a closed form. It is relatively
easy, however, to ewvaluate the order of ¢2 for F-1YJ by retaining
only part of the terms of P2 (2.12), as it has been done in
Section I4, Like in two-dimensions wy may be written as (see (2.7))

w = W - W + wh (2.23)

where in the case of a source (2.17-2.18)

£ 1 Z+h
W = e v (2,24)
1ls 4m [X2 +Y2 + (2+h)2]3/2
u 1 z-h )
W, = - (2.25)
s I eyt (2o

and w. 8¢§s/az (2.20). After gsubstituting w in Pz(x,y)

is 1
(2.22) it can be sl.own that the term —2F2w§s(8w?s/8x) contributes
to the lowest order term of ¢, as F-+0. Hence, by (2.22) and !

(2,25),
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P. (a,B8) ~ -2Fw? 2-_1?_= 4ia(:‘:;5 (z=0) (2.26)
2 18 3x 1 z= ) j
- -4ia F? [w‘{s(a,s)lz 4iF*[w‘l’s(p,e>1zsec 8
¢, (a,8) a (2.27)

a2 =p-ipa p- sec’8 - iy sec 6

The Fourier transform of (w‘ils)2 is easily fouand in polar

p,9 coordinates. From (2,25) we have

1 h?

1] 2
(we (x,y,0)]¢ =
1 74/ l6n¢ (x? +y? +h?)>

(2.28)

and by (2.4)

P st

2 L o ior cos (1-96)/F? ’
Wi = ghey [ &r [ xS ————— ar (2.29) |
=T > {r€ 4k

\
L)

where x = r cos ), y = r sin) . 1Integration in (2.29)
(Gradshteyn & Ryzhik, 1965) yields

———e”

u, _ h? 7 or r dr B 2 oh
1e) = Terr | TGP mReY < vmEeRr K FD (2030

where J  and K_, are Bessel functions of the first kind and

of the second kind (modified), respectively. By using (2.27),
(2.30) and (2.5) we obtain

~i i ; a2
- i T o p'K_,(ph/pt)e iR (KoosHyaindHiz) /t \
b2s ¥ T EET J @ T 5ec0 T Iu sec Tl (2.31)

eo
eac

Like in the two-dimensiznal case it can be shown that the near
field expansion of (2.31) yields a uniform F?

ion of .
5 (o} ¢'s

power series expan-

1
3
]
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The free waves term of ¢28(2,31) may be written as l
W 1 "/2
&, [ sec®dK__ (h sec?6/F?)cos [ (xsect+ysechdsec?8) /F?] x
28 T°r _n/z -2
2g ppt
x &% 88 0/F sac g ap (2.32)

As F=+0, K_,(h sec’®8/F?) can be expanded in an asymptotic series
which yields for the leading term of ¢¥S

2 2
65, v g% | sects e TP g [(xgectryBintsecto) F21d6 +O() + (2.33)
-n/z

(1i1) Discugsion_of_results

We are now in a position to discuss the final, and most
important, topic of this section, namely that of the uniformity
of the free waves expansion ¢: = e¢¥s-+cz¢gs under the small
Froude number limit. Eqgs. (2.22) and (2.33) show that the thin
body solution is not uniform unless €/F® = o(l); the latter
condition originates from the comparison of the amplitude
functions pl(e) and 02(6) in (2.22) anad (2.33), respectively.
The same condition ensures the convergence of the coefficient of
wave resistance (2.18). Taking the submergence depth as reference -

length, we can write in term of variables with dimensions

€ r02g2 U
n 2,34
Fy U (gh,)l/z ( )

where r' is the radius of the body generated by the source.
This ratio has to be compared with the criterion T'g/U'? = o(l)
which ensures the uniformity of the thin body solution in two i

dimengions.
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We can continue and analyze, like in Section I4,

uniformity
criteria of the thin body expansion for F-+0

in the case of
bodies of revolution with milder singularities at the nose (and

the tail). From the applications point of view, however, it is

of interest to focus the analysis on the case of thin ships rather
than on “hat of submerged slender bodies.

3. Small Froude Number Solution for Thin Ships

(i) General. Firet order solution

D MM D W M E GG e TN @ A e

let y= %e¢f(x,z) be the equation of the surface of the ship,

where € = B'/L' is the beam lengtil ratio, The first order
velocity potential ¢l is obtained by integration; over the

area of the center plane S, of the potential of an isolated

source ¢ls
6y = =2 f é é-f%i)- ¢, (x-%,y,2-3) dxdz (2.35)
X

where o). = o, -0}, +¢]  is given in (2.17), (2.19) and (2.19)

with 2z replacing -h, For the sake of simplicity we consider a

symmetrical ship solely.

The essential difference, in the present context, between ¢

1
(2,35) and ¢1 in all the other cases (of submeiged bodies)

considered in the preceding sections, stems from the fact that
the body is now piercing the free-surface. Consequently, the

- 2 - 2 2
exponential factor e h/F and e h sec”6/F , present in the

two~ and three-dimensiconal solutions, respectively, does not
appear anymore in (2.35) for the waterline (z=0)

singularities.
For

F+0 and h fixed, the exponential factor ensured previously

2
]
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the rapid decay of the free waves amplitude and of the wave
resistance coefficient no matter how blunt the shape was. It
also ensured the separation of the near field expansion and of
the free waves potential.

In the case of a thin ship the shape has to be sufficiently
fine in order to ensure the finiteness of the velocity potential,
It can be shown, for instance, that for a source-like bow shape
the second urder potential is not integrable., Since usual shapes
are far from being so blunt, we shall limit the discussion here
to wedge like bodies, i.e., with singularities associated with
finite entrance and shoulder angles at most (the case of an
elliptical bow is also less interesting).

Purther simplifications of the analysis arc achieved if we
take into conside.ation the well known asymptotic oroperties of
¢1 (2.35) a8 F-+0 (see, for instance, Lunde, 1963):

(1) the dominant contribution originates from the shape at the
waterline f£(x,0), and (ii) from the singularities of €(x,0) ,
i.e., from the points of discontinuity of 3f(x,0)/9x. For this
reason we consider the simple example of flow past a wedge-shape
¢ylindrical bow, i.e.,

f(x,z)

n
|
x

(-1<x<0, =h <z <0)
{(2.36)

£(x,z) ( x<=~1 -h <z<0)

!
s

the reference length being the forebody length. f (2.36)
incorporates the essential features of any smooth shape between
x=0 and x=-1 with the same angle discontinuities. The
infliuence of the stern is also disregarded because as will be
shown later, the most sihgular terms are associated with the
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interaction between the singularity at x=0 (or Xw-1) with
itself and not with the interaction between the different singu-
larities.

From (2.35), (2.19) and (2,36) we immediately obtain for
r L u

QO - -l 2 )
oF = - iF? [ a ]“dB (1- PV/F) g _ g i0/F") o (axBy+ipz) /F*
1 T 72 ap {a?=p-1ua)
- 2 -3 2
. iF? [nde foo i (l-e oh/F y(1-e ipocos6/F ) §
T 5 p? (-sec’B-iusecd)
x e~1P(x o8 B+y 5in6+2) /1% _ 3, (2.37)
The near field expansion, i.e., the local disturbance o~ loc 1y

) maj

be found like in (2.21) and again ¢57°C = 2¢% + O(F*). The free
waves potential is found from (2.37) as follows

/2 - 2g /2 :
¢'{=£f,if'e f/2 (1D 8eCT0/FY) () o1 Becd/FY
-7

>(ei(x cos § +y sin 8 -iz) /F? cos 649 (2.38)

A8 F~+0 a lowest order term in (2.38) is obtained, for

: -l 2
instance, from integration over e“(x cos 6 +y sin 6 -iz)/F

cos 0 ,
i.e., from the potential of a wedge of infinite draft and of con-
stant aperture angle, which leads to ¢‘i’ = O(F') for fixed

¥,y (x?+y? ¢ 0) and z=0. By (2.14) the coefficient of wave

resistance derived from this term is, at first order, R = O(e?F"),

Hence, for z =0 ¢‘I is no more exponentially small, as F-0,
in comparison with the near field sclution; moreover, for

—
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(x*+y?)/F? = 0(1) and z=0 it becomes of the same order as the
second term of the near field scluticn, i.e., O(F?). For any
fixed z <0 the decay is, however exponential.

(1i) Second order solution_ (the_ free waves_potential)

To estimate the order of o: we again retain, like in
Section Ii2(ii), only w? in the expression of Wy (2.23).
For f given by (2.31) we immediately obtain

0 0
u 1 = = 0 1
YW, = -~ r ! dx [ dz '5-—’ { —_ -
! T -1 =h 0 (x-X)2 +y? + (z+2)2]1/¢
= - ¥ 1In [x2+y?) 22 < %) ({(x+1324 y24n2) 172 - 41} (2.39)
I e ey 2 Dk 1 [y T 2 - x]

Based on the results of the preceding section we can retain in
(2.39) only the term originating from the singularity at x=0,
for an infinite draft, in order to estimate the term of lowest

order in F, 1i.e.,
u 1 2 2 1/2_
wl v T3 In [(x°+y°) x] (2.40)

P, and 9y have the expressions (2.12) and (2.10), respec-
tively. The FT ot wg(awg/ax) has the following estimate

iBy/F? j“ In [ (x2+y?) 1/ 2_x) GTOX/FE

awg 1 o
=) "~ 5T _i dy e ! (xz+y2)1/2

m @ _ 2
- 5%7 fdax [ [(in r(l-cosk)]eirpcos(A 8)/Far (2.41
% P , ST
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where the last expression in (2.41) has been obtained by sub-
stituting polar coordinates in the x,y and a,8 planes. The

order of magnitude of (2.41) may be estimated from the 1lnr
term

T —

awd n ) . ;
1 A-0)/F¢
(W‘; -5-x—1-) voEeT -!; dx !) (lnr) e*fP cos ( )/ dr =
_ 1 F? .
=TT (C+ Inr + 1ln i_..ez-) (2.42)

where C is the Euler constant (Gradshteyn & Rhyzhik, 1965).
By (2.42) and (2.10) we have

~ F®(C+1lnr+ lnp-2 1n¥F)

. pz/F?
2 pf{p-2cc®*s - iu seco)

sec?d e

~~
B ]
da
w
-

Finally, the estimate of the lowest order term of ¢g becomes
(2.5)

" . . 2aas 2 2
0: ~ F21n F Im / ae e—l(x sec 6 +y sin 6 sec*6+iz sec‘d) /F (2.44)
-

({11) Disouseion of resulte

Inspection of e¢¥ (2.38) and ez¢¥ (2.44) shows that the
amplitude functions are ©O(cF?) and 0(e?F?ln F), respectively.
Hence, the expansion of the free waves potential is not uniform
for fixed € and F=+0, althnugh the singularity is much milder
than that corresponding to a blunt submerged body. To ensure the
validity of the thin body solution the condition |e 1n F| = o(1)
must be satisfied, i.e., |B'in[U'/(gL')Y/2)/L'| << 1, where L’
is the forebody length (it is worthwhile to mention that this
criterion is nct different of that valid for two-dimensional flow

e ——
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past a body of similar shape, Table l). This criterion is only
marginally satisfied by typical slow commercial ships. It is
emphasized, however, that this is an asymptotic estimate and the
actual ratic between the waves amplitude may be evaluated only
from detailed computations of ¢Y and ¢g + Obviously, the above
condition applies also to the expansion of the coefficient of wave
resistance (2.16).

Again, similarly to the two-dimensional flow, blunter bow
shapes will impose more stringent criteria of validity of the thin
body solution for small F .

4. Derivation of Uniform Small Froude Number Solutions

(i) Velooity straining

The argument is similar to that given in Section I5: we
assume that the presence of the body causes a free-surface velocity
straining which has to be incorporated in the first order solution
since it causes a change of the wave rnumnber and not only of the

wave amplitude.

If we assume that all the terms of P2 (2.3), (2.11) contri-
bute to the F lowest order terms of '¢g , the simple straining

of the horizontal uniform velocity of Section 15, is not sufficient.
The generalized straining suggested by the free surface conditions

yields

E’2(1+3€u1) %:??+ F2€(2Vl%+ Y, 3—;-¥+ 2"1%32{3?' Fz“l 53:'3 52 *

3 B 3 — : - #
+at-uet=o0 (=0, u~0 (2. 45)

Al L 1

i MR, e s
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(2.45) is supposed to replace both (2.2) and (2.3); we are going
to prove that only for € = o(l) and F fixed it does indeed
separate into these two equations.

Keeping the body boundary condition in its first order ver-
sion, we write, like in (2.7)

where ¢ is harmonic and regular for =z <0. Substituting (2.7)
into (2.45) and using the FT relationships (2.4) and (2.6) we
obtain from (2.45)

00 a0
¢% (o, 8;F) - 5wf(§r_p_iua7 [ av [ &t K(a,B,v,T:F) $° (v, T;F) =
- . -0
ZFAQu(a,B)
IR Saded (2.46)
a‘=p~iua )

where

K= [3(cv)a? + 2(B-7)aB ~ 2(a-v)%a’® - cwv)a“lé’{(a-v,s-r) .. (2.4)

3r(a,B;F)'z=o satisfies, therefore, the Fredholm integral
equation (2.40). This equation degenerates precisely into the
FT of the thin body free surface conditions (2.2) and (2.3) if
the integral equation is solved ty successive approximations.
This is legitimate, however, only for sufficiently small values

of the combination between € and F which multiplies the
gsecond term of (2.46); this combination depends on the order
of K, which in turn depends on the order of @; . A gufficient

condition is, however, € = o(l) F = 0(1).

M e e 3 mrmbios r  =n n . el $h  m, r m  n  28
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In those cases in which F 1is s0 small that the usual thin
body expansion is not unirtform, @r . solution of (2,.46) is pre-
sumably a valid approximation of the exact solution for small
and F,

Solving (2.46) ias an extremely difficuit task. We consider,
therefore, the method of coordinate straining as an alternative
simplified approach.

(ii) Coordinate etraining

Again, the argument is the same as in the case of two-
dimensional flow: it is assumed that the nonlinear free surfaca
effect manifests in a straining of the coordinates which results
in a virtual displacement of the system of singularities represen-
ting the image cf the body.

We begin the discussion of the method witl! the case of thin
ships. The first order free waves potential may be written as
follows (2.22), (2.35)

- - - . "/2 _
¢"l'- m{;%a- [/ %&M //2 exp(i[(x-x)sec 8+ y sin 6 gec?6 -
" s © -n

- i(z+z)sec?8)/F?)sec?® 48} . (2.48)

Like in (1.49) we may assume now that in the exponential
function of (2.48) x and z are replaced by x+ &éx and z+6z,
respectively, where §6x, 6z are straining functions cof order ¢
which depend on X, z and F. Such a general and complicated
straining is, however, unnecessary; f.om the discussiorn of Sec.
II13 it is seen that in order to ensure uniformity for F-+0C it
is enough to consider the displacement ‘
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of the most sinaular points of 3f(x,0)/3x, .., in the case of
finite jumps of 3f/3x, the points of abrupt angle changes at
the water-line. Obviously, for z=0, 8z=0 and the straining
is horizontal solely. Along these lineg let us consider, for
instance, the singularity associated with the bow for a cylindri-
cal ship of finite draft. First, before straining, 0“1' becomes
by integration by parts

3f(x_,0) m/2 _
&I’b = Im 21:2 x’f [/2 exp(i[(:e-xb)secew sin 6 sec?6-
oxX -n

- iz sec?0)/F?}cos 6 dv (2.49)

where ib is the abscissa of the bow for z=0; for the sake of
simplicity we may take (like in Sec. 113) af(ib.O)/ai a -1 which
is tantamount to defining ¢ as the tangent of the entrance angle.,
Assuming now that the free surface nonlinear effect leads to a

. - w
straining éxb ' ¢1b becomes

n/2
¢ = - B

exp{i. [ (x-%_~éX )sec 6 +y sin 6 sec?6 -
2 %%

-iz sec?6]/%)} ocos 646 (2.50)

Like in Sec. I5 é;cb = O(e) is sought by requiring that for
fixed F and € = o(l), the thin body expansion ¢: = e¢‘;h+ czc)‘f,’
of the free waves potential remains uniform as F-+0, i.e., the

b
second order approximation is not more singular than the first.

The expansion of ng (2.50) for (x—;cb)z +2? # 0 yields

W \J 26,&) /2 bt . 2 . 2
61b'¢1b+m_i" P exp{i[(xb)&))sec0+ysmesec 6 - iz sec?0]/F?}as
-7

(2.51)

{
)
!
I
3
|
!
‘
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§x, has now to be determined such that the last term of -
(2.51) should cancel the lowest F order term of ¢;b . It
turns out that this is possible for the estimate of ¢¥b given
in (2.44). As result 6§b = O(eF*1n F) which is the same as
in the two-dimensional case (Table 1). be can be substituted
in ¢:b which becomes a valid approximation even if
£ln F = O(l). Obviously, the nonuniformity of the thin body usual
approximation in the latter case is a result of the expansion of

the wave number function in (2.50) in an € power series,

The expression of the tree waves é:b (2.50) differs from
¢Yb (2.49) only by a change ¢f phase resulting from an apparent
displacement of the bouw, wihiich iz velccity dependent. The same
is true for the curve reproezoenting the coefficient of wave resis-
tance as function of F. ‘inis rasult 13, st least in principle,

in agreement with experimental finding .

If there are other points of slope discontinuity, additional
straining factors have to be incorporated in ¢T . If the pro-
vedtze is applied to a submerged body there is ar additional free-
dom in selecting a vertical strauining; the choice between horizon-
tal myd vertical strainings depends on whether we have to cancel) P
or Q type functiong in the expression of R (2.14). In the
case wi A source-like blunt nose (Sec. II2) the straining is of
order ¢€/F as compared to the order € in two-dimensional flows
{(Takie 1),

w -
2 (2.44)

was bared only on part of the expression of Pz(x,y) (2.3), it :

Sinca our estimate of the lowest order term of ¢

‘s not gure that the conplete wave spectrum functions P, (0)

w . <.
and 02(9) of ¢2 are the same as in (2,44),., If they are different
the coordira%e straining may be successful only if we assume that

Gib is a function of 3, which makes the straining lesg meaningful
theu .n tle case of %wo-dimznsional flow, This Question is, how-
evez, jefu open at present.

3
=
3
S
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S. Cohclusions

The results obL~adined

-ir'

In the gtudy of the small #froudc numbcr
limit of the thin body ¢wp&rsionr in the case of three-dimensicral
flows do not differ in principle from those mertaining to twe-

dimensional flows, the cemputations, howevsr, are much morec tedinus.

Again, the norunifcrm behsnvior of the expansion of the potential

of the free waves 1s agzparently related tc tiie preienve of the

smail parameter ¢ in the wave nurbar ol the spectrun function,

arid not only irn the ampiitude, it is worthwhile to mention thzo

the nonlinear efi{srtes considered heve are sssociated with tern: of

the second orxd=r pressure which result from the locel disturcance

of the free-uurfacg. The intcractior betweer the 11rst and sesond

order free waves yialds terns which cie oY higher order as F -~ 0.
A relativ

.
el W

£1¥ &iaple wathed of rendering un

J8m the expansion
of the free waveu

potential suggested here is the coordinate
straining. It vesulr: in an apperent horizontal displacement of
the singularities of the water-liine contour in the case of thin

ships. This disnlacement a8 oi the order of tie beam and its

dependance on tl.e Froude numherx is related to tb+ nature of the

singularity. The actual value of the straining factors has to

be computed numerically for caoh particular case, The influence

of the straining bwecowes apureciabie for Llunt bodies moving a*
low speeds.
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APPENDIX I

Derivation of _f.(z}_ _(1.23)

The expression of f2 (1.21) becomes, by substitution of

uy (1.22) and vy (1.23)

f2a"'»';" %'.!, do w(-:’:-,%{—%- (wi(o) -w'{(o)]z - .;%.,. [wi(o) -wl(g)] x

OT

x [ [ adr wi(r) Z»(g-;-})] "TT" ]dr fd‘l’.- [w ( )wl(rz)w(—-y—)w(—lg-) +

[} u - O-Tg 0-'[2 3 ] - O-Tl o- T
—_ N ) Rl P R e S ’ , -
+ 2“'1(’.'1)‘1"1(12) w Fz'lw\—P—l"}wl\tliwl\l ~d "“"R!_“' w(‘.-_:_']} (A.1)

By integration by parts it can be shown that

ﬂ-T

-‘{ w(-w—)w(-?!—) (--g-) do = iF? /0-'1’ “’("ET")"'

w(—gy—)] '.u( =o)do (A.2)

w "T

J wtpr (—-,-e Z$ do = -ud_a{ o ¥ +01T w(—p,—)] wEHdo (B.3)

Py residues we also have

u %
w wo(1,) w w)(T,)
1l 2 u 1 1 - - )
! :—:—?;'dtz 2ni wy (o) R 5_:—?I ar, 2mi wylo) (A.4)

Substituting (A.2), (A.3) and (A.4) in (A.l) rasults in the final
expression of fz(z) (1.25).
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APPENDIX IIX

Derivation of _€5(z)__(1.32)

The complete expression of f2 is given in (1.28). By

residues we obtain fcr the last integral of (1.28)

w o-z o-2
[ = - =2 038) @ = 2milel—) - uf -5} (A.S5)
- p-zg ovzt F? F ¥
We represent now w like in (1.18)
g~z w _i)/F?
wi—=2) = ] L @ (A.6)
¥? o A+a- 3z
and similarly w(o-it/F’). Tc derive the expression of the far
free waves we replace w({z-0/F%) by 2r%i e -iz/x? lc/F ~ With
these transforma:ions the last term of f2 becomes
: 2
-__.zizje“"“zj S S VR N AR S SR A )
‘Pt o - o-zz o-z, 0-Z) O~z A«a-z2 A+o-zt

Again, by using the residue theorem in the last integral, (A.7)
becomes

. iz, /F? o ir/F?
y L 1 1l ) S e .

-e / E-F-:—d/\} (A.8)




N

where h = Im EL = Im ;t and Re z, = 1, Ro z, = -1,

Integrating in (A.8) and adding the residues of the first
texm of £,(1.28) leads to the final expression of £ (1.32)., .

!
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FIGUKRE 1 - TWO-DIMENSIONAL FLOW PAST A SUBMERGED BODY




