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ABSTRACT

After a brief review of the history of material failure studies and

of measurements of stored energy in plastically deformed bodies, energy and

stress and strain relations are developed for both elastic and plastic

deformation in uniaxial strain. The physical effects of plastic deformation

are discussed and foundations are laid for thermodynamic calculations of

plastically deformed materials. Calculations of both thermodynamic and

mechanical parameters are described for uniaxial strain with and without

energy storage in internal strains. Conditions of uniaxial strain are found

to yield new thermodynamic relations which are useful for synthesizing con­

stitutive relations.
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I. INTRODUCTION

From the earliest times men have been concerned with the conditions of

failure of structural materials. Little is known of early Egyptian, Greek and

Roman knowledge of the subject, though it is evident from their extensive con­

structions that they had some effective working rules. During the Renaissance

there began to be recorded systematic attempts to study and develop the con­

cepts of material failure. Leonardo da Vinci describes an apparatus for testing

the strength of iron wire. In a note on "Testing the Strength of Iron ~Jires of

Various Lengths" he says, "... The object of this test is to find the load -an iron

wire can carry. Attach an iron wire two braccia long to something that will

firmly support it, then attach a basket or any similar container to the wire and

feed into the basket some fine sand through a small hole placed at the end of a

hopper. A spring is fixed so it will close the hole as soon as the wire breaks.

The basket is not upset while falling, since it falls through a very short dis­

tance. The weight of sand and the location of the fracture of the wire are to

be recorded. The test is repeated several times to check the results. Then a

wire of one-half the previous length is tested and the additional weight it

carries is recorded; then a wire of one-fourth length is tested and so forth,

noting each time the ultimate strength and the location of the fracture."

(Timoshenko, 1953) It is particularly interesting to note that even here, in

the fifteenth century, the concepts of graduated tests, systematic recording of

observations, reproducibility, and variation of a single parameter while holding

others constant were fully developed.

Many of the most famous names in science were involved with problems of

material failure: Galileo, Euler, Lagrange, Coulomb, Poisson and Kelvin, to name

but a few. The basic concepts of plasticity were developed by Barre Saint-Venant

and described in several papers during the latter half of the nineteenth century.
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This was a period of intensive activity in mechanics and one subject of interest

was the search for a suitable criterion for failure of ductile materials. James

Clerk Maxwell described the distortion energy concept of failure in a letter to

Lord Kelvin in 1856. Although criteria based on this concept are widely

accepted today, it did not appear in print until the early part of this century,

when it was developed independently by M. T. Huber and R. von Mises.

Since 1934 when E. Orowan, M. Polanyi and G. I. Taylor independently.

developed the concept, and especially since 1950, failure theories of ductile

solids have been based primarily on dislocation behavior. A great body of

information on dislocations and their properties and behavior has grown up

during the last twenty years, and it is realized that the continuum concepts of

failure are, in a microscopic sense, ill founded. It is not possible to dis­

place them, however, because the theory of dislocations is incomplete, because

it is much more complicated than continuum theories, because continuum theories

work quite well, and because there have been inadequate and only partially

effective efforts to bridge the chasm which separates the microscopic behavior

of dislocations and the macroscopic behavior of real materials.

Because of this gap between microscopic understanding and macroscopic

behavior, there has been an intensive parallel effort to develop and refine

continuum concepts of plasticity and yield during recent years.

Until .the 1940's there was little concern about the thermodynamics of

plastic strain. In 1948 Carl Eckart p~blished an important paper on the thermo­

dynamics of anelastic strain, and Tolman and Fine discussed applications of the

Onsager. theory of irreversible thermodynamics to problems of plasticity. These

were followed by Bridgman's paper of 1950, an article by Reiner in 1958, and

then by a spate of articles in the 1960's, of which perhaps the best known are

those by B. Coleman and his coworkers, Meixner, and by G. A. Kluitenberg.
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Except for Bridgman's paper, most of these have been concerned with general and

quite abstract formulations. Indeed it is quite often very difficult to ferret

out the underlying physical assumptions on which the work is based.

There appear, then, to be two needs for current work. One is to formulate

explicitly and sharply physical foundations for a thermodynamic theory of

plasticity which can be grasped by other than trained mathematicians and then to

apply these to a relatively simple yet experimentally realistic physical situation.

The other is to join the continuum thermodynamic-mechanics developments to

dislocation theory in a manner which may be useful to both subjects.

In the present report some progress is made toward each of these goals.

Further, since the question of stored energy in plastic work is everpresent and

basic to the subject, a brief review of the state of stored energy measurements

is given.

The principal results of the theoretical development are that

(1) a point of view is developed that assumes the thermodynamics of plastic

deformation to be essentially reversible if the correct variables are chosen;

(2) theoretical calculations and experiments in one-dimensional strain introduce

density as a variable, and this leads to phenomena and thermodynamic relations

whose utility goes beyond that found for conditions of uniaxial stress;

(3) a combination of thermodynamics and dislocation theory is fruitful for both

fields, but the required relations are not completely developed here.
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II. EXPERIMENTAL MEASUREMENTS OF STORED ENERGY OF DEFORMATION

Methods for measuring the stored energy in a plastically deformed solid

may be put into two categories:

(1) single-step methods in which all the necessary measurements are made during

the deformation;

(2) two-step methods in which the stored energy is measured following deformation.

2.1 Single-Step Methods

These methods are based on a direct application of the first law of

thermodynamics. The stored energy Es is the algebraic sum of the work, W,

and the heat, Q. Work may be evaluated from stress and strain measurements. The

heat effect is determined either from temperature rise of the specimen deformed

under adiabatic conditions or by calorimetry.

The first successful attempt to measure the stored energy in a material

undergoing a deformation was made by Hort (1906, 1907). In his experiments,

Hort conducted tensile tests in iron in a water calorimeter. The calorimeter

was calibrated by electric heating and thermoelastic cooling. For true strains

ranging from 0.034 - 0.109, the measurement of stored energy in iron gave values

of 2.2 to 5. 1 cal/~ atom.

Farren and Taylor (1925) determined the heat evolution associated with

nearly adiabatic extension of po1ycrystalline specimens of steel, copper, and

aluminum, and of a single crystal of aluminum. The samples were pulled for a

short time and work was obtained from a recorded stress-strain curve. The heat

evolved was computed from temperature rise in the specimen measured with a thermo­

couple placed inside an axial ho·le in the specimen. In 1934, Taylor and Quinney

repeated these measurements by deforming steel and copper under torsion to obtain

higher strains. Mechanical work was evaluated as in their previous work while
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heat was measured both by a thermocouple and by a water calorimeter. The two

methods gave similar results.

Maier and Anderson (1934) were the first to measure energy stored during

wire drawing by the single step method. Their working metals were aluminum and

copper.

The measurement of stored energy under compression was initiated by

Kunin and Senilov (1-936). They compressed copper by stages in a testing machine;

work was measured by special "crusher" gauges. Epifanov and Rebinder (1949)·

determined the energy stored in chips of aluminum formed by drilling specimens

inside a calorimeter. The difference between the energy input to the drill and

heat evolved was considered to be the energy stored in the chips.

Eugene (1953, 1954) determined stored energies in lead; copper, and

steel by using a freely falling weight to deform the specimens. He obtained

stored energy from the difference between the known energy of the weight striking

the specimen and the heat effects as measured by its temperature rise. He was

able to find very small amounts of stored energy i.e. less than 1% compared to

the average of around 10% reported by earlier workers.

Williams (1960) developed a device in which specimens were deformed by

freely falling hammers of tungsten carbide. Since the period of contact is less

than 2 x 10-3 sec, the deformation induced in the sample is assumed to be adiabatic.

The sample is supported by a single thermocouple which measures the temperature

rise. The work term is difficult to evaluate because of the mechanical losses

due to suspension of the hammers. . Heat transfer between the hammers and the

sample is small because of the short interval of contact between them. Heat

loss due to interaction with the surroundings is minimized by performing the

experiments in vacuum. Williams (1961, 1962, 1963) has determined the stored

energy in copper and copper-silver alloy by this method.
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All of the measurements described above were carried out at room tem­

perature.

Erdmann and Jahoda (1964) designed a device for deforming metal wires

at low temperatures and for simultaneously measuring thermal conductivity,

electrical conductivity, and heat liberated by the deformation. The experiment

is beset with the usual difficulties associated with low temperature experi­

ments which leads to some uncertainty in data reduction.

Williams (1963) also developed yet another apparatus in which the heat

developed during the deformation of a sample under tension is measured by the

amount of vaporization of a working fluid. The method is generally applicable

from room temperature to 77°K. Wolfenden and Appleton (1963) have developed

a method similar to 'the calorimetry of Williams. The fluid used is liquid

nitrogen. These authors determined the stored energy in both single and poly­

crystals of copper and aluminum.

O. W. Dillon (1962, 1966, 1968) in a series of papers determined the heat

generated during torsional oscillations of aluminum and copper tube~ and the

heat generated d~ring the propagation of plastic waves in aluminum. This

apparatus is based on the design of Farren and Taylor (1925).

2.2 Two-Step Methods

In these methods a material is deformed plastically by any suitable

process. The energy spent in deformation mayor may not be measured. The

stored energy is determined in a subsequent step by measuring the difference in

the thermal behavior of the deformed and a reference specimen in attaining

identical final states. The difference in these heat effects is the stored

energy of cold work.
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Two step methods may be divided into two general classes.

(1) Annealing methods.

(2) Reaction methods.

(1) Annealing methods may be further subdivided into:

(a) Isothermal annealing, where the stored energy is released at a constant

temperature. The energy release may be determined either as a function of time

or as a total quantity after a chosen interval of annealing time.

(b) Anisothermal annealing, where the temperature is increased at a set rate,

and the released energy is measured as a function of temperature.

Annealing methods have the added advantage of providing information on

the kinetics of the release of stored energy.

(2) Reaction method. In this method the plastically deformed and standard

specimens of a material are allowed to react with a molten substance in a calori­

meter. The difference between the heats of reaction of standard and deformed

specimens is considered to be the stored energy of plastic deformation.

Isothermal Annealing Method

Borelius and his coworkers (1953) seem to have been the first to measure

stored energy by this method. They used an isothermal jacket microcalorimeter

to investigate the energy evolved at 1000e by aluminum, copper, and zinc immedi­

ately after rolling and the energy released at 600 e by aluminum and copper after

a lapse of 41 hours and 45 hours respectively. The calorimeter consisted of a

vapor thermostat, which provided an isothermal environment for a chamber con­

taining the specimen. The temperature was, measured by 30 junctions of sensitive

differential thermopile, one set of which was in contact with the chamber. The

other set was in contact with the specimen. In operation, the sample was pre­

heated and was rapidly placed ~n position. The release of heat from the speci­

men was indicated by the temperature difference across the pile.
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° ..Astrom (1956, 1~64) used the same equipment to study the release of

stored energy from aluminum and molybdenum plastically deformed under compression.

Gordon (1954, 1955) also used the Borelius et al. type of calorimeter and method

to determine energy stored and the kinetics of isothermal release in the range

150°C - 220°C in copper specimens deformed under tension. Bailey and Hirsch

(1960) have measured stored energy in silver by this means.

Anisotherma1 Annealing Methods

There are two basic methods which may be used to obtain results under

anisotherma1 annealing. Both methods are normally used in a differential

arrangement where the cold worked sample is compared to an annealed sample. In

one case, the lI adiabatic method," both samples are heated internally so as to

minimize the transfer of heat between samples and the evacuated furnace, and

the stored energy is given by the difference between powers required to heat

the two samples. In the second method the heat required to raise the tempera­

ture of the samples is determined from the transfer of heat from the furnace.

The two specimens are placed so as to minimize the thermal interaction between

them. This method is called "differentia1 thermal analysis."

The adiabatic method was first used by Quinney and Taylor (1937) to

determine stored energies in copper, 70 copper - 30 zinc alloy, aluminum, iron

and nickel. We1ber (1952) and C1arebrough et a1. (1952) built equipment based

on the design of Quinney and Taylor. C1arebrough and his coworkers have measured

the release of energy stored in nickel and copper deformed by various processes.

A summary of these investigations has been given by Boas (1957).

The differential thermal analysis annealing method was first used by
'.

Sato (1931). He obtained differential heating curves for cold worked specimens

of 70 Cu - 30 Zn, silver, copper, aluminum, iron, nickel and brasses. He

annealed standard specimens of identical materials placed side by side, but not
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in contact with, a block of silver. The block was heated at the rate of 5°C/min

to the temperature at which the standard had been annealed. The heating was

repeated without moving the specimens to evaluate the corrections necessary to

account for differences between the two specimens not due to cold work.

Henderson and Koehler (1956) have used the technique to study energy

release in deformed copper and brass at 77°k. These materials were deformed

under compres'sion arid the energy release was measured from 77°k to 300o k.

Recently Van den Beukel (1963) has repeated Henderson and Koehler's work and

has also studied the energy release in deformed nickel, silver, and gold.

Reaction Methods

Reactions which have been used for measuring stored energy of plastic

work are dissolution in aqueous solvents and oxidation, and dissolution in liquid

tin. In order to measure the energy difference between a deformed and an unde­

formed sample by measuring the difference between the heats of solution in any

substance, it is necessary that the heat of solution be small, the solubility

large and the rate of solution at a moderate temperature very rapid. The only

solvents which can thus qualify are liquid metals. The application of this

method, though started in 1929 by Smith (1929), has been applied with success

starting with the works of Bever (1951) and his associates. The method they

currently use is given by Howlett et al. (1962). To date, measurements by

reaction methods have been limited to copper-gold and silver-gold alloys.

Some other calorimeters which may be used to study release of deforma­

tion energy are those constructed by Stansbury et al. (1959), Sherwin (1964),

Arndt and Fujita (1963), and Calvet and Prat (1963).

9



2.3 Status of Stored Energy Measurements and Current Problems

The literature now contains a considerable number of investigations in

which the stored energy of plastic deformation has been measured. The distribu-

tion of published papers in time between 1900 and 1965 is shown in

Figure 1. However, it is still difficult to evaluate critically the relative

accuracy of the various methods described above. There are at least three reasons

for this situation..

(1) Scarcity of data for any metal which can be used as a standard. Polycrys­

talline copper comes closest.

(2) Reporting only of reproducibility and not accuracy of results by investi-

gators. This is not adequate since accuracy is indicated by reproducibility only

in the absence of systematic errors.

(3) The exact agreement between different methods should be possible only under

certain conditions. These conditions concern the characteristics of calori-

meters, thermocouple behavior. thermoelastic effects. the process by which defor­

mation is induced in a specimen. etc. However. within limitations imposed by

the above three factors. some comparisons are possible; these have been made by

Williams (1967) in a recent review article.

An appreciation of the basis for limited comparisons among experimental

results may be obtained by simply listing variables which affect the quantity of

stored energy in a cold worked material.

A. Material as a variable
1. Puri ty
2. Composition of solid solution alloys
3. Crystallinity. i.e. single crystal or polycrystal
4. If polycrystalline, the effect of grain size and grain structure
5. Dislocation characteristics. vacancies, etc.

B. Process of deformation as a variables

1. Extension

2. Compression

10
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3. Torsion
4. Roll ing
5. Wire drawing
6. Cutting processes such as filing, drilling, etc.
7. Deformation in fatigue, i.e. cyclic loading
8. Degree and rate of deformation

C. Effects of temperature on cold work.

Present acti,vity in the field is directed toward evolving a model or

models which will explain the mechanisms of energy storage and release. The

present interpre~tion of energy storage is based on ideas of the production of

inhomogeneous lattice strains and the generation of imperfections like disloca-

tions, point defects, stacking faults in hexagonal materials, twins and reduc-

tion of order in alloys. However, a quantitative interpretation of stored

energy processes remains uncertain primarily due to lack of a precise accepted

definition of cold work and to the degree of inaccuracy in measurement of

stored energy.

It will be seen from the above .description that the stored energy of

cold work has been measured exclusively in metals. Even among metals, copper,

nickel, aluminum; silver and iron, have been most commonly investigated;

infrequent or solitary measurements of stored energy of cold work in zinc, lead

tin do exist. The stored energy of cold work has also been investigated in a

. few alloys, notably in Cu-Ag, Cu-Au, and Cu-Ni. The absence of any such inves-
I .

tigation in ionic compounds is striking considering the large amount of work

done in LiF, MgO and other ionic solids (see for example, (Gilman, 1969)).
"

Laboratories where investigations on the stored energy of cold work and

its release mechanism are being carried out at present are few .. The prominent

laboratories and persons involved in these measurements are:

(1) Oak Ridge National Laboratory, Oak Ridge, Tenn. R. O. Williams, A.

Wolfenden, and R. A. Vandermeer.

12
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(2)

(3)

(4)

(5)

(6)
~,

Dept. of Metallurgy, MIT, Cambridge, Mass. M. B. Bever and A. L. Titchener

Dept. of Metallurgical Engineering, lIT, Illinois, P. Gordon

Cavendish Laboratory, Cambridge, U.K., J. E. Bailey and P. B. Hirsch

Dept. of Metallurgy, Univ. of Liverpool, U.K., A. S. Appleton

. Div. of Tribophysics, C.S.I.R.O., Univ. of Melbourne, Australia,

L. M. Clarebrough, M. E. Hargreaves, M. H. Loretto and A. K. Head

Present ideas about the mechanisms of storage of cold work energy and

its release are given in what follows.

The small percentage (5 to 10%) of the energy expended in plastically

deforming a metal, which is stored in the deformed metal, is associated with

defects generated during the deformation. A significant part of the stored

energy is associated with the distribution and density of dislocations in the

bulk of the deformed metal. The remaining part of the stored energy is associ­

ated with imperfections like point defects, vacancies, twins, stacking faults,

etc. However, t~is partition of stored energy among the various imperfections

as well as the absolute value of the stored energy is dependent on purity,

degree of deformation, temperature of d~formation, and grain size. In general,

the energy stored during plastic deformation of a metal increases with the degree

of deformation, and mayor may not reach a saturation before fracturing. Also

for a given 'extent of deformation, the value of stored energy increases with

decreasing temperature of deformation of a metal. In general, the higher the

purity·of a metal, the lower the stored energy of.cold work. And lastly, for

metals, stored energy for a given deformation increases with decrease in grain

size for small strains ($0.20) and then becomes relatively independent of grain

size for large strains.

The inference about apportionment of stored energy among the various

imperfections in a metal is made from the correlation of release of stored

13



energy with changes in other physical properties, e.g., changes in electrical

resistivity, density and with str~ctural studies using conventional metallo­

graphic techniques and electron transmission microscopy.

The release of stored energy proceeds in two or more stages. However the

various processes by which the annealed state is reached are classified into two

categories -- recovery and recrystallization. The apportionment of the released
. , .

-t:-

energy into these two classes is based on the definition that recovery encompasses

all those annealing phenomena which precede recrystallization in any local region

of the material. On the other hand, recrystallization is defined as the appear­

ance of comparatively strain-free grains which are separated from the deformed

matrix or from other recrystallized grains by high-angle grain boundaries and

alternatively, recrystallization may be defined as the appearance of virtually

strain-free grains' which have grown in the deformed matrix by the movement of

large angle grain boundaries.

A common feature in all the investigations on metals and alloys is that

recrystallization is accompanied by a marked release of stored energy as well as

·a decrease in electrical resistivity and an increase in density. Electron micro­

scope observations indicate that this release of energy and concomittant changes

in the electrical resistivity and density are associated with a change in the

distribution and density of dislocations. Hence the magn;'tude of energy released

during recrystallization can be associated with the energy of the dislocations.

Bailey and Hirsch (1960) seem to have been the first to establish such an

association, which they did for polycrystalline silver. However, Clarebrough

et al. (1961) disputed the conclusion of Bailey and Hirsch that theory of flow

stress involving piled up groups of dislocations is not applicable to silver.

For recovery the experimental situation is not so well defined. The

ratio of stored energy released during recovery to total stored energy varies

between 0.03 to 0.7 depending on the purity of material, strain, and temperature

14



of deformation. Evaluations of changes in other properties accompanying recovery

in metals deformed at room temperature have been aided insignificantly by

structural observations. For metals deformed at the temperature of liquid nitro­

gen the energy stored is four times that for deformation at room temperature.

The annealing of point defects is assumed to contribute to the large releases

of energy associated with recovery below room temperature, in addition to the

contribution of other imperfections. Bailey and Hirsch (1960) could not detect

any change in the dislocation density and distribution before and after recovery

in silver, although during the recovery half the total stored energy was liberated.

In alloys a major source of energy release during recovery may be

associated with the return of short range order destroyed by deformation.

To sum up, existing experimental measurements on the stored energy of

cold work and the release of the energy with concomittant variation in the physi­

cal structural properties in the most extensively studied metal, i.e. copper, is

not sufficient to test validity of the two existing theories of work hardening

of pure metals. In one theory, due to Friedel (1955) and Seeger et al. (1957),

the flow stress is determined by long-range stresses due to groups of piled up

dislocations. In the second theory, due to Cottrell (1953), Basinski (1959),

and Hirsch (1958), the flow stress is determined by short-range interactions

between crossing dislocations.

15



,III. PLASTIC DEFORMATION IN UNIAXIAL STRAIN

3.1 Definitions and Basic Relations

The uniaxial strain condition applies to plane wave compression and

rarefaction. If wave propagation is in the x-direction, the work of uniaxial

compression ;s

dW = -Vp dE= -p dV, x x x (1)

where p = -0 = compressive stress in the x-direction and ds x = dV/V. Prin-x x
cipal axes of stress and strain lie in and normal to the direction of propagation.

If E is internal energy of unit mass,

(2)

where dQ is heat communicated to the mass element by conduction or other means.

The work term of Eq. (1) can be expressed as work of compression plus work of

deformation by introducing stress and strain deviators, S. and e·:
J J

dW = -vpde+vIs. de.
. J J
J

where

Sj = -po + P )J
) j = x, y, z.

e. = E· - e/3 )
J J

Sx = 4T/3, S = S = -2T/3y z

T = - (p - p )/2x y

ex = 2£/3, e = e = -E /3 de = ds x'y z x '

Using these relations, Eq. (3) becomes

(3)

(4a)

(4b)

(5a)

(5b)

( 5c)
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= -VpdE (1 -4T/3p)x

(6)

(7)

(8)

where Ro is the ratio of work 0: deformation to compressive work. For elastic

changes the constitutive relations can be written in incremental form to account

for changes in the elastic moduli with strain:

dp = -Kde = -KdEx

dS. = 211de jJ

or dox = (A + 2]J)dE
X

doy = AdEx = doz

dT = lld£x

(9)

(10)

(11 )

(12 )

(13 )

where K is bulk modulus and A, II are the Lame constants. Values of K, A, II

depend on whether strain occurs at constant temperature or constant entropy.

Isothermal moduli will be denoted KT, AT, llT; isentropic moduli KS, AS, ]JS.

When the superscript is omitted the meaning is obvious or the question is

indifferent.

We can invoke the condition of uniaxial strain to obtain:

dp = -do = vdp /(l-v) = dpy y x z

dp = (dPx/3) (l+v)/(l-v)

dT = -(dPx/2) (1-2v)/(1-v)

(14 )

(15 )

(16)

where v = (A/2)/(A+ll) - Poisson's ratio, which may depend on strain and tem-

perature or entropy.
17



For small strains, Eqs. (11) - (13) can be integrated assuming moduli to

be constant:

Ox = (A + 2\.d £x (17)

0y = AE
X

= °z (18)

".
'[ = \.lEX (19 )

E· = {V - Vo)/Vo (20)x <>

where V is specific volume and Vo denotes a reference, stress and strain-free

state. For this case

RO = 2(1 - 2v)/(1 +v)

(see Eq. (8)). The dependence of RO on v is shown in Fig. 2.

This discussion of elastic strain provides a framework within which

(21)

questions of plasticity may be discussed and it is important to note that the

work of plastic deformation is bounded by the work of volume compression and

that of elastic deformation. This is illustrated in Fig. 3 where curves of

hydrostatic and uniaxial compression under adiabatic conditions are compared.

For elastic strain, adiabatic conditions are also isentropic, so the slopes of

OM and ON are -(Vo/V)KS and (-Vo/V) (AS + 2\.15), respectively. Since px =

p - 4'[/3, the work of deformation is

(22)

which is just Vo times the area of the sliver between ON and OM of Fig. 3. As

noted in Fig. 2, this may be small or large depending on the value of v.

When the strain cycle is completed by allowing the material to expand

back to p or Px = 0, the elastically strained sample under adiabatic conditions

simply returns to the point 0 along the curve of compression, OA or OB. The

l 18_
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plastically deforming material, on the other hand, completes part of a hysteresis

loop as shown in Fig. 4. The sections of this loop are formed according to the

following process. Starting at point 0 the sample is c~mpressed uniaxially until

it starts to deform plastically at A. Along AB the plastic deformation is con­

tinuous until the maximum value of Px is reached. At B the applied stress is

allowed to start decreasing, Ox - 0y is reduced and expansion occurs elastically.

At C, 0y - ax has once more reached the yield value and:plastic deformation con­

tinues from C to D. There are now two questions to be considered:

(i) What is the amount of plastic work done along the sections AB

and CD?

{ii} Can a thermodynamic state be defined at each point?

We consider these questions in the order stated.

20
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3.2 Computation of the Plastic Work

An important convention in the theory of plasticity is the assumption

that when plastic and elastic strain are occurring simultaneously, each increment

in total strain can be decomposed into a sum of plastic and elastic increments,

i.e.

(23)

where superscripts "e" and "p" stand for "elastic" and "plastic."

This convention is discussed in Appendix A. It is also common to assume

that there is no plastic contribution to the density change, so that

- d£.e + ds. P = de. + dej3
J J J

deP = 0 (24a)

de. = de. e + de. P
J J J

Then increments in the work of plastic and elastic deformation are given,

respecti vely, by

(24b)

= VLS. de. P
j J J

dW = V) ede 4 S. de.
J J J

plastic

elastic

(25)

(26)

Since dWdP is the only plastic work in this process, i.e. volume compression is

purely elastic, we write henceforth

We also assume that stresses are supported only by the elastic strains,

dS.
J

(27)

A physical basis for Eq. (27) is discussed in Appendix B.
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The condition of uniaxial strain requires only that total strain Ey

and E
Z

vanish, i.e.

de P + de e = 0
~z ~z .

Because of symmetry about the x-axis

dEy
e = dE ez

From Eqs. (5a), (10) and (27)

(28a)

(28b)

(29)

where

dSx 4dT/3 e= = 211 dex

dSy -2dT/3 e= = 2].J dey

dSx - dSy = 2dT = 211 d(e/ - eye)

dT e= 211dy

(30)

(31)

(32)

(33)

From Eq. (6) the total incremental work of deformation is

.(34)

From Eqs. (26) and (30) - (32) the incremental work of elastic deformation is

edWde = 8VT dy /3

(35)

The incremental work of plastic deformation is obtained by subtracting Eo.

(35) from (34):

(36)

23



where T = ±Y/2 depending on whether the process is compressive or expansive.

Y > 0 is the yield stress as given by the von Mises condition.

Eq. (36) can be obtained directly from Eqs. (4b) , (24a) and (25). It can also be

written in the form of Eq. (C5) in Appendix.C:

If yP - (e/ - ey
P)/2, Eq. (37) can also be written as

dW = (8/3)VT d yP
P

(37)

(38)

The increment in elastic work represented by Eq. (35) can,easily be seen to be

reversible:
2(2V/3ll) dh). (39)

As ITI goes up and down, so does Wde .

The plastic work is irreversible by definition,

dW p ;:: o. (40)

This is readily illustrated with reference to Fig. 4. During elastic compression

along OA in Fig. 4, de:/ = 0, T < 0, dT < 0, dW p =0. Along AB, T :s 0 and

de: x < O. For a material which doesn1t work-harden, dT = 0, so dW p > o. If

work-hardening occurs, dT < 0, but dT/ll cannot exceed d~x in magnitude since

de:x = dT/ll when compression is elastic. So in that case, too, dWp > O. Along

BC the material is expanding elastically, T is changing from negative to positive

sign, de:/ = 0 and dW p = o. Along CD, T > 0, de:x > '0 and again dWp > 0 from

Eq. (36) by the same argument applied to the path AB. Als.o de:/ > a along CD.

Eq.(36) or (37) provides an answer to question 1, raised above. We

now turn attention to Q2.
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IV. THERMODYNAMIC STATES IN PLASTIC FLOW

The simplest observations of plastic yield tell us a great deal about the

process. Bend a piece of iron wire back and forth between your fingers a few

times. It gets hot and is still solid iron. The first result is obvious; the

second is verified by chemical and metallurgical analysis. It is, in fact, very

hard to detect any.changes in the material, but we know that some have occurred

since repeated bending breaks the wire, yet it does not break at the first bending.

Property changes due to bending are more obvious in a piece of copper. Bending

produces marked increases in bending resistance before it breaks.

In developing a thermodynamic theory to deal with such conditions we can

assume either that plastic work changes the material or that it does not. It is

clear from our simple experiment that the latter assumption is a fairly good one

and we accept it for the moment and consider its consequences.

4.1 Plastic Work Converted Entirely to Heat

Even though this be true, there is a difficulty associated with plastic

strain which is illustrated in Fig. 4. On reversal of stress at any point, say

B, the stress-strain curve is not retraced, even though the process be isothermal.

Yet if we persist in the reversal we can find a sequence of applied forces which

will return the material to its initial state under this condition that plastic

work produces no material changes. This is illustrated in Figs. 6 and 7, to be

discussed farther on in this section. This is a kind of geometric irreversibility

~ to be distinguished from irreversibility of material properties. It complicates

description of thermodynamic processes but does not essentially change the postulate
2

that plastic working has put the material in a thermodynamic state characterized

by the added heat, ~Q. The situation is somewhat like that of a fluid. If we

deform a viscous fluid at constant density, we recognize that heating occurs,

but we suppose the final state to be describable in terms of thermodynamic

25



parameters of the original fluid.

different neighbors is considered

The fact that particular molecules have
I

inconsequential.

In the same way it is inconsequential that neighbors may have changed

after plastic deformation; thermodynamic parameters are the same. It is, in a

sense, unimportant that the macroscopic form of the material has changed and

that this makes a diffe~ence in the external behavior. This difference is

observable in the solid and not in the fluid because.the solid atoms undergo

elastic strain during deformation, whereas the fluid atoms do not.

With such considerations as foundation, we are led to a Fundamental·

Assumption:

There is always an elastically strained state

imbedded in every deformed state. This elastic

state is inherently reversible and can be recovered

by suitable processes.

This assumption implies that an internal energy, E, exists and that it

is a function of the elastic strains, se, entropy, S, and perhaps of inter-

na1 or microscopic strain variables. A representation of the internal energy

function can be obtained by noting that each increment of work on the system

is the sum of an elastic and a plastic increment. By the Fundamental Assump-

tion the elastic increment is recoverable, so increments in internal energy

can be written as

dE = TdS + dWe (41 )

where dWe depends on the elastic strain increments. According to the first

law this increase in internal energy must equal the total work done on the

system plus the heat absorbed from the surroundings:
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TdS + dWe = dW + dQ. (42)

This leads directly to the Gibbs relation for the increase in entropy pro­

duced in the process:

dS = (dWp + dQ) I T (43)

where dW p = dW - dWe .

According to Eq. (41) and the foregoing assumptions, internal energy can

be expressed in terms of entropy and the elastic strains. For example

Changes in entropy result solely from the agitations and elastic displacement

of atoms; there is no entropy directly associated with the plastic strain.

Nonetheless an apparent dependence of state on plastic strains may exist

because of the procedure required to separate dW into elastic and plastic

parts. For example, from Eqs. (1) and (37) we find that

so that

The appearance of E
X
P in this potential is illusory. It does not imply a

physical dependence of E on plastic strain. Failure to realize this fact has

led to some confusion in other work.

It will be useful to tabulate various forms of the internal energy, but,

first we note that increments in the Helmholtz potential will be in the form

dA = -SdT + dWe

27

(44)



and that the entropy and temperature are given by

S = -(aA/aT) e
e:

T = (aE/aS) e
E

(45)

(46)

where subscriptEe indicates that all elastic strains are to beheld constant.

Using the equations developed earlier, we have the following representations:

From Eqs. (6) and (35),

(47)

E

A

(48)

(49)

Since VdEx = dV, this is equivalent to a representation in which V and

ye are the mechanical variables.

From Eqs. (1) and (37),

. dWe = dW - dW p = Vax dE X - 2VTdE/

E = E($, EX' E p)
x

A = A(T. EX' E/).

From Eqs. (1) and (38)

(50)

(51 )

(52)

( 53)

(54)

( 55)
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A representation which shows the dependence of state functions on elastic strains

and temperature exclusively is

dWe = V(ox dEx
e + 20y dEy

e)

so that

E = E(S, e Eye)EX '

A = A(T, e Eye)EX '

Since entropy is defined as

(56)

(57)

(58)

S = -aA/aT,

it depends on the same variables as A.

The functions E, A, S, etc. ~re state functions, so their differentials are

exact and lead to various Maxwell-like relations and compatibility conditions

which are later shown to be useful.

Some common thermodynamic observables take unusual forms when these

representations are used. Specific heat is an example.

FromEq. (49),

Cv ~ T(aS/aT) = T(a5/aT) e + T(a5/ aye)T
EX ,EXEX ,y

(59a)

From Eq. (52) ,

Cv = T(a5/3T) = T(35/aT) p + T(as/aExP)E ,T (aExP/aT) x
EX £x,£x X

(5gb)

From Eq. (55),

Cv = T(aS/aT) = T(aS/aT) p + T(a5/ayP)£ T (ayP/aT) (59c)
£x x EX£x ,y ,

For Eq. (56) Cv is not defined but can be obtained by invoking the condition

(60)
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which follows directly from Eq. (24a) and the symmetry of uniaxial strain.' In

this way one of the three forms of Eq. (59) will be obtained.

One may reasonably ask whether derivatives like (oS/oEXP)T . which
,EX'

appears in Eq. (59b), are physically meaningful in view of the nature

of plastic strain. Since plastic strain enters in a contrived way, as explained

in the paragraph following Eq. (43), they can always be expressed in terms of

more obviously thermodynamic derivatives. For example, calculate dS from

Eqs. (52) and (58):

dS = (as/aT) p dT + (as/OE x) p dExEX,e: X T,EX

+ de: P
x

Since we wish to obtain OS/OE X
P in terms of elastic strain derivatives, write

de:x
e and dEy

e in terms of dEX and dE x
P; i.e.

dE e = dE - dE PX X X

. Then equating the two values of dS gives
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o = [(as/aT)

(61)

Specification of the deformation process requires specification of dT and two

strain variables, so coefficients of dT, dE x
e , dE x

P in Eq. (61) must vanish

independently; therefore

(£2)

From Eqs. (44) and (56)

dA e e
= -SdT + VOXdE X + 2VoydEy

S = - aA/aT; Vox = aA/aE x
e

as/aEx
e a2A/aTa e (avo/aT)= - = -EX e e

EX Ey

as/aEye 2(aVoy/ aT) e e= -
Ey E: x

Then

(as/aE/)T = V( ao/aT) V( aOy/aT) e e
,EX e e

EX Ey EX Ey

= 2V(a,/aT) e e
EX Ey

(63)

31



The derivative on the r.h.s. of Eq. (63) is taken with ~Xe'Eye constant .. Since

this insures that no strain is occurring,

= etc.

In order to evaluate changes in entropy under the assumptions of this

section, dQ of Eq. (43) must be specified. For an adiabatic process, dQ= 0,

but the sample gets hotter as the process continues, so a repeating cycle

doesn't exist.

To calculate dQ for an isothermal process consider incremental com­

pression from a reference state under three different conditions, Fig. 5.

Compression along AD is adiabatic and is accompanied by plastic work ~Wp;

no heat is absorbed. Compression along AC is isentropic; the amount of heat

removed just compensates for the plastic work. Compression along AB is iso­

thermal and it is along this path that we wish to calculate ~Q. For the

situation shown LlQ < 0, i.e. heat must be removed to compensate for the

plastic work. By the first law the change in internal energy in going from A

to B is equal to the total work done plus the heat absorbed,

(64)

where

According to Appendix F, dQ can be expressed in terms of incremental changes

in specific volume, elastic strain and plastic work:

dQ = T(3p/3T) e dV - (8VT/3)(3T/3T) e dye - dW pV,y V,y

32
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The net entropy production in the sample is obtained by, combining Eqs. (43)

and (65):

dS = (l/T)(dWp + dQ)

= (ap/aT) e dV
V,y

(8V/3)(aT/aT) e dye
V,y

(66)

This is a remarkable result and one which has been noted by Bridgman for

uniaxial stress: Entropy absorbed by the sample under isothermal conditions

is given by the elastic changes alone, even in the presence of plastic work.

Equation (66) may be obtained more directly with minimal reference to

the physical processes by using the fact that entropy i.s a state function, so

changes in entropy can be obtained by direct differentiation. Thus from Eq.

(49) with Vd£x replaced by dV,

S = S(T, V, ye)

dS = (as/aT) e dT + (as/aV)T e dV + (as/aye)T,V dye (67)
V,y ,y

Since S is derived from the Helmholtz potential A and

dA = -SdT - pdV + (8VT/3) dye,

the last two coefficients in Eq. (67) can be obtained by equating cross­

derivatives of A:

(68)

(69)

Setting dT = 0 and substituting Eqs. (68) and (69) into (67) yields Eq. (66).

While this procedure is economical in mathematical operations, it does not

reveal the physical content of the result so clearly as the earlier procedure.
,
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Since dS is an exact differential, the cross derivatives of its coeffi-

cients must be equal. Thus

(70a)

(70b)

(70c)

The bulk modulus, K, may depend on ye, thus leading to a dependence of p on

ye, but this is likely to be small. Setting it equal to zero implies that

a(Va,/aT)/aV = 0

or

V(a,/aT) e = f(ye,T)
V,y

(71 )

In Eqs. (70) CVy has been written for (l/T)(aS/aT) e' Here again the
V,y

dependence of CVy on· ye is likely to be small so

(a2,/aT2) e ~ O. (72)
V,y

Most materials will be found to yield before the linear relation between ,

and ye is violated. Setting y = 2~ ye with ~ independent of ye, Eq. (71)

becomes

(a~/aT) e = g(T)/V
V,y

while Eq. (72) suggests that

35
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Equations (73) and (74) together imply that

a~/aT = b/V

or

(7Sa)

(75b)

If experiments ~ev~al that a~/aT depends on temperature

(which it certainly does near the melting temperature) then the assumption that

CVy is independent of ye is invalid.

For computational purposes it is convenient to write

(76)

..
where r is the Gruneisen parameter. This coefficient is slowly varying and

normally, but not ~ecessarily, positive. Taking T 2 2~ye as before, the

second coefficient in Eq. (66) becomes

Since d~/dT is normally negative, this coefficient has the sign of ye, which

is frequently, but not always, negative in compression and positive in tension.

I ~

I

- (16V ye/ 3) (a~/aT) e
V,y

(77)

Taking reV and V a~/aT to be constants, we have for the entropy change

This illustrates in a particular case the general result ~hich follows from

the assumption that E and A are state functions.

Equation (78) refers to entropy change in the sample during an iso­

thermal cycle. The entropy of the reservoir in which the sample is imbedded

will be found to increase in a cycle in the amount
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A simple example of the calculation outlined in thi~ section is detailed

in Appendix D and in Figs. 6 and 7. In this example it is assumed that the

material is linearly elastic up to the yield point (point A in Fig. 4) and

that the yield stress, Y > 0, is constant throughout the isothermal process.

Under these conditions the cycle OABFO of Fig. 4 can be followed explicitly

but simply. The turning point F is determined by equating the tensile stress

developed along the ~urve of elastic expansion, OF, to the stress along DF.

With F determined in this way, stress, elastic strain, plastic strain and

entropy of the sample return to their starting values at 0, whereas the plastic

work of deformation and the entropy of the heat reservoir do not. These

results are shown in Figs. 6 and 7. With non-linear elastic behavior the

computation is more difficult but results are essentially the same.

A similar calculation can be made for the isentropic case, curve AC

of Fig. 5. Then elastic constants are isentropic instead of isothermal and T

must be calculated in order to determine entropy delivered to the reservoir.

In this case entropy of the reservoir increases monotonically. Temperature

is a state functi~n of S, V, ye according to Eqs. (46) and (48), as

dT = (aT/aS) e dS + (aT/aV) e dV + (aT/aye) dye.
V,y S,y S,V

Set dS = 0 for isentropic compression and use the equalities among cross­

derivatives of E to obtain

dT = -(ap/aS) e dV + (8V/3)(aT/aS) e dye.
V,y V,y

(79)

It will now be found that T goes through a maximum and a minimum during each

cycle and returns to its initial value at the end of a cycle, since dT is an
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exact differential. Since the dependence of observables 'on entropy is not

measured directly, this case appears to be of lesser interest than the iso­

thermal case.

Heat conduction effects are not normally significant in stress wave

propagation, so compression is inclined to be adiabatic.' V, ye, S, Tdo not

repeat cyclically as stress is cycled because plastic work is retained in the

sample as heat. One can ask for the fate of mechanical and thermal variables

as Px increases to its maximum value and returns to zero. It may be of further

interest to inquire what processes are required to return it from this final

state to its initial state, but this is not normally of interest, for example,

in a shock wave problem.

In the adiabatic case, both entropy and temperature are changed with

each increment of plastic work. The sample is isolated from the universe so

the'only source of entropy is the plastic work done on the specimen. Then

Combining this with Eqs. (67) to (69) yields

dT = (T/CV ) [dWp/T - (ap/aT)V e dV
y ... ,y

(81 )

4.2 Plastic Work Partially Converted to Internal Strains.
Thermodynamic Potentials

The admission that plastic work changes material properties has rather
., ,

profound effects on thermodynamic concepts though the magnitude of energy

involved is not very large; probably not more than 5 to 10% of the plastic work

is stored in this way, and the total may be much less. The most directly
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observed effect of internal energy storage is work-hardening; in some materials

the yield stress may be doubled by plastic work. Although this effect results

from partition of the plastic work, it is in itself not a thermodynamic effect

and so must be taken as an empirical ~esult.

In order to treat this case thermodynamically, we still consider that

at each point on a deformation path the material is in a reproducible thermodyna­

mic state, but that the state depends on an internal variable as well as the

external variables of the previous section. The physical and mechanical char­

acteristics of plastically deformed material are commonly ascribed to the

creation and entanglement of dislocations, so dislocation parameters are used

as internal thermodynamic variables. Dillon and Kratchovil (1970) have used

dislocation density and dislocation entanglement as two internal variables.

However the present state of understanding of dislocations hardly seems to

justify the use of two variables. Here the dislocation density will be taken

as the sole internal variable. Let this be denoted by N, the total dislocation

length per unit volume of material. Denote the energy stored per unit length
. 2

of dislocation by pr ~ b ~/2 (Nabarro, p. 694). Then changes in internal energy

are reversible in the variables S, V, ye , N:

dE = TdS - pdV + (8VT/3) dye + rdN,

implying that

E = E(S, V, e N)y ,
~

A A(T, V, e N).= y ,

(82)

(83)

(84)

These potentials being given, the change in entropy resulting from isothermal

compression can be calculated as before (dT = 0):

dS = (as/aV) e dV + (as/aye) dye
T,y ,N T,V,N

+ (as/aN) e dye
T,V,y
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Using the compatibility relations derived from A this'can be written

dS = (ap/aT) e dV - (8V/3)(a,/aT) e dye
V,y ,N V,y ,N

+ (ar/aT) e dN
V,y ,N

(85)

4.3 Compatibility Relations

dS is an exact differential since it is derived from the state"func-

tion, Eq. (84). This implies that the coefficients in Eq. (85) satisfy the

following conditions:

(ip/aTaye)V,N = -(8/3){a[V(a,/aT) ] / aV} eeV,y ,N y ,N

(a2p/aNaT) e -(a2r/aVaT) e .
V,y y ,N

(a2r/aTaye)V,N = (8/3) {a[V(a,/aT) ] / aN}e eV,y ,N V,y

(86a)

(86b)

(86c)

Assume that yield always occurs at sufficiently small shear that shear

stress and strain are linearly related,

, = 2~ye (87)

Assume also that pressure is independent of elastic shear strain. While this

is not necessarily true, it is highly plausible:

From Nabarro (p. 694) one finds that

2
r '" b V~/2.
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The implications of Eqs. (86) to (90). are derived in Appendix 1. They are

or

(ap/aT) e = f 2(T,V)
y ,V,N

(a(~V)/aT) e = fl(T)
y ,V,N

p = f(T,V) .+ g(V,N)

~V = F(T) + G(V,N)

(91)

(92)

( 93)

(94)

Equations (91) to (94) are useful in constructing equations of state for the

classes of materials described here. For example, Eq. (93) limits the

Helmholtz potential to the form

A(T,V,ye,N) = - !f(T,V)dV - !g(V,N)dV + ~(T,N,ye) (95)

where, f, g and ~ are arbitrary functions of the variables indicated.

The possibility of deriving relations like those of Eqs. (91) to (95)

is a consequence of the assumption of uniaxial strain, on which this entire cal­

culation is based. Under conditions of uniaxial strain it is possible for

density changes and plastic strain to occur simultaneously. In uniaxial stress

this is not the case: thermodynamic potentials do not depend on both V and y,

so compatibility relations of the kind derived above do not exist. It does not

seem likely that going to a more general process than uniaxial strain would pro-

duce additional information, except in anisotropic materials.

4.4 Gibbs Relation Including Stored Energy

The Gibbs relation for entropy production in an arbitrary process can

be derived as before. Equate the increase in internal energy of unit mass to

the sum of work done and heat added; this gives the analogue of Eq. (42):
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TdS + dW + rdN = dW + dQe

and the Gibbs relation becomes

- - .- -------,------.

(96)

TdS = dW - dW - rdN + dQe

= dWp - rdN + dQ . (97)

Equation (97) is a formalization of the basic assumption that energy stored in

dislocations can be·recovered. Plastic work may be required to move disloca­

tions~ but this is directly associated with plastic strain and appears as heat.

Since the energy of dislocations derives from local strain fields, internal

strain could equally well be used as a parameter. N is more convenient since

extensive work exists on the properties of dislocations and their behavior.

When N is sufficiently large, dislocations interact and their energy is no

longer proportional to N. Such interactions can be partially accounted for

by letting r be a function of N. But we shall ignore them here and intro­

duce self-annihilation and annealing of dislocations to prevent N from growing

indefinitely.

If the compression process is carried out at a finite rate, Eq. (97)

gives the rate of entropy production:

TdS/dt = dWp/dt - rdN/dt + dQ/dt (98)

4.5

In the event that either dWp/dt or dN/dt is rate-dependent, this will lead to

entropy production beyond that given by Eq. (85). «.

Equilibrium Values of N; An Anomaly

In order to complete the thermodynamic description, a procedure is

required for calculating N. Two routes are available for obtaining the required

information. One is to continue the formal thermodynamic description of the

process and so to determine the bounds on equilibrium values set by the
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compatibility relations. Such information can be augmented by statistical

calculations for determination of entropy and lattice calculations for deter-

mining such parameters as r. The latter has already been noted in the pre­

ceding paragraph. The second is to apply some of the formalism of dislocation

theory and expressions for multiplication rates to relate, for example, dislo­

cation density to strain history. Both of these routes are considered here.

We start with the thermodynamic development.

The great question about the thermodynamics of dislocations is whether

equilibrium ever exists in the sense that the appropriate potential is mini­

mized with respect to the various parameters. Here we assume that an equilib­

rium density N exists and we find how it is related to other material para­

meters. For this purpose we consider Eq. (82) and its companion for dA:

dE = TdS - pdV + (8V /3) dye + rdN

dA = -SdT - pdV + (8V /3) dye + rdN.

(82)

(99)

Because Eqs. (82) and (99) are exact differentials, the cross derivatives of

their coefficients must be equal. Those involving N are

(aT/aN) = (ar/aS) (l OOa)e eS,V,y V,y ,N

(ap/ aN) = -(ar/av) (100b)
S,V,ye eS,y ,N

" (16Vye/3) (ajJ/aN) = (ar/aye)S,V,N (lOOc)
S,V,ye

(as/aN) e =
T,V,y

-(ar/aT) e
V,y ,N

= (b2V/2) (ajJ/ aT) e
V,y ,N
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-(ap/aN)T V e = (ar/aV)T e N, ,y ,y ,

- - ----------.

(lODe)

(100f)

Here the approximations of Eqs. (87), (88) and (gO) have: been used.

To see the utility of Eqs. (100), consider Eq. (lOOa). The right

hand side can be written

(ar/as) = (b2V/2) (a~/aS) e
V,y ,N

= (b
2V/2) (a~/aT) e (aT/aS) e

V,y ,N V,y ,N

where

CVyN = T(aS/aT) e
V,y ,N

( e) .By regarding N as a function of T, V, y , p , we have

(lOla)

(l 01 b)

(aN/aT) e = (aN/aT) e + (aN/ap) e (ap/aT) e
S,V,y V,y ,p T,V,y S,V,y

It seems quite plausible that p is insensitive to N; then the second term

is negligible and

I ..
I

(aN/aT) e '" (aN/aT) e
S,V,y V,y ,p

Equations (100a), (lOla) and (lOlc) combine to give

(aN/aT) e = 2CVyN / [b2VT(a~/aT) e ]
V,y ,p V,y ,N
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This is a curious and unexpected result. a~/~T is known to be negative and

CVyN is positive, therefore aN/aT < O. But one expects the equilibrium

number of dislocations to increase with T for the following reasons. Energy

is required to form dislocations, so that an assembly which includes disloca­

tions contains eigenstates of higher energy than a perfect lattice. Under

equilibrium conditions these higher energy states are unoccupied at low tem­

peratures but at sufficiently high temperatures they may be occupied. Just

where the argument leading to Eq. (102) fails is not clear, but it is clear that

the reason for the failure must be determined before other relations obtained

from the compatibility condition can be safely used.

Changes in CVyN with N, ye and V can be obtained from the expression

for dS when dT; O. Equation (85) is then replaced by

dS = (CVyN/T)dT + (ap/aT)dV - (8V/3) (aT/aT) dye - (ar/aT)dN. (103)

Then

a{CVyN/T)/aN = _ a2r/aT2 (104a)

a(CVyN/T)/aye = -(8V/3) a2T/aT2 (104b)

a(CVyN/T)/av = a2p/aT2 (104c)

If Eqs. (87) and (90) are assumed true, Eqs. (104a) and (104b) combine to

yield the result

This has solutions of the form

e2 2CVyN = f[(N + 6y /b), V,T],
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ewhich shows an interesting relation in the dependence of CVyN on Nand y .

It does not appear to be susceptible to test with prese~t information.

The physical consequences of relations like those of Eqs. (100) and

I

I '

(104) have been illustrated but not exhausted.

forsake further development of these relations.
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V. MECHANICAL CALCULATIONS OF DISLOCATION DENSITY, N

5.1 Formalism

As a consequence of plastic work, dislocation densities may be generated

which are much greater than equilibrium values calculated in the previous section.

These may represent substantial quantities of stored energy, and at sufficiently

high temperatures this should be released as heat with a consequent reduction of

N. The thermodynamic effects of non-equilibrium changes of N 'are derived from

the Gibbs relation in the form of Eq. (lOa). This indicates that dN/dt is the

quantity of prime interest.

A form frequently used for dN/dt is quoted by Webster (1966):

dNldt = aN - bN2 + SO' (107)

The first term represents creation of dislocations by regenerative processes,

the second representsself-annihilation, and the third represents spontaneous

nucleation of dislocations under the influence of externally applied forces.

Equation (107) can be integrated directly to yield

N = [A - B8 exp{-Kt)] 1 [1 + e exp{-Kt)]

where K = {a2 + 4b 5
0

)1/2

A = (a/2b) (1 + K/a)

B = -(a/2b) (l - Kia)

8 = (A - N.)/(B + N.), ,
Ni = dislocation density at t = a

For So - 0,

N = a Ni exp(at) I [a + Nib (exp (at) - 1) ].
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The Gilman relation for multiple cross glide has

aN = mbv N = N. f ~p,
where ~p is plastic strain rate. Then, for small multiplication, changes in

N are proportional to plastic strain. This relation has been widely used

in discussion of dynamic failure (Asay, et al. 1972).

For large' t, and So = 0" Eq. (109) goes to

N :: NS = alb (11 0)

This is the saturation value of N; it is unrelated to the thermal equilibrium

value discussed in the previous section. From Eq. (109)~ l/a :: t e is a

characteristic time for equilibration. Then Eq. (110) can be rewritten in

, the form

(111)

t e is assumed to be the order of a few multiplication times and is discussed

in Appendix H:

t e , = a-6/vl) - (o./n)/ tn [1 - exp(-U/kT)] (112)

where I) = distance between imperfections which cause multiplication

n = a characteristic frequency associated with' pinned dislocations

U = Uo (1 - 0/0
0

) is an activation energy

vI) = shear wave velocity

a = a number the order of ten

a = effective stress driving the dislocation

0
0

= critical or threshold stress

Equation (112) is to be applied if 0< 0 0 ,
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If U/kT"" 10, Eq. (112) gives t "" 10-4 seconds, which is very long on thee

scale of shock experiments. On the other hand, Eq. (113) is the order of

10- 12 for ""100 pinning points per million lattice sites, a time which is

completely negligible.

5.2 Applications to Shock Processes

If we assu~e. the Gilman relation for multiplication and ignore

self-annihilation, we have

or

dN/dt = mbvN .p
= my

Each increment in plastic work is also proportional to dyP:

dW p = (8VT/3)dyP.
. .

The increment in stored energy is rdN and its ratio to dW p is

rdN/dWp 3mr/8VT 2= = 3b jJm/16T

and T = 5 x 109 dynes/cm2,

.09%

This value is to be compared with the oft-quoted value of "5 to 10%.11 This can

be achieved by making T very much smaller, as in a static test, or by increasing

m. A value of 0.5 kilobars in a static test on soft aluminum is not out of

reason, in which case the ratio of stored energy to plastic work goes to 0.9%.

Moreover m is not precisely known and may be. increased several-fold without

seriously violating any experiments. In fact some of the dynamic failure data
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for aluminum suggest that m may be as large as 2.5 x 1012 in shock experi­

ments. Then taking T = 5 kb again"

rdN/dWp ~ 2.3%

which is approaching the usually quoted range for stored energy. The possibility

that plastic stored energy in shock compression is less than static values must

be admitted.

For comparison, a similar calculation for the case of uniaxial stress

leads to the ratio

rdN/dWp = mr/VY = mb2~/2Y

where Y = 2T is the yield stress in simple tension. This does not differ

significantly from the value for uniaxial strain.

The total plastic work generated when aluminum is shocked to 100kb is

approximately Wp = .15 kb cc/g or 1.5 x 108 ergs/g. Equating 5% of this to

rN where r ~ 4.5 x 10-5 gives

N = 8 -5 11.05 x 1.5 x 10 /4.5 x 10 = 1.6 x 10 .

This is small for a saturation value of N and it suggests that in the small

times available under shock conditions, saturation of dislocation density may

not occur.
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VI. DISCUSSION AND CONCLUSIONS

A simple and approximate model for treating the thermodynamics of

elastic-plastic solids has been initiated here but not completed. Its appli­

cation to conditions of unixial strain shows that the additional thermodynamic

degree of freedom compared to uniaxial stress gives some potentially interesting

new compatibility relations which can be checked against various experimental

data. It is also suggested that shock experiments which have uniaxial strain

geometry may be useful in evaluating dislocation concepts and those of

elastic-plastic thermodynamics.

The point of view espoused here is a novel one. It is common to speak

of an elastic-plastic system as being "essentially irreversible ll or "immersed

in a sea of irreversibility." The view expressed here, but not completely

developed, is that the elastic-plastic state is completely reversible in the

variables which are natural to the state and that the apparent irreversibility

associated with inability to retrace a a-~ state is an awkward consequence

of geometry and is not essentially related to the question of reversibility of

the process. Having,stated such a hypothesis, one must then make some decision

about the role of stored plastic work. For many purposes the problem is

indifferent to this decision because the quantity of stored energy is small.

But when the stored energy is related to dislocation density, the thermodynamic

formalism suggests that this may provide some new avenues for investigation of

the role of dislocations in plastic deformation.
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APPENDIX A

Addition of Elastic and Plastic Strain Increments

In Fig. Al are shown two points of a continuum, 0 and P, separated by a

small distance 5. Application of an external stress forces 0 to A and P to B.

When the stress is removed, A relaxes to Q and B to T. We have from the figure

mt -+ -- -+ du= u, PB = u +

du -+ -+
:~ = S 'Vu

-+- -+. ~ -+. du'AQ = u , BT = u +

du' (5 + du) -+= 'Vu'
-+- -+.. ~ -+.. dullOQ = u , PT = u +

du" -+ -+= s . 'Vu"

(Al)

(A2)

(A3)

In writing Eqs. (Al) - (A3) the vector change dU, etc has been expanded in a

Taylor series in 5 or 5 + du and all but the lowest order term discarded.

dull is identified as the plastic displacement, -du' the elastic dis-
. -+

placement and du as the total displacement. Then

-du" + du" = s· (-vu' + vull ) - du • vu'
-+ (-+ -+ -+ -+)= s· -vu' + vu ll - vu • vu' (A4 )

-+The vector gradient, vu, can be decomposed into a strain tensor ~ and a rotation

tensor e:
=

-+vu = ~+ a=
~

where € = (1/2 ) (vu + vu)
=

(1/2) (vu -
';:(

a = vu)
=

r:f -+and vu is the transpose of VUe

Then Eq. (A4) becomes
-+ -+ -+ ( .)-du' + dull = s. -~. + ~II - ~ • ~II -~•• ~II + rotation terms.

Then if ~', ~II, ~', all are infinitesimal, the 2nd order terms can be neglected so
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that

du = -du' + du" = s . (_~I + ~" + rotation terms) =s' (~+ Jt) .

so that

(A5)

where e:e ha s been set equa1 to -~•• In a finite deformation process the relation

can be applied to each increment in strain so that

• •s +du

o p

Figure Al Arbitrary displacements in
a continuum

58

(A6)



APPENDIX B

Stresses' in Elastic-Plastic Deformation

The conventional assumption in elastic-plastic theory is that stress is

supported by the elastic strain and there exists no contribution from the plastic

strain. This appears plausible if one examines the microscopic behavior of a

plastically deforming material from the point of view of dislocation theory.

Plastic deformation is synonymous with motion and generation of disloca­

tions. In most materials dislocations probably move at all stress levels, so

there is no such thing as a yield point and there is no truly elastic behavior.

But in practice the yield point concept is useful and the yield point itself

may be taken to be the point at which large numbers of dislocations are set in

motion. The motion of dislocations is inhibited by the existence of energy

barriers which must be overcome by combination of stored elastic energy and

thermal fluctuations of atoms. So, for example, one may consider a strained,

work hardening solid as one in which many dislocations exist but are momentarily

immobilized or "pinned" by energy barriers. If applied stress is held constant,

dislocations may occasionally overcome a barrier and move to the next barrier,

thus contributing to the plastic deformation by creep.

If the external stress is increased, local strain energy is increased

around the pinning points, more dislocations are moved through pinning points

and pass on until they are pinned again. If it is assumed that dislocations

move freely between pinning points, the plastic strain which results from their

motion requires no part of the applied stress; i.e. the applied stress is

supported entirely by the elastic part of the strain. It does follow, however,

that a relaxation process may exist. For example, an increment in stress

increases local strain energy around pinning points and increases probability
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that dislocations will break free of their pinning points and move on until

pinned again. However. the probability of a dislocation breaking free is time

dependent because it depends on thermal fluctuations as well as strain energy.

This means that an increment in stress will produce an immediate elastic strain,

and that, as time passes, dislocations escape their pins" move, and are repinned,

so that a plastic strain develops. Or the original increment in strain is

reduced as the pinned dislocations escape from their barriers and the elastic

strain is reduced. This concept can be expressed quantitatively in the follow­

ing way
2 edo = pa de:

= pa2(de: - de:P)

= pa2de: - a2(de:P/dt)dt

or do/dt = pa2de:/dt _ pa2 de:P/dt.

In terms of stress and strain deviators this translates to

(81)

dSj/dt = 2~ dej/dt

= 2~ de/dt

where F is a relaxation function.

2~dejP/dt

F(S,e) (B2)

Equations (Bl) and (B2) are both based on the assumption that dislocations

move between pinning points without drag.

contribution to the stress appears:

do = pa2 de:P + n d~. P

If this is not true, then a viscous

or (B3)

where e.p =de.P/dt.
J J
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APPENDIX C

Plastic Work and Plastic Strain

From Eq. (24b)

de P = de - de e
X X X

Eq. (24a) de = de
x

+ 2dEy = dE e + 2dE e + (de P + 2dE p)
X Y X Y

= d e + 2dE e + 0ex y

= dEx by Eq. (28a).

(C1)

So

by Eq. (27)

by Eq. (27)

d(oX-oy) = 2].l(dE
X

e _ dE e) 2].l(dex
e - dE//2)=

Y

d. = [d(ox-o )]/2 = ~ dE e - ].l de x
P/2. y x

dE
X
e = d./].l + dE P/2X

so de P = dEx - d./].l - dE P/2 from Eqs. (C1) and (C3)X x

dE P = (2/3) (dEx - d./].l)X

Combine this with Eq. (36) to obtain
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From Eq. (25) dWp = V(S de P + 2S de p) .x x y y

(C6)

de - de = dE - dE
X Y X Y

(de e _ de e) + (de P - de p) =x y x y

Therefore Eq. (C7) becomes

de P - de P = dE P - de P
X Y X Y

= 1 de P2 x

since dE x
P +2dEy

P = O.

Substituting this into Eq. (C6) yields

(d£ e _ dE e) + (dE P - dE p)
X . Y x y

)
)
)
)

(e7)

(C8)

- 4 V • *dE X
P =- 3 T ~

in agreement with Eq. (C5).

--------------------
Note that the following argument is faulty:

2dex = dEx - de/3 = 3 de x
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and

(de e _ de e) + (de P _ de p) = dE P + dE e
x y x y x x

~ de P - de P = dE P
X Y X

de e
x

This result contradicts Eq. (C8) and is not true because the non-zero values-of

dE
y

e and dE
y

P have been ignored in obtaining the final relation.
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APPENDIX D

Stress Cycles for a Linear Elastic-Plastic Material with Constant Yield Stress.

All Plastic Work is Converted to Heat.

T = 300 0 K

A = constant = 582 kb

J.l = constant = 274 kb

y = constant = 10 kb
i

e= E:
Z

Vo = .37 cm3/g

Cv
-3 kbcc/gO= 8.4 x 10

r = 2

0y = °z

E:y = E: z = a

E: p = E: z
P

Y

-3= 16.8 x 10 kbcc/gO

Initi a1 Conditions at 0

Ox = 0y = 0; £x =

Wp = 0, S = 0;

(Figs. 3 and 4)

E: e = E: P = £ e = £ P = 0x x y y

entropy of heat reservoi r, SR· = 0

Along OA (Figs. 3 &4)

d£x = d£xe = dOx/(A + 2J.l)

d£ P =
X

dE: P =
Y

dW = 0
P

dS (reservoir) = -dS (sample)

Along AS

Ox - 0y = -V; d(ox - Oy) = -dY = 2J.l(d£x
e

- d£ye) = 0
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do =x

-- ----------,-------.

= do 1(31. + 211)x. .

de: P = de:x x
e ede: = 2de:x x

doy = do
X

dEyP -de: e = -dE e= y X

dS (reservoir) = -dS (sample) + dWp/T

Along Be

dEx = dEx
e = dox/(A + 211)
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Aong CF

a - ay = Y
X

dE::y
e dE::x

e=

dE:: x 3dE::x
e 3da/(3A + 211)= =

dE:: P = 2dE::/3
~~ X

dE:: P = -da/(3A + 211)y

day = da
X

dW p = Vy dE:: P
X

dS (reservoir) = -dS (sample) + dWp/T

Along FO

dE:: P d~ P dE::y
e 0= = =

X Y
\

dWp = 0

dS (reservoir) = -dS (sample)

At 0
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Compressive stress at B: Bassume Ox = -40.6 kb

at A: Ox - ° = [1 - ~/(~ + 2~)]o = -yy x

= .iO.6 kb'

at B: = -40.6 kb (assumed), = -30.6 kb

at C: C C YOx - ° =y

C C
(ox

B B
Ox - ° - - ° ) =y y

= ":9.4 kb

at F: F
- °Y

= Y whether the point F is reached by expanding along the.

elastic isotherm, OF, or along the plastic curve, CF. In the former case,

F A
Ox = -ox = 20.6 kb. Then = 10.6 kb

at 0: Both Ox and 0y return to zero since both· have their elastic values at F.

A A
EX = Ox /(A + 2~) = -.01823
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B A B AEX = EX + 3(ax - ax )/(3A + 2~) = -.01823 - .02616 = -.04439

C B C BEX = EX + (ax - ax )/(A + 2~) = -.04437 + .03646 = -.00793

F C F C
~x = EX + 3(ax - ax )/!3A + 2M) = -.00793 + .026155 = +.01823

'. o
EX = 0

A
E = - 01823X •

-.02694 + .01646 = .00952

Exe(F) = E~e(C) +. (ax
F - ax

C)/(3A + 2~) = .00952 + .00871 = .01823

Exe(O) = 0

B A= 2(ax - ax )/(3A + 2~) = -.017428

= ExP(B)

e
Ey

Eye(A) = 0

Eye(S) = -.008714
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E:.P =
y

e
-E:

Y

e = (E:/- E:y
e}/2y

ye(A) ... -.01823/2 = -.00911

e(B) = ',- .00911y ,

ye(C) = +.00911

ye( F) = .00911

ye(O) = 0.0

Wp(A) = 0.0

Wp(B) -(2YV/3) B A= [exp(E: x ) - exp(E: x )J = .0625

Wp(C) = Wp(B)

Wp(F) Wp(B) + (2YVo/3) F C .0625 + .0648 = .1273= [exp(€x )- exp(€x )J =
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Computation of Entropy

From Eqs. (66) - (68) changes in entropy of the sample are given by

dS rCv dE x (16V/3) (ajJ/ar) e e e= y . dy .
y ,V

From Eq. (35), dye = dT/2jJ.

Since is assumed constant during plastic flow, e and CF. Also,T dy = 0 on AS
e e' e edy = (dE x - dEy )/2. In the absence of plastic flow, dE x = dE x and

dEy
e = 0, so dye = dE x/2 on OA, BC and FO.

From Appendix J, for aluminum

-(ajJ/aT) e ~ .14 kb/oC at 300oK.
V,y

From Eq. (75a), V(ajJ/aT) is constant. For V = V = .37cc/g, we haveo

For r

-(16V/3)(ajJ/aT) e ~ .27 kb cc/gOC.
y ,V

-3
= 2, Cv = 8.4 x 10 kb cc/gOC, we get

S(A) = 16.8 x 10-3 E (A) + .03375 E 2(A). x x
-4

= -2.950 x 10 .

On AB, dye = 0, so

S(B) = S(A) + 16.8 x 10-3 [EX(S) - Ex(A)] = -7.345 x 10-4

From B to C
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Thus

S(C) = S(B) + 16.8 x 10-3 [EX(C) - EX(B)]

2 2
+ .135[ye (C) - ye (B)] = -1.220 x 10-4

From C to F dye = 0, so

Finally at 0

S(O) = S(F) + 16.8 x 10-3 [EX(O) - Ex(F)]

e 2 e 2 9+ .135 [(y) (0) - (y) (F)] = 4.68 x 10- '" 0.0

Entropy of the Reservoir

SR(A) = -S(A) = 2.950 x 10-4

SR(B) = SR(A) - (SS - SA) + Wp(B)/300 = 9.429 x 10-4

. SR( C) = SR(B) - (SC - SB) = 3.303 x 10-4

SR(F) = SR(C)- [SF - Sc] + [Wp(F) - Wp(C)]/2 = 1; 068 x 10-4

SR(O) F 4.243 x 10-4= SR -(SO - SF) =
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TABLE 0-1. Values of mechanical and thermal variables at various points on
the cycle of Fig. 4. Calculated from Program "CYCLL" Columns

A, B, etc. correspond to points A, B, etc. in Fig. 4.
First entry in each box: Isothermal cycle, T = 3000 K
Third entry in each box: Isentropic cycle, S = 0
Fourth entry in each box: Adiabatic cycle

The entropy in parenthesis is obtained from exact integration as described in
the first part of this Appendix. .

p

V

e
y

E:: P
X

A

-20.6206
(-20.6)

-20.5921
II

-10.6206
(-10.6)

-10.5921
II

13.9540

13.9254
II

.363308

.363308
II

-.0182483
(-.01823)
-.0182482

II

-.00912418
(-.009113)
-.00912413

II

0.0
(0.0)
0.0

II

-.0182483
(-.01823)
-.0182482

II

B

-40.6000
(-40.6)

-40.6000
II

-30.6001
(-30.6)

-30.6001
II

33.9334

33.9334
II

.353937

.353852

.353837

-.0443763
(-.04439)
-.0446184
-.0446597

-.00912418
(-.009113 )
-.00912413

II

-.0174187
(-.017428)
-.0175801
-.0176076

-.0269576
(-.02694)
-.0270382
-.0270520

C

.642331
(0.6)

.461812

.380745

-9.35767
(-9.4)

-9.53819
-9.61926

6.02433

6.20485
6.28592

.367091

.367002

.366987

-.00787783
(-.00793)
-.00812133
-.00816250

.00912448
( . 009117)
.00912403
.00912406

-.0174187
(-.017428)
-.0175801
-.0176076

.00954075
(.00952)
.00945874
.00944509
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F

20.6192
(20.6)

20.6454
20.3785

10.6193
(10.6)

10.6455
10.3786

-13.9526

-13.9788
-13.7119

.376806

.376806

.376736

.0182470
(.01823)
.0182478
.0180612

.00912448
. (.009117)

.00912403

.00912406

-2 x 10-6

(0.0)_7
-6 x 10
-.000125060

.0182490
(.01823)
.0182484
.0181863

o

0.0
(0.0)
0.0

If

-.000496
(0)

-.000089
-.096066

.000330

.000059

.064044

.369991

.369991

.369987

-4 x 10-8

(0.0)_8
1 x 10

-1.1 x 10- 5

.9 x 10-6

(0.0) -7
1 x 10

.88 x 10-4

-2 x 10-6

(0.0)_7
-6 x 10
-1.3 x 10-4

2 x 10- 6

(0.02 7
6 x 10 -4
1.1 x 10



TABLE D-1 -- Continued

A B C F 0
e 0.0 -.00870935 -.00870935 -1 x 10-6 -1 x 10-6

£y
(0.0) (-.008714) (-.008714) (0.0)_7 (0.0)_7
0.0 -.00879006 -.00879006 -3 x 10 -3 x 10

II -.00880379 - . 0088037'9 -6.25 x 10-4 -6.2 x 10-5
".

S -.000306570 -.000745514 -.000132340 .000306558 7 x 10-9

(-.000295) (-.000735) (-.000122) (.000317) (5 x 10-9)
0.0 0.0 0.0 0.0 0.0 "

II +.000195374 .000195374 .000406573 .000406573

Wp 0.0 .0624640 .0624640 .127240 . 127240
(0.0) ( .0625) (.0625) (.1273) (.1273)
0.0 .0630353 .0630353 .128409 .128409

II .0631326 .0631326 .128138 .128138

T 300 300 300 300 300
(300) (300) (300) (300) (300)
311.145 327.989 304.891 289.223 299.966

II 335.734 312.090 . 303.679 314.849.

."
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Program CYCLE

In the general case where A,~, Y may be functions of density and

temperature, numerical integration of the preceding equations may be required.

This can be accomplished with the FORTRAN program described here. With it one

can obtain values of the variables listed above for isothermal, isentropic or

adiabatic cycles. The last of these is a cycle only in the sense that stress

returns to its original value. The other variables do not because plastic work

is retained in the sample.

Results of integrations for conditions described in the first part of

this Appendix are listed in Table D-l for the vertices ABCFO. For isothermal

and isentropic cases the cyclic variables do not quite return to zero. These

integrations are accomplished by a direct, approximately second-order integra-

tion scheme. The listed values were obtained with dox = -.406 kb; reducing

it to a half or a third of this value did not significantly improve the closing

values. For greater accuracy a better integration scheme would be required.

The following assumptions are made about the equation of state:

bulk modulus:

where Ko = isothermal bulk modulus at T = Ta' p = 0

b = polytropic coefficient, i. e. p(To'V) = (K /b)[(V /V)b -1]o 0

8 = S - a Ko b

a = thermal expansion coefficient, (1/V)(3V/3T)p

S = CV(fo + fl)/Vo

Cv = specific heat at constant volume

Va = specific volume at T = To' P = 0

f = Gruneisen parameter = fo + fl(l- VIVo)

g = (S/3Ko) (4-l/b) - ab2
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To = const. is a reference temperature

For aluminum these constants are approximately

f
O

= 2.14, f 1 = -3.2,

A = 582 kb, ~o = 274 kb,

8 . - -.024065 kb/oK, 0 = -.26895 kb/oK

Provision is also made for introducing work-hardening in an elementary

way. The yield strength can vary with plastic work according to the relation

where Yo' A and Wo are constants.
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Comments on the Program Listing

IC is the integer index which determines whe,ther the computation will be made

N

under isothermal, isentropic or adiabatic conditions.

The stress increment used in integration is 0xBjN where

maximum compressive stress to be reached.

B-0 is thex

MM This is the number of cycles to be calculated. For this run two cycles

are calculated. IC = 2 for the first and IC = 3 for the second. IC is

incremented by card number 0184 (left hand column).

V00 = Vo

T0 = To

K0 = Ko
B = b

GAMO = f o

GAMl = f l
CV = Cv
MU0 =)Jo

BETA = S

DELTA = 0

SGAM = g

AMU = bl
Y0 = initial value of the yield stress

A = A

W0 = Wo

SIGXB = 0xB = -(compressive stress at which stress cycle is reversed)

MCOUNT = integer index which counts the number of cycles. It is incremented

by 1 at the end of each cycle.

V(J) = specific volume for Jth increment in stress

77



I

I

EPX = EX

EPY = Ey
EXE = e

EX

EYE = e
Ey

EPXP = E P ..
X

EPYP = E P
Y

GAMME = .e
y

S(J) = entropy

K = isothermal bulk modulus = K

MU = jl

LAM = A

YB = V

WPB = Wp

TB = f These quantities indicated by B or are averages of values at

the last J and the next J. Their use makes the integration

scheme approximately second order.

DY = dY

ISTOP, IFLAG are control indices used for stopping the calculation and cal­

culating the end of the cycle.

IY is an index used to guide the computation through the elastic branch (IY=l)

or elastic-plastic branch (IY=2).

JA = 1 indicates region FOA of Fig. 4.

= 2 indicates region AS of Fig. 4.

= 3 indicates region Be of Fig. 4.

= 4 indicates region CF of Fig. 4.

JM is the index which directs the computation to the next branch of the cycle.

IS is an index used to calculate the end points (A, B, C, F, 0) of each branch.

GAM = r
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The program contains a subroutine for use with a CALCOMP plotter. It

is by-passed in this listing, but it can be engaged by removing card number

0233, "G0 T0 99."

Following the listing is sample output for the two cases shown in·

Table 0-1 for isentropic and adiabatic compression.
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PROGRAM "CYCLE"

"
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FORTRAN IV G LEVEL 20 MAIN DATE = 72332

(I' P

15/18/08

R006
R007

00w

0001
0002
oe03
0004
0005
0006
0007
0008
0009
0010

0011
COl2
0013

DIMENSION SIGX(1500),SIGY(150Jl,EPX(1500),EPY(1500),EXEl1500J
DIMENSION EY~(1500),EPXP(1500)~EPYPI1500·),WPI1500),YC1500)
DIMENSION P(1500),VI1500),Jl(1500)
DIMENSION T(IOOO)
DIMENSION 5(1000), GAMME1IOOO)
REAL K, KO, MU, LAM, MUD, MU1, MU2
REAL Jl,LENGX,lENGV
INTEGER PENP
DATA XEPX/' EPX'I,XEXE/' EXE'I,XEYE/' EYE'I
DATA XJ1/' J '/,XSIGX/'SIGX'I,XSIGY/'SIGY'/,XEPXP/'EPXP'/

c
C KO,K,lAM,MU,~UO ARE IN KILOBARS
C B IS DIMENSIONLESS
C BETA IS IN KILOBARSIDEGREE C, BEAT=CV*(GAMO+GAH1)/VOO
C CV IS IN KB-CC/GRAM-DEGREE C,
C v,von ARE IN CC/G
C GAM,GAMO,GAMl ARE DIMENSIONLESS
C DELTA IS IN KIl06ARS/DEGREE C
C DElTA=-(ALPHA*KO*B-BETA)
C ALPH,\= VOLUME EXPANSION COEFFICIP.JT,COEG C)**-1,=.15E-4 FOR Al
C K=ISOTHER~Al BULK MODULUS
C LAM AND MU ARE LAME' CONSTANTS
C SGAM IS IN IDEG C)**-l, SGAM=(4*BETA/3KO-BETA/13*KO*BJ-ALPHA*lBETAJ**Z
C IY=l"'IF COMPRESSION lOR EXPANSION) IS ELASTIC
C IY=2 IF COMPRESSION IS ELASTIC-PLASTIC
C IC=1 FOR ISOTHERMAL PROCESS
C IC=2 FOR ISENTROPIC PROCESS
C IC=3 FOR ADIABATIC PROCESS
C CONSTANTS
C ALUMINUM
C

IC=l
N=100
MM=2

P.OOl
R002
R003

R005
R005AAA
P.O(l5AA
R005A



00.14 VOO=.310 ROlO
. 0015 TO=300 •

0016 KO=164.67
0017 B=O
OC18 GAMO=2.0
0019 GA~l=O.O

(le·lO CV=8.4E-3
0021 MUO=214.
0022 BETA=·-.024065
0023 DElTA=-.26895
0024 .' SGAM=-l. 407E-3
0025 AMU=O.O
0026 VO=lO.
0021 A=O.O R015

OC28 WO=.34 R016

00' 0029 SIGXB=-40.6 ROl7
~ .

0030 Q:FlOAHN)
0031 OSIGX-=SIGXB/Q

I

0032 MCOUNT=l R019

I C

I
C INITIAL CO~DITIONS RflZO

C
I

0033 V( l)=VOQ ROZl

0034 PC U=O.o R02l

0035 SIGX(l)=O.O ROl3
0036 SIGV( U=O.O ROl4

0031 EPX( U=O.O 'R('25

0038 EPV(1)=0.0 R026
0039 EXE(1)=O.0 R027

0040 EVE(l)=O.O R02e
0041 EPXP(l)=O.O R029
0042 EPYPll}=O.O RC30

0043 . GAMME ( 1)::0.0
0044 WPfU=O.O R031

0045 T( l)=TO
0046' S( u=o
0047 VI 1J =YO R035

" .11 .)



c
C ALONG OA R036

WRITE(6,101)
101 FORMATC4X,'J',8 Xt'SIGX'.11X,'SIGY',13X,'P',14X,'Y',14X,'V',llX,

+'EPX', 11X, 'GAMHE')

0048
OC49
C050
0051
0052
0053
0054
0055
0056
0051
Oe58

0059
0060co

U1

0061
Q062
0063
OC64
0065
0066
0061
0068
C069
C070
C011
0072
0073
0074
ee75
0076
0077
0078

C

K=KO
MU=MUO
LA M=K- (2./3. ) *MU
YB=YO
WP B=WP CU
TB=Tt 1)
DY=O.
VB=VOO
ISTOP=l
IFLAG:l

400 CONT I NUE

WRITE(6,102)
J; 1

301 CONTI NUE
I Y;1 .
JA=l
JM=2
IS=1
GO TO 201

302 CONTINUE
IY::2
JA=2
JM=3
IS=1
GO TO 201

303 CONTINUE
IV:l
JA=3
JMa4

,..

R032

R031



0079 DSI GX=-DSI GX
OOBO I S=l
OOBI GO TO 201
00B2 304 CONTINUE
OCB3 IY=2
CC84 JA=4
COBS JM=l
0086 15=1
0081 DSIGX=-OSIGX
0088 SIGlCT=O.O
0089 201 CONTlNUE
0090 1 SIGXIJ+l)=SIGX.J)+OSIGX R039

C
0091 IF(IFlAG.EQ.2.AND.SIGXeJ+IJ.LT.O.O) GO TO 2
G092 GO TO 3
OCQ3 2 CONTINUE

0) 0094 OSIGX=-SIGXIJ)
0\

COQS IFlAG=1
0096 ISTOP=2
0097 WRITE(6,110J
0098 110 FORMAT (2X, 'NEXT VALUES COMPLETE THE CYCLE')

·0099 GO TO 1
0100 3 CO·NTl NUE

C COMPUTE SIGYCJ+IJ
C

0101 00 8 M=1,3 R041

0102 GO TO 141,4Z),IV
0103 41 DSIGY:lAM*DSIGX/ClAM+2.*MU)
0104 GO TO 43
0105 42 DSIGY=DSIGX+DY
0106 IFtJA.EQ.4) DStGY=OSIGX-OY
0101 43 CONTI NUE
01e8 SlGY(J+l) = SIGYIJJ+DSIGY
0109 PIJ+lt=-'SIGXIJ.!)+Z.*SIGYIJ+l»/3.
0110 PB=(P(J+1)+P(J»/2.
0111 op=P( J+U-P( J) R046

0112 K=KO+B.PB+COElTA+SGA~*PB)*(rB-TO.



· ',- .>

0113 OVz-VB*DP/K R048
0114 DEPX=-OP/K R041
0115 V( J+U=V( J)+DV R049
011b VB:VIJ)+OV/2.
0117 MU=MUO+AMU*(TB/VB-TO/VOO)
Cl18 LAM=K-IZ./3.J*MU

C
C COMPUTE PLASTIC WORK AND Y
C

01l~ GO TO ISl,5Z),IY
01Z0 51 DWP=O.
0121 DY=O.
0122 GO TO 53
0123 52 CONTI NUE
0124 IFCJA.EQ.4)YB=-YB

(Xl 0125 IFIJA.EQ.4JOY=-DY
...... 0126 OWP=-(2.*VB*VB/3.)*IOEPX+OY/CZ.*HU)}

0121 DY=(A/WOJ*DWp*exPI-WPB/WO)
01Z8 53 CONTI NUE
0129 WPIJ+l)=WPlJ)+DWP R086
0130 WPB=(WPIJ+l)+WP(j»)/2. R08l
OU1 YIJ+l)=Y(J)+DV ROBS
0132 YB=IYIJ+l)+YIJ)/Z. R140

C
C COMPUTE GAMMA-ELASTIC
C

0133 DGAMME:(DSIGX-DSIGYJ/(4.*MU)
0134 GAMMEIJ+IJ=GAMMEIJ)+DGAMME
0135 GAMME8=GAMMEIJ)+DGAMMF/2.

C
C COMPUTES SAND T



~----- -

C
0136 GAM=GAMO.GAM1*(1.-V8/VOOJ
0137 GO TO 131,32,33),IC
0138 31 OT=O
0139 OS=GAM*CV*OV/VB-16.*CAMMES*AMU*OGAMME/3.
0140 GO TO 34
0141 32 OS=O
0142 ·OT=-GAM*TB*DV/VB+l~••GAMME8~T8*AMU*DGAMME/(3••CV)
0143 GO TO 34
0144 33 DS=DWP IT6
0145 OT=TB.DS/CV-GAM.T8*DV/V8+16••~AMMEB.TB*AMU*DGAMME/(3••CV)
0146 34 TeJ+1'=TfJ'+DT
0147 SeJ+ll=SIJ'+OS
0148 TB=Tt J)+DT/2.
0149 102 FDRMAT(15X.'EPXP.,12x,eEPXE~tlOXt'EPYE.,13Xt'S',15X,'WP',10X,'T')

0150 8 CONTINUE
ex> C
ex> C

0151 GO TO (61,62),IY
C
C COMPRESSION IS ELASTIC
C

0152 61 DEPXP=O.
0153 OEPXE=OEPX
0154 OEPYP;:O.
0155 DEPYE=O.
0156 GO TO 63

C
C COMPRESSION IS ELASTIC-PLASTIC
C

0151 62 CONT INUE
·0158 DEPXP~(2./3.)*(DEPX+DY/(2.*MU))

0159 OEPXE=DEPX-OEPXP R093
0160 DEPYP=-OEPXP/2.
0161 DEPYE,:=-OEPYP
0162 63 CONTI NUE .



0163
0164
0165
0166
0167
0168
0169
0170
0171
0172
0173
0174
0175
0116
C177

~ 0118
0179

o 0180
0181
0182
0183
0184
0185
0186
0181
0188
0189
0190
0191
0192
0193
0194
0195
0196
0191
0198
0199
0200

EPXIJ+1)=EPX(J)+OEPX
EPXP(J+l)=EPXP(J)+OEPXP
EXEIJ+l)=EXEIJ)+OEPXE
EPYPlJ+l)=EPYP(J)+OEPYP
EYE(J+IJ=EYEfJJ+OEPYE
J=J+1
~RITEl6,104)J,SIGXlJ),SIGYIJ)tPlJJ,YIJ),VIJ'tEPX(J),GAMMEIJ)

104 fORMATl2Xt(4~5F15.8,2E15.6)

WRITE(6,10SIEPXPlJ),EXEIJ),EYEIJ),SIJ),WPIJ).TIJ)
105 FORMAf(lOX,5E15.6,F15.8)

IF(J.GT.999)GO TO 21
IF(IS.EQ.2)OSIGX=SIGXB/Q
IFCIS.EC.2) GO TO 76
GO TO (11,72.13,14',JA

71 CONTINUE
IFIISTOP.EQ.l)GO TO 5
IF (MCOUNT.GT.MM)GO TO 21

4 CONTI NUE
J=l
ISTOP=1
IFLAG=l
IC'CIC+1
IFfIC.GT.3'GO TO 21
OSIGX=SIGXB/Q
GO TO 400

5 CONTINUE
IF «SIGXlJ)-SIGY(J)).GT.-YlJ)) GO TO 201
IN=SIGXIJ)-SIGYIJ)
lQ=SIGX(J-1)-SIGYIJ-IJ
Dl=IN-IO
DSIGX=-(OSIGX/OZ'*CYCJ-1)+ZO)/(1.-DY/OZ)
J=J-l
15=15+1
WRITE(6,106'

106 FORMATfl0X.'NEXT VALUES ARE FOR POINT A')
GO TO 201

72 IF(SIGX(J).GT.SIGX8) GO TO 201
OSIGXzSIGXB-SIGX(J-l)

R091
R090
R094

R096
R097



0201
0202
0203
0204

. 0205
0206
0201
0208
0209
0210
0211

·0212
0213
0214
0215
0216
OZ11
0218

. 0219
0220
0221
0222
0223
0224
0225
0226
0227
0228
0229
0230
0231
0232
0233
0234
0235

J=J-l
IS=IS+1
WRITE(6,107)

101 FORMAT(lOX,'NEXT VALUES fOR POINT 0'1
GO TO 201

13 IFUSIGXfJI-SIGY(JU.LT.Y(JIJ GO TO 201
IN=SIGX(J)-SIGYCJJ
ZO;SIGXfJ-l)-SIGY(J-l)
OZ=ZN-IO
OSIGX=(OSIGX/OI1*CYIJ-IJ-IOJ/Il.-OY/DZ)
J=J-l
IS=IS+1
WRITE ( 6, 108)

108 FORMATf10X,'NEXT VAlUESFOR POINT C')
GO TO 201

14 IFCEPXlJ).lT.O.O) GO TO 201
IftEPX(J-l).LT.O.OI OEPX=EPX(J!
OSIGXT=(LAM+2.*MUJ*OEPX
SIGXT=SIGXT+OSIGXT
IFfSIGXT.LT.SIGXlJ» GO TO 201
OSIGX=lOSIGX/OSIGXTJ*CSIGXiJ-1)-SIGXT+05IGXTJ/(1.-OSIGX/DSIGXTJ
J=J-1
15=15+1
WRITEI6,109J

. 109 FORMATUOX,'NEXT VALUES FOR PJINT FI)
IFlAG=2
MCOUNT=MCOUNH'l
GO TO 201

16 CONTINUE
GO TO (301,302,303,304),JM

21 CONTINUE
55 CONTINUE

- GO TO 99
56 CONTI NUE

.00 20 KZ=l,J

R160

R162

RI63

"
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0236
0231
0238
0239
0240
0241
0242
0243
0244
0245
0246

0241

0248
\D
....J 0249

0250

0251
0252
0253

0254
0255

20 JIIK2)=K2 RI64
ZERO=l.O R165
lENGX=4.5 RI66
LENGY=LENGX RI61
NCHARX=4 RI68
NCHARY~NCHARX RI6q
PlEND=1.0 RI10
PENP=-3RI1I
ORIGIN=O.O RI12
FACT=I.0 PI13
CALL PlOTITIJl,SIGX,LENGX,LENGY,NCHARX,NCHARY.XJl,XSIGX,PLEND,ZEROR174"

C,J,PENP,ORIGIN,FACT) RI15
CALL PLOTITfJl,SIGY,LENGX,LENGY,NCHARX,NCHARY,XJl,XSIGY,PLEND,lERORI16

C,J,PENP,ORIGIN,FACT) R117
CAll PlOTIT{Jl,EPXP,LENGX,lEN~y,NCHARXtNCHARy,XJ1,XEPXP,PLEND,lEROR118

C,J,PENP,ORIGIN,FACT) R179
CALL PlOTIT(Jl,EPX,lENGX,LENGY,NCHARX,NCHARY,XJl,XEPX,PlEND,IERO,JR180
C,?ENP,ORIGIN,FACT1R181

CALL PLOTITIJl,EXE,lENGX,LENGY,NCHARX,NCHARY,XJI,XEXE,PlENO,ZERO,JR182
C,PENP,ORIGIN,fACT) R183

PENP=Q99 R184
PLEND=lO.O RIB5
CALL PLOTIT(Jl,EYE,LENGX,lENGY,NCHARX,NCHARY,XJl,XEYE,PlENO,ZERO,JRI86

C,PENP,ORIGIN,FACTJ RIe1
99 STOP R18R

END R1S9



fORTRAN IV G LEVEL 20 PlOTIT DATE,. 72332 15/18/08

SUBROUTINE PlOTITIX,Y,lENGX,LENGY,NCHARX,NCHARY,TITlEX,TITLEy,PlENS100
CD,ZERO,NPTS,PENP,ORIGN.FCTR) 5101

DIMENSION IBUFCl500),Xll500l,YI1500J 5102
REAL*8 TITLEX,TITLEY 5103
REAL lENGX,lENGY 5104
INTEGER PENP 5105
DATA ENTER/l.1 SlOb

INSTRUCTIONS FOR USING THE PLOT SUBROUTINE:

THE TITLES FOR THE PLOTS MUST BE lITERAL CONSTANTS NO
LONGER THAN EIGHT CHARACTERS IN LENGTH AND MUST BE DECLARED
REAL*8.

FOR THE ·CASE OF TOTALLY POSITIVE DATA THE SCALE ROUTINE
WilL RETURN A NON-ZERO ORIGiN FOR ONE OR BOTH AXES. IF A
ZERO ORIGIN IS DESIRED FOR 80TH AXES THE VARIABLE ORIGN SHOULD·
BE SET TO ZERO AND FOR NON-ZERO ORIGINS ORIGN SHOULD BE seT TO
ONE.

CONTI NUE
IN CALLING THE SUBROUITNE THE VALUE ASSIGNED TO THE VAR­

IABLE ZERO SHOULD BE NO SMALLER THAN .5 SINCE ANYTHING SMALLER
WOULD NOT ALLOW ROOM TO PRINT THE TITLE FOR THE X-AXISo

CARE MUST BE TAKEN IN CHOOSING THE VALUES FO~ THE VAR­
IABLE LENGY. THE SUM OF LENGY AND ZERO SHOULD NOT EXCEED 10e
THE WIDTH OF THE PLOTTING PAPER IS ONLY 11 INCHES AND THE
VALUE FOR ZERO TELLS THE PLOTTER HOW FAR ABOVE THE BOTTOM OF
THE PAPER TO BEGIN DRAWING THE Y-AXIS, THEREFORE THE AXIS MUST
BE SHORT ENOUGH TO FIT ON THE PAPER WITHOUT HITTING THE LIMIT
SWITCH ON THE TOP •

. THE VARIABLE FCTR 19 USED TO CHANGE THE SIZE OF THE PLOTS
WITHOUT CHANGING THE LENGTH OF THE AXES. IT PRODUCES A PLOT
WHICH IS A SCALED REPRESENTATION OF THE NORMAL PLOT. IF FCTR
IS ~OT EQUAL TO ONE CARE MUST BE TAKEN TO INSURE THE NEW PLOT
WILL NOT BE TOO LARGE TO FIT ON THE PAGE OR TOO CLOSE TO THE

II ...
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oe08

OC09

·'I

c
c
c
c
c
C
c
C
c
c
c
C
C
C
C
C
C
C

C
C
C
C
C

C
C
C
C
C
C
C
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BOTTOM LIMIT SWITCH. A PLOT MADE V~RY SMALL BY THE USE OF THE
FCTR PARAMETER MAY NOT BE READABLE, THEREFORE THE USE OF FCTR
SHOULD BE LIMITED.

THE VAR I ABL E Pl END IS THE NUMBER OF I NCHE S FROM THE
ORIGIN THE PEN.WILl MOVE IN THE X DIRECTION AT THE END OF THE
PLOT. THEREFORE THE VALUE ASSIGNED TO PLEND SHOULD BE THE
LENGTH OF THE X-AXIS PLUS THE NUMBER OF INCHES PAST IT THE
NEW PLOT IS TO BEGIN. THE VALUE ASSIGNED TO PLEND IN THE
FINAL CALL SHOULD BE AT LEAST THE VARIABLE LENGX + 5 TO ALLOW
THE PAPER TO BE TORN OFF THE PLOTTER WITHOUT AFFECTING THE
PLOT.

CONTINUE
THE VARIABLE PENP SHOULD BE ASSIGNED THE VALUE -3 FOR

ALL CALLS TO THE SUBROUTINE EXCEPT THE FINAL CALL.. FOR THE
FINAL CALL THE VALUE 999 SHOULD BE GIVEN TO PENP. THESE
VALUES MERELY RAISE THE PEN WHILE MOVING TO THE NEW ORIGIN p

OR FOR THE CASE WHEN PENP=999, WHILE MOVING TO THE END OF THE
PAPER.

CONTI NUE

x: ARRAY CONTAINING X COORDINATES
Y= ARRAy CONTAINING Y COORDINATES
lENGX= LENGTH OF X-AXIS
lENGY= LENGTH OF V-AXIS

NC~ARX= NUMBER OF CHARACTERS IN TITLE OF X-AXI~

NCHARV= NUMBER OF CHARACTERS IN TITLE OF Y-AXIS
TITtEX= TITLE TO BE GIVEN X-AXIS
TIlLEY= TITLE TO BE GIVEN V-AXIS
PLEND= DISTANCE PEN WILL MOVE AT END OF PLOT
IERO~ DISTANCE ABOVE BOTTOM OF PAGE PEN SHOULD BE MOVED TO

BEGIN Y-AXIS



..------- ~- - - --

COlO
0011
0012
0013
0014
0015
0016
0017
0018
0019
oe20
C02l
oe22
0023
OCZ4
0025
0026
0027
0028
0029
0030
0031
0032
0033

C NPTSc NUMBER OF POINTS + 2 IN ARRAYS TO BE PLOTTED ( NUMBER
C OF X POINTS SHOULD EQUAL NUMBER OF Y POINTS. THE TWO
C eXTRA PLACES IN THE ARRAYS ARE USED IN THE PLOTTiNG
C ROUTINE FOR SCALING)
C PENP= POSITION OF PEN ~T END OF PLOT '(NORMALLY EITHER -3 OR
C 999)
C ORIGN= 0.0 FOR ZERO ORIGINS AND 1.0 FOR NON-ZERO ORIGINS
C FciR= RATIO OF NEW PLOT SIZE TO THE NORMAL PLOT SIZE. A VALUE
C OF 1.0 GIVES PLOTS OF NORMAL SIZE. ANYTHING GREATER
C THAN ONE INCREASES TH~ SIZE OF THE PLOT WHILE ANYTHING
C LESS THEN DECREAses THE PLOT SIZE
C

IFIENTER.NE.l) GO TO 1
CAll PLOTSIIBUF,1000),

1 ENTER=2.0
CAll PLOTCO.O,-11.o,-3t
CALL FACTORIFCTR)
CALL PLOTI0.O,ZERO,-3)
CALL SCAlE(X,lENGX,NPTS.ll
CAll SCAlEfY,lENGY,NPTS.IJ
XPAGE=O.O
VPAGE=O.O
IF(VINPTS+l) 10,20,30

20 IFIXINPTS+IJ) 21,22,23
22 CALL AXISIO.O,VPAGE,TITlEX;-NCHARX,lENGX,O.O,XINPTS+IJ.X(NPTS+2)

CALL AX[SIXPAGE,O.O,TITLEy,NCHARY,lENGY,90.0.Y(NPTS+IJ;YCNPT5+2J)
CALL lINEl X,Y,NPTS,I,O,O)
CAll PlOTIPLEND,-ll.O,PENP)
GO TO 99

21 XPAGE=-XINPTS+l,/X(NPTS+2'
GO TO 22

23 IF(ORIGN.NE.O.OJ GO TO 22
XMAX=xlNPTS.l)+lENGX*X(NPTS.Z)
,Xl NPTS+ll=O.o
X(NPTS+Z)=XMAX/LENGX
GO TO 22

"

5107
Sl08
5109
5110
S110A
Sill
SllZ
5113
Sl13A
51138
S114
5115
S116
5117
S118
511q
S120
5121
5123
5127
5128
5129
513<'
5131



.,

OC34 10 YPAGE=-Y(NPTS+IJ/YCNPTS+2J S13l
0035 IF (Xl NPTS+l» 11,12,13 . S133
0036 12 GO TO 22 5135
CC31 11 XPAGE=-XINPT5+1t/XINPTS+2) S136
0038 GO TO 22 S131
0039 13 IF(ORIGN.NE.O.O) GO TO 12 S138
OC40 XMAX=XINPTS+l)+lENGX*XlNPTS.Z) S139
0041 XINPTSf-l)=O.O 5140
0042 X(NPTS+2)=XMAX/lENGX 5141
0043 . CO TO 22 S142
0044 . 30 IF(XINPTS+l» 31,32,33 5158
0045 32 IFlORIGN.NE.OJ GO TO 22 5159

\0 0046 34 YMAX=Y(NPTSf-1)f-LENGY*Y(NPTS.2) 5160
01 0047 YI NPTSf-1)=O.O 5161

OC48. YINPTSf-2)=YMAX/LENGY 5162

0049
0050
0051
0052
0053
0054
0055
0056
0051
0058

GO TO 22
31 XPAGE=-XCNPTS+l./X(NPTSf-2)

GO TO 32
33 IFIORIGN.NE.O.O} GO TO 22

XMAX=XINPTSf-1)+lENGX*XINPTSf-2)
XINPTSf-l)=O.O
X(NPTSf-2)=XMAX/LENGX
GO TO 34

99 RETURN
END

S163
5164
5166
S110

.S111
S177­
S173
S114
S175
S116



,,---------_._- --- --------

J SIGX
EPXP

2 -0.40599990
0.0

3 -0.81199980
0.0

SIGY P
EPXE EPYE

-0.20910841 0.27473891
. -0.359291£-03 0.0

-0.41821682 0.54947758
-0.718581E-03 0.0

Y V
S WP

10.00000000 0.36986703
-0.603608E-05 0.0

10.00000000 0.36973411
-0.120722E-04 0.0

EPX GAMME
T

-0.359291E-03 -0. 179646E-03
300.00000000

-0.718581E-03 -0.359291E-03
300.00000000

51 -20.29986572 -10.45541763 - 13.73689747 10.00000000 0.36341119 -0. 179644E-Ol -0.898225E-02
0.0 -0.179644£-01 0.0 -0.301802E-03 0.0 300.00000000

52 -20.70585632 -10.66452599 14.01163197 10.00000000 0.36328059 -0. 183237E-Ol -0.916189E-02
0.0 -0.183237E-01 0.0 -0.307838E-03 0.0 300.00000000 .

NEXT VALUES ARE FOR POINT A

52 -20.62063599 ~10.62062836 13.95396423 10.00000000 0.36330801 -0. 182483E-Ol -0.912418E-02
0.0 -0.182483E-Ol 0.0 -0.306570E-03 0.0 300.00000000

~ 53 -21.02662659 -11.02662754 14.35995960 10.00000000 0.36311513 -0.187792£-01 -0.912418E-02
-0.353961E-03 -0.184252£-01 -0.176981£-03 -0.315490£-03 0.128563E-02 300.00000000

101 -40.51417542 -30.51428223 33.84757996 10.00000000 0.35397691 -0.442640E-Ol -0.912418E-02
-0.173439E-Ol -0.269202£-01 -0.867194E-02 -0.743629E-03 0.621992£-01 300.00000000

102 -40.92016602 -30.92027283 34.25357056 10.00000000 0.35378897 -0.447950E-Ol -0.912418E-02
-0.176978E-Ol -0.270972E-Ol -0.884892E-02 -0.752549E-03 0.634518E-Ol 300.00000000

NEXT VALUES FOR POINT B-

102 -40.59999084 -30.60009766 33.93339539 10.00000000 0.35393715 -0.443763E-Ol -0.912418E-02
-0.174187E-01 -0.269576E-01 -0.870935E-02 -0.745514E-03 0.624640E-Ol 300.00000000

103 -40.19398499 -30.39097595 33.65864563 10.00000000 0.35406429 -0.440170E-Ol -0. 894453E-02
-0.174187E-Ol -0.265983E-Ol -0.870935£-02 -0. 739478E-03 0.624640E-01 300.00000000

'i



.' l>

J SIGX SIGY P Y V EPX GAMME
EPXP EPXE EPYE S WP T

203 0.40636444 -9.47920322 6.18401051 10.00000000· 0.36701411 -0.808666E-02 0.902007E-02
-0.174187E-Ol 0.933193E-02 -0.870935E-02 -0.135848E-03 0.624640E-Ol 300.00000000

204 0.81236434 -9.27009392 5.90926552 10.00000000 0.36714596 -0.772735E-02 0.919972E-02
-0.174187E-Ol 0.969123E-02 -0.870935E-02 -0.129812E-03 0.624640E-Ol 300.00000000

NEXT VALUES FOR POINT C

204 0.64233136 -9.35766888 6.02433205 10.00000000 0.36709070 -0.787783E-02 0.912448E-02
-0.174187E-Ol 0.954075E-02 -0.870935E-02 -0.132340E-03 0.624640E-Ol 300.00000000

205 1.04833126 -8.95166874 5.61833191 10.00000000 0.36728561 -0. 734688E-02 0.912448E-02
-0.170647E-Ol 0.971773E-02 -0.853236E-02 -0.123420E-03 0.637637E-Ol 300.00000000

253 20.53619385 10.53631401 -13.86960316 10.00000000 0.37676501 0.181385E-Ol 0.912448E-02
-0.743989E-04 0.182128E-Ol -0.371640E-04 0.304734E-03 0.126967E 00 300.00000000

254 20.94218445 10.94231319 -14.27559853 10.00000000 0.37696511 0.186694E-Ol 0.912448E-02
0.279562E-03 0.183898E-Ol 0.139817E-03 0.313654E-03 0.128301E 00 300.00000000

NEXT VALUES FOR POINT F
254 20.61920166 10.61933422 -13.95262146 10.00000000 0.37680590 0.182470E-01 0.912448E-02

-0.202062E-05 0.182490E-Ol -0.974804E-06 0.306558E-03 0.127240E 00 300.00000000

255 20.21319580 10.41022491 -13.67788124 10.00000000 0.37667054 0.178877E-Ol 0.894483E-02
-0.202062E-05 0.178897E-01 -0. 974804E-06 0.300521E-03 0.127240E 00 300.00000000

303 0.72513318 0.37298089 -0.49036467 10.00000000 0.37022889 0.641669E-03 0.321765E-03
-0.202062E-05 0.643598E-03 -0.974804E-06 0.107875E-04 0.127240E 00 300.00000000

304 0.31913328 0.16387248 -0.21562606 10.00000000 0.37009585 0.282378E-03 0.142119E-03
-0.202062E-05 0.284308E-03 -0.974804E-06 0.475146E-05 0.127240E 00 300.00000000

NEXT VALUES COMPLETE THE CYCLE

305 0.0 -0.00049567 0.00033045 10.00000000 0.36999130 -0. 393484E-07 0.910179E-06
-0.202062E-05 0.189035E-05 -0.974804E-06 O. 684031 E-08 0.127240E 00 300.00000000
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APPENDIX E

Gibbs Relation

Consider an element of mass within which may operate various irreversible

processes. The element is supposed to be in a stable or equilibrium state; if it

is left undisturbed it remains unchanged. We also suppose that temperature T,

specific entropy 5, and specific internal energy E can be assigned to it. External

forces are applied at a particular instant and work is done on the element in the

amount dW. Heat of amount dQis also added. These external influence's set in

motion irreversible processes, some of which operate immediately and some of which

may operate over an extended time interval. After a long time, during which the

element is insulated from further heat exchange, the element is assumed to come to

a new equilibrium state which differs from the first by internal energy dE,

temperature dT and entropy d5. We suppose that the only net effect of adding dQ

and dW is to increase the internal energy:

dE = dQ + dW (El )

We further suppose that some method exists for assessing the internal changes in

the ,sample, i.e. for partitioning the change dE into changes in thermal energy,

Td5, and coherent energy, say dWe. For the purposes of Section IV this i~

accomplished by writing the total work increment as the sum of an elastic and

plastic term and assuming that the elastic work is reversible:

c

dW = d~~ + dWe p

dE = TdS + dWe

Combining Eqs. (El) - (E3) yields the Gibbs relation

TdS = dW + dQP ,

(E2)

(E3)

(E4)

Properties of the material and properties postulated to this point imply

that there also exist other thermo-dynamic functions, e.g. the Helmholtz free energy,

99



A = E - TS

dA = -SdT + dWe

= -SdT + dW - dW
P

100
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APPENDIX F

Heat Absorbed in Isothermal Compression

EA = internal energy at A

EB = internal energy at B

= EA + dQ + dW

dQ = heat absorbed by sample in going

from A to B isothermally~ <0.

B

A

dW = work performed on the sample, in taking it from A to B isotherma11y~ >0.

E = E(T~ EX ~ ye)

Es EA + {-aE/aE ) dE + (aE/aye) 'e= dy
X T e X

T~EX~y

From Eq . (47)

dA = -SdT - VpdE + 8VTdye/3
X

Since dE X = dV/V~ these can also be written

dA = -SdT - pdV + 8VTdye/3

The elastic work consists of two terms: one arising from density change and

one from elastic shear. Then

.7.",

(aE/aV) e =
T~y

(aE/aV) e + (aE/aS) e (as/aV) e
S~y V~y T~y .

= -p + T (as/aV) e
T~y

101,



S = -(aA/aT) e
V,y

p = -(aA/aV) e
T,y

laS/ aV) = - (a2A/ aVaT) e = (ap/aT)
T,ye V,yey

Simil arly,

(aE/aye) = (aE/aye) + (aE/aS) (as/aye)
T,V S,V V,ye T,V

= 8VT/3 + T(as/aye)
T,V

(as/aye) = -(a2A/aTaye)v = -(8/3)( aVT/aT)
T,V V,ye

= -(8V/3) (aT/aT)
V,ye

Then

= [-p + T{ap/aT) e ] dV
V,y .

+ [8VT/3 - (8VT/3) (aT/aT) e] dye
V,y

I .
I

dQ = T(ap/aT) e dV - (8VT/3) (aT/aT) e dye - 8VTdyP/3
V,y V,y
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Evaluation of (aox/aT) e £ e
£x' Y

From Eq. (27)

APPENDIX G

and (aT/aT) e
y

where A and ~ are functions of temperature and strain.

Let A2 = A(T2,£)

Al = >.(Tl,e:)

JJ2 = JJ(T2,e:)

JJl = JJ(Tl'e:)

In the neighborhood of a fixed pair of elastic strains, (E~ol' E~Ol)'ox can be

represented as a linear function of E;, Eye:

0x(Tl , Ex
e, eye) = 0 (Tl , £e l' £e 1)x xo yo

Similarly

0x(T2, Ex
e, eye) = 0x(T2, E~o2' e~02) + (A2 + 2JJ2) (E x

e
- E~02)
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We have approximately

A2 = Al + (aA/aT)6T,

e e + a aTExo2 = Exol x

e = e +a aTEyo2 Eyol y

~2 = ~l + (a~/aT)oT

where ax and ay are linear thermal expansion coefficients:

Then to first order in oT

.1 im
e e

EX -+E XO1
e e

Ey -+Eyol

If a =a =a/3, where a is the volume expansion coefficient, then.x y
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Let dT = 2~dye

Let T(Tl,ye) = T(Tl , Yale) + 2~(Tl) (ye - Yale)

Then

Then

Let oT = T2 - Tl + 0, e e e e
Yo2 + Yol ' y + Yo2

Then
oT/oT + (aT/aT) e = -2~(Tl)(aye/aT)T

y
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APPENDIX H

Multiplication Time for, Dislocations

Suppose that each dislocation runs freely between imperfections without

multi,plying, reaches an imperfection, hesitates, multiplies and goes on to the

next. If the distance between imperfections is t and shea~ velocity in the crystal

is vs ' the multiplication time is the order of

where t h = hesitation time at the imperfection.

Let t h be determined by a rate process. Adislocation is trapped at a

site and must surmount an energy barrier, U, to escape. It makes n escape

tries per second and the probability that anyone of them will succeed is assumed

to be exp(-U/kT). Let P(M + 1) = probability that escape occurs on the (M + l)th

trial. Then

P(M + 1) = [1- exp(-U/kT)]M exp(-U/kT)

= (probability that first M tries fail) x

(probability that (M + l)th succeeds).

Also P(M + J) = P(M + 1) [1 - exp (_ U/kT)]J-l.

The probability that escape occurs on the (M + l)th, (M + 2)th, •.•• , or (M + J)th

try is
J
I P(M + r) = P(M + 1) (1 - ~ )/(1 - a)

r=l

where a = 1 - exp (-U/kT).

Since there are n tries per second, M= nt. Let J = ndt,

then
k1 - a = - ndt ~n [1 - exp (-U/kT)] + O(~)
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Neglecting the higher order quantities, we have the result that

P(t)dt = -[1 - exp(_U/kT)]nt tn[l - exp(-U/kT)] ndt

where P(t)dt = probability that escape occurs during the interval (t,t + dt).

It is readily verified ·that

""1
0

P(t) dt =

Then the mean time for escape is

t h = Io""tP(t)dt

= -(lin) I tn[l - exp(-U/kT)]

~ exp(U/kT)/n if exp(-U/kT) « 1.

The multiplication time is then

to = t/vs - '(lin) I £on[l - exp (-U/kT)]

for exp (-U/kT) < 1. The effect of applied stress is to diminish U, e.g.

(Hl)

where ao is a critical or threshold stress. For a ~ ao' Eq. (Hl) is replaced by



APPENDIX I
Functional dependence of p and ~

a2p/aTaye = -(8/3) a(VaT/aT)/aV

Let T = 2~ye

a~/aye = 0

Eq. (86a), with (11) becomes

(86a)

(86b)

(86c)

(I1).

(12)

(14 )

If
(I5)

Then Eq. (14) becomes

(I6 )

or (I 7)

?

In view of Eq. (12), (I7) becomes

From Eqs. (86b) and (I3),
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Equations (19) and (16) combine to yield

a2p/aNaT = O.

Equation (110) implies that

Since p is already assumed to be independent of ye, Eq. (Ill) becomes

ap/aT = f2(T,V).

Equations (86c), (11) and (13) combine to give

(b2/2) a2(~v)/aTaye = (16ye/3) a2(~V)/aTaN

(I10)

(Ill)

(112)

(113)

By Eq. (12) \l is independent of ye, so the left hand side of Eq. (113) is

zero. Then

so,

a(\lv)/aT = f3(T,V,ye)

Comparing Eqs. (18) and (115) shows that

Integration of Eqs. (112) and (116) yields

( I 14.)

(I15)

(I16)
'.

p = f(T~V) + g(V,N) (117)

\lV = F(T) + G(V,N} (118)

where the assumptions that p and \l are independent of ye have been carried

forward into Eqs. (117) and (118).
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APPENDIX J

Temperature Dependence of Shear Modulus of Al

Equation (75) is obtained from Eqs. (70) under the assumptions that

pressure and specific heat, CVy ' are both independent of ye, and that T is

proportional to ye:

(Jl)

Such a linear dependence is quite reasonable for small deviations from T;o

but must clearly be inadequate as T approaches the melting temperature, T.m

If one assumes that the reduction of ~ with temperature is an activated pro-

cess and that ~ vanishes at T = Tm, he obtains an equation of the form

~ = c exp[-A/(Tm - T)] (J2)

This function varies slowly with T until it approaches Tm, then decreases

precipitously in value. To give it the linear form of Eq. (Jl), for small

T - To, let ~ be given by the expression

~ = c exp[-A/(Tm - T)] [1 - beT - To)] (J3)

Measurements made by P. M. Sutton (1953) have been used to evaluate the con­

stants in Eq. (J3) with To = 273.2°K. The result is

~(megabars) = .2812 exp [-7.8059/(933.2 - T)]

[1 - 4.79 x 10-4 (T - 273.2)] (J4)

Values calculated from Eq. (J4) are compared with Sutton's measured values in

the following table:
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T = 273.2 373.2 473.2 573.2 673.2 773.2 873.2 903.2 933.2

llcalc =

llmeas =

.2812

.2812

.2672

.2670

.2530

.2530

.2384

.2385

.2232

.2232

.2061

.2063

.1780 . 153 o

These values are plotted in Fig. Jl.

It would improve the form of (J3) to write it as

In that case

(J5)

However, one can argue that the parameter A should also be volume dependent,

so the refinement of (J5) hardly seems worthwhile at present.

A different form of the temperature dependence of elastic constants

has been given by Varshni (1970). It describes the slow variation satis­

factorily but does not vanish at T = Tm. For the present purpose the

behavior near T= Tm ;s important because it relates to the annealing

properties of dislocations.
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273.2

Figure Jl C44 of Al according to the formula

C44 = .2812 exp[-7.8059/(933.2-T]

[1 - 4.79 x 10-4 (T-273.2)]

This corresponds closely to data given
by P. M. Sutton -(1953).
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