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ABSTRACT

An experimental investigation of the effects of spin induced
distortion of the boundary layer on a spinning 10° half angle cone at
Mach 2, 3 and 4 is reported. The profile of the location of boundary
layer transition has been determined completely about the surface of
the cone model from spark shadowgraphs., These spark shadowgraphs were
taken with the model mounted on an offset strut which was rolled
incrementally in azimuth to reveal the entire surface of the model,

The profile of the boundary layer thickness at the base of the ccne has
also been determined from the spark shadowgraphs, Strain gage balance
measurements of Magnus and normal force were made for three significant-
ly different boundary layer configurations and confirm the extreme
sensitivity of Magnus to boundary layer configuration.
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I, INTRODUCTION

The Magnus force is a side force which occurs on -a spinning
projectile in flight at angle of attack. Figure 1 illustrates the
orientation and sign convention of the normal and side forces on 2
projectile, This side foxce and its associated moment are usually
small; however, the effect of the Magnus force is an important
consideration since it acts to undamp the projectile throughout the
flight,

Insufficient experimental data are available to provide prorer
understanding of the parumeters governing the Magnus force. Since the
Magnus force is usually small compared to the normal force and the
model must be spun to high rotational speeds, obtaining measurements of
the Magnus forze is a difficult task,

Theoretic.i analyses of the flow over a spinaning bcdy at angle of
attack are not sufficiently general in application to be useful in the
design of artillery projectiles and missiles. The theoretical solutions
available are perturbation analyses and, as such, are valid only for
small angle of attack and small spin rate. These analyses include two
flow cases: (1) the incompressible flow over a spinning cylinderl:z’3
oriented longitudinally with the flow; and (2) supersonic flow over a
spinning cone4, These analyses model the Magnus force as being caused
by spin induced distortion of the boundary layer. The Magnus force
calculated according to this model is very small, Jacobson3 suggests
that a more critical case would be where transition of the boundary
layer from laminar to turbulent occurs on the body, In this case, spin
induced distortion would affect the location of boundary layer transi-
tion as well as the development of the boundary layer., This would pre-
sumably result in a much larger force.

*

The objectives of the experimental effort reported here are to:
(1) obtain data which will be of value in guiding the development of a
useful theoretical treatment of the flow over a spinning body of
revolution, and (2) verify the significance of the boundary layer
configuration-~-laminar, transitional, turbulent--on the resulting
Magnus force. A cone model was chosen for this experiment since its
shape offers convenient simplificaticn in the equations of motion, and
also because accurate solutions of the inviscid supersonic flow over a
cone are available®,

II. THE EXPERIMENT

A. Flow Visualization

Normally, the flow along a model mounted in a wind tunnel is
visible at only two locations on the model surface--the top and the

* References are listed on page 17.
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bottom. Using an offset strut and rolling the model incrementally about
the axis of the strut enables the entire surface of the model to be
viewed., This technique has been applied to obtain spark shadowgraphs

of the flow about the entire circumference of a 10° half angle cone
model with a 7,779 cm diameter base for the following test conditions:
M= 2, o =2° and 4°; and M = 3, a = 2°; at spin rates from 0 to

30,000 RPM.

Shadowgraphs were taken at 15° increiments in azimuth., Pictures
were obtained as the model spun down from a high spin rate. In addition,
some data were obtained while the model was held at a constant spin rate.
The data obtained at a constant spin rate were more consistent than that
obtained while the model was coasting down in spin rate. Figure 2 shows
the coordinate system and sign convention used, An example of the
shadowgraphs obtained is shown in Figure 3. In this case the wind-side
boundary layer is completely laminar, and transition to turbulence on
the lee-side takes place 35% of the distance from the tip of the cone
to the base.

B. Force Measurements

Measurements of Magnus and normal force have been obtained using
the strain gage balance technique. Data have been obtained for tumnel
operating conditions duplicating that for the spark shadowgraphs and,
in addition, at lower values of tunnel total pressure to yield sigpifi-
cantly different bourn iary layer configurations on the model, The
measurements were made while holding the model at a fixed angle of
attack. The model was spun up to 35,000 RPM, and data were recorded
on magnetic tape at one second intervals as the model cecasted down to
zero spin, The recorded data were reduced directly from the magnetic
tape using a Magnus data reduction program on the BRL digital computer.

An example showing the scatter experienced in the individual data
points is given in Figure 4., The data shown are corrected to zero at
zero spin. The standard error of estimate (the root-mean-square of the
deviations of the data about a straight line fitted to the data) is
indicated for each set of data by epsilon (¢). The uncertainty in the
determination of C,, is estimated to vary from * 0.0002 for CY > 0,002
to * 0,00005 for CY < 0,002,

C. Test Facility

The test facility used for these tests is Supersonic Wind Tunnel
No. 1 of the Ballistic Research Laboratories. This facility is a
continuous flow, symmetric, flexible nozzle wind tunnel with a test
section size of 38 x 33 cm, The tunnel total temperature was nominally
308 K and the tunnel total pressure was varied from .6 atm. to 4.6 atm,
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III., RESULTS AND DISCUSSION

A. Boundary Layer Transition

The location of boundary layer transition completely about the
circumference of the cone model was determined from the spark shadow-
graphs. The position of transition was identified as the first
indication of a change in the appearance of the laminar boundary layer.
This criteria was used because it was easier to identify in the shadow-
graphs than, say, the location of the boundaxry layer becoming fully
turbulent. No attempt has been made to relate the location of boundary
layer transition determined as indicated above with that determined by
other instrumentation.

An example of the transition data is shown in Figure 5 in the form
of pictures of two come models which have been painted to reveal the
regions of laminar and turbulent boundary layer--white represents
laminar and black represents turbulent. These data are for M = 2 and
a = 4°, The region of laminar boundary layer is seen to be distorted
in the direction of model rotation by spin. The transition data are
shown plotted in Figures 6, 7 and 8 such that the distance from the
center of the circle to the location of transition represents the
distance from the tip of the cone along a ray of the cone to the
position of boundary layer transition. The trends indicated are:

(1) transition is delayed when the spin velocity is in the same
direction as the cross-flow velocity; and (2) transition occurs sooner
when the spin velocity opposes the cross-flow velocity. It is inter-
esting to note that the data for M = 3 indicate an enlarged region of
laminar boundary layer compared to that for M = 2; however, the trend
of the data with spin is identical.

B. Boundary Layer Thickness

In addition to the location of boundary layer transition, measure-
ments of the apparent boundary layer thickness at the base of the cone
were made from the spark shadowgraphs. These data are shown in
Figures 9, For zero spin, the profile is symmetric. As spin is in-
creased, the profile of the thickness of the boundary layer becomes
increasingly asymmetric. Another trend indicated is that the thickness
of the boundary layer at the base becomes more uniform about the cir-
cumference as the spin rate is increased.

C. Wall Pressure Distribution

An estimate has been made of the change in pressure distribution
about the cone model caused by the spin distorted boundary layer.
This has been accomplished by obtaining a value of §*/§ from the tables
in NAVORD Report 42825 assuming a 1/7 power law velocity profile and
adiabatic wall, This ratio multiplied by the measured value of §, the
boundary layer thickness, yields a value for the displacement thickness
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of the boundary layer. This value of &* has heen added to the radius
of the base of the cone and, extending a straight line to the tip of
the cone, defines an effective conical body that is no longer symmetric
due to the distortion of the boundary layer.

The pressure distribution as a function of e¢ffective cone angle and
azimuthal position has been interpolatec for in the tables published
in AGARDograph 1376, An example of the pressure distribution obtained
is shown in Figure 10, This figure shows two pressure distributions:
(1) 10° ccne plus boundary layer for zero spin; and (2) 10° cone plus
boundary layer for a spin rate of 30,000 RPM., The pressure distribu-
tion for w > § is asymmetric. This is indicated by the separation of
the lines at values of ¢ between 180° and 360° on the cone. The change
in wall pressure indicated at ¢ = 240° is about 1379 dynes/cm“., Values
of Magnus and normal force coefficients have been calculated by integra-
ting the pressure distribution about the circumference of the model.
The results are discussed in the next section where the calculated
value is compared to values measured using a strain gage balance,

D. Force Measurements

An example of the normal force data is shown in Figure 11, The
measured values of normal force are compared to values obtained from
the tables of inviscid calculations in reference 6. The agreement is
excellent up to the highest value of angle of attack, 8°, This indicates
the insensitivity of the normal force to boundary layer configuration,

The Magnus force measured for the case in which boundary layer
transition occurred naturally about the entire surface of the model is
shown in Figure 12, The data shown are curve fits of the individual
data points and are corrected to zero at zero spin rate., The Magnus
force is seen to be extremely small for this boundary layer configura-
tion; and, comparing the value for a = 4° at the highest spin rate with
the normal force for o = 4°, it is seen that the Magnus force is
approximately 2% of the normal force.

Also shown in Figuxre 12 are values of Magnus foree coefficient
calculated from the pressure distribution as discussed earlier. The
calculated Magnus coefficients exhibit poor agreement with the measured
values., Also, the trends indicated by the measured values in angle of
attack and spin rate are not indicated by the calculated values. This
is probably due to the crudeness of the calculatinn; however, it could
also indicate that mechanisms in addition to the distortion of the
boundary layer play a significant role in causing the side forxce,
Additional mechanisms include asymmetry in the pressure distrib-ition
through the boundary layer and asymmetry in the wall shear stress,

Data are compared in Figure 13 for different boundary layer con-
figurations. The solid line represents data obtained at a low value
of tunnel total pressure for which the boundary layer remained laminar
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cn the wind-side while transition to turbulence occurred rear the tip
of the cone for the lee-side. This resulted in a large difference in
thickness cf the boundary layer at the base of the cone from the wind
to the lee-side (lee: § = .025-cm; wind: & =~ .002-cm). The broken
line represents data obtained for tunnel conditions that resulted in
transition to turbulence occurring completely about the model surface
before reaching the base. It is seen that the configuration with the
greatest difference in boundary layer thickness from the wind to the
lee-side results in the largest Magnus force. For the configurations
shown, the Magnus force is changed by a factor of eight by a change in
Reynolds number of only a factor of three.

In Figure 14, a comparison similar to that in Figure 13 is made.
The comparison in Figure 14 is between a boundary layer tripped to
turbulent by a sand strip placed one-inch from the tip of the cone and
a boundary layer which remained laminar on the wind-side. The sand
strip was one-quarter-inch wide and consisted of #80 sand grit. Again,
the boundary layer configuration resulting in the greatest difference
in boundary layer thickness from the wind to the lee-side results in
the largest Magnus force. A complete tabulation of the strain gage
balance data is given in Table 1. In comparing the measured Magnus
force coefficients obtained in this experiment to those published in
reference 7, no agreement either in trend or magnitude is noted for the
data at M = 2, Rez ~ 2 x 10, However, the data from reference 7 is in

reasonable agreement with the data of this experiment for M = 3,
Rez ~ 2 x 10°, Close agreement for Magnus force between experiments

conducted at different test facilities, especially at tunnel operating
conditions which yield laminar or transitional boundary layer configura-
tions, should not be expected due to the extreme sensitivity of the
Magnus force to boundary layer configuration.

IV. CONCLUSIONS

The following conclusiors have been reached upon examination of
the experimental data,

(1) The distortion of spin on the location of boundary layer
transition reveals the trends that transition is delayed where the
cross~-flow velocity adds to the spin velocity and occurs earlier where
the cross-flow velocity opposes the spin velocity,

(2) Spin induced distortion of the boundary layer results in
asymmetxyy in the profile of the boundary layer thickness.

(3) The Magnus force is caused, at least in part, by spin induced
distcrtion of the boundary layex.
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(4) The Magnus force is extremely sensitive to buundary layer
configuration. The Magnus force is greatest for the boundary layer
configu~ration that has the greatest lifference in thickness of the

boundary layer from the wind to the lee-side: -

This zxperiment has been conducted with the intent of providing
experimental data which would be of value in guiding the development of
a useful theoretical analysis. The data indicate trend and magnitude
of effects that a generally applicable analysis must be capable of
predicting. Much additional data are needed, Detailed suzveys of
boundary layer characteristics on a spinning body of revolution are

of particular interest.
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