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ABSTRACT 

This document is the first of three voliftnes which 

present techniques and methods for developing efficient Monte 

Carlo simulation:   Each volume presents techniques for re- 

ducing computational effort in one of the following areas: 
Vol. I - Selecting Probability Distributions, Vol. H - Random 

Number Generation For Selected Probability Distributions, 

and Vol. m - Variance Reduction. 

This volume provides a straightforward approach and 

associated techniques for selecting the most appropriate pro- 

bability distributions for use in Monte Carlo simulations. Past 

I, BASIC CONSIDERATIONS, presents the underlyätö concepts 

and principles for selecting probability distributions.   Part II, 

SELECTION OF DISTRIBUTIONS, gives the mathemafrcs^models 

representing stochastic processes and presents sVep-by-step 

procedures for identification and selection of the appropriate 

probability distributions based upon the degree of knowledge and 

available data for the random variable under study. 
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EXECUTIVE SUMMARY 

Monte Carlo simulation is one of the most powerful and commonly 
used techniques for analyzing complex physical problems.   Applications 
can be found in many diverse areas from radiation transport to river basin 
modeling.  Important Navy applications include: analysis of antisubmarine 
warfare exercises and operations, prediction of aircraft or sensor perform- 
ance, tactical analysis, and matrix game solutions where random processes 
are considered to be of particular importance.   The range of applications 
has been broadening and the size, complexity, and computational effort re- 
quired have been increasing.   However, such developments are expected 
and desirable since increased realism is concomitant with more complex and 
extensive problem descriptions. 

In recognition of such trends, the requirements for improved simu- 
lation technicjues are becoming more pressing.   Unfortunately, methods for 
achieving greater efficiency are frequently overlooked in developing simula- 
tions.  This can generally be attributed to one or more of the following 
reasons: 

•    Analysts usually seek advanced computer systems to 
perform more complex Bimulation studies by exploit- 
ing increased speed and/or storage capabilities. This 
is often achieved at a considerably increased expense. 

. e     Many efficient simulation methods have evolved for 
specialized applications.   For example, some of the 
most impressive Monte Carlo techniques have been 
developed in radiation transport, a discipline that does 
not overlap into areas where even a small number of 
simulation analysts are working. 

e     Known techniques are not developed to the point where 
they can be easily understood or applied by even a 
small fraction of the analysts who are performing simu- 
lation studies or developing simulation models. 

vii 



In addition to the above reasons, comprehensive references describing 
efficient methodologies to improve Monte Carlo simulation are not avail- 
able.  It is the intent of these volumes to help alleviate the above short- 
comings in Monte Carlo simulation. 

This document is the first of three volumes which present techniques 
and methods for developing efficient Monte Carb simulations.   Each volume 
is essentially a self-contained discussion of useful techniques which can be 
applied in reducing computational effort in one of the following three major 
aspects of Monte Carlo simulation: 

e    Selecting Probability Distributions - Volume I 

•    Random Number Generation for Selected Probability 
Distributions - Volume n 

e    Variance Reduction - Volume HI 

The purpose of these volumes is to provide guidance in developing 
Monte Carb simulations that accurately reflect the behavior of various 
characteristics of the system being simulated and are most efficient in 
terms of computational effort.   The basic intent is to provide understanding 
of the concepts and methods for reducing analysis and computational effort 
as well as to serve as a practical guide for their application.   They have 
been prepared primarily for the systems analyst and computer programmer 
who have a basic background and experinece in simulation and elementary 
statistics.   Thus, the material is presented so as to preclude extensive 
knowledge of statistical techniques or of extensive literature search.  How- 
ever, it is assumed the reader has a grasp of the fundamentals of Monte 
Carlo methods, simulation modeling, and elementary statistics. 
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1.   INTRODUCTION 

The starting point in developing any Monte Carlo simulation is the 

construction of mathematical models which describe the stochastic be- 

havior of the variables in the process under study.   When the underlying 

processes are well understood and the functional forms of the variables 

are known, development of a model is straightforward.   However, in many 

applications the exact functional form of the variable is not known, thus re- 

quiring selection from among a myriad of possible distributions to find the 

one thai: will best represent the process.   This volume provides a straight- 

forward approach and associated techniques for selecting the most appro- 

priate probability distributions for use in Monte Carlo simulations. 

Part I of this volume, BASIC CONSIDERATIONS, presents the under- 

lying concepts and principles to be used in the selection of probability dis- 

tributions.   This background information provides the reader with an under- 
standing of the important considerations, tasks, and methods and procedures 

involved in dealing with simulation events characterized by random variables. 

Following Part I, the reader will find in Part n, SELECTION OF 

DISTRIBUTIONS, the mathematical models which will represent the stochastic 

behavior of the process as accurately as the data and understanding of the 

processes will allow.   Part n presents step-by-step procedures for the 

identification and selection of appropriate probability distributions.   Part n 

applies the rationale developed in Part I to the problems of developing dis- 

tributions based on varying amounts of data and depth of understanding of 

the processes being simulated. 

This volume also includes additional information useful in the selec- 

tion of probability distributions.   Appendix A contains background information 



of the complex parametric families of distributions which will be useful 

for the reader who has not encountered these distributions before.    Appen- 
dix B contains tables which are needed in making computations involving , 

distribution fitting and testing.   Appendix C is an abstracted bibliography 

of publications relating to the subjects of probability distribution identifica- 

tion and selection. 



PARTI 

BASIC CONSIDERATIONS 



2.   FUNDAMENTALS OF DISTRIBUTION SELECTION 

Selection of an appropriate probability distribution for a given 
random variable in a simulation requires gathering and evaluating all 
the available facts, data, and knowledge concerning each variable. It 
is also important to know how the particular process which any given 
variable represents relates to the entire simulation model. For Monte 
Carlo applications this includes careful investigation of: 

• Each individual process or event 

• Underlying theory of thr process 

• Data representing the variability of the process 

• Sensitivity of the process being simulated to probable 
values of the variable 

• Simulation programming considerations 

When the variable under consideration is just one among many vari- 
ables which affect the overall problem or system, the simulation is often 
not very sensitive to the choice of the distribution.   This can be likened 
to the phenomenon of summing a series of random variables, none of which 
dominates the sum.   In this case the total tends to have a normal distri- 
bution irrespective of the individual distributions (see Refs. 7,27).   In other 
cases, the selection of a distribution is more critical to effective simulation. 
For example, when only a few variables dominate the process or the process 
is greatly influenced by rare occurrences (e. g., failure of a critical high 
reliability component) the selection of probability distributions becomes 
of paramount importance. ^ ♦    ' 

Choosing the form of probability distributions is often a trade- 
off between theoretical justification and empirical evidence.   Typically, 
some form of parametric distribution can be justified, such as the 
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normal, uniform, binomial, or Bernoulli distribution.   Available data 
can then be used to estimate its parameters.   In the absence of empirical 
data, one is forced to choose distributions on either theoretical or intui- 
tive grounds, or often to use several distributions and conduct sensitivity 
or worst-case analyses.   At the other extreme, where empirical data 
is abundant, either the histogram can be used or more elaborate para- 
metric models can be employed. 

The final choice of a particular distribution type is, of course, 
also dependent on ease of implementation.   Computer storage space, 
computation time, and ease of programming are key considerations in 
most simulations.   Generating random variables from a parametric 
distribution' requires taking an inverse of the cumulative distribution 
function or using other random number generation techniques (see Vol- 
ume IT),   For some distributions, such as the exponential or uniform, 
the inverse operation is a simple computation.   For others, such as 
the normal, relatively simple techniques are available.   Histograms 
are also fairly easy to use in computer simulations.   Here, only a list 
of numbers must be stored (the more variable and detailed the histogram, 
of course, the longer the list).   For many distributions, however, in- 
verse algorithms for generation of random numbers do not exist, and 
other methods require lengthy computation.   In this case, a com- 
promise must be made between ease of computation and simulation accu- 
racy.   Making an estimate of how sensitive the total simulation will be 
to individual probability distribution assumptions is important in deter- 
mining this compromise. 

2.1       BASIS FOR MAKING SELECTIONS 

Before proceeding to the techniques of distribution selection 
and their application in simulation development, it is necessary to un- 
derstand the underlying concepts for making selections.   Basically, the 



selection process described in Part n depends on two factors:  the 

extent of knowledge of the process under study (qualitative) and the 
amount of data available (quantitative).   Knowledge of the process refers 

to the level of understanding of its behavior and characteristics.   For 
example, it is possible in some cases to be quite certain that the fre- 

quency distribution of a random variable is normal based on familiarity 

with the process.   At the other extreme, little' or nothing may be known. 

Similarly, the amount of data describing a particular variable may range 

from extensive to none.   Each combination of the state of knowledge and 

amount of data poses particular problems in selecting the most appro- 

priate distribution. 

2.2       QUAUTATIVE BASIS FOR SELECTION 

Developing an understanding of some random process involves 

analysis to characterize the process.   In general, such efforts attempt 

to identify the process on the basis of: 

• Similarity to some other process whose behavior is known 

• Underlying theory 

• Certain qualitative aspects. 

Often a process can be likened to some other, the behavior of 

which is known.   In such circumstances, it can be reasonably justi- 

fied that this known distribution might apply to the one under study. 

For example, consider the simulation of a process involving the 

human performance of some manual task.   Even though the task may 

bear no particular resemblance to one in which the distribution is 

known, an assumption of similarity is reasonable.   The frequency 

distribution of time of performance is likely to be from the same 

family of distributions even though the actual process might be quite 
different. 



Many activities for which stochastic models must be developed 
can, at least generally, be identified by some applicable theory. Con- 
sider the case in which some repetitive human activity is involved such 
as in maintenance.  Maintainability theory would indicate a strong like- 
lihood that the frequency distribution of time to perform would have a 
log normal or a gamma distribution.   Similarly, if the failure of elec- 
tronic parts were to be modeled, it could be assumed that an exponen- 
tial or possibly a Weibull might be applicable (53).   Such reasoning is 
a fundamental part of the task of distribution selection. 

There are, of course, many situations in which a theoretical 
basis for a particular distribution can be established.   Consider the 
shots fired at a target or the velocity of a molecule in a stable solution. 
Under fairly weak conditions the velocity of the molecule or the devia- 
tion of shots (in three-dimensional space) from the bull's eye can be 
shown to have a Maxwell distribution (27).   The component of velocity 
in any direction or the projection of shots onto any axis through the 
bull's eye follows the normal distribution.   In two dimensions the re- 
sulting distribution is the Rayleigh.   If the process being modeled in- 
volves reliability, the exponential distribution reflects the behavior of 
an item with a constant failure rate.   If the process involves waiting 
or queueing phenomena, the exponential can be used to depict random 
arrival and service times.    The gamma distribution  also has wide 
application since it is related to the exponential distribution.   The 
number of occurences up to a given point in time has a gamma distri- 
bution if the time between occurrences follows an exponential distribution. 

In some cases, it will not be possible to relate the process be- 
ing examined to anything which is known.   This may be either because 
little understanding of the process exists or it simply bears no relation 
to any process whose behavior can be described on a theoretical basis. 
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However, there still May be some clues which are useful in identifying 

an applicable distribution, particularly where some data exist.  A num- 

ber of qualitative aspects of the process can be helpful.   These include, 

for example, consideration of whether the variable is discrete or con- 

tinuous, bounded, symmetric, or can be described in some other sim- 

ilar ways.   Such clues, although probably not sufficient for positive 

identification above, are useful in making a rational selection of a 

distribution. 

2.3       QUANTITATIVE BASIS FOR SELECTION 

One of the most common problems in simulation is not having, 

or not being able to obtain, the data necessary to describe a particular 

variable.   Collecting it may be too time consuming or expensive.   In 

some cases it is simply not possible.   Consequently, the amount of data 

available is one of the major considerations in the selection of prob- 

ability distributions. 

Where sufficient data are available, an empirical approach 

can be used.    This means essentially using the data to derive a 

model.   Combined with the state of knowledge of the process being 

modeled, graphical and analytical techniques can be employed to 

select the distribution most representative of the data. 

In those cases where acquisition of the data is difficult, the 

application of the methodology of Part II can be useful in determin- 

ing whether such effort is warranted. If a distribution can, in fact, 

be selected with little data, there may be no justification for collect- 

ing more. If, on the other hand, a distribution cannot be identified 

and the simulation results are sensitive to that particular variable, 

additional data may be essential for developing a valid model. 

9 



3.    TECHNIQUES USED IN DISTRIBUTION SELECTION 

Specific techniques for selecting a particular stochastic model 

depend on the information and data available.   The situation can range 

from having practically nothing to work with to almost certain specifica- 

tion of the model based on sound theoretical and empirical evidence. 

The development of the theoretical evidence is entirely qualitative. 

Development of the empirical evidence requires the use of a number of 

quantitative methods.   These include: 

• Sensitivity analysis 

• Graphical analysis 

• Parameter estimation 

• Goodness-cf-fit-teating. 

Each of these is introduced briefly in the following sections. 

3.1       SENSITIVITY ANA LYSIS 

The purpose of sensitivity analysis is to determine the extent 

to which the outcome of an analysis is dependent upon a particular 

variable or assumption.   It is particularly applicable in simulation 

where little or no data is available to characterize some random var- 

iables.   In such a situation, sensitivity analysis can indicate whether 

or not the behavior of the variable must be more accurately known. 

If, for instance, the outcome of the simulation Is not sensitive to the 

variable, no further effort to characterize it is necessary.   However, 
if it does prove sensitive, an attempt to develop an accurate distribu- 
tion model is warranted. 

The only practical way to perform the sensitivity analysis is 

to perform a simulation varying the values or assumptions concerning 

the variable in question.   Comparison of the results using standard 

11 
Preceding page blank 



I 
statistical tests can reveal whether significant differences are pro- 
duced (see Sections 3.4 and 9.). This is not so formidable a task as        / 
it might at first appear.   If the simulation is to have any real validity   J 
in the first place, the behavior of most o^ the variables must be knowijK > 
If only a few variables can be accurately described, a simulation « 
merely produces a precise but inaccurate result. 

3.2       GRAPHICA L ANA LYSIS 

One of the topics in elementary applied statistics is the con- 
struction of frequency histograms and cumulative frequency polygons. 
These procedures provide one means for identifying appropriate dis- 
tribution models under the proper circumstances.   Where such tech- 
niques are applicable they do offer the advantage of relative simplicity. 
They are most useful when there is some knowledge of the process and 
at least minimal data available. 

The histogram is constructed from data concerning the vari- 
able.   It carries with it all the present empirical information available 
on the variable, nothing more.   It does not try to estimate probable be- 
havior.   If rare events have not been observed, for instance, it will 
assign zero probability to their occurrence.   Since it uses all data, it 
also perpetuates the mistakes of erroneous observations and may 
describe a model that is not valid. 

The most common graphical procedure is the construction of 
the frequency histogram.   This is simply a plot of the frequency with 
which each of various values occurs in the sample data.   The histo- 
gram is useful in two ways.   It provides visual evidence of the shape 
of the distribution which can be useful in selecting a distribution.   It may 
also be used directly in the simulation as the model of the process. 

12 



When data is abundant the use of the histogram is often adequate 

for many Monte Carlo applications.   In using the histogram, care must 

always be exercised to remove obvious errors and to consider low 

probability events.   When only limited data is available the histogram 

approach suffers from sampling peculiarities and from lack of observa- 

tions in any tails of the distribution.   In this case more effective distri- 

butions can be developed by taking into consideration other informa- 

tion about the behavior of the variable or by obtaining additional infor- 

mation from the data, e. g., by estimating higher moments.   This 
information can range from an understanding of the theoretical nature 

of the variable to intuition.   It might be assumed, for example, that 

the underlying real distribution is continuous; then smoothing proce- 

dures can be applied to the histogram to obtain a continuous curve. 

Another graphical procedure useful in the selection of proba- 

bility distributions involves the use of probability paper.   As with the 

histogram, there is a large element of subjectivity in this procedure. 

It involves selection of an appropriate probability paper from those avail- 

able and plotting the sample distribution function.   Judgment is required 

in deciding whether the plot sufficiently approximates a straight line. 

The use of graphical procedures in simulation development 

is described in Section 6, Part n. 

3.3       PARAMETER ESTIMATION 

A parametric distribution is defined to be a functional or 

analytical representation for a probability distribution which depends 
on one or more parameters.   Although use of such distributions re- 

quires that the parameter(s) be estimated, there are a number of 
reasons for using a parametric distribution function rather than a 
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histogram in developing a mathematical model.   In particular, a parame- 

tric distribution: 

• Provides a convenient means for inclusion of additional 
information about the variable (such as known upper and 
lower limits on the data). 

• Allows meaningful extrapolation into the tail(s) of the 
distribution and into regions where no data was available. 

• Allows incorporation of the additional information inher- 
ent in the shape of the distribution if there is a theoretical 
justification. 

• Provides for a reproducible means of representing the 
data since freehand "fit" to the same data will vary from 
person to person. 

• Provides important summary information about the vari- 
able in the form of estimated parameters of the fitted 
distribution. 

• Provides a more compact representation of the random 
variable usually resulting in less data storage requirements. 

• Allows construction of reasonable and convenient models 
in cases of no data or very limited data. 

• Provides for efficient and convenient random number gen- 
eration in most cases. 

• Facilitates analytic (rather than simulation) studies of 
portions of the process. 

• Permits a convenient means whereby analysis of the sen- 
sitivity to the shape of the distribution can be accomplished. 

To facilitate the presentation of parametric distributions, the 
individual parametric families have been classified as being either of 

a simple or of a complex nature.   The difference between these two 

14 



classifications is mainly the number of parameters necessary to 
describe the distribution.   The simple distributions are character- 
ized by no more than two parameters, the complex by more than two. 

The other distinguishing feature is that simple distributions 
are those which are commonly encountered, relatively easy to recog- 
nize, and have some theoretical basis for their functional form and 
application. Thus, simple parametric families of distributions can 
often be derived from assumptions about the process generating the 
random variable or from graphical evidence based on the data. 

The complex parametric families generally do not have a 
"nice" physical interpretation or a simple functional form.   They 
can be viewed more as abstract inventions which admit enough shapes 
to insure a reasonable fit to any set of observations.   They also pro- 
vide greater flexibility than simple distributions in projecting events 
of the process that would appear in the tails of the distribution. 

3.3.1   Simple Parametric Distributions 

The simple distributions include, but are not limited to, the 
normal, gamma, binomial, exponential, and other distributions which 
can be defined by at most two parameters.   For the purposes of select- 
ing an appropriate probability model, a simple distribution will be in- 
dicated by the underlying theory of the process or by preliminary selec- 
tion using graphical procedures referred to previously. 

One of the most common and useful of the simple continuous 
probability functions is the normal distribution. Much of the appeal 
of this distribution is based on a the central limit theorem.   In essence, 
this states that the sum of independent variables tends to be normally 

(27) distributed.     ' This assumes, of course, that none of the individual 
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elements of the sum dominates its behavior.   Since many variables which 
are modeled in Monte Carlo simulations are in reality derived from 
several variables, the assumption of a normal distribution can often be 
justified. 

Since simple parametric distributions are discussed in detail in 
most elementary textbooks on probability, they are not discussed in de- 
tail here.   However, a summary of the more common simple paramet- 
ric distributions is given in Section 4.3. 

3.3.2   Complex Parametric Distributions 

As used in this volume, complex parametric distributions are 
defined as the Weibull, Johnson, and Pearson distribution families. 
The functional form of these distributions is somewhat complicated, 
and three to five parameters are often required to define the specific dis- 
tribution.   Reverting to the analytic procedures to generate these dis- 
tributions is most necessary when a simple distribution cannot be jus- 
tified and the simulation results are dependent upon rare events. 
Rare events are usually related to the tails of the distribution.   For 
certain events or processes to be simulated sufficient observations 
to accurately define the tail regions may not exist.   In such cases, 
one usually employs smoothing techniques utilizing parametric func- 
tions to extend or infer the behavior of the tail regions from available 
data. 

Using a complex parametric distribution can be viewed as a 
convenient way of smoothing the raw data and expressing the smoothed 
data in functional form.   These three families admit almost every type 
of probability distribution, one major exception being composite dis- 
tributions made up of several distinct populations, e. g., multimodal 
distributions.   In fact most of the simple parametric distributions are 
special cases of a Weibull, Johnson, or Pearson distribution. 

16 



If the reader is interested in a further discussion of these dis- 

tributions, background information is contained in Appendix A.   The 

material there is not, however, essential for understanding the prin- 

ciples discussed in Part I or the methods described in Part II. 

3.4       GOODNESSOF-FIT TESTS 

After initial selections of a distribution for a Monte Carlo 

application and where sample data are available, it is usually worth- 

while to try and validate or substantiate these choices.   The validation 

step of the selection procedure is especially critical when it has been 

determined that the Monte Carlo result will be sensitive to distribution 
selection.   More generally, developing confidence in the distributions 

used in any simulation adds to the confidence in the total simulation in 

addition to aiding in the overall understanding of the process. 

One of the most useful methods used in validation is called 

goodness-of-fit-tests.   These are statistical procedures for testing 
whether sample data can reasonably be expected to be representative 

of (drawn from) a particular probability distribution.   Essentially, 

there are two such tests which have found wide application since they 

can be applied to any distribution.   These are the Chi-Square test and 

the Kolmogorov-Smirnov test.   A brief description of each of these two 

tests is presented below.   In addition there are a number of specialized 

tests such as the W-test for a normal distribution and the WE-test for 
an exponential distribution which are useful.   Specific details for apply- 

ing these tests are contained in Part IT, Section 9. 

One word of caution should be noted in using these tests. The 

statistical inferences based on these tests rely on asymptotic proper- 

ties. Thus a fair amount of data is required to obtain valid interpre- 

tations.   Where limited data are available or many erroneous data 
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points are believed to be in the sample, the usefulness of these tests 

may be questionable. 

Chi-Square Test:  This common goodness-of-fit-test is made by 

subdividing the data into groups or intervals and comparing the num- 

ber of actual observations A.   in the i     interval to the number expected E. 

as computed from the assumed distribution.   The statistic employed in 
this method is 

2 <?-   'Al - El'2 

Under the null hypothesis (observations are from the assumed distribution) 

the distribution of this statistic asymptotically approaches a Chi-Square 

distribution with n-1 degrees of freedom. 

The Chi-Square test has certain obvious shortcomings.   In addi- 

tion to being sensitive to sample size, this test is also sensitive to data 

grouping.   Different investigators conducting this test will tend to get 

different results.   One requirement in using the test is that each cell 

or subgroup should have a sufficient number of observations in it. 

Some authors (27) feel that a good test requires at least twenty obser- 

vations per cell and that there should also be between five and twenty 

cells. 

Kolmogorov-Smirnov Test:* This goodness-of-fit test is made 

by computing the maximum difference between the sample cumulative 

distribution function and the assumed distribution function.   This dif- 

ference, under the null hypothesis, has a known asymptotic distribu- 

tion which is available in table form (see Appendix B).   The Kolmogorov- 

Smirnov is generally considered to be more sensitive than the Chi-Square 

18 



test and also has the advantage that arbitrary data grouping decisions 
are not required.  Its disadvantages are that it is usually more com- 
putationally difficult to apply, and if the hypothesis is rejected, the 
reason for the rejection is less clear. 
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4.   DISTRIBUTION SELECTION PROCEDURES 

This section presents a systematic set of procedures for selecting 

the most representative model for a random variable in a simulation. 

The procedures selected depend on too types of knowledge of the random 

variable in question.   These are: 

1. Empirical Data (Quantitative Observations) 

2. Understanding of the Random Process (Qualitative A Priori 
Knowledge). 

Based on the degree of knowledge in each category, a set of procedures 

for selecting a distribution has been constructed.   By following a particu- 

lar procedure the most appropriate probability model can be easily 

selected. 

The initial discussion in this section is devoted to a discussion of 

selecting the appropriate procedure to be used based on the degree of 

available knowledge of the random variable in question.   Secondly, this 

section is devoted to presenting a brief guide to using the remaining sec- 

tions of Part IT.   This section is concluded with a table listing all the 

candidate distributions considered here.   This table also summarizes the 

characteristics of these distributions.   The rest of Part 11 is concerned with 

how one performs the specific operations which lead to selection of the 

appropriate probability distribution model. 

4.1       PROCEDURES FOR SELECTING DISTRIBUTIONS 

The particular selection procedure for a probability model is de- 

termined by the extent of empirical data and knowledge of the random 

process in question.   The extent of empirical data can, for convenience, 

be broken into three categories:  none, some, and ample.   This cate- 
gorization is given in Table 4.1. 
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TABLE 4.1 

Extent of Empirical Data (Observations) 

| Category 1 2 3            | 

Description none some ample 

Number of 
| Observations 

0-5 5-20 over 20 

The extent of knowledge of the random process is, for conveni- 

ence, broken into four categories:  no knowledge, qualitative knowledge, 
reasonably good ideas, and reasonable certainty.   These categories 

are described further in Table 4.2. It should be clear that the more 

data and the greater the a priori qualitative knowledge available, the 

easier the selection process is and the greater the certainty of obtain- 

ing a good probability model. 

TABLE 4.2 

Extent of Qualitative Knowledge of the Random Process 

1 Category |         1 2 3 1          4         | 

None: Qualitative: Good ideas: Reasonable 

Description 

certainty: 

No Some Reasonably Good basis 
qualitative knowledge of based for expect- 
knowledge the random expectations ing the dis- 
of the process, i.e. that the tribution to 
random continuity. random be some 
process range. variable is known 

symmetry. one of a few family 
shape of known 
distribution. families 
likely values. 
etc. 
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A concerted effort should be made to use all a priori knowledge. 
This means that all the qualitative characteristics listed under Category 
2 in Table 4.2 should be written down, if known.  This will also help 
in sketching a probability density or frequency curve.  Table 4.3 should 
also be consulted to determine if Categories 3 or 4 are appropriate. 
Table 4.3 lists all of the probability distributions considered here.   These 
are arranged in two groups, the simple parametric distributions and the 
complex parametric distributions.   This table also summarizes the 
characteristics of these distributions.   Table 4.3 is very useful as a 
reference in selecting a probability distribution since almost all of the 
information needed for selection is presented.   To this end, therefore, 
the columns in Table 4.3 entitled Comments and Justification and Applic- 
ations may give characteristics that fit the problem at hand.  Any 
distributions that appear appropriate should be listed so that knowledge 
at a level of Category 3 or 4 can be used. 

Once the categories for empirical data and knowledge of the 
random process have been established from Tables 4.1 and 4.2, a specific 
selection procedure can be identified from Table 4.4.  Table 4.4 is 
simply a matrix indicating all possible combinations of data and knowledge 
categories.   For each combination, a figure number is indicated.   Each 
figure presents the details of the particular selection procedure that it 
represents. 

A discussion of the selection procedures presented in Figure 4.1- 
4.12 and how that material is used is contained in the following section 
(4.2). 
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TABLE 4.3 

Sequence of Activity Selection (By Figure Number) 

Knowledge of Random Process Category 

ü 

w 

1 2 3 4      | 

iH 
Figure 

4.1 
Figure 

4.2 
Figure 

4.3 
Figure 

4.4 

<M 
Figure 
4.5 

Figure 
4.6 

Figure 
4.7 

Figure 
4.8 

eo Figure 
4.9       | 

Figure 
4.10 

Figure 
4.11 

Figure 
4.12  1 

4.2       SELECTION TECHNIQUES 

The following list provides a brief description of each selection 

technique used in the selection procedures and provides the location of 

further detailed discussion. 

Sensitivity Analysis - 
(Sections.) 

Graphical Analysis - 
(Section 6.) 

Analytic Curve Fitting 
(Section?.) 

Parameter Estimation 
(Section 8.) 

Involves performing the simulation study 
using several differ ^nt distributional 
assumptions or parameters to examine the 
effect it has on the final results. 

Involves plotting a histogram and/or using 
probability paper to judge what distributions 
appear likely.   This analysis may reject 
some ideas as inappropriate or suggest 
several likely distributions.   This analysis 
applies primarily to the simple or common 
distributions. 

Refers to fitting the data to one or more of 
the complex or uncommon distributions such as the 
Weibull, Johnson, and Pearson. 

Is the task of estimating the values of the 
parameters of a given distribution family 
to obtain the best fit with the data. 
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Goodness-of-Fit - 
(Section 9.) 

Histogram - 
(Section 6.) 

Tests are used to determine if the candi- 
date distribution is an adequate represen- 
tation of the actual random process based 
on the data available. 

K all likely distributions fail the goodness - 
of-fit tests fail, a histogram should be used. 

These techniques can best be applied by referring to the appro- 

priate section.   After app  nation of any technique, refer to the appropriate 

figure to determine subsequent selection techniques to employ, if any. 
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Figure 4.1 
No Data, No Knowledge 

Sensitivity 
Analysis 

Figure 4.2 
No Data, Qualitative Knowledge 

Graphical 
Analysis 
(Table of 
Shapes) 

I 
Sensitivity 
Analysis 

Figure 4.3 
No Data, Good Knowledge 

Figure 4.4 
No Data, Certain Knowledge 

Parameter 
Estimation 
(Arbitrary 
Parameter 
Selection) 

I 
Sensitivity 
Analysis 

Parameter 
Estimation 
(Arbitrary 
Parameter 
Selection) 

I 
Sensitivity 
Analysis 
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Figure 4.5 
Some Data, No Knowledge 

Figure 4.6 
Some Data, Qualitative Knowledge 

Graphical 
Analysis 

i 
Parameter 
Estimation 

I 
Goodness- 
of-Fit Test 
(possibly) 

Figure 4.7 
Some Data, Good Knowledge 

Graphical 
Analysis 

Reject 

Distribution 

I 
Parameter 
Estimations 

Accept 

Graphical 
Analysis 

I 
Parameter 
Estimation 

I 
Goodness- 
of-Fit Test Accept 

Reject 
Distribution  J Re|ec t A11 Distnbutioos 

Sensitivity 
Analysis 

Figure 4.8 
Some Data, Certain Knowledge 

Parameter 
Estimation 

Reject All Distributions 

I 
Goodness- 
of-Fit 

See 
Figure 4.6 

I 
Accept 

Reject 

See 
Figure 4.7 
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Figure 4.9 
Ample Data, No Knowledge 

Figure 4.10 
Ample Data, Qualitative Knowledge 

Graphical 
Analysis 

i 
Parameter 
Estimation 

I 
Goodness- 
of-Fit 

I Reject 

Analytic Curve 
Fitting 

I 
Parameter 
Estimation 

I 
Goodness- 
of-Fit Test 

I Reject 

Use Histogram 

Accept 

Accept 

Graphical 
Analysis 

Yes/ 
/Insight^ 

Into 
Random 

N^ Process ^^ 

V  No 
\ ? 

See 
Figure 4.11 

See 
Figure 4.9 
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Figure 4.11 
Ample Data, Good Knowledge 

Figure 4.12 
Ample Data, Certain Knowledge 

Parameter 
Estimations 

Reject 
a I 

Distribution. I 

Reject 
a   I 

Distribution 

Goodness- 
of-Fit 

Accept 

ru Reject All Distributions 

Analytic 
Curve 
Fitting 

I 
Parameter 
Estimation 

Accept 

Reject All Distributions 

Use 
Histogram 
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Parameter 
Estimation 

I 
Goodness- 
of-Fit 

I Reject 

See 
Figure 4.11 
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5.   SENSITIVITY ANALYSIS 

The objective of sensitivity analysis is to determine the extent to 
which the final results of the simulation study are sensitive to a given 
probability distribution.   To this end two general guidelines can be given. 

The first is to attain a determination of sensitivity to the parame- 
ters of a distribution.  It might be reasonable to vary the parameters to 
some extent in both directions.   Suppose, for example, that a normal dis- 
tribution with mean 100 and standard deviation 20 is postulated.   Then 
five runs might be made to test sensitivity of the final simulation results 
to these parameters as follows [(mean, standard deviation)]: (100, 20), 
(110, 20), (90, 20), (100, 18). (100, 22). 

A second sensitivity test that can be performed is one of shape 
of parametric family: it may be reasonable to make several simulations 
with different probability distributions, especially if unlikely events are 
important to the simulation results.   In this case the shape of the tail of 
the distribution is important.   Suppose, for example, that a gamma dis- 
tribution has been chosen; then a lognormal or Weibull might also be tried, 
since these have similar shapes. 
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6.    GRAPHICAL TECHNIQUES 

There are two graphical techniques that are applicable here. 

The firot deals with the empirical histogram and the second deals 

ing with the empirical cumulative distribution polygon.   Both tech- 

niques can be quite useful in selecting a good functional fit to data. 

These graphical techniques are intended primarily for use in select- 

ing one of the common or simple distributions.   Although graphical 

techniques can be helpful in the selection of a complex distribution, 

this is discussed as analytical curve fitting in Section 7. 

Graphical techniques can often suffice to determine a satis- 

factory probability model for a simulation variable.   This is especi- 

ally true if the simulation results are not sensitive to rare events of 

the several random variables.  An example is given in Section 6.3 to 

illustrate the histogram and cumulative distribution polygon methods. 

6.1       USING THE EMPIRICA L HISTOGRAM 

The empirical histogram can be used to determine what dis- 

tributions are likely to fit a given set of data.   This can best be 

accomplished by a visual comparison to find curves representing 

probability distributions that are similar to the data.   The approach 

taken in this section is to find such visual fits by examining a series 

of figures representing the density function of most of the simple 
distributions. 

The procedure is very straightforward.   First plot the histo- 

gram from the data available.   In some cases it may be helpful to 
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sketch a smoothed version of the histogram, especially if the cells 
of the observation groupings are large or the data are few.   Then ex- 

amine the shapes given in Figure 6.1 and select those distributions 

whose densities are similar to the histogram.   (Figure 6.1 does not 

include the Weibull, Johnson, or Pearson distributions.   For these 

distributions, see Section 7.) It is also useful to rank the selections 

according to how good the fit is. 

6.2       USING THE EMPIRICA L CUMULATIVE DISTRIBUTION 
POLYGON 

An alternate technique is to use the cumulative distribution 

polygon in conjunction with probability paper.   The horizontal axis of 

this paper represents the values of the variable under investigation; 

the vertical axis is a probability scale.   The spacing on the vertical 

axis is constructed for a given probability family so that a cumulative 

distribution function belonging to that family will appear as a straight 

line on the paper. 

The graphical method is quite general and can be applied to 

any known distribution; however, the probability paper which is com- 

mercially available is limited to the more commonly encountered dis- 

tributions such as the normal (see Figure 6.2), lognormal, extreme 
value, chi-square, gamma, binomial, and Weibull.* 

The procedure for using this graphical method is extremely 

simple although interpretation of the results is somewhat subjective. 

The sample cumulative distribution is plotted on the probability paper 

corresponding to the theoretical distribution of interest.   If the points 

41 See, for example, TEAM Special Purpose Graph Papers, Box 25, 
Tamworth, N. H. 03886, also K+E papers. 
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fall on a straight line the theoretical distribution is accepted as rep- 
resentative of the data.   If the line is badly curved, other distributions 
can be tried.   The nature of the curve often suggests distributions 
which might be of better fit. 

Another useful aspect of the graphical procedure is that esti- 
mates of the distribution's parameters can be read directly off the 
graph.   For example, on normal probability paper, the difference 
in variable value between the . 50 probability point and the . 84 prob- 
ability point on the fitted line corresponds to one standard deviation. 

6.3      NUMERICAL EXAMPLE 

An example will illustrate the use of these techniques.   The 
data for the example is given in Table 6.1.   Observations ranging 
from 66.75 to 75.25 have been divided into seventeen equal inter- 
vals or cells of 0.50 each.   The frequency with which observations 
fall within each cell has been tabulated and summarized.   This data 
was then plotted in Figure 6.3 to produje what is generally referred 
to as a histogram. 

The histogram serves two purposes.   First, it provides vis- 
ual evidence on which to base preliminary selection of a distribution. 
Second, in the case of limited data, it may provide as good an esti- 
mate of the variability of the process as any other more elaborate 
approach. 

On the basis of its symmetry and bell shape, the histogram 
of Figure 6.3 appears . ypical of data from a normal distribution. 
Making an assumption of normality, it is possible to proceed to the 
application of other quantitative methods to determine its validity. 
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TABLE 6.1 

Sample Data 

Cumulative 
Cell Relative Cumulative Relative 

Boundaries Frequency Frequency Frequency Frequency 

66.75-67.25 2 0.005 2 0.005 
67.25-67.75 2 0.005 4 0.011 
67.75-68.25 5 0.014 9 0.025 
68.25-68.75 6 0.016 15 0.041 
63.75-69.25 7 0.019 22 0.060 

69.25-69.75 24 0.066 46 0.126 
69.75-70.25 36 0.099 82 0.225 
70.25-70.75 48 0.132 ISO 0.357 
70.75-71.25 64 0.176 194 0.533 
71.25-71.75 51 0.140 245 0.673 

71.75-72.25 41 0.113 286 0.786 
72.25-72.75 32 0.088 318 0.874 
72.75-73.25 24 0.066 342 0.940 
73.25-73.75 12 0.033 354 0.973 
73.75-74.25 5 0.014 359 0.986 

74.25-74.75 4 0.011 363 0.997 
74.75-75.25 1 0.003 364 1.000 

46 



70 

60 

50 
to 

8 ^ 
2 80 

20 

10 

0 

T—I—rn—m—i—I   i- '—r i—i—r 

67     68    69     70     71     72     73    74     75 

Value of Random Variable 

Fig. 6.3    Frequency Histogram for Data of Table 6.1 

47 



The data given in Table 6.1 can also be plotted on normal proba- 

bility paper.   This will verify the assumption of a normal distribution and 

also give the appropriate parameters for the distribution if the assumption 

of normality is accepted.   The cumulative relative frequency (sample 

cumulative distribution function) when plotted on normal probability paper, 

shown in Fig. 6.4, turns out to be reasonably linear.   Thus it can be con- 

cluded, at least tentatively, that the data in Table 6.1 has been drawn from 

a normal population.   For many applications this will suffice to identify a 

satisfactory distribution.   Note that the mean (JJ)  and the standard devia- 

tion (p) can also be estimated from the graph. 

Rather than go through the process of grouping the data into class 

intervals or cells as in Table 6.1 one can plot the data directly onto proba- 

bility paper in the following way.   The n observations x^x«,..., x  are 

placed in ascending order (ranked) such that: 

x(l) " X(2)- X(3)- —" x(n-l) "%) ' 

To each x,.*  associate the ordinate value y,.* = -—s and plot the 

ordered pairs Um» Ym)  on the probability paper.   This procedure is 

extremely fast, with the excepticn of having to rank the  n observations. 

Therefore, it is probably most useful for sample sizes in the range 1-50, 

depending of course on how proficient one is at ranking observations. 

Many excellent examples of the use of probability paper for extreme 
(14) value distributions may be found in Gumbel.v   ' 

This example is concluded with a visual verification of the selection 

of a normal distribution to fit the data in Table 6.1.   Figure 6.5 gives the 

same information as Fig. 6.3 with the addition of the normal density curve 

scaled to the frequency polygon. 

48 



99.9 
99.8 
99.5 

99 
98 
95 

ä   90 

70 

50 

ä 
0) 

a 
z 
i   30 
v 
K 

10 
5 
2 
1 

0.5 
0.2 
0.1 
0.05 
0.01 

-1 

-   • 

M»71. 2 • 
a=l.l J 

' 

I 
— — / 

/ 
« 4. * TT T^ 

*« i 
/ 

r 

L 

-- - IHK < -- — — 
Ä ( 
/ 1 

— ■ - 
,_, -- — — ^ 1 

1 j 

i 
^ I 

/ 
I 
1 1 

1 

— -- 
-- i — — 7( 1 

1 
1 

/ 
ri 

i 
1 
1 

1 
1 

-   ■ 

> i 1 
1 

1 
■ 

/ ̂  
I 
I 1 

t- 
1 

— y I 
F 

Li 

:lr 
•&r 

i-H 
•■H 

T3 
U 

1 
i 

/ 
r" f • 1 

/ 1 
| 

/ 1 
' 4 1 

- -J 
<§ 1 

1 1 
Ll_ 

68   69   70    71    72   73    74 
Value of Random Variable 

75 

Fig. 6.4     Cumulative polygon on normal probability paper 

49 
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Fig. 6. 5   Comparison of Histogram and Normal Distirbution 
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7.   ANALYTICAL CURVE FITTING 

Analytical curve fitting encompasses a variety of techniques to 

smooth an empirical histogram for use.   As discussed in Part I, the 

purpose of analytical curve fitting is to obtain a reasonable functional 

approximation of the empirical histogram to be used in a simulation. 

For the purposes of Part II of this volume, analytical curve fitting 

will be restricted to the use of three families of probability distributions. 

These are the Weibull, Johnson, and Pearson distributions.   The reader 

who is unfamiliar with these distributions may wish to refer to Appendix A 

to find a background discussion of these three distributions.   The Weibull 

family is the easiest to work with and the Pearson family is the most dif- 

ficult to work with.  It is, therefore, recommended that analytical curve 

fitting be tried first with the Weibull, then if need be with the Johnson, 

and finally if necessary with the Pearson distributions. 

The procedure for selecting one or more of these families is based 

on Table 7.1.  The use of Table 7.1 is facilitated if qualitative information 

about the random processes and a sketch of the probability density are avail- 

able.  Once one or more families have been chosen, the selection procedure 

outlined in Section 4 should be followed. 

Since using the Weibull, Johnson, or Pearson distribution is tanta- 

mount to using a smoothed histogram, some consideration should be given 

to using the histogram itself rather than a distribution.   This is especially 

true if the histogram is drawn from an ample set of data, if the Weibull, 

Johnson, and Pearson curves do not give reasonably good fits, or if the 
histogram is multimodal.  In the latter case the underlying population may 
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actually be several distinct populations, and unless the user is prepared 
to separate that population by techniques not discussed here, using the 
histogram may be most expedient. 

TABLE 7.1 

Characteristics of Complex Probability Curves 

Family Name 
Number of 

Parameters 
General 

Characteristics 
Figures for 

Shapes of Densities 

Weibull 3 Unimodal, finite left bound, 
tail to right 

Figure 7.1 

Johnson 4 
(plus choice 
of three 
functions) 

Bounded or unbounded, 
variety of shapes, 
mostly unimodal 

Figures 7.2-7.3 

Pearson up to 4 
(plus choice 
of twelve 
functions) 

Great variety of curves Figure  7.5 
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Fig. 7.1.   Weibull Distribution for Various Values of 
Parameter 17 
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8.   PARAMETER ESTIMATION 

Once a specific type from a family of probability distributions has 
been tentatively chosen to model a random variable, specific parameters 
for the distribution must be chosen. These parameters should be chosen 
so that the resulting specific distribution will best fit the data and knowl- 
edge available. This section is devoted to finding the specific parameter 
values based on the empirical data (observations) available. 

If no data is available, the parameters must be chosen arbitrarily. 
In this case no estimation procedure exists that is better than the analyst's 
intuition and judgment.   If data is available, the parameters can be estimated 
based on the sample of data.   Estimates, in this case, always begin with 
calculation of certain sample statistics which are give,    i Section 8.1. 
This section should be used in conjunction with the directions given in 
Section 8.2.   This latter section gives formulas for estimating the specific 
parameters for all of the distributions considered.   Since not all the sample 
statistics in Section 8.1 are needed for all the distributions and parame- 
ters in Section 8.2, Section 8. 2 should be referred to before calculating 
sample statistics. 

8.1 CALCULATING SAMPLE STATISTICS 

The sample statistics given in this section include the sample mean, 
median, variance, skewness, kurtosis, 3rd moment, and 4th moment. 
To establish some standard notation, we define the following symbols: 

n = number of data points 

Hi 
x.  = i    data point (observation) for i = l, 2,..., n . 
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The sample statistics are calculated as follows: 

Sample Mean       (symbol x) 

x = it ->■ ■ 
Sample Media;! 

First rank the observations from smallest to largest.   If n is odd, 
the median is given by the value of the [(n+l)/2]     observation.   If n is 

ty% th 
even the median is given by the mean of the  [n/2]     and [(n/2) + 1] 
observations. 

Sample Variance (symbol s ) 

or, more conveniently 

it -")'■ i2 

Sample m    Centralized Moment (symbol Mm)(only U3 aw* M4 needed) 

^m 
lA 1 

Sample Skewness  (symbol j8j 

^1  = M3/83 
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Sample Kurtosis  (symbol ß^ 

i 4 

Interpretation of the last two estimators is usually in terms of how well the 

data fits the normal distribution.   If the skewness is close to zero and the 

kurtosis is close to three the normal distribution should provide a good 

approximation to the distribution.   Figure 8.1 gives an interpretation of 

the skewness value.   Zero indicates a symmetric distribution, negative 

skewness means a long left tail, positive values a long right tail.   Figure 8.2 

illustrates the kurtosis measure.   If the kurtosis is greater than three the 

distribution is more peaked than the normal (curve C).   If it is less than 

three the curve is flatter than the normal (curve A). 

8.2  CALCULATING PARAMETER ESTIMATES 

This section is divided into two parts.   Section 8.2.1 deals with 

the simple distributions.   This section will be the one more commonly 

used.   Section 8.2.2 is more complicated and deals with estimating parame- 

ters for the complex distributions. 

8.2.1 Simple Parametric Distributions 

Refer to Table 4.3 to obtain the recommended parameter estimates 

for the selected distribution.   Use Section 8.1 to obtain the sample statis- 

tics required. 

8.2.2 Complex Parametric Distributions 

As can be seen in Table 4.3, estimating parameters for the Weibull, 

Johnson, and Pearson distributions is more involved than for the simple 

distributions.   The reason for this is that the simple distributions generally 

have one or two parameters, whereas the complex distributions have 3 to 5 

effective parameters.   Background for the material which follows can be 

found in Appendix A. 
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8.2.2.1 Weibull 

The basic three-parameter Weibull distribution has a density given 

by: 

M-tM'^l-M] , x ^ c 

= 0 X< € 

where: 

f(x) = Weibull probability distribution 

f = location parameter 

A = scale parameter 

n = shape parameter 

In most applications the location parameter,   c,   is known.   In 

cases where it is not known, it can be estimated from the observations: 

c   = min[x.]    . 

(8) Better estimates of  c can be obtained using techniques developed by Dubey,   ; 

however, the improvement is not usually sufficient to warrant the extra 

effort involved. 

The maximum likelihood estimators for the three-parameter Weibull 

distribution result in a set of equations that can be solved by iterative 

methods which are very tedious to perform.   If the location parameter is 

known or estimated, the maximum likelihood equations for  X and rj can 
f51) be solved fairly easilyv   ' and are given by: 

2yxi ^nXj n 

?-"   n    .       ;>xi = 0 (8.1) 

§ »i" 
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and 

X  =  (Dtj'/n)1^ (8.2) 

where: 

TJ ■ Maximum likelihood estimator of rj 

X ■  Maximum likelihood estimator of X 

Equation 8.1 can be solved by the Newton-Raphson iterative procedure. 

1     gj-qP 

where: 
n 

S, = 2 ^ xl 
i=l 

sj «g (In x/x^ 

The estimate  f? is biased and should be corrected using the unbiasing fac- 
A 

tors in Table B-lof Appendix B.  Then, the estimate for X can be obtained 

directly from (8.2).   Further improvement can be obtained by using Menon's 

estimators.(38) 
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8.2.2.2 Johnson Distributions 

As indicated in Table 4.3, there are three Johnson distributions.   These 

three are generally denoted S., SB,   and S.. because these distributions 

are related to the normal distribution through a logarithmic transformation 

(S.),  bounded transformation (SB),   and unbounded transformation iS„). 

The problem of estimating parameters of the Johnson distribution thus be- 
comes a two-step procedure.   First determine which distribution to use, then 

estimate the appropriate parameters. 

The probability density functions for the three Johnson distributions 

are: 

SL:      fjfr) 

SB:      f2(x) 

Jzn{: 
-^{-^♦«.(x-ofj   ; X2 € 

(A 

c< x< f+ X 

SU:      f3(x) 

Jto    J {*-€)* + X58 

exp ..(,.... j(¥).[^..]-"lf 
-•<x < • 

In these distributions TJ and y are shape parameters,   X  is a scale parame- 
ter, and  c  is a location parameter.   These must satisfy: 

TJ >0,   X>0,   -«< y, c < + « 

In Section  8.1, expressions are given for the skewness,   /L,   and 

kurtosis,   /S,»   oi the samPle data.   These are used to determine which 
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distribution,  S,,   SB,   or Su to use.   This can be accomplished by plotting 

the sample ß.  and /32 on Fig. 8.3.   The location of the sample point 
01, /32) indicates the distribution to select.   One warning must be given, 

however.   Figure 8.3 is accurate for categorizing distributions given the 

true value of 0.   and /S».   The values for 0*   and 02 derived from the 

sample (Section 8.1) are estimates of the true values.   Thus if the sample 

point falls near the edge of a region in Fig. 8.3, i.e., near the SL  line, 

then it would be prudent to try all three Johnson distributions or to select 

one or more based on possible boundedness of the random variable in ques- 

tion.   Examining the density functions given above will aid in this 

determination. 

The parameter estimates for the Johnson distributions are given be- 

low.   The estimates of the Johnson parameters are not maximum likelihood 

estimates, except for the S, (* known) case, however they are the most 

practical to use.   The approach taken is to use percentile points from the 

data.   Recall that a 100 a percentile point for the population,   xa, is that 

value of x for which  P[x s xj = a.   We assume that the random sample 

Xj,...., x  has been ordered to give the order statistics W1< ... < W  . 

Then the kth order statistic will provide an estimate for the 100a percentile 
of the population, where: 

(8.3) 

a = k_ 
n 

1 
1 

This will be required in subsequent application, S. (' known).  In 
this case the estimators for n and y are respectively, t-1/2 

V = I£MV<)]
2
-[I£ 

i=l 

InCXj - c) 

i=l 

and (8.4) 

Att 

n 

y = -f 
^ 

InCXj - c) 
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Thus, from the sample x.f...fx    the parameters 17 and  y can be readily 
A A 1 n 

estimated with n and y, respectively. 

S, (c unknown) 

Again, the maximum likelihood estimators may be obtained but with some 

difficulty, and it is perhaps better to use the percentile approach.   That is assum« 

the percentile points xa ,   xa , and xa    have been estimated.   These are 

required since there are three parameters *,   »j, and y to estimate.   If 

za   is defined as the value of the variable in the normal distribution function cor- 
responding to the cumulative probability a , then. 

za3  =  y+T] ln(xa3   -c) 

Explicit solutions cannot be obtained for €, y ,   and TJ from these 

equations although they can be determined iteratively.   However, the following 

example will illustrate the use of one simplification. 

Suppose a sample size of n = 51  has been obtained.   The 6th, 26th, and 

46th order statistic from Wj < W« < ... < W51 will be used to estimate the 

following percentiles: 

^   = x.l  = W6 

xa2  = x.5  = W26 

^3  = x.9  = W46 

where aj    i = 1,2,3,   is obtained using Eq.   8.3.     From Table B-2 in 
Appendix B: 
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z.l =  -1.28 

z.5 = 0 

z.9 -  1.28 

From Eq. 8.4: 

V =  1 »["fev)] 
-1 

y = rf in 

€   = W26-e 
-y/tJ 

The advnntage of selecting a« =1 -a«  and a« = «S  should be noted. 

The percentr jb chosen are, of course, rather arbitrary and, therefore, 

many estin utes could be obtained for c, y and 17.   In this case, comparisons 
of .    r. «ative goodness-of-fit for each selection may be appropriate. 

SB(c,Aknown) 

This case implies both end points of the distribution are known.   Using 

the percentile method, estimators for  y and rf may be obtained: 

n  = 
z   - z 
«2    «1 

In 
€\f€ + X - X 

rX     - C\/C + X - X 

(8.5) 

y   =  z       - T>   In 
X      -f 

tt2 
« + X - x 
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Sg (General Case) 

This case implies that none of the parameters are known and requires 
that the appropriate number of equations of the form 

zN  = y + 77  In a 

x    - f a 
X + c - x a 

be solved for the unknown parameters.   Generally, this will lead to tran- 
scendental equations which can be solved numerically.   There is one simpli- 
fication in the case where c is known and the percentiles are selected such 
thai a =a1 =1 -a» and a« = • 5 (only three equations of the type 

A 

required for this case).   The solution for X for this case is 

p. 5- c)(xtt- (Mx ,.- cKx^- 0 ^-«Xx^-,)-] 
X ' ^ \ (x,-^-(xa-0(^-0 J "•« 

Equation 8.5 may then be used to generate estimates for 17 and y 
since with  8.6 the problem reduces to one with both end points known. 

SJJ (General Case) 

For general case of the STT  system, Johnson has generated tables 
f22x) that are useful for determining the parameters.v   ' These are presented 

in Tables B-3 and B-4 of Appendix B.   The tables were developed from solu- 
tions of equations defining the relationships of the first four moments to the 
parameters. 

Use of the tables first requires that the mean, variance, skewness 

and kurtosis be calculated. The values for 7/L and 0« are then U8ed to 

obtain the estimates for  y and 17 from Tables B-3 and B-4, respectively. 
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The A and c  estimators are calculated using: 

X=   , -____-. „^^ (8>7) 

||(w-l)Lc0rtl/i?)4ll   \ 

€ = x + X Jüö sinh (I) (8.8) 

where   s is the sample standard deviation (see Section 8.1) 

To illustrate use of the tables, assume a random sample gave 

V^ = • 5 and /L = 6 •   From Tables B-3, B-4 

y  =  - .3278     and     77 = 1.672 

X and € may now be calculated directly from Eqs. 8.7 and 8.8. 

8.2.2.3  Pearson Distributions 

There are twelve Pearson distributions.   These are generally indicated 

by Roman numerals:  Type I through Type XII.   The problem of estimating 

Pearson parameters, like those of the Johnson,  becomes a two-step problem. 

First determine which Pearson Type to use, then estimate the appropriate 

parameters. 
To determine which Pearson distributions to use, the skewness,   0-, 

and kurtosis,   ß,»   of the sample data (see Section 8.1) are needed.   The 
sample point (0 , /§„)  should be plotted on Fig. 8.4.   The location of the 

sample point indicates what distribution to use.   A warning needs to be given 

on using this procedure.   The point (/L, jL)  calculated from the data as in 
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Section 8.1 is only an estimate of the true values.   Thus if the sample point 

falls near a line separating two regions in Fig. 8.4, the Pearson Type in 

either region or in the line may fit the data.   In this event more than one 

Pearson Type should be tried.   It should also be clear from examination of 

Fig. 8.4 that only Types I, IV, and VI are indicated by regions; therefore, 

in practice only these types will be indicated by strict application of this 

selection procedure. 

Selection of a Pearson Type may also be aided by examining the 

Remarks column of Table 8.1.   This table lists all twelve Pearson Types and 
some information on each.   The form of the density function should be ob- 

tained from Table 8.1. 

The parameters for the density functions are given below. 

Typel 

m1 m« . 
f(x) = yoH) H) whereR ?) • 

Calculate the quantities 

r  = 6(/S2 - /Jj - l)/(6 + 3^ - 2/32) 

t  = \ s&J^r + 2)2 + 16(r + 1)]1/2 

m. and m« are given by: 

1 m  = J r - 2 ± r(r + 2) r    h     ] 
[^(r + 2)2 + 16(r + 1)J 

If fi, is positive, take  m« to be the positive root 

Sj  = t/(m2/m1 + 1) 
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a2 = tAnij/mj + 1) 

y« = 
m1   

1 m2   z rCmj + m2 + 2) 

o nij + m   * ntnij + l)r(m2 + 1) 
(mj + m2) 

Typ611 

2'm 

f(x) =y0 (l-^ 

The function parameters are found as follows: 

5fl2-9 

2       282^2 
a    = TTjT 

v    - JL .   r(m j. 1.5) yo " ^      ItrnTl) 

Type III 

f(x)  = y0 (1 + x/a)ya e_yx 

The function parameters are given by: 
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28l   03 
=   * 's2 

0      a    epr(p+l) 

Type IV 

'(x)  = y0 l1 +"2 I      exp(-i/tan    x 

The function parameters are given by: 

y = 6(^ - ^ -l)/{2ß2-Zß1 -6) 

m  = |(y + 2) 

v  =-y (y-2)v'^"Cl6(y-l)-ß1(y-2)2]'1/2 

= [i6 (16(y"1)"¥y-2)2)J 
yo = V[aF(y,w)] 

where F(y, t/)  is given in Reference 42. 
TageV 

f(x)  = yox"p exp(-y/x) (x > 0) 

The function parameters are given by: 

8 + 4 JT+ß* 
p  = 4 ^ ! 

y = s(p - 2) 1^3) 

yn  =  ^A'Cp - 1) 
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Type VI 

q2  ql £(x) = yo(x-a)Zx 1 

The function parameters are given by: 

y - 60^-^ -DAö+Sßj -2ß2) 

a  ^^{^{y + lf + my+m1/2 

q« and  -q.  are given by: 

q =^2±^n2i[ßi/[^(y + 2)2 + 16(y + 1)]]l/2 

a 1  z r(ql) 
yo = rlqj -q2-l)r(q2 + 1) 

Type VII 
rm 

'«•yo(>^) 

The function parameters are given by: 

5AJ-9 
m  = 2ißf3) 

-  Äj-3 

= ^^   rr(m) 
yo     ay^ r[m-0.5] 
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TvoeVIII 

f(x) = y0 (1 + x/a)"m 

The function parameters are given by: 

a =  ± s (2 - m) 7(3 - m)/(l - m) 

yo = (1 - m)/a 

where m is the solution of 

3,,     a .    „2 
m (4 - /Sj) + mA(9^ - 12) - 24^m + 16^   = 0 0 < m < 1 

Type DC 

m f(x)  = y0(l + x/a) 

The function parameters are given by: 

a   =  ±s(m + 2) 7m + 3)(m + 1) 

yo = (m + l)/a 

where m is the solution of 

m3^ - 4) + m2(9^1 - 12) + 2imß1 + 16/^   = 0 m >0 

TypeX 

f(x)  = yoexp(-x/s) 

The parameter is given by: 

y     = s 
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Type XI 

f(x)  = yox -m 

The function parameters are given by: 

yo = hm'1 (m - 1) 

b  =  ±s(m - 2) J{m = 3)/(m - 1) 

where  m is a solution of 

m3(4 - ßj + m2{9ß1 - 12) - 240^ + 16^ = 0 

TypeXn 

f(x)  = v 
s (V^.y^.x]^3^ 
s (4 + ßl - Jßj - x 

y    is given by 

where 

y0 = r(m + Dltl - m)/b 

m = V/Jj/O + ßj) 

b = 2s 7(3 + /Sj) 
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9.   GOODNESS-OF-FIT TESTS 

Goodness-of-fit tests are statistical tests for evaluating whether a 

group erf data supports the assumption that the random variable from which 

the data are drawn has come from the assumed probability distribution. 

These tests are helpful in accepting or rejecting the conclusion that some 

random variable follows a tentatively selected probability distribution. 

The technique of applying statistical tests of distributional assump- 

tions follows three basic steps: 

1. A number known as a test Statistic is calculated from 
the obsenred data. 

2. The probability of obtaining the calculated test statistic, 
assuming the selected distribution is correct, is deter- 
mined.   This can often be done by using precomputed tables 
of percentiles of the distribution of the test statistic. 

3. If the probability of obtaining the calculated test statistic is 
low, the conclusion is that the assumed distribution does not 
provide an adequate representation.   If the probability 
associated with the test statistic is not low, then the data 
provide no evidence that the assumed distribution is 
inadequate. 

It should be clearly understood that although this procedure allows 

rejection of a distribution as inadequate, it never proves that the model is 

correct.   In fact, the outcome of a statistical test depends highly upon the 

amount of data available - the more data there are, the better are the chances 

of rejecting an inadequate model.   If too few data points are available, even 

a model that deviates grossly from the assumed model frequently cannot be 

established as inadequate. 
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Table 9.1 provides summary information on goodness-of-fit 

tests and also indicates on which distributions the tests are applicable. 

After a test is selected from this table, instructions on how to perform 

the lest can be found in the subsequent sections. 

A comment on using goodness-of-fit tests on the complex distri- 
butions (Weibull, Johnson, and Pearson) may also be helpful.   These dis- 

tributions are designed to fit almost any set of data well.   It is, therefore, 

unlikely that any of them will be rejected by a goodness-of-fit test.   Using 

goodness of fit tests on any of these distributions will not generally give 

the analyst much further information on the form of the true distribution, 

and he may elect to accept one of these complex distributions without a 

goodness-of-fit test. 

This brief background should suffice for practical use of goodness- 

of-fit test in simulation modeling.   In the following section, a simple selec- 

tion procedure is given to determine what goodness-of-fit test to use based 

upon the probability distribution tentatively selected to model the random 

variable in question.   In the following sections these tests are described 

and instructions for performing the tests are given.   Although there are 

numerous statistical tests, these are the most powerful available. 

9.1  CHI-SQUARE GOODNESS-OF-FIT TEST 

The Chi-square goodness-of-fit test is probably the most widely used 

and versatile technique for evaluating distributional assumptions.   It can be 

applied to test any distributional assumption without having to know the values 

of the distribution parameters.   Its major drawbacks are its lack of sensitivity 

in detecting inadequate models when few observations are available   and the 

frequent need to arrange the data within arbitrary cells which can affect the 
outcome of the test. 
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The Chi-square test is used as follows: 

Step 1,   Estimate each of the unknown parameters of the assumed distribution. 

Step 2.   Divide the data into k  classes or cells and determine the probability 
of a random value from the assumed model falling within each class. Two 
methods for this are presented: the first method is applicable if the data arc 
initially arranged in frequency classes, and the second applies when the data 
are not initially tabulated in classes. 

Method a.   The number of cells,   k,   will be the number of classes of 
the tabulated data subject to the restriction that the expected number 
of observations in each cell under the assumed model is at least 5. 
Let  CLj and CUj denote the lower and upper bounds of the  ith fre- 
quency cell.   The distribution of the assumed model (using the esti- 
mated parameters) is then used to estimate: 

Pr(CL. ^ x < CU.)       ,       i = l,2,...k     . 

Method b.   When the number of observations,   n,   is large (>200) a 
good rule is to take k as the integer closest to 

k'   =  4[0.75(n-t)2]1/5    . 

For moderate values of  n a good rule is to make k as large as 
possible but with the restriction k < n/5.   The cell boundaries 
xi,..2> • • «Xj are determined from the cumulative distribution for 
the assumed model (using the estimated parameters) as the values 
such that: 

Pr(x ^xj) =^,Pr(x ^x2) =|,... Pr(x ^.j)  = ^^ . 

Step 3.   Multiply each of the cell probabilities by the sample size n.   This 
yields the expected number E:   of observations for each cell under the 
assumed model.   For Method 2b: 

Ej  =  nA      ,       i = l,2,...k 

Step 4.   If the data are not initially tabulated, count the number of observed 
values,   m.,   in each cell.   Otherwise, determine  m.  directly. 
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Step 5.   Compute the test statistic 

k     (m   - E )2 

2       V^   V   i       i 

i=l 1 

For Method 2b this simplifies to 

x
2   =  -i   7      uv. |- n 

o 
Step 6.   Compare the computed value x     with the tabulated percentiles for 
a chi-square variate (Table B-5) using k-r-1 dep^ees of freedom, where r 
i^the number of parameters that were estimated in Step 1.   High values of 
X    signify that the observed data contradicts the assumed model.   For 
example, if the above calculated value x     exceeds the 0. 95 tabulated value 
of Chi-square, the chances are less than one in twenty that the data could 
have come from the assumed distribution. 

9.2       KOLMOGOROV-SMIRNOV TEST 

This test is used to evalute the assumption that a sample belongs to a 

specified known continuous distribution.   It is a distribution-free test and is 

a good test for small samples.   In general, it is a more powerful test than 

the Chi-square where it is applicable.   Although the test is designed for com- 

paring a sample against a specified and known distribution, the test is robust 

enough that it may still be applied to distributions whose parameters are 

estimated from the sample data.   The effect of estimating the parameters of 

the distribution from the sample is to reduce the critical level of the  d (N) 

statistic, i. e., the level erf significance is really higher than the  a associated 

with the chosen d   (N).   Hence, if the chosen d (N) statistic value is 
ft a 
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exceeded in the test, it can be safely concluded that the discrepancy is 

significant.   Grouping observations into intervals also tends to lower the 

value of d.   For grouped data, therefore, the appropriate significance 

levels for testing should be chosen smaller than the significance levels used 

for a complete sample. 

The test is used as follows: 

Step 1.   Rearrange the sample of size n   to obtain the ordered sample 
x^, x0,... x    where x1 ^ x« ^.... s x . 1    z n l      c n 

Step 2.   The sample cumulative distribution then takes on values oi 
1/rt, 2/n,...., n/n at the points  x., x . 

Step 3.   Calculate the cumulative frequency values for the assumed distri- 
bution at the sample values of x1, x0, ... x . 

Step 4.   Determine the maximum deviation,   d,   between the sample cumula- 
tive distribution and assumed cumulative distribution from Steps 2 and 3. 

Step 5.   Compare the calculated deviation d with the test statistic  d (n^ 
found from Table B-6 for the desired level of significance.   If d  exceeds 
the value  d (n)  then the assumption that the sample comes from the 
assumed di^fribution may be rejected at the   lOOoro  significance level. 

9. 3 W-TEST 

This test is used to evalute the assumption that a sample has a normal 
[ 

distribution.   It can be used to test the assumption that a sample fits log- 

normal distribution by using the log of the sample values.   The W-test has 

been shown to be an effective technique for evaluating the assumption of 

normality against a wide spectrum of non-normal alternatives, even if only 

a relatively small number of observations are: available.   It is generally 
2 more powerful than the  x > especially for small sample sizes. 

The W-test is used as follows: 

Step 1.   Rearrange the sample to obtain the ordered sample x. ,x9. 
where x1 * x0 *... ,x . 12 n 
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Step 2.   Compute 

1=1 1=1 

.y 
n 

where x is the data mean. 

Step 3.   If n is even, set k = n/2; if n is odd, set k = (n-l)/.2.   Then 
compute. 

b =    7     a    . ..(x       ., - x.)     , 
tmj    n-i+1   n-i+1      r     ' 
i=l 

where the values of Zji-i+i for i = 1,... .k are given in Table B-7 for 
n = 3,..., 50.   Note that when n is odd  x    .   does not enter into this 
computation. 

Setp 4.   Compute the test statistic 

W  = b2/S2     . 

Step 5.   Compare the calculated value of W with the percentiles of the dis- 
tribution of this test statistic shown in Table B-8.   This table gives the mini- 
mum values of W  that we would obtain with 1,2,5,10, and 50 percent proba- 
bility as a function of n,   if the data actually came from a normal distribution. 
If the percentile is lower than the selected level of significance, then the 
hypothesis of normality can be rejected and accepted otherwise. 

9.4   WE-TEST 

This test is used to evaluate the assumption that a sample has an ex- 

ponential distribution with the origin unknown.   Percentiles of the WE dis- 

tribution have not yet been tabulated for sample sizes other than 7 to  35. 

The comments on the W-test are also applicable here. 
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The WE-test is used as follows: 

Step 1.   Calculate the test statistic: 

(x-x.) 
WE 

i=l i=l \ i-1   I1 

where x^, 1= 1,... n,   are the n observed values,   x    is the smallest 
value, and x is the data mean. 

Step 2.   Compare the computed value WE  with the 95 percent and 90 percent 
ranges given in Table B-9.   This test is two-sided in that too-low or too- 
high values indicate non-exponentiality.   Thus, if the computed WE  value 
falls outside the 95  or 90 percent range, then the chances arp less than 
one m- 20 or one in  10,   respectively, that the observed sample was drawn 
from an exponential distribution. 

9.5      WE0-TEST 

This test is used to evaluate the assumption that a sample has an expo- 

nential distribution with the origin c known.   However, percentiles of the distri- 

bution WE    have not been tabulated for sample sizes other than 7 to  35.   The o * 
comments on the W-test are also applicable here. 

The WE -test is used as follows: o 

Step 1.   Subtract the known location   c from each of the sample values x.. 

Step 2.   Calculate the test statistic 
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where x.f 1 = 1,...,   n,   are the n sample values and x is the sample 
mean. 

Step 3.   Determine whether the computed value WE    lies outside the tabulated 
95 percent and 90 percent ranges shown in Table B-IO as a function of n.   This 
test is two-sided in that too-low or too-high values indicate non-exponentiality. 
Thus, if the computed value of WE0 falls outside the 95 percent range, the 
chances are less than one in twenty that the observed sample was drawn from 
an exponential distribution with the assumed origin. 
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APPENDIX A 

COMPLEX PARAMETRIC DISTRIBUTIONS 
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A. 1 INTRODUCTION 

Although the reader probably has a good general knowledge 

of the simple parametric distributions, he is likely to be unfamiliar 

with the complex parametric distributions.  The main text of this 

volume indicates when and how to use these distributions, but all with- 

out requiring a thorough understanding of the complex distributions. 

This appendix is intended to give the reader some background informa- 

tion on the complex distributions so that he will be better able to under- 

stand and use the related material in the main text. 
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A. 2 WEIBULL DISTRIBUTION 

The Weibull distribution is best known for its application to reliability 

analysis where it is known to fit a large class of life (time to failure) dis- 

tributions (53).  The basic distribution suggested by Weibull is to define 

(p(x), where the cumulative distribution function F is given by 

F(x)  = P[X< x] = l-e"^^  = JX f(x)dx     . 
-00 

One of the simplest forms for (p(x)  is 

<p(x)  = ÖE^ x ^ c 

=   0 X< € 

in which case 

F(x)  = 1 - e      X x 2 c 

= 0 x< c 

and 

. (x-c)^ 

f(x)  = t?/X(x-€)T7'1e   ^^ x^c 

=   0 X^ € 

The parameter  c is called the location parameter in the sense that it 

defines the lower limit for the random variable x.   For the special case 

where f = 0, 

f(x) = n/xxn V* 
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and 

F(x)  = l-e'x  /X     . 

The values of n and X  may be selected to provide a large number 
of shapes some of which are sketched below in Fig. A. 1.   For this reason 
TJ is called a shape parameter and X  is called a scale parameter since it 
scales the value of x. 

*~   x 

Fig. A. 1.  Weibull Distribution lor Various Values of 
Parameter  77 

96 



It should be noted from Fig. A. 1 that rj1 ss 1/2 might represent 
the shape parameter for the early failure region and no = 3 the shape 
parameter for the wear-out region in a typical reliability application. 

■■ 
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A. 8 JOHNSON DISTRIBUTIONS 

These distributions were proposed by Johnson who used trans- 
formations of the normalized normal random variable to generate 
empirical distributions^!^).   The main advantages of this approach 
are that percentiles of the empirical distribution may be obtained using 
a table of the normal probability distribution, as will become apparent 
later, and that the approach encompasses a broad class of problems. 

To introduce the Johnson distributions, assume that it is de- 
sired to obtain a probability density function for the random variable 
X about which little or no information is available.   Then, a general 
transformation from X to Z is postulated, where Z is a normalized 
normal random variable, as follows 

Z  =  y + T?T(X)     , 

where yand TJ and parameters to be determined. 

In most situations, the transformation T(X) will be unknown. 
However, Johnson proposed three families of distributions, referred 
to as the S., SB, and S» systems, respectively, defined as follows 

SL(Log-normal)r(x)  = in (x-c) 

SB(Bounded) T(x)      = lntj~~~> 

SydJnbounded) T(x)   = sinh"1^) 

The undefined regions for x above imply T(x) ■ 0. 

€< X <  C + X 

-"< X <• 
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Similar to the Weibull distribution, tj and y are shape parameters, 
X is a scale parameter, and c plays the role of location parameter 
which shifts the region of relevancy for x.  These parameters are 
subject to the following constraints: 

tj>0     ;    X >0 

-• < y < • 

In some cases, these parameters may be identified from a 
basic understanding of the process.   For example, if the random 
variable x must be non-negative, then e = 0 and the S., or lognormal 
distribution, might be appropriate.   If x is restricted to a finite region, 
c< x < c +X, then S» (bounded distribution) may be appropriate. 
An infinite range for x would suggest the S„ (unbounded) distribution. 

The probability density function for the distributions are as 
follows: 

.2 
SB:      f2(x)  . J. 

exp ■H'-fw-^-n)! 
-•<x< • 
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The density function for the S. system is a three-parameter 
distribution commonly called the log-normal distribution.   This is 
known to describe many familiar events such as amount of inheritance, 
income, particle size from breakage, etc. 

As previously mentioned, the class of situations encompassed 
within these distributions is large.  An indication of the flexibility 
in defining a large number of shapes is evidenced in Figs. A. 2 to 
A. 4 which illustrate several forms of the S. , S- and Su density func- 
tions. 

The difference between the three types of Johnson distributions 
can be characterized by the relationship between the distribution skew- 
ness and distribution kurtosis.   Section 8 of this volume contains a dis- 
cussion of skewness and kurtosis; however, a summary definition is 
that 

&l=u$/a    (skewness) 

and 

62 ' Hi*    (^rtosis) 

To help in the definition of the relative variation in 0*  and /J«. 
Johnson prepared the results as shown in Fig. A. 5.   Note that the log- 
normal distribution is defined by a line given by: 

/Jj  = (w-1) ((o+2)2 ;     > 0 
4 3 2 02:=<ti+2(«)+3(o-3      ;      > 0 

where 

is the shape parameter for S. . 
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Y "0; i?«l 

•- X 

Fig. A. 2. Johnson Probability Density Functions for S. (c = 0) 
Li 
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Fig. A. 3. Johnson Probability Density Functions for Sn («= 0 ; A= 1) 
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Fig. A. 4.   Johnson Probability Density Functions for S.. 
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Fig. A. 5.. Regions of Definition for Johnson Distributions Based on 
Skewness and Kurtosis 
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It should be recognised that estimates for/J - and fi- may lead 
to a wrong conclusion as to the type of distribution to be used.  The 
confidence that this will not occur is related to the accuracy of the 
estimates. In ease of doubt, a goodness-of-fit test may be used to 
help in a decision. 
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A. 4 PEARSON DISTRIBUTIONS 

A general claf s of probability density functions known as the 
Pearson family" '    ' , is given by solutions of the differential 
equation: 

% 
b0+blX+b2X 

The solutions of this equation were classified by Pearson into twelve 
families of curves shewn in Table 8.1.   These curves are displayed 
in Fig. A. 6.   The Pearson distributions are related to the standard 
densities frequently discussed.   For example: the gamma distributions 
are Pearson's Type HI curves, the normal is a Type VII, the beta 
is a Type I while the beta with parameters a = 8 is represented by 
the Pearson Type U curves. 

This system of density functions is very appealing from the 
standpoint of fitting sample data, the reason being that only the first 
four moments need be calculated.  Pearson's methods of fitting sample 
data consists of the following steps: 

1. Compute the first four moments, n-, ji«» U3» 
u4 of the sample data. 

2. Calculate the numerical value of the parameters 
0* andjS*» where: 

/J- = skewness, 

|5 2 = kurtosis. 
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Fig. A.6.   Typical shapes of Pearson distributions (Sheet 1 of 2) 
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TYPE vm f« 

x=-a    o 

TYPE IX 

x=-a 

1« 

f«s3r0(l + |) 
-m 

'«=yo(1+ir 

TYPEX 

f(x) = yoe -x/a 

TYPE XI 
«w f«=y0x -m 

TYPE XII 
f(x) = y>(^J » ^Vy^TTJ 

Kote: Type IV and vn appear as normal distributions. 

Fig. A.6.  Typical shapes of Pearson distributions (Sheet 2 of 2) 
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These parameters determine the type of 
Pearson distribution which appropriately 
matches the sample data. 

3. Equate the observed (sample) moments to 
the moments of the appropriate distribution 
expressed in terms of its parameters, and 

4. Solve the resulting equations for those parame- 
ters thereby completely specifying the distribution 
function. 

The relationships between ß*  and jS* for a given Pearson distribution have 
been represented in a convenient graphical form in the so-called /L, /Sg- 
plane shown in Fig. A. 7.   The normal distribution corresponds to the point 

0i = 0> 09 = 3 in the ^V^2 ^Bne'   TyPe ni distributions are to be chosen 
when the point ßl,ß2 is on the line 2ß2-3ßl-6 = 0 and Type Vwhen (ß^,ß^ 

is on the cubic 

Bfa + 3)2  = 4(4fl2 - ZßJ {2l>2 - 3^ - 6). 

In considering the subtypes under Type I, a biquadratic in 0- and 0« 
separates the area of the J-shaped curves from the regions of limited 
range modal curves and the region of the U-shaped curves. 

In summary, the curves traced in the (flL,^ J- plane provide 
a means of selecting the Pearson distribution appropriate to a given collec- 
tion of sample data.  For further details and numerical examples 
see Elderton(lO) and Kendall(27). 
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/ 
s 

TABLE B-l 
Unbiasing Factors for the M. L. E. of ty 

n    S    C    7     I   >   10  11  12   13   14   IS  1C 

B(n)  .66» .752 .792  .120 .M2  .8S9 .t72 .883 .893 .901 .908 .914 

II 18 20 22 24 2« 28 .tO  12 34 36 38 40 

B(n) .923 .931 .938 .943 .947 .»SI .»SS .958 960 .962 .964 .966 

n 47 «4 4» 48 50 S2 S4   Sfi 5fl 60 62 64 

B(n) .968 .970 .971 .972 .973 .974 .975 .»7« .977 .978 .979 .980 

n   66   68   70    72   74   76  78  Dn  8S   90   100  120 

*(n)  .980 .981 .981   .982  .982  .983 .983 .984 .985 .986  .987 .990 
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TABLE B-2 

Percentiles of the Normal Distribution 

F(x)=JX  7ke -t
2/2 

-/SF 
dt 

m .00 .01 .02 .03 .04 .03 .00 .07 .OS .09 

.0 .5000 .5040 .5080 .5120 .5100 .6190 .5239 .5279 .5319 .5359 

.1 .5308 .5I3S .5478 .5517 .5557 .5596 .5636 .5675 .5714 .6753 

.3 .5793 .5832 .5X71 .5910 .5948 .5087 .1)026 .0001 .«103 .0141 

.S .6170 .0217 .6255 .C2t)3 .6331 .6368 .0406 .0143 .«ISO .6517 

.4 .0551 .6591 .6628 .GOU4 .6700 .6736 .0772 .6808 .6344 .6879 

.5 .0015 .0050 .6985 .7010 .7054 .7088 .7123 .7157 .7100 .7224 

.« .7257 .7291 ".7321 .7357 .7380 .7422 .7151 .7486 .7517 .7519 

.7 .7580 .7611 .7642 .7673 ,7704 .7734 .7701 .7701 .7823 .7852 
4 .7881 .7910 .7930 .7967 .7995 .8023 .8051 .8078 .8106 .8133 
.9 .8159 .8186 .8212 .8238 .8204 .8280 .8316 .8340 .8305 .8389 

1.0 .8113 .8138 .8461 .8-185 .8508 .8531 .8554 .8577 .8599 .8621 
1.1 ,8613 .8065 .8686 .8708 .8720 .8749 .8770 .8700 .SS10 .8830 
J.3 .8819 .8809 .8888 .8007 .8925 .8044 .8062 .SOSO .8997 .9015 
l.S .0032 .9049 .000« .0082 .0099 .0115 .0)31 .0147 .9102 .0177 
1.4 .9192 .9207 .9222 .0236 .9251 .0205 .0*279 .0202 .9306 .0310 

1.5 .0332 .0315 .9357 .0370 .0382 .0304 .9100 .0418 .0429 .0441 
i.e .0152 .9 «63 .0474 .9181 .9405 .0505 .0315 .9525 .0535 .0545 
1.7 .0554 .9564 .9573 .9582 .0501 .0500 .0008 .0610 .0625 .0633 
1.8 .0641 .0610 .0656 .0064 .0671 .9878 .vem .OOO.'l .0690 .0700 
1.0 .9713 .0719 .0726 .9732 .0738 .0744 .0750 .0750 .9761 .9767 

3.0 .9772 .0778 .0781 .078« .9703 .0708 .0803 .9808 .0812 .0817 
3.1 .0821 .0826 .0830 .9S34 .0838 .0842 .9846 .0850 .0854 .0867 
3.3 .0801 .9864 .OS»» .9871 .0375 .0878 .0881 .9884 .9S87 .0800 
3.S .9893 .0890 .0W»8 .<)«K)1 .0901 .0006 .0000 .SOU .9013 .9016 
3.4 .9018 .0920 .9922 .oota .9927 .0029 .0031 .0932 .0034 .9030 

3.8 .0038 .0910 .0941 .0013 .9045 .9016 .0048 .9049 .9951 .0053 
3.8 .9053 .0955 .0956 .0057 .0050 .9000 .9001 .0902 .0063 .0904 
3.7 .0905 .0066 .9067 .1X108 .0069 .0070 .0071 .0072 .00/« .0974 
3.8 .0074 .9975 .0976 .0077 .9977 .0078 .0070 .0970 .0080 .9981 
3.0 .9981 .0982 .9082 .0083 .0081 .0081 .0085 .0085 .0080 .0986 

8.0 .0087 .0987 .0087 .908.8 .9088 , .9989 .0980 .0080 .9990 .9900 
3.1 .0000 .0991 .0091 .0091 .0092 .9002 .0002 .000-' .C903 .0093 
8.3 .9993 .0903 .9994 .9091 .0094 .9004 .0904 .9005 .00011 .0005 
3.3 .0905 .0905 .9005 .9096 .0990 .0006 .0900 .000« .0000 .9007 
3.4 .9907 .0097 .0997 .9007 .9997 .0007 .0007 .0007 .0997 .0008 

a 1.282 1.045 1.060 2.320 3.576 3.090 3.291 3.S01 4.417 

^e) .00 .05 .975 .00 .095 .009 .9995 .CÖ005 .ooooo;» 

«i -rw] .30 .10 .05 .02 .01 .002 .001 .0001 .00001 

(From A. M. Mood, Introduction to the Theory of Statistics. McGraw-Hill, 
1950.)  — '  
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TABLE B-3 

Tables to Facilitate Fitting Johnson Sv Distribution* 

Values of —y 

1 
•ttl» 
•ITM 
•Ittl 

0-I1M 
•10M 
•MM 

•074» 
M 

4-1 
4-a 
4S 
44 
4» 

4T 
4t 

■•I 0-OXM 
»a -0374 
53 •(«•! 

•CMJ 

•06lt 

0-0491 

■0444 
•04t4 

»•: 
61 

»■• 
»•7 
SB 
M 

»•I 
*■] 
43 
4-4 
45 

4-7 
44 
4* 
74 

71 
M 
7« 
7-4 
7» 

74 

74* 
74 

»a 
• 4 
•4 
• 8 

«•a 

•034S 
•0317 

003« 
0314 
•0307 
om 
0200 

oossa 
•05176 
•0S69 
•02M 
■0357 

00151 
■0346 
■0341 
•0S3S 
•0332 

00337 
•0333 
•0*19 
0316 
4313 

0-0106 
4306 
•0903 
4IM 
4196 

00190 
•01H» 
•01M) 
•0175 
4171 

414 

0-7373 

-3620 
•3904 

0-3435 
•3103 
•1953 
•1441 
•IMT 

0)391 
•1374 
■UM 
•lilt 
•1044 

•4ft'« 
-oo»a 
>0R«1 
■Oij,:« 
■01(14 

00.83 
•075? 
•07! ü 
•Oil»'' 
■o«;t. 

C . 
•1 j." '■ 
■usui» 
OAK) 

00;.flS 
•0&!.3 
0540 
•0'.;7 
•0515 

0-0804 
•04t:» 
-04 K3 
•M73 
•0464 

00435 
0447 

-0439 
0431 
4434 

00417 
-0410 
■0404 
03«* 

■0393 

003M 
0370 
0300 

-0351 
-0343 

»M 

1-33« 
0-7747 

•••174 

•364* 
•t*M 

»SIM 
•IMS 
•1606 
•14M 
•I5M 

frl4M 
•1431 
-IS53 
•I3M 
•1334 

OHM 
-113» 
•1ÜM 
-1057 
-lOSS 

o-o;«» 
-0V".8 
•0V30 
wm 
MM 

00(156 
■0ti36 
■0ftl4 
-0;95 
•0777 

0-0760 
•0743 
4:3» 
-071? 
4«M 

0-0686 
M7S 
4MI 
4460 
44M 

0043» 
4614 
4«M 

»M •IS 

1-940 
IMS 
O-SIM 
4394 

M90 

00573 
0557 

•0543 
•0539 
4514 

■44K7 
•3931 
•3490 
•3150 

0-3676 
■3647 
•MM 
•SSM 
•8153 

0-3031 
•ISM 
•ISM 
•1743 
•I6M 

01607 
■1534 
•1477 
■1424 
•1*76 

n<l3M 
■»2W 
•I3M 
•1316 
•11*3 

Ollfil 
•1121 
■10(14 
•1067 
•1043 

a 1020 
•099H 
■0977 
•0957 
•0938 

0032O 
•0PO3 
•Ort87 
■0871 
01.66 

00843 
0839 

■0HI6 
0802 

■0790 

00747 
014« 

■0725 
■0707 
■0484 

31*9 
1-656 
1-133 
0M30 

■5907 
•513* 
■4(134 
■4074 

O3707 
■3404 
31*1 

■3937 
•37*3 

0-2S02 
■2451 
•2327 
■2216 
•3117 

0-202-; 
■IMO 
•1872 
•1H04 
■1742 

01*84 
■1631 
■IW1. 
■1531. 
•14*3 

0I45& 
■1415 
■I 380 
■1347 
■1315 

omn 
■126« 
■1231 
■I:CK» 
•1162 

01159 
■1137 
•me 
■109(1 
•1677 

0-1059 
■1042 
■1025 
■1009 
■0993 

00*44 
■0937 
•0912 
■Odltr' 
■08*6 

430 

43** 
••477 
1M9 
Ma 

0-9116 
•7*8« 
•Ml* 
•6723 
4113 

04029 
•4234 
•SUV 
•3932 
•9306 

0 319? 
•3014 
-3857 
•2717 
•3592 

0 24 DO 
•:':i78 
•23SS 
•im 
•3123 

020« 
-I9KG 
•l*2t. 
• isr.N 
•191ft 

o-m« 
•1719 
•I67K 
•1*98 
•1596 

0 1 (WO 
• 1*26 
•1492 
•1461 
•1432 

01404 
•1377 
•13i2 
•1327 
■1304 

o-mi 
•1360 
•1340 
•1220 
•1201 

0115* 
•1132 
•ll«l 
•1073 
•I04C 

0*5 

»-334 
1-446 

1IS7 
OM*l 

41*7 
•7177 
■4304 

08673 
•61 (16 
•474) 
■4397 
■4100 

03844 
■M22 
■342« 
•3254 
304» 

03961 
-2836 
•27?3 
-«no 
•K2( 

0243H 
-23fiS 
■■mx 
int. 

•3161 

03091 
•3035 
•1983 
■1933 
■1*87 

0-1(43 
■1802 
-1753 
•1725 
•16*0 

0165« 
•1624 
•1594 
•15*5 
•1537 

O-IS10 
•148* 
•14*0 
•1437 
-1414 

0-1371 
•1333 
-1295 
•1261 
•1339 

01199 
•1171 

4 49 

3 484 
SIM 

1 665 
1 238 
1038 
0S8I4 

•7733 

0 6902 
•4343 
■0708 
■5266 
•4H91 

04564 
4'.'KH 
4Ü)H 

•1836 
■3648 

0 3479 
•:.738 
•SIV! 
■31 .1» 
■n** 

or"«« 
■•.•>(.: 

.-■MS 

■»W4 

02433 
-S.360 
rsoi 

■81«" 

«•«IS« 
?o:.H 

-?043 
-1V90 
•1M1 

0-191« 
■ 1KN0 
•I84> 
•1810 
•177V 

0174« 
•1716 
<ICN7 
■1660 
■1633 

O-KM 
•1537 
•1494 
•1454 
•1417 

0-1382 
■134« 

• a 

8139 
1414 
1-302 
I •096 
O-9470 

0 0363 
•750* 
4814 
4361 
-6780 

063ht 
•5010 
474* 

-44H4 
-4254 

04050 
•JM56 
-ssrn 

-»411 

or.2'c 
•sn.; 

•:tu7 
•?tl7» 

0 'I'-'H« 
••::nz 
•26.! 3 
•2574 
■3509 

0-2448 
■2391 
■2337 
■*?8C 
•2SS7 

0 5190 
■2147 
■3105 
■loos 
■2027 

0 1991 
•1966 
•1922 
■1891 
■186U 

01 so: 
•1749 
•ir.M 
• It'.3 
•1410 

0 1670 
•1532 

•M 

3-167 
8-IBS 
1467 
1 378 
1-149 

1016 
0 903! 

■8i:'7 
•7407 
4» II 

06311 
•ASK« 
MfO 

■i>-yt. 
■4J'2£ 

0-4074 
•4453 
■Viib 
•4076 
•3913 

0-Ä7 ■'. 
•iZ..<i 
•3M.4 
•3''. '. 

O-U 
-3.1 
•3".> 
.{<.■ 

-2ts4 

o-rm 
-27.i. 
•;'r4B 
■W.t.6 
■2M<i 

02476 
-2426 
-7377 
-2331 
-2tH; 

••SMO 
■2i>0« 
-2167 
2131 

•8095 

O-'Ci.'O 
-1W6K 
•iwr.! 
-IP.V» 
-IBIO 

• 1144 
-1721 

8   I 
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TABLE B-3 (continued) 

Values of — y (continued) 

WK 

4-1 
4-3 
4-» 

4-7 
44 
4« 

f-l 

»» 
••4 
• » 

5-« 
57 
68 

6-1 
43 
*3 
64 
6-5 

6-6 
4-7 
<>• 
6-9 
70 

7 1 
7-2 
7» 
7-4 
7-5 

7-* 
7-7 
?•■ 
7» 

SI 
63 
B» 
• 4 
M 
•-4 
• 7 
• S 
8« 

»■2 
♦ 4 
•4 
M 

10« 

OS« 

l-TU 
1440 

IWI 
10»« 
«■0748 

•8802 
•8038 

»7800 

MIO 
«017 
••478 

«•6874 
•610« 
«M8 
W6J 

•4468 

0-4283 
•41 SS 
•1S78 
•3840 
•8714 

0-3698 
•3401 
■3390 
•3207 
•320» 

0-3IS3 
-3046 
297.1 

-2904 
■3939 

02778 
-3719 
■2864 
-2611 
•2681 

02813 
•3407 
•2423 
•2381 
•2841 

0S303 
•226« 
•2230 
•210« 
•2I«3 

02132 
-2101 
-2072 
£044 

-201« 

0-1964 
•1916 

3363 
2-42« 
1-90« 

1877 
134» 
1-182 
1064 
•-»687 

0-870« 
«034 

•7461 
-6948 
-063« 

06170 
•6646 
•666« 
•6208 
•600« 

04SS« 
-4668 
•4491 
■4331 
•41*4 

0-4048 
■3923 
■380« 
■3897 
■3698 

03600 
■3410 
■332« 
■3247 
■3178 

03101 
•3034 
-29«7 
-2907 
-2849 

0-579» 
•2742 
-2692 
-2646 
•2600 

0-266« 
-2614 
-2473 
-}436 
2397 

03362 
-2327 
•2294 
-2362 
•2231 

02172 
-2117 

2621 

to* 
1-70« 
1-460 
1-280 
urn 
1-033 
0-9484 
•»«9» 
-8083 
-7660 

0-7092 
6693 

-4341 
•028 
-6748 

0649* 
-6270 
-6043 
-4(176 
-4701 

04642 
-4396 
4268 
4131 

-4013 

03»O3 
-3799 
-370!!: 
3611 

-36X4 

0-3443 
-3366 
-3293 
-3224 
-Sit» 

0 309»; 
-3037 
-2»M> 
-292« 
•2871 

0-2822 
•2774 
•272» 
•2666 
■2643 

0 2603 
•2664 
•2626 
-2490 
-24 6f 

>23H» 
•2328 

«7« 

410« 

28M 
2-264 
1860 
1-66» 
1392 

1-340 
I 121 
1-024 
0-9428 

•8781 

08184 
•7687 
-7262 
-686» 
•6630 

00226 
•«•03 
•670« 
■6481 
•627» 

0-60RR 
-4916 
-4768 
-4607 
-4470 

0-4341 
■4221 
-410» 
-<nc4 
-S«I8 

0-3812 
-3723 
•3640 
•3661 
•348« 

0-3416 
•3347 
-328J 
-3221 
•3I«3 

»3100 
•3063 
•3001 
•2962 
•29Ü4 

•-»86» 
•2812 
•2770 
-2730 
•26ft 

••2617 
•»84» 
-2483 
•2428 
»366 

»71 

1-622 
1-363 
1 221 
1114 
1426 

09609 
•8877 
•6331 
•786« 
•741» 

0-7067 
613S 

•«437 
«168 

•»»24 

0-6700 
•649« 
•6308 
•6134 
•4973 

• 4K24 
•46H4 
•4664 
-4433 
-4318 

0 4211 
-4110 
•4014 

-3H38 

03767 
•Sf.:0 
-3(Mi7 
•3(137 
•3470 

0-34(17 
•3346 
•3283 
-3232 
•3179 

03127 
-307« 
•3031 
-29)15 
•.•941 

0 288H 
-277R 
•8708 
-::oj9 
•1676 

• M 

1931 
I «70 
I-4K6 
I 333 
1 216 

1117 
H04 
09042 

•039 
•8616 

0«»S6 
•7«47 
•7284 
•6942 
•••03 

o-esxo 
••162 
-5(129 
•«734 
•6{.:i& 

O-saro 
•1>I0V 
•6046 
•41-U 
•4772 

MS • 99 • •s   :    IK 

2-602 
2167 
1864 
1«4I 
l-4«9 

I'US 
1-S21 
1-128 
l-OM 
0-0826 

09243 
-h-.3» 
■KM 
-7NSI 
-7621 

0 7197 
•«•.•04 
•6637 
-6392 
«160 

i t)!<'>:\: 
6770 

-OSCJ 
-6427 
-6:73 

4029 
303« 
2473 
2-100 
1-M2 

I •29 
1-470 
1342 
1-236 
1-147 

1-071 
1-006 
0 9485 

-8082 
•MS« 

0-813« 
-77«« 
•7460 
-71(11 
•fli.92 

OfiiUfi 
04lt> 

-C2U^ 
•ili.-l 
-6836 

0-4C48 | Or.nO . 0 666« 
•4681 I     4996 I    -6603 
■44/1 AHM I    ■6302 
■4318 -474« I    •i>t24 
•4220 "tOJO I    -6094 

04127 
•4039 
-3950 
•3870 
•3801 

03729 
-30«0 
-3.'>W4 
3531 
3471 

03413 
•3?.5« 
•SMf. 
-32S3 
■32«>4 

0 3111 
•30'J.'. 
•2044 
•2KI.H 
•271'K 

04530 
•4<?9 
•4S34 
•42'i4 
-4168 

0<'I76 
:>!)9« 
3923 

•»8W 
•3784 

0 3719 
-3667 
3497 

•3630 
•3484 

0330«) 
•32113 
311)3 
3101' 

■3030 

04972 
■4H67 
-4747 
-4044 
454« 

»407 

»071 
11-26 
I 036 
1-484 
1-361 

1269 
1-172 
I09H 
1033 
OP766 

01)263 
t.820 
841:0 

•I».i0 
7733 

OT.M 
VIO« 

-tii)14 

-0470 

•••S7» 
6087 

-:.'J16 
•6764 
'6J>n3 

064ft:i 
-6i:*8 
-.'.?C3 
-5084 
■4971 

0-446,2    ' 0 «Cei 
-4364 
-4279 
-4199 
•4122 

04048 
-307« 
-3910 
-3845 
3783 

-1703 
•4607 
•4:.76 
-l-tf." 

0 4406 
-«•.•r. 
•4?'.H 
■417,'. 
■UM 

U 3A«6 | 0 3(,74 
-3658 |    -31.5;' 
3447 -3739 

■33n3 -3631 
•3276 -3637 

3638 

»832 
2380 
2072 
1839 
I «67 

1 610 
I   I 390 
'   1-28C 

1-203 
1-129 

10«» 
I   1008 
I 0 9481 

913'.' 
«739 

0 83«t 
ROSS 

-7730 
7463 

•1186. 
I 

0 6962 
-6744 
-6541 
-635» 
-6176 

0C0I0 
-5866 
-6709 
6671 

-644» 

06309 
•5203 
•Mm 
-4087 
-4888 

0 4793 
■4702 
-461« 
-4533 
-4464 

«4306 
•41 «9 
-404» 
3928 

•381« 
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TABU B-3 (continued) 

Vahtes of—y {continued) 

»A tm IM IM l-M IM IM IM 148 I4S IM 

M »4M 8-848 
M t4N t-874 

M 1471 8481 
§•7 14« 814» 
M 1447 1481 •4M 8M* 
M MM 1-741 IM4 8184 
M 1487 1-884 14« MM 

M 1441 1478 1*08 «4M 
• a 11« 1-871 14*4 847* «4M 8-110 
M 11« 1-8« 1*81 14M «4« 871« 
M 1444 1410 1487 1-719 Mtt «4M 
M •4«! 1-148 1M7 14« 18M «•8M 

M 04477 1088 148* 14« 1417 «438 
»-7 4084 1038 MM 1-8M 147t «IM 
M 48*4 04867 MM 1418 14« 1424 «-6M S-M» 
«4 •8988 44M 1478 144« 14*4 177» «46» ««13 
*<• •8048 ••068 l-OH MM 1»7* MM «4*8 «7M 

11 0-7788 0-870* 0*840 MS4 1308 1444 14M ••4M 
ra •78« -SSM 4444 1414 1237 M62 1-76« «-•17 
7S •7268 40*3 •088 1488 1178 1373 14M «029 
T-4 •7084 -7823 •8763 04071 MM 1-301 1-637 1-878 S-4M »MC 
Tf 48U -7873 -B4M -84*6 1077 1438 1-4M 1-748 «-«0« 3088 

7-6 00430 0-73,l 0417* 0-8181 14M 1-182 1-874 I0M «4>4 2706 
77 •8448 •718« •7810 -8884 ••»46 1-132 1-807 1840 1-877 «•43« 
7* «2711 4*?4 -70» -8M8 •804 MM 124» 1-457 1-78« 2411 
7«" 4117 473« -7448 •8878 4MI 1044 1 19« 1434 I-84C «437 
Kb 6947 •8568 -78M MM 4M» 1008 1-148 1419 1664 1-MS 

• 1 048» 04*.W »7040 077M 08M1 0-870« 1-OM 1-260 147« 1-77« 
8-2 6C80 4^7 4887 -76*8 8387 43t.3 1-OM 1-207 1401 146V 
• » •SMS •um» •8*U 7884 41« -90fiJ l-OTO 1-16* 1437 147« 
8< 4*48 •«»so 4821 ■717« -7*M -8806 0-88M Ml* 1479 l«80 
«5 •8388 •6618 ■6i«8 »Ml -77« •8848 4M8 1076 14«7 142» 

W, 0-bStO OSOM M2M MSM 0-7807 0-8304 0424« 1-03* MM 13«1 
••7 •609* •6r.74 •80M 4MI -7818 -8078 •«n 1-004 MM 1404 
• 8 •6018 •6481 •6*M •MIO •7140 •78M -•718 0-972» 14« 1482 
M •4*24 -8384 •6831 •8SM ■887« -7867 -M77 •943« 1-OM 1-204 
• 0 •4884 -8881 4714 4«M M1S -7460 -8M« ■»IM 1426 1-181 

9-1 04748 04184 0-6801 M101 «•<M8 07303 0-8048 049M 04948 11«» 
»■» •4888 -8000 6494 •8078 48M •713» •7818 -80« -M81 1084 
«a •4887 -4071 -6398 •BMI 43M 4077 •7CM 444i -M77 1480 
M •4811 ■4886 •8888 4748 42M 4*27 •74M 4334 418« 1-019 
«•S •4488 -4803 480« •8*4« »IM -80M •781« •8038 M8« 04892 

94 043« 0-4784 0-8118 08*40 0-M18 0464* 0-7164 0-7848 08M7 0-M18 
••7 «30« •4048 •8037 •844« -88M -S4M -7003 -7871 •M48 9359 
M •4887 4878 4*46 ■634» 47W 4297 •M40 -7603 ■8246 4117 
M •4178 •480* MM ■6200 4«M »IfiO -67114 -734« ■MOM -88M 
IM •4118 •4438 47*0 4174 »687 •8M7 -0694 -719« -7877 -M7S 

IM 0-4001 04811 0 4448 0601» 06418 0-8M7 04362 04910 0-7848 0-8280 
l»4 •SKM •4IM •4818 4M« »248 4«M 4131 «««4 -7847 -7827 
1*4 47M •4088 •4M* •4723 «OM -»4M -8927 ■0420 4978 •7»M 
IM •8708 ■3978 4878 '4893 4940 4320 -6738 42V8 ■87«7 -7318 
IM •8418 •3681 •41« •4478 •4804 -8187 66«« «007 •MM -70M 

na »8838 0478* 0-40*S OUM »■4»7» O6028 08404 048«« MSM O-Mll 
IM 3466 •3703 •3*68 •4M« •4M* 4881 -8864 -M8S -8098 WS» 
IM —       ■6496 4918 -•3(13 
114 — mm — _ mm «_   •8M7 -6748 41»« r -^ •"■ "~ — — "" — -6209 -5393 ■Ml» 
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TABLE B-8 (eonünued) 

Values of-f (continued) 

y 14» I4S 14« 14» in 14* 1«) 14» 14» 34« 

1^ ■■     ■ J 

t4M S4IS 

»1 S-MO SIN 
»a 1441 S-7M 
»a 1414 S410 
»4 14M »Ml 
M I4M SlIS 

•4 14« 14M 1401 44M 
»7 IffT I4M 3 3M S4M 
•« 1-4M MM Mil S4»l 
»• MM 1447 1-0M 1-71» 
*• 1M4 14M IMS »•M7 

•■t It» I4M tits SSM 
*■* 1134 I4M 1M7 MM 
«■S MM 1870 141S I47S 
«4 MM 131« ISM MM SSM 347» 
«■• MIS ISM 1-478 1-TM SSM S-147 

M 1-CTS MM I4IS 147« S4»t STM 
«•f I-4M MM ISM IBM 14M SM5 
«« 1410 M44 I-3OT 1413 1431 S-SM 
94 4-Mai MM 1M1 I4M MM 8173 

M« Ml» 147« Ml» 1-4M 14M 8-O30 

10-1 •MT4 14M MM 1MI 14»» 1420 
io-a 4I4S 1417 MM 1304 141» 1-01» »410 »•47« 
!••» •MS4 0-M04 UI0 ISM 1-4C7 l^Sl MM »-03« 
UM 4718 •MM 107» ISM 1402 IMS S42r. »•73« 
10-B •Mrs •041» 1060 MM 1-MS IMS 1417 »496 

1*4 oissn •••IM 1-Ott M4S 1307 14U 1-fiCO S-3IS 
19-7 •rib3 •eoM otSH Ml» I-246 1-401 1^7?4 i 183 
1*4 iwn 47M •tl7M 14M MM I-4M 1-«M 203« 
I0-» •7H7 •MM MM IM7 MM 1-300 1-690 1427 
11-0 •7<*6 •Ml« •0374 14M MM 1410 l»?a i-es» »•331 »418 

11-1 0-7MI •4SM oaoM 140» MM 1474 I4TS 174» SIM 3131   . 
11-3 •74r>3 •MM •M74 »•Mil I4!>» 1434 14M 1473 346» 3»04 
114 •727Z •7m •MM •M87 1447 1101 1473 1«06 1450 3 6»6 
11-4 •714^ ■TIM •Ml» •NTS 1441 MM 14M 1-644 1886 3417 
US •70S4 •7M» •S3M 4174 141» 1137 148» 1-480 M71 S-SM 

114 0-MOV 47S01 OBIM OMH 0-MM MM 1-261 14M 149« S4M 
ti-7 •*:i.« •737S •MM •M01 47M 10M Ml« I-3»! 142» I4M 
114 •■j»t.« •7S4S -7»M •MM •MM 10M 1183 1447 1-M8 1-M» 
114 •tin» •TIM •774» •MM •»»00 1430 MS2 1-307 1413 1-804 
U4 4«M •T0I4 •VMS 4306 ••IIS 1407 1124 1-370 ••Ml 1-78» 

ui 04tW>'> 44M4 07447 041M 0-M33 04MI 1408 1436 1414 I4M 
Ui 43V. 4TM •73M •Mil •»7«1 4M4 1-071 1-202 1470 1898 
134 ••Icil 4CM •7SM •T»T» •M»7 •0447 104« M7I 1430 1443 
134 4182 46M •71SS •7740 •Ml •MM 1424 1143 I29J 1400 
134 •Mit 4M« •70S3 •7»1S 4291 •MU 1002 Ml» MM 144» 

134 »MM ••Mil 04MS 0-74»! MU» 4M10 O-MI: 1000 1235 MM 
13-7 4MI •MM cut •TS74 4011 4747 4014 1-066 MM MM 
134 •810« 4537 471« •TM1 •7»7» •BSM 44J7 1443 M«S l»20     | 
134 •1713 4IM ■M»4 •TIM •77»» •»Ml »24« 14S1 MS« 1284 
134 4MS 4074 •MM •7047 •7eJo •»2M •M7« 1000 1-113 1251 

134 
_ _ 0-7400 O-MM 047 f» 0-MU 1M4 MM 

13-4 _ ^_ mm .,_ •TIM •77« •MU 430» 1431 MM 
134   , , ^m ^_ -MM •7»Äl 41RS 4941 0-»s:2 1-08» 
1S-4 __ ^^ mmm _. 4W2 •73M •7945 ««4« 446« 1-046 
144 — — — — •IM» •7IM •T7I» 4373 4141 1005 

143 
_ | ^m fr MM 04M» 0749« 04131 ••»843 »MM 

144 _^ ^ Mi M« •Mil 4774 •729» •78M •MM 43M 
144 ^^ mm mm ^ 4IM 4«M •710« •7CM •8.710 •MM 
144 ^^ *mm MM -_ 4M» •MS« 4»2» •74M 4073 4774 
l»4 — mm •^ "" •6M0 430« 47M •7273 •7MI •Ml« 
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Tables to Facilitate Fitting Johnson Distributions 

Values of Jj 

S tw »u t-M Mf »M *§• 

4-1 
4J 
4» 
44 
4-i 

4-» 

H 
f2 
S-S 
M 
M 

f-7 
»4 

♦ I 

♦•7 
4( 
H> 
»■• 

n 
7-3 
T> 
»•4 
M 
74 
»7 
7* 
»•« 

»2 

•4 

4<nt 

S4tl 

t-l 
!■< 

tM« 

»Ml 
M71 
SIM 
S4M 
240» 

1-MI 
l-Ml 
I-MS 
I-M3 
1US 

I-7M 
ITtf 
1-74S 
1-711 
hwm 

I Ml 
lf).2 

1411 

1-4SS 
l(M 

IM3 

IMS 
i-rso 
i-eio 

1-4M 

i-471 

1-4M 
I-4U 

!«• 
1-410 
I 4M 
I-4W 
1-4M 

l»M 
JU» 
1-371 
IM» 
1-M» 

4-m 
t-MT 
I-4M 
»IM 

t«7l 
»MS 
2-648 
1-411 
IMS 

SIM 
I-I7I 
MIS 
2 000 
3-010 

I-S44 
l-MS 
l-(U(< 
ISM 
i-sts 

IMS 
l-TK» 
1-740 
1-7» 
«•705 

l-W? 
IMi 
I4M 
I«?» 
ISIS 

1-SM 
ISkJ 
i«:o 
IM7 
IMS 

IMS 
I-M2 
I-Si I 
I-MI 
liSl 

l-MI 
1-471 
IMl 
I 4M 
i-«M 

1-4JS 
i«3l 
I-4IS 
I-410 
1400 

MM 

I-J7S 
1-H) 
ISM 

4-OM 
»Ml 
s-iw 

S-71» 
M7I 
S-4M 
114» 

S-SM 
S-1M 
»-1M 
«0M 
S-0IS 

i-n 
i-on 
1-09« 
I-85I 
l-SM 

l-MI 
1-77» 
I-7M 
I-7J7 
l-TO." 

1-4M 
l-DM 
l-«4ti 
1431 
141* 

I4M 
l-SM 
1871 
l-M» 
1-M7 

14M 
1414 
i-rti 
leos 
I-4H 

1-481 
1474 
I-4M 
I4M 
144S 

14M 
14« 
1-4M 
1411 
I'll 

ISM 
l-SM 
ISIS 
l-MI 
l-Ml 

• SM 
4-SM 
9407 
II« 

t4N 
S-7M 

S7M 
SSM 

«41» 

•417 
tS7l 

SSM 
S-S« 
i-14l 

S4N 

I4M 
144S 
l-SM 
l-SM 
1-M7 

l-SM 
1-781 
1-75« 
1-711 
l-TII 

14M 
1471 
14U 
1430 
141» 

I4M 
l-SM 
147« 
l-SM 
14M 

l-SM 
1417 
141» 
l-SM 
14M 

147« 
1447 
1-4M 
I4M 

1-441 
141« 
1417 
141» 
1411 

ISM 
l-SM 
1-174 
l-SM 
l-SM 

S41S 
«401 

»SM 
SSI» 
S-1M 
S-100 
9-048 

I4M 
l-SM 
141» 
14M 
1-M7 

140» 
I4M 

l-SM 
l-SM 

14M 
14W 
141» 
l-SM 
14M 

14M 
147» 
1410 
I-Ml 
I 4M 

I4M 
I4S7 
14M 
14« 
141» 

l-MI 
l-SM 
1-37(1 
ISM 
l-SM 

7-S04 
447« 
»-•7» 
S407 

S1SS 
s-aao 
S-707 
S-MI 
S443 

|    S-S4S 
S-U3 
S-iCO 
S-J32 
3400 

S4I» 
1471 
1-M0 
1-003 
l-SM 

1417 14*» 
I-7M 1-800 
I-7M 1-77* 
1-740 l-7*!> 
1-71S i«m 
14*7 I-V06 
14T7 10U 
14M l-MO 
1441 1-C4S 
14M l-MI 

1 Cl» 
l-GOO 
14ft6 
147» 
l-M» 

1447 
i-res 
142< 
I-8 IS 
1402 

14SS 
1-4M 
1474 
I-4M 
1460 

l-MS 
1440 
1433 
1-41» 
1 41» 

1 404 
1-391 
l-?7» 
1-747 
ISM 

4 »00 
SMS 

S-711 
S4a 
»4»3 

S-M» 
S-S17 
SiM 
S-OM 

1:01 
l-MS 
1410 
147» 

IMS 
141S 
l-7f4 
1-780 
1-717 

1-7IB 
I4M 
147« 
I4M 
140« 

1433 
1407 
1-6M 
1470 
l-SM 

14a 
l-Ml 
142» 
1418 
1-M7 

1497 
14S7 
I47S 
14M 
1-4M 

14SS 
1-444 
14M 
1-42» 
I4SI 

1-407 
l-SM 
IMS 
1170 
l-SM 

l-M» 
l-SM 

441S 
S-MS 

SIM 
3-SM 
2 701 
3U7 

S4M 
3-140 
S-MS 
3-1M 
3-111 

94M 
2-018 
1470 
14M 
14M 

l-M» 
I4n 
l-;x)o 
1-77-. 
1-740 

1-710 
1-70.1 
14U' 
14M 
l-64f 

l-Ml 
1416 
1400 
I-6M 
»478 

1-6M 
1-M7 
7-638 
:-624 
1413 

14M 
14N 
1-481 
1-474 
«-4M 

1-487 
1448 
I 440 
1-431 
14« 

1-411 
MM 
MM 
MV 
IMS 

1-381 
M43 

9411 
9401 

SIM 
SSM 
S-«8 
SI67 

94S7 

14M 
l-SM 
141» 

l-SM 
1-M7 
1417 
1-7M 
1-7M 

1-740 
1-71» 
I4n 
14« 
14M 

1441 
14« 
1410 
MM 
1M1 

1-6M 
14M 
1441 
1811 
MM 

I4M 
14« 
14M 
MM 
1471 

14M 
14M 
14M 
I4M 
14« 

141» 
14M 
MM 
1177 
MM 

MM 
MM 

44« 
9-6« 
S-184 
94SI 
9-71» 

9-SM 
94M 
SSM 
947« 
3-102 

9-118 
947» 
941» 
14SJ 
l-Ml 

I4M 

1147 
1-S00 
1-781 

1-7M 
1-73» 
1-711 
1491 
147S 

1-0« 
1430 
14« 
14M 
14S1 

1477 
MM 
l-MI 
1-630 
14» 

1417 
14M 
MM 
14»7 
1477 

14M 
14« 
l-Ml 
1-44» 
14M 

l-Ml 
1-407 
14M 
l-MI 
1470 

l-SM 
l-SM 

«•producod from 
Post ovaiUbU  copy. 
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TABU B4 (continued) 

Values ofrj {continued) 

K i   •■w 1       ** M* M» t-n Mt Mt 1    M> 
1    M* l-M 

1 w t«H t-TN 
M •■IM ••Mt 

1 ** MM 1-Mt MM IMt 

4-1 MN »MO Mit 1 »M 
1  <"> tut S-Mt »-»04 1-tM 
1  ** $ 4M StM M4I »-7M 
1  ** tM« MM MM. »tn 
1  *■* ••Mt ••tM MOI MM 

1  ** tin MM MM »tM MM •Ml MM S-Mt 
♦» ii» a-iw •-»1 MM MM Mil MM S-Mt 
«* MM t-IOt »It» MM t-Mt »-403 MM 8094 
** •••U ••OH »100 MM »-M7 Ml» Mit a-686 

** 
it?» «•«»7 I'M« MN t-lM »-»»4 .    Mit 8 441 ••Mt MN 

1  »•| It« IMt »•Ml S-0M •-1M •-1M • Mt 8144 »-478 •Ml 
M ISM I-M4 1-Mt IMt MM 1    «108 •-17t 8-2tt M71 1-6 » 
M 1-MO 1-RM Mit 1-M7 'MM 1   »Mt 4-116 2-191 »•»86 1 40t 
^ 1-tM l-RM I-M4 1-tU l-Mt «006 •Ml 8-IJt Mil Mit 
M 1M1 1-624 l-MI 1-»M MM 1-M« 80« »•07t «14» 1-217 

1  "* 1-776 1-7M 1 Ml 1-tM l-Mt l-Mt l-Mt 8-011 1-089 MN 
»•» 1-760 1-770 1-794 MM l-MI IM7 I-Ht lt7t 1-01» ••1 • 
M I-7M 1-V4« 1-746 1-7M l-Hl 1164 l-MI 1 »3» IN» 1-067 
M 1-704 17M 1-744 17« 1-7N I-M4 1-M0 1-M» INI ••ON 
•« 1-M4 1703 1-7M 17« l-7tt 1-797 l-HO MM It t 1-967 

1  *-! I-M7 i-eta 1-701 mi 1-744 1-771 l-Mt 1-837 M7t 1-921 
1  *-* 1-Mt 1-6M 16*1 1-700 17» 1-747 l-77t 1-309 1-847 1-89S 

*-» 1631 1-M7 1-663 1M1 1-701 1-716 1-78» 1-781 1-816 1160 
1  " 1-617 1-030 IMS IMS ■l-Mt 1-7M I-7M 1-768 1-791 1 830 

1  * * 1-Mt 1-614 16»» 1-Mt l-Mt 1-M4 1-707 1-716 1-766 l-Mt 

1  *♦ 1-667 i-evt 1613 1628 l-Mt 1-tM IMt 1-7 t 1741 1-77« 
*7 1-M4 1-688 16*1 1613 1-tM 1041 l-Mt l-Mt 1-711 1-76» 
M IMt 1-671 1-684 1-Mt MM l-Mt M8t 1-174 1-700 I-7N 
•^ 1-Mt i-est 1-671 1M4 l-Mt Mit l-Mt MM INI 1-701 
»■• 1-M7 1-M7 1-6M 1671 1-tM l-MI Mit MM l-Mt l-M» 

1  »> IMt 1(46 MM 1-tM its 1-M7 IMt l-Mt l-Mt M70 
i  " 1-6U 1-624 I (.34 l-Mt M7S l-Mt 1-608 l-Mt MM 

T» 1-tM 1-C 3 1-6M I-8M 1M7 1M1 1-676 1-694 1014 1-tM 
7-4 1-4M 1-601 1-61» l-Mt l-Mt 1648 1-tM MM l-Mt 1-MO 
r» 1-4M 1-4M IfiM 181» 1-tM 1-N7 l-MI IM7 MW l-MI 

»* 1-476 1-461 KM MM Ml» l-Mt I-6N IHM 1 67« 1-Nl 
" 1-4M 1-474 1-461 I-4M l-Mt 1816 1-tM IMt 1-66» l-Mt 
»•• 1-4H 1-«6S 1-47» 1-4M l-Mt 1-804 M17 l-Hl 1-647 MM 
r-« 1-4M 1-467 1446 1-474 I 4M 1-494 1607 I-Ht MM l-Mt 
M 1441 1448 1-4M 14M M74 14M l-4t7 1-810 1624 1M1 

• i 1-4M 1-440 l-44t 1-4M MM 147t 1-417 IMt 1614 MM 
*' I-4M MM I-4M 144t 1-417 l-4t7 1-471 MM MM Mit 
M l-41t I-4M MM 1-440   1 l-Mt 1-46» IMt 1-411 1-494 l-Mt 
•^ 141« 1-4 t 1-426 14Jt l-MI 1-4M I-M0 1-471 1-484 IMt 
• 1 1 409 1-411 l-4lt ! I-4M 1-4U 144» 1 «1 MM 1-476 IMt 

•* MM l-40t 1-411 l-41t 1 4M 1 416 l-Mt 1-4M 1-417 1-479 
• ' 1-IH 1 3M I-4M 1-411 Mit 1-417 1-417 1-M7 1466 1-471 
•• 1-Mt 1-Mt MM 1-404 Mit I-4M 1-4M MN 1-460 1-4M 
•• 1-MO i-t«e l-MI MM 140t Ml» 1-4»» 1-411 1-442 I-4M 
M 1-174 1-380 MM. 1-M» l-Mt 1-4M 1-416 1-414 1-414 1 444 

♦» l-MI M6t 1171 117t l-Mt MN INI MIO I-4M 1-411 
M 1-Mt 1-JS7 MM MM M74 l-MI l-M» M97 1-404 14 4 
♦ • —      1        \ 1 367 MM M70 1177 1-188 MM 1-403 
M mm,         1 mm,        j —   1 1-M7 MM 1-369 MM 1-171 l-MI MN 

B« "*         1 ** "~  ' 1-M7 l-Mt l-Mt 1-M6 1-M» M70 M7t 
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TABLE B-4 (continued) 

Values off (continued) 

IM nt IM l-M IM H» l-U l-M 

t-7 

t-1 
«•a 

*•• 

••7 

71 
7-a 
7» 
7-4 
7» 

7« 
7-7 
7-« 
7-9 

• 1 
•* 
• a 
S-4 
•■5 

• « 
••7 
8-8 
8« 

••I 
«■a 
♦•» 

»» 

♦•7 
• 8 

lt-1 
!••» 
183 
IM 
It-i 

1»7 

tia 
IM 
it-« 
ii-« 
ia* 

ItM 
I1M 
a-iM 

MU 

1M8 
I-8M 
JM8 
IWi 
1-843 

1-818 
1-TM 
1-TM 
1-740 
1-718 

I«7» 
1641 
1-844 
l-tt» 

1-818 
1-MM 
1-8M 
1-C71 
ISM 

1-M7 
l-M» 
1-SM 
1-814 
1-C04 

1*9* 
1-4M 
1-476 
1-M7 
I-4SB 

1-4W 
I-4M 
1-4« 
1-487 
1-4M 

1-418 
1-407 
I-<00 
l-SM 
l-IM 

i-t8* 
1-176 
1-171 
1-SW 
1-SM 

ISM 
IS«» 
l-M» 
1-S40 
1-SM 

1-SM 
1-818 

I-4SJ 
i-8M 

1400 
a-sii 
S-tM 
MM 
8-IM 

«-0M 
ton 
1-0M 
1-688 
1-603 

1-8M 
1-830 
1-80S 
1-777 
1-768 

1-781 
1-710 
i aw 
1-071 
1-664 

1-637 
1-622 
1007 
IM3 
1-879 

1-6..* 
1-SM 
1-643 
1-C31 
1-620 

1-610 
1-600 
1-4V0 
1-481 
1-472 

1-4M 
1460 
1-447 
1-440 
14» 

I-4» 
1-416 
1-411 
1-404 
1-368 

1-303 
1-3M 
1-SM 
1-874 
1-C60 

1-SM 
1-SM 
1-SU 
1-3M 
1-348 

1-SM 
1-SM 

ISM s-m 
ISM 

SIM 
I-8M 
S-8M 
1-8M 
1-M1 

1-tM 
I6M 
1-8M 
1-8» 
1-7M 

ym 
1-7M 
17M 
1-7M 
1-8« 

I-6M 
16M 
1-8M 
1-61« 
1608 

1-6M 
1-678 
I6M 
16M 
ISM 

1-8S7 
1-817 
1-SM 
1-487 
1-487 

1478 
14M 
1-M1 
1488 
1-4M 

1487 
14M 
1-4M 
1-416 
1-4M 

14M 
1-SM 
1-SM 
1-SM 
1-S7i 

1S7S 
1-SM 
1-SM 
1-367 
1-SM 

ISM 

MM 
S-HI 

1-SM 
I1M 
3-1M 
»070 
S-OM 

1-878 
1-638 
IMS 
1-870 
1-840 

1-811 
1-78» 
1-761 
1-738 
1-717 

i-867 
1-878 
1M0 
1-644 
IMS 

1-818 
1-608 
1686 
1-671 
1-660 

1-S47 
ISM 
1-82» 
1-81« 
1804 

1-488 
1-4U 
1-478 
1-468 
1-460 

1-461 
1443 
l-M» 
1488 
1-481 

1-41« 
t-406 
1-401 
1-396 
l-MO 

ISM 
1877 
1172 
1364 
l-Ml 

1-M1 
1841 

ISM 
S-SM 
S-1M 
SIM 

8M7 
S-011 
1-8M 
1-9» 
1-8M 

l-SM 
IMS 
1-8M 
1760 
1-760 

1-7M 
1-71» 
l-«»3 
1-67» 
1-687 

1-8M 
1-610 
1-6M 
l-SU 

1-6M 
1667 
1-64» 
1-634 
l-SIS 

1-118 
1-8H 
1-463 
1-4M 
1-478 

»4M 
1-468 
I-460 
1-44S 
1-436 

I-4M 
1430 
1-41« 
1-407 
1-401 

1-SN 
1-SM 
IMS 
1-177 
1-371 

ISM 
ISM 

3-474 
8-376 
S-391 
S-231 

t-lW 
8-100 
8-04« 
8-003 
1-M2 

1-614 
1-WO 
1-16« 
1-6» 
1-602 

1-776 
1-763 
1-711 
1-710 
1-691 

1-671 
l-OM 
l-Oi» 
1-62» 
I-6UII 

1-194 
1-681 
i-m 
lira 
1-M4 

1-613 
1-621 
1-613 
1-603 
1-493 

1-464 
1-474 
1-4M 
1-466 
1-460 

1-443 
MS* 
1417 
1-420 
1-411 

1-407 
1-400 
1-1«* 
1-388 
1-3*2 

1-371 
1-360 

8161 
8-064 
8-044 

1-SM 
l-M» 
1-921 
I-M7 
l-DM 

1-887 
1600 
1-776 
1-761 
1-730 

1-7M 
1-6M 
1-671 
1-664 
1-618 

I-618 
1-606 
1-Mi 
1-640 
1-6M 

I-IK6 
l-M* 
1-811 
1-C1I 
1-611 

1-6M 
1-491 
1-483 
1-474 
1-446 

1-468 
1-4S0 
1-442 
1-43S 
1-427 

1-420 
1-414 
1-407 
1-401 
1-394 

1-383 
1-171 

8-281 
3-210 
8148 

2-093 
8-043 
1-69« 
1-968 
1*081 

1-687 
1-fltf 
1-824 
1-800 
1-776 

i-vr.2 
l-7:i0 
1-70» 
l-t»0 
1-672 

1-6A5 
1-OStf 
1-6J1 
1-608 
1-894 

1-8* I 
1-»C8 
1-6CÜ 
1-6*6 
1 634 

1-823 
1-613 
1-IÖ3 
1 <'J3 
1-484 

1-47» 
1-467 
I-4£8 
1-460 
1-443 

1-438 
1-428 
1-421 
1-414 
1-408 

1-395 
I-SKI 
1-372 
1-341 
l-MI 

8-046 
8-001 

1-640 
1-92S 
l-M» 
1-868 
1-8M 

1-803 
1-777 
1-7M 
1-732 
1-711 

IMS 
1-87« 
1-M7 
l-MO 
1-626 

1-610 
160« 
1-883 
1-670 
1-668 

1-M6 
168» 
1-824 
1-614 
1-604 

I-Me 
1-466 
1-477 
1-468 
1-400 

1-462 
1-444 
1-437 
1-4^ 
1-423 

1-409 
I-896 
I-3H4 
1-87J 
1-361 

S-167 
8-102 

S-061 
S-006 
1-960 
1-028 
1-894 

1-M2 
1831 
1-806 
1-761 
1-768 

1-788 
1-716 
1-69S 
1-677 
1-660 

1643 
1-673 
1-611 
1-8M 
1-8M 

1-871 
1-6M 
1-64» 
1-620 
1-B87 

1-616 
1-606 
1-497 
I-4M 
1-478 

1-470 
1-461 
1-464 
1-446 
1-41» 

1-414 
1-411 
1-S«H 
1-18« 
I-876 
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TABU! B-4 (Continued) 

Values qfj {continued) 

K iu l-M 14» l-M I'll l-M l-M IM IM SM 

•-I 
»> 
• 3 

»7 
M 
8» 

«-1 
«-3 
«■3 
%A 
t-8 

»•7 
M 

10-1 
10-3 
l'>.1 
IIV'l 
IM 
106 
IC-7 
Itt-ß 
10-<* 
11« 

IM 
11-3 
11-3 
11-4 
11* 

11-6 
11-7 
11« 
119 
13-a 

13-1 
U2 
133 
Xt-i 
13-5 

m 
13V 
Uli 
»3» 
13« 

133 
134 
V>* 
ixn 
14« 

14 i 
1<4 
14« 
141 
IRC 

1-M4 

IM1 

I340 
141t 

im 
1-TM 
1-741 
1-730 
1-7M 

IM! 
1-M4 
l-M« 
1-4*3 
1-417 

1-403 
l-M» 
1»7« 
1444 
INI 

1-Mt 
1-8*0 
l>»M 
IM» 

1481 
1-44» 
1-471 
1-4M 
1-4M 

1-44» 
1*441 
1-434 
1-437 
1-4*0 

1-413 
1-407 
1-400 
1-3M 
13M 

13*3 
1-377 
1-371 
1-240 
1-J41 

1-M1 
1-34» 
1-341 
1-337 

«•074 

«M« 
IM« 
1-M7 
1-»U 
i-n» 

l-«4» 
1-UI 
1-706 
1-771 
1-748 

1-7J7 
1-707 
1-4RS 
1470 
1-6U 

1CS7 
1-«3S 
1408 
l-«»4 
1-611 

i-eo» 
1-8&7 
I 6<ll 
Xt.M 
1-62» 

l-«t3 
1-6U. 
1-404 
1-485 
1-470 

I-4CS 
1-4S0 
1-463 
1-444 
1-437 

1-430 
I-43S 
1-41« 
1-400 
1-403 

1-SC7 
INI 
1386 
1 r» 
l>74 

1-aM 
I 383 
jr«K 
1 31,3 
1X48 

IM« 
1M1 
IM» 
1M1 
IM« 

1-780 
1-747 
1-7*6 
1-71» 
IM» 

1»78 

IM» 
1-»14 

1687 
1-674 
l-6«3 
1-680 

1-«M 
l-SM 
1-61« 
IM« 
1-4M 

148» 
1481 
1-473 
1-464 
1-46« 

1-4« 
1-441 
14*3 
1-4M 
1-41» 

1-41» 
I-4M 
1400 
MM 
l-SM 

1-S8t 
1-377 
1-371 
1-3M 
1-381 

SOI» 
im 
1M0 
IM» 
1-874 

1-844 
1817 
l-IH 
1-7M 
1746 

1-716 
1 705 
1-8M 
1-64» 
1 64* 

•«36 
1-611 
1-607 
1 694 
1 681 

1-688 
1-66« 
'.-646 
1-634 
1-634 

l-SM 
\b<A 
1-184 
1-48S 
1-477 

14U 
I <«0 
1-lSS 
1-4« 
1437 

1-4*0 
1-4SS 
lill 
1-410 
1-404 

I-3M 
1-3M 
1-38» 
) 380 
1 376 

1M1 
1-»M 

1-T»1 
1-TM 
1-7M 
1-71» 
1M7 

IM» 
IMS 
IM» 
IM» 
IM« 

IMS 
l-«M 
I «7« 
1664 
I-Ht 

I-Ml 
1-630 
l-SM 
1610 
1500 

l-4»l 
1-4»» 
1-474 
1-4M 
14M 

I-4M 
I-4M 
1-436 
143« 
I-4S1 

1-41« 
1-4M 
i4or 
l-SM 
13M 

1*7» 
UM 
I-IM 
1-3« 
l-SM 

l-SM 
I-Ml 
ISIS 
1-30» 
l-SM 

l»10 
1-879 

l-M» 
1-872 
I-7W3 
I-77X 
1-760 

1-729 
1-709 
i-oei 
1-07S 
1-866 

l-»IO 
1-026 
l-«ll 
1-637 
1-684 

I-67t 
1-880 
1-640 
I-S38 
1-627 

1617 
1-607 
1-408 
1-488 
1-480 

1-471 
1-483 
1-468 
1448 
l-MO 

1-433 
1-438 
1-430 
1-413 
1407 

1-3S4 
1-383 
1372 
1-30^ 
1-362 

1-343 
1333 
IM« 
1-31» 
l-SOI. 

1-7M 
1-744 
17*8 
1-704 

l«M 
166» 
1-6S8 
1M7 
1-612 

l-«0» 
l-SM 
1-6»! 
I-6M 
1-867 

1-64« 
1-636 
1-62« 
181« 
l-SM 

14»« 
14«7 
1-47» 
1-470 
l-«»S 

1464 
144« 
I-4M 
I-Ut 
1-4M 

I4lt 
: 400 
1388 
1-377 
IM« 

l-SM 
l-SM 
IM7 
l-SM 
M20 

1-834 
1-800 
l-7n 
i7ni 

1-740 
1-7*0 
1-701 
1613 
l-M« 

1-648 
1034 
im» 
1-004 
i-eM 

1-680 
I8C7 
163« 
1 84» 
1-6*4 

1-634 
1614 
1-MM 
l-4?5 
1-4:1» 

1477 
1-468 
1461 
KR» 
144» 

1-431 
1-41» 
1406 
i-ao» 
IM3 

IS7I 
1361 
1-361 
IMS 
1313 

I-T17 

l«9» 
1MI 
1««4 
IM» 
1833 

l«IS 
1604 
INI 
1-67» 
1M7 

l-SM 
1844 
18*3 
16»* 
1-»IS 

1604 
I-4M 
I4N 
1-477 
I-4N 

1483 
1-438 
1-42» 
141« 
ISN 

IMS 
1377 
1-3M 
1-364 
1-34» 

I-7N 

1-788 
1-737 
1-717 
l-»»( 
INI 

1-664 
1-«« 
l«33 
1-818 
l-«06 

l-«»l 
1-670 
1-M7 
1-868 
1-644 

1834 
1-623 
1-SI4 
l-SM 
1-486 

1-47» 
1-4»! 
1-448 
1-432 
1-41» 

1-408 
1-384 
1-3U 
1-17* 
ISN 
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TABLE B-6 
Percentiles of the Maximum Absolute 

Difference Between Sample and 
Population Cumulative Distributions41 

Sample i Level of M^niflcanre (a) 
:=.r="=z=ss 

cite 
(A') 

, 

0.20 0.15 0.10 0.05 0.01 

*.. 0.900 0.925 0.950 0.975 0.995 
8 0.084 0.720 0.770 0.842 0.929 
3 0.5C5 0.597 0.042 0.708 0.828 
4 0.404 0.625 0.501 0.024 0.733 
5 0.44C 0.474 0.510 0.505 0.009 

6 0.410 0.430 0.470 0.521 0.018 
7 0.3S1 0.405 0.438 0.480 0.577 
S 0.353 0.3S1 0.411 0.457 0.543 
9 0.339 0.3G0 0.3SS 0.432 0.614 

10 0.332 0.342 0.30S 0.410 0.490 

11 0.307 0.320 0.352 0.391 0.408 
12 0.295 0.313 0.33S 0.875 0.450 
13 0.284 0.302 0.325 0.301 0.433 
14 0.274 0.292 0.314 0.349 0.418 
15 0.2CC 0.2S3 0.304 0.338 0.404 

16 0.253 0.274 0.205 0.328 0.892 
17 0.250 0.2CC 0.2S0 0.318 0.381 
IS 0.244 0.259 0.27S 0.300 0.371 
10 0.237 0.252 0.272 0.301 0.303 
20 0.231 0.240 0.2C4 0.294 0.350 

25 0.21 0.22 0.21 0.27 0.33 
80 0.19 0.20 0.22 0.24 0.39 
35 0.18 0.10 0.21 0.23 0.27 

over 35 1.07 1.14 1.22 1.36 1.63 

>/ff Vff V? yW yft 

Values of da(N)  such that 
P^maxiyx) - F0(x)| >da(N)] =o, 

where FQ(x) is the theoretical cumulative distri- 
bution ana S^(x) is an observed cumulative dis- 
tribution for a sample of N observations. 

(From F. J. Massey, "The Kolmogorov-Smirnov Test for Goodness 
of Fit," J. Amer. Stat. Ass. 46; 70 (1951).) 
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TABLE B-7 
Table d CoefflclentB [^.^i] Used in the W Test 

For Normality 

\. 
4 s 6 7 1 9 10 II 12 13 14 IS 16 17 18 

1 MVHI 0.1.1(72 0.6616 0.64)1 0.6733 0.6052 0.5XSS 0.5739 0.5601 0.5475 0.5359 0.5251 0.5150 0.5056 0.4'i6S 0.4886 
• a.K.77 0.2413 0.2K06 0.3031 0.3164 O.J241 0.3291 0.3315 0.)J25 O.J375 0.3318 0.33116 0.32'M 0.3273 0.3253 
.1 O.OS75 0.UUI 0 1743 0.1976 0.2141 0.2760 0.2347 0.2412 0.2460 0.2495 0.2521 0,7540 0.2553 
4 0.0561 0.0947 0.1224 0.1429 0.15S6 0.1707 0.1802 O.IKVS 0.1939 0.1 y88 0.2027 
5 0.0399 0.0695 O.W22 0.1 IN9 0.1240 0.1353 O.IM7 0,1524 0.1587 
(. 0.0'03 0.0539 0.077V 0.O88U 0.1005 0.1109 0.1197 
7 0.0240 0.0433 0.0593 0.0725 0.0837 
* 0.0196 0.0359 0.0496 

V 
0.0163 

x V  w 20 21   • 22 23 24 23 26 27 M 29 30 31 22 33 34 

1 »UMW 04734 U.4643 0.45VO 0.4542 0.4493 0.4450 0.4407 0.4366 0.4)28 0.4291 0.4754 0.4220 0.4188 0 4156 0.4127 * «.»;.<2 0^211 0.31» 0.3136 0.3126 0.309« 0.306» 0.3043 0.3018 0.2992 0.796S: 0.2*14 0.2921 0.289? Ü.7S76 0.2854 
\ U.7M.I 0.2S6S (■ ^78 0.2571 0.256J 0.2554 0.2543 0.2533 0.2522 02510 0.249'» 0,71*7 0.2475 0JM63 0.7.451 0.2439 
i «.^•51 U.20CS 0.2119 0.7131 0.2139 0.2145 0.2148 0.2151 0.2152 0.2151 0.2150 02118 0.2115 0.2141 0.2137 0.2132 
i 0 IMI ÜU.Kh 0.J7K. 0.1764 0.P(f7 0.1 K07 0.1822 0.1836 0.1848 0.1857 0.1861 0.1 K70 0.1 S74 0.1878 0.1880 0.1887. 
«• o.in 0.I.1M 0.1399 0.1-143 0.14«) 0.1512 0.1539 0.1563 0.1584 01601 0.1616 0.1630 0.1641 0.)651 0 1660 0.1667 
1 ti.tNji O.I oil 0.1092 0.1150 0.1201 0.1245 O.I2S3 0.1316 0.1346 0.1372 0.1395 0.1415 0.1433 0.1449 0.1463 0.1475 
* «.••»is «.o-il 0.0KO4 0.0878 0.0541 0.W91 0.1046 0.10S9 O.I12S 0 1162 0.1192 0.1219 0.1743 0.1265 0.1784 0.1301 
1 (MIUH «.(M;2 0.0JJ0 O.OMg 0.0606 0.0764 0.0823 0.0876 0.0923 0.096$ 0.1007 0.1036 O.lOc.6 0.1093 0.1118 onto 

I« 0.0140 0.0263 0.0J6» 0.0159 0.0539 0.0610 0.0672 0.0728 0.0778 0.OS22 0.0S62 O.OSW 0.0931 00961 0.09SS 
II 0.0122 0.0228 0.0321 0.0403 0.0476 0.0540 O.059S 0.0650 0.0697 0.0739 0 0''77 0.OKI2 0.0844 
1? 0.0107 0.0200 0.0284 0.0358 0.(1474 0.0483 0.0537 0.05S5 0.0639 00669 0.0706 
II 0.0094 0.0178 0.0253 0.0320 0.0381 0.0435 0.04HÄ 0.0530 0.0577 
14 O.O0K4 0.0159 0.0227 0.02K9 0.0114 0.0395 0.0141 
1% 0.0076 0.0144 0.0706 0 (062 0.0314 
1'. O.0O68 0 0131 o.oi sv 
f 0.0062 

36 37 3* 39 40 41 42 41 44 45 46 47 48 49 50 

1 0.4tN6 0.40;.8 0.4040 0.4015 0.3989 0.1964 0.3940 0.3917 0.3894 0.4872 0.3850 0.3830 0.3808 0.3789 0.4770 0 4751 
^ 0.2834 0 2813 0.2794 0.2774 0.2755 0.2717 0.2719 0.2701 0.2684 0.2667 0.7.651 0.2635 0.2620 0.2604 0.25>9 0.2574 
3 0.2427 0.2415 0.2403 0.2391 0.23r.O 0.2368 0.2357 0.2345 0.2334 02323 0.2313 0.2302 0.2291 0.22S1 0 2:71 0.72(.o 
4 0.2127 0.2121 0.2116 0.2110 0.2104 0.2098 0.2091 0.2085 0.2078 0.2072 0.2065 0.2058 0.2052 0.20 is 0 7038 0 7ti42 
s 4M8K3 0.1883 0.1883 0.1881 0.18S0 0.1878 0.1876 0.1874 0.1871 0.1868 0.1865 0.1862 0.1 S59 0.1855 0.1X51 (».1X47 
6 0.1673 0.1678 0.1683 0.16S6 0.16S9 0.1691 0.1693 0.1694 0.1695 0.1695 0.1695 0.1695 0.1695 O.I6'».4 0.1692 «1 16'>l 
7 0.1487 0.1496 0.1505 0.1513 0.1520 0.1526 0.1511 0.1545 0.1539 0.1542 0.1545 0.1518 0.1550 0.1551 0.155.4 0.1554 
X 0.1317 0.1131 0.1344 0.1356 0.1366 0.1376 0.1384 0.1392 0.1398 0.1405 0.1410 0.1415 0.1420 0.1423 0 1427 0.I4M» 
9 0.1160 0.1179 0.1196 0.1211 .0.1225 0.1237 0.1249 0.1259 0.1269 0.1278 0.1286 0.1293 0.1300 0.1306 Ü.I3I2 «4.1.417 

10 0.1011 0.1036 0 1056 0.1075 " 0.'l092 0.1108 0.1123 0.1136 0.1119 0.1160 0.1170 0.1180 0.1189 0.1197 0 17«»5 «»i:i7 
II «•.OS73 O.IMIO 0.0924 0.0947 0.0967 0.0986 0.1004 0.1020 0.1035 0.1049 0.1062 0.1073 0.1085 0.IIV»5 0.1105 «11114 
12 «».«»739 0.0770 0.0798 O.0S24 0.081S 0.0870 0.0891 0.0909 0.0927 0.0943 0.0959 0.0972 0.098f O.om 0 1010 «4 IO.M 
14 IMtbIB 0«64$ 0.0677 0.0706 0.0733 0.0759 0.07K2 0.0S04 0.0824 0.0142 0.0860 0.0876 O.OR92 0.0906 0.0919 OOM; 

14 «itMS4 00523 0.0559 0.0592 0.0;'.22 0.0051 0.0677 0.0701 0.0724 0.0745 0.0765 0.0783 0.0801 0.0817 0«»S«2 Oil..)'. 
15 «»Il4i.| (».«4404 0.0444 0.O4KI 0.0515 0.0546 0.0575 0.0602 0.0678 0.0451 0.0673 0.0694 0.0713 0.0/31 0.0748 «.«»?«. l 
ll. Utl244 (».«1287 0.0331 0.0372 0.0409 0.0444 0.0476 0.0506 0.0534 OU560 0.05S4 0.0607 0.OS2S 0.O64K «l«ll>67 0«V.K5 
17 0.0119 «»«4172 0.0220 0.0264 0.0305 0.0343 0.0379 0.0111 0.044? 0.0471 0.0497 0.0522 0.0546 O.OM.S 005X8 UiW^is 

IK 0.4H4S7 0.0110 0.0158 0.0203 0.0244 0.0283 0.03 IS 0.0352 0.0)S3 0.OII7. 0.0439 0.0465 0.«My9 0.0511 (».«53? 
14 0.0053 0.0101 0.0146 0.01 SS 0.0727 0.0264 0.0796 0.0328 0.0357 0.0385 «UM 11 0.043« I1HI59 
2i> 0.0049 0.0094 0.0136 0.0175 0.0211 0.0245 00277 0.0307 0.0335 0.0»6I 0.04>.(. 

21 0.0045 0.0087 0.0126 0.0163 00197 0.0229 0.1»759 0 02!>X 0.0.414 
22 0.0012 0.0081 0.0118 0.0153 0.01 S5 00715 UO.MI 
24 0.0039 0.0076 0.0111 0.0143 0 017) 
24 0.0037 0 0071 «».OHM 

25 0.(K)35 

(Prom G. J. Hahn and S. S. Shapiro, Statistical Methods in Engineerinc 
John Wiley 6 Sons, New York, 1967, pp. 33Ö-331.) " 
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TABLE B-8 
Percentage Points of the W Statistic 

M 1 2 5 10 SO 

3 0.753 0.756 0.767 0.7W 0.959 

4 0.687 0.707 0.748 0.792 0.935 

5 0.6S6 0.715 0.762 0.806 0.927 
6 0.713 0.743 0.788 0.826 0.927 

7 0.730 0.760 0.803 0.838 0.928 
8 0.749 0.778 0.818 0.851 0.932 
9 0.764 0.791 0.829 0.859 0.935 

10 0.781 0.806 0.842 0.869 0.938 

11 0.792 0.S17 0.850 0.876 0.940 
12 0.805 0.828 0.859 0.883 0.943 

13 0.814 0.837 0.866 0.889 0.945 

14 0.825 0.846 0.874 0.895 0.947 

15 0.835 0.855 0.881 0.901 0.950 

16 0.844 0.863 0.887 0.906 0.952 
17 0.851 0.869 0.892 0910 0.954 
18 0.858 0.874 0.897 0.9)4 0.956 
19 0.863 0.879 0.901 0.9)7 0.957 
20 0.868 0.884 0.905 0.920 0.959 
21 0.873 0.888 0.908 0.923 0.960 
22 0.878 0.892 0.91! 0.926 0.96) 
23 0.881 0.895 0.9)4 0.9.-»8 0.962 
24 0.884 0.898 0.916 0.930 0.963 
25 0.888 0.901 0.918 0.93) 0.9W 
26 0.891 0.904 0.920 0.933 0.965 
27 O.K94 0.906 0.923 0.935 0.965 
28 0.89« 0.908 0.924 0.936 0.966 
29 0.898 0.910 0.926 0.937 0.966 
30 0.900 0.912 0.927 0.939 0.967 
31 0.902 0.914 0.929 0.940 0.967 
32 0.904 0.915 0.930 0.941 0.968 
33 0.906 0.917 0.931 0.942 0.968 
34 0.908 0.919 0.933 0.943 0.969 
35 0.910 0.920 0.934 0.944 0.969 
36 0.912 0.922 0.935 0.945 0.970 
37 0.914 0.924 0.936 0.946 0.970 
38 0.916 0.925" 0.938 0.947 0.971 
39 0.917 0.927 0.939 0.948 0.971 
40 0.919 0.928 0.940 0.949 0.972 
41 0.920 0.929 0.941 0.950 0.972 
42 0.922 0.930 0.942 0.951 0.972 
43 0.923 0.932 0.943 0.951 0.973 
44 0.924 0.933 0.944 0.952 0.973 
45 0.926 0.934 0.945 0.953 0.973 
46 0.927 0.935 0.945 0.953 0.974 
47 0.928 0.936 0.946 0.954 0.974 
48 0.929 0.937 0.947 0.954 0.974 
49 0.929 0.937 0.947 0.955 0.974 
50 0.930 0.938 0.947 0.955 0.974 

(From G. J. Hahn and S. S. Shapiro, Statistical Methods in 
Engineering, John Wiley & Sons, New York, 1967, p. 332.) 
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TABLE B-9 
Percentage Points For the WE 

Statistic 

95^. Hange W. Rar.jjc 

Lower Upper Lower Upper 
n Point Point Point Point 

7 0.062 0.404 0.071 0.358 
8 0.054 0.342 0.062 0.301 
9 0.050 0.301 0.058 0.261 

13 0.049 0.261 0.056 0.231 
11 0.046 0.234 0.052 0.208 
12 0.044 0.215 0.050 0.191 
13 0.040 0.195 0.046 0.173 
14 0.038 0.178 0.043 0.159 
15 0.036 0.163 0.040 0.145 
16 0.034 0.150 0.038 0.134 
17 0.030 0.135 0.034 0.120 
18 0.028 0.123 0.031 0.109 
19 0.026 0.114 0.029 0.102 
20 0.025 0.106 0.028 0.095 
21 0.024 0.101 0.027 0.091 
22 0.023 0.094 0.026 0.0S4 
23 0.022 0.087 0.025 0.078 
24 0.021 0.082 0.024 0.074 
25 0.021 0.078 0.023 0.070 
26 0.020 0.073 0.022 0.066 
27 0.020 0.070 0.022 0.063 
28 0.019 0.067 0.021 0.061 
29 0.019 0.064 0.021 Ü.058 
30 0.018 0.060 0.020 0.054 
31 0.017 0.057 0.019 0.0S2 
32 0.017 0.055 0.019 0.050 
33 0.017 0.053 0.0 IS 0.048 
34 0.017 0.051 0.018 0.047 
35 0.016 0.049 0.018 0.045 

(From G. J. Hahn and S. S. Shapiro, Statistical Methods in 
Engineering. John Wiley & Sons, New York, 1967, p. 335.) 
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TABLE B-10 

Percentage Points For the WE 
Statistic 

V5 „ K.inj;c «0 •„ Range 

LOWwT LTpcr Lower Upjvr 
/I Point l\tiiu Point Point 

7 0.025 0.260 0.033 0.225 
8 0.025 0.230 0.032 0.200 
9 0.025 0.205 0.031 0.177 

10 0.025 0.184 0.030 0.150 
11 0.025 0.166 0.030 0.115 
12 0.025 0.153 0.029 0.134 
13 0.025 0.140 0.028 0.124 
14 0.024 0.128 0.027 0.115 
IS 0.024 0.119 0.026 0.10b 
16 0.023 0.113 0.025 O.O'^S 
17 0.023 0.107 0.024 0.093 
18 0.022 0.101 0.024 0.087 
19 0.022 0.096 0.023 0.083 
20 0.021 O.dOO 0.023 0.077 
21 0.020 0.085 0.022 0.074 
22 0.020 0.080 0.022 o.or.9 
23 0.019 0.075 0.021 0.065 
24 0.019 0.069 0.021 0.062 
25 0.018 0.065 0.020 0.058 
26 0.018 0.062 0.020 0.056 
27 0.017 0.058 0.020 0.054 
28 0.017 0.056 0.019 0.052 
29 0.016 Ü.054 0.019 0.050 
30 0.016 0.053 0.019 0.048 
31 0.016 0.051 0.018 0.047 
32 0.015 0.050 0.018 0.045 
33 0.015 0.048 0.018 0.044 
34 0.014 0.046 0.017 0.0-13 
35 0.014 0.045 0.017 0.041 

(From G. J. Hahn and S. S. Shapiro, Statistical Methods in 
Engineering, John Wiley & Sons, New York, 1967, p. 334.) 
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1. Bain, L. J., and C. E. Antle, "Estimation of Parameters in 
the Weibull Distribution", Technometrics 9(4):621-627 (1967). 

A new method of estimation is used to obtain two simple esti- 
mators of the parameters in a Weibull distribution.   These 
estimators are similar to the estimators given by Gumbel, 
Miller and Freund, and Menon.   Monte Carlo methods were 
used to determine the variances and biases of the estimators 
for various sample sizes.   Comparisons of the estimators 
can be made and unbiasing factors calculated in some cases. 

2. Bhattacharya, P. K., "Efficient Estimation of a Shift Parameter 
From Grouped Data", Ann. Math. Statist. 38:1770-1787 (1967). 

This paper considers two populations having frequency functions 
f(x) and f(x-0) where the common form f and the shift param- 
eter $ are unknown.  A method of estimating 0 when one sample 
is reduced to a frequency distribution over a given set of class- 
intervals is suggested by the likelihood principle and the asymp- 
totic efficiency of this estimator relative to the appropriate 
maximum likelihood estimator based on the complete data is 
found to be the ratio of the Fisher-information in a grouped 
observation to the Fisher-information in an ungrouped observa- 
tion. 

3. Birnbaum, Z. W., Probability and Mathematical Statistics, 
Harper & Brothers, New York (1962). 

General theory of tests of statistical hypotheses is presented 
alottg wich a detailed discussion of the Chi-squared distribution 
and test.   Also distribution free tests are discussed including 
the Kolmogorov test and Smirnov test.   Also included are the 
likelihood function and likelihood ratio statistics. 

4. Brunk, H.D., Mathematical Statistics, Blaisdell Publishing 
Co., Waltham, Massachusetts (1965). 

Basic theory of testing hypotheses is presented including a 
discussion of testing a simple hypothesis against a simple al- 
ternative, choice of null hypothesis, the power function, most 
powerful tests and consistent tests.   Specific tests described 
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are Chi-squared test, Kolmogorov-Smirnov test for goodness 
of it, t-test, F-test, runs test, median test, and likelihood 
ratio test. 

5. Choi, S.C., and R. Wette, "Maximum Likelihood Estimation 
of the Parameters of the Gamma Distribution and Their Bias", 
Technometrics ll(4);683-690 (1969). 

The maximum likelihood method is recommended for estimating 
the parameters of a gamma distribution.   Numerical techniques 
for carrying out the calculation are examined.  A convenient 
table is obtained to facilitate the estimation of parameters. 
The bias of the estimates is investigated by Monte Carlo; the 
indication is that the bias of both parameter estimates pro- 
duced by the maximum likelihood method is positive. 

6. Cornell, R.G., andJ.A. Speckman, "Estimation for a Simple 
Exponential Model", Biometrics 23:717-737 (1967). 

Graphical, maximum likelihood, least squares, weighted least 
squares, partial totals, moment, finite differences. Fisher, 
and Spearman estimation procedures are presented for estima- 
ting the parameter A in the exponential model with expectations 
given by 1 - e"^T for different values of T.   The estimators 
are described, referenced, illustrated, and compared.   Tables 
are cited which make several of the estimation procedures 
easier computationally.   Included in the comparison of the 
estimators is a review of some Monte Carlo computations. 
The method of maximum likelihood, which can be used for 
any spacing of T-values, has very desirable large sample prop- 
erties.   The simple method of partial totals is a possible alter- 
native for small samples of equally spaced T-values while the 
Fisher and Spearman method are suggested alternatives for 
T-values whose logarithms are equally spaced. 

7. Cramer, H., Mathematical Methods of Statistics, Princeton 
University Press, Princeton (1945).    ~ 

Chapter 30 of this book describes "goodness of fit" statistical 
tests.   The two tests described in detail are the Chi-squared 
test and Cr£mer-von Mises test.   However, statistics for the 
Cr&mer ?on Mises test and examples are not presented. 
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8. Dubey, S.D., "Oa Some Permissible Estimators of the Location 
Parameter of the Weibull and Certain Other Distributions*', 
Technometrics 9(2):293-307 (1967). 

An estimator for the location parameter of the Weibull distri- 
bution is proposed which is independent of its shape and scale 
parameters.   Several properties of this estimator are estab- 
lished which suggest a proper choice of three ordered sample 
observations insuring a permissible estimate of the location 
parameter.   This result is valid for every distribution which 
has the location parameter acting as the origin or threshold 
parameter.  Asymptotic properties of such an estimator of 
the location parameter of the Weibull distribution is discussed. 
Finally the paper contains a brief discussion on a percentile 
estimator of the location parameter of the Weibull distribution 
and includes some numerical illustrations. 

9. Elandt, R.C., "The Folded Normal Distribution: Two Methods 
of Estimating Parameters From Moments", Technometrics 
3(4):551-562 (1961). 

The general formula for the r    moment of the folded normal 
distribution is obtained, and formulae for the first four non- 
central and central moments are calculated explicitly.   Two 
methods, one using first and second moments of the sample 
and the other using second and fourth moments, of estimating 
the parameters of the parent distribution are presented and 
their standard errors calculated.   The accuracy of both methods 
is discussed. 

10. Elder ton, W.P., Frequency Curves and Correlation, 4th Ed., 
Cambridge University Press, Cambridge, (1953). 

A thorough covering of the Pearson system.   Describes each 
type of distribution and gives relevant formulae for the type 
of curve. 

11. El-Sayyad, G.M., "Information and Sampling from the Expo- 
nential Distribution", Technometrics 11(1 ):41-^5 (1969). 

Methods of sampling an exponential population in order to obtain 
a prescribed accuracy in the determination of the unknown 
parameter are discussed.   The concept of information due to 
Shannon is used and it leads to well-known schemes. 
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12. Gnanadesikan, R., R.S. Pinkham, andL.P. Hughes, "Maxi- 
mum Likelihood Estimation of the Parameters of the Beta 
Distribution from Smallest Order Statistics", Technometrics 
9(4):607-620 (1967). 

Numerical methods, useful with high-speed computers are 
described for obtaining the maximum likelihood estimates of 
the two parameters of a beta distribution using the smallest 
M observations, 0 < ui < U2 <...<.. UM, in a random sample 
of size K (^ M).   The maximum likelihood estimates are func- 
tions only of the ratio R + M/K, the Mth ordered observation, 

M       1/M M 
uM, and the two statistics, G = [D. -«.]       and G« = [11. , 

1/to * 
(1-u.)]       .   For the case of the complete sample (R = 1), 

however, the estimates are functions only of Gi and G2, and 
hence, for this case, explicit tables of the estimates are pro- 
vided. 

Some examples are given of the use of the procedures described 
for fitting beta distributions to sets of data. 

13. Govindarajulu, Z., "Certain General Properties of Unbiased 
Estimates of Location and Scale Parameters Based on Ordered 
Observations", SIAM J. App. Math. 16(3):533-551 (1968). 

Some upper bounds are derived for the variances of least squares 
estimators based on a subset of the ordered observations in 
a random sample of (i) location, (ii) scale, and (iii) both loca- 
tion and scale parameters of a distribution. 

14. Gumbel, E.J., "Statistical Theory of Extreme Values and 
Some Practical Applications", National Bureau of Standards, 
Applied Math Series 33, (Feb. 1954). 

15. Hahn, G.J., and S.S. Shapiro, Statistical Models in Engineering, 
John Wiley and Sons, New York, 1967 (1967). 

Discusses many continuous and discrete distributions.   Gives 
functional form, discusses theoretical basis, and mentions 
applications.  In some cases describes parameter estimation 
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techniques.   Discusses advantages to fitting data to empirical 
distributions.   Describes Johnson system and displays plot 
of ßl tßz values«   Fitting procedures for Johnson distributions 
are outlined and examples are given.   Describes Pearson 
system of distributions and displays ßi,ßo plot.   Does not 
attempt to describe Pearson fitting procedures. 

Discusses general techniques of goodness of fit tests.   Two 
procedures are discussed: a series of tests developed by 
Shapiro and Wilk, known as W tests (including the WE test), 
and the Chi-squared goodness of fit test.   The W tests are 
used to evaluate the assumption of a normal and exponential 
distribution for a set of data.   The procedures for using these 
techniques are presented in a detailed step-by-step manner. 

16. Haight, F. A., Index to Distributions of Mathematical Statistics, 
J. Res. Natl. Bureau Stand. - B. Math, and Math. Phys 65B 
(1):2S-ÖÖ (1Ö61).  

A fairly complete index of references to results on statistical 
distributions published before January 1958 is presented. 
The material given for each distribution is a list of references 
relating to:  (a) functions and constants which characterize 
the distribution, (b) derived distributions, (c) estimation, 
(d) testing statistical hypotheses, and (e) miscellaneous. 
The distributions covered are characterized as normal, type 
HI, binomial, discrete, distributions over (a,b), distributions 
over (a,«), distributions over (-<*>,«>), miscellaneous univariate, 
miscellaneous bivariate, and miscellaneous multivariate. 
The number of entries varies from one or two for less well- 
known distributions to several hundred for the normal distri- 
bution. 

17. Harter, H.L., "Maximum-Likelihood Estimation of the Param- 
eters of a Four-Parameter Generalized Gamma Population 
From Complete and Censored Samples", Technometrics 9 
(1):159-165 (1967). 

The four-parameter generalized gamma distribution includes 
such distributions as the usual three-parameter gamma, the 
Weibull, the exponential, and the half normal.   For these dis- 
tributions this paper develops the maximum likelihood equations. 
Iterative computer techniques are needed to solve these equations. 
Some results of applying this to various distributions are pre- 
sented. 
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18. Harter, H. L., "A New Table of Percentage Points of the Pearson 
Type m Distribution", Technometrics 11(1):177-187 (1969). 

A table of percentage points for the type m Pearson distribution. 

19. Hodges, J.L., Jr. and E.L. Lehmann, "A Compact Table 
For Power of the t-Test", Ann. Math. Statist, 39. No. 5 
(1968) 

The paper gives a one-page table for t-power which covers 
any values of the (one-sided) significance level a in the range 
from 0.005 to 0.1, any value of the second-type error probability 
/3 in the range from 0.01 to 0.5; and any number of degrees 
of freedom greater than 2.   The table gives reasonably accurate 
answers without iteration and using only linear interpolation. 
Eight examples are provided which illustrate a variety of t-power 
problems. 

20. Hogg, R.V. and A.T. Craig, Introduction to Mathematical 
Statistics, the Mac Millan Company, New York (1965).    "~ 

Includes chapters on order statistics, sufficient statistics, 
statistical hypotheses and statistical tests.   It provides the 
theoretical basis of the Chi-square tests and Bayesian tests. 
It also describes Likelihood Ratio tests and the sequential 
probability ratio test. 

21. Johnson, N.L., "Systems of Frequency Curves Generated by 
Methods of Translation", Biometrika 36:149-176 (1949). 

Introduces Johnson system of distributions.   Reviews literature 
on systems of distributions.   Provides a theoretical background 
to Johnson system.   Compares Johnson and Pearson systems 
for skewness and kurtosis values.   Gives some numerical ex- 
amples. 

22. Johnson, N. L., 'Tables to Facilitate Fitting STT Frequency 
Curves", Biometrika 52:547 (1965). u 

In fitting empirical data to a distribution from the Johnson 
family, one usually adjusts the parameters of the Johnson 
distribution to match the first four moments of the original 
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data.   However, given the first four moments it is not a trivial 
problem to calculate the correct Johnson parameters.   This 
paper provides tables from which the Johnson parameters can 
be obtained. 

23. Johnson, N.L., and S. Katz, Distributions in Statistics: Dis- 
crete Distributions, Houghton-Mifflin Co., Boston, (1969). 

Thorough covering of all known discrete distributions.   Gives 
functional form, moments, and other information and discusses 
the estimation of parameters for each distribution. 

24. Johnson, N.L., and S. Katz, Distributions in Statistics: Con- 
tinuous Univariate Distributions, Vol. 1 and 2, Houghton-Mifflin 
Co., Boston,(197(9.        ' 

Thorough covering of all known continuous distributions (except 
empirical families).   Gives functional form, moments, and 
other information and discusses the estimation of parameters 
for each distribution. 

25. Johnson, N.L., E. Nixon, D. E. Amon, and E. S. Pearson, 
"Table of Percentage Points of Pearson Curves", for given 
Jßl and 02, expressed in standard measure", Biometrika 50: 
459-49B (1963). 

For the general Pearson system of distributions, this paper 
gives tables of percentiles (or solutions of the inverse equation) 
as a function of skewness and kurtosis. 

26. Kagan, A. M., "Estimation Theory for Families with Location 
and Scale Parameters and For Exponential Families", Proc. 
Steklov, Inst. Math. 104:19-87 (1968). 

This theoretical paper investigates families of distributions 
and estimators.   The conditions for admissible estimators are 
discussed. 

27. Kendall, M.G., andA.S. Stuart, The Advanced Theory of 
Statistics, Vol. 1, Distribution Theory, Charles Griffen & 
Co. (1Ö56). 
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28.       Kodlin, D., "A New Response Time Distribution", Biometrics 
23:227-239 (1967). 

A skewed, two-parameter distribution is described which has 
been found useful in the analysis of human survival time data. 

-(ct+Jkt2) 
The density has the form f(t) = (c+kt)e .   This form 
is integrable and has manageable first and second moments. 
Since the distribution has non-asero density at the origin, it 
may be of value in connection with those types of responses 
which take place even before observation begins.   Description 
of a maximum likelihood technique of estimating the parameters 
is followed by discussion of damage models that incorporate 
the distribution. 

29. Langton, N.H., "Statistical Distribution", Brit. Chem. Engr. 
8:478-484 (1963). 

This paper is an elementary article which gives the basic 
concepts and formulae characterizing probability distributions 
and sampling.   It discusses the binomial, Poisson, and normal 
distributions and the fitting of empirical data to these distri- 
butions using moments method. 

30. Malik, H. J., "Estimation of the Parameters of the Pareto 
Distribution", Metrika 15:126-136 (1970). 

In this paper, sufficient estimators for the parameters a and 
v of the Pareto distribution are obtained.  It is shown that 
Y- = Min (x.,..., a--) is sufficient for a when v is known, 
tire sample geometric mean g is sufficient for v when a is 

N       Y 
known; and (Y-, 1 -tn «-) is a joint set of sufficient statistics 

1 1=1      Yl 
for (a,v) when both are unknown.   The exact distribution of 
the maximum likelihood estimator is derived. 

31. Mandel, J., "A Method for Fitting Empirical Surfaces to Physical 
or Chemical Data", Technometrics ll(3):411-429 (1969). 

A method, largely graphical, for fitting a distribution to bi- 
variate data is presented.  An example is given.   The method 
does not require prior assumptions as to the form of the 
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distribution to be fit.   However, it may not have general appli- 
cability and needs further investigation. 

32. Marshall, A.W., and I. Olkin, "A Multivariate Exponential 
Distribution", J. Amer. Stat. Assoc. 62:30-44 (1967). 

A number of multivariate exponential distributions are known, 
but they have not been obtained by methods that shed light on 
their applicability.   This paper presents some meaningful 
derivations of a multivariate exponential distribution that serves 
to indicate conditions under which the distribution is appropriate. 
Two of these derivations are based on "shock models", and one 
is based on the requirement that residual life is independent 
of age.   It is significant that the derivations all lead to the same 
distiibution. 

For this distribution, the moment generating function is obtained, 
comparison is made with the case of independence, the distri- 
bution of the minimum is discussed, and various other proper- 
ties are investigated.   A multivariate Weibull distribution is 
obtained through a change of variables. 

33. Massey, Frank J., Jr., "The Kolmogorov - Smirnov Test 
for Goodness of Fit", J. Am.  Stat. Assoc.,   46 (1951). 

The Kolmogorov-Smirnov test which is based on the maximum 
difference between an empirical and hypothetical cumulative 
distribution is discussed.   Percentage points are tabulated, 
and a lower bound to the power function is charted.   Confidence 
units for a cumulative distribution are described.   Examples 
are given.   Indications that the test is superior to the Chi- 
square test are cited. 

34. Mann, Nancy R., "Point and Interval Estimation Procedures 
for the Two-Parameter Weibull and Extreme-Value Distributions", 
Technometics 10(2):231-256 (1968). 

Point estimators of parameters of the first asymptotic distri- 
butions of smallest (extreme) values, the extreme-value distri- 
bution, are surveyed and compared.   Since the logarithms of 
variates having the two-parameter Weibull distribution are 
variates from the extreme-value distribution, the investigation 
is applicable to the estimation of Weibull parameters.   Those 
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estimators investigated are maximum-likelihood and moment 
estimators, inefficient estimators based on only a few ordered 
observations, and various linear estimation methods.   A com- 
bination of Monte Carlo approximations and exact small-sample 
and asymptotic results has been used to compare the expected 
loss (with loss equal to squared error) of these various point 
estimators.   Interval estimation procedures are also discussed. 

35. McGrath, E.J., Fundamentals for Operations Research, 
West Co«\st University, 1970, Chapter 3.   """ 

Discussion of probability distributions and estimators for most 
basic distributions.   Weibull - describes distribution and typical 
curves and discusses estimators for parameters.   Johnson - 
defines distribution, displays typical curve shapes, and gives 
skewness - kurtosis diagram for family.  Extensive discussion, 
with examples, of estimation of parameters.   Pearson - defines 
distribution types and gives skewness-kurtosis plot for family. 
Discussion of X^-test for evaluation of fits. 

36. Meier, F.A., "Non-Normal Statistical Distributions and Their 
Use in Industrial Engineering", Amer. Inst, oflndust. Eng., 
Tech. Papers, 20 Inst. Conf. and Conv.  71-83 (195^ 

Both the gamma and Weibull distributions are described with 
comments on calculational methods and approximations.   A 
thorough review of methods for estimating parameters is given. 

37. Mangel, P.R., "Fragility Curve Preparation Methods", unpub- 
lished memo, 1970. 

Presents a methodology for fitting data from failure levels 
to a lognormal distribution.   Theoretical reasons underlying 
the use of the lognormal for this case are discussed. 

38. Menon, M.W., "Estimation of the Shape and Scale Parameters 
nf the Weibull Distribution", Technometrics 5(2):175-182 (1963). 

Estimates c and 6 are proposed for the shape parameter c 
and the scale parameter b of the Weibull distribution on the 
assumption that the location parameter is known.   First an 
estimate d of 1/c is found, the c is obtained as 1/d.   When 
b is unknown, d is a consistent and non-negative estimate of 
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d, with a bias which tends to vanish as the sample size increases 
and with an asymptotic efficiency of about 55%.   When b is known, 
d is an unbiased, non-negative, and consistent estimate of d, 
and its efficiency is approximately 84%.  An estimate in 6 
of -Cn b is found with an asymptotic efficiency of 95%.   It is 
proposed that exp (in 6) be used to estimate b. 

39. Neave, H.R. and C.W. J. Granger, "A Monte Carlo Study 
Comparing Various Two-Sample Tests for Differences in Mean", 
Technometrics, 10 (3)    (1968). 

A study was conducted on eight tests for differences in means 
under a variety of simulated experimental situations.   Estimates 
were made of the power of the tests and measures made of 
the extent to which they gave similar results.   In particular 
the performance of a new quick test developed by Neave was 
studied. 

40. Pearson, K., "Mathematical Contributions to the Theory of 
Evolution - Supplement to a Memoir on Skew Variation", Trans. 
Roy. Phil. Soc. London 197:443-459 (1901). 

One of the classic papers introducing some of the Pearson 
system distributions and giving some examples. 

41. Pearson, K., "Mathematical Contributions to the Theory of 
Evolution - Second Supplement to a Memoir on Skew Variation", 
Trans. Roy. Phil. Soc. London A216:429-457 (1916). 

Classical paper setting forth the properties of the Pearson 
system and the distributions in it. 

42. Pearson, E.S., andH.O. Hartley (eds), Biometrika Tables 
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and the power of the test regarding the shape 
parameter are developed and presented. 

4. Sample sizes at which large sample theory 
may be useful are presented. 

52. Thornber, H., "Finite Sample Monte Carlo Studies: An Auto- 
regressive Illustration", J. Amer. Stat. Assoc. 62:801-818 
(1967). — 

In this paper the problem of choosing among point estimators 
on the basis of their small sample properties is discussed 
from the sampling point of view.   The indeterminacy of most 
Monte Carlo studies is analyzed and resolved within the frame- 
work of statistical decision theory.  A first order auto-regres- 
sive model is worked through in detail both for its own sake 
and to illustrate how a complete Monte Carlo study might be 
done. 

53. Weibull, W., "A Statistical Distribution Function of Wide 
Applicability", J. App. Mech. 18(3):293-297 (1951). 

Introduces the Weibull distribution and gives several examples 
of fitting to it. 

54. Weiss, L., and J. Wolfowitz, "Maximum Probability Estima- 
tors", Ann. Inst. Stat. Math. Tokyo 19 193-208 (1967). 

A new class of estimators, called maximum probability esti- 
mators, is suggested as an alternative to maximum likelihood 
estimators. 

146 



55.      White, J.8., "The Moments of Log-WeilmU Order Statistics", 
Tedmometrlce 11:373-886 (1969). 

Formulae for the moments of the order statistics of a general 
dietrlbutlon are derived.  Then the log-Welbull distribution 
is introduced and the moments of its order statistics are cal- 
culated.  An application showing how this can be applied to the 
fitting of a Welbull distribution to empirical data is given. 

147 


