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ABSTRACT

This document is the first of three volutes which
present techniques and methods for developing efficient Monte
Carlo simulation: Each volume presents techniques for re-
ducing computational effort in one of the following areas:

Vol. I - Selecting Probablility Distributions, Vol. II - Random
Number Generation For Selected Probability Dlstributions,
and Vol. Il - Variance Reduction. ‘

This volume provides a straightforward approach and
associated techniques for selecting the most appropriate pro-
bability distributions for use in Monte Carlo simula’nns. Pact
I, BASIC CONSIDERATIONS, presents the underlng concepts
and principles for selecting probability distributions. Part I,
SELECTION OF DISTRIBUTIONS, gives the mathematicag models
representing stochastic processes and presents step-by-step
procedures for identification and selection of the appropriate
probability distributions based upon the degree of kxiowledge and
available data for the random variable under study.
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EXECUTIVE SUMMARY

Monte Carlo simulation is one of the most powerful and commonly
used techniques for analyzing complex physical problems. Applications
can be found in many diverse areas from radiation transport to river basin
modeling. Important Navy applications include: analysis of antisubmarine
warfare exercises and operations, prediction of aircraft or sensor perform-
ance, tactical analysis, and matrix game solutions where random processes
are considered to be of particular importance. The range of. épplications
has been broadening and the size, complexity, and computational effort re-
quired have been increasing. However, such developments are expected
and desirable since increased realism is concomitant with more complex and
extensive problem descriptions.

In recognition of such trends, the requirements for improved simu-
lation techniques are becoming more pressing. Unfortunately, methods for
achieving greater efficiency are frequently overlooked in developing simula-
tions. This can generally be attributed to one or more of the following '

reasons:

e Analysts usually seek advanced computer systems to
perform more complex simulation studies by exploit-
ing increased speed and/or storage capabilities. This
is often achieved at a considerably increased expense.

.¢ Many efficient simulation methods have evolved for
specialized applications. For example, some of the
most impressive Monte Carlo techniques have been
developed in radiation transport, a discipline that does
not overlap into areas where even a small number of
simulation analysts are working.

e Xnown techniques are not developed to the point where
they can be easily understood or applied by even a
small fraction of the analysts who are performing simu-
lation studies or developing simulation models.
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In addition to the above reasons, comprehensive references describing
efficient methodologies to improve Monte Carlo simulation are not avail-
able. It is the intent of these volumes to help alleviate the above short-
comings in Monte Carlo simulation.

This document is the first of three volumes which present techniques
and methods for developing efficient Monte Carlo simulations. Each volume
is essentially a self-contained discussion of useful techniques which can be
applied in reducing computational effort in one of the following three major
aspects of Monte Carlo simulation:

o Selecting Probability Distributions - Volume I

e Random Number Generation for Selected Probability
Distributions - Volume II

e Variance Reduction - Volume I

The purpose of these volumes is to provide guidance in developing
Monte Carlo simulations that accurately reflect the behavior of various
characteristics of the system being simulated and are most efficient in
terms of computational effort. The basic intent is to provide understanding
of the concepts and methods for reducing analysis and computational effort
as well as to serve as a practical guide for their application. They hLave
been prepared primarily for the systems analyst and computer programmer
who have a basic background and experinece in simulation and elementary -
statistics. Thus, the material is presented so as to preclude extensive
knowledge of statistical techniques or of extensive literature search., How-
ever, it is assumed the reader has a grasp of the fundamentals of Monte
Carlo methods, simulation modeling, and elementary statistics.

viii



1. INTRODUCTION

The starting point in developing any Monte Carlo simulation is the
construction of mathematical models which describe the stochastic be-
havior of the variables in the process under study. When the underlying
processes are well understood and the functional forms of the variables
are known, development of a model is straightforward. However, in many
applications the exact functional form of the variable is not known, thus re-
quiring selection f;0m among a myriad of possible distributions to find the
one that will best represent the process. This volume provides a straight-
forward approach and associated techniques for selecting the most appro-
priate probability distributions for use in Monte Carlo simulations.

Part I of this volume, BASIC CONSIDERATIONS, presents the under-
lying concepts and principles to be used in the selection of probability dis-
tributions. This background information provides the reader with an under-
standing of the important considerations, tasks, and methods and procedures
involved in dealing with simulation events characterized by random variables.

Following Part I, the reader will find in Part I, SELECTION OF
DISTRIBUTIONS, the mathematical models which will represent the stochastic
behavior of the process as accurately as the data and understanding of the
processes will allow. Part II presents step-by-step procedures for the
identification and selection of appropriate probability distributions. Part IT
applies the rationale developed in Part I to the problems of developing dis-
tributions based on varying amounts of data and depth of understanding of
the processes being simulated.

This volume also includes additional information useful in the selec-
tion of probability distributions. Appendix A contains buckground information



of the complex parametric families of distributions which will be useful

for the reader who has not encountered these distributions before. Appen-
dix B contains tables which are needed in making computations involv}ng ,; _
distribution fitting and testing. Appendix C is an abstracted bibliography

of publications relating to the subjects of probability distribution identifica-
tion and selection.



PART I

BASIC CONSIDERATIONS



2. FUNDAMENTALS OF DISTRIBUTION SELECTION

Selection of an appropriate probability distribution for a given
random variable in a simulation requires gathering and evaluating all
the available facts, data, and knowledg: concerning each variable. It
is also important to know how the particular process which any given
variable represents relates to the entire simulation model. For Monte
Carlo applications this includes careful investigation of:

e Each individual process or event

e Underlying theory of the pirocess
e Data representing the variability of the process

e Sensitivity of the process being simulated to probable
values of the variable

e Simulation programming considerations

When the variable under consideration is just one among many vari-
ables which affect the overall problem or system, the simulation is often
not very sensitive to the choice of the distribution. This can be likened
to the phenomenon of summing a series of raadom variables, none of which
dominates the sum. In this case the total tends to have a normal distri-
bution irrespective of the individual distributions (see Refs. 7,27). In other
cases, the selection of a distribution is more critical to effective simulation.
For example, when only a few variables dominate the process or the process
is greatly influenced by rare occurrences (e.g., failure of a critical high
reliability component) the selection of probability distributions becomes
of paramount importance. (.21

Choosing the form of probability distributions is often a trade-
off between theoretical justification and empirical evidence. Typically,
some form of parametric distribution can be justified, such as the

Procading naaa hlank



normal, uniform, binomial, or Bernoulli distribution. Available data
can then be used to estimate its parameters. In the absence of empirical
data, one is forced to choose distributions on either theoretical or intui-
tive grounds, or often to use several distributions and conduct sensitivity
or worst-case analyses. At the other extreme, where empirical data

is abundant, either the histogram can be used or more elaborate para-
metric models can be employed.

The final choice of a particular distribution type is, of course,
also dependent on ease of implementation. Computer storage space,
computation time, and ease of programming are key considerations in
most simulations. Generating random variables from a parametric
distribution'requires taking an inverse of the cumulative distribution
function or using other random number generation techniques (see Vol-
ume II). For some distributions, such as the exponential or uniform,
the inverse operation is a simple computation. For others, such as
the normal, relatively simple techniques are available, Histograms
are also fairly easy to use in computer simulations. Here, only a list
of numbers must be stored (the more variable and detailed the histogram,
of course, the longer the list). For many distributions, however, iz-
verse algorithms for generation of random numbers do not exist, and
other methods require lengthy computation. In this case, a com-
promise must be made between ease of computation and simulation accu-
racy. Making an estimate of how sensitive the total simulation will be
to individual probability distribution assumptions is important in deter-
mining this compromise.

2.1 BASIS FOR MAKING SELECTIONS

Before proceeding to the techniques of distribution selection
and their application in simulation development, it is necessary to un-
derstand the underlying concepts for making selections. Basically, the
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selection process described in Part II depends on two factors: the
extent of knowledge of the process under study (qualitative) and the
amount of date available (quantitative). Knowledge of the process refers
to the level of understanding of its behavior and characteristics. For
example, it is possible in some cases to be quite certain that the fre-
quency distribution of a random variable is normal ba;sed on familiarity
with the process. At the other extreme, little or nothing may be known.
Similarly, the amount of data describing a particular variable may range
from extensive to none. Each combination of the state of knowledge and
amount of data poses particular problems in selecting the most appro-
priate distribution.

2.2 QUALITATIVE BASIS FOR SELECTION

Developing an understanding of some random process involves
analysis to characterize the process. In general, such efforts attempt
to identify the process on the basis of:

¢ Similarity to some other process whose behavior is known
e Underlying theory
e Certain qualitative aspects.

Often a process can be likened to some other, the behavior of
which is known. In such circumstances, it can be reasonably justi-
fied that this known distribution might apply to the one under study.
For example, consider the simulation of a process involving the
human performance of some manual task. Even though the task may
bear no particular resemblance to one in which the distribution is
known, an assumption of similarity is reasonable. The frequency
distribution of time of performance is likely to be from the same
family of distributions even thcugh the actual process might be quite
different.



Many activities for which stochastic models must be developed
can, at least generally, be identified by some applicable theory. Con-
sider the case in which some repetitive human activity is involved such
as in maintenance. Maintainability theory would indicate a strong like-
lihood that the frequency distribution of time to perform would have a
log normal or a gamma distribution. Similarly, if the failure of elec-
tronic parts were to be modeled, it could be assumed that an exponen-
tial or possibly a Weibull might be applicable (53). Such reasoning is
a fundamental part of the task of distribution selection.

There are, of course, many situations in which a theoretical
basis for a particular distribution can be established. Consider the
shots fired at a target or the velocity of a molecule in a stable solution.
Under fairly weak conditions the velocity of the molecule or the devia-
tion of shots (in three-dimensional space) from the bull's eye can be
shown to have a Maxwell distribution (27). The component of velocity
in any direction or the projection of shots onto any axis through the
bull's eye follows the normal distribution. In two dimensions the re-
sulting distribution is the Rayleigh. If the process being modeled in-
volves reliability, the exponential distribution reflects the behavior of
an item with a constant failure rate. If the process involves waiting
or queueing phenomena, the exponential can be used to depict random
arrival and service times. The gamma distribution also has wide
application since it is related to the exponential distribution. The
number of occurences up to a given point in time has a gamma distri-
bution if the time between occurrences follows an exponential distribution.

In some cases, it will not be possible to relate the process be-
ing examined to anything which is known. This may be either because
little understanding of the process exists or it simply bears no relation
to any process whose behavior can be described on a theoretical basis.
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However, there still 1aay be some clues which are useful in identifying
an applicable distribution, particularly where some data exist. A num-
ber of qualitative aspects of the process can be helpful. These include,
for example, consideration of whether the variable is discrete or con-
tinuous, bounded, symmetric, or can be described in some other sim-
ilar ways. Such clues, although probably not sufficient for positive
identification above, are useful in making a rational selection of a
distribution.

2.3 QUANTITATIVE BASIS FOR SELECTION

One of the most common problems in simulaiion is not having,
or not being able to obtain, the data necessary to describe a particular
variable. Collecting it may be too time consuming or expensive. In
some cases it is simply not possible. Consequently, the amount of data
available is one of the major considerations in the selection of prob-
ability distributions. -

Where sufficient data are available, an empirical approach
can be used. This means essentially using the data to derive a
model. Combined with the state of knowledge of the process being
modeled, graphical and anmalytical techniques can be employed to
select the distribution most representative of the data.

In those cases where acquisition of the data is difficult, the
application of the methodology of Part II can be useful in determin-
ing whether such effort is warranted. If a distribution can, in fact,
be selected with little data, there may be no justification for collect-
ing more. If, on the other hand, a distribution cannot be identified
and the simulation results are sensitive to that particular variable,
additional data may be essential for developing a valid model.



3. TECHNIQUES USED IN DISTRIBUTION SELECTION

Specific techniques for selecting a particular stochastic model
depend on the information and data available. The situation can range
from having practically nothing to work with to almost certain specifica-
tion of the model based on sound theoretical and empirical evidence.

The development of the theoretical evidence is entirely qualitative.
Development of the empirical evidence requires the use of a number of
quantitative methods. These include:

Sensitivity analysis
Graphical analysis
Parameter estimation
Goodness-of-fit-testing.

Each of these is introduced briefly in the following sections.

3.1 SENSITIVITY ANALYSIS

The purpose of sersitivity analysis is to determine the extent
to which the outcome of an analysis is dependent upon a particular’
variable or agssumption. It is particularly applicable in simulation
where little or no data is available to characterize some random var-
iables. In such a situation, sensitivity analysis can indicate whether
or not the behavior of the variable must be more accurately known.
If, for instance, the outcome of the simulation is not sensitive to the
variable, no further effort to characterize it is necessary. However,
if it does prove sensitive, an attempt to develop an accurate distribu-
tion model is warranted.

The only practical way to perform the sensitivity analysis is
to perform a simulation varying the values or assumptions concerning
the variable in question. Comparison of the results using standard

11
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statistical tests can reveal whether significant duferftences are pro-
duced (see Sections 3.4 and 9.). This is not so formida.ble a task as /
it might at first appear. If the simulation is'to have any real validity

in the first place, the behavior of most o{ the variables must be knowr/
If only a few variables can be accurately escribed, a simulation - 5{'
merely produces a precise but inaccurate result.

3.2 GRAPHICAL ANALYSIS

One of the topics in elementary applied statistics is the con-
struction of frequency histograms and cumulative frequency polygons.
These procedures provide one means for identifying appropriate dis-
tribution models under the proper circumstances. Where such tech-
niques are applicable they do offer the advantage of relative simplicity.
They are most useful when there is some knowledge of the process and
at least minimal data available,

The histogram is constructed from data concerning the vari-
able. It carries with it all the present empirical information available
on the variable, nothing more. It does not try to estimate probable be-
havior. If rare events have not been observed, for instance, it will
assign zero probability to their occurrence. Since it uses all data, it
also perpetuates the mistakes of erroneous observations and may
describe a model that is not valid.

The most common graphical procedure is the construction of
the frequency histogram. This is simply a plot of the frequency with
which each of various values occurs in the sample data. The histo-
gram is useful in two ways. It provides visual evidence of the shape
of the distribution which can be useful in selecting a distribution. It may
also be used directly in the simulation as the model of the process.

12



When data is abundant the use of the histogram is often adequate
for many Monte Carlo applications. In using the histogram, care must
always be exercised to remove obvious errors and to consider low
probability events. When only limited data is available the histogram
approach suffers from sampling peculiarities and from lack of observa-
tions in any tails of the distribution. In this case more effective distri-
butions can be developed by taking into consideration other informa-
tion about the behavior of the variable or by obtaining additional infor-
mation from the data, e.g., by estimating higher moments. This
information can range from an understanding of the theoretical nature
of the variable to intuition. It might be assumed, for example, that
the underlying real distribution is continuous; then smoothing proce-
dures can be applied to the histogram to obtain a continuous curve.

Another graphical procedure useful in the selection of proba-
bility distributions involves the use of probability paper. As with the
histogram, there is a large element of subjectivity in this procedure.

It involves selection of an appropriate probability paper from those avail-
able and plotting the sample distribution function. Judgment is required
in deciding whether the plot sufficiently approximates a straight line.

The use of graphical procedures in simulation development
is described in Section 8, Part II.

3.3 PARAMETER E3TIMATION

A parametric distribution is defined to be a functional or
analytical representation for a probability distribution which depends
on one or more parameters. Although use of such distributions re-
quires that the parameter(s) be estimated, there are a number of
reasons for using a parametric distribution function rather than a

13



histogram in developing a mathematical model. In particular, a parame-
tric distribution: '

® Provides a convenient means for inclusion of additional
information about the variable (such as known upper and
lower limits on the data).

e Allows meaningful extrapolation into the tail(s) of the
distribution and into regions where no data was available.

e Allows incorporation of the additional information inher-
ent in the shape of the distribution if there is a theoretical
justification.

e Provides for a reproducible means of representing the
data since freehand "fit'" to the same data will vary from
person to person.

e Provides important summary information about the vari-
able in the form of estimated parameters of the fitted
distribution.

e Provides a more compact representation of the random
variable usually resulting in less data storage requirements.

e Allows construction of reasonable and convenient models
in cases of no data or very limite'd data.

e Provides for efficient and convenient random number gen-
eration in most cases.

e Facilitates analytic (rather than simulation) studies of
portions of the process.

e Permits a convenient means whereby analysis of the sen-
sitivity to the shape of the distribution can be accomplished.

To facilitate the presentation of parametric distributions, the
individual parametric families have been classified as being either of
a simple or of a complex nature. The difference between these two

14



classifications is mainly the number of parameters necessary to
describe the distribution. The simple distributions are character-
ized by no more than two parameters, the complex by more than two.

The other distinguishing feature is that simple distributions
are those which are commonly encountered, relatively easy to recog-
nize, and have some theoretical basis for their functional form and
application. Thus, simple parametric families of distributions can
often be derived from assumptions about the process generating the
random variable or from graphical evidence based on the data.

The complex parametric families generally do not have a
"nice" physical interpretation or a simple functional form. They
can be viewed more as abstract inventions which admit enough shapes
to insure a reasonable fit to any set of observations. They also pro-
vide greater flexibility than simple distributions in projecting events
of the process that would appear in the tails of the distribution.

3.3.1 Simple Parametric Distributions

The simple distributions include, but are not limited to, the
rormal, gamma, binomial, exponential, and other distributions which
can be defined by at most two parameters. For the purposes of select~
ing an appropriate probability model, a simple distribution will be in-
dicated by the underlying theory of the process or by preliminary selec-
tion using graphical procedures referred to previously.

One of the most common and useful of the simple continuous
probability functions is the normal distribution. Much of the appeal
of this distribution is based on a the central limit theorem. In essence,
this states that the sum of independent variables tends to be normally
distributed. (27) This assumes, of course, that none of the individual

15
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elements of the sum dominates its behavior. Since many variables which
are modeled in Monte Carlo simulations are in reality derived from
several variables, the assumption of a normal distribution can often be
justified.

Since simple parametric distributions are discussed in detail in
most elementary textbooks on probability, they are not discussed in de-
tail here. However, a summary of the more common simple paramet-
ric distributions is given in Section 4. 3.

3.3.2 Complex Parametric Distributions

As used in this volume, complex parametric distributions are
defined as the Weibull, Johnson, and Pearson distribution families.
The functional form of these distributions is somewhat complicated,
and three to five parameters are often required to define the specific dis-
tribution. Reverting to the analytic procedures to generate these dis-
tributions is most necessary when a simple distribution cannot be jus-
tified and the simulation results are dependent upon rare events,

Rare events are usually related to the tails of the distribution., For
certain events or processes to be simulated sufficient observations
to accurately define the tail regions may not exist. In such cases,
one usually employs smoothing techniques utilizing parametric func-
tions to extend or infer the behavior of the tail regions from available
data.

Using a complex parametric distribution can be viewed as a
convenient way of smoothing the raw data and expressing the smoothed
data in functional form. These three families admit almost every type
of probability distribution, one major exception being composite dis-
tributions made up of several distinct populations, e.g., multimodal
distributions. In fact most of the simple parametric distributions are
special cases of a Weibull, Johnson, or Pearson distribution.

16



If the reader is interested in a further discussion of these dis-
tributions, background information is contained in Appendix A. The
material there is not, however, essential for understanding the prin-
ciples discussed in Part I or the methods described in Part II.

3.4 GOODNESS-OF-FIT TESTS

After initial selections of a distribution for a Monte Carlo
application and where sample data are available, it is usually worth-
while to try and validate or substantiate these choices. The validation
step of the selection procedure is especially critical when it has been
determined that the Monte Carlo result will be sensitive to distribution
selection. More generally, developing confidence in the distributions
used in any simulation adds to the confidence in the total simulation in
addition to aiding in the overall understanding of the process.

One of the most useful methods used in validation is called
goodness-of-fit-tests., These are statistical procedures for testing
whether sample data can reésonably be expected to be representative
of (drawn from) a particular probability distribution. Essentially,
there are two such tests which have found wide application since they
can be applied to any distribution. These are the Chi-Square test and
the Kolmogorov-Smirnov test. A brief description of each of these two
tests is presented below. In addition there are a number of specialized
tests such as the W-test for a normal distribution and the WE -test for
an exponential distribution which are useful. Specific details for apply-
ing these tests are contained in Part I, Section 9.

One word of caution should be noted in using these tests. The
statistical inferences based on these tests rely on asymptotic proper-
ties. Thus a fair amount of data is required to obtain valid interpre-
tations. Where limited data are available or many erroneous data

17



points are believed to be in the sample, the usefulness of these tests
may be questionable.

Chi-Square Test: This common goodness-of-fit-test is made by

subdividing the data into groups or intervals and comparing the num-
th

ber of actual observations Ai inthe i interval to the number expected Ei
as computed from the assumed distribution. The statistic employed in
this method is
2
R s ek
T = T

Under the null hypothesis (observations are from the assumed distribution)
the distribution of this statistic asymptotically approaches a Chi-Square
distribution with n-1 degrees of freedom.

The Chi-Square test has certain obvious shortcomings. In addi-
tion to being sensitive to sainple size, this test is also sensitive to data
grouping. Different investigators conducting this test will tend to get
different results. One requirement in using the test is that each cell
or subgroup should have a sufficient number of observations in it.
Some authors (27) feel that a good test requires at least twenty obser-
vations per cell and that there should also be between five and twenty
cells.

Kolmogorov-Smirnov Test:* This goodness-of-fit test is made

by computing the maximum difference between the sample cumulative
distribution function and the assumed distribution function. This dif-
ference, under the null hypothesis, has a known asymptotic distribu-
tion which is available in table form (see Appendix B). The Kolmogorov-
Smirnov is generally considered to be more sensitive than the Chi-Square

18



test and also has the advantage that arbitrary data grouping decisions
are not required. Its disadvantages are that it is usually more com-

putationally difficult to apply, and if the hypothesis is rejected, the
reason for the rejection is less clear.

19



PART O
SELECTION OF DISTRIBUTIONS
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4, DISTRIBUTION SELECTION PROCEDURES

This section presents a systematic set of procedures for selecting
the most representative model for a random variable in a simulation.
The procedures selected depend on tvro types of knowledge of the random
variable in question. These are:

1. Empirical Data (Quantitative Observations)
2. Understanding of the Random Process (Qualitative A Priori
Knowledge).
Based on the degree of knowledge in each category, a set of procedures
for selecting a distribution has been constructed. By following a particu-
lar procedure the most appropriate probability model can be easily
selected.

The initial discussion in this section is devoted to a discussion of
selecting the appropriate procedure to be used based on the degree of
available knowledge of the random variable in question. Secondly, this
section is devoted to presenting a brief guide to using the remaining sec-
tions of Part II. This section is concluded with a table listing all the
candidate distributions considered here. This table also summarizes the
characteristics of these distributions. The rest of Part Il is concerned with
how one performs the specific operations which lead to selection of the
appropriate probability distribution model.

4.1 PROCEDURES FOR SELECTING DISTRIBUTIONS

The particular selection procedure for a probability model is de-
termined by the extent of empirical data and knowledge of the random
process in question. The extent of empirical data can, for convenience,
be broken into three categories: none, some, and ample. This cate-
gorization is given in Table 4. 1.

23
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TABLE 4.1
Extent of Empirical Data (Observations)

Category 1 2 3
Description none some ample
Number of 0-5 5-20 over 20
Observations

The extent of knowledge of the random process is, for conveni-
ence, broken into four categories: no knowledge, qualitative knowledge,
reasonably good ideas, and reasonable certainty. These categories
are described further in Table 4. 2. It should be clear that the more
data and the greater the a priori qualitative knowledge available, the
easier the selection process is and the greater the certainty of obtain-
ing a good probability model.

TABLE 4.2
Extent of Qualitative Knowledge of the Random Process
Category 1 2 3 4
None: Qualitative: Good ideas: | Reasonable
certainty:
Description | No Some Reasonably Good basis
qualitative | knowledge of | based for expect-
knowledge | the random expectations | ing the dis-|
of the process, i. e, | that the tribution to
random continuity, random be some
process range, variable is known
symmetry, one of a few | family
shape of known
distribution, { families
likely values,
etc.
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A concerted effort should be made to use all a priori knowledge.
This means that all the qualitative characteristics listed under Category
2 in Table 4. 2 should be written down, if known. This will also help
in sketching a probability density or frequency curve. Table 4.3 should
also be consulted to determine if Categories 3 or 4 are appropriate.
Table 4.3 lists all of the probability distributions considered here. These
are arranged in two groups, the simple parametric distributions and the
complex parametric distributions. This table also summarizes the
characteristics of these distributions. Table 4.3 is very useful as a
reference in seiecting a prbbability distribution since almost all of the
information needed for selection is presented. To this end, therefore,
the columns in Table 4.3 entitled Comments and Justification and Applic -
ations may give characteristics that fit the problem at hand. Any
distributions that appear appropriate shou'd be listed so that knowledge
at a level of Category 3 or 4 can be used.

Once the categories for empirical data and knowledge of the
random process have been established from Tables 4.1 and 4.2, a specific
selection procedure can be identified from Table 4.4. Table 4.4 is
simply a matrix indicating all possible combinations of data and knowledge
categories. For each combination, a figure number is indicated. Each
figure presents the details of the particular selection procedure that it
represents.

A discussion of the selection procedures presented in Figure 4.1~
4.12 and how that material is used is contained in the following section
(40 2) . ’
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TABLE 4.3
Sequence of Activity Selection (By Figure Number)

Knowledge of Random Process Category

Empirical Data Category
2

1 2 3 4
Figure Figure Figure Figure
= 4.1 4.2 4.3 4.4
Figure Figure Figure Figure
4.5 4.6 4,17 4,8
o Figure Figure Figure Figure
4.9 4.10 4.11 4.12

4.2 SELECTION TECHNIQUES

The following list provides a brief description of each selection
technique used in the selection procedures and provides the location of

further detailed discussion.

Sensitivity Analysis -

(Section 5.)

Graphical Anmalysis -

(Section 6. )

Analytic Curve Fitting ~

(Section 17.)

Parameter Estimation -

(Section 8.)

Involves performing the simulation study
using several differ nt distributional
assumptions or parameters to examine the
effect it has on the final results,

Involves plotting a histogram and/or using
probability paper to judge what distributions
appear likely. This analysis may reject
some ideas as inappropriate or suggest
several likely distributions. This analysis
applies primarily to the simple or common
distributions.

Refers to fitting the data to one or more of
the complex or uncommon distributions such as the
Weibull, Johnson, and Pearson.

Is the task of estimating the values of the
parameters of a given distribution family
to obtain the best fit with the data.
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Goodness-of-Fit - Tests are used to determine if the candi-
(Section 9. ) date distribution is an adequate represen-
tation of the actual random process based

on the data available.

Histogram - If all likely distributions fail the goodness -
(Section 6.) of-1it tests fail, a histogram should be used.

These techniques can best be applied by referring to the appro-
priate section. After app: ~ation of any technique, refer to the appropriate
figure to determine subsequent selection techniques to employ, if any.
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Figure 4.1 Figure 4.2

No Data, No Knowledge No Data, Qualitative Knowledge
Sensitivity Graphical
Analysis Analysis

(Table of
Shapes)
Sensitivity
Analysis
Figure 4.3 Figure 4.4
No Data, Good Knowledge No Data, Certain Knowledge
Parameter Parameter
Estimation stimation
rbit"ary Arbitrary
ame Parameter
ction Selection)
Senmtivity Sensitivity
Analysis Analysis




Figure 4.5

Some Data, No Knowledge

Graphical
Analysis

'

Parameter
Estimation

'

Goodness-
of-Fit Test

(possibly)

Figure 4.7

Some Data, Good Knowledge
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Figure 4.6
Some Data, Qualitative Knowledge

~

Graphical
Analysis

'

Parameter
Estimation

'

Goodness-
of-Fit Test

—= Accept

Reject l
Distr ‘th" Reject All Distributions

Sensitivity
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Figure 4.8
Some Data, Certain Knowledge
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Figure 4.9

Ample Data, No Knowledge

Graphical
Analysis

'

Parameter
Estimation

{

Goodness -~
of-Fit
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+ Reject

Analytic Curve
Fitting

'
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'

Goodness-
of-Fit Test

—= Accept
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Figure 4.10

Graphical
Analysis

See
Figure 4.11

See
Figure 4.9

Ample Data, Qualitative Knowledge
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Figure 4.11

Ample Data, Good Knowledge
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5. SENSITIVITY ANALYSIS

The objective of sensitivity analysis is to determine the extent to
which ihe final results of the simulation study are sensitive to a given
probability distribution. To this end two general guidelines can be given.

The first is to attain a determination of sensitivity to the parame-
ters of a distribution. It might be reasonable to vary the parameters to
some extent in both directions. Suppose, for example, that a normal dis-
tribution with mean 100 and standard deviation 20 is postulated. Then
five runs might be made to test sensitivity of the final simulation results
to these parameters as follows [(mean, standard deviation)]: (100, 20),
(110, 20), (90, 20), (100, 18), (100, 22).

A second sensitivity test that can be performed is one of shape
of parametric family: it may be reasonable to make several simulations
with different probability distributions, especially if unlikely events are
important to the simulation results. In this case the shape of the tail of
the distribution is important. Suppose, for example, that a gamma dis-
tribution has been chosen: then a lognormal or Weibull might also be tried,
since these have similar shapes.
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6. GRAPHICAL TECHNIQUES

There are two graphical techniques that are applicable here.
The first deals with the empirical histogram and the second deals
ing with the 'empirical cumulative distribution polygon. Bath tech-
niques can be quite useful in selecting a good functional {it to data.
These graphical techniques are intended primarily for use in select-
ing one of the common or simple distributions. Although graphical
techniques can be helpful in the selection of a complex distribution,
this is discussed as analytical curve fitting in Section 7.

Graphical techniques can often suffice to determine a satis-
factory probability model for a simulation variable. This is especi-
ally true if the simulation results are not sensitive to rare events of
the several random variables. An example is given in Section 6.3 to
illustrate the histogram and cumulative distribution polygon methods.

6.1 USING THE EMPIRICAL HISTOGRAM

The empirical histogram can be used to determine what dis-
tributions are likely to fit a given set of data. This can best be
accomplished by a visual comparison to find curves representing
probability distributions that are similar to the data. The approach
taken in this section is to find such visual fits by examining a series
of figures representing the density function of most of the simple
distributions.

The procedure is very straightforward. First plot the histo-
gram from the data available. In some cases it may be helpful to
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sketch a smoothed version of the histogram, especially if the cells
of the observation groupings are large or the data are few. Then ex-
amine the shapes given in Figure 6.1 and select those distributions
whose densities are similar to the histogram. (Figure 6.1 does not
include the Weibull, Johnson, or Pearson distributions. For these
distributions, see Section 7.) It is also useful to rank the selections
according to how good the fit is.
6.2 USING THE EMPIRICAL CUMULATIVE DISTRIBUTION
POLYGON
An alternate technique is to use the cumulative distribution
polygon in conjunction with probability paper. The horizontal axis of
this paper represents the values of the variable under investigation;
the vertical axis is a probability scale. The spacing on the vertical
axis is constructed for a given probability family so that a cumulative
distribution function belonging to that family will appear as a straight
line on the paper.

The graphical method is quite general and can be applied to
any known distribution; however, the probability paper which is com-
mercially available is limited to the more commonly encountered dis-
tributions such as the normal (see Figure 6.2), lognormal, extreme
value, chi-square, gamma, binomial, and Weibull. *

The procedure for using this graphical method is extremely
simple although interpretation of the results is somewhat subjective.
The sample cumulative distribution is plotted on the probability paper
corresponding to the theoretical distribution of interest. K the points

*See, for example, TEAM Special Purpose Graph Papers, Box 25,
Tamworth, N.H. 03886, also K+E papers.
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fall on a straight line the theoretical distribution is accepted as rep-
resentative of the data. If the line is badly curved, other distributions
can be tried. The nature of the curve often suggests distributions
which might be of better fit.

Another useful aspect of the graphical procedure is that esti-
mates of the distribution's parameters can be read directly off the
graph. For example, on normal probability paper, the difference
in variable value between the .50 probability point and the . 84 prob-
ability point on the fitted line corresponds to one standard deviation.

6.3 NUMERICAL EXAMPLE

An example will illustrate the use of these techniques. The
data for the example is given in Table 6.1. Observations ranging
from 66. 75 to 75.25 have been divided into seventeen equal inter-
vals or cells of 0.50 each. The frequency with which observations
fall within each cell has been tabulated and summarized. This data
was then plotted in Figure 6.3 to produ:e what is generally referred
to as a histogram.

The histogram serves two purposes. First, it provides vis-
ual evidence on which to base preliminary selection of a distribution.
Second, in the case of limited data, it may provide as good an esti-
mate of the variability of the process as any other more elaborate
approach.

On the basis of its symmetry and bell shape, the histogram
of Figure 6.3 appears .ypical of data from a normal distribution.

Making an assumption of normality, it is possible to proceed to the
application of other quantitative methods to determine its validity.
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TABLE 6.1
Sample Data

Cumulative
Cell Relative | Cumulative Relative
Boundaries Frequency Frequency | Frequency Frequency
66.75-67.25 2 0. 005 2 0.005
67.25-67.175 2 0.005 4 0.011
67.75-68. 25 5 0.014 9 0.025
68.25-68.175 6 0.016 15 0.041
63.75-69. 25 7 0.019 22 0.060
69.25-69.75 24 0.066 46 0.126
69.75-70.25 36 0. 099 82 0. 225
70. 25-70.75 48 0.132 130 0. 357
70.75-71.25 64 0.176 194 0.533
71.25-71.75 51 0.140 245 0.673
71.75-72.25 41 0.113 286 0.786
72.25-72.15 32 0.088 318 0.874
12.75-73. 25 24 0. 066 342 0.940
73.25-73.75 12 0.033 354 0.973
73.75-74.25 5 0.014 359 0.986
174.25-74.175 4 0.011 363 0.997
74.15-75. 25 1 0.003 364 1.000
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The data given in Table 6.1 can also be plotted on normal proba-
bility paper. This will verify the assumption of a normal distribution and
also give the appropriate parameters for the distribution if the assumption
of normality is accepted. The cumulative relative frequency (sample
cumulative distribution function) when plotted on normal probability paper,
shown in Fig. 6.4, turns out to be reasonably linear. Thus it can be con-
cluded, at least tentatively, that the data in Table 6. 1 has been drawn from
a normal population. For many applications this will suffice to identify a
satisfactory distribution. Note that the mean (u) and the standard devia-
tion ©) can also be estimated from the graph.

Rather than go through the process of grouping the data into class
intervals or cells as in Table 6. 1 one can plot the data directly onto proba-
bility paper in the following way. The n observations X19Xgye ooy X are
placed in ascending order (ranked) such that:

<---<Xx

X(1) = *(2)= X(3) (n-1) =X(n) *

To each x(i) associate the ordinate value y(i) = ﬁ and plot the
ordered pairs (x(i), y(i)) on the probability paper. This procedure is
extremely fast, with the exceptim of having to rank the n observations.
Therefore, it is probably most useful for sample sizes in the range 1-50,
depending of course on how proficient one is at ranking observations.
Many excellent examples of the use of probability paper for extreme
value distributions may be found in Gumbel, (14)

This example is concluded with a visual verification of the selection
of a normal distribution to fit the data in Table 6.1. Figure 6.5 gives the
same information as Fig. 6.3 with the addition of the normal density curve
scaled to the frequency polygon.
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7. ANALYTICAL CURVE FITTING

Analytical curve fitting encompasses a variety of techniques to
smooth an empirical histogram for use. As discussed in Part I, the
purpose of analytical curve fitting is to obtain a reasonable functional
approximation of the empirical histogram to be used in a simulation.

For the purposes of Part II of this volume, analytical curve fitting
will be restricted to the use of three families of probability distributions.
These are the Weibull, Johnson, and Pearson distributions. The reader
who is unfamiliar with these distributions may wish to refer to Appendix A
to find a background discussion of these three distributions. The Weibull
family is the easiest to work with and the Pearson family is the most dif-
ficult to work with. It is, therefore, recommended that analytical curve
fitting be tried first with the Weibull, then if need be with the Johnson,
and finally if necessary with the Pearson distributions.

The procedure for selecting one or more of these families is based
on Table 7.1. The use of Table 7.1 is facilitated if qualitative information
about the random processes and a sketch of the probability density are avail-
able. Once one or more families have been chosen, the selection procedure
outlined in Section 4 should be followed.

Since using the Weibull, Johnson, or Pearson distribution is tanta-
mount to using a smoothed histogram, some consideration should be given
to using the histogram itself rather than a distribution. This is especially
true if the histogram is drawn from an ample set of data, if the Weibull,
Johnson, and Pearson curves do not give reasonably good fits, or if the
histogram is multimodal. In the latter case the underlying population may
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actually be several distinct populations, and unless the user is prepared
to separate that population by techniques not discussed here, using the

histogram may be most expedient.

Characteristics of Complex Probability Curves

TABLE 7.1

Number of General Figures for
Family Name | Parameters Characteristics Shapes of Densities
Weibull 3 Unimodal, finite left bound, Figure 7.1
tail to right

Johnson 4 Bounded or unbounded, Figures 7. 2-7.3

(plus choice |variety of shapes,

of three mostly unimodal

functions)
Pearson up to 4 Great variety of curves Figure 7.5

(plus choice

of twelve

functions)
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Fig. 7.3, Johnson Probability Density Functions for SL (e =0)
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8. PARAMETER ESTIMATION

Once a specific type from a family of probability distributions has
been tentatively chosen to model a random variable, specific parameters
for the distribution must be chosen. These parameters should be chosen
so that the resulting specific distribution will best fit the data and knowl-
edge available. This section is devoted to finding the specific parameter
values based on the empirical data (observations) available.

If no data is available, the parameters must be chosen arbitrarily.
In this case no estimation procedure exists that is better than the analyst's
intuition and judgment. If data is available, the parameters can be estimated
based on the sample of data. Estimates, in this case, always begin with
calculation of certain sample statistics which are give. 1 Section 8. 1.
This section should be used in conjunction with the directions given in
Section 8.2. This latter section gives formulas for estimating the specific
parameters for all of the distributions considered. Since not all the sample
statistics in Section 8. 1 are needed for all the distributions and parame-
ters in Section 8.2, Section 8. 2 should be referred to before calculating
sample statistics.

8.1 CALCULATING SAMPLE STATISTICS

The sample statist'cs given in this section include the sample mean,
median, variance, skewness, kurtosis, 3rd moment, and 4th moment.
To establish some standard notation, we define the following symbols:

n = number of data points

ith data point (observation) fori =1, 2,..., n .

X
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The sample statistics are calculated as follows:

Sample Mean  (symbol X)

Sample Mediaa

First rank the observations from smallest to largest. If n is odd,
the median is given by the value of the [(n+l)/2]th observation. If n is
even the median is given by the mean of the [n/2]th and [(n/2) + l]th
observations.

Sample Variance (symbol 32)

n
o - [Z <xi-m2] /n
i=1

or, more conveniently

=(§; xf>/n -x .

Sample mth Centralized Moment (symbol um)(only kg and p 4 needed)

1]
um = § (xi-i)m /n

Sample Skewness (symbol Bl)

pl = “3/53
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Sample Kurtosis (symbol B,)

32 = “4/34

Interpretation of the last two estimators is usually in terms of how well the
data fits the normal distribution. If the skewness is close to zero and the
kurtosis is close to three the normal distribution should provide a good
approximation to the distribution. Figure 8.1 gives an interpretation of

the skewness value. Zero indicates a symmetric distribution, negative
skewness means a long left tail, positive values a long right tail. Figure 8.2
illustrates the kurtosis measure. If the kurtosis is greater than three the
distribution is more peaked than the normal (curve C). If it is less than
three the curve is flatter than the normal (curve A).

8.2 CALCULATING PARAMETER ESTIMATES

This section is divided into two parts. Section 8. 2.1 deals with
the simple distributions. This section will be the one more commonly
used. Section 8. 2.2 is more complicated and deals with estimating parame-
ters for the complex distributions.

8.2.1 Simple Parametric Distributions

Refer to Table 4.3 to obtain the recommended parameter estimates
for the selected distribution. Use Section 8. 1 to obtain the sample statis-
tics required.

8.2.2 Complex Parametric Distributions

As can be seen in Table 4.3 , estimating parameters for the Weibull,
Johnson, and Pearson distributions is more involved than for the simple
distributions. The reason for this is that the simple distributions generally
have one or two parameters, whereas the complex distributions have 3 to 5
effective parameters. Background for the material which follows can be
found in Appendix A.
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Fig. 8.1. Skewed distributions
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8.2.2.1 Weibull
The basic three-parameter Weibull distribution has a density given

by:
_ N1 o\
f(x) = ;"Z(XT‘) exp [—(’-‘1——‘) ] , X2e€
=0 X<e€
where:
f(x) = Weibull probability distribution
¢ = location parameter
A = scale parameter

n shape parameter

In most applications the location parameter, ¢, is known. In
cases where it is not known, it can be estimated from the observations:

€ = min[xi]

Better estimates of ¢ can be obtained using techniques developed hy Dubey;(s)

however, the improvement is not usually sufficient to warrant the extra
effort involved.

The maximum likelihood estimators for the three-parameter Weibull
disiribution result in a set of equations that can be solved by iterative
methods which are very tedious to perform. If the location parameter is
known or estimated, the maximum likelihood equations for X and 7 can

be solved fairly easily(sl)

n /]

& L
-0
n =

2y

and are given by:

mx, =0 (8.1)

3=

i
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ard

X = @l/mi/m (8.2)
where:

?1 = Maximum likelihood estimator of n

A = Maximum likelihood estimator of A

Equation 8. 1 can be solved by the Newton-Raphson iterative procedure.

1 5 S
— — -
.. Mmoo
Meet = M 2
1+s:s:;(:§)
AT
where:
ilnx
S. =
1 ) i
o -
M
sl;: X

n
Sl; =2 (In xi)xi k

sl; =§ (In xi)zxink

The estimate 7 is biased and should be corrected using the unbiasing fac-
tors in Table B-1of Appendix B. Then, the estimate for i can be obtained

directly from (8.2). Further improvement can be obtained by using Menon's
(38)

=]

estimators.
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8.2.2.2 Johnson Distributions

As indicated in Table 4.8, there are three Johnson distributions. These

three are generally denoted SL, SB, and SU because these distributions
are related to the normal distribution through a logarithmic transformation
(SL), bounded transformation (SB), and unbounded transformation (SU).
The problem of estimating parameters of the Johnson distribution thus be-
comes a two-step procedure. First determine which distribution to use, then
estimate the appropriate parameters.

The probability density functions for the three Johnson distributions

2 2
SL: fl(x) = _ﬁ_?g(;:) exp {- %[%+ Ln(x-e)] } ; X2e¢

2
. _ 1 A 1 X-
g fo® = Jor (x-€) (\-x+¢) exp {' 2 [7 +1 4n (A-x:c)] }

€< X< €+ A

S.: f.(x) = N 1
> ~/2_ﬂ /(x-:)z+x2

2 71/2) \
exp -%(yup&n {(5)%5)+[("—;£)—+1] })

<X < ®

In these distributions n and y are shape parameters, ) is a scale parame-
ter, and ¢ is a location parameter. These must satisfy:

n >0, A>0, =<y, e<+o

In Section 8.1, expressions are given for the skewness, Bl’ and
kurtosis, 52, of the sample data. These are used to determine which
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distribution, SL’ SB’ or SU to use. This can be accomplished by plotting
the sample Bl and By on Fig. 8.3. The location of the sample point

(Bl, Bz) indicates the distribution to seiect. One warning must be given.
however. Figure 8.3 is accurate for categorizing distributions given the
true value of Bl and 52' The values for Bl and 52 derived from the
sample (Section 8.1) are estimates of the true values. Thus if the sample
point falls near the edge of a region in Fig. 8.3, i.e., near the SL line,
then it would be prudent to try all three Johnson distributions or to select
one or more based on possible boundedness of the random variable in ques-
tion. Examining the density functions given above will aid in this

determination.

The parameter estimates for the Johnson distributions are given be-
low. The estimates of the John3on parameters are not maximum likelihood
estimates, except for the SL ( ¢ known) case, however they are the most
practical to use. The approach taken is to use percentile points from the
data. Recall that a 100 a percentile point for the population, x o 18 that
value of x for which P[x < x,]=a. We assume that the random sample
XppeooosX has been ordered to give the order statistics Wl< 000S Wn .
Then the kth order statistic will provide an estimate for the 100 percentile
of the population, where:

(8.3)
_ k-1
o= —3
This will be required in subsequent application, 8, (- known), In
this case the estimators for n and y are respectively, -1/2

n 2
-~ 11 2 1
n={c E [ln(xi-e)] =il= 2 ln(xi-t

i=1 i=1

. _nh

y = -g ln(xl - €

i=
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Thus, from the sample xl, eeeyX - the parameters ) and y can be readily
estimated with 7 and v, respectively.

SL (¢ unknown)

Again, the maximum likelihood estimators may be obtained but with some
difficulty, and it i3 perhaps better to use the percentile approach. That is assum¢
the percentile points X, » Xq ,and x a have been estimated. These are
required since there au'el three parametexas ¢, n, and y to estimate., If
z, is defined as the value of the variable in the normal distribution function cor-
responding to the cumulative probability a, then.

zm1 = y+1 l"(xal")
Z. = v+ In(x. -¢)
a =7 a
= 1 -
Zag = VM n(xa3 €)

Explicit solutions cannot be obtained for ¢, y, and 7 from these
equations although they can be determined iteratively. However, the following
example will illustrate the use of one simplification.

Suppose a sample size of n =51 has been obtained. The 6th, 26th, and
46th order statistic from Wl < W2 <4es< W51 will be used to estimate the

following percentiles:

Xay = %1 = W

»
"
]
t

Was

w

o
I
N
O
n

46 .

where ay 1=1,2,3, isobtained using Eq. 8.3. From Table B-2 in
Appendix B:
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2.1 = "1.28 .
Zg = 0
Zg = 1.28

From Eq. 8.4:

[ -W -1
. 46 " " 26
n = 1.28 | in W;;TW'G—

- I. _E'Lﬂfﬁ'
y R “aa'“u

e/
W26 e

~d
n

The advantage of selecting o = 1- agq and ag=. 5 should be noted.
The percenti’cs chosen are, of course, rather arbitrary and, therefore,
many esti ates could be obtained for ¢, ¥y and n. In this case, comparisons
of ... r. .ative goodness-of-it for each selection may be appropriate.

SB(" A known)

This case implies both end points of the distribution are known. Using
the percentile method, estimators for y and n may be obtained:

zZ -z

n = x -az ta:x-x | (8. 5)
m N\ 22 )( “1)
xal-c)(c-rx-x)-l
) ‘ xaz-c ]
[ zazz"7 ¢+x-xazj
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SB (General Case)

This case implies that none of the parameters are known and requires
that the appropriate number of equations of the form

X =-¢
a

zZ = vy+7n In

o A+e-X
a

be solved for the unknown parameters. Generally, this will lead to tran-
scendental equations which can be solved numerically. There is one simpli-
fication in the case where ¢ is known and the percentiles are selected such
tha: « = a = 1- ag and a, =. 5 (only three equations of the type

required for this case). The solution for )\ for this case is

5 X - O+(x 5= )x;_ -€)-2x -dx;_ -©

X = (x50 (8. 8)

(xcs-c) -(xa-c) (x - €)

1-a

Equation 8.5 may then be used to generate estimates for n and v
since with 8.6 the problem reduces to one with both end points known.

SU (General Case)

For general case of the S.. system, Johnson has generated tables

U \

that are useful for determining the parameters. (22) These are presented

in Tables B-3 and B-4 of Appendix B. The tables were developed from solu-
tions of equations defining the relationships of the first four moments to the

parameters,

Use of the tables first requires that the mean, variance, skewness

and kurtosis be calculated. The values for ./ 31 and éz are then used to
obtain the estimates for y and n from Tables B-3 and B-4, respectively.
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The X and , & estimators are calculated using:

A W 8
1 23 22 -7
(w=-1) h(5Y
{2- w [wcos(n)+l]}
- - X v
€ = X+ Ju‘:sinh(%) (8.8)
where s is the sample standard deviation (see Section 8. 1)
we /A7

To illustrate use of the tables, assume a random sample gave
ﬁ; =.5 and 32 =6 . From Tables B-3, B-4

y = -.3278 and 1 = 1.672

A and ¢ may now be calculated directly from Eqs. 8.7 and 8. 8.

8.2.2.3 Pearson Distributions

There are twelve Pearson distributions. These are generally indicated
by Roman numerals: Type I through Type XII. The problem of estimating
Pearson parameters, like those of the Johnson, becomes a two-step problem.
First determine which Pearson Type to use, then estimate the appropriate

parameters.
To determine which Pearson distributions to use, the skewness, Bl,

and kurtosis, Bz, of the sample data (see Section 8. 1) are needed. The
sample point (él, 52) should be plotted on Fig. 8.4. The location of the
sample point indicates what distribution to use. A warning needs to be given
on using this procedure. The point (ﬁl, 52) calculated from the data as in
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Section 8.1 is only an estimate of the true values. Thus if the sample point
falls near a line separating two regions in Fig. 8.4, the Pearson Type in
either region or in the line may fit the data., In this event more than one
Pearson Type should be tried. It should also be clear from examination of
Fig. 8.4 that only Types I, IV, and VI are indicated by regions; therefore,
in practice only these types will be indicated by strict application of this
selection procedure.

Selection of a Pearson Type may also be aided by examining the
Remarks column of Table 8.1. This table lists all twelve Pearson Types and
some information on each. The form of the density function should be ob-
tained from Table 8. 1.

The parameters for the density functions are given below.

Typel

% ™y x My m, m,
f(x) = Yo (l+a—1) (1 -a—z) where{ — = -é;)
1

Calculate the quantities
6(32 - ﬂl - 1)/(6 + 331 - 232)

r

1/2

-
|

= 5 sl8y(r + 2% + 16(r + 1]

m, and m, are given by:

B
m=;- r-2*r(r+2) 1 .

pl(r + 2)T+ 16(r + 1)

Iif Mg is positive, take m, to be the positive root

a, = t/(mz/ml +1)
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2y = t/(ml/m2 +1)
m, m,
m, " m, 1"(ml +my + 2)
Yo © m, +m, Mm +DI(m,+1)
(m, + m,)
1 2
Type II
9
f(x) =y, (1 - ’22)
a
The function parameters are found as follows:
582-9
m = 33 - B0) B,
, 288,
a =
3 '32

_ 1  T(m+1.,5
yo'aj, Tm + 1)

Type III
f(x) = Yo 1 +x/a)’2 7%

The function parameters are given by:

2
= S8
T



-m
2 -
£1(x) = Y, (1 +x—2) exp(-v tan 1 x/a)

a

The function parameters are given by:

6(g, - B - 1)/(28, - 38, - 6)

Y

%(7+2)

-y (-2 E (18(y- 1) - B(r- 2]

8
0

<
1]

2 /2
a = [% (16(y - 1) - By( - 2)2)]1

y, = V[aF(y,v]
where F(v,v) is given in Reference 42.

Tme \'A
1(x) = yx P exp(-v/x) (x > 0)

The function parameters are given by:

s+4‘{4+b"
4 + ﬁl 1

p =
y = 8(p - 2) ¥(p-3)
y, = P lre-1)
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Type V1
fx) = y 0(x - a)q2 qu
The function parameters are given by:
vy =688 -8 - 1)/(6 +38 -28,)
a =é [By (B (¥ + 2)2 + 16(y+ 1))11/2

qy and -q; are given by:

q = 5222 (g /18 (7422 + 16(y + 1)1/

q,9,"1
al 2 r(q)
Yo © Tlq, 'qz-l) Tlqy + 1)
Type VII
~m
2
fx) =y |1 +_x_)
o( a2

The function parameters are given by:

58, - 9
m = 2(52-35
2
Rl
B, - 3
1 I'(m)

Yo © a'f" I'lm-0.5]
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Type VIII
1(x) =y, (1 +x/a)

The function parameters are given by:

a = t8(2-m) J(3 - m)/(l - m)

y, = (- m)/a

where m is the solution of

m (4 - &) + m2(94, - 12) - 248 m + 168 = O

Type IX
1) = y (1 +x/a)"

The function parameters are given by:

ts(m + 2) v(m +3)(m+1)
(m+1)/a

a

Yo

where m 1is the solution of

ma(Bl -4)+ mz(sp1 - 12) + 24mB, + 164, = 0

Type X
f(x) = y, exp(-x/s)

The parameter is given by:

Yo = 8
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Type XI
_ -m
i(x) = Y X
The function parameters are given by:

b™ ! (m - 1)

Yo

tg(m - 2) J(m =3)/(m - 1)

where m is a solution of

b

mS(4 - 8)) + m2(931 -12) - 248,;m + 16, = 0

e XII
. s(./3+ﬁl+@+x 451;(3+31)
flx) =y
° 3(45*'31'@) -X

Yo is given by

Y, = I'(m+ )I(1 - m)/b
where

Y WEETR

b = 28 /3 + 8,)
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9. GOODNESS-OF-FIT TESTS

Goodness-of it tests are statistical tests for evaluating whether a
group of data supports the assumption that the random variable from which
the data are drawn has come from the assumed probability distribution.
These tests are helpful in accepting or rejecting the conclusion that some
random variable follows a tentatively selected probability distribution.

The technique of applying statistical tests of distributional assump-
tions follows three basic steps:

1. A number known as a teet s.atistic is calculated from
the obsesved data.

2. The probability of obtaining the calculated test statistic,
assuining the selected distribution is correct, is deter-
mined. This can often be done by using precomputed tables
of percentiles of the distribution of the test statistic.

3. If the probability of obtaining the calculated test statistic is
low, the conclusion is that the assumed distribution does not
provide an adequate representation. I the probability
associated with the test statistic is not low, then the data
provide no evidence that the assumed distribution is
inadequate.

It should be clearly understood that although this procedure allows
rejection of a distribution as inadequate, it never proves that the model is
correct. In fact, the outcome of a statistical test depends highly upon the
amount of data available - the more data there are, the better are the chances
of rejecting an inadequate model. If too few data points are available, even
a model that deviates grossly from the assumed model frequently cannot be

established as inadequate.
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Table 9.1 provides summary information on goodness-of -fit
tests and also indicates on which distributions the tests are applicable.
After a test is selected from this table, instructions on how to perform
the {=st can be found in the subsequent sections.

A comment on using goodness-of -fit tests on the complex distri-
butions (Weibull, Johnson, and Pearson) may also be helpful. These dis-
tributions are designed to fit almost any set of data well. It is, therefore,
unlikely that any of them will be rejected by a goodness-of -fit test. Using
goodness of fit tests on any of these distributions will not generally give
the analyst much further information on the form of the true distribution,
and he may elect to accept one of these complex distributions without a
goodness-of -fit test.

This brief background should suffice for practical use of goodness-
of -fit test in simuletion modeling. In the following section, a simple selec-
tion procedure is given to determine what goodness-of -fit test to use based
upon the probability distribution tentatively selected to model the random
variable in question. In the following sections these tests are described
and instructions for performing the tests are given. Although there are
numerous statistical tests, these are the most powerful available.

9.1 CHI-SQUARE GOODNESS-OF -FIT TEST

The Chi-square goodness-of-fit test is probably the most widely used
and versatile technique for evaluating distributional assumptions. It can be
applied to test any distributional assumption without having to know the values
of the distribution parameters. Its major drawbacks are its lack of sensitivity
in detecting inadequate models when few observations are available and the
frequent need to arrange the data within arbitrary cells which can affect the
outcome of the test.

82



manEy ol y0
0 WA w0 i TR O
uopyduzngse LOTINQIAISTP ‘suoryenbe A -Gy s W WRLI] BaTO0D (s°6)
Tennauodxa ayy Juyjsd) 30) ~| WA pasn (saded ¢-2) splarmi § o) wopdwinsse o (umouy uydyxo)
st sy uey) [npramod azour ¥83) ¥ soIqEy 8aanbay | “esm 0y ASwe L13anwiay W) E7EN|TAS ) ¥EAL| 189 - ,, M., Teuauodxy |
*umouum u3ixo -
YA UoLINQLISIP e v°6)
‘uonydwnsse uoINGIIILIP “wang jEnba -uauodxad ue woJjy sAWoI (umowpun
Tenuauodxs ay) Sunsa) J0j X | WA pewn (saled C-g) brdures e jey; uondwnsse u15140)
Lr'st oy uey) [njramod azow 383} Y’ ERiEEL B by "sen 0) Lwwa Ajaane(3Y ay) a1En[ead 03 1SaL 1833 - LAM.. 1enuduodx g
oty
~DAILISIP ewIou (€°6)
‘uopdwinsse UOYINQINSIP *paambaa aae -dot J0 rewiloU ¥ (v°y 3192 29s)
Tewrou oy upsay 20f HX suoryenba Yim pasn woJaj moEOoﬁvEEum uosuyop
ue Jamod azows 153 soded ¢-2) walqe *‘ssn 0} £ewd L{3a © ey vonduinsse 1891 - . M.| TewrON S071
wist oq veyy 1y Y ( £-2) salqelL } [sanyeIay a1 31ENEAD 03 1S5 M SR
*383) 231 UCTINQUIISIP
20 JPpuered-uou y (z°6)
“mrenla - o) Ty Ea *woyInqI1ISIp SNONUTIUOD L]
digpeg W dpprnam Wy spgraypidy ‘woptarme g patproads 413je1dwod Aozodowroy
"1 AdegA pury mepdures [ Jnj eniipa) &g dvm| Lue pue sanjva adures 1823 Aourwg
oy i pood ¥ N1 I e wana vep m maapio] jo 39s e jo uonnquasSIp nsuouoE._ov_
SRS IEED (WSS WO RS ‘et £ 1) madynbad JaasmnH | ey) uaamidq Juswadade FNONURBOD
£’y Ao e RS sl g | ) g - P “dplily ) dwns = way, ay) ajen[ead 03 3931 wa - ,.p, Auy
*§83) 231) uonInqid}
W i EenD Jouy -S1p Jo dr1jdwered (1°6)
‘s3dwres [rews 105 SO R EEANIUY 0NN -uou Y "LOIINQLIISIp
183} poo3 ® U 8] )| ‘2IAIMOH fl‘.._ splures s Suroeld Jo ad£y Lue 0} uoyy
*posn A1apIA 81 Jey) 183) ey | “[enlml -] egowy mq saapnisry - A1dde oy -dwnsse feuofngrry 5N
oz sty ~s1yes [nyaamod pue (eaauald vy | = nrpEp adwmde- g dmwa Ljan|jejaas 8y 383, -$1p Lue 10) aidwes sJenbs-1y) fuy
® ayen[ea3 o) JSaL
(O xIaNIddV (0 XA ¥ (NOLLDFSans)| NOLLAgISIa
ads) SININNOD TVHANTD ONENETE VWL EEN A0 3ASVA ALT1IEVOI1TddY 1saL
SAONIUIIN B0 EITEVL

W.—.sxmom&h

‘» ALITIGVEOdd

S1SaL J1J-JO-SSaupoon)

1°6 I'THVL

83



The Chi-square test is used as follows:
Step 1. Estimate each of the unknown parameters of the assumed distribution.

Step 2. Divide the data into k classes or cells and determine the probability
of a random value from the assumed model falling within each class. Two
methods for this are presented: the first method is applicable if the data are
initially arranged in frequency classes, and the second applies when the data
are not initially tabulated in classes.

Method a. The number of cells, k, will be the number of classes of
the tabulated data subject to the restriction that the expected number
of observations in each cell under the assumed model is at least 5.
Let CL; and CU, denote the lower and upper bounds of the ith fre-
quency cell. The distribution of the assumed model (using the esti-
mated parameters) is then used to estimate:

Pr(CLi cx < CUi) ) i=1,2,...k

Method b. When the number of observations, n, is large (>200) a
good rule is to take k as the integer closest to

k' = 400.75(n-1)2 /5

For moderate values of n a good rule is to make k as large as
possible but with the restriction k <n/5. The cell boundaries
X{,.i9y+++Xq are determined from the cumulative distribution for
the assumed model (using the estimated parameters) as the values
such that:

cx.) =1 cx.) =2 k-1
Pr(x _xl) -k,Pr(x -»xz) =R Pr(x Sxk_l) = el

Step 3. Multiply each of the cell probabilities by the sample size n. This
yields the expected number E. of observations for each cell under the
assumed model. For Method 3b:

E =nk , i=1,2,...k

Step 4. If the data are not initially tabulated, count the number of observed
values, m,, in each: Lcll. Otherwise, determine m, directly.
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Step 5. Compute the test statistic

2
- Ei)

For Method 2b this simplifies to

()
x—n i.l'lll n

i=1

Step 6. Compare the computed value X 2 with the tabulated percentiles for
a chi-square variate (Table B-5) using k-r-1 degrees of freedom, where r
is,the number of parameters that were estimated in Step 1. High values of
x * signify that the observed data contradé'cts the assumed model. For
example, if the above calculated value x © exceeds the 0. 95 t1bulated value
of Chi-square, the chances are less than one in twenty that the data could
have come from the assumed distribution.

9.2 KOLMOGOROV-SMIRNOV TEST

This test is used to evalute the assumption that a sample belongs to a
specified known continuous distribution. It is a distribution-iree test and is
a good test for small samples. In general, it is a more powerful test than
the Chi-square where it is applicable. Although the test is designed for com-
paring a sample against a specified and known distribution, the test is robust
enough that it may still be applied to distributions whose parameters are
estimated from the sample data. The effect of estimating the parameters of
the distribution from the sample is to reduce the critical leve!l of the d a(N)
statistic, i. e., the level of significance is really higher than the « associated
with the chosen da(N)' Hence, if the chosen da(N) statistic value is
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exceeded in the test, it can be safely concluded that the discrepancy is
significant. Grouping observations into intervals also tends to lower the
value of d. For grouped data, therefore, the appropriate significance
levels for testing should be chosen smaller than the significance levels used

for a complete sample.
The test is used as follows:

Step 1. Rearrange the sample of size n to obtain the ordered sample

Xq1Xgs e+ X where Xy s Xq S....5 X
Step 2. The sample cumulative distribution then takes on values ot
1/v, 2/n,...., n/n at the points Xipouons X .

Step 3. Calculate the cumulative frequency values for the assumed distri-
bution at the sample values of Xps Xgy oo X0

Step 4. Determine the maximum deviation, d, between the sample cumula-
tive distribution and assumed cumulative distribution from Steps 2 and 3.

Step 5. Compare the calculated deviation d with the test statistic d_(n}
found from Table B-6 for the desired level of significance. If d exc&eds
the value d _(n) then the assumption that the samgle comes from the
assumed didtribution may be rejected at the 100a’o significance level.

9. 3 W-TEST

This test is used to evalute the assumption tha§ a sample has a normal
distribution. It can be used to test the assumption that a sample fits log-
normal distribution by using the log of the sample valu.es. The W-test has
been shown to be an effective technique for evaluating the assumption of
normality against a wide spectrum of non-normal alternatives, even if only
a relatively small number of observations are: available. It is generally

more powerful than the xz, especially for small safnple sizes.
The W-test is used as follows:

Step 1. Rearrange the sample to obtain the ordered sample X{1XgseoerXos
where x1 sx2 S...xn.
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Step 2. Compute

n 2 i
32=2<"1'X’ =i:"?' n ’

i:l i'—-'-l

where x is the data mean.

Step 3. If n is even, set k =n/2;if n is odd, set k = (n-1)/2. Then
compute.

k

b= iz; an-i+l(xn-i+l-xi) ’

where the values of a,_q,1 for i =1,....k are given in Table B-7 for
n=3,...,50. Note that when n is odd Xn+1 does not enter into this
computation.

Setp 4. Compute the test statistic

W = bl/s?

Step 5. Compare the calculated value of W with the percentiles of the dis-
tribution of this test statistic shown in Table B-8. This table gives the mini-
mum values of W that we would obtain with 1, 2,5, 10, and 50 percent proba-
bility as a function of n, if the data actually came from a normal distribution.
If the percentile is lower than the selected level of significance, then the
hypothesis of normality can be rejected and accepted otherwise.

9.4 WE-TEST

This test is used to evaluate the assumption that a sample has an ex-
ponential distribution with the origin unknown. Percentiles of the WE dis-
tribution have not yet been tabulated for sample sizes other than 7 to 35.

The comments on the W -test are also applicable here.
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The WE-test is used as follows:
Step 1. Calculate the test statistic:

n 2
WE e U g L
i (x. -X) zn: xi2 - 2: X, 7
i=1 i=1 i=1

where Xp i=1,... n, are the n observed values, x1 is the smallest
value, and x is the data mean.

Step 2. Compare the computed value WE with the 95 percent and 90 percent
ranges given in Table B-9, This test is two-sided in that too-low or too-
high values indicate non-exponentiality. Thus, if the computed WE value
falls ouiside the 95 or 90 percent range, then the chances are less than
one in. 20 or one in 10, respectively, that the observed sample was drawn
from an exponential distribution.

9.5 WE,-TEST

This test is used to evaluate the assumption that a sample has an expo-
nential distribution with the origin ¢ known. However, percentiles of the distri-
bution WEo have not been tabulated for sample sizes other than 7 to 35. The

comments on the W-test are also applicable here.
The WEo-test is used as follows:
Step 1. Subtract the known location € from each of the sample values X;-

Step 2. Calculate the test statistic

i {:l-ﬂz
i=1
n

WEu . ——y ,
2"
i
i=
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where Xy i=1,..., n, are the n sample values and x is the sample
mean,

Step 3. Determine whether the computed value WE _ lies outside the tabulated

percent and 90 percent ranges shown in Table B-90 as a function of n. This
test is two-sided in that too-low or too-high values indicate non-exponentiality.
Thus, if the computed value of WE, falls outside the 95 percent range, the
chances are less than one in twenty that the observed sample was drawn from
an exponential distribution with the assumed origin.
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APPENDIX A

COMPLEX PARAMETRIC DISTRIBUTIONS
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A.1 INTRODUCTION

Although the reader probably has a good general knowledge
of the simple parametric distributions, he is likely to be unfamiliar
with the complex parametric distributions. The main text of this
volume indicates when and how to use these distributions, but all with-
out requiring a thoroug’ understanding of the complex distributions.
This appendix is intended to give the reader some background informa-
tion on the complex distributions so that he will be better able to under-
stand and use the related material in the main text.

Preceding page blank
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A.2 WEIBULL DISTRIBUTION
The Weibull distribution is best known for its application to reliability
analysis where it is known to fit a large class of life (time to failure) dis-

tributions (53). The basic distribution suggested by Weibull is to define
o(x), where the cumulative distribution function F is given by

Fx) = PX=<x] = 1™ - [ fmax .

One of the simplest forms for o(x) is

-\
(D(X) = (L# X2¢
=0 X< ¢
in which case
(x-9"
Fix) =1-e A X2¢€
=0 X<¢€
and
_ (x-¢)"
t(x) = n/x (X-c)n -1 e A Xz €
=0 X< €

The parameter ¢ is called the location parameter in the sense that it
defines the lower limit for the random variable x. For the special case

where ¢=0,

| /A
f(x) = n/xx"1 e'xn

95
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and

n
F(x) = 1-e >~ /X

The values of n and X may be selected to provide a large number
of shapes some of which are sketched below in Fig. A.1, For this reason
n is called a shape parameter and A is called a scale parameter since it
scales the value of x.

{x)

Fig. A.1. Weibull Distribution for Various Values of
Parameter n
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It should be noted from Fig. A.1 that 7 1= 1/2 might represent
the shape parameter for the early failure region and 7 g = 3 the shape
parameter for the wear-out region in a typical reliability application.
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A.3 JOHNSON DISTRIBUTIONS

These distributions were proposed by Johnson who used trans-
formations of the normalized normal random variable to generate
empirical distributions(21,22). The main advantages of this approach
are that percentiles of the empirical distribution may be obtained using
a table of the normal probability distribution, as will become apparent
later, and that the approach encompasses a broad class of problems.

To introduce the Johnson distributions, assume that it is de-
sired to obtain a probability density function for the random variable
X about which little or no information is available. Then, a general
transformation from X to Z is postulated, where Z is a normalized
normal random variable, as follows

Z = y+nTX) |,

where yand 1 and parameters to be determined.

In most situations, the transformation T(X) will be unknown.
However, Johnson proposed three families of distributions, referred

to as the SL’ SB, and S, systems, respectively, defined as follows

U
8 (Log-normallf(x) = ¢n(x-¢) ;  x>¢
8p(Bounded) T(x) = Ln(x—f;—‘_—x-) ; €E<X< €+
8,;(Unbounded) T(x) = sinh™1¢X%) ; w<x <o

The undefined regions for x above imply T(x) = 0.

Preceding page blank
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Similar to the Weibull distribution, n and y are shape parameters,
A is a scale parameter, and ¢ plays the role of location parameter
which shifts the region of relevancy for x. These parameters are
subject to the following constraints:

n>0 ; x>0
s y<o

oL <O

In some cases, these parameters may be identified from a
basic understanding of the process. For example, if the random
variable x must be non-negative, then ¢= 0 and the SL’ or lognormal
distribution, might be appropriate. If X is restricted to a finite region,
€<X< ¢ +), then Sy (bounded distribution) may be appropriate.

An infinite range for x would suggest the SU (unbounded) distribution.

The probability density function for the distributions are as
follows:

2 2
SL: fl(x) = —ﬁ—?(ﬂx—_‘) exp {-%['z,-r Ln(x-e)] } ; X2e¢

X=€

2
. _ " A _1 _X-€_
Bg: 1) = E (x=¢) (\-x+¢) &P { 2 [7”’ in (A-x+€)] }
€ES XS e+

1

8.: f.(x) = L
v 3" Jon :/.(x-c) + X

ool ronen {29 [

w<X<»
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The density function for the SL system is a three-parameter
distribution commonly called the log-normal distribution. This is
known to describe many familiar events such as amount of inheritance,
income, particle size from breakage, etc.

As previously mentioned, the class of situations encompassed
within these distributions is large. An indication of the flexibility
in defining a large number of shapes is evidenced in Figs. A.2 to
A. 4 which illustrate several forms of the SL, S, and S.. density func-
tions.

B U

The difference between the three types of Johnson distributions
can be characterized by the relationship between the distribution skew-
ness and distribution kurtosis. Sect.on 8 of this volume contains a dis-
cussion of skewness and kurtosis; however, a summary definition is
that

By = u3/33 (skewness)

By = u4/34 (kurtosis)

To help in the definition of the relative variation in Bl and 52’
Johnson prepared the results as shown in Fig. A.5. Note that the log-
normal distributicn is defined by a line given by:

By = (w-1) (m+2)2 i >0
82 = w4+2w3+3w2-3 i >0
where
2
w = ei/m

is the shape parameter for SL
101



102

x) 4

U1\ yen nedB

1.1+ /
1.1+
1.0+
0.9+ y=0i n=vJ3.3

Fig. A. 2. Johnson Probability Density Functions for SL (e =0)
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1.0
0.5

y=1; n=1

1'_5..
1.0¢4
1.5¢
1.0¢
ﬁ.!--‘

v x

ye0; =05
1.5

1.0
0.5

73.10'. ncz

Fig. A. 3. Johnson Probability Density Functions for Sp (e=0;A=1)
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0.6
0.4
0,2

Fig.A.4. Johnson Probability Density Functions for 8U
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B, = (w-1) (w + 2)°
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l
Line for Johnson S; Distribution
(lognormal) i

Region for Johnson
Sy Distribution

Line for
student -t
distribution

Region for Johnson
Sp Distrikution

B2, KURTOSIS

.Normal
Distribution

Impossitle Region
(By—B, <1)

-l

0 1 2 3
B1., SKEWNESS

-l

A e mom s e e e —— — ——— r— — — . @=— — —

Fig. A.S.. Rogiohl of Definition for Johnson Distributions Based on
Skewness and Kurtosis
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It lhould be recognized that estimates forﬁ and pz may lead
to a wrong conclullon as to the type of distribution to be used. The
confidence that this will not occur is related to the accuracy of the
estimates. In case of doubt, a goodness-of-fit test may be used to
help in a decision. |
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A.4 PEARSON DISTRIBUTIONS

A general class of probability density functions known as the
Pearson family(m’ §5) , 18 given by solutions of the differential

equation:

§= (x+a)y

bo+blx +b2x

The solutions of this equation were classified by Pearson into twelve
families of curves shown in Table 8.1. These curves are displayed

in Fig. A.6. The Pearson distributions are related to the standard
densities frequently discussed. For example: the gamma distributions
are Pearson's Type III curves, the normal is a Type VII, the beta

is a Type I while the beta with parameters a=8 is represented by

the Pearson Type II curves.

This system of density functions is very appealing from the
standpoint of fitting sample data, the reason being that only the first
four moments need be calculated. Pearson's methods of fitting sample
data consists of the following steps:

1. Compute the first four moments, Byr Bgs Bg

By of the sample data.
2. Calculate the numerical value of the parameters

Bl andpz, where:

’1 = gkewness,

g 9= kurtosis.
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TYPE 1 26x)

TYPE III 1(x)

qQ q
/\- 1) =y, &-a) °x |
S . X

Fig. A.6. Typical shapes of Pearson distributions (Sheet 1 of 2)
108




TYPE VII £(x) -

(2
®
il
‘<
o
p—
p—t
+
P
~—

x;-‘ 0 2.8
TYPE IX £x) o
l : X
ft(x) = Yo (1 +§)
x=-a (o] X
TYPE X fx)
/L e
0 X
TYPE XI “ 6 =y x ™
[-]:\_I
1) :
i f(x) =y 0(43—;5174-\/51 )+\% :
] 3 - ,/ B .
E Jm 1 )
5 T

Note: Type 1V and VII appear as normal distributions.
Fig. A.6. Typical shapes of Pearson distributions (Sheet 2 of 2)
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Skewness Bl

0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.0 8.8 9.610.

8.0
8.8
9.6
10.4
11.2

Kurtosis 12.0
- By 12.8

13.6
14.4
15.2
16.0

m
16.8 l\
17.6L N\
- N
18. 4 HETEROTYPIC \ N\
19.2 i \ \\\ |
20.0 N \\

20.8

21.6
22.4 \\{
23.2 ,

24.0 \

Fig. A.7. Types of Skew Frequency for Values of 31 and 52
for the Pearson System
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These parameters determine the type of
Pearson distribution which appropriately
matches the sample data.

3. Equate the observed (sample) moments to
the moments of the appropriate distribution
expressed in terms of its parameters, and

4. Solve the resulting equations for those parame-
ters thereby completely specifying the distribution
function.

The relationships between Bl and 32 for a given Pearson distribution have
been represented in a convenient graphical form in the so-called pl, pz-
plane shown in Fig. A.7. The normal distribution corresponds to the point
ﬁl =0, 32 =3 in the Bl ’ 32 plane. Type I distributions are to be chosen
when the point 31,32 is on the line 232-331 -6 =0 and Type Vwhen (51,;92)
is on the cubic

8,(8, + 9)% - 4(48, - 38,) (26, - 38, - 6).

In considering the subtypes under Type I, a biquadratic in 31 and 52
separates the area of the J-shaped curves from the regions of limited
range modal curves and the region of the U-shaped curves.

In summary, the curves traced in the (81,62)- plane provide
a means of selecting the Pearson distribution appropriate to a given collec-
tion of sample data. For further details and numerical examples
see Elderton(10) and Kendall(27).
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APPENDIX B
PROBABILITY TABLES
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TABLE B-1 _
Unbiasing Factors for the M.L.E. of

n ] [ ? [ 9 10 1 12 13 14 15 16
B(n) .66 .752 .792 .320 .842 .8S59 .£72 .883 .893 .90) .908 .914
n 18 20 22 24 26 28 Y 32 N 36 38 40
B(n) .923 .4931 .938 .943 .947 .951 .955 .950 .960 .962 .964 .966
n 4?2 44 " 44 50 52 sS4 56 58 60 62 64
B(n) .968 .970 .971 .972 .973 .974 .975 .9i5 .977 .978 .979 .980

n 66 60 70 72 " 7 718 gr £S5 90 100 120
Rin) .980 .981 .98) «982  .982 .963 .98) .984 .985 .986¢ .9C7 .990

Preceding page blank
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TABLE B-2
Percentiles of the Normal Distribution

2
et /24

s 00| 01] 02| .03 .04 03| 06} .07] .08 .09

.h319! .5359
of 5714} 5753
G104 L0141
L6480] 6617
G344} 6879

71900 (7224
i| L7517 7649
L7823 7852
X .8104) .8133
8305 .8389

.8590! 8621
.8S10 .8330
.8097 .
0162) .0177
.0306] .9310

0429 0441
a3 .9535 .0545
9525 .9633
40609 9700

i 976t 9707

ROW=O CRIOR RHN=O CRNON ARV~

CICICHCHED BOROBINIDD DOVIDOBIND et bt hut bt pmud st P st s Db

; 0056 L0057
: 0067, .
: 10976 .
: 9082 .00
\ m] .0088]
; o001
- -9004] ‘904! .09
.0097] .
s 1.232'1.045'1.000 : . 3.501 [4.417
F(z) .00 | .05} .075] . £9905| .009995
21~ F(z) 20} .10] .08 .0001 | 00001

(fgrso(;n) A. M. Mood, Introduction to the Theory of Statistics, McGraw-Hill,
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TABLE B-3

Tables to Facilitate Fitting Johnson Sy; Distribution®

A
Values of —y
5 J

b2 " 10 *18 *» *28 (3] (3 1) (2] o4 0-50
33 | 09479 | 07373 | )220 1-040 100 300
t 2 2328 4834 | 07767 1143 1-688 2477
4 1700 3620 5099 | 08lee 1133 1-860 2-236 3-484
2 ) 1481 2908 <4538 4366 0-08%0 1148 1-546 2-146
36 | 02108 | 02435 | 3776 | 08200 0-0997 o018 1-187 1-668 2:139 3187
»? 1088 2103 3338 4487 5997 *7686 | 09681 | 1-23A }-0l¢ | 3188
38 00le 1853 2048 -302) 4138 6816 8107 | 1-G28 1-303 1-687
2} 0020 188} 2548 3490 4530 8123 <1121 [ 0-28)4 | 1008 1-378
49 0748 ‘1807 ‘2303 3180 4076 3113 -6304 77133 | 09470 | )-169
41 |0008¢ | 01301 | 02108 | 0207C [ 03707 | 04020 | 0-8673 | 0-6003 | 0-8363 | 1-018
3 09833 1270 1943 3647 +3404 423 -81U6 6343 7008 | 0-9031
<3 0880 1188 1808 2468 -3181 307 4741 -5708 0814 812
4 0582 )12 -1080 2204 2037 30142 4307 6266 -6251 5407
L2 0519 1046 1688 21563 2782 3306 -4100 4491 -8760 8411
46 | 0049] 00w | 1409 | 0-2031 0-2002 03192 O-3R4¢ | 04584 | O-53n2
&7 0408 0N 1431 1933 2481 3014 A 478N 8040
4«8 0444 0891 1383 1828 2327 2867 -342¢ 4034 4744
49 0434 -0 1200 1743 3216 -2 3904 L4306 -e4u4
F 3 0408 0316 1234 <1686 2117 2692 <3099 -3048 4954
51 |o00ne0 | 00:83 | 0dIng | 01807 | ©2027 | 0:-24R0 | 02081 | 03470 | 04080
83 0374 0782 1138 1834 BT 2uIn 2828 22228 368
83 0361 07 1000 1477 JR72 2850 2793 -3¢t -3500
[ ¥ 0348 05y 1087 1424 JRO4 2701 200 318 351 !
86 | 0337 | -0eio | 1023 | -137¢ | 1742 <2123 onut | o-200e | oweld ;
56 | 00326 | 0-0a%7z | 0-00%2 o 0331 | 01884 | 02082 | 0-24Mm | 0-7s | O-nocn !
87 0316 ¢ Dusy 1290 163} Q1L +238% STkl [ T '
58 0307 TS 0v30 g} 18] 1892 1920 “22R¢ Rt R060 |
39 0208 0iup 0P0d 1210 <1836 186N 2210 2060 2607 3
() -0290 IS 0879 1182 1493 1815 2151 2604 2479
&1 [ 00283 | 00008 | 00088 | 03061 | 01455 | O-170G | 0-2001 | 0-2433 | O0-ZTkd 4 D-3in0 '
&3 | 026 | 0883 | 0835 | -112) ‘K16 1w -2038 | -2360 g | oAk |
¢3 0269 0540 ‘0RL4 1004 1380 307¢ BT.LH] 83014 2642 B
64 0263 0427 0798 +1087 1347 1645 -1933 278 BRI QA
(Y 0287 0518 0117 1043 1316 1898 <1087 2100 2000 ST
&6 | 00260 | 00804 | 00760 | 01020 | 01288 | O-)K00 | O-3843 | w202 | O-244n | 0-2777 |
¢7 -0248 04f3 0743 0098 1288 BN M2 2009 o201 2700
8 ‘0241 045 0728 0977 1231 1402 -1702 0043 237 -9C48
&9 0238 473 0712 0067 1200 +146) 1728 -1990 2286 RIXXY
70 2 0404 €899 (938 B X +1432 -1690 -1987 2720 &1
71 00227 | 0-0:58 | 00688 | 00220 01159 0140« 0-1836 | 01918 | 02190 | 02473
73 0223 0447 0873 0P03 -1197 ‘1377 104 <1KKO <0147 -2426
73 0319 0429 048] -0887 -1t 352 <16 <1844 -2108 2371
74 0216 0411 0080 0871 1096 1327 1688 3810 <5008 230
7 0212 0424 0639 -On86 om <1304 1637 417 2027 UH
76 | 00208 | 00417 | 00628 | 00842 | 01068 | 01282 | O-1510 | 0-1748 | 01991 | O-Z248
7 . 0208 0410 ‘0018 ‘0828 1043 <12¢0 <1488 1710 1650 -0208
78 0202 0404 0808 OR18 1028 1240 +3460 1687 -1922 2187
79 Q0198 004 0899 -0802 1009 1220 <1437 -1660 -1891 213
2] 0198 0392 0690 ‘0790 0993 J2m 144 -1633 186U -20u8
82 | 00190 | 00380 | 0-0672 | 0-0767 0-0944 01168 01371 | O-!6R3 | 01502 | O-2029
84 01N> 0370 0857 0748 0937 1132 1332 1837 <1749 -lues
{ 23 0180 -0360 65642 128 0912 1101 1298 14 1049 BT R
8 0178 0389 0528 0707 Ot -1073 1280 1404 e Jenn
* 91N 0342 0818 0849 0866 <1046 1220 1417 -1610 1810
[ 7 R -— — e —_— —_ - o118 | 01382 | 01870 | O 0764
”¢ - —_ - - - - 211 1349 1633 112}
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TABLE B-3 (continued)

Values of -y (continued)

N I '
e 55 [ 2] 66 *70 *7 (2}
30 | 21384 3383
39 | 1783 2-420
0 | 1400 1-908 2621 4104
41 | 1383 1M 2-000 2808
4¢3 | 1008 1-349 1708 2:254
43 | o048 | 1202 1-460 1:860
¢4 9802 | 1-084 1:280 1-889
&« ‘9033 | 00537 | 1143 1393
&6 | 07399 | 08708 | 1033 1-240 1.822 1-031
&7 4868 6024 | 0-943¢ | 1121 1-363 1-670
48 4410 <7481 8699 1-02 1-221 1-4K5
49 4017 -0968 ‘8083 | 09436 1-10¢ 1-348
e 5878 0539 1580 8761 1028 | 1-218
51 | 08374 | 0-6170 | 0-7092 | O-8184 0-9809 1317
52 8108 L840 -6603 7687 4871 1-034¢
53 4888 656808 -9341 1262 -8311 0-9G42
54 4653 8208 6028 ‘6869 78068 9039
[ 2] 4450 6006 5749 -8830 7419 8818
$-6 | 04283 | 04856 | 0-8498 0-02268 0-7087 0-8058
57 4122 4608 8270 8953 8735 -7647
58 3978 4491 5003 8708 0437 +T2R¢
59 3840 4331 4878 8481 ‘glon 0942
[ 2 ) 3714 4184 4701 8276 5924 +864)
61 03398 | 04048 | 0-4542 0-50R8 0-8700 | 0-6340
&2 3481 3023 4398 416 5498 8152
&3 3390 3808 4208 4165 8308 <5020
04 3297 3097 4191 4007 5134 8124
&5 3209 3508 4013 4470 4973 |  1K14
66 | 03123 | 03500 | 03003 | 04341 04824 | 0:5379
&7 3046 3410 3709 4221 <4084 BLI197
«8 2973 -3320 ‘3702 4109 4004 0045
69 2904 -3247 -3611 4004 4453 4tng
790 2939 3173 3544 3808 4318 4772
71 | 02178 | 0-3101 | 0-2443 | 0-2812 04211 0-4C4R
72 2719 . -3366 3723 4110 400
73 2004 -2067 3203 3840 4014 4421
7-4 2611 -2 <3224 +35661 «3N24 4318
75 2501 2649 -3169 3486 -3838 4220
76 | 02313 | 02795 | 0-309¢ | 03415 0-3787 | 0-4127
77 2467 2742 3087 3347 360 4039
78 2423 2602 2980 3284 3007 3050
79 2381 20456 2926 -3221 3637 -N870
t 2] 2941 2600 2071 ‘3163 -3470 -3801
81 02303 | 02856 | 0-2822 | 03100 0-3407 0-3729
&2 2260 2814 2774 3083 +33448 -3060
3 -2230 -2473 2729 <3001 *3288 3594
4 2108 2438 2688 2052 -3232 -3
as 2163 2397 2043 2904 317 ‘3471
86 | 02132 | 02362 | 0-2003 | 0-2159 03127 | 0-3413
87 2101 2327 3504 2812 3078 -3258
8 2072 2294 <2626 2770 -3031 325
29 2044 -2202 ‘2490 2730 -20K5 *J283
%0 <2018 2231 2458 2680 94 3214
92 [ 01964 | 02172 | )2380 | 02617 0285 | 0-311
94 1918 2117 -232¢ 2848 2778 3008
96 — — - ‘2483 2708 <2044
L 2. - _— - +2422 2039 TN ]
100 -— -— —_ * +2368 *2656 -270R

0-8S

2-602
2:167
1-864
1-641
1-469

1:333
1-221
1-128
1-060
0-9826

09243
32
-A282
*7881
+7621

01147
«B004
6837
6302
Q150

00740
6770
642
5427
B Nk |

0-h130
4996
4R0A
L4749
4530

0-4530
4470
4§44
4244
4108

04078
2008
3023
R M
784

0-3710
3657
3587
3639
3484

0-3320
3203
3103
3oy
3020

4-029
3-038
2473
2:100
1832

1-629
. 1-470
1-342
1-236
1-147

1-071

1-000

0 9485
-8082
£536

0-A134
7780
<7450
7101
6n92

0-Ga406
-041¢
G202
Re(il]

-bH36

I

. 0-5668
I-8b0d
*6402
L2
5094

0-4972
4857
4747
4044
4340

0-4452
4364
4279
4198
4122

0-4048
3078
3910

1 .ares

| -378%

" 936066
R
L2487
' -a3e3

+3278

9

2:407

207
1-128

1636
1-4K4
1:36}

1-260

. 1172

1-098
1-033
-n785

09263
-h820
RSt
6050
1743

0-7:468
<1164
RO S
H5LY
‘0470

0-0:42
A0R7
2918
R
5603

06403
6928
6203
5OK4
4971

04564
3763
46807
4070
A0

0 4408
4326
R R
4170
4100

0374
N5
:a730
3631
3837

1-857
1:610

1-28¢
1-203
1-120

1-08s

1-008

0-9581
9130
8729

0 8364
-RON3
+7730
7463

ST,

0 6982
‘6744
6541
6352
-6175

0-6010
-5858
5709
5871
5442

0-5308
-6203
Q]
4087
-qu8s

0-4703
4702
4016
4333
4404

0 4300
41689
4042
-3928
-J816




TABLE B-3 (continued)

Values of — y (continued)

150 318 1-28 128 1% 13 140 148 1-50

4 3548

5 | 2000 2874

56 | 187} 3481

57 | 1009 8149

58 | 1847 1031 2838 3008

59 [ 1438 1-74) 3-234 8154

o | 1387 1:500 1-909 3084

&1 | 1241 1-476 1:808 2-385

3 | 1107 1-373 1-088 2079 3023 &110

&3 | 1108 1-388 1-631 1-088 2400 3118

¢4 | 1-044 1-210 1427 1729 1102 3084

o8 | 09080 | 1143 1:337 1-509 1:984 2-038

o6 | 00477 | 1-088 1-269 1-400 1017 2338

[ 24 9088 | 1-093 1-190 1-906 1479 2:108

o8 <8804 | 0-9887 | 1:1%0 1-318 1-563 14924 3-638

9 5360 38 | 1076 1-243 1-404 14778 2-280 3213

7 0046 9083 | 1028 1:100 1-379 1-680 2088 2-768

71 | 07762 | 08708 | 0-9640 | 1-124 1-303 1:844 1-890 3-488

72 <7600 ‘R386 M | 1074 1-237 1-462 1-788 2-217

73 7268 -8093 ¢ 1-028 1178 1-373 1-63¢ 2-029

74 <7034 <7823 ‘8783 | 09071 | 1128 1-301 1-837 1-876 2-430 3-660

5 -0830 “78%3 ‘8450 0488 | 1077 1-238 1-450 1:746 3-202 3-088

76 | 00830 ! 0932 | 0-8170 | 0-918) | 1-034 1182 1-374 1-036 2-024 2-708

77 0448 ‘7124 1910 4834 945 | 1132 1-307 1:640 1-877 3-426

74 -6278 0924 7670 8642 9584 | 1-086 1-240 1-457 14763 2211

74 6117 4738 7440 8378 9281 1044 1-192 1-3%4 1-64¢C 2037

80 0987 -0589 ‘7238 6020 s | 1:008 1-143 1-349 1-654 1893
81 0-5828 0-8°9% | 07040 | 0-7786 | 0-0081 | 00706 ' 1-099 1-260 1-473 1772
82 627 4857 7548 8387 933 | 1-088 1-207 1-401 1-667
83s S\ﬂ 60Uk ‘0884 ‘7904 ‘8188 9083 | 1070 1-169 1337 1-576
84 6443 5980 6521 ‘7173 7923 4808 | 0-98¢0 | 1-118 1-279 1-490
{ 2] 6328 8618 83 0991 ‘T100 S840 9843 | 1078 1-287 1426
$06 ! 05220 . 06699 | 04223 | 048322 | 07807 | 0-8304 | 0-9248 | 1-038 1-100 1:361

87 5099 6874 6086 4401 ‘318 8078 9078 | 1-004 11138 1:304
88 5018 -8461 5968 4810 ‘1140 ‘7066 8716 | 0-9729 | 1-008 1.362
| 84 4924 8364 5831 4368. | 0973 ‘7667 8471 ‘9438 | 1-060 1-204
*0 4834 8261 8714 4230 4013 *7480 ‘8362 o163 | 1-02¢ 110

91 | 04748 | 05154 | 0:5601 | 0-6101 | 06683 | 0-7303 | 0-8043 | 0-8908 | 0-99¢3 | I'12)

2 4608 5000 5404 5978 8620 7138 7813 ‘8509 p652 | 1.084

"3 4587 -4071 5303 8861 4386 £077 ‘7658 8448 9377 | 1-060

"4 4811 -4888 5208 ‘6749 6258 4A27 *7480 8234 9122 | 1019

*5 4439 -4803 52302 q 4133 6088 ‘7312 -8038 ‘0883 | 09802
96 | 04369 104724 [ 05112 | 0-8540 | 0-6018 | 0-6640 | O-7154 | 0-7848 | 0-8687 | 00616

7 4303 4648 8027 ‘8443 §904 6420 7003 «7671 8448 9359

** 4237 4878 4045 8349 479V 4207 -06830 *7603 8246 917

9 4118 4608 48v8 6260 5608 ‘8160 6724 7343 8058 8880
100 4118 4438 4790 $174 8897 -0067 0504 ‘7192 71877 9678
102 | 04001 | 0-4311 | 0-4046¢ | 0-5013 | 0-5413 | 0-8857 | 0-8352 | 0-6910 | 0-78¢6 | 0-8250
10-4 3698 4193 4513 4003 ‘5243 5684 6131 6054 7847 7937
1646 3796 4083 4389 4723 5008 8488 59217 0420 6976 7608
108 ‘3703 3978 4273 4593 4940 -8320 5739 6208 6727 7318
11 ‘3816 -3881 4168 4473 4004 8167 -5668 0007 8499 *7083
$1-3 | 0-3833 | 03789 | 0-4063 001 04870 | 0-8025 | 0-5404 | 0-5623 | 0-6209 | 0-6811
114 ‘3488 3703 ‘3908 486, 4889 4901 6204 5683 6093 8888
1ne -_— - — -— — — -_ 8408 6918 4313
1ne -— -— — -— -— -— -— 5347 ‘8748 4192
130 -— -— -— — —_ -— — -5209 5592 0018

119
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TABLE B-$ (continued)

Values of — $ (continued)

(1
> 195 | 100 | 146 | 2% | 178 | 140 | 303 | 190 | 2195 | 200
o0 |00 | 313
o1 2200 |3
o3 [3067 |31
3 |192¢ | 2810
a4 |1003 |3
s |10 |31
o6 |1007 1900 [3001 |eees
o7 [1427 |18 2368 |38
o8 (1488 |10 3101 |3om
o9 [1308 | 1647 |3000 |8719
o0 |133¢ |18s |1903
o1 |28 |1em |1798 3200
o2 [113¢ 1438 |1007 | %108
o3 [1100 |1370 [1e1s 147
o4 1150 [1316 |10 |2ess |32 | 3em
o5 |1113 [13e8 [1473 |1768 |8908 | 3147
o6 (1018 1233 [1as |10 |s0ez 3703 '
o7 |10e6 |83 |1307 [1503 1938 | 3835
o8 (1016 |11« {1307 [1sss l1em 333 |
99 [otest | 1100 1261 1400 178 8173 | ,
100 | 019 2070 1210 | 1408 1408 3036 ,
01 loomre 10w i1 [ram {1 | rem ]
103 | 9143 [ 1017 {lles | 130¢ |1818 | 1019 | 2310 . 3478
103 i 924 [ O9p08 . 1110 | 1200 ! 1467 1731 ‘:-m + 3036
104 | 8718 ' 088 (107 1320 |10z 1662 !g0u 3728
168 | 83 | e | 1060 | LIS | lass ) LB ) Lem j 2408
166 |oi3n lotie  lom | Lia | e 1816 | 1820 | 2313
107 | -cies | €088 j0PEs | 1118 1265 | 1461 |192¢ | 2163
108 | 7096 | 9786 | 0720 | 1088 | 1326 | 105 | 18w | 2:036
109 | 037 | -ases | 9480 | 1067 |i100 {1300 1590 1927
110 | 7666 | 8416 | 9374 | 1030 |16 | 1310 182 1833 |33 3812
a1 [o7ser [Oases [09080 | 1005 [1134 [ 1376 | 1472 148 12188 |33 .
103 | 403 | soss | e3¢ [ooe11 [1005 | 1236 |1e20 !)es | 2068 | 3004
833 | 3212 | 0es | seee | 4067 {1067 | 1200 | 1313 1606 | 1950 |2585
114 | e | 7m0 | as13 | 9318 |1oar des |19z 1se 1885 2
118 | 7034 | 7038 | 836 | 917¢ (1016 | 137 | 1Zse 1480 |17 | 2224
116 | 0080y | 07603 | 08108 | 090ns |osess | 1008 1381 | 1438|1690 3008
107 | -8 | 2373 | -803¢ | 8001 | 9708 {1080 |1g16 |1391 |19 1988
18 | otte | 7348 | 7o | sezs | 09 12084 | 128y 1347 1608 |1emp
119 | o856 | rize | 7740 | a6 | 9300 1030 162 1307 |Ldiz | 1804
120 | 4% | 7014 | 7eis | 8308 | ez | 1007 | 1124 1270 | 1461 | 1728
121 | oo | oes0s | 07687 [ 08188 |os03z | 0881 | 1008 | 1235 | 1414 | 1660
123 | v | 4 7384 | 9011 | 6761 | 9644 j1oOTL 1202 ! 1370 1898
123 | 022 | -cos | 738 | 7873 | .ss07 | 0447 [ doee ! 1171 (1330 1862
124 | 6122 | wces | 133 | 7740 | saa1 | 9260 !3.02¢ ‘1163|1293 | 1490
125 | 0030 | 458 | 7023 | 7613 | s200 | 9061 | 100z | 2116 | 1268 | 14a3
126 |osmse |oeir |oeme |0t |osies | 08910 foomi: | 1.000 1225 | 130
127 | senr | o323 | cere | a37¢ | 4011 | 8747 | so14 | 1086 | 1194 1338
128 | -ss0s | 6237 | -eme | g2e | an7e | 8392 | .ee27 | 1043 | 1265 ;1320
129 | 5733 | s1sa | eeme | 7uss | q7s2 | saes | 9248 | Dozl | 1138 1284
130 | -se62 | 076 | 0033 | 7047 | 7630 | 8200 | 9078 1000 | 1112|1288
133 | - - - — |o100 | 0803 | osss | 09016 | 1065 ! 1190
136 [ - - - — | msr | i | edes | 9203 | 1021 1438
13-6 -— ot - -— B id ‘7851 | 8188 8941 1 09822 . 1-088
138 | - - - — | %03 | 7336 | 105 -BMMS | 6460 | 1045
160 | — - - — | ees | 3 [ a2 8378 | 941 100s
162 | — - - — | esi0e | 06049 | 07498 08121 | 08842 | 09090
e | — - - — | esir | eme | 3208 | aase | sses | -e3ee
16 | — - - — | -oiea 108 | .76A8 | 8310 | 9088
1449 -— = - — 902 04584 -8920 <7464 8073 8774
15 | - - - —~ | 0000 | 6308 | 33 | -7273 | -7881 [ 8814




Tables to Facilitate Fitting Johnson Distributions

-
Values of 1}

b oes | o010 | o1 | o2 | o3 | o2 | 03 | 000 | o4 | os0
33 | eom | e | soos | 530 | seen | 1304

33 | 2008 | 3037 | €0 | 4908 | eet0 | ovr6

a4 | 3908 | 343 | 9203 | 3007 | 3908 | 3970 | ed0 | &1

35 | 308t | 3o | Sis | 333 | 339 | 3407 | 3463 | 303

26 | 2008 | 3073 | S00n | 2000 | 2033 | 3133 | 2208 | 348 | 378 | oo
39 | ser8 | 3003 | 270 | 2700 | se16 | 2000 | 3080 | 21% | 3ms | 3500
28 | 238088 | 204 | 3671 | 004 | 3648 | 2707 | 3703 | 2803 | sou | 318
39 | 2490 | 2431 | 3400 | 341 | 3013 | seer | sem:3 | 3701 | 30 [ son
6o | 3306 | 2333 | 230 | 3m | 2403 | 3443 | 3093 | 3607 | 3087 | 30
ot | 2268 | 2350 | 2306 | 2903 | 2900 | 2343 | w308 | 3400 | 3008 | 350
3 | 211 | sare | 3100 | 3907 | sam | s202 | ses | 2300 | 230 | 2406
3 | 2100 | i1 | s138 | 2340 | 3260 | 2100 | ¥3:7 | 2x6 | 2304 | 3303
ot | 208¢ | 2000 | 3000 | 082 | 3100 | 222 | siso | 2184 | 223 | 237
o5 | 2008 | 2010 | 3010 | 3000 | 3048 | 2036 | s0m | 2am | 217 | 2902
oo | 100 | 1908 | 1913 | 1eea | 2098 | s016 | 2038 | 3085 | s0Mm7 | 313
v | 1921 | 1w | 1ess | 13 | 248 | 171 | 1301 | 2018 | S04 | 307
a0 | 1085 | lesu | 1885 | 1006 | 1808 | 1930 | 1048 | 1070 | 1907 | 302
oo | 1083 | 1858 | ezt | 1eev | 1000 | 1093 | 1910 | 1930 | 295 | 15
5o | 1623 . 628 , 1030 | 183 | 2847 | 1890 | 1e75 | 283 | e8| Al
g0 | 1798 | 1o | neor | nees | amy | e | 1ec | e | 1w | 1em
$2 | 1767 | 1me | 17w | a7e | 1990 | 1800 | 1ei3 | 1eo | 1847 | 1800
53 | 1763 | 1o | 10 | 316 | 17e | 17ve | 1me | 1 1917 | 1087
s¢ | 17 | rars | e | ama | 1960 | 17 | ate0 | 177 | 1aee | 1ecoe
$6 [ o9 ! vez i 10 | xan | ams | arse 1oy o1 | avs | 1am
o | 1000 | veer | ress | nese | reer | 1ves | vms | 1w | v | avee
$7 | 1680 | le6: | 1ues | 141 | 161 | 2088 | 1006 ! 1708 | bme | 1738
88 | 1653 - baar ;o ded | 1ess | 1488 | 1ce0 | 1e . ez | 1owm | 2701
§9 | 127 | lexm | 1631 | 140 | 266l i 1Ges ¢ Lo o dem | Lo | 1eal
¢ | 1411 : 1eis | 1l | 20 | 1ess | lest | a1 | e | 1w | 147
o1 | 1008 | 1oos | 2000 i 140¢ | 1480 | 118 | 242 i 1em | 2ea | 1o
&2 | 1852 | 1463 | noss | 2000 | 1084 | 2coo | 1407 ; iGls | 1488 | 1630
o3 | 1068 | 1850 | 16718 | 1% | 1600 | 1ona | 1003 | 1000 | 1410 | 2.6%
&6 | 1868 | 1657 | 1m0 | 1863 | 1667 | 1472 | 1670 | 1sos i 1808 | 1606
o8 | 1863 | 1848 | 1047 | 1800 | 2884 | 1sce | 1568 | o7z | 1461 | 281
oo | 1633 | ness | 1438 | 138 | 1 | 1847 | 283 | 21000 | 2808 | 1M
e7 | 110 | 1482 | 124 | nem | 3890 | 1a08 | 1ear | iser | 1ess | 2ses
o0 | rzi0 1| 1a1r | ae1s | ase | asas | aeze | veow | 1638 | 1s | 1851
o | 1<v= | 180t | 1cop | 108 | 1800 | 1813 | reia | g% | 1831 | 1830
70 | 1400 | Lot | 1403 | 2ess | 1408 | 1s0z | 1p0r | 1813 | 1o | 183
21 | 1400 | 1m0 | 1483 | 1 | 2400 [ 2402 | 1eer | 1008 | 1000 | 1817
72 | 140 | 1412 1476 | 108 | 2479 | 1483 | 187 | das3 | 29 | 2008
93 | 1408 | 1463 | 1403 | 1407 | 1470 | 1476 | 1478 | dans | 140 | 1408
74 | 1486 { 1ess | 1ase | 1480 | 16610 | 1408 | 1469 | 1476 | 1400 | 1487
75 | 1ed8 | 246 | 148 | 1400 | 1483 | 1456 | leso | 1ee8 | Len0 | 147
76 | 1438 | 108 | 100 | near | 1ees | 140 | 1asz | 1em | 3ees | 14m
77 | 1430 | 230 | 1432 | 1436 | 1637 | 1440 | 2-eaa | a8 | 1434 | 1480
78 | 1423 | 1433 | 128 | 2em | name | 1033 | 1e38 | t4c0 | 1448 | 1eB)
79 | 1418 | 1416 | 1eis | 1019 | 21433 | 1e28 | 128 | 24m | 248 | Lew
o0 | 1908 | 1eo0 | 14 | rerg | 216 | 118 | 1t | 2ezs | 1430 | 1438
o2 | 1306 | 1308 | 3300 | 19 | 201 | 140 | 1eer | tann | 1ats | ran
84 | 1363 | 1aex | 13es | 2386 | nass | 1301 | p13ee | 1308 | 1e0s | 1607
8¢ | 1370 | 1372 | 1908 | 1996 | 1378 | 2210 | naes | dase | 1am | 34M
on | 1340 | 1360 | a3en | 138 | nzes | 1267 | 1310 | 1am | 117 | 1w
o0 | 1360 | 1380 | 1381 | n3s2 | 1356 | 1386 | 13ee | aaez | 138k | 1370
* | — - ! = - = — | 1eew | 1382 | 1388 | 290
™| — - | - - - — | 1390 | 132 | s | 1348

Reproduced f
best .3‘.!'.5:.”&3
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TABLEB B (continued)

Values of i} (continued)

h
o *88 - o *N o "0 o
e * 778
9 | 5108 | 3348
«” 3040 | 3304 | 3000
1| 9004 | 2030 | 8013 | 3300
¢1 | 2808 | 3002 | 3004 | 2
e | 2430 | 3830 | %041 | 2R
¢4 | 2338 | 3414 | s610.] 2M2
&8 | 8385 | 3320 | se01°| 3008
| S0 | 9240 | 2300 | 3908 2041 | sam
e | 2120 | 317 | 3231 | 390¢ | $908 | 2811 2008
48 ! 3065 | 2100 | 9103 | 2298 | 2305 | 2¢03 | sene
e | 3016 | 3088 | 2100 | 5100 | 3827 | s313 ! sS4l
86 | 1971 | 3007 | 2040 100 | s-23¢
$1 | 14931 | 1068 | 3001 | 3048 | 3100 | 2188
$3 | 3904 | 192 | 1088 | 1000 | 3068 | 2108 | 217
53 | 1860 | 228k ] 1019 | 1067 | 9000 | s082 | S8
54 | 1830 | 1685 | 1884 | 1008 | 2088 | 3006 | 300
85 | 1000 | 2824 | 1880 | 1068 | 1018 | 190t | 2012
8¢ | 178 | 1798 | 1821 | 1890 | 1084 | 14033 1900
89 | 1760 | 1770 | 1794 | 1890 | 1880 | 1887 1-920
88 | 1738 | 146 | 2268 | 1798 | 1081 | 1068 | 1993
69 | 1708 | 172¢ | 1744 | 2707 | 1796 | 182 1:800
0 | 1006 | 1703 | 1722 | 1743 | 2708 | 1797 1:830
1 { 1007 | 2683 | 1701 | 1m0 | 1704 | 1M1 1:002
¢3 | 1640 | 1604 | 2001 | 1700 | 1723 | 1107 1716
¢ | 169 | 1er | 1063 | 2680 | 2701 | 178 1-763
¢6 | 1617 | 1030 | 1645 | 1083 |-1082 | 1-70¢ 1720
o8 | 1008 | 16l¢ | 2629 | 1045 | 1083 | 1-e8¢ 1707
¢6 | 1687 | 169 | 1613 | 1628 | 1648 | 1006 | 1088 .
&7 | 382¢ | 1688 | 1808 | 1613 | 1929 | 1048 1-600 -m

1881 | 1572 | 1384 | 1808 | 1624 | 1432 1-653 .
e | 1840 | 2zoo | 1870 | 1884 | LSOO | 1416 1638 | 1.050
90 | 1837 | 1047 | 1808 | 1670 | 1888 | 1801 31610 | 199
98 | 1828 | 1635 | 1846 | 1888 | } 1887 1-004 | 1-093
923 | 1816 | 1526 | 1434 | 1848 [ 1 1473 1600 | 1-608
98 | 1804 | 1513 | 18628 | 1534 | 1847 | 1861 1876 | 1-684
74 | 2404 | 1503 | 1513 | 1538 | 1838 | 1848 | 1803 | 1-800
98 | 148¢ | 1493 | 2503 | 1812 | 1834 | 1837 188t | 1807
96 | 1438 | 1463 | 21403 | 1502 | 1618 | 1828 363 | 1-888
97 | 2400 | 1474 | 2483 | 1492 | 1003 | 1518 1838 | 1848
98 | 1468 | 1465 | 1473 | 1489 | 1-088 | 1504 1617 | 1831
99 | 1480 | 1-e57 | 1468 | 1476 | 1-683 | 1404 1-690
00 | 1443 | 3aas | 1488 | 1468 | 2676 | 1488 14407 | 1810
7} 434 | 1440 | 1448 | 1488 | 1408 | 1478 1 1-800
53 | ta20 | 1433 | 2400 | 1468 | 1487 | 2407 147 1490
03 | 1610 | 1438 | 1433 | 1440 | 1640 | 1408 1400 | 1481
84 | 1403 | 2a10 | 2428 ] 1430 | 164) | 1480 1400 | 1473
8| ) 1-411 1-418¢] 1a28 | 2 143 1458 46
86 | 1300 | 1408 | 1412 2438 | 1498 | 1435 1444
o7 ] 1392 | 1308 | 1 1400 | 14190 | 1am 1-437
o0 | 1388 | 1392 | 1308.| 16406 | 118 | 1420 1429
69 | 12300 | 388 | 1300 | 1308 | 1408 | 1413 1428
o0 | 137 | ¥3sw | 1388 | 1392 | 1909 | 1400 1-416
o3 | 1363 | 130 | 1378 | rare | 1 1903 1-401
o¢ | 2389 | 1357 | 232 13em | 1314 | 13m1 1-309
%" - —_ — | 1387 | 1383 | 2320 1:3717
(2] - = — ] 1361 | 1989 | 1300 1-308
100 = - — 81 1337 | 1343 | 2340 1-388
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TABLE B-4 (continued)

Values of ij (continued)

o\ | S vie [ v | e | e | 1w | re | 1a | 1

H 400 2-433

#118 | 3508
u -390 2400
3199 2311

58 | 3130 | 223 | 2208 | a3

59 | 00 2-168 | 3378 433

oo | 3081 2100 3308 +331

1 1008 2086 2148 383

3 1048 2-009 o od *184 300 247

(2 d 1008 1-968 | 3487 *12¢4 2234 2378

¢4 1478 1-828 1-008 2070 1160 220

[ L 1043 1-893 1080 2028 2100 3221

¢ | 1815 1-980 1014 1978 +087 2188

{ 24 1788 1-830 1-800 1939 o1 2100

(34 1763 1-803 1840 1908 1900 2049 2181 2-281

9 11940 3117 1890 1470 14%0 3003 2004 2-210

7 e 1-763 1708 1440 1808 1002 2044 2148

71 1408 1-7131 118 1411 1-063 1034 1090 2-093

72 1-07% 1710 1748 1768 1483 1:800 1068 2-043

73 1461 1-600 1-798 1961 1:008 1858 1921 1-99%

74 1644 1-671 1708 1738 1700 1639 1-887 1-958 3040 2187

7 1-628 1-654 1-089 7 1750 1-802 1-488 1021 2001 2103

74 1-619 1-637 1-488 14097 11734 1T 1-837 1-647 1-800 2-081

79 1-698 1-622 1.648 1478 1718 1-788 1-000 1-88C 1923 2-006

74 1-884 1-607 1-632 1-860 1603 17131 1-778 1-821 1-880 1-068

79 1871 1-693 1616 1-84¢ 1678 14710 1781 1-800 1-R58 1-928

4 ] 1:660 1-879 1-608 1628 1487 1-691 1-7%0 1-778 1-829 1804

81 1-547 1-6¢4 1.508 1413 14440 1-€12 1-709 1-762 1-803 1-862

823 1-538 1-584 1-8678 1008 1428 1668 1-690 1-7:0 117 1-833

.3 1-634 1-643 1-508 1-888 1610 1-639 1-67 1-709 1-754 1-808

84 1-514 1-631 1-800 1871 1-508 1-628 1-684 1:¢30 1-733 1-781

83 1604 1-620 1.638 1-889 1-808 1-608 1-638 1-872 171 1-788

6 1:494 1-810 1887 1-647 1509 1:804 1-623 1-855 1-093 1-788

a7 1484 1-800 1-817 1-536 1-887 1-681 1-608 1-689 1-674 14718

[ 4.4 1-470 1-440 - 1-028 1048 1-688 1-80¢ 1-6213 1-887 1-008

[ 3.4 1-467 1-481 1497 1-51¢ 1-634 1-806 1-880 1-608 1-840 16717

L 2] 1458 1-472 1-487 1-50¢ 1-623 1hdd 1-508 1-804 1.626 1-660

91 1:450 1-463 1478 1498 1618 1-833 1-828 1-8%1 1-610 1-643%

*2 1443 1-480 1409 1-488 1-808 1-822 1-644 1-608 1-608 1-623

*3 1-438 1-447 1400 1476 1493 1-813 1-838 1-8¢6 1-883 1-613

*4 1-427 }-440 1483 1448 1-484 1:602 1-623 1-548 1-670 1-609

L 1420 1438 1-448 1489 1478 1492 1:813 1-534 1-888 1-688

* 1413 1426 14837 1-481 1-408 1483 1-503 1-823 1-540 1-873

*7 1407 1-418 1-499 1443 1-468 1-474 1-493 1-513 1-538 1-680

%8 1:400 1-411 1-429 1-436 1-450 1-408 1-483 1-603 1-824 1-842

*9 1-394 1-404 1416 1-428 1-448 1-468 1474 1-443 1-814 1-630
10-0 1-348 1-388 1:400 1431 1-438 1-450 1:468 1-48¢ 1-504 1-527
101 1:202 1-302 1408 1414 1-420 1442 1-488 1:438 1-495 1-816
163 | 1376 1-386 1-308 1-408 1430 1:43¢ 1-460 1-487 1-486 1-600
193 1371 1-380 1380 1-401 i4le 1-437 1442 1-458 1-€7 1-407
10-¢ 1-368 1-374 1-388 1395 |- 1407 1-420 1-438 1-460 1-408 1488
105 1:360 1-:560 1378 1-389 1-401 1413 1477 1-443 1-460 1-479
106 1-388 1-363 1378 1:303 1-98¢ 1:407 1:420 1-438 1-462 1-470
167 1:3¢9 1-358 1-987 1-377 1388 1-400 1-414 1-428 1-444 1-463
108 1: M6 1-3588 1-388 1-972 1-382 1:39¢ 1-407 1-421 1-437 1-454
109 1:340 1-348 1-387 1:.3868 1-377 1-388 1:401 1-414 1-429 1-448
14 1938 1-343 1-388 1-361 131 1:352 1-39¢ 1-40R 1-423 1-439
112 1-326 1-334 1348 1.381 1:360 1371 1:393 1-308 1-408 1-42¢
14 1-318 1-328 1338 1-3¢1 1-350 1:360 13 1-383 1-308 1411
e = — — - p = = 1372 | 1384 | 139
118 - = — -— — - 1-3481 1-373 1-380
12¢ - -— -— -— - - -— 1:381 1-303 1-976
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TABLR B-4 (Continued)

Values of # (continued)
[
[ 148 1460 14 19 117 1-08 108 199 19 300
[ ) 1-07¢ 2074
(3} 1-990 24038
3 1-001 14988
3 1000 1047
[ o] 1-940 1911
[ ) 1918 187
[ ) 1787 1:840 14938 3018
[ 24 1-763 1-021 1001 1978
[ 2] 1741 1706 1000 1000
89 1790 1M 1831 1-908
[ . ] 1-700 1-748 1-008 1874
91 1-088 1987 1780 1-84¢
*3 1-604 1-707 14187 1817
*3 1-048 1-688 1 1-702
94 1-488 1670 118 1-768 1831 1910
[ 2] 1817 1-603 1008 1-748 1008 18719
6 1-608 1-¢37 1478 1-7%8 1781 1:849
97 1:809 1-622 1000 1-708 1768 1-822
[ 2] 1870 1-608 1044 1-08¢ 1-738 1:793
9 1-504 1-894 1-429 1-069 1718 17172
[ (2] 1-883 1-88) 1414 1-688 1097 1780
164 1-841 1-2G9 1-000 1-038 1-879 1720
102 1-630 1857 1-887 1-621 1-003 1-709 1-768 1-83¢
| Uk ) 1-620 1-848 1-874 1407 1-040 1-001 11744 1-809
| [A23 1-800 1804 1-862 1-094 1-690 1-67% 1-123 1-71%
10-5 1800 152 1-880 1-881 1418 1-6686 1:704 1-761
10-6 1-401 1-513 1-530 1-068 1-002 1-819 1.088 1-740
) [75-4 1-408 180+ 1-828 1-568 1-508 1-828 1-000 1-720
100 1-478 1404 1-818 2548 1-876 1-81) 1-652 1-70)
169 1468 1-4RS 1-808 1-634 1864 1897 1637 1-633
1 1-468 1-470 1:499 1-8%4 1-882 1-684 1-632 1.668 177 1780
i1 1-449 1-4C8 1-489 1-214 1-841 1-872 1-608 1-640 1-099 1-768
112 1-441 1460 1-481 )-8 1-890 1-880 1:504 1:63¢ 1881 1737
113 1-43¢ 1468 1472 1-49¢4 1-820 1-840 1:881 1619 1084 1717
) O 1-427 1-444 1404 1485 1-810 1-838 1-669 1:608 1-648 1-698
11 1420 1-447 1-458 1-477 1-800 1-827 1:887 1-89¢ 1-633 1-081
156 1-413 1-430 1448 1-468 1491 1-817 1-846 1-580 1-618 1-604
117 1-407 1423 1-441 1-400 1-483 1-607 1-835 1-5C7 1-60¢ 1648
1 1-400 1416 1-433% 1-452 1474 1498 1-828 1-658 1-8601 1-633
119 1:304 1-40:9 1420 1-448 1-408 1-488 1818 1-848 1879 1418
120 1-388 1-403 1-419 1-437 1-458 1-480 1-808 L1634 1587 1608
131 1-383 1:307 1-413 1490 1-480 14N 1:408 1-624 1-568 1:801
122 1-317 1-391 1-408 1423 1-442 1-483 1-487 1-814 1-844 1-570
123 1371 }-385 1-400 1417 1-438 1-468 1478 1504 1:533 1-867
124 1-360 1-3%9 1-30¢ 1410 1-438 1-448 1-470 1498 1623 1-888
128 1:361 1-87¢ 1388 1-404 1-431 1429 1983 1-did 1-518 1-044
124 1-388 1.300 1:388 1-308 1418 1-433 1-484 14717 1-804 1-84
127 1-381 1-363 13717 1-392 1408 1426 1-440 1-400 1-498 1-823
) PR 1-3¢0 1088 1371 1-388 1-407 1-420 1439 1-461 1400 1-814
129 1-341 1-363 1-300 1-380 1-39¢ 1-413 1-438 1:483 1-477 1-80¢
13¢ 1-337 1-248 1-361 1-318 1-390 1-407 1488 1448 1409 1-408
132 - — — -— 1379 1-394 1418 1431 1:483 1-478
134 — — e — 1-368 1-388 1-400 1418 1438 1-461
o6 -— - -— — 1-358 1:372 1-388 1-408 1-428 1-448
1 — -— - -— 1-348 1-362 1317 1508 1412 §432
140 - = -— -— 1-399 )-3828 1-3008 | RIS 1B ,) 1419
142 -— - -— -_— 1-3%0 1-342 1-388 1-371 1488 1-408
¢4 - o — - 3-321 1-333 1:3¢0 1.361 1:377 1-304
| T3 —— 0o - . 1-319 1-328 1-397 1:381 1-368 1-388
1¢4. - — — e 1-308 1-31¢ 1.328 1342 1-300 1-373
18- — -— -— -— 1-208 306 1-320 1-393 1-34¢ 1-942
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(From F. J. Massey, "The Kolmogorov-Smirnov Test for Goodness

TABLE B-6

Percentiles of the Maximum Absolute
Difference Between Sample and
Population Cumulative Distributions*

I

Sample J Level of significance (a)
cize 3
(N) _ 0.20 0.15 0.10 0.05 0.01
N 0.900 0.025 0.950 0.975 0.995
2 0.684 0.726 0.776 0.842 0.029
3 0.565 0.597 0.642 0.708 0.828
4 0.494 0.525 0.564 0.624 0.733
5 0.446 0.474 0.510 0.5065 0.609
6 0.410 0.436 0.470 0.521 0.018
7 0.381. 0.405 0.438 0.486 0.5717
8 0.358 0.351 0.411 0.457 0.543
? 0.339 0.360 0.3588 0.432 0.514
10 0.322 0.342 0.368 0.410 0.490
11 0.307 0.320 0.352 0.391 0.468
12 0.295 0.313 0.338 0.375 0.450
13 0.284 0.302 0.325 0.361 0.433
14 0.274 0.292 0.314 0.349 0.418
18 0.266 0.283 0.304 0.338 0.404
16 0.258 0.274 0.295 0.328 0.392
17 0.250 0.266 0.286 0.318 0.381
18 0.244 0.259 0.278 0.300 0.371
19 0.237 0.252 0.272 0.301 0.303
20 0.231 0.240 0.264 0.294 0.350
25 0.21 0.22 0.24 0.27 0.32
80 0.19 0.20 0.22 0.24 0.29
35 0.18 0.19 0.21 0.23 0.27
overd5 | 1.07 1.4 1.22 1.36 1.03

Vi YR YR YR VR

*Values of d,(N) such that
Pr[maxlSN(x) - Fo(x)| > da(N)] =a,

where F,(x) is the theoretical cumulative distri-
bution ang Sn(x) is an observed cumulative dis-
tribution for a sample of N observations.

of Fit," J. Amer, Stat. Ass. 46: 70 (1951).)
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TABLE B-7
Table of Coefficients [a,_y,1] Used in the W Test

For Normality

3

LA

4

5

6

?

9

12

13

4

15

16

17

0.7

E VNP Al wrto™

Q6872

0.6616

0.6431

0.620

0.)677 02413 0.2506 0.303)

20

0.0873

22

0.1401

2

0.6052
0.3164
0.1743
0.056)

4

0.588%
0.3244
0.1976
0.0947

25

0.5739
0.3291
0.2141
0.1224
0.0399

26

0.5601
0.3318
0.2200)
0.1429
0.0695

27

0.5475
0.3323
0.2317
0.1586
0.0022
0.0:03

.28

0.5359
0.3328
0.2412
0.1707
0.1599
0.0539

29

0.8251
[UKXTT
0.2400
0.1802
01240
0.072%
0.0240

30

0.5150
0.3306
0.2495
0.1878
0.1353
0.0880
0.0433

3

0.505¢
0.327)
0.252)
0.1939
0.1447
0.100¢
0.0592
0.0196

2

0.4968
0.2
0.2530
0.1988
0.1524
01109
0.0725
0.0359

33

0.45886
0.1283
0.258)
0.2027
0.1887
011
0.0837
0.0496
0.0163

M

ey

o 4508
0
0.2501
[V 1L0)]
[\ R[]}
0N
0N
(XL
(TR

E WMl DAl ‘s

38

04734
0.1241
0.2568
0.20£$
01686
0.1
0,101}
00911
00422
0.0140

36

0.4643
0.3188
¢ "878
0.2119
0.1736
0.1M9
0.1092
0.0804
0.05)0
0.026)

”

0.4590
0.3156
0.2571
0.214
0.1704
0.1413
0.1150
0.057%
0.0618
0.036%
0.0122

n

0.4542
0.3126
0.2563
0.2139
0.1757
0.13%0
0.1201
0.0541
0.0696
00159
0.0226

39

0.5493
0.3098
0.2554
0.2145
0.1807
0.1512
0.1245
0.0997
0.0764
0.0539
0.0021
0.0107

40

0.4450
0.3069
0.2543
0.2148
0.1822
0.1539
0.126)
0.1046
0.0823
0.0610
0.0403
0.0200

41

0.4407
0.3043
0.25)3
0.2151
0.1836
0.1563
0.1316
0.1089
0.0876
0.0672
0.0476
0.0284
0.0094

4?

0.4366
0.3018
0.2522
0.2152
0.1848
0.15%4
0.1346
0.1128
0.0923
0.072%
0.0540
0.0358
0.0178

43

04328
0.2992
0.2510
0.2151
0.1857
0.1601
0.1372
0.1162
0.0965
0.0778
0.0595
0.0424
0.0253
0.0064

“

0.4291
0.296%
0.2499
0.2150
0.1861
0.1616
0.1395
0.1192
0.100>
0.0822
0.0650
0.0483
0.0320
0.0159

0.4254
0.2944
0.2487
0.2148
0.1870
0.1630
0.1415
0.1219
0.1036
0.0862
0.00Y7
0.0517
0.03x1
0.0227

0007

45

46

0.4220
0.2921
0.2475
02115
0.1874
0.1641
0.143}
0.1243
0.1()(.6
0.0899
0.073y
0.058$
0.0418
0.0289
0.0144

47

0.4188
0.2x9¢
0,2463
0.2141
0.1878
0.J651
0.1419
0.1265
01693
0.00})
0.0777
0.0629
0.0458
0.03 44
0.0206
0.0068

43

0.4156
0.2876
0.245¢
0.213
01880
0.1660
0.1463
0.1784
01118
0.096}
0.0812
0.0669
0.0530
0.0195
Q0262
0.0131

49

04127
0.2854
0.2439
02132
0.1882
0.1607
0.147%
0.1301

0.1140
0.0988
0.0844
0.0704
0.057)
0.0141

0.0014

0.0587
0.006.2

S0

0,46
0.2534
0.2427
02127
0. 18x}
01673
01487
REIN
00
01013
60873
[ RT]
(IXUAT]
[IXXETY
$ ot
LTI N T
.09

- e - o~
E T LM P lawtow V
t 3

-
10

-— - -
', b o

- an wn
- M~

A AL TS
L W e R

rFEY]

0.4068
0.28413
0.2415
0.2121
0.18%23
0.1678
0.1496
0.3
0.7
0.103¢0
0.0000
0.0770
00648
oS
(UL
007
oM
0.087

0.4040
0.2794
0.2403
0.2116
0.1883
0.1623
0.1503
0.1344
0.1196
0.1056
0.0924
0.0798
0.0677
0.05%9
0.0444
0.0331
0.0220
0.0110

0.4015
0.2774
0.2391
0.2110
0.14¢81
0.1686
0.1513
0.1356
0.0211
0.1078
0.0u47
0.0824
0.0706
0.0592
0.0481
0.0372
0.02¢4
0.0158
0.0053

0.39%9
0.2753
0.23%0
0.2104
0.18:0
0.1659
0.1520
0.1366
01228

10.1002

0.0967
0.0848
0.073)
0.0422
0.0515
0.040
0.0308
0.0203
0.0104

0.3964
0.27137
0.2368
0.2098
0.1878
0.1691
0.1526
0.1376
0.1237
0.1108
0.0986
0.0870
0.0759
0.0651
0.0546
0.0444
0.0343
0.0244
0.0t46
0.0049

0.3940
0.2719
0.2387
0.2091
0.1576
0.1693
0.1531
0.13%4
0.1249
0.1123
0.1004
0.0894
0.0782
0.0077
0.0578
0.0476
0.0379
0.0243
0.0188
0.0003

0.3917
0.2701
0.2345
0.2085
0.1874
0.1694
0.1515
0.1392
0.1259
0.1136
0.1020
0.07%9
0.0504
0.0701
0.0602
0.0506
0.0111
0.0318
0.0227
0.0136
0.0045

0.3894
0.2684
0.2334
0.2078
0.1871
0.1695
0.15839
0.1198
0.1269
0.1119
0.1035
0.0927
0.0824
0.0724
0.0428
0.0534
0.0442
0.0352
0.0263
0.0175
0.0087

0.3572
0.2667
0.232)
0.2072
0.1868
0.1698
0.1542
0.1405
0.1278
0.1160
0.1049
0.0943
0.0842
0.074S
0.0551
0.0560
0.0471
0.0352
0.096
0.0211
0.0126
0.0042

0.3850
0.2651

0.2313
0.2065
0.1865
0.1695
0.1345
0.1410
0.1286
0.1170
0.1062
0.0959
0.0860
0.0765
0.0673
0.0554
0.0497
0.0412
0.0328
0.0215
0.016)
0.0081

0.3530
0.2635
0.2302
0.2058
0.1862
0.1695
0.1548
0.1415
0.1293
0.1180
0.1073
0.0972
0.0876
0.0783
0.0694
0.0507
0.0822
0.0439
0.0)87
0.0277
0.0197

L0018

0.0039

0.3808
0.2620
0.2291
0.2082
0.1859
0.1695
0.1550
0.1420
0.1300
0.1189
0.1088
0.098¢
0.0892
0.0801
0.07)3
0.0628
0.0546
0.0465
0.0388
0.0007
0.0229
0.0183
0.0076

0.3789
0.2604
0.2281
0.2019
0.1855
0.1693
0.1551
01423
0.1306
0.1197
0.1MSs
0.0098
Q.0000
v.0817
0.0731
0.006.18
0.0508
0.0489
0.0411
0.0338
[LXUnb 1]
0.018$
0.0111
0.0037

0.3770
0.2559
02271
0.2018
01881
01692
018583
01427
01312
01208
0.1108
01010
0
00802
OO
0.0067
00888
00811
0.0
0.0M1
0 028N
oons
0.0043
0.0071
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02874
0.2200
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(From G. J. Hahn and S. S. Shapiro,

John Wiley & Sons, New York, 1967,

Statistical Methods in Engineering,

pp. 330-331.)
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TABLE B-8
Percentage Points of the W Statistic

" ) 2 5 10 50

3 0.753 0.756 0.767 0.789 0.959

4 0.687 0.707 0.748 0.792 0.935

5 0.6%6 0.715 0.762 0.806 0.927

6 0.713 0.743 0.788 0.826 0.927

7 0.7%0 0.760 0.803 0.838 0.928

s 0.749 0.778 0818 0.851 0932

9 0.764 0:791 0.829 0.859 0.93s
10 0.78) 0.806 0.842 0.869 0.938
n 0.192 0.817 0.850 0.876 0.940
12 0.805 0.828 0.859 0.883 0.943
| K] 0.814 0.837 0.866 0.889 0.945
4 0.825 0.846 0.874 0.895 0.917
15 0.8 0.855 0.881 0.901 0.950
16 0.844 0.863 0.887 0.906 0.952
17 0.851 0.869 0.892 0910 0.954
18 0.858 0.874 0.897 0914 0.956
19 0.863 0.879 0.901 0917 0.957
20 0.808 0.884 0.905 0.920 0.959
21 0.873 0.888 0.908 0.923 0.960
22 0.878 0.892 o9 0.926 0.961
23 0.881 0.895 0.914 0.928 0.962
24 0.884 0.898 0.916 0.930 0.963
25 0.888 0.901 0.918 0.931 0.964
26 0.891 0.904 0.920 0.933 0.965
ry) 0.594 0.906 0.923 0.935 0.965
28 0.896 0.908 0.924 0.936 0.966
2 0.89% 0.910 0.926 0.937 0.966
30 0.900 912 0.927 0.939 0.967
3 0.902 0.914 0.929 0.940 0.967
32 0.904 0915 0.930 0.941 0.968
1 0.906 0.917 0.931 0.942 0.968
] 0.908 0.919 0.933 0.943 0.969
35 0.910 0.920 0.934 0.944 0.969
36 0912 0.922 0.935 0.945 0.970
37 0914 0.924 0.936 0.946 0.970
38 0916 0.925° 0.938 0.947 0.97)
39 0.917 0.927 0.939 0.948 0.971
40 0.919 0.928 0.940 0.949 0.972
4 0.920 0.929 0.941 0.950 0.972
42 0.922 0.930 0.942 0.951 0.972
43 0.923 0.932 0.943 0.951 0973
4 0.924 0.933 0.944 0.952 0.973
45 0.926 0.934 0.945 0.953 0973
46 0927 0.935 0.945 0.953 0.974
47 0.928 0.936 0.946 0.954 0974
48 0.929 0.937 0.947 0.954 0974
49 0.929 0.937 0.947 0.955 0.974
50 0.930 0.938 0.947 0.955 0.974

(From G. J. Hahn and 8. S. Shapiro, Statistical Methods in
Engineering, John Wiley & Sons, New York, 1967, p. 332.)
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TABLE B-9

Percentage Points For the WE

Statistic
955, Range %*, Rarge

Lower Upper Lower Upper

n Point  Point Point  Point
7 0062 0.404 0.07}  0.358
8§ 0054 0342 0.062  0.30!
9 0050 0.301 0.058  0.261
10 0.049 0.26] 0.056 0.231
11 0046 0.234 0.052  0.208
12 0044 0215 0.050 0.191
13 0040 0.195 0.046 0.173
14 0038 0.178 0.043  0.159
Is 0036 0.163 0.040 0.145
16 0034 0.150 0.038  0.134
17 0030 0.135 0.034 0.120
18 0028 0.123 0.031 0.109
19 0026 0.114 0.029 0.102
20 0025 0.106 0.028  0.095
21 0024 0.101 0.027  0.091
22 0023 0.094 0.026  0.084
23 0.022 0.087 0.025 0.078
24 0021 0.082 0.024 0.074
25 0.02} 0.078 0.023  0.070
26 0020 0073 0.022  0.066
27 0020 0.070 0.022  0.063
28 0.019 0.067 0.021  0.061
29 0019 0.064 0.021  0.058
30 0018 0.060 0.020  0.054
31 0017 0.057 0.019  0.052
32 0017 0.055 0.019  0.05C
33 0017 0.053 0.018  0.048
34 0017 0.051 0.018 0.047
35 0016 0.049 0.018  0.045

(From G. J. Hahn and 8. S. Shapiro, Statistical Methods in

Engineering, John Wiley & Sons, New York,

967, p. .
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TABLE B-10
Percentage Points For the WE

Statistic °

98", Range 907, Runge

Lower Upper Lower  Upper

n Point it Point  Point
7 0025 0.260 0.033 0.225
8 0025 0230 0.032  0.2u0
9 0025 0.208 0.031 0.177
10 0.025 0.184 0.030 0.15Y
11 0025 0.166 0.030 0.145
12 0025 0.153 0.029 0.134
13 0.025 0.140 0.028 0.124
14 0.02% 0.28 0.027 0.115
15 0.024 0.119 0.026 0.100
16 0023 0.113 0.025 0.098
17 0023 0.107 0.024 0.093
18 0.022 0.l0t 0.024 0.087
19 0022 0.09 0.023  0.083
20 0.021 0.09 0.023  0.077
21 0020 0085 0.022  0.074
22 0.020 0.080 0.022 0069
23  0.019 0.075 0.021 0.065
24 0019 0.059 0.021  0.062
25 0.018 0.065 0.020 0.058
26 0018 0.062 0.020 0.056
27 0017 0.058 0.020 0.054
28 0017 0.056 0.019 0.052
20 0016 0.054 0.019 0.050
30 0016 0.053 0.019 0.048
31 0016 0.051 1 0.018  0.047
32 0015 0.050 0018 0.045
33 0015 0.048 0.018 0.044
34 00134 0046 0017 0.043
35 0.0i4 0.045 0.017 0.04]

(From G. J. Hahn and S. S. Shapiro, Statistical Methods in
Engineering, John Wiley & Sons, New York, 1967, p. 334.)
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Bain, L.J., and C. E. Antle, "Estimation of Parameters in
the Weibull Distribution”, Technometrics 9(4):621-627 (1967).

A new method of estimation is used to obtain two simple esti-
mators of the parameters in a Weibull distribution. These
estimators are similar to the estimators given by Gumbel,
Miller and Freund, and Menon. Monte Carlo methods were
used to determine the variances and biases of the estimators
for various sample sizes. Comparisons of the estimators
can be made and unbiasing factors calculated in some cases.

Bhattacharya, P.K., "Efficient Estimation of a Shift Parameter
From Grouped Data", Ann. Math. Statist. 38:1770-1787 (1967).

This paper considers two populations having frequency functions
f(x) and f(x-6) where the common form f and the shift param-
eter 60 are unknown. A method of estimating 6 when one sample
is reduced to a frequency distribution over a given set of class-
intervals is suggested by the likelihood principle and the asymp-
totic efficiency of this estimator relative to the appropriate
maximum likelihood estimator based on the complete data is
found to be the ratio of the Fisher-information in a grouped
observation to the Fisher-information in an ungrouped observa-
tion.

Birnbaum, Z. W., Probability and Mathematical Statistics,
Harper & Brothers, New York 5

General theory of tests of statistical hypotheses is presented
along with a detailed discussion of the Chi-squared distribution
and test. Also distribution free tests are discussed including

the Kolmogorov test and Smirnov test. Also included are the
likelihood function and likelihood ratio statistics.

Brunk, H.D., Mathematical Statistics, Blaisdell Publishing
Co., Waltham, Massachusetts (1965).

Basic theory of testing hypotheses is presented including a
discussion of testing a simple hypothesis against a simple al-
ternative, choice of null hypothesis, the power function, most
powerful tests and consistent tests. Specific tests described
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134

are Chi-squared test, Kolmogorov-Smirnov test for goodness
of it, t-test, F-test, runs test, median test, and likelihood
ratio test.

Choi, S.C., and R. Wette, '""Maximum Likelihood Estimation
of the Parameters of the Gamma Distribution and Their Bias",
Technometrics 11(4):683-690 (1969).

The maximum likelihood method is recommended for estimating
the parameters of a gamma distribution. Numerical techniques
for carrying out the calculation are examined. A convenient
table is obtained to facilitate the estimation of parameters.

The bias of the estimates is investigated by Monte Carlo; the
indication is that the bias of both parameter estimates pro-
duced by the maximum likelihood method is positive. '

Cornell, R.G., and J.A. Speckman, "Estimation for a Simple
Exponential Model", Biometrics 23:717-737 (1967).

Graphical, maximum likelihood, least squares, weighted least
squares, partial totals, moment, finite differences, Fisher,
and Spearman estimation procedures are presented for estima-
ting the parameter A in the exponential model with expectations
given by 1 - e AT for different values of T. The estimators
are described, referenced, illustrated, and compared. Tables
are cited which make several of the estimation procedures
easier computationally. Included in the comparison of the
estimators is a review of some Monte Carlo computations.

The method of maximum likelihood, which can be used for

any spacing of T-values, has very desirable large sample prop-
erties. The simple method of partial totals is a possible alter-
native for small samples of equally spaced T-values while the
Fisher and Spearman method are suggested alternatives for
T-values whose logarithms are equally spaced.

Crimer, H., Mathematical Methods of Statistics, Princeton
University Press, Princeton (1945).

Chapter 30 of this book describes ""goodness of fit' statistical
tests. The two tests described in detail are the Chi-squared
test and Crdmer-von Mises test. However, statistics for the
Cramer on Mises test and examples are not presented.




10.

11,

Dubey, S.D., '"On Some Permissible Estimators of the Location
Parameter of the Weibull and Certain Other Distributions'’,
Technometrics 9(2):203-307 (1967).

An estimator for the location parameter of the Weibull distri-
bution is proposed which is independent of its shape and scale
parameters. Several properties of this estimator are estab-
lished which suggest a proper choice of three ordered sample
observations insuring a permissible estimate of the location
parameter. This result is valid for every distribution which
has the location parameter acting as the origin or threshold
parameter. Asymptotic properties of such an estimator of
the location parameter of the Weibull distribution is discussed.
Finally the paper contains a brief discussion on a percentile
estimator of the location parameter of the Weibull distribution
and includes some numerical illustrations.

Elandt, R.C., "The Folded Normal Distribution: Two Methods
of Estimating Parameters From Moments'', Technometrics
3(4):551-562 (1961).

The general formula for the rth moment of the folded normal
distribution is obtained, and formulae for the first four non-
central and central moments are calculated explicitly. Two
methods, one using first and second moments of the sample

and the other using second and fourth moments, of estimating
the parameters of the parent distribution are presented and
their standard errors calculated. The accuracy of both methods
is discussed.

Elderton, W.P., Frequency Curves and Correlation, 4th Ed.,
Cambridge University Press, Cambridge, (1953).

A thorough covering of the Pearson system. Describes each
type of distribution and gives relevant formulae for the type
of curve.

El-Sayyad, G.M., "Information and Sampling from the Expo-
nential Distribution", Technometrics 11(1):41-45 (1969).

Methods of sampling an exponential population in order to obtain
a prescribed accuracy in the determination of the unknown
parameter are discussed. The concept of information due to
Shannon is used and it leads to well-known schemes.
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12.

13.

14.

15.

136

Gnanadesikan, R., R.S. Pinkham, and L.P. Hughes, '"Maxi-
mum Likelihood Estimation of the Parameters of the Beta
Distribution from Smallest Order Statistics', Technometrics
9(4):607-620 (1967).

Numerical methods, useful with high-speed computers are
described for obtaining the maximum likelihood estimates of
the two parameters of a beta distribution using the smallest
M observations, 0 <uj <ug<... <.. uM, in a random sample
of size K (2 M). The maximum likelihood estimates are func-
tions only of the ratio R + M/K, the Mth ordered observation,
M 1/M M

u,,, and the two statistics, G = [ni=1“1] and G, = I, _,

1/M™M
. (l-ui)] . For the case of the complete sample (R = 1),

however, the estimates are functions only of Gy and Gg, and
hence, for this case, explicit tables of the estimates are pro-
vided.

Some examples are given of the use of the procedures described
for fitting beta distributions to sets of data.

Govindarajulu, Z., '""Certain General Properties of Unbiased
Estimates of Location and Scale Parameters Based on Ordered
Observations", SIAM J. App. Math. 16(3):533-551 (1968).

Some upper bounds are derived for the variances of least squares
estimators based on a subset of the ordered observations in

a random sample of (i) location, (ii) scale, and (iii) both loca-
tion and scale parameters of a distribution.

Gumbel, E.J., '"Statistical Theory of Extreme Values and
Some Practical Applications', National Bureau of Standards,
Applied Math Series 33, (Feb. 1954).

Hahn, G.J., and S.S. Shapiro, Statistical Models in Engineering,
John Wiley and Sons, New York, 1987 (1987).

Discusses many continuous and discrete distributions. Gives
functional form, discusses theoretical basis, and mentions
applications. In some cases describes parameter estimation



16.

17.

techniques. Discusses advantages to fitting data to empirical
distributions. Describes Johnson system and displays plot

of 81,89 values. Fitting procedures for Johnson distributions
are outlined and examples are given. Describes Pearson
system of distributions and displays 84,89 plot. Does not
attempt to describe Pearson fitting procedures.

Discusses general techniques of goodness of fit tests. Two
procedures are discussed: a series of tests developed by
Shapiro and Wilk, known as W tests (including the WE test),
and the Chi-squared goodness of fit test. The W tests are
used to evaluate the assumption of a normal and exponential
distribution for a set of data. The procedures for using these
techniques are presented in a detailed step-by-step manner.

Haight, F.A., Index to Distributions of Mathematical Statistics,
J. Res. Natl. Bureau Stand. - B. Math, and Math. Phys 65B

bu- ).

A fairly complete index of references to results on statistical
distributions published before January 1958 is presented.

The material given for each distribution is a list of references
relating to: (a) functions and constants which characterize

the distribution, (b) derived distributions, (c) estimation,

(d) testing statistical hypotheses, and (e) miscellaneous.

The distributions covered are characterized as normal, type
III, binomial, discrete, distributions over (a,b), distributions
over (a,»), distributions over (-«,»), miscellaneous univariate,
miscellaneous bivariate, and miscellaneous multivariate.

The number of entries varies from one or two for less well-
known distributions to several hundred for the normal distri-
bution.

Harter, H.L., "Maximum-Likelihood Estimation of the Param-
eters of a Four-Parameter Generalized Gamma Population
From Complete and Censored Samples', Technometrics 9
(1):159-165 (1967). B

The four-parameter generalized gamma distribution includes
such distributions as the usual three-parameter gamma, the
Weibull, the exponential, and the half normal. For these dis-
tributions this paper develops the maximum likelihood equations.
Iterative computer techniques are needed to solve these equations.
Some results of applying this to various distributions are pre-
sented.
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18. Harter, H.L., "A New Table of Percentage Points of the Pearson
Type I Distribution”, Technometrics 11(1):177-187 (1969).

A table of percentage points for the type III Pearson distribution.

19. Hodges, J.L., Jr. and E.L. Lehmann, "A Compact Table
For Power of the t-Test", Ann. Math, Statist, 39, No. 5
(1968)

The paper gives a one-page table for t-power which covers

any values of the (one-sided) significance level a in the range
from 0.005 to 0.1, any value of the second-type error probability
B in the range from 0.01 to 0.5; and any number of degrees

of freedom greater than 2. The table gives reasonably accurate
answers without iteration and using only linear interpolation.
Eight examples are provided which illustrate a variety of t-power
problems.,

20. Hogg, R.V. and A, T. Craig, Introduction to Mathematical
Statistics, the Mac Millan Company, New York (1965).

Includes chapters on order statistics, sufficient statistics,
statistical hypotheses and statistical tests. It provides the
theoretical basis of the Chi-square tests and Bayesian tests.
It also describes Likelihood Ratio tests and the sequential
probability ratio test.

21,  Johnson, N.L., "Systems of Frequency Curves Generated by
Methods of Translation", Biometrika 36:149-176 (1949).

Introduces Johnson system of distributions. Reviews literature
on systems of distributions. Provides a theoretical background
to Johnson system. Compares Johnson and Pearson systems
for skewness and kurtosis values. Gives some numerical ex-
amples.

22, Johnson, N.L., '"Tables to Facilitate Fitting S Frequency
Curves", Biometrika 52:547 (1965).

In ﬁtting empirical data to a distribution from the Johnson

family, one usually adjusts the parameters of the Johnson
distribution to match the first four moments of the original
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23.

24.

25.

26.

217,

data. However, given the first four moments it is not a trivial
problem to calculate the correct Johnson parameters. This
paper provides tables from which the Johnson parameters can
be obtained.

Johnson, N.L., and S. Katz, Distributions in Statistics: Dis-
crete Distributions, Houghton-Mifflin Co., Boston, (1989).

Thorough covering of all known discrete distributions. Gives
functional form, moments, and other information and discusses
the estimation of parameters for each distribution.

Johnson, N.L., and S. Katz, Distributions in Statistics: Con-
tinuous Univariate Distributions, Vol. 1 and 2, Houghton-Mifflin
Co., Boston, (1970).

Thorough covering of all known continuous distributions (except
empirical families). Gives functional form, moments, and
other information and discusses the estimation of parameters
for each distribution. '

Johnson, N.L., E. Nixon, D. E. Amon, and E. S. Pearson,
"Table of Percentage Points of Pearson Curves", for given
vB1 and B3, expressed in standard measure'", Biometrika 50:
459-498 (1963).

For the general Pearson system of distributions, this paper
gives tables of percentiles (or solutions of the inverse equation)
as a function of skewness and kurtosis.

Kagan, A.M., "Estimation Théory for Families with Location
and Scale Parameters and For Exponential Families', Proc.
Steklov. Inst. Math. 104:19-87 (1968).

This theoretical paper investigates families of distributions
and estimators. The conditions for admissible estimators are
discussed. '

Kendall, M.G., and A.S. Stuart, The Advanced Theory of
Statistics, Vol. 1, Distribution Theory, Charles Griffen &
Co. (1958).
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Kodlin, D., "A New Response Time Distribution'', Biometrics
23:227-239 (1967).

A skewed, two-parameter distribution is described which has
been found useful in the analysis of human survival time data.

-(ct%ktz)
The density has the form £(t) = (c+kt)e . This form
is integrable and has manageable first and second moments.
Since the distribution has non-zero density at the origin, it
may be of value in connection with those types of responses
which take place even before observation begins. Description
of a maximum likelihood technique of estimating the parameters
is followed by discussion of damage models that incorporate
the distribution.

Langton, N.H., "Statistical Distribution", Brit. Chem, Engr.
8:478-484 (1963).

This paper is an elementary article which gives the basic
concepts and formulae characterizing probability distributions
and sampling. It discusses the binomial, Poisson, and normal
distributions and the fitting of empirical data to these distri-
butions using moments method.

Malik, H.J., "Estimation of the Parameters of the Pareto
Distribution", Metrika 15:126-136 (1970).

In this paper, sufficient estimators for the parameters a and
v of the Pareto distribution are obtained. It is shown that
Y, = Min (x,,..., X,.) is sufficient for a when v is known,
thle sample geometri¢ mean g is sufficient for v when a is
N Y
known; and (Y, £ 4n g') is & joint set of sufficient statistics
i=1 1

for (a,v) when both are unknown. The exact distribution of
the maximum likelihood estimator is derived.

Mandel, J., "A Method for Fitting Empirical Surfaces to Physical
or Chemical Data", Technometrics 11(3):411-429 (1969).

A method, largely graphical, for fitting a distribution to bi-
variate data is presented. An example is given. The method
does not require prior assumptions as to the form of the




33.

34.

distribution to be fit. However, it may not have general appli-
cability and needs further investigation.

Marshall, A.W., and I. Olkin, "A Multivariate Exponential
Distribution", J. Amer. Stat. Assoc. 62:30-44 (1967).

A number of multivariate exponential distributions are known,
but they have not been obtained by methods that shed light on
their applicability. This paper presents some meaningful
derivations of a multivariate exponential distribution that serves
to indicate conditions under which the distribution is appropriate.
Two of these derivations are based on ""shock models', and one
is based on the requirement that residual life is independent

of age. It is significant that the derivations all lead to the same
dist: fbution.

For this distribution, the moment generating function is obtained,
comparison is made with the case of independence, the distri-
bution of the minimum is discussed, and various other proper-
ties are investigated. A multivariate Weibull distribution is
obtained through a change of variables.

Massey, Frank J., Jr., "The Kolmogorov - Smirnov Test
for Goodness of Fit", J. Am. Stat. Assoc., 46 (1951).

The Kolmogorov-Smirnov test which is based on the maximum
difference between an empirical and hypothetical cumulative
distribution is discussed. Percentage points are tabulated,
and a lower bound to the power function is charted. Confidence
units for a cumulative distribution are described. Examples
are given. Indications that the test is superior to the Chi-
square test are cited.

Mann, Nancy R., "Point and Interval Estimation Procedures
for the Two-Parameter Weibull and Extreme-Value Distributions',
Technometics 10(2):231-256 (1968).

Point estimators of parameters of the first asymptotic distri-
butions of smallest (extreme) values, the extreme-value distri-
bution, are surveyed and compared. Since the logarithms of
variates having the two-parameter Weibull distribution are
variates from the extreme-value distribution, the investigation
is applicable to the estimation of Weibull parameters. Those
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36.

37.

38.
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estimators investigated are maximum-likelihood and moment
estimators, inefficient estimators based on only a few ordered
observations, and various linear estimation methods. A com-
bination of Monte Carlo approximations and exact small-sample
and asymptotic results has been used to compare the expected
loss (with loss equal to squared error) of these various point
estimators. Interval estimation procedures are also discussed.

McGrath, E.J., Fundamentals for Operations Research,
West Coast University, 1970, Chapter 3.

Discussion of probability distributions and estimators for most
basic distributions. Weibull - describes distribution and typical
curves and discusses estimators for parameters. Johnson -
defines distribution, displays typical curve shapes, and gives
skewness - kurtosis diagram for family. Extensive discussion,
with examples, of estimation of parameters. Pearson - defines
distribution types and gives skewness -kurtosis plot for family.
Discussion of X2-test for evaluation of fits.

Meier, F.A., "Non-Normal Statistical Distributions and Their
Use in Industrial Engineering', Amer. Inst. of Indust. Eng.,
Tech. Papers, 20 Inst. Conf. and Conv. 71-83 (1969).

Both the gamma and Weibull distributions are described with
comments on calculational methods and approximations. A
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each distribution in the Pearson system. Some applications
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48. Suzuki, Giitiro, "On Exact Probabilities of Some Generalized
Kilmogorov's D-Statistics', Institute on Statistical Mathematics,
Annals, Tokyo, 19  (1967).

144




49,

50.

51.

Th. 3 paper gives a unified computational method for exact
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