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Abstract

Radio waves that pass through the earth's ionosphere travel inore slowly than
their free space vrlocity due to the group:path delay of the ionosphere, This group
path delay, directly proportional to the total electron content of the ionosphere, can
be an important source of error to VHF, UHF, and L-band satellite detectionradars
and satellite navigation systems, In this report, the current state of knowledge of’
ionospheric total electron content is outlined, with special emphasis placed on the
North Atlantic region of the world due to NATO special requirements in this region,
A numerical model of total electron content, valid over the European continent under
certain conditions, is présented for systems engineering use for an averagé back-
ground total electron content correction, Typical values of total electron content
are also given at various locations in the high, middle, and equatorial latitudes, If
the results presented here seem incomplete, it is only because the state of knowledge
of the total electron content parameter is still incomplete, With more observational
data being taken at many locations, an.over-all satisfactory picture of the world-wide
behavior of this important parameter is beginning to emerge,
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TOTAL ELECTRON CONTENT
STUDIES OF THE IONOSPHERE

1. Introduction - Importance of
the Total Electron Content Parameter

J.A. Klobuchar and J. Aarons

, 1-1. INTRODUCTION

The total electron content (TEC) of the earth's ionosphere is defined as the
total number of free, thermal electrons in a unit area column of ionosphere from
the ground to a height well above the peak of ionization, to at least 1000 km, This
TEC is usually described as a vertical column one square meter in area, Typical
TEC values range from 1016 t5 1019 ellmz, but the exact value is a function of
many variables, Some of the variables which influence TEC are geographic location,
local time, season, solar EUV flux, and magnetic acuivity. In a given day at one
location, changes in TEC of 10 to 1, or greater, are typical in some seasons.,

Why is the TEC parameter studied? What importance does it have? First,
experimentally it has been a relatively simple parameter to measure, The earliest
TEC results, obtained in the late 1950s, showed the first temporal and seasénal
behavior of the topside of the ionosphere, Comparisong were later made of the
ratio of the topside to‘the bottomside content, The equivalent slab-thickness, the
ratio of TEC divided by the density at the peak of the F-region, algo was studied,
Slab thickness is the equivalent thickness the ionosphere would have if.it had a
constant density equal to the peak density throughout its entire height, The slab
thickness generally ranges from 100 to 400 km in height,

{Received for publication 7 February 1873)
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The chief scientific value of TEC today lies in its simplicity of measurement,
providing a suitable satellite source is available, TEC provides continuity of
F-region measurements through magnetically disturbed periods. TEC measure-
ments have the potential use as another routine parameter describing the E2 region
at many locations,

What engineering importance does TEC have? Any operating or potential sys-
tem which involves radio waves propagating through the ionosphere and which
requires time delay measurements to an accuracy of the same order as.the iono-
sphere time delay errors requires a knowledge of TEC to correct for these errors.
The ioncsphere produces a retardation in‘the velocity of the information carried on
a radio wave called group path delay. This group‘path delay produces timing errors
in radar systems and navigation systems which must traverse the ionosphere, The
group path delay timing error is directly proportional to the TEC,

The group path delay timing error can be important depending upon the fre-
quency the system uses-and the amount of the ionospheric TEC. For VHF and higher
the relationship between time delay 4t and TEC is:

at = 283 TEC (sec)
cf
where
¢ = velocity of light = 3 x 108 mr/sec
f = system operating frequency in Hz

TEC = total electron content in el/m2
A typical time delay for a radar operating at 430 MHz might range from 10 to 1000
nsec for a target at the zenith, Figure 1-1 shows a plot of time delay versus fre-
quency for several TEC values, At 25 deg elevation these time delays would-be
approximately doubled due to the greater TEC encountered through an oblique iono-
spheric path, Figure 1~2 shows the factor by which vertical TEC values must be
multiplied to obtain TEC time delay values at other elevation angles, Tynical mean-
ionospheric heights range from 300 to 400 km for this conversion ratio, This does
not, of course, correct for temporal or geographic gradients of TEC which produce
an additional difference between vertical and oblique TEC values,

In order to determine the-time delay correction for an object at amarbitrary
height, geograpi.uu idcation and time in the ionosphere, a complete description of
the electron density height profile for all times and.locations must be ¥nown, This
task is well beyond the scope of this report, Here, only the status of measure-
ments of TEC, the total vertically integrated electron density up to a height of at
least 1000 km, will be discussed., First, some comments will be made on the
existing TEC data base, along with prospects for improving this data base, Next,

the approximations which are a part of the TEC data base will be discussed, These
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FREQUENCY sections will be followed by a brief

-description of efforts to date in TEC
Figure 1-1. Time.Delay Due to the Iono-

sphere Versus Frequency for Several modelling, Finally, in-the data section,
Values of Total Electron Content tables and graphs of TEC averages for

several locations are presented along
with a discussion of TEC data obtained from the three world ionospheric regions—

the equatorial, midlatitude, and polar regions. A brief summary di~ usses possible

improvements in TEC prediction capability in the near term, ult. ~ate limitations
to TEC data and possible experimental work which will improve TEC pFediction
accuracy,

1.2. SOME COMMENTS ON THE EXISTING DATA BASE

Measurements ofsthe total electron content of the ionosphere have been made
since the late 1950s, The earliest.measurements were made by monitoring the
polarization twist of vhf lunar reflected radio waves. Following the advent of
artificial earth satellites the Faraday polarization rotation and differential Doppler
effects were used to determine TEC from VHF radio waves transmitted from certain
gatellites, The differential Doppler and differential Faraday effects have also been
used to determine the height profile of electron density by means of rocket probes,

Numerous ionospheric observatories participate in taking TEC data from one
or more artificial earth satellites but little has been done to integrate the results
from the various independent observers and:to attempt to produce a world-wide

picture of ionospheric total electron content from the measurements taken from these

satellites, In fact, it may not be possible to compile an over-all picture of TEC
from these data as the available data from many of thiise stations consists of the
results of a few satellite passes a day averaged over a few month period, These
seasonal averages were compiled using different times and lengths of seasons for
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the various observers, As a result, combining these gseasonal averages from the
various stations encounters the difficulty that even the mean seasonal picture may
suffer from these sampling differences, No day to day variability can be determined
from the mean seasonal data,

One exception to the rather bleak picture of the state of the available TEC data
obtained from low orbit satellites is in the European continent where Amayenc,
Bertin and Papet-Lepine (1971) combined TEC data from near Paris, France, with
that of Liszka’s (1967) data taken at Kiruna, Sweden, to producemean seasonal
maps of TEC various local mean time from 39 to 72 deg North latitude, These TEC
contours, graciously supplied by F, Bertin for inclusion in this report, are included
in the data section,

Geostationary satellite polarization data are much better with regard to data
time sampling, but, unfortunately, the geographic distribution of the available data
ig severely restricted by the lack of geostationary satellites having suitable VHF
transmissions, Most of the available total electron content data frofn geostationary
satellites have been taken from the North American continent and from the Australia-
New Zealand area, with data also available from Japan, Hawaii, and Wales. The
European continent, until late 1971, has not had a suitable geostationary satellite
available for long periods-of time to make ionospheric measurements,

Perhaps.the main point concerning availability of TEC data is that there is not
now — nor is there likely to be in the near future — sufficient TEC data from a large
enough number of stations to construct a world-wide TEC n vdel directly from TEC
data alone, Therefore, any TEC model, except one which covers only a limited
geographic region, must lean heavily on other existing models of the F2 region, A
world-wide foF2 prediction model was made using data from more than 50 ionosondes
for the sunspot minimum conditions and from over 100 ionosondes during the
International Year sunspot maximum, Direct TEC measurements have little hope of

being available from this number of stations, Therefore, models of TEC must
necessarily rely heavily oa existing foF2 data maps.
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2, TEC From the Faraday Effect

J.A. Klobuchar and M. Mendillo

Measurements of the ionospheric total electron content (TEC) are being made
at several mid-latitude sites by monitoring the Faraday rotation of VHF radio waves
from geostationary satellites. The correct conversion of the polarization data to.
equivalent vertical TEC values is mainly dependent upon the choice of the Mfac.or
which appears in the Faraday equation. A‘recent paper by Smith (1970) concludes
that large errors may result if a constant e factor is used throughout the course
of a day, Here we present the results of calculations made of the total Faraday
rotation and the "true' number of electrons along a path from a mid-latitude station
to a geostationary satellite, Typical summer and winter, day and night conditions
were used to determine how the M factor, the polarization twist (Q) and the TEC

change as a function of height,

2-2. THE FARADAY METHOD OF TEC MEASUREMENTS

The amount of total polarization twist, 2, is related to the total electron content

by the well known relation:

Q= -;5-{— fB cos 9sec XNdh (radians)

(2-1)
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where:
K = 2.36x107°
= frequency in Hertz

magnetic field strength in gammas
propagation angle
zenith angle

N - local electron density in el/M2,

In practice, the measured amount of polarization twist, Q, is converted to.an
equivalent total vertical electron content by removing B cos 9 sec X from under the
integral sign and replacing it with a mean value, Then:

f

B
0
X

9=—:(szNdh (2-2)

where Bcos @ secX = M is computed in the following manner, A typical N(h)

profile is assumed and calculations of the mean value M are-generally found by
equating:

M = _[B cos § secX N dh

deh

The crux of this discussion lies in the limits of the integration in both the numerator
and the denominator in Eq, (2-3). At least one author, Smith (1970), has pointed
out that there is a large diurnal change in M when polarization observations are
made from signals tiransmitted from a geostationary satellite, He used N(h) from
the Thomson scatter facility at Arecibo to heights of =1000 km, the Angerami.and
Thomas (1964) exospheric electron density model above that height, and integration
limits from the ground to the satellites in order to determine the diurnal changes in
M.

In the calculations which follow we will show that an M derived from Eq. (2-3)
is in error if the integration is carried out to the satellite height, The integration
of both the numerator and the denominator in Eq. (2~-3) should only be carried out
to heights where £ is no longer measurable, If this point is ignored, the resultant

(2-3)

f N dh will consist of both the TEC actually responsible for the measured amount of

rotation (Q), plus an additional f N dh along the ray path where a nonmeasurable
amount of rotation occurs, In summary, then, Eq, (2-3) should be rewritten,
using Eq, {2-1) to read:

2 9

M= — 2-4)
K ;Ndh (

e
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where Qis the measured amount of rotation, and the upper limit to-the integral
corresponds to the height above which the remaining amount of rotation is less than

the absolute experimental error.

2.3. ABSOLUTZ ACCURACY OF MEASUREMENTS OF POLARIZATION ROTATION

Before the resuits of the calculations of £ and TEC are presented a discussion
of the absolute measurement accuracy of the experimental quantity in‘the Faraday
technique, () is in order, Measurements of the polarization twist of VHF radio
waves from geostationary satellites are usually carried out by means of rotating or
spinning yagis, The position of the null in the arriviﬁé éignal plane is compared
either mechanically or electrically with some reference polarization; for example,
the local vertical. Some workers use a pair of right hand and left hand circularly
polarized helices, with a dual phase locked receiver, and compare the phase
difference at the two receiver outputs. The simple yagi or helical antennas
generally used to measure the relative polarization with respect to a local reference
can determine this angle on a relative basis to within approximately + 5 deg, if
careful calibration of the receiving system is carried out and maintained,

A correction also must be made for the angle that the transmitted signal from
the satellite would make with respect to the local vertical in the absence of an iono-
sphere, The orientation that the transmitied VHF wave makes with respect to the
satellite spin axis, or to some known reference, is usually not known precisely,
since measurements of this transmitted orientation are not made before launch,
Consequently, resort must be made to calculations of this angle based upon the
satellite VHF antenna and feed characteristics. In the case of ATS-3, an independent
determination of this:angle was made by measuring the {otal twist of lunar reflected
signals at a high VHF frequency at atime when the moon was nearly directly behind
the ATS-3 satellite, Klobuchar (1969). By knowing the absolute amount of twist on
the lunar reflected signal and relative amount of measured twist along the ATS-3
path, the transmitted polarization of the VHF signal on the ATS-3 was determined,
The accuracy of either the calculated or the experimental methods of determining
this transmitted polarization is certainly no better than 5 deg. In addition the
satellite spin axis may have some diurnal precession of a few degrees about the
nominal polar axis, In conclusion, we estimate the total polarization twist measure-
ment error due to all sources, at least for the modest antennas used by most workers,
to be not better than +10 deg,
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2.4, MODEL CALCULATIONS-ASSUMPTIONS AND DATA USED

In order-tc see how Q and f N dh vary as a function of height along the path
toward a geostationary satellite, we carried out integration of RQand N from a mid-
latitude station a: Hamilton, Massachusetts, (42.6°N, 70.8°W) to a.geostationary
satellite on the station's meridian, We used N(h) data up to a vertical height of
1000 km, obtained from the Thomson scatter radar at Millstone Hill, kindly provided
by J.V. Evans of the MIT Lincoin Laboratory. N(h), above a vertical height of
1000 km, was derived from the Angerami and Thomas (1964), (A&T) diffusive
equilibrium exospheric model, The calculations of polarization twist and TEC as a
function of height along the straight line path from the satellite to the station were
made for four conditions, summer and winter day and night.

To calculate the electron density at some point along a field line the A&T
exospheric model requires a temperature, composition, and electron density at the
base of the exosphere along the same field line, here.taken as 1000 km, In order
to compute the electron density along the straight line path to the satellite-these
parameters are required for the A&T
model over a substantial latitude range,
Figure 2~1 shows that the minimum ‘L
reached by a ray from Hamilton,
Massachusetts, to the geostationary
satellite on the gtation meridian is
L = 2.3, which corresponds to an in-
variant latitude at 1000 km (A') of 44 deg.
L =4.6 (A! = 60 deg) is taken as the
plasmapause outside of which we take a
constant electron.density of 200 el/em3,

ii‘igurg, 2-1, Path of the Straight Line The electron density at the 1000 km base
Ray From a Geostationary Satellite to

Sagamore Hill, Hamilton, Massachusetts level of the exosphere at the latitude of
(42, 6°N,, 70,8°W,), The-satellite is on Millstone Hill (A' = 55 deg) is taken from
the station meridian

the Thomson scatter profiles provided by
Evang. The electron density over the
remainder of the 44 to 60 deg latitude range is taken from the gradients given by

Brace, Mayr and Reddy (1967) fitted to the Millstone Hill values at 55 deg.

Electron temperatures over the same latitude range were obtained by using the
temperature gradients of Brace ei al, fitted to the actual Ty values measured at
1000 km at Millstone Hill, also kindly provided by Evans, In the A&T model of
diffusion along a field line the ion and electron temperatures are assumed to be
equal to the 1000 km value. Ion composition was chosen on the basis of measured
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values at Arecibo (A! = 33.deg), Prasad (1970), and estimated values at 55 deg
fitted with a linear change between these two latitudes,

2.5. MONEL CALCULATIONS-EXOSPHERIC CONTRIBUTION TO THE TEC

Results of the calculations of £ and TEC from the satellite to the station:for
the four cases being considred are shown in Figure 2-2, Both 2 and TEC above

the ordinate height are plotted as a function of height,
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Figure 2-2, Polarization Twist (Q, in
Radians) and Total Electron Content
(TEC, in el/m2) Along the Slant Path
From a Geostationary Satellite to a Mid-~
Latitude Station

tion is within the measurement erron,

The values above 1000 km
in vertical height, -shown in Figure 2-2,
are from the A&T model calculations,
Below 1000 km 2 and TEC are from
Evans!' Né(h) profiles. All values were
computed along the slant path at 41 deg
elevation angle, though the ordinate is
the more commonly used vertical height,
The point where 10 deg of rotation occurs,
wiich is within the estimated. error of
measurement accuracy of most observers,
is indicated on the-ahscissa by a small
arrow, Note that above this point, where
only 10 deg of rotation remains, there is
still a significant TEC. Table 2-1 '
indicates both the amou.nt and the percent
TEC remaining along the path to the
satellite above the 10 dég point, and the
TEC above 1000 km verticalheight,

As Table 2-1 shows, there is still a
significant percentage of TEC above the
point where the remaining Faraday rota-

Hence, the Faraday rotation effect does not

respond measurably to this portion of the "true' total electron content.

Table 2-2 gives the results of computing M according to Eq. (2-4), including
both Q and TEC up to three heights; 1000 km, the point above which the remaining
rotation is less than 10 deg, and, the satellite height. Also shown in Table 2-2
are the percentage changes for each condition from a mean of the four cases,

The results in Table 2-2 show that the day to night change in the M factor is
smallest for M derived by using 2 and TEC up to 1000 km, If M is obtained by
choosing the integration limits in Eq, (2-4) at the height of 10 deg uf remaining
rotation the day to night change ig still rather small, The worst case is in winter,
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Table 2-1, Amount and Percent TEC Remaining Along Path to Satellite Above
10 deg Point and TEC and  Above 1000 km Vertical Height’

TEC % TEC Q % Q TEC % TEC
above above above above above above
1000 km | 1000 km | 1000 km | 1000 km [l0degpoint{l0deg poiny’
Winter Day | 5.19 12,2 “40° 3.4 3.72 8.8
Winter Night | 4.53 30.8 47° 13.7 2,73 18.6
‘Summer Day 5. 35 18.6 51° 6.9 3.56 12,4

Summet- Night 2,91 31.3 250 11.6 2.34 25.4

Table 2-2, Results of Computing M According to Eq, (2-4)

M, 000 Migo | Miotal Mio00 | My deg Miotal
. (Percent Changes),
| Winter Day 60236 59251 | 52906 2.9 4.6 18.9
Winter Night 57062 53434 | 42508 -2.5 | -5.6 8.5
Summer Day 58353 56934 | 48577 -0.3 | -0.5 4;6
Summer Night 584175 56908 | 41854 0 0.5 ~9,9

where a 10 percent day to night error is calculated, However, if M is calculated
using integration limits to the height of the satellite, the day to night M change is
22.4 deg in winter and 14.5 deg in summer. The mean M is 18 percent less than
the '™ calculated to the 10 deg point and 20. 6 percent less than M computed using
integration limits of 1000 km. The difference between the mean M for 1000 km
and for the 10 deg height poiht, however, is only 3.2 percent.

2.6, DISCUSSION

We have shown examples of four cases of calculations of £and TEC calculated
up to a geostationary satellite from a mid-latitude station. The four cases were
chosen to represent ionospheric diurnal maximum and minimum conditions where
the contribution from the exosphere might be expected to be a minimum and a maxi-
mum of the total TEC respectively, The A&T model used is a constant temperature
model along field lines and requires a knowledge of temperature, composition and
electron dengity at the base level over a 44 to 60 deg latitude range, Because of the
several parameters of the model, which itself is an approximation, these calcula~
tions may not reflect the actual exospheric densities. They do show, however, that
the polarization twist predominantly occurs in the ionosphere, with only from 3 to
14 percent occurring above 1000 km,
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In summary, the Faraday technique, when used with VHF signals transmitted
from geostationary satellites, remains a good measure of the ionospheric total
electron content; but it is not.a satisfactory.measure of the exospheric electron
content, Cnanging the M factor-in an attempt to account for the electrons above the
point where they are measured by the Faraday effcct is misleading, we believe, and
can be in serious error, We maintain that a more-satisfactory method of presenting
TEC results obtained fromVHFsignals from geostationary satellites is'to use an M
factor calculated by using typical profiles up to a standard height of 1000 km and to
irclude any exosgheric TEC contribution as an additive constant,

2.7. DETERMINING DIURNAL IN MEAWN FIELD HEIGHT ]

After this section of the report was written, a paper by J. E. Titheridge (1972)
was published in which he used a wide range of modél ionospheres and satellite and i {
gtation locations to determine diurnal changes in the mean field height. He con-
cioded that a fixed mean height of 420 km gives a resultant accuracy of plus and
minus 5 percent in TEC up to a mean height of approximately 2000 km under most
conditiong, Our work is in agreement with his conclusions, which-are more general

£ ndarat

in geographic'coverage,

Another point concerning the conversion of the Faraday polarization twist to
TEC has been raised by R, Fritz (private communication), He pointed out that the
diurnal change in position of a geostationary satellite due to a non-zero orbital
inclination can produce a change in the mean M factor, even at the constant mean
height, of plus and minus 5 percent. A knowledge of the precise orbit of the satellite
can be used to correct for this.error,
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3. Total Electron Content Models

J.A. Klobuchsr and R.S. Allen

Recently there has been much interest by systems engineering groups and by
other non-ionospheric workers inthe time delay caused by the number of free elec-
trons in the earth's ionosphere, These groups include those:who require error
correctionfor UHF radars, proposed geostationary satellite navigation systems,
satellite tracking stations using VHF beacons, andradioastronomers who are
attempting to measure accurate positions and distances by means of very long base-
line interferometry. As a result of all this interest several models of TEC-time
delay have been made by different groups, Most of these models have been con-
structed using a limited data base, hence, the applicability both in geographical
extent and in time in the golar cycle is limited, A brief outline of these models is
presented below,

3-1 THE ESSA-NOAA IONOSPHERIC PROFILE MODEL

The Environmental Science Services Administration [Wright, (1967)] , does
true height analysis of ground based ionosondes to find the electron density up to
the peak of the F2 region, Above the peak they use the following expression:

N=N_ - exp% {(1+g) c 1=z~ e’z)}

where

0.05
scale height.
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This resuliing profile is accurate up to the peak of the F2 region and is a fair approxi-
mation to thé shape of the upper F region above the peak, The parameter g, which

is a measure of the increase in scale height with height, does have a diurnal and géo-
graphic dependence and cannot be represented by a single constant, The obvious
disadvantage to this model‘is the requirement for a true height ionogram analysis,
Usually monthly median hourly ionograms are constructed and the true height

analysis is done only once for each hour, making a total.of 24 true height analyses
required for each month,

3.2. THE AFCRL FIRST ORDER MID-LATITUDE TEC MODEL

A model of mid~latitude slab thickness was made at AFCRL [Klobuchar and
Allen (1970)] , which, when combined with either.a predicted or an actual value of
foF2, gives a time delay, This model is simply:

TEC = 1.24 x 1013 (foF2)? {261 + 26 sin [__(h-.9[) n] + K sin [(D-GO) n]}

where

H is the local hour at the subionospheric point where TEC is derired

K = 173 for local hours 06 to 19

K = 36 for 05 and 20 hours only

K 0 for 21 to 04 hours

TEC is-in el/M?

D is the day of the year
Since this model used only northern mid-latitude slab thickness values in its construc-
tion its use'is limited to that geographic region,

3-3 SAMSO STUDIES

The United States Air Force.Space-and Missile Systems Organization (SAMSO),
interested in ionospheric errors in a proposed L-<bkand satellite navigation system,
funded three groups to construct and test models of the TEC over the Continantal:
United States (CONUS), Puerto Rico, Hawaii, and Southern Alaaka, These studies
are now finished and results of two of the three groups have been published in final
form, The main difference between the three studies consisted in the apnroaches'to
the modelling of the ionosphere that were taken, Stanford University [Walo!man and:
daRosa, (1971)], one of the contractors, constructed a TEC model based only on
TEC data. They essentially made a polynomial fit to TEC behavior as a function of
solar activity and did a Fourier analysis of TEC diurnal behavior, This was done
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for data from only two stations, one was Stanford, a mid-latitude station and the
other; Hawaii, an equatorial anomaly station,

The second SAMSO contractor, the University of Illinois [Rao, et al (1971)]
used TEC data and predicted foF2 values for the ESSA prediction program to
construct equivalent slab thickness values at one location, which was then assumed
to be true over a-second location, The ESSA foF2 prediction program then was used
as a cornerstone of the data base along with the TEC data that were available to
form predictions of TEC.at another location,

The third contractor, the Applied Physics Laboratory of the Johns Hopkins
University, made an fonospheric profile model based upon. ESSA predicted foF2
values and theoretical values’of profile shape above the height of the maximum of
the F2 region, They used TEC experimental data only in the evaluation of the errors
of their model but not in its construction.

3-4 NASA-DBA STUDIES

NASA, [Bent, et al (1971)], Goddard Space Flight Center, recently had
completed for it a study of ionospheric profile modelling by the DBA Systems
Incorporated Company of Melbourne, Florida, The NASA-DBA model is a profile
model consiructed using the ESSA foF2 prediction program for the peak density and
the ESSA MUF predictions for the height of the iondsphere. Values of scale height
above the péak were determined from analysis of topside ionosonde profiles.

3-5 COMMENTS ON MODEL STUDIES

All of the four F2 region models outlined have limitations due to the available
data base, The most severely geographically limited model is perhaps the Stanford
one, while the one which has the most world-wide applicability.is perhaps the NASA-
DBA model, Basically, there are at least two different phiicsophies presented by
the four models just completed, One approach was to model TEC directly and only
to use TEC datafor thismodel, The opposite approach is to model the complete
foF2 profile with the TEC being only a byproduct of the complete profile. These

.different approaches meet different needs. The TEC only model is of value where

an adequate TEC data history exists to make a direét model and where only TEC is
required. That is, this model is useful for.error correcting from targets/satellites
well above most of*the ionization, say at least 1000 km in height, The profile morel
is necessary if the satellite/target is within the ionosphere and the integrated elec-
tron density only up to the height of the target is reguired,
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3.6 THE PENNSYLVANIA STATE MARK I MODEL

A theoretical model of the ionosphere has been developed at the Pennsylvania
State University [Nisbet (1971)) which attempts to describe the behavior of the
ionosphere beginning with the basic processes which control the production, loss
and transport of electrons. Experimental electron density values are used only to

fit the boundary conditions, The model is basically for the.mid~latitude ionosphere,

3.7 LIMITATIONS OF PRESENT MODEL STUDIES

The Stanford and Dlinois results showed that the ionospheric time delay error
can be reduced by 70-90 peréexit over the’CONUS with the models they recently
completed, Errors over Hawaii are substantially larger. No eastern longitude or
Arctic latitude or southern hemispheric data were included in o.t tested against
thefr models, The NASA-DBA profile model has not been checked against actual
TEC data in a statistical way; however, the monthly median predictions of TEC
from the NASA=DBA model fall within the extreme Stanford actual TEC monthly
values for the periods that were tested in this manner, )

All models suffer from incomplete data‘in the polar regions and tne direct TEC
model suffers because 6f the TEC data available which was limited to the United
States,

3.8 ADVANTAGES OF COMBINED TEC AND SLAB THICKNESS MODEL

Using TEC obtained from polarization twist measurements from geostationary
satellites and slab thickness values obtained from nearby ionosondings, continuous
ionospheric measurements including a measure of the topside can be made. Top-
side satellite-borne sounders give only limited temporal coverage. The shape of
the F2 region is not expected to vary as rapidly as the maximum density and hence
the slab thickness parameter should be a good way to combine foF2 measurements
or predictions with TEC measurements to make a TEC prediction at a distant point,
It may also be reasonable to obtain a scale height from slab thickness values and
make up a profile model using TEC measurements and the ESSA foF2 p’reﬂictions.
Providing the geostationary satellite with a suitable vhf transmitter is available for
use, the TEC measurements are relatively easy to make.
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4., Available TEC and SLAB Thickness Data 3
From 5-66 Satellites ‘
J.A. Klobuchar, J.P. Mulien and D.R. Seeman -3
4.1 INTRODUCTION 4

Many groups have made TEC measurements using the Faraday effect from VHF
beacon signals on the $-66 (BE-B and BE-C) satellites. However, little effort has
been made to use the available data from these stations to attempt to make a model
of TEC, primarily because of the difficulty of combining data taken by several workers
who used different data collection and reduction techniques, as well as different o
periods for compilation of seasonal average data. A few studies of short periods of
data have been done. Frihagen [JssG, (1 968) ] made a comparison of TEC obtained
from.a few satellite-passes from several stations over Europe in January 1965. He
showed that similar latitude gradients were obtained on several satellite passes taken

<

o i i it i dalr | A,

from three different northern European stations. However, his limited data set pre-
cluded making meaningful synoptic maps of TEC. Houminer [JSSG, 1968B):| made

"

a comparison of TEC data from three low-altitude stations. The three stations had a
similar diurnal TEC variation, with the equatorial station having higher TEC values
but lower slab thickness values than the other two stations. His comparison was for i

. ili ';. N

only one season. Klobuchar and Aarons (1968) combinel TEC data taken from
Narssarssuaq, Greenland, Hamilton, Massachusetts, and Aricebo, Puerto Rico to
obtain the TEC and slab thickness latitude dependence over the 5 to 65 deg North
latitude range, but only for the March 1966 pericd, Galdon and Alberca (1971)
.studied the seasonal and solar cycle variation of mid-day TEC data taken during

the 1965 through 1967 period from three European stations. They found similar
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behavior with 10,7 cm solar flux for a 13 month running mean of TEC data from all
three stations. After subtracting the 13 month running mean-solar cycle dependence
from the data, a large seasonal variation of TEC remained which changed with solar
flux. The magnitude of the seasonal variation was different for all the three stations,
They used only mid-day TEC data to determine the TEC solar flux dependence,

Several workers have constructed iso-contours of TEC versus latitude and
local time for one or more seasons, TEC values over the range of plus and minus
10 to 15 deg of latitude can be obtained in this manner from a single station.

These contours are helpful in determining the geographic regions and times where
certain anomalies in TEC occur, All of the available TEC contours are included
in the data section of this report,

Perhaps the best set of TEC contours was made by Amayenc, et al (1972) in
which they combined the seasonal contours of Liszka (1967) with those from their
own station at Val-Joyeux, near Paris, France to produce TEC contour maps versus
local time over the European sector from 40 deg to 72 deg latitude for nine seasons
in the 1964 to 1967 period. Since this geographic region is an important one for
knowing the ionospheric time delay correction for a proposed VHF navigation system
and for UHF satellite detection radars, it is fortunate that the work of Amayenc et al
and Liszka has been done in this combined fashion. A separate section of this
report details a numerical model of TEC, madé from. their data, for the year 1965,
over the European longitude sector from 40 t6 70 deg latitude, This model repre-
sents the most complete direct TEC data set available over Europe, though it is
only for near sunspot minimum conditions, Several stations in Europe either have
be' 1, or currently are taking TEC data, using VHF beacons on a geostationary
satellite, but, thus far, little of this data is in finished form for model studies,

While many papers in the literature give details of the behavior of TEC at a
particular latitude, it is probably not possible to construct directly-a complete
model of TEC from the separate sets of published data. Fortunately, the slab thick-
ness parameter S, does not change with latitude as much as either TEC of N, ...
Also, th2 variation of slab thickness with sunspot number is considerably smaller
than that of either TEC or Ny ax. Thus, the slab thickness parameter is worth
investigating for model use, Since slab thickness values have been published for
several stations having wide geugraphic distribution, these values have been scaled
off the curves andsthe published data are given here. In a few cases these values of
S were made from TEC data taken from cbservation of the Faraday effect on VHF
signals from a geostationary satellite, A list of tlie stations for which S values are
available is given in.Table 4-1 along with the station's geographic coordinates, geo-
magnetic latitude and L value, Also, the season for which the data are available is
indicated in the table, Figure 4-1 shows the behavior of S for the winter and summ..x
seasons for the various stations for which data were available. Note that the daytime
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Table 4-1. Stations Where Slab Thickness Values Have Been Published
Geographic |. Geographic | Geographic *
Latitude Longitude Latitude L Season

Bangkok, Thailand 14, 100, E 2.4 0,91 3
Nairobi, Kenya -1,33 36.8E -4,4 1,01 1,2,3,4
Ahmedabad, India 23 72, E 13.8 1,00 1
Delhi, India 28.63 77.2E 18.9 1.08 1,2,3
Honolulu, Hawaii 20.0 200, E 21,1 1,14 1,2,3,4
Haifa, Israel 32,9 283, 2E 29.4 1.23 2
Kingston, Jamaica 18,0 35.1E 29.4 1,38 1,2,3,4
Sydney, Australia -33.8 150,6E -42,3 1,87 1, 3
Tortosa, Spain 40,8 0,58 43,9 1.57 1,2,3,4
Florence, Italy 43.8 11,2E 44,17 1,70 3
Breisach, Germany 48.1 7.6E 49,5 2,08 3
Paris, France 48.8 2,0E 50,5 2,11 2,3,4
Lindau, Germany 51, 10, E 52,3 2,33 1,2,3,4
Hamilton, Mass, 42,6 289,2E 54,1 3.11
Kiruna, Sweden 67.8 20,4E . 65.2 5,44 1,2,3,4
* Key to seasons:

1 Winter, 1964-65

2 Spring, 1965

3 Summer, 1965

4 Autumn. 1965

(All seasons refer to the Northern Hemisphere)
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values:are much greater in summer at all latitudes, than in the winter., The large
values of S-found in the winter night at Honolulu, particularly near sunrise and sun-~
set, may be due to small, systematic errors in TEC or to relatively large horizontal
gradients between the TEC measurement sub-ionospheric point and the location of
the ionosonde at those times,

Liszka (1967) has published iso-contours of equivalent vertical slab thickness
for northern Europe for three seasons during the-1964 to 1965 time period, His
iso~contours are given in the data section of this report. Also in the data section
are examples of c‘omparisons of slab thickness values taken at widely separated
mid-latitude stations, indicating that the concept of modelling slab thickness, along
with a knowledge of foF2, to find TEC, is valid. As more TEC data become avail-
able, particularly from monitoring VHF radio waves from geostationary satellites,
the behavior of slab thickness will become known better than at present.

4-2 STATIONS WHERE TEC DATA MAY BE AVAILABLE

An attempt has been made here to list the stations located throughout the world
where TEC data may be available, These stations generally fall into several cate-
gories because.of the availability of appropriate satellites. Generally thoge available
fall into two distinct gsets, The earliest set of data came from stations scattered
throughout the world who obtained TEC from various low-altitude (dpproximately
1000 km) satellites. These satellites were the Transit series where a few stations
obtained TEC from the differential Doppler effect, and, later, the S-66 satellites
BE-B and BE-C, where most stations used the differential Faraday effect to obtain
TEC. Beginning in the Pacific sector in 1964 some continuous TEC data have been
obtained because of the availability of continuous VHF transmissions froma geo-
stationary satellite., In 1965 the American sector first had the continuous availability
of VHF signalsfrom geostaionary satellites. The European sector coverage has not
been continuous due to the lack of VHF signals on geostationary satellites visible from
Europe, Some Eurqpean stations obtainéd continuous data during the summer of 1965,
then sporadically b iginning again in 1968, Thus, the available data are limited in
various places, not only because of the obvious lack of stations in some areas but
also due to the absence of a suitable satellite of opportunity having VHF transmissions
from which the Faraday rotation measurement can be made, TEC values, when
available from a station, are much more complete than those from low.orbit satellites,
as they are continuous, The low orbit data usually consists of a few points per day
on a combined seasonal plot, Only in.a few instances are latitude gradients available
from the low orbit derived data,
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" Some etrors are inevitable in any list such as this-and the author apologizes in 1 !
advance for any ertors and omissions, They are unintentionai.. It is simply not
y possible to keep track of the work of all TEC experimenters and theit-data through-
\ out the world at all times. ]
The stations have been grouped according to three world sectors: J, the { j
‘ American sector; 2, the European-African:gector; and 3, the Agian-Pacific seétor, 1 ‘1
, Tl
; Also listed for each station are the approximate geographic:coordinates for each =
' station, the principal investigator or pereon otherwise responsible for the data, and, ]
A in cases where it is known, the availability of data signified by S if it consists of 3
TEC values derived from a few passes per day of a low orbit satellite, and G if the §
. data came from geostationary satellite beacon signals, The G data are, of course, k
: o
continuous and presumed to be of better quality, These stations are listed in
Table 4-2, b
E
Table 4-2, Stations Where TEC Data May be Available 1
4
: 1
! 1 A
A . American Sector 3
) East Principal Investigator Data j
Station Name Latitude Longitude and Affilfation Available
Thule, Greenland ki 291 J. Klobuchar, AFCRL G
College, Alaska 65 212 G, Stanley, U, of Alaska S, G
) Baker Lake, Canada 64 264 G, Swenson, U. of lllinois S y
! Narssarssuaq, Greenland 61 315 A.lnLudeak. Danish Meteorological G
stitute
4 Cold Bay, Alaska 55 197 K.C, Yeh, U, of Illinois G !
k Goose Bay, Labrador 53 300 J. Klobuchar, AFCRL, G
1 Houghton, Michigan 47 27 G, Swenson, U, of Dlinois S
" Hamilton, Massachusetts* 43 289 J. Klobuchar, AFCRL S, W,G 1
Lordon, Ontario 43 279 G, Lyon, U. of Western Ontario S, G 4
Weston, Massachusetts 42 289 B, Reinisch, Lowell Tech, S b
Research Foundation %
University Park, Pennsylvania 41 282 W, Ross, Penn, State U, W .
d Boulder, Colorado 40 255 K. Davies, National Oceanographic
) and Atmospheric Admiatstration
» Ft, Monmouth, New Jersey 40 286 H, Solcher, Institute for S, G L
’ Exploratory Research 4
Chesapeake Beach, Maryland 39 283 J. Good Naval R rch Labs G .
Blossom Point, Maryland 38 283 L. Blumle, NASA Goddard S 3
Greenbelt, Maryland 38 283 S. Rangaswamy, NASA Goddard G
Urbana, Mlinots* 38 213 K.C. Yeh, University of Nlinois S,W,G
Stanford, California* 3 238 . A.V, daRosa, Stanford University 5, G
' Stanford, California 37 238 ‘ V.Pl;.‘shleman, Stanford University /
oneer
China Lake, Califernia 35 243 w,G
Goldstone, Callfornia 35 243 B. Mulhall, Jet Propulsion
Laboratory
Corona, California 34 243 w,
Los Angeles, California 34 242 S, Venkateswaran, U, of California G
at Los Angeles
College Station, Texas 31 264 J. German, Texas A & M S
Arecibo, Puerto Rico 18 293 , A.V, daRosa, Stanford University G
Kingston, Jamaica 18 283 P, Chin, U, of the West Indies G
Miahuatlan, Mexico 16 264
Panama Canal Zone 9 280 J. Klobuchar, AFCRL G
Lima, Peru -11 283 A,V, daRosa, Stanford University G

|
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Table 4-2, (Continued)
1
K East Principal Investigator Data
Station Name Latitude Longitude and Affiliation X Available
Huancayo, Peru -12 ass A, Glesecke, Geophysical S, G
Institute of Peru
Sen Jose, Brazil -23 1S F. de Mendonca S, W,G{?)
' Tucuman, Argentina -27 297 S. Radicells, 7 , W
Port Stanley =51 303 ; S, W
FEuropean - African Sector
| East Principd Imle.toptor Data
t Station Name Latitude Longitude and A Available
] Tromso, Norway 70 19 O, Bratteng Aurord Qmomtory s, W
C , Sweden 68 21 L. Liszka, Kiruna Geophysical S, W,G
E Observatory
4 Kjeiler, Norway 60 11 J. Frihagen, Norwegian Defense s,w
H Research Establishment
i Rude Skov, Denmark 56 12 A.mbu?dbnk. Danish Meteorological s
stitute
% Moscow, USSR 55 37 J. Al'pert, Izmiran ?
! Kuhlungsborn 54 12 S, W
Lancaster, England 54 357 A, Hunter, U. of Lancaster ?
Jodrell'Bank, England 53 asg G.N. Taylor, Royal Radar S
Establishment
t Aberystwyth, Wales* 52 356 L. Kersley, U, of Wales S, G
v Linday, Germany 52 10 -G..Hartmann, Max--Planck S, W,G
Institute for Aeronomy
, Bochum, Germany 51 7 H, Kaminski, Observatory of Bochum S,W
Slough, England 51 359 E. Golton, Radio Research Staticn
Lannion, France* 49 357 J. Papet-Lepine, . National Center s, G
for the Study of Telecommunications
Breisach, Germany 48 8 C.mMu‘nther, Breisach Isospheric ' W
. i stitute
: Florence, Raly 44 11 P, Checcaccl, Institute for the Study S, W,G
: of l-:loctromunetlc Waves (IROE)
Val-Joyeux, France 4“ 4 F. Bertin, National Center for s, W
Scientific Studies (CNES)
Graz, Austria 41 15 R, Leitinger, U, of Graz S, W
Tortosa, Spain 41 0 E, Galdon, Observatory of Ebro S, W,G
Athens, Greece 38 23 D, Matsoukas, U, of Athens S, W,G
Haifa, Israel 33 35 J. Mass,, Haifa Radio'Observatory S, W,G
Addis Ababa, Ethiopia 9 38 P. Gouln, U, of Addis Ababa S, W
| Accra, Ghana 6 0 J. Koner. U, of Ghana s, G
“Nairobl, Kenya -1 37 R. Kelleher, U, of Nairobl s, G
Dar Es Salaam -1 39 D. Osborne, U. of Dar Es Ssiaam S, W
Aslan - Pacific Sector
East ' Principal Investigator Data
¢ Station Name Latitude Longitude and Affillation Available
Tehran, Iran 36 51 K.l Atshar, U, of Tehran s
Tokyo, Japan 35 139 Y. Nakata, Radio Research Labs
New Dehli, [ndh 28 kK A.P. Mitra, Natfonal Physical Lab S, W
Talpel, Talwan 25 121 K. Pal, Netior.al Taiwan U; s, G
t Ahmedabad, India 23 72 »] G. Rastogl, Physical Research Lab S
I3 (Calcutta, India 23 89 S. Basu, U, of Calcutta S
Hong Kong 22 114 G, Walker, U. of‘Hong Kong s, G
. Honolulu, Hawail 21 202 P, Yuen, U, of Hawalii G
' i Hyderabad, India 17 78 E.B. Rao, Defense Electronics S
§ Research Lab
{ Bangkok, Thafland 13 100 C. Rufenach, National Oceanographic S, W
. i andAtmonpheric Administration
b ) Singapore 1 104 E. Golton, Radio Research Station S
! Slough, England
' Brisbane, Queensland =27 153 G. Bowman, Y, of Queensland S, W
Armidale, N,S, W, Australia =30 152 F: Hibberd, U, of New England s, G
Adelaide, South Ausralia =35 138 B. Briggs, U, of Adelaide ?
Aucklmd. New Zea'And® =37 115 J. Titheridge, U, ofAuckland S, G
ney, Australia -37 140 G. Munro, U, of Sydney S
elbourne, Austridls =38 145 E, Essex, LaTrobe University s, G
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Table 4-2, (Continued)
| —_— ==
East Principal Investigator Data
Station Name . Latitude ,Longitude and Affiliation Available
Waellington, New Zealand -41 174 J. Titheridge, U, of Auckland s, G
Christchurch, New Zealand ~43 173 ‘| G. Stuart, Dept, of Sclentific s, ?
and l.mlu:trhl Research
Invercargill, New Zealand -46 168 J. Titheridge, U, of Auckland s, G
Campbell Island, New Zealand -53 169 J. Mawdsley, Domlnlon Physical S,
<« .Labcratory, DSIR
Key:
S indicates data available from low-crbiting satellites
G indicates data available from geostationary satellites
W indicates data or information may be available from tha-World Data Center
* indicates the principal lmnsﬂntor for this station iy !‘ave linited data
from other stations not listed N
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5. A Numerical Model of TEC Over Europe
for Sunspot Minimum Conditions

J.A, Klobuchar

5-1: INTROGDUCTION

Results of two studies of the TEC of the ionosphere over Europe have been
given by Amayenc (1971), They presented contours of equal TEC values as a
function of geographic latitude and local time over the 40 to 72 deg geographic
latitude range over Europe for nine seasons in the 1964 to 1967 period, The TEC
data shown in their iso-contour maps was taken from two stations in Europe,
from Kiruna, Sweden, and from Val Joyeux, near Paris, France, Original
glossy prints of the iso-contours in.the Amayenc et al, paper were kindly provided
by F. Bertin for use:in thig report. TEC hourly values were scaled from these
glossy prints at 5 deg geograrhic latitude intervals and a Fourier time series
expansion of harmonic number 4 was made to each latitude set, A least squares
third degree polynomial then was fitted separately to each Fourier coefficient over
the latitude range from 40 to 70 deg, The resultant coefficients equal 36 in number,
one set of 4 polynomial coefficients to represent the latitude dependence of each of
the 9 Fourier terms., Thus, a set of 36 numbers-specify the seasonal mean TEC
behavior over the 40 to 70 deg geographic latitude range., All that is necessary to
obtain a value of TEC is to use the coefficients for the season desired, and to
specify a latitude and local time, The:model is in the following form:

4
TEC =DC + 2 D Ci cos (it - 21'[431/24)
i=1

where

DC, Cand ¢ = Ky * Kj (tat) for the appropriate DC, C, or ¢, term.
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The coefficient sets for the seasons are given in Table.5-1, Table 5-2 contains

a list of the months in each seagon along with the mean observed 10.-7-cm solar

flux over each season, Note that the.mean 10.7 cm solar flux was nearly the same

for all 4.seasons.

In order to determine how well the numerical coefficients represent the actual

data, the TEC values gbtained from the model were subtracted from the original
contour values at 5 deg latitude intervals., The resultant errors are shown for
the four seasons in Figure 5-1. Differences less than 1 x 1016 were left blank as
this is probably the experimental accuracy of the original data, Note that the
model fit is good indeed, -as evidenced by the large blank areas in the figure.
Figure 5-2-is an iso-contour of TEC as constructed by the numerical model for
season 1 of the four seasons. It compares well with the original'iso-contour for
this gseason which-is shown in Figure 5-2,
This model should;have use in determining average TEC‘values for:a given
season for time delays for satellite navigation and satellite detection radars
operating in the VHF to UHF bands. It is not intended for use in a day to.day
operational mode, tut as an average background model, It will be particularly

ugeful as a representative TEC background model for the approaching 1974 to 1975
solar minimum conditions for system design studies for the European sector, Its

use in polar or equatorial latitudes or at other than European longitudes is not
recommended,
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Table 5-1.

Seasonal Coefficients Sets
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Table 5-2. Seasonal Solar Flux

29

1. ' - ; 2800 MHz Mean Seasonal
_Season_ Month.__ Observed Flux Observed Flux
, November; 1984. 72.8
1 December, 1964 7.5 5.9
January, 1965 77.5
February, 1865 74.6 R
I March, 1965 73.8 73.4
April, 1965 :
May, 1965 77.9
54 June, 1965 71.0 76.4
July, 1965 74.3
August, 1965 74.8 )
v September, 1965 | 76.3 76.9
October, 1985 79.6
Winter, 1064-1985 Hour
Latitude 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 17 18 19 20 21 22 23
10 1 1
65 11 -1 o 1 “1 -1 1 SR I |
60 1 1 -1 -1 -1 1
58 -1 1 -1 -1 111 11 -1 -4
50 -1 1 -1
45 -1 -1 1
40 1 411
Spring, 1965 Hour
Latitude 0 1 2 3 4 S 6 7 8 '9 10 11 12 13 14 15 18 17 18 19 20 21 22 23
7 1 Y
85 -1 a1 -1 -1
80 1
55 1 1
50 -1
45
40

Summer, 1965
Latitude 0 1 2

50 -1 1

45 -1

40 -1
Autumn, 1965
Latitude 0 1 2

I

85 -1 -1

Figure 5-1.
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WINTER 1964 - 1963
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Figure 5-2a, Iso-Contour of TEC
Northern Europe as Reconstructed by
the Numerical Model, Winter
1964-65

WINTER 1964-1965
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Figure 5-2b, Original Iso-Contour of
TEC Over Northern Europe, Winter
1964-65
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6. A Comparison of TEC Obtained From
Thomseon Scatter and From Faraday Rotation

J.A. Klobucher and S, Basu

6-1 A COMPARISON OF TEC COMBINED FROM THOMSON
SCATTER AND FROM FARADAY ROTATION

Continuous measurements of TEC have been made for several years at
Sagamore Hill, Hamilton, Massachusetts by observing the Faraday polarization
twist of VHF radio waves transmitted from the geostationary satellite ATS=3, The
ATS-3 satellite-has been moved in longitude from time to time, but has spent.much
of its time nearly south of Hamilton, Mass, at an elevation of approximately 40 deg,
The latitude below the point where the ray from Hamilton, Mass, to the satellite
crosses the region of maximum electron density’is approximately 39 dég North
geographic,

Routine measurements of vertical ionospheric electron dansity profiles were
made at Millstone Hill, Westford, Mass,, 42,6 deg North, by J. V. Evans, Lincoln
Laboratory, during a few days per month, In this section of the report comparisons
are made between four days of vertical TEC taken by the Thomson scatter technique,
kindly supplied by J, V. Evans, and "equivalent vertical TEC" obtained by looking
at the Faraday polarization twist along the slant path to the ATS-3 satellite, The
four days used in this comparison were magnetically quiet days, probably typical of
the four different seasons during a sungpot makimum year,

The Thomson scatter data were usually available from a height below 200 km to
1200 km, though during some nighttime periods-the signal-to-noise ratio was too
poor to obtain data to 1200 km due to the low densities at very great heights, The
TEC was obtained from the Thomson scatter data simply by integrating the profiles
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throughout the height range for which data was provided, ‘No extrapolation absve
1200 km was made, nor was arly attempt made to fill-in data below the minimum
height given by the Thomson scatter data, The profiles were integrated at approxi-
mate hourly intervals, during each of the four days,

The TEC derived from the Faraday effect was obtained by.converting the
observed Faraday polarization twist data to equivalent vertical TEC by using the
longitudinal magnetic field and zenith angle at a fixed mean ionospheric height of
350 km, Results of model calculations have shown that the Faraday.data obtain TEC
out to heights of approximately 2000 km, Thus, the Faraday TEC should be greater
than the Thomson scatter TEC, because it is integrated to approximately 2000 km,
whereas the Thnmson scatter TEC is integrated-to'a-maximum of 1200 km, Also,
there is an approximate 3 deg latitude difference between the locations of the two
messurements, with the Faraday TEC being the farthest south, In this northern
mid-latitude region gradients of electron density are usually lower at higher latitudes,
These two factors should combine to make the Faraday TEC higher than the TEC
obtained:from the Thomsen scater.,

Results of the four days of comparisons are shown in Figure 6-1, The agree-
ment between the two sets of data on all four days is excellent, The largest differ-
ence between the two data sets occurs during the daytime afternoon periods when the
latitude gradient of electron density between 42, 6 deg North and 39 deg North is
expected to be the’largest, No attempt has been made to correct either data set for
the efiects of the.expected latitude gradient, While the difference between the two
data sets in the daytime period is likely due to the latitude gradient between the two
observation latitudes, the observed difference at nighttime when the latitude gradient
is small is probably due to the additional contribution to TEC above 1200 km in the
Faraday data, This additional contribution also accounts for part of the daytime
additional content-observed in'the Faraday data.

The one nighttime case when the Thomson scatter TEC was higher than the
Faraday TEC occurred in the pre~-dawn hours of January 17, 1969, The winter
nighttime F region sometimes has relatively large gradients having small geographic
extent, The pré-dawn dip observed in Faraday TEC, while a small nighttime
increase was observed in Thomson scatter TEC was likely the result of such a winter
nighttime gradient. Despite the small differences due to the reasons cited above, the
TEC taken by the Faraday polarization twist method agrees well with the TEC
obtained by integrating electron density profiles obtained by Thomson scatter,
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Figure 6-1. A Comparison of Total Electron Content Obtained From the
Faraday Effect and From Thomson ‘Scatter
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7. Data From The Three World
‘lonospheric Regions

J.A, Klobuchar and D.R. Seeman

7.1 INTRODUCTION

) In this data section.of the report, typical behavior of TEC, and, where available,
o slab thickness values are presented, along with a few comments on the general
state of knowledge of TEC in each region,

7-2 EQUATORIAL TEC AND SLAB THICKNESS

The TEC ;f\the equatorial region generally follows the samé anomalous behavior
as the density of the peak of the F region, Npay that is, the TEC and'Np, 4, are not
highest over the sub-solar latitude (the equator, for example, at the equinoxes).

Both these parameters generally are highest at latitudes displaced on both sides of
the dip equator,

One of the best summaries of TEC in the equatorial region was made by de
Mendonea, et al (1969) by observing the Faraday effect from VHF sijhals transmitted
from S-66 (BE-B and BE-C) satellites over Brazil in 1966, Their data was reduced 5
in detail and plotted in the form of contour maps of constant TEC values over the
dip latitude 0 deg to 35 deg South and 0-24 hours local mean time. Figure 7-1 shows
de Mendonca's-latitude-time contours of TEC for four seasons,

At Hawaii, which is located on the northern edge of the equatorial anomaly, a
several year history of continuous TEC data has been compiled by monitoring
Faraday polarization from VHF signals transmitted from one or more geostationary
gatellites, Yuen and Roelofs (1967) show much of this data,
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Figure<7=1, Contour Maps of Total Electron Content for the Four Seasons
of 1966 (BE-B and-B-C)

Results of one year's TEC observations taken at the Panama Canal Zone are
shown in Figure 7-2, Despite the loss of much of the data due to numerous equip-
ment and personnel problems, during some months there wag sufficient data taken
to determine a useful median TEC value, Since there was no nearby ground based
ionoscnde for finding Nm ax’ monthly median values of slab thickness were computed
using the median TEC values and predicted values of Nmax‘from the :ESSA numerical
coefficient model, These slab thickness values are.shown in Figure 7-3, Since
these curves were constructed using monthly median values of TEC obtained from
only a few days of data per month along with numerically predicted values of Nm ax’
they are of low accuracy,

Other studies of TEC in the equatorial regisn, such as those by Basu and das
Gupta (1967), Rufenach, et al (1968), Hunter, et-al (1965), and Blumle (1962) were
of short time duration or were of more gpecialized interest in a particular feature
of the equatorial TEC. Where available from published papers, values of equatorial
slab thickness have been included in a previous section of this report,

Figure 7-4 shows the TEC behavior as observed from Kingston, Jamaica, West
Indies for March 1972, Faraday rotation observations from the VHF signals from
ATS-3 are being made routinely from this location, and the data shown in Figure 7-4,
kindly provided by P. Chin, University of the West Indies, represents the first data
in final TEC form from this station, Additional continudus, reduced TEC data from
this station should soon become available,

The TEC contours taken from Brazil and shown in Figure 7-1 probably best
summarize TEC behavior in the equatorial regions, Near specific low latitude
stationg, such as Hawaii, more complete TEC data is available. More continuous
TEC data should snon be-available from Jamaica, Peru, Puerto Rico, Brazil,
and perhaps-other low sites to eventually allow a more complete picture of equatorial
TEC behavior to be made,
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Figure 7-2. Total Electron Content for 1969-From the Panama Canal Zone

7-3 MID-LATITUDE TEC AND SLAB THICKNESS DATA

The TEC of the mid-latitude ionosphere is becomming fairly well known, at
least over North America, where several stations have been making continuous TEC
measurements for at least 5 years, A first order model of mid-latitude slab thick-
ness has been discussed in this report as have several TEC models or complete
vertical profile models from which TEC may be found, While these models may be
available to system design engineers for correction for the effects of TEC on their
system, these models say little or nothing about the statistical behavior of TEC,
that is, its day to day variability, For this reason the following tabulated values of
TEC are presented in this data section, Tables 7~1 through 7-6 givehe mean,
standard deviation, minimum and maximum values, median, upper and lower
quartiles and uppér and lower deciles of each hour of TEC and of equivalent slab
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Taple 7-1. Hourly Statistical Values of Total Electron Content and Equivalent Slab
Thickness From Hamiiton, Massachusetts, for January-February 1968

POURLY VALUCE OF T4TL ELLCTECH CONTEND vs, MY

UNITS ARE IN CLECTEANS PER SCLASE METEP CALUDY *340436

JANYISY . 1Snp

N 1 & 3 - s (Y ? . § 1e 13 12 1) W 3] 1 17 1 19 W 11 K B
REIN 306 505 07 €08 0eh @el Sel 6o% 1809 2J01 00D Iued 0% 8000 009 102 J0e 4 2V7 20,0 1860 1202 %03 Tl %0 )
SeCe  2a8 200 248 2¢% 1T ¥ BeT feb 109 303 &b 443 !‘d $e3 o 6sl NS Tl aiS Je1 T 23 209
MPIMN Jef 503 3e3 2e8 o3 208 ot 008 1207 1740 TV8 2902 N108 3344 3008 200F o867 1552 178 Tol 542 0® NS
WONAY $208 1202 2€e0 3301 380 152 2006 $08 2003 J000 A107 4600 Abel Sue2 98,0 5009 $60 b $3.7 wled "he b 2604 2248 1503 sheh

TR0CT 008 b 307 8e® 0% 802 1% 90? 3267 1903 2601 32600 Jloc Jheb S20Z TaeN 20,8 (00® 2uel 03 Mt 2eR MG & :
25.8CT wel 802 mab Lol %0 Gul 42 9ab 1306 Va2 27l NI0W 3902 Va7 3Toa ITeZ IR0V E906 2000 2505 4Ped 7ol LS M7
S3.FCT 3o3 2l 603 Gen 600 So¥ 4% bob 1608 270> 2906 JRe® Thoh 30,5 40ah 4249 TToh J203 Fhel 1502 1000 Ay 1) et
TSiPCT 242 15 Ted Tol 7a3 wel® 849 To% 1002 2800 J00h Jyh
BT 308 oy 509 ob 000 Te3 509 80% 3001 2743-3742 oleb

4268 4%, 6 4305 Slow 2603 0% 1946 11009 200l N0l N0
Aol 4902 ofol 8002 A 3707 210 10e2 108 Sol ok

COUNT 28 25 22 2% % 25 3% 23 22 2 2% v W 23 % X 26 &8 0B 3B IV B -
HEUALY YALULS CF SULIR INICKNESS (IN <Po} ¥Se LMT

JINUMSY e

* 1 ¢ 3 . 5 1] 14 » § 10 11 12 13 1s 1% fe 87 B 1% M 1 ¢ B
PEIN 2bwe 207s 2420 I0%e 249, 2080 219¢ 199 177, 183, 200 213. 220e 2h6s 230 2uke 288 150 2090 §02s 2060 158 217, 40,
SeCe whe 350 M. 2, 3e 3. 1. 30 21 16 41 18s 38s 18 16¢ 36 e <l 2ae <Fe e b e M
S FIN 222, Bebe 24% 1606 fbve 104 18%¢ 1020 1100 18Se 178 1090 Dlle 2170 223 215 22Te Tile 2990 153, 2620-380 168, 108, 2
S FAX 3974 290 2094 (020 3260 216 2Sve 2030 2200 21%. 8ve 204s 28Ce T0Je 279, 2750 29¢e «¥ie Y120 188 2994 7. Sile ke
10PCT 20 3¢ 239 2950 4340 104. 206, 1734 375, 198, 163s 3010 191, 29us 220 226, 238, 23ve 8. 228, 108e 220, 130 72, IDAe
204PCT 2200 e 2204 2320 20s 2180 20%0 1855 108 170 1300 1980 2200 23k. ThGs 20k 2014 30 236 728, 226 268 263, 1M1, '
S0PCT J6s 208e ZAT0 1374 2500 26ls 2las 196s 179, 28%s 202 213 2024 2ede 2576 20Es 25Le ible 207 1J6e 294 237, 2854 lee
TS.PCT 2790 2690 2030 260s 2030 27% 275 2360 36be 100 113 2284 243, 2520 20T % 276 280 259, 235, 2524 273 2% 1N9.
SEePET I 20 202, 2700 27%s 2%es 280. 2810 2260 2ile 19%¢ 218 2330 2024 209. 2764 2700 e 7% 21Te WV 2890 ITe 2US. MY
COUNE 2% 23 ¢o 2% 2% 2% 26 2% 23 ¢ 2% 2> I 2% W 20 2 20 2 0 b B9 -

POUSLY VALUES OF TCTAL CLECTACN CONTENT ¥So T

LNITS ARE IA ELEITAOAS SER SCLASE METLA COLUPN °te®Cle
FESRUMRY  1%¢8

} 1 2 3 L} s [ 7 L] CIREFTIREE Y ST S SN TSR LA USRS S LY. R { B £ S N ¢
BOAK  Jo€ Ted o6 308 Bo7 Ba2 S 8e7 17.6 26D 290 3hes 37,0 Aoy 4108 aved Jet 2002 2907 $2e0 1hed 1149 o8 b
Sele 207 2,6 26 F05 203 200 367 2ot b oo 509 el Uo7 oo ToS Paf Ted 202 bed 00 &l Voo N3 29
NONIN 307 206 o9 Zed 203 Teb foh a3 1207 1608 2309 2363 2007 200Y $103 2906 2603 506 2uef 3%4 21001 603 Nk web ,
NONAT o0 1302 1261 3008 %03 7o 703 1801 2622 Jbaw 6202 aTo3 STel 5049 S0 5707 49,6 $402 460t 27,8 20,7 246 20,8 104
1005CT oot 507 33 Zew 3of 203 2309 605 1309 16:3 2% 260w 3301 3%e7 32¢3 3304 3003 FTeT 200t 153 20et 6.7 02 A9
25.0CT ol aov Bew o7 303 S8 208 Ted 1600 4Ge® 2506 S.on 1205 3508 35,5 006 008 0ok cHot 1003 12:4 40?10 6o ~
SOFET Z2c8 700 6ud Cob 003 Sa¥ Act ol 16:9 ¢Te3 2803 W7 3ot 27,8 30,8 36 22 Jhew 201 2008 16eL 2100 ted tet
TSPCT 8¢S Boh Jo¥ To7 703 Gow Seb 3301 18:8 (607 31 JReL 42,8 4342 007 whe2 CueS 2008 1203 2009 1004 3309 4209 108 <
el Mlaf Jo7 %02 a2 7o 208 ted 1145 lob 2946 3746 Who9 0L S10% D12 Steb ATet tuel 38 2509 2107 1847 136 108
COLAT 2% 25 24 <% 2% 23 & 2% 26 2 2% 2% i 28 2 1 28 6 W 2 232y I N

MTURLY VALULS CF SLA® TRICKAESS (IN XPe) ¥S, LMT’
FERAVIEY  19G¢ .
Y 4 3 L3 5 t 7 . € v 11 12 13 ae $8 16 22 Ty 19 U 2 %
NEAN 252 2650 437s 339 230s 267s 24s 2064 194 Jule 120 2260 2020 258 258 2070 261, (b1 203 2790 2524 2560 2U7. 198,
SeCe  $7¢ a%e B9 £30 1o 63 3 w2e 20e 2te 2 e e A2 Jre %0 S1e N 190 i e A2 e 82,
Me 1330 abds 1920 196, 1500 206s 1970 2240 2020 $87 2800 230 2130 W00 1060 TS

S MIN b 930 03¢ Ove EVs 830 S8
S DX A36s 035e 3830 JE3s J€3e 378. 397e 328, 28Te <70 2680 280e 258s A28 33ee ke 3920 N0 INe lewe 3000 2 M9, 0N,
SLeRCT 2030 135, 168, 1590 1030 1260 250 382¢ 161, a88s 210 2xke 2920 2205 Q2ve <Me 129 Hdde 2Mes TN 228 1764 L0 137
204001 2184 273, 212¢ 105, 213, 2280 217, 199 fe¥e 188e Ve L10s 2200 2304 2I70 231 2800 T4S 2480 168 280, 234 230 1%, ¢
86oPCT 250 2400 2030 §020 2020 2080 2880 200s A88s 2030 2%e 2200 2630 20Te 8P, e 26s 158 210 1874 2850 BT 2% 1%, .
TSPCT 2030 2780 2030 (36 289, CPSe 2ebe 2160 23l €210 <% (O1o 240 26k 2T6s Tebe 2020 2820 209 206 2060 e 278, 2N >
HFCT 235, 200 2080 2GS, 27007202, 260, 208, 239 23ie T8 206 2000 208 29% 2930 2940 96 3lle V6 2704 27¢ 330 N, -

COLNT 26 25 2% <3 25 25 2 2% 2 2 2% 25 1% 2% 1 3 &) W N B EL LI . ]

i
i
i




39 o

Table 7-2. Hourly Statistical Values of Total Electron Content and Equivalent Slab :
Thickness From Hamilton, Massachusetts, for March-April 1968 ;
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Table 7-3. Hourly Statistical Values of Total Elec{:ron Content and Equivalent Slab
Thickness From Hamilton, Massachusetts, for May-June 1968
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Table 7-4, Hourly Statistical Values of Total Electron Content and Equivalent Slab
Thickness From Hamilton, Massachusetts, for July-August 1968
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Table 7-5. Hourly Statistical Values of Total Electron Content and Equivalent Slab

Thickness From Hamilton, Massachusetts, for September-October 1968
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Table 7-6. Hourly Statistical Values of Total Electron Content and Equivalent Slab
Thickness From Hamilton, Massachusetts, for November-December 1968
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Figure 7-3. Monthly Median Equivalent Slab Thickness for 1969 From the
Panama Canal Zone

thickness separately for each month of
or the year 1968 for data taken at Hamilton,
Massachusetts, With these tabulated
values, which are typical of mid-latitudes,
a design engineer can determine, in addi~
tion to the average behavior, the complete
statistical behavior of the mid-latitude
TEC,

In order to show the relative good
agreement between slab thickness values
taken at widely separated mid-latitude
stations, a series of graphs-of slab thick-
ness at pairs of stations is shown-in
Figures 7-5 through 7-8, All these
stationsg are in the northern mid-latitude
region, These curves show that.a TEC

Figure 7-4, Total Electron Content model based upon slab thickness can

From Kingston, Jamaica, West
‘Indies, March 1972
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Figure 7-7Tb, = A Comparison of Monthly
Median Slab Thickness at Stanford,
California, and.Hamilton, Massachusetts

apply over this general region, The
Stanford data was supplied through the
courtesy of A, V, daRosa, the data from
Aberystwyth, Wales by L, Kersley and
the data from Florence, Italy is from
P,F. Checcacci and M. T. deGiorgio (all
private communications).

To give a picture of the average
latitude and temporal behavior of the mid-
latitude TEC for various seagons Figures
7-9 and 7-10 show TEC values taken
from Hamilton, Massachusetts from the
VHF signals from the S-66 (BE-B) satellite.
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‘Figure 7-8, A Comparison of Monthly Median Slab Thickness at Stanford,
California, and Hamilton, Massachusetts

Using the same satellite, observations of TEC have been made from Athens, Greece
and are shown in Figure 7-11, Thesge are kindly provided by D, Matsoukas (private
communication), Figures 7-12 and 7-13 show the behavior of TEC over northern
Europe for eight seasons. They are the result 6f combining data taken by Liszka
(1967) with those taken at Val Joyeux, near Paris, France, Amayenc (1971), These
contours were kindly supplied by F, Bertin for inclusion in this report, The first
four of these contours were used to make the numerical model of TEC over Europe
for sunspot minimum conditions, the details of which are in another section o6f this

report,

‘While much work un TEC behavior has been done at a few other mid-latitude
locations, such as in New Zealand, by Titheridge, and in Japan by Nakata, the
stress on data presented liere is on.the Atlantic and European sectors because of
NATO!'s particular interests in this region, The statistics given in Tables 7-1
through 7-6, along-with the many TEC contours shown in Figures 7-9 through 7-13,
depict fairly well the behavior of TEC in this region,
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Figure 7-9. Iso-Contours of Seasonal Median Total Electron Content Taken at
Sagamore Hill, Hamilton, Massachusetts

7.4, THE HIGH LATITUDE REGION

TEC measurements at the high latitudes have been made by only a few workers,
Some of the important. studies and their data are summarized here, TEC measure-
ments using-the $-66 (BE-B), 1000 km height, satellite were made from Kiruna,
Sweden (67 deg-North, 20 deg East) geographic coordinates by Liszka (1967), A
trough in the latitude distribution of TEC was sometimes observed on individual
passes, particularly during the winter nighttime when it was always observed,
Because the satellite is generally viewed at an oblique. angle, sharp gradients in
TEC are smoothed by this measuring technique, Liszka constructed iso~contour
maps of TEC versus latitude and locaktime for all'hours for 9 three-month seasons
over the latitude range from 55 to 72 deg North over the European sector. These
contours are shown in the mid-latitude portion of the data section as they were b
attached to the mid-latitude TEC contours taken near Paris by Amayenc, et al, The
trough in TEC is clearly seen in both the winter nighttime contours of the winter
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Figure 7-10. Iso-Contours of Seasonal Median Total Electron Content Taken at
Sagamore Hill, Hamilton, Massachusetts

1964 to 1965 and the winter of 1965 to 1966. Though there is some evidence of the
trough during the equinox periods, the rapid seasonal changes which occur at thege
high geogr- . ical latitudes were responsible for averaging both day and night values
into th.e equinox contours, thus smoothing out any nighttime trough, Contours of the
equivalent slab thickness parameter, over a 10 deg latitude range, were constructed
by Liszka for four seasons by combining his TEC observations with foF2 observa-
tions from six Scandinavian ionosondes. These results are shown in Figure 7-14,
In the winter two distinct maxima in slab thickness are clearly visible, one at
21 hours and the second at 03 hours local time, Both occur at 65 deg North geo-
graphic latitude, Thege maxima occur when the trough is above the Kiruna station,
Bratteng and Frihagen (1969) reported the results of TEC measurements made
at Spitzbergen (78 deg Noith, 14 deg East). They constructed iso-contours of TEC
versus local time for the Spring and Autumn 1965 periods. Their contours are
reproduced in Figure 7-15, They noted the large 0900 LMT maximum in TEC at
78 deg North, but little evidence of*astrough during the seasons shown is noticeable,
Mikkelsen (1971) combined observations of TEC taken at St, John's, Newfoundland
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and Narssarssuaq, Greenland during July 1969 using the-S-66 beacon satellite
transmissions, He found a knee in TEC which moved southward with increasing
magnetic activity, but not very good agreement between the position of the knee and
that of the southern edge of the scintillation boundary. No mean data was shown by
Mikkelsen either for TEC versus latitude or time,

Rai and Hook (1967) made TEC observations near College, Alaska during the
winter of 1963-1964, They found a large secondary nighttime maximum in TEC
near local midnight between 65 deg and 75 deg North geographic latitude, At 60 deg
North there was only a slight nighttime increase, During magnetically disturbed
conditions, they found large positive gradients towards the North, They reported
no measurements of slab thickness,

Currently, continuous measurements of TEC are heingtaken at several high-
latitude locations using the VHF signals transmitted from the geostationary satellite
ATS-3, Stations where reduced data will soon be available include Narssarssuaq,
Greenland, Goose Bay, Labrador, and College, Alagka, Some three months of
data from Thule, Greenland have been reduced and are outlined in the following
gection,
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8. Low Elevation Angle: Measurements of Total
Electron Content Taken From
Thule, Greenland

M:Mendillo and J.A. Klobuchsr

8.1 INTRODUCTION

Continuous measurements of the Faraday polarization‘twist.of VHF radio waves
from the geostationary satellite ATS-3 have been made from April 1971, at Thule,
Greenland (75,5 deg North, 68,7 deg West). This set of data represents the first
attempt made from such a high latitude site to continuously monitor the diurnal
behavior of the ionospheric total electron content (TEC), During this period the
ATS-3 satellite was close to the Thule meridian (70 deg West) at a ground elevation
angle of approximately 5 deg, Figure 8-1 shows the sub-ionospheric geographic
latitude versus ionospheric height together with the L value at the Faraday rotation
factor M (Bcos@secX) along the ray path to ATS-3, Note that the ionospheric station
at Narssarssuaq, Greenland (61,2 deg North 45, 4 deg West), is located at the same
geographic latitude as the 400 km sub-ionospheric coordinates, The L shell at this
point is 11.6 which corresponds to an invariant latitude (A) of 73 deg,

The values of polarization twist (Q) recorded at*Thule have béen converted to

“equivalent vertical''-electron contents (NT) uging Q = fg'MNT with the mean M.

factor computed for an ionospheric height of 400 km, It should be noted that over

the height range 300 to 500 km M changes by only 7 percent, and thus the decision

at which height M should be chosen has more of an effect on determining the sub-
ionospheric coordinates that it does on the derived values of N, The polarimeéter

in use at Thule has been calibrated only tentativzly for absolute polarization reference,
and theérefore the absolute scale for the TEC curves was arbitrarily chosen to give
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reagonable values of glab:thickness
o, (r= Np / Nmax)‘ It should be empha-~
sized, however, that the data are con-
/ tinuous over an approximate three month
/ period and thus day-to-day and seasonal

THALE (730N, 684T° W) / . X
Ars-sarerw ’ differences may confidently be compared

/ on a relative basis,
P Before presenting our preliminary
P results, we would like'to comment briefly
L VAL AT L ono e 0 -l on the appropriateness of constructing
et A equivalent vertical” TEC values using
the Faraday rotation technique with a

. 8 b " satellite only 5 deg off the horizon,
Figure 8-1. Sub-lonospheric Latitude s N
and'M Factor vs Vertical Height From Model calculations were performed for

Thule Viewing ATS-3 Along the Station = day and nighttime equinox conditions

Meridian using the geometry depicted in Figure 8-1,
The electron deénsity versus height and

latitude were‘taken from Chan and Colin (1969) for the topside with extrapolated

VERTICAL MEWNT (KM}

values for the bottomside. When the amounts of rotation computed-along the slant

path through the ionosphere were converted to equivalent vertical N values using
M at 400 km, the daytime results agi'eed to within 3 percent and the nighttime to
within 7 percent of the actual vertical integrated profiles passing through the 400 km
sub-ionospheric point, Several of the factors which contribute to this good agree-
ment are;

(1) Since M and Mg decreaseboth with height and to the south, most of the
rotation occurs. where the ray path intersects the F2-peak.

(2) The latitudinal N gradients southwards towards the trough are not too great
at ionospheric heights near hp ...

(3) While the elevation angle to ATS-3 is only 5 deg a‘ the ground (sec X = 11, 7);.
at 400 km along the ray. path it is 20 deg (sec X = 3.0).

8-2 DESCRIPTION OF THE DATA

In Figure 8-2 data from the first three months of operation are given'in a masgs-~
plot format, The tendency for the TEC to have preferred values occurs because the
received polarization is a combination of a direct ray from the satellite and a ground
reflected ray of consgtant horizontal polarization. The contamination from the ground
reflected ray is due to the lIow elevation angle at which these observations were made
using modest gain yagi antennas, Despite this problem, some of the features clearly
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Figure 8-2. Total Electron Content
From ATS-3, Thule, Greenland, 1971.
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vigible in Figure 8-2 include a diurnal
effect with a broad afternoon maximum,
a day-to-day variability, and also a great
deal of structure at virtually all local
times, The monthly median curves (N
are presented in Figure 8-3. One can
see that a seagonal trend is apparent in
that at all local times N, (June) > N,
(May) > NT (April) with the nighttime
values.- showing the greatest change, At
mid-latitudes, on the other hand, the
seagonal variation during the daytime
hours is quite different, that is, daytime
'NT values in June:are significantly lower
than the corresponding N, values in
April, Figure 8-3 also-shows that the
overall diurnal range, that is, Np(max) -
N’T(min), also varies with season., During
April, the range is 12 x 1016 el/m2 while
during May and June it reduces to 10 and

8 x 1016 e1/m2, respectively. Finally, the small arrows in Figure 8-3 give the
times of ground sunrise and sunget at 61 deg North, It appears that as the daylength
increases with season, the slopes (dNp/dt) at sunrise and sunset both decrease,

12 . 20 24
LOCAL TIME

Figure 8-3, Total Electron Content
From ATS-3, Thule, Greenland, 1971.
Monthly medians

8-3. THE INFLUENCE OF GEOMAGNETIC
DISTURBANCES

In order to investigate the effects of
magnetic activity, we concentrated on the
April 9 to 30 period, During this time,
two moderately severe sudden commence=
ment storms occurred and in both cases
there were recognizable departures in
N from monthly median conditions,
From Figures 8-4a and b one can see

that both of the "ioncspheric storms'! took the form of an initial positive phase
followed by a longer negative phase, This type of storm-time (Dst) behavior is
quite similar to that normally found at mid-latitudes [Hibberd and Ross, (1967); and
Mendillo (1971)] . With only two storm periods available, however, it is not
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Figure 8-4. Total Electron Content from ATS-3, Thule; Greenland, During One
Quiet.and Two Disturbed Periods in-April 1971

possible to discuss local time (SD) effects, The SC for the first storm occurred at
00:29 LT on'9 April and the enhancement in N occurred during the broad minimum
usually found neatr dawn, The second SC occurred at 07:43 LT on the 14th and'the
positive phase maximum in N vccurred near local noon, Thus, inboth cases the
time-lag from SC to ANT(max) was 3 to 5 hours, Figure 8-4c gives an example
of some nighttime increases in NT during a period when no storm SC was reported
but when global-conditions were generally disturbed, During the 6 hour period
countered on 00 UT of 22 April, Kp was 6 and 5, We agree with the suggestions
made by-Rai and Hook (1967) and Bradbury et al (1968) that the precipitation of low
energy electrons is the probable cause of nighttime enhancements in TEC at auroral
latitudes.

In order to present in the greatest detail available a few examples of the diurnal
N curves measured from Thule, we have prepared in Figure 3-5 tracings of the

actual polarimeter datataken on 14 April (Ap = 39, 3 Kp = 28+) and on 25 April
{Ap =1, 2 Kp = 2-), The storm effects on the 14th are quite dramatic, while the

extremely calm (geomagnetically) day.closely follows the monthly median curve in
Figure 8-3, It is interesting to note that even on a quiet day a certain amount of
variability is apparent,
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Figure 8-5. ATS-3 From Thule, Greenland, 14 and 25-April 1971,
(76, 6°N, 68.7°W), Sub-Ionospheric Point (400 km) = 61.6°N, 75.1°W, A = 739,
Elevation to ATS-3 = 4. 6°

84. DISCUSSION

Perhaps the three most prominent features evident in this preliminary set of
data are

(1) the solar zZenith angle influence in the diurnal variation,

(2) the definite response noted to geomagnetic storms, and

(3) the irregular fluctuations found at all times, especially the nighttime hours,
There are at the present time no published reports of the complete diurnal Np
behavior at high latitudes with which these results may be compared, However, for
several years Liszka's group in Sweden and Frihagen's group in Norway have used
low-orbit data to extensively study total content at high létitudes. The.Norwegian
results include a particularly interesting set of data from Kjeller (60 deg North,
11 deg East) and Spitzbergen (78 deg North, 14 deg East), N data obtained from
the 40 and 41 MHz beacons on the satellite S-66 as seen from Kjeller refer to
approximately the same geographic latitude (60 deg) as the present Thule data, while
S-66 passes taken near 76 deg from Spitzbergen yield N data at approximately the
same L-shell as the Thule data, At middle and low latitudes (that is, within the
plasmasphere) the geomagnetic field plays such a dominating role in determining
the distribution of ionospheric plasma that one normally thinks in terms of
comparing data from two stations which have the same geomagnetic coordinates,
The data taken from Thule, however, measures electrons situated well above the
plasmapause (that is, north of the main trough) and thus it is not clear whether
geomagnetic or geographic (solar) control has the greatest influence, Bratteng and
Frihagen (1969) presented some Spitzbergen data taken during the-Spring of 1966

©
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which seems to-indicatethat the overall diurnal range at 76 deg wag less than the
range treported at Kjeller (60 deg) for the Spring of 1965 [Frilagen and Bratteng
{1967)] . Considering the April median in Figure 8-3 as well as feature.(1) roted
above, it appears that the golar zenith angle control exerts the dominant influence
over the diurnal N, variation:measured from Thule,

In conclusion, weé wish to say that while emphasis has been placed on the solar
control over the TEC results reported here, the corpuscular sources of ionization
are certainly important, This was-briefly discussed in connection with Figure 8-4c
and it appears that particle influence may also be evident in Figure 8-2, Near 1500
LT in this figure, there seems to be an avoidance of low N7 values, This time
period corresponds to approximately 2000 UT, the same UT period when a-maximum

in the soft electron precipitation is expectéd [see Maehium, (1968) and Pike, {1 970)].

Bratteng and Brihagen (1969) reported similar effects during winter months when
the possibility of observing a UT variation is the greatest, Such effects will be
examined in more detail as soon as our-Winter data becomes available,
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9. Conclusions

J.A. Klobuchar

9.1. METHODS USED, PROBLEMS AND LIMITATIONS IN OBTAINING TEC DATA

The present state of the art of TEC values for use in time delay corrections for
systems applications is a mixed bag. In this report we have outlined several existing
models from which a TEC value may be obtained. We have tried to avoid compari-
soné»among these models as they have not been adequately and uniformly tested
against'real data in any comparative way, Our emphasis here has been to present
data from the three, more or less, naturally defined world regions, namely the
equatorial, mid-latitude and polar regions. In one case sufficient average data were
available to construct a model of TEC which is of use in the European sector in a
limited way. Also, the statistics of TEC variability were given in the data section
for a mid-latitude station, Many maps of TEC iso-contours ilso were shown,
particularly for the European sector. Any one or a combination of the above models
and/or data sets should serve as a first order TEC time delay correction source,

Several.problems and limitations in TEC data were discussed and more problems
will be addressed briefly here, The basic problems are;

(1) the lack of complete. measurements of the many variables responsible for
the behavior of the electron density in the ionosphere; and

(2) the lack.of sufficient experimental data to produce an empirical ionospheric
electron density model of sufficient accuracy.

Since the approach in (1) follows from first principles it is the more elegant, but
also far from complete, solution, Hence, an empirical model of the parameter of
direct interest is the alternate approach, and all empirical icnospheric models are
data~base limited.
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The specific TEC data bage limitations, aside from the obvious-one of lack of
data from a particular geographic region, are several. TEC from low orbit satellites
is inadequate because it can only determine TEC up to the satellite height of approxi-
mately 1000 km, and then only when‘the satellite is sufficiently above the station's
horizon, which may be only for four to six 10-minute periods per day. During
times of heavy amplitude scintillation, the Faraday fading is obscured and often
unreadable, This happens particularly during magnetic storms when the TEC is
probably most interesting to study, as during disturbed periods the TEC departure
from median conditions are usually largest. Because of the motion of the satellite,
changes in its beacon signal's transmitted polarization, and.the changes in the mean
height of the ionosphere, the estimated accuracy of TEC data obtained.from low orbit
satellites ig-not better than ¥10 percent. Due to the limited time sampling of TEC
from low orbit satellites, only seasonal average data can usually be obtained,

Continuous temporal coverage is possible with TEC data derived from VHF
beacon signals transmitted from geostationary satellites, No loss of data occurs
during periods of severe amplitude scintillation if a good polarization follower
(polarimeter) is used, Howéver, with the Faraday method of TEC data determina-
vion, the TEC is measured only up to-a vertical height of approximately 2000 to
3000 km, depending on the density at those heights, The TEC betwsén 2000 to
3000 ki and the satellite height of 36,000 km can equal the density below this height,
at least at nighttime, and can be 10 to 20 percent of the complete total in the daytime.
The estimated accuracy of determining TEC in the lower 2000 to 3000 km by the
Faraday technique, from VHF signals transmitted from geostationary satellites, is
plus and minus 5 percent,

9-2. TIDy~ A LIMITING FACTOR IN OBTAINING TRUE TEC VALUE

Even if a true group«path delay measurement of negligible error was made,
along one direéction from a particular station, a TEC model will still be required to
correct that true TEC value for use along another slant direction from the same
station, It is likely that such a model would be able to correct for the normal
temporal and geographic variations in TEC, However, the limiting factor is the
existence of smail scale travelling ionspheric disturbances (TIDs) which can be of
a size smaller than the distance in the ionogphere between the two slant directions
viewed from a single station, The occurrence, size and location of a specific small
scale TID cannot be predicted. Hence, these TIDs, which are typically from 1 to
5 percent of the TEC, may become the ultimate limitation to TEC corrections,
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Ionospheric models which are required to independently correct for time delay
with a resultant 50 percentirms error are relatively simple and are at hand, Three
of the TEC models outlined in this report have been tested against TEC data, and,
in the mid-latitudes, have obtained an approximate 75 percent rms ionospheric
correction, However, a system which requires an independent correction for
99 percent (rms) of the ionospheric time delay had better not be built! A 50 percent
rms correction is eagy to accomplish in most cases; 99 percent is impossible; the
taskeof ionospheric workers in this field is to get as close to 99 percent as is
practical, in the most efficient way,

9.3. IMPROVING PREDICTION ACCURACY

The work which should greatly improve prediction accuracy involves the times
when the greatest differences from median conditions occur. These times are
usually, but not always, during magnetically disturbed conditions. An understanding
of the physical mechanisms which produce the observed clianges in TEC during
magnetic storms-is a long sought after goal; but, unfortunately, there is not yet
even a completely clear experimental picture of the changes which occur in TEC on
a statistical basis during magnetic storms over all regions of the earth. As more

data are being coliected a clearer picture will emerge and there is reason to
believe that within a very few years a.much better understanding of the world-wide
behavior of total electron content will emerge.
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