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ABSTRACT

The use of advanced techniques can greatly improve the
effectiveness of Monte Carle simulation calculations. As a
demonstration medel, the Navy's Antisubmarine Warfare Air
Engagement Model, APAIR, which simulates a single aircraft
hunting and destroying a submarine, was selected. Possible improve-
ments in random number generation are presented; however, the
study centers on implementation of variance reduction techniques.
Two test cases, typical of APAIR implications, were chosen.
Examples illustrating the use of the statistical estimation, expected |

value, systematic sampling, antithetic sampling, correlated sampling,
history reanalysis, and importance sampling were run. A comparison
of variances with the unmodified APAIR showed the effectiveness of
variance reduction techniques. Efficiencies, equivalent to reduced
running time to obtain the same variance, of nearly a factor of 20
were obtained in specific cases. It was felt that throung experience
and careful effort overall improvements of a factor of 10 could be
expected.
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EXECUTIVE SUMMARY

Conteraporary design and construction of large scale Monte Carlo
systems analysis programs seldom consider incorporation of the efficient
simulation techniques that have been developed, tested and proven successful
in various technical disciplines. Most notable among these are random
number generation and variance reduction schemes that have been routinely
used in radiation transport to provide vast improvements in Monte Carlo

simulations.

One objective of a project sponsored at Science Applications, Inc.
(SAI) by Code 462 of the Office of Naval Research was to develop these tech-
niques to the point where they would be generally applicable., Basically, this
involved development of improved techniques for selecting probability distri~
butions, schemes for generation of random numbers and procedures for
variance reduction for general application in Monte Carlo simulation. The
resnlts of these developments are presented in Refs. 1, 2, and 3.

Another objective of the project was to demonstrate their applica-
bility to a large scale Navy simulation program,

It is the purpose of this document to summarize the results of the
demonstration effort for the Antisubmarine Warfare Air Engagement Model
APAIR. 4.5.6) The eiiiciency esiimnales showed ihat significant improvementis
in APAIR running times (about a factor of 20 in some cases) can be achieved
using the improved simulation techniques investigated during this project.

It was generally fell that by judiciai selection of variance reduction schemes,
that running times for the same accuracy can be reduced by 2 factor of 10
for many APAIR problems.

xi
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1. INTRODUCTICN

The research performed in a project sponsored by the Office of
Naval Research (Code 462) at Science Application, Inc. (SAI) over the past
year was directed toward achieving the following objectives:

o Develop improved probability selection techniques.

e Develop improved random number generation procedures for
selected probability distributions.

e Improve variance reduction technology.

. gegonstrate.the applica.tiqn pf imp?oved simulation tfchmgijles
e ASW air engagement simulation model APAIR.

The results of the effort performed in the first three areas above are docu-~

mented in Refs. 1, 2 and 3 respectively. It is the purpose of this document

to summarize the results of the effort that involved demonstration of improved

Monte Carlo Simulation techniques for the APAIR ASW engagement model,

The APAIR model, selected for the study here, is a Monte Carlo
simulation of the full engagement between one aircraft and one submarine.
The general version (APAIR 2. 6) simulates the detection, localization and
attack phases of airborne ASW missions. The mode} s particularly suited
for this studv since it is a relatively long running program, and because it
is in rather wide use, improvements in the running .ime would be most
welcome. It is emphasized, however, that the objective was not to critique
the APAIR model but rather to evaluate the effectiveness of efficient tech-
niques which are not commonly used in Monte Carlo simulations. It should
also be mentioned that not only are the techniques studied here applicable to
the APAIR program but also to other ASW simulation models such as
apsury, " APSUB and APSURF. @
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The version of APAIR used in the study was provided to SAI by Code
141, Naval Undersea R/D Center (NUC) in San Diego. In addition to the
program, Code 141 also provided SAI with a "ropresentative" set of data
for demonstration purposes only. No attempt was made to interpret any

TR R TP 2T

of the results beyond that necessary to evaluate the improved simulation
efficiency. However, the results are presented in sufficient detail that
this document should be generally useful to the analyst interested in impros -

dakcan o i ey

ing the random number generation schemes and incorporation of variance
reduction in APAIR.

Of the three areas considered for improvement in APAIR (probab-

bility distribution selection, random number generation and variance
reduction), variance reduction proved to be the most successful. Improve-
meut in the probability distribution modeling was restricted due to the lack
of suf’icient data on input parameters (such as aircraft navigation errors,
sonobuoy fixes and dro» errors, aircraft weapons effects, tactics, etc.).

In the area of randor number generation, several modifications
were identified which would not cnly improve the generation of random num-
bers but also increase the ease with which random numbers could be generated
on various computers. The latter was accomplished by developing a random
number generator that was machine independent. This is particularly impor-
tant when comparison between results from different rmachines or facilities
are desired or when the program is to be made operational at new facilities.

The third area involved the application of variance reduction techniques,
This proved to be extremely fruitful. The variance reduction techniques used
here were developed primarily for application to radiation transport problems
and have not been widely used. However, it was shown conclusively here
that a much broader application is warranted. For example, in some cases

improvements in efficiency (i.e., the running time required to achieve the
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same variance) was a factor of almost 20, An overall improvement of a
factor of 10 could generally be expected if the effort to understand and care-
fully apply the various techniques is expended. A summary oi the improve-
ment in efficiency in terms of running time reduction is shown in Table 1.1
for the various variance reduction techniques applied to APAIR.

In the following section of the report the improvements in random
number generation are described. The use of variance reduction in APAIR
will be described in detail in Section 3.

Since the APAIR study was for demonstration purposes only, it should
be mentioned that only expedient modifications were made to the program,
Therefore, the APAIR program at SAI containing the improvements discussed
s not considered to be a version that would be generally useful. However,
it has been proposed that these modifications be made to APAIR to provide
for user flexibility and improved eificiency in the future.
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2. RANDOM NUMBER GENERATION IMPROVEMENTS IN APAIR

=

In this section, the potential improvements in the APAIR random num-
ber generators are discussed. It is not anticipated that replacement of the
random number gent rators currently uzed in APAIR would significantly re-
duce the total program running time in most cases, since the fraction of
time spent in generating random numbers in a typical application is not
large. However, in some cases, the approaches recommended here will
be fastar, more accurate and more coavenient.

Possibly the most significant improvement for APAIR random number
generation would be in the uss of a machine independent uniform random num-
ber generator. This will automatically permit identical sequences of random
1 numbers to be generated on different computers. The main advantage in this,
] of course, is that identical resulfs can be obtained on different machines and

at different installations for comparison purposes. Furthermore, since the
existing random number generatdr now used in APAIR is machine dependent,
transferring the code to other machines can cause considerable difficulty.

Use of the machine independent version described here would eliminate this
problem. The use of the machine independent uniform random number genera-
tor and improvements in the normal distribution will be discussed below.

2.1 UNIFORM RANDOM NUMBER GENERATOR

The uniform random number generator in the current version of APAIR
obtained by SAI from NUC and designed for use on the Univac 1108 is a mixed
congruential generator employing the algorithm

. _ , 35
X ., = 27095269935.X .+ 2049 (mod 2°°)

wnere Xn and Xm-l are successive random numbers. This generator has
not been subjected to the Coveyou-MacPherson analysis (Ref. 9), the most




exacting test for random number generators currently known. Therefore, its

validity as a randem number generator is not proven. There are, however,

no a priori reasons to suspect that this generator is faulty.

o i L e et T e N el

This generator is, however, not machine independent. It will work
vnly on the Univac 1108 and other machines with a 36-bit word length and a
similar negative integer representaltion. It will not work, for ¢xample, cn
an IBM 360 computer. A better choice of a basic random number generator
would be the machine independent generator, MIRAN, described in Appendix
4 A, This would allow greater flexibility in exchange of program and problems
' ketween different computer facilities and in addition uses an algorithm of
proven validity, Random number generation occupies such a small portion
of the overali APAIR computing itime that the loss of efficiency entailed in
using MIRAN would not cause an increase in the total running time of APAIR
S problems.

2.2 NORMAL RANDCM NUMBER GENERATOR

The normal distribution is used in APAIR to generate random varia-
bles such as aircraft navigation errors (inertial, tactical, navigation, reset,
areas of uncertainty for sonobuoy fixes, etec.). The APAIR procedure currently

used to obtain a normal random variabie from the distribution:
A2
_ )

f(x) = Lo 2 (2. 1)
T

is to generate an approximate normal random deviate using

12
X = 0-(Znu-6 po. (2.2)
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Where R“l’ cos ’Ru12 is a set of 12 independent random values from the
uniform distribution U(0,1), This procedure takes about 105 microseconds
on a UNIVAC 1108 using assembly language.

The result used in (2. 2) is based on the central limit theorem(m)

and is, therefore, approximate. For example, the range of X using (2.2)
is limited to

u-6c<X<py+6bo (2. 3)

which is probably adequate in most situations. Difficulty could arise when
very small probability events (i. e., outside the range of X as given by
(2. 3)) are important.

A better method for generating random numbers from the normal

distribution which is both exact (within machine accuracy) and requires only

(11)

30 microseconds is a technique developed by Marsaglia and documented

in Ref. 2. A routine using this approach, is shown below along with the

corresponding flow diagram in Fig. 2.1.
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Sample Routine

FUNCTION RANORM (DUMMY)
R = RANUMB(R)
IF (R. GT.0. 8638) GO TO 10
RANORM = 2. *(RANUMB(X) + RANUMB(Y) + RANUMB(Z) - 1.5)
RETUEN
16 IF (R GT.0.9745) GO TO 20
RANORM = 1.5%(RANUMB(X) + RANUMB(Y) - 1.0)
RETURN
20  IF (R. GT.0.997302039) GO TO 100
25 X = 6.*RANUMB(X) - 3.0
Y = 0. 358*RANUMB(X)

XSQ= X*X
GX = 17.49731196*EXP(-XSQ*. 5)
AX - ABS(X)

IF (AX. GT.1.1) GO TO 30
IF (Y. GT.(GX-17. 44392294 + 4.735703256*XSQ + 2. 157987544*AX))
GO TO 25
RANORM = X
RETURN

30  AX3 = 2.367985163%(3-AX)**2
IF (AX. GT. 1.5) GO TO 40
IF (Y. GT.(GX~AX3-2. 157987544 (1. 5-AX))) GO TO 25
RANORM = X
BETURN

40  IF (Y. GT.(GX-AX3)) GO TO 25
RANORM = X

o RETURN

E 100 X = SQRT (5-2*(ALOG(RANUMB(X)))

- IF (RANUMB(X). GT. 3/X) GO TO 100

IF (RANUMB(X). GT. 0.5) X = -X

RANORM = X

RETURN

END

As written above, the routine generates a normal standard deviate
(i.e., a random number from (2. 1) with ¢ = 1 and o= 0) defined as N(0, 1).
It is then left up to the calling program to multiply by the standarcd deviation
and add the mean if a generalized normal deviate is required. That is, for
a distribution with mean p and variance o2, (i.e., Eq. 2.1) the correct




o Lo cd TR TR TR Y
r o T R PTAETRTTY ¢ s 7 e 3 < YT St et b hak e st L L s (ki e w.ﬂ(\ P SN

random number would be oN(0,1) + 2, where N(0,1) is a random number
from a distribution with g =0 and 02 =1,

Therefore, if the algorithm prescribed above is used in APAIR, the
running fime for generation of random numhers from a normal distribution
would improve almost a factor of 4 and it also will provide exact answers.
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3. VARIANCE REDUCTION IMPROVEMENTS IN APAIR

The type of problems solved by APAIR provide an excellent opportunity
to apply a wide variety of variance reduction techniques which can substan-
tially improve APAIR efficiency. Several of these were tried on APAIR with
generally excellent results. In some applications the gain in efficiency was
estimated to be almost a factor of 20. It appears that a factor of 10 improve-~
ment can readily be accomplished in many APAIR applications if the time
and effort is expended to understand and implement the appropriate techniques.
It is unquestionably to the benefit of the analyst to follow such an approach

when long running tirzes are of concern.

Resources available to perform the study did not permit application of
all the possible variance reduction schemes available. Therefore, a selected
number of techniques representing a broad range of characteristics were applied
to various types of ASW problems. These included:

¢ Statistical Estimation using an expected value of kill at each

torpedo drop rather than scoring actual kills based on Monte

Carlo simulation, Two cases were studied corresponding to
different types of Magnetic Anomaly Detectors (MAD).

o Expected Value replacing actual submarine kill by a reduction
in the "'survival value"” of the submarine for computing percent
kill as a function of which torpedo caused the kill (first, second,
etc.). This was also performed for two types of MAD gear,

e Systematic Sampling selecting initial starting coordinates for
the submarine location using two types of MAD gear. Two types
of systematic sampling were considered.

¢ Antithetic Variates used to select initial starting locations of the
submarine,

¢ Correlated Sampling using random number control to generate

identical histories to a point where differences in two types of
MAD gear lead to a divergence of histories, This was used to
estimate differences in effectiveness between two types of MAD
gear,
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s History Reanalysis where one run was made unbiased and the second
generated using weighting factors on the histories from the first
to corrert for differences in MAD gear. This was also used for
estimating differences in effectiveness between two types of MAD
gear,

e Importance Sampling performed with an importance function
weighted to generate correlated samples for the two types of MAD
gear, Again, this was used for estimating differences in effective-
ness between two types of MAD gear.

As a basis for quantitatively characterizing the calculational efficiency
of variance reduction over straightforward or crude sampling (i.e., with no
variance reduction) the following definition was used throughout

¢ = variance with crude sampling )
- (variance with the variance reduction technique
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+APAIR running time with crude sampling )

X\EPAIR running time with variance reduction

Crude sampling represents the procedure currently used in APAIR. Using
the above definition for efficiency, a value of € =2 for application of a
variance reduction technique implies a reduction in computer time by 1/2
to achieve the same variance as would be obtained with crude sampling.
The rationale for using this as an efficiency factor is discussed in Ref. 3.

It should be recognized that the efficiency, ¢ , as defined above is a ran-
dom variable sinca the variances with and without variance reduction are esti-
matee generated from the statistics of the simulation and not theoretical analyses.
A batching method was used in estimating most of these variances. The proce-
dure is presented in Ref. 3 and will not be detailed here. It is important to
recognize, however, that the efficiencies presented arc estimates and, there-
fore, are subject to a certain variability, In fact, the variance estimates are
second order quantities and thus this variability is generally muchgreater than
that encountered for the primary quantily whose variance is being estimated.

12
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Frgin theoretical arguments the error in the efficiency figure could easily be
as large as % 45%. In some of the cases presented in this report, there are

T TR |
th -

large correlations hetween the crude simulation and the variance reduced tech-
nique and thus the variability of the efficiency figure is much less than this
theoretical maximum, Since efficiency is so difficult to calculate with any
accuracy, caleulations were made for five similar parameters--kill probability,

T T Y1 P T N o e

mean time to kill, number of stores used per kill (for three types of stores:
torpedoes and two kinds of sonobuoys). In general the variance reduction
efficiencies for these parameters shonld not be greatly different, therefore,
the spread in efficiency values for these five parameters should give a rough

TR o T gy ey

i

idea of the variability of the efficiency figure for each variance reduction
technique. As an improved estimate of the efficiency of each technique, a
1 simple average of the five efficiency figures is presented in the tables.

i The initial variance reduction technique implemented was statistical

estimation. Implementation involved patching ints ihe report generator
portions of the program to call subroutines designed to score results using
statistical estimation. These routines contained the batching needed for
estimation of variances, print statements for the resulis, etc. To minimize
the programming changes needed to i-nplement subsequent techniques, the
statistical estimation subroutines were left in the program to calculate

and print results. Thus each of the subsequent comparisons that were done
actually contrasted a variance reduction technique plus statistical estimation
to & case with only statistical estimation. However, with the exception of
the expected value technique as discussed in Section 3.3, it was felt that

the efficiency factors obtained were essentially the same as if the variance
reduction technique alone had been compared to crude Monte Carlo.

Each of the variance reduction techniques used here have been described
in detail in Ref. 3 and will not be presented to that extent in this report.

13
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However, in the following discussions,the techniques and the results of the
application of the techniques will be described in sufficient detail to provide
an appreciation for the steps involved. Before proceeding, a brief descrip-

tion of the general type of APAIR problem considered in the study will be
presented.

3.1 APAIR PROBLEM DESCRIPTION

APAIR can be applied to a variety of ASW problems involving one
aircraft in pursuit of a submarine. The problem addressed here is con-
sidered to be a typical application of APAIR in that it is designed to esti-
mate the effectiveness of the aircraft and sensors in finding and killing a

~submarine,

3 A total simulation of APAIR is comprised of a series of independent
A histories. A single history in the simulation proceeds as follows:

The initial aireraft location, direction and speed are chosen. The
submarine location, bearing and speed are also chosen according to spe-
cified random characteristics. The aircraft proceeds to execute certain
tactics with the objective of detecting the submarine.

Once the submarine is detected, the aircraft enters a localization
phase where certain maneuvers are performed and soncbucys are dropped
in a specified pattern. In addition, Magnetic Anomaly Detection (MAD)
gear is used in the localization process. Two typical problems, differing
only in the range of detection of the MAD gear, were utilized in this study.

If localization of the submarine has been achieved, the aircraft
proceeds to drop a torpedo which may or may not result in a kill. If no
kill is realized, the aircraft then proceeds through further localization to
attempt another torpedo drop, again following specified maneuvers. The
history can be terminated in several ways which include exceeding a time

limit, achieving a submurine kill, or exhausting aircraft stores (torpedoes
or sonobuoys).

14
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Once the history is terminated, by any event whatever, a new
history is initiated. When the specified number of histories are completed,
final results are tabulated and printed out. Among the parameters esti-
mated by APAIR the following were used in this study to iliustrate the effi-
ciency of variance reduction:

e Probability of a submarine kill
e Average time used to achieve a submarine kill

e HNumber of stores used per submarine kill for three types of
stores. One type was torpedoes and the other two were two
kinds of sonobuoys. (As the exact identification of the sono-
buoy types was not clear from our documentation and irrele~
vant to this study, they are merely labelled type A and type B
in this report. A third type of sonobuoy was, for the tactics
in onr sample problem, not a random variable and thus was
not included)

Improvement in the estimate of these basic parameters was the
objective in using the variance reduction techniques considered here. Of
course, such an improvement can also be achieved by increasing the num-
ber of histories, although the running time can become prohibitively long.
For example, the above problem required approximately 15 minutes on a
Univac 1108 to generate 100 nistories. The desirability for achieving

variance reduction is therefore obvious.

15
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3.2 APPLICATION OF STATISTICAL ESTIMATION

In the course of an individual history, the aircraft will drop a torpedo
when it thinks it has determined the submarine's location and heading. The
actual submarine speed, aspect, and range are used to determine, from input
tables, the probability, Pk that the torpedo will destroy the submarine, A
random number, R "
to Py if Ru< Py 2 kill is scored and the history is terminated. If Ru > Py

from a uniform distribution is generated and compared

no kill occurs and no scoring is done; the game continues with more localization
and possibly, another attack. If other torpedoes are dropped, a similar proce-
dure is used to determine if a kill is scored later in the game,

At the completion of the simulation, the probability of submarine kill is
estimated as

SK = n/N

where
n = number of kills scored and
N = number of histories run.

For estimating the time to kill, APAIR currently uses

where n is the number of kills scored and Ty ;i=1,...,n the time taken
to effect a kill in the i’ history which ended in a kill. Similar procedures are

used for the other parameters (number of torpedoes and sonobuoys used per
kill) estimated.

16
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In the statistical estimation technique for variance reduction, the scoring
was changed so that actual kills are not scored, but rather the expected value
of kill, Pys Was scored for all torpedo drops regardiess of whether or not a kill

L T, Tl &

was achieved, However, the simulation game itself was not modified iu any
way. That is, a random number, Ru, was still used at each torpedo drop

to determine whether the history was terminated by a kill or more maneuvers

; took place. The outcome of this random choice did not affect the scoring of Px-

Specificaily, define

pKij probability of killfor the jth torpedo dropped during history i.

1.

5 number of times a torpedo was dropped during history i.

; Then, the totzl score generated for history i is

n
A

pale

J

i=1,ooo,N

2Pk

]

1]
oy

and the estimate for the probability of kill for the entire simulation (N histories)

is
N
N
by = UN Z Pgij
i=1 j=1

In the case of the remaining parameters, a similar approach was taken.
For example if

TK“ = time to torpedo detonation for the jth torpedo dropped in
history i

then the estimate for time to kill is given by

17
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Similar expressions were used for the remainder of the parameters being
estimated.

The computational time per history is very slightly increased asing
this technique since the same game is still being played but there is a little
more hookkeeping in the scoring. However, this is offset by the resulting
variance reduction,

in demonstrating the statistical estimation technique, both the crude
Monte Carlo estimate (counting actual kills) and the statistical estimate (sum-
ming over Px values) were calculated in the same run and, therefore, used
the same histories. This produces 2 high degree of correlation between the
crude and the statistical estimation results which reduces the variance of the
efficiency figure. Two problems were run using MAD gear having long and
short range detection capabilities respectively. The variances obtained with
statistical estimation and with crude Monte Carlo are shown in Tables 3.1 and
3. 2 along with the resulting efficiency factor for the use of this variance reduc-
tion technique. The sample variances were estimated using the statistical
techniques described in Ref. 3 to oktain the variance results indicated. The
actual estimated values of the parameters are not presented since they are not
considerad to be germane to comparison of the efficiencies. Therefore, only
the variances in the two cases are shown zlong with the efficiencies obtained
in estimating the paramcters with variance reduction.

The efficiencies obtained varied from 1. 00 (implying no improvement)

to as high as 1,50 (implying a factor of 1,5 reduction in running time). However,

these extreme values probably represent statistical fluctuations in the variance

18
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estimates rather than real efficiency improvement. Average efficiencies of
1. 15 for the short MAD problem and 1.23 for the long were achieved. Thus,
it can be seen that use of statistical estimation could have made roughly a 19%

improvement in APAIR run times. Use of statistical estimation is justifiedsince it

involves a very trivial modification to the program.

3.3 EXPECTED VALUE TECHNIQUE FOR ESTIMATING EFFECTIVENESS

OF MULTIPLE TORPEDO DROPS

The expected value technique differs from statistical estimation in that
the actual game or simulation being played, as opposed to just the scoring tech-
nique, is changed to replace a random choice with an expected value for the out-
come of that choice. For example, instead of generating Ru to test against
P with the choice of either killing or missing the submarine, the submarine is
given an initial "weight" of 1,0. If the first torpedo dropped has a Py of . 80,
then 80% of the submarine is deemed killed but 20% survives and the weight is
reduced to .2. If a second torpedo is dropped which has a Pr of .50, then half
of the remaining weight, or .1, is killed, while a weight of . 1 continues to
survive. The history is never ended due to a submarine kill but continues until
some other limit, such as using up the mission time or using up the stores of
torpedoes or sonobuoys, stops the history.

Such a technique could be useful in studies such as determining the
effectiveness of the numbar of torpedocs carried on an aiveraft or the worth-
iness of the tactics for relocalization and reattack following a miss by the
first torpedo. In these c2ses one is ot so much interested in the overall kill
probability as in the kills scored by the second, third, etc. torpedoes. Ina
crude Monte Carlo most of the kills are made by the first torpedo and the his-
tory ends there. These histories add nothing to the knowledge of tactics in-
volving reattack or to the kill value of the second torpedo, but simply con-
stitute wasted time towards calculating the items of importance. In fact, what

is worse, these histories add variance to the overall kill probability. It would
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b be prohibitively expensive to determine the value of reattacks from a crude

§ - - . - .

é Monte Carlo due to the large proportion of the running time being spent on

1 histories of no value to this parameter.

Using the expected value technique outlined above, most histories will

3

i contribute to knowledge concerning the second and third torpedoes as the history
4 will always continue after the first torpedo drop. For example, one of the crude

Monte Carlo problems run had (out of 100 histories) 78 cases in which the first
torpedc was dropped, 10 in which the second was dropped, and only one history

i

where the third torpedo was dropped. Using the expected value technique, the
same problem had 79 histories with one torpedo drop, 65 histories in which the
second torpedo was dropped, and 43 histories of a third torpedo drop.

Estimation in the expected value case was done as follows, If DPKij is the kill
probability for the jth torpedo in the ith history and Wij is the submarine
weight at the time that torpedo was dropped, then

N
N
i=

is the kil probability of the j* torpedo. Likewise, the time to kill by the j&

torpedo is given by

N

Toi= 2= DT

Ki~ 7 £ “KijPKij¥ij
pK] i=1

where TKij is the time of detonation of the jth torpedo on the ith history.
A similar formula is used to estimate the numbers of sonobuoys dropped per
kill by the jth torpedo. (Obviously the number of torpedoes used is constant

in this case, so this parameter was omitted.)
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For this technique, two sample problems were run; one with the long-
range MAD gear and one with the short-range MAD gear. In each case APAIR
was run twice, with and without the expected value technique. To reduce the

SR (TN P

variance of the efficiency factors, the histories in the two runs were correlated
using the technique described in Section 3. 6. This kept the histories in eacn
run identical through the first torpedo drop. The resulting eificiencies for the
second and third torpedo drops for both cases are shown in Table 3.3. There
were no examples of a fourth torpedo drop in any of the runs. In the short MAD
case, there were no examples of a third torpedo drop in the crude Monte Carlo

run, so the efficiency of the variance reduction technique is theoretically in-

Lt it b ik i

finife in this case. However, using the ﬁK estimate from the expected value
run, it was possible to estimate the number of crude Monte Carlo histories that
would be necessary to get similar statistics; this led to the efficiency factor of
10 for 1;K shown for the third torpedo in the short MAD case.

The running times for the crude and expected value calculations are
shown in Table 3. 4. As anticipated, the expected value histories took much
longer to run because they did not stop at the first torpedo drop (as most of
the crucle Monte Carlo histories did) but went on to simulate a second and a
third rorpedo drop. This extra running time is used to generate information
concerning the parameters of interest, i.e., the kills made by second and third
torpedo drops, and, therefore, the overall efficiency is much improved as
Table 3. 3 shows. It is instructive to consider the efficiency for the first
torpedo drop. As the histories in the two runs were identical through the first
torpedo drop, the variances are identical for the first torpedo parameters.

Due to the increased running time, the first torpedo efficiencies will be lower
by .49 (for the short MAD) and . 36 (for the long MAD). The extra running time
used in calculating second and third torpedo drops is wasted as far as first
torpedo drops is considered and this lowers the efficiency. This illustrates

a common point of variance reduction: any technique which reduces variance

23
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TABLE 3.4
Running Times for Crude Monte Carlo and Expected Value Calculations

Ratio
Running Time for Running Time for of
Problem '‘Crude’ Monte Carlo | Expected Value Technique | Times
Problem 1: 664 sec 1866 sec 2.81
Long MAD
Problem 2: 822 sec 1666 sec 2. 03
Short MAD

R o - o ooy e M s -

PP
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i for one parameter will increase variance for some other parameter. Variance
reduction techniques must be carefully tailored to the parameters of importance,
in this case the kills involving two and three torpedo drops.

For ease in making programming changes to calculate the parameters
sepavately by torpedo drop, base runs with the current APAIR, representing
crude Monte Carlo, were not made. Runs using the expected value technique
then provided efficiency factors for an expected value/statistical estimation
comparison. The average efficiency of the statistical estimation/crude Monte
Carlo cocmparison in Section 3.2 was determined to be a factor of 1.2. Multi~
plying the efficiencies from the expected value/statistical estimation compari-
sons by 1.2 generated the figures presented in Table 3.3 as the efficiency of
expectec value versus crude Monte Carlo. This combination of efficiency

u 'r”Hu- " N &

factors is justified because the expected value technique necessarily incorpo-
rates statistical estimation scoring; once the kill/miss decision has been re-

moved from the game, the scoring must be by the pK's for each torpedo drop.
Thus there is no possible "expected value without statistical estimation” com-

T T T

parison to crude Mop*2 Carlo but only the combined efficiency.

3.4 SYSTEMATIC SAMPLING OF INITIAL SUBMARINE POSITION

Systematic sampling is a variance reduction technique that usually finds
application in selecting initial or starting values for a random variable. Poten-~
tial applications in APAIR include initial submarine or aircraft bearing and
location, Sampling in a systematic manner essentially serves to reduce the
contribution to the variance coming from the random variables being systema-
tically sampied.

To demonstrate this technique in APAIR, problems were run with the
aircraft initial location and both the aircraft and submarine initial bearings
fixed. This left the snubmarine starting location as the variable which was
systematically sampled as shown in Fig. 3.1. The aircraft was initially
located at the origin while the submarine starting position was uniformly
distributed along the y-axis (north) between 0 and L. Both the aircraft and
the submarine were initially moving east as shown.
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Fig. 3.1. Starting Positions for Systematic Sampling
1 Demonstration

E Systematic sampling was applied in two different ways. The first
was used on the long MAD gear problem and was implemented as follows:

To obtain starting positions for the first 10 histories, a random num-
ber Ru was selected from U(0, 1) and ten initial submarine positions were

located at
y1 = L Ru'/ 10
yo = L/10+ LRu/I{)
yg = 2L/10 + LR /10
Y10 = 9L/10 +LRu/10

The histories run using these initial starting conditions constituted the first
batch. Then another series of ten y's was generated by selecting a second
random number from U(Q,1), and the second batch was run. The process
was continued until a total of 10 batches of results {or 100 histories) were

217
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obtained. The results of these simulations were used to estimate the parame-
ters and sample variances using batched estimators, That is, an estimate
for Pp was obtained for each batch by the usual methods. These batch esti-
mates may be denoted 61{1’ “ee, AKIO' A final estimate was obtained from

10
Pg = 1/102 Prci
3 i=1

and the sample variance was estimated from

10
§ - 1/9 Z (f’xi“isK)z
=~

The results are shown in Table 3.5 which summarizes the variances obtained
with and without systematic sampling. It can be seen that the results are
rather mixed, and in some cases a worse result was obtained using systematic
sampling. Most of this variation is strictly statistical fluctuation due to the
unavoidably large variances in the efficiency estimates. That this is the case
may be seen from the efficiencies which are less than 1.0. Theoretically,
systematic sampling should always reduce variance and efficiencies should
always be 1.0 or greater., However, if efficiencies are close to 1, it is easy
to get estimates which are just below 1. 0.

Some of the variation in the systematic sampling efficiencies may also
represent a variation in how sensitive a parameter is tothe submarine starting
location. The probability of kill (eventually, after enough localization) should
not be as dependent on the submarine's starting distance as the time taken to
localize and kill or the number of sonobuoys used in localization. Any parame-
ter which is not sensifive to submarine starting position will have a variance
which is likewise not sensitive to reduction of variance in selecting the sub-
marine starting position.
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The average efficiency gain for systematic sampling in the long
MAD problem was a factor of 1. 34,

A second type of systematic sampling was used in the problem
with the short MAD gear. Inthis case, a new random number was used

il el L il i o

each time a new starting position for the submarine was selected. Ten
strata were used with the starting position limited te fall between ranges
Ll and L2. That is, the first ten starting positions were selected using

LA i o M

é V1 = Ly * —10— By

-]
no
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o
peb
+
+
=
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w
it
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+
% ]
+
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Viop = Ly + 55— (R“IO + 9.)

where Ry,, °**, Ry, are random samples from U(0, 1).

The samples in this case were batched as before and the results
presented in Table 3.6 were obtained. These results are seen to be quite
similar to those obtained for the long MAD gear. Again, a large variance
in the efficiency is apparent. Also, it appears that several of the param-
eters were insensitive to initial submarine starting position. The average
efficiency is 1. 28 with an overall uncertainty of about 20% expected in the
efficiency estimate.
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3.5 ANTITHE'TIC VARIATES FOR SAMPLING INITIAL SUBMARINE
POSITION

The final variance reduction technique applied to selection of the
submarine starting position was the use of antithetic variates. This was

performed for the same two situations described for systematic sampling
in the previous sectiw:s,

In its simplest application, use of antithetic variates seeks to generate
negatively correlated samples by selecting two values x', x'" of the random
variable from the distribution {{x} using

R, = j':f(x)dx

and

"

X
1-R = f_m f(x)dx
where Ru is a random number selected from U\*,1). The values of

x' and x" are clearly correlated since they have been generated by the
same random number Ru. Also, x' and x" are negatively correlated

since when x' is large, =" will be small.

In the application here, pairs of initial starting positions for the sub-
marine were seiecied according io the above formuiat’ b, Thus, When one
submarine starting position was selected far from the aircraft, a position
close to the aircraft was also selected £~ ‘“he nex* history.

In the first problem, (i.e., where the long range MAD gear was used
and the submarine was located between 0 and L), the pairs of starting
positions were obtained using

y i RU.L

yy = (1-R)L




and two histories were run.

E In the second problem (i.e., with the short range MAD gear and
E? where the submarine was located between Ly and Lg) the pairs of starting

positions were obtained using

R

¥y = Ly + (g - LRy

2) Ru

Y9 L2+(L1—L

and the two histories corresponding to these initial starting positions were
run.

In both cases, batching was performed to obtain estimates for the
variances. The results of the analyses are summarized in Tables 3.7 and
3. 8 respectively.

As was the case with systematic sampling, there was a wide variation
in efficiency and one variable gave worse results with the antithetic variates
than with crude sampling, indicating as before, a large variance for the
efficiency estimates and, possibly, several parameters which were not
sensitive to the initial starting values. Although it is theoretically possible
that the use of antithetic variates could give worse results than crude
sampling, it was not expected here and the single value less than 1.0 is prob-
ably a low estimate for an efiiciency just above 1.0. In any event, average
efficiencies of 1. 12 and 1. 37 were obtained in the two problems. An >rror
of about *10% is expected in these efficiencies.

3.6 CORRELATED SAMPLING FOR ESTIMATING DIFFERENCES IN MAD

GEAR EFFECTIVENESS

Correlated sampling is a procedure that can be used to reduce variance
in Monte Carlo simulation in the following general situations:

e The effect of a perturbation to a known problem is fo be
determined.
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e The difference between estimated parameters in two problems
having similar characteristics is to be calculated.

e A parametric study of several similar problems is to be
performed.
Such situations occur very frequently. In fact, in most studies the most im-
portant result to be investigated is the change in resnonse of the system as a
problem characteristic is varied. As will be seen, the payoff from various
types of correlatior in sampling can be very high.

Use of the APAIR model could easily involve problems having one or

! more of these characteristics. For example, the sensitivity to a range of
tactics presents a potential situation where correlated sampling could provide
substantial improvements in efficiency.

The problem selected for demonstration of correlated sampling in-
volved the short range and long range MAD detector cases discussed pre-
4 viously. The main parameter of interest to be calculated was the difference

between these two cases in the parameters used in prior sections. That is,
difierences in:

e Probability of submarine kill

o Time to submarine kill

e Number of torpedos used per kill

e Number of sonobuoys of Types A and B used per kill.

The only difierence in problem characteristics in the two cases was
a difference in MAD detection capabilities. This was expressed in a function
relating orobability of detection to range of target from the aircraft, as shown
in Fig. 3.2,
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To demonstrate the concept of correlated sampling for this applica-

tion, we define

probability of submarine kill using the short range MAD detectors

Pg

129 probability of submarine kill using the long range MAD detectors

The problem of interest is to perform Monte Cario simulations to estimate
the difference

A =pL"pS

in the case of probability of submarine kill. Similar definitions apply to the
remainder of the parameters of interest.

The crude Monte Carilo approach would first estimate Pg (denoted by
f)é ) and then P, (denoted by f)i) using another set of independent histories.
Then the difference A is estimated using

-~

&' = pj, - B
The variance in A' is
OZ(A‘) : az(pé) + oz(ﬁs')

for the case of independent histories in the Pg and Py, estimations. Suppose,
however, that positively correlated estimates for g (say ﬁs) and for .

(say pL) were used to estimate A. Then for

A = pL "ps
the variance in A will be given by
02(3) = 02(1; ) +0'2(h ) -2 cov (1; o )
L ps S’pL

where cov (ﬁs,ﬁL) is the covariance between ISS and ﬁL’ Since ﬁS and
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ﬁL are positively correlated, then

cov (ﬁs,ﬁL) 2 0, and hence

oX(A) = 02(.&') .

Thus, the objective of correlated sampling is to develop 2 sampling
strategy that will currelate the estimators ISS and ﬁL' This technique can
be extremely powerful when small perturbations of problems are to be studied
since the correlations induced will tend to emphasize differences in the prob-
lems due to the perturbation rather than differences due to statistical fluctuza-
tions which are usually the controlling differences in cases with independent

histories.

The above arguments for improvement in the variance using correlated
sampling for the probability of kill would also apply directly to estimating the
differences in other ASW parameters.

Correlation can be accomplished in several ways. For example, the
short and long range MAD problems could be simulated independently except
the same random number could be used in determining the outcome once the
probability of detection had been obtained from the curves in Fig. 3.2. Thus,
correlation between the two results would exist. Another way, and the one
that was used here, is to confrol the random numbers in the two simulations,
by using the same random numbers in the two problems until a difference in
detection occurs in the problems due to the difference in the MAD gear. Two
separate runs were made, but corresponding histories in the two simulations
were madeto stari at the same pointin the random number sequence. Thus, the
histories would be identical up to the point where the difference inMAD gear
resulted in different decisions. At the time the detectors came into play, the de-
tection outcome was selectedin each case from the same random nuvmber. Subse-
quently, the histories continued independently until the end of the game. More
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correlation could have been introduced by subsequently using identical random
numbers wherever the problem logic allowed,

The program changes made to induce this much correlation were
fairly simple. Two separate random number generators were used in each
simulation, The first was used once each history to give a random starting
point in the sequence of the second generator; it produced the same sequence
of starting points in both simulations. The second generator was used in the
history to obtain random numbers for the simulation process. By starting at the
same point in both cases, identical histories will be generated until there is a
difference in decisions made concerning aMAD detection. Even though the first
history in one problem might use more random numbers than in the other
problem, the random number sequences would be returned to the same point
at the start of the second history in each problem.

To calculate the variance of the difference, A, inthe two cases, it
was necessary to obtain 'batch’ values, an’ for the difference in the batch
values ﬁLn and ﬁSn that have been described in earlier sections. The batch
values of f’Sn’ ﬁLn’ and the otrer parameters were written on temporary
files as the simulations progressed. Then a separate small program was
written to combine these files and calculate the batch differences in the vari-
ous parameters. The final estimated difference was the average of the batch
differences and the variance of the difference was determined from the spread
of the sample batch differences, Specifically, by grouping the 100 histories

of the long MAD simulation into batches of 10, one calculates

10

Py 1/102 Pxi
,-=1
20

B = 1/10 Zi?m
1
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100

Pry = /10 Z Pxi
i=91

where f’Ln is the estimate of Px from batch n and pKi is the estimate of
Pk from history i. Similar formulas were used to obtain batch estimates for

the other parameters in the long and short simulations. Then the batch differ-
ences were calculated:
Ay = Py Py

Ayo = Pri07Bsy0 -

The final estimator for the difference in probability of kill is
~ 10 P
A =1/10 g; A

and the estimated variance is

10 10
SOREIES SRTRPE HES SE B () PN
=1

il

n=1

Rather than make two additional uncorrelated runs to get comparison variance

estimates for the uncorrelated or crude Monte Carlo, the uncorrelated
equation

'.2 N ”2 A Al
g (a) =0 (ps) + oz(pL)

was used with

10 10
~D A _1 1 ~9
n= n=

et W S = == = =
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and

] 2 11 1 10 2 0 :
: o (PL) =3 -1'621 By, - 1/10 Zan
3 n= n=1
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The results of the calculations are shown in Table 3.9. The greatest
increase in efficiency (a factor of 3) was found for the probability of kill. The
average improvement over all parameters was almost a factor of 2. Thus,
the running titpe for the same variance could be reduced by about a factor of
, 2 by using correlated sampling.

There was a slight increase in running time (although the vari-
ance was substantially reduced) with variance reduction since some additional
bookkeeping was used in the program. The running time could have been re-
duced with some adiitional effort by not recalculating with identical random

E numbers the part of each history up to the point where the detection came into
play, but by simply saving the results of one case for appiication to the other.
However, this would have involved more extensive computer program modifica-
tions than were warranted here.

Analysis of Correlated Histories

One of the great benefits of correlation is the potential it provides to
gain insight into understanding simulation problems. For example, if two
highly correlated histories, one with and one without a problem perturbation
were available, then, most of the time, differences observed in the histories will
be due to variations in the problem perturbation rather than statistical variations.

The problem of the two MAD detectors was ideally suited for demon-
strating the possibility of analysis of correlated histories since the MAD detectors

ﬂ;
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TABLE 3.9
Variance Reduction Using Correlated Sampling For Estimating Differences

h e A .

Estimated Difference

in Expected Value

(Liong RangeMAD - Variance With Variance With

Short Range MAD) Crude Sampling | Correlated Sampling | Efficiency
Probability of -3 -4
Submarine Kill 2.96 x 10 9.6 x 10 3.0
Time to
Submarine Kill 15.0 9.2 1.58
Number of Torpedos | 5 9 4 4¢3 1.6 x10°° 1.33
per Kill
Sonobuoys Used per
Kill - Type A 0. 166 0.068 2.40
Sonobuoys Used per 0.174 0. 144 1.17

Kill - Type B

Average Efficiency Improvement = 1.9
Ratio of time increase with variance reduction = 1.03
Correlated Sampling: Two separate runs were made. Histories were identical
up to point where difference in MAD gear lead to a divergence in histories.

1.0
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were sufficiently similar so that variations on estimates for the kill
probability could be lost in the statistics of the problem. More specifically,

Qi gl Ll

consider the sample series of single histories shown in Tzble 3.10. These
histories were obtained from runs correlated in the manner described above.

There are three types of situations that can be identified in Table
3.10. First, there are a large number of histories where the short and long
range gear give the same result. This situation should be expected since the

gear is similar and the histories are highly correlated. That is, when a short
range detection occurs with the short MAD, it will also occur with the long MAD.
Also when no detection occurs for the long MAD at long ranges, none will occur
for the short MAD.,

At intermediate ranges where the two MAD curves differ, this, of
course, is not frue. This is manifested by the second situation (history 8)
where the long range MAD detected the submarine and effected a kill and the
short range MAD didn't, with no kill as a result. This type of history was aiso
expected.

Of most interest is the third situation where, in histories i and 9, the
long range MAD gear produces a lower Kkill probability than the short MAD
gear although both types detected the submarine. This result was quite un-
expected and would tend to indicate there are considerations other than varia-
tions in MAD gear which malke the two problems different. For example, the
tactics used might be appropriate to the short MAD detector but might be
‘trigger happy' when used with the long MAD gear resulting in premature torpedo
drops with a lower kill probability. Had the histories not been correlated,
it would have been difficult, due to the statistical variation from history to
history, to notice that such events were occurring. In this manner, therefore,
correlation can identify which histories should be examined in detail to provide
more insight into the problem,
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Another application of correlated sampling is presented in the follow-

HISTORY REANALYSIS FOR ESTIMATING DIFFERENCES IN MAD

GEAR EFFECTIVENESS

In the second application of correlated sampling to APAIR, reanalysis

of histories using weight facturs to correct for the difference in problem char-

acteristics was used rather than controlling the random numbers. Effectively

the following was performed for history j:

46

&

A base history was run using crude sampling for the long MAD
gear up to the point where the possibility of defection was to be
tested.

Given the range, a probability of detection for the long range
gear (pL) and the short range gear (pg) were determmed
from the curves shown in Fig. 3.3.

A random number was compared to to determine if a
detection occurred and the history continued, using the results
of that random decision.

Weighting factors were assigned to the history according to
the fcllowing rules:

If the first test for a detection with the long gea1 resulted in
a detection, a weight correction factor of W
assigned to account far the short range gear If éxe %irst
attempt resulted in no detection, he the assigned weighting
factor was

1-pS

W,. = —
1j 1-p

=

The history continues for subsequent tests of detection with the
long MAD gear by assigning weights according to




Probability of detection

1.0

0.5

Long range MAD

Short range
MAD
Importance function

0.5 1.0 1.5 2.0

Range of Submarine from Aircraft

Fig. 3.3 Probability of detection versus range for the

MAD detectors used in the demonstration of
history reanalysis and importance sampling.
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if a detection occurred on the i+1 st test and

v s W
W. LS W, .
i+1,] 1-pL i,]

when a nondetection occurred on the it 1 st use of the MAD
gear. This is continued until the game stops due to a kill or
some other reason (e.g., sonobuoy stores exhausted). The
final weighting jactor is defined as W..

e If a kill occurred in this history then

n. =1

h]
otherwise

n. =0

]

(Note that the total number of kills in N histories is simply
N
Ny = Z n; )
i=1

The above series of steps was performed for the N histories and the

following formulas were used to estimate the differences in the parameters
of interest.

Consider first the probability of kill. The estimated probability of
kill for the long gear is given by

The estimated probability of kill for the short gear is given by

N
Py = 1/N Z]?njwj
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The difference in probability of kill (long MAD - short MAD) is

N
A = 1/NZn]. (1-W))
st

Similar considerations were used for the time to kill. If history j
resulted in a kill and the time of kill was Tj’ the average time to kill for the
long MAD is

N

~ A

‘1L = l/Nk .El an}
]:

while for the short MAD it is

N
; 1
Tq = —— T.W.
S 3 NZ B
ps j=1

(ﬁsN is the 'number’ of kills in the short MAD problem aund is the correct
normalizing factor for the fime to kill and other parameters.) , In a similar
manner the remaining parameters {number of torpedos or sonobuoys used
per kill) were calculated,

It is clear the results obtained for long and short range detectors are
highly correlated. The histories for the two cases are not only identical up
to the point of possible detection, but they continue to be correlated throughout.
When a kill is registered due to the use of the long range gear, it is also
registered for the short range gear but carries a different weight. As the
random choices made are appropriate to the long gear, they will not be
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optimum for the short range gear. This will increase the variance of the
short range gear estimates, but the high degree of correlation should still
reduce the total variance of the difference.

A second significant advantage of the above approach is that the results
of two problems have been obtained by actually performing only one simulation
(i.e., for the long gear) although some additional computation is required to
perform the weighting. However, the total computing time required was only
53% of that needed to perform two independent calculations.

Thus, to generate the required correlated cases, approximately one-
half of the computational effort was required. In addition to this time saving,
there were substantial improvements in the variances of the different parame-
ters estimated. These results are summarized in Table 3. 11 where it is seen
that substantial improvements in the efficiency were realized. For example,
in estimating the stores used (torpedos and Type B buoys) about a factor of
10 improvement in efficiency was obtained. The overall average efficiency
was found to be almost 7. This can, of course, be interpreted as a reduction

in computational time that can be realized using the correlated sampling scheme
described here. ¢

The ‘short range MAD detection probability curve used in this technique
and that described in the following section is shown in Fig. 3.3. This differs
from the short range gear shown in Fig. 3.2 which was used in the other studi
of this report. This change was made because use of the curve in Fig. 3.2
would have resulted in a considerable number of identically zero weights when-
ever a detection occurred beyond the range of the short gear. This would
have destroyed much of the correlation in the histories and counteracted the
effect we were trying to illustrate. Therefore, a dummy short MAD gear curve
having the same limits of range as the long range gear but with a lowered proba-
bility of detection at the longer ranges was used. Paradoxically, this had the

effect of making the two types of detector more similar, thus making it harder
to calculate the difference between them.
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TABLE 3.11

Variance Reduction Using History Reanalysis For Estimating Differences
Between Short and Long Range MAD Gear

Estimated Diiference

in Expected Value

(Long Range - Short Variance With Variance With

Range) Crude Sampling | History Reanalysis | Eificiency

Probability of -3 -3
Submarine Kill 4,2x10 6.6 x10 1.21
Time to
Submarine Kill 1.8 2.05 7.2
Number »f Torpedos -2 -3
per Kill 1.25 x 10 2.56x 10 9.3
Sonobucys Used per
Kill - Type A 0.097 0.0289 6.4
Sonobuoys Usea per
Kill - Type B 0.204 0.040 9.7

Average Efficiency Improvement = 6. 8

Ratio of time decrease with variance reduction 20,53

History Reanalysis: One run was made using the long range gear probability
distribution for detection. Simuitaneously, calculations were made for short
range gear using weighting factors to correct for difference in probability

between the two distributions.

No
Detection| Detection
(P) | (-P)
Weight
correction W._i_)_s_ W.I_PS
for Short PL l-PL
Gear

Probability of

Detection
R -
(72 B ()

| LONG
RANGE

SHORT >}<
MAD \\

N

N

RANGE ———
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The estimated differences in the various parameters and their variances
were calculated by the same batching techniques as described in the previous
section. For this technique the uncorrelated difference variances were de-
termined by

g (a) =o¢ (PL) + 0 (ps)ﬂzo' (pL)

W Y

=

where c (pL) Was determined from the batch values of pL Due to the weight
corrections, a @ (pS) calculated from the reanalyzed histories would have

been much larger than o (ps) from an uncorrelated case. Rather than make
a separate uncorrelated run, it was simply assumed that & (ps) o (pL)

A third variation involving correlated sampling will be described next.

3.8 IMPORTANCE SAMPLING WITH CORRELATION ESTIMATING

DIFFERENCES IN MAD GEAR EFFECTIVENESS

To illustrate the technique of importance sampling, which has wide
applicability at many stages of a Monte Carlo simulation, a demonstration
involving an extension of the previous correlation problem was devised. It
was very similar to the calculation of the previous section except that, in
place of the long range MAD detection probability, an 'importance function’
detection probability, mid-way between the long aml short range curves as
shown in Fig. 3.3, was used in making detect/no detect decisions in the game.

As explained above, the use of the long MAD curve to generate the his-
tories results in choices which are not appropriate to the short MAD gear,
This increases the variance of the short MAD part of the calculation. The use
of an 'importance function' curve generates choices which are more optimum
for the short gear but less optinxum for the long MAD. It was hoped that
the result would be a reduced variance overall.
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The procedure used in this simulation was a mere extension of the
procedure described in the previous section. That is, for history j the follow-
ing sequence of steps took place:

] e A base history was run using crude sampling. At points in the

: problem where detection was to be tested, the importance func-
tion was used in a random determination of whether or not a
detection occurred.

e From the range, detection probabilities were derived from the
curves for the 'importance’ (pI), the long MAD (p; ), and the
short MAD (pg) as given in Fig. 3.3.

e A random number was compared to p; to determine if detection
occurred.

e If this first test resulted in a detection, an assigned weight
correction for the short range gear was set to

P
wo, = S
oy

and a weight for the long range gear of

was assigned.

If no detection occurred, the respective weights assigned were

WS - s

1j T T,
and

ol . R

1j " TP,
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e The history continued for subsequent tests of detection by assign-
ing respective weights according to:

S Ps s
- W. . = — W. .
] i+1,] pI L]

for detection on the i+1st test for submarine detection and

1-p
wS . S .S

— W, .
: 1+1:] 1—pl 1,]

for nondet~ctions on the itl st test with similar equations for wl,
This is continued until a kill occurs or the history is otherwise
terminated. The §ma1 welihtmg factors calculated in the history
are defined as W] and W

e If akill occurred in this history, then

n. =1

]
otherwise

n. =0

J

(the total number of kills in N histories is

N

Nk = Z nj).

5

The above series of steps was performed for the N histories and the
following formulas were used to estimate the differences in the parameters of
interest.

For the probability of kill, the estimate for the short range gear was
given by

N a
= 1/N Z n]WJb
j=1
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and for the long range gear,

A= Pr,Pg = 1/NZ n.(W}.:"—W.)

Similarly, if 'Tt‘j is the time to kill on history j (assuming 2 kill
occurred), the average time to kill a submarine would be given by
N
D LAy
pLN j=1

and

b4

The number of torpedos and sonobuoys used were calculated in a simiiar

manner.

The correlation between the results for the long and short MAD detec-
tors in this case arises from the fact that their estimates are derived from the
same importance sampled set of histories. Also, it is important to recognize
that the running time is approximately one-half of that required to run two
independent cases. In fact, it was found that the ratio of the running time
with and without the correlation was a factor of 0.53, which is the same as
the result in the previous case,
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As expected, there was substantial improvement in the variance of the

estimates. The results are summarized in Table 3.12. It can be seen that a
2 factor of almost 20 was achieved in the efficiency of the estimator for the dif-

: ference in the number of torpedos used. Also, a substantial improvement (a
factor of 8.5) in the variance of the difference in the kill probability was

3 realized. An average efficiency of 7.2 was fovnd which, as before, can be con-
strued as a direct factor for improvement in problem running time.

o i L A e 4
lidyt '
1
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distributions.
No
Detection | Detection L0
(®) (1- .
I P -
[o]
Weight P 1-P, 25 p \
correction WS- 5 WS. T-—’PE ﬂg 1)L \
(short gear) 1 I § 2 ¥
oA Pg | SHORT
Weight L PL L 1-13‘L Py MAD
correction |W™. P W™ P
(long gear) I 1 0

r:“"’"""" o e T T """“*""7"""",'"‘:' HTTERERTATREATS A T ikt it “wmapwmﬂ
E
] TABLE 3.12
E Variance Reduction Using Importance Sampling For Estimating Differences
] Between Short and Long Range MAD Gear
Estimated Differences

in Expected Values | Variance With

(Long Range - Short | Straightforward Variance With
1 Range) Sampling Correlation Efficiency
! Probability of -3 -3
| Submarine Kill 4.2x 10 1.22x 10 8.5
]
] Time to
E Submarine Kill 7.8 8.3 1.8
Number of Torpedos o -2 -3
E per Kill 1.25x 10 1.21 x 10 19.7
* Sonobuoys Used per
Kill - Type A 0.097 0.062 3.0
E’ Sonobuoys Used per
— Kill - Type B 0.204 0.077 5.0

Average eificiency improvement == 7,2
Ratio of time decrease with variance reduction =¢0.53
Importance Sampling: One run was made using the importance function for
selection. Simultaneously calculations were made for sh-.t and long range
gear using weighting factors to :rorrect for differences in the probability
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APPENDIX A
MIRAN
A MACHINE INDEPENDENT
PACKAGE FOR GENERATING
UNIFORM RANDOM NUMBERS
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APPENDIX A

MIRAN - A MACHINE INDEPENDENT FACKAGE FOR GENERATING
UNIT"TORM RANDOM NUMBERS

A.1 GENERAL DISCUSSION

The standard (cchnique for producing uniform random numbers on
modern high-speed compuiers is an algorithm known as ithe rmultiplicative

congrucniial method. This -method is expressed mathematically as

R = A»Rn (modulo P) .

n+1

Since the R's are integers ranging from 1 to P-1, successive real random
numbers uniformly distributed from 0 to 1 are generated by dividing Rn by P.
The properties of this technique as a random number generator (RNG) are
highly dependent on the choice of the generator, A, and the moduius, P.
Unfortunctely, there are many RNGs in currint use which do not approximate
randomness clesely enough to be sufficient for all Monte Carlo calculations
and, whatl is far worse, do manage to pass some of the simple tests for
randomness. There are, however, several choices of A and P which have

1

been thoroughly tested, both theoretical and through many years of actuz

use in Monte Carle coleulations, and which appear to be sufficiently random

-

for general usage.

For reasons of convenience and efficiency, P is generally taken to
be 2™ where m is the number of bits, excluding the sign bit, in a single
word on the particular computer being used. The generation process siarts
with a fixed generator, ), and a starting value, Ro' The {ull product
from the multiplication of X and R o would usuaily fill two computer words;
however, the modulo P in the algorithm means that we only need the single
word, RI’ comprising the low order half of the AR o product. The randmm
number gerneration is completed by converting R1 to a real variable and
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dividing by P. R1 replaces Ro in storage in the random number subroutine
and the process is ready to begin anew,

In this sort of a process there have beea two barriers to developing

a Fortran RNG subroutine which weould ve independent of the particular com-
puter for which it was designed. The {irst is the modulus P, which varies
from computer to computer as the word length varies. [Choosing a universal
value of P to fit the smallest computer is not a good solution as the proper-
ties of 2 RNG become less random as P is made smaller, to the extent that
Coveyou and MacPherson(g) consider them questionable for P = 231

(I3M 360 series) and borderline for P = 235 (IBM 7090, Univac 1108, etc.).]

The second problem is that the sign bit of R, may need tc be cleared follow-

1
ing the multiplication. Clearing the sign bit generally requires some trickery
in Fortran which varies from computer to computer as the mode of represen-
tation (one's complement, two's complement, uncomplemented, etc.) of

negative numbers varies.

The way around these obstacles is to use an explicit multiple pre-
cision represeniation. The integers and operations involved in the RNG
algorithm are separated intu component parts in such a way that all operations
are kept within a single computer word and ano overflows into the sign bit are
made, thus avoiding the sign-clearing problem. Through multiple precision
a suificiently large modulus for good RNG properties may pe used even
though the actual computer word size is small, An initialization call must
be :inade to conv:iy fo the RNG the maximum integer allowed on the particular
compuler being used so that it can set up an apprcpriate multiple precision
representation,

The advantage of a RNG that is machine independent is simple: it
greatly facilitates the exchange and checkout of Mente Carlo programs between
different computers, The price paid for this advantage is also simple: it
is 2 much slower method ¢f producing random numbers. However, it is
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still fast enough (several thousand random numbers generated in one second) that
the time difference will not be noticed in most Monte Carlo applications.

A.2 CHOICE OF A SPECIFIC ALCORITHM FOR MIRAN
(9

The work of Coveyou and MacPherson**” has provided a thorough

theoreficnl analysis of many commonly used RNGs. Thcey show that the cor-
relaiion properties of a RNG are strongly dependent on the modulus P.

”s 31 35 . .
Torvaluesof P=2 " or 2 , there must necessarily be a waviness or

5 e o ey T o T T T W S e T oy S |
i E : & " w“‘“
|
i
1
i

grairiness to the joint distribution of two, three, and four consecutive ran-
dom numbers that could lead to incorrect results for some Mounte Carlo cal-
culations. For P = 247, the departures from true randomness are smail
enonugh as to be negligible for practical calculations. Among the specific

3 generators, X, tested by Coveyou and MacPherscn, there is one, A = 515,

Rk it i b B o,

which has good statistical preperties and which may he easily produced by

a machine independent subroutine. (In a subroutine designed for use on com-
puters of varying word length, specifying a fixed 47-bit integer through

data statements would be difficult. However, 515 may easily be produced
by multiplying 5's afier the exact multiple precision representation needed
has been establiched.) In addition the cho’xée of P = 247 and A = 515 has

an added advantage: this particular choice of a RNG has seen long usage

{severai thousand hours on a TDC 1004 at Oak Ridge National Laboratory)

in Monte Carlo computations without any appareat problems.
A.3 MULTIPLE PRECISION REPRESENTATION

In the basic algorithm used by MIRAN, A and the Rz:. values will
be 47-bit integers. This may exceed machine capacity. To keep all arith-
metic operations from overflowing a single machine word, these integers
are stored in an array wherein each word of the array constituies a 'digit"
in a representation of the integer to a particular base, This basis, called
BASE, is chosen at execution time so that (BASE)2 does not exceel the maxi-
mum integer allowed on the particular computer being used. Thus, for
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example, on a machine with 35-bit words (unsigned), BASE would be 2

and each 47-bit integer would be broken down into 3 words as follows:

B T —y 1 e

47-bit Integer Multiple Precision Representation
b1b2.....b13b]4....b30b31....b47 +0..... Obl....b13 word 3
g +0..... 0b14....b30 word 2
] +0..... 0 b31....b47 word 1

W Tp—

Note that the 'digits' are stored in the array ia 'reverse’ order, i.e.,
word 1 is the least significant 17 bits of the number. Also, since 17 does
not go evenly into 47, the last word contains only 13 bits.

Arithmetic in a multiple precision representation is carried out in

Ml il 0

the same manner as arithmetic is normally done by hand. The addition of
two numbers, for example, is done digit by digit. When two 'digits', or words,

are added there may be an overflow into the 18th bit of the result. This must
be detected, the overflow cleared nut, and a carry of 1 addec into the next
higher 'digit'. Multiplication is slightly more complex. It is again carried
out digit by digit and the resulting products are added, keeping them in appro-
priate columns, to get the final product. The multiplication of two ‘digits®
produces, of course, a two-digit product which is initially contained in a
single computer word., This must be broken down into a high-order digit and
a low-order digit with the high-order digit being added into the next higher
column of the result. As each column is added, a carry over into the next
higher column may be needed. Thus, in our example where three words were
used for each integer, nine multiplies and several additions would be needed
to form the sizx-word full product as schematized below.




rv"'n., i T S itde St : T T = Rt ki il

TR TR AR T PITCAT

M

ds dg 4
? dg 4y 4
E hr
i : hor oy
hy1 a1
% b t1p
E By tap
: by fag
: by 43
| hos  tg3
Bas 133
S¢ Sg S4 S3 S Sy

where hij and Lij are the high and low order parts of the product of
di and d}f .
A.4 USE OF MIRAN PACKAGE
Inilialization:
Before generating any random numbers, it is necessary to make an
initialization call. This is done by the statement

CALL RANSET (MAXINT, NSTART)

where MAXINT is the maximum integer allowed on the computer (or compiler)
being used. NSTART is the starting value, Ro’ to be used in the random
number sequence. If NSTART is less than or equalto 0, a default value

of 2001 is supplied for NSTART. If NSTART is even, the next higher odd
number will be used.
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For example MAXINT = 23° -1 on a 1108, 2%8 -1 on a cDC-6600, ete.
CGoad valtes for NSTART are any odd integer although frequent use of
small odd integers is nol recommended for calculations employing a re-

latively small number of random numbers.

The rancem numbers are generated in subroutine URAND which may
be used as either a funciion subroutine or as an ordinary subroutine return-

ing a value. Thus, cither

CALL URAND(R)
or
R = URAND(X)

will store a uniform random number in R. (Note that in the second form

the same random number will also be stored in X. Thus, X mustbe a

Fortran variable and not a constant.)

Limitaticns of MIRAN:

MIRAN will work on all computers where MAXINT is greater than
1023 and less than 294.

could be extended if it were ever necessary.)

(These limits are practical and not theoretical and

A.5 MIRAN PROGRAM DETAILS

The Fortran listings of the two MIRAN routines URAND and RANSET
are presented in Figures A-1 and A-2. The accompanying logic fiow is de-
tailed in Figures A-3 and A-4. Additional explanation of the last step in the
URAND logic is provided below.

The two subroutines URAND and RANSET communicate throuzh a

labelled common, MIRNG which contains

RAN(10) - An array containing the 'digits' of the current (or last)

multiple precision random integer
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Figure A~1. Fortran listing of URAND
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START

U el

___ICIear out SUM array
30,

1

For i = 1, NWRD and j=1, NWRD+1 - i:
Multiply i’ 'digit' of RAN by ' ‘Gigit' of GEN
Separate the 'two-digit' product into a high-order part HPROD
and low-order part, LPRCD
Add LPROD into the (i + j-1)™ column of SUM
Add HPROD into :he (i + ])th column of SUM

For i=1, NWRD-1

Separate ith word of SUM into a single 'digit' plus the carry

into the next higher column

Add the carry into the (i + 1)th word of SUM

5|

Y

Reduce the last word of SUM modulo MOD

3

Store SUM in RAN for next entry to URAND

A

Convert SUM to single precision floating point and divide it by
P. Return this as the random number

END
Figure A-3, Logic flow chart for URAND
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‘START

Determine IB such that 4IB <MAXINT <4IB+1

BASE = 2P

Calculate the number of words needed to represent 47-bit
integers to the base, BASE.

Calculate REM, number of bits in the last word of the
representation. M0D=2REM

Get floating point values of BASE and MOD

|

Clear out random number and generator arrays

]

Calculate x= 515 by multiplying by 5 15 times

!

If user gave NSTART =0, setNSTART to defauit value of
2001

Make sure NSTART is odd.

Convert NSTART to multiple precision representation.

END

Figure A-4, Logic flow chart for RANSET




i

GEN(10) - An array containing the generator A(= 515) in multiple
precision representation

NWRD - The number of words used in the multiple precision
representation of an integer

BASE - The base used in the multiple precision representation

MOD - The maximum value of the highest order 'digit* in the
multiple precision representation

FBASE - Floating point value of BASE

FMOD - Floating point value of MOD

ItAN, GEN, NWRD, and NBASE are Fortran integers; FBASE and FMOD are

Fortran real quantities.

An alternative method (unfortunately, not machine independent) of giving
the routine a starting value is to save the array RAN at the end of a run and to
restore RAN at the start of the new run (just after the RANSET call).

In the last step of the URAND flow the cbjective is conversion
of the multiple precision integer random number R to a floating point
random number X between 0 and 1. The mulliple precision integer
produced by the random number algorithm is represented by the 'digits*

LysTgpevaee, X (remember that I is the lowest order digit. Thus,

9 -
R = 1y +(BASE)-1, + (BASE)*rg +....+ (BASE)N Try .
Notice that we have, from the manner in which N and MOD were established,

p = (BasE)N 1. mop .
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The uniform random number desired is given by R/P. Thus we have,

_R_ 1 T2 T3
X—~i3— +

3+
®aseNL.mop  (BasE)N%mop  (BASE)N . mMop

™N-1 ™N

+eeeot pASE-MOD T MOD

_ 1 1 1 1
= MOD(rN+ BASE(rN-1+ seea B—A"s'—E' (r2+B—-AS-E-.r1)"'°))

Starting from the right it is easy to compute this iteratively.

A.6 FIRST 100 RANDOM NUMBERS PRODUCED BY MIRAN

For checkout purposes, Table A-1 lists the first 100 random num-
bers produced by MIRAN when the default value of NSTART, 2001, is used
as the starting random number,
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