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FOREWARD 

Automation of the control of an industrial process generally 

entails three basic tasks: 

i)  design of a computer system (the computer 

configuration, the sensors, the transistors, 

and the control software); 

ii)  design of a control strategy or control law 

iii)  representation, i.e., modeling of the process 

There is normally a natural ordering of these tasks; that is, 

one does not design the computer system without knowledge of the con- 

trol strategy, and one does not design a control strategy without a 

model of the process. 

Often the first task is less process-dependent than the others, 

and common computer technology is applicable.  The second task is 

straightforward for certain simple models; for example, linear systems, 

systems with restricted size, and systems with only discrete or only 

continuous control (decision) variables. 

For many complex industrial processes, it is the second and 

third tasks that limit realization of automated control.  This is true 

for the copper converter aisle described in this report.  The converter 

aisle process is large, nonlinear, and has mixed continuous and discrete 

control and decision variables.  For this type of system work is being 

done on development of representative models and improved Senior«, but 
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work on design of control strategies has lagged.  In part this is 

because, in concept at least, optimal control design can be achieved 

using standard techniques such as Bellman's dynamic programming, 

unfortunately, for systems such as the converter aisle, standard con- 

trol design techniques lead to prohibitively large computational 

tasks. 

This paper reports  a new and simole  approach  for computation of the 

control  for a process  as  typified by  the  copper converter aisle.     The 

resultant control i8 open loop and locally optimal.     The models  used 

to represent the process  and to illustrate  resuJts  are  unrealis-       " 

tically simple, but they serve  to illustrate  application of the 

techriaue. 
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ABSTRACT 

The task of dynamic optimization consists of manipulating the 

inputs to a dynamic system (i.e., one in which the state varies with 

time) so that the system performs in an advantageous manner. 

This paper presents a systematic technique for solving the problem 

of optimally controlling a converter aisle in a copper smelter.  The 

converter aisle is distinguished from the usual dynamic system in that 

some of the control variables occur as discrete decisions while others 

may vary continuously with time,  m this sense, the converter aisle 

typifies many industrial processes.  The .aisle is viewed as a total sys- 

tem with the objective of optimizing overall performance as evaluated 

using a mathematical performance criterion.  Typical criteria reflect 

total processing time and operating costs. 

An essential step towards optimization is the development of a mathe- 

matical model to predict the state of the system. Ä simple mathematical ^ 

of the converter aisle is developed;and using this model, two optimiza- 

tion approaches are examined . direct optimization of the total system 

and partitioning the system into interacting subproblems.  The parti- 

tioned approach is pursued in detail with techniques for solving the 

optimization subproblems presented and illustrated by numerical examples. 
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INTRODUCTION 

The converter aisle in a copper smelter is composed of a number 

of converters (or furnaces), a supply of input material, a receiver of 

molten copper, and a crane (or cranes) which serves the converters. 

The converters oxidize the input material to produce first an intermed- 

iate material, and later molten copper.  The crane delivers material to 

the converters and removes waste material and molten copper.  Viewed as 

a "system" to be controlled in some advantageous manner, the aisle has 

an important characteristic in that some of the "controls" are discrete 

decisions (for example, the times that the crane visits each converter) 

and others are continuous variables (for example, oxygen flow rate to 

each converter). 

The application of optimal control techniques to industrial pro- 

cesses has commonly been limited to techniques for static optimization, 

such as allocation and scheduling problems involving discrete decisions 

and " iet-point" type control of continuous variables.  Because of its 

complexities, there has been little attention given to the copper aisle. 

Recently some papers have reported on this process, but these have dealt 

only with parts of the total optimal control problem. 

This paper presents a technique for solving the problem of 

optimal control of the converter aisle viewed as a total system.  We 

first establish a perspective of the problem from a general systems view- 

point and then view optimal control of a converter aisle as a general 

systems optimization problem.  We point out major steps and approaches 
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to aisle optimization.  Two optimization approaches are presented.  The 

first is a direct approach which results in a problem that is computa- 

tionally large~so large, in fact, that a major investment in time and 

effort is required to produce any results.  Consequently, the direct 

optimization approach is not used but rather, an alternative method 

ifi developed whereby the problem is partitioned into smaller interacting 

subproblems which may be solved with a reasonable effort in a relatively 

short period of time.  The contribution of this paper is the systematic 

method of partitioning a large complex problem, such as the converter 

aisle, into a class of more easily solved subproblems and then com- 

posing the solutions to the subproblems to form a total optimal solution. 
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CHAPTER I 

SYSTEMS CONCEPTS 

Modern control theory offers a richly developed body of techniques 

for optimally controlling a dynamic system.  These techniques will be 

increasingly applied to control of industrial processes.  This section 

establishes basic systems terminology and perspective relating 

to process control.  We note the distinction between the physical pro- 

cess and the system model and then discuss the role of the model in 

design of the optimal control. 

Associated with a physical process, we identify certain (time vary- 

ing) quantities as oontrolled vaHahles,  control variables   (or decision 

variables, ,  and internal variables.     Controlled variables are those which 

we wish to observe, control, or regulate in some prescribed manner, or 

which are used in evaluation of a. performance criteria which measures 

the process performance,  control variables are variables to be manipula- 

ted or decisions to be made so as to achieve desired process performance, 

interna. variables are those additional variables which are physically 

related (directly or indirectly) to either the controlled or control vari- 

ables,  AS a conceptual abstraction, the physical process is viewed as 

a system  represented as the block diagram in Figure 1, where the arrows 

represent flow of information.  The system input is a vector of the pro- 

cess control variable, a.d the system output is a vector of the controlled 

variables of the process.  The state vector  is derived from the internal 
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and controlled variables of the process; the state variables are the 

minimum set of variables necessary to specify at any time the value 

of the output given the value of the input at the same time.  The 

state vector is not necessarily unique, as it depends upon the choice 

of output variables and upon the degree of approximation in specifying 

the value of the output vector. 

In design of the system control, it is necessary to  evaluate the 

output in response to choices of the input.  Generally it is unfeasi- 

ble or prohibitively expensive to experiment with the actual process; 

consequently, a model  of the system is develored. The model consists 

of two sets of rules which specify the output and the st te.  The output 

equation  is generally algebraic and it specifies the output as a function 

of the state and the input.  Commonly, the output will be merely a sub- 

set of the state variables.  The state equation  depends upon the type of 

model, there being two primary types of models, static wodels  in which 

the state does not vary with time and dynamo models  in which the state 

does vary with time.  In addition, a dynamic model is stationary  if the 

equations do not vary with time.  For a static model, the state equations 

are generally algebraic.  Dynamic model state equations take a variety 

of forms: for an analytic continuous model,   i.e., with continuous vari- 

ables, the state equations are differential equations which specify the 

time rate of change of the state variables.  If the state variables are 

natureUy discrete or are quantized in time, the discrete model  may be 

a difference equation or state transition equation which specifies the 

next state as a function of the current state and input. Alternately, a 

state transition equation may be given in a tabular or graphic form. 



Computer simulation models incorporate analytic, tabular, and partially 

verbal representationsof the mocel. Whereas the analytic and tabula:; 

models will oe  directly useful in design of optimal controls, simulation 

models are commonly used for pwmttsU  experimentation on the system. 

The system represented in Figure 1 i.c shown as a single block, 

although systems are often modeled as a seL of interacting subsystems, 

for example, as illustrated in Figure 2.  System structure may be natu- 

raJly implied by identification of subsystems associated with the physi- 

cal process, or the system structure may be imposed to achieve computa- 

tional advantages.  Decompos11 ion of a system into subsystems has the ad- 

vantage that the individual subsystems are more easily analyzed, but on 

the other hand, the interaction of the subsystems may be difficult to 

handle.  (it should be kept in mind that subsystem input variables are 

not necessarily physical quantities, but may represent decisions, sched • 

ules, etc.) 

Generation - a system model is a complex task (so much so that 

there is danger ~f temporarily ignoring the optimization objective).  The 

modeling task has two basic steps: determination of the model form, i.e., 

structure and type, and data acquisition and numerical construction of 

the model.  The forn: of the model is usually motivated by physical knowl- 

edge of or familiarity with the process.  Numerical design of the model 

often reduces to statistical estimation of a set of parameters, whxch in 

turn involves subtasks of filtering data and estimating state variables 

which are not directly measurable. 

The role of optimal control  theory is to provide a method for deter- 

mining dynamic inputs which cause the system to behave optimally in the 
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that a performance criterion J, which measures the influence of 

the inputs upon the system performance, will be minimized (or maxi- 

mized) subject to system constraints.  For application of optimization 

techniques the performanae oHteHon  is commonly of the form 

J = ^f)'  tf] f j     <MX, U, T)dT (!.!) 

t 

for a continuous dynamic model or 

N 
J = I   <Hx, u, t] 

t=0 (1.2) 

for a discrete model, where 6 and * are functional (i.e., they take on 

scalar values) and to to tf is the time interval of interest or t = 0  

N are the discrete times of interest, although the final time need not be 

fixed.  The performance criteria Equations 1.1 and 1.2 are functions o£ 

the system tmJtatOPy   {x(t), u(t)}, that is, the time history of the 

state and associated control.  The system constraints  reflect the physical 

or economic constraints on the process.  Given the system model, perform- 

ance criterion, and constraints, the opt.nization problem may be represen- 

ted by the diagram in Figure 3, wh, h „  W be distinguished from the 

system block diagram.  (The output of the problem diagram is the optimal 

solution u° which is the input to the system.) 

Depending upon the model, the criterion, and the constraints, there 

are a number of techniques available for determining u°.  Commonly, u° 

is found as a aontrol policy  u° = u'Ct) so that the control is "open 
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loop." in contrast, for practical implementation, it is desired that 

the control be a feedback law u0 = u0 [x,t], a function of the measured 

(cr estimated) state, as illustrated in Figure 4.  In some cases, the 

feedback law may be directly determined, but more often a neighbor 

optimal  controller is used.  In this case, the open loop u0(t) and cor- 

responding x0(t) are calculated and a simple controller is designed to 

keep the system "near" the desired state in spite of random disturbances 

which cause deviation from desired performance.  We now apply these 

systems concepts to the copper aisle process. 
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CHAPTER II 

CONVERTER AISLE SYSTEM 

We will now formulate the converter aisle as a general system, 

in order to identify the input variables, state variables and output 

variables, a sequence of events in a converter aisle is briefly de- 

scribed. For the purposes of illustration, let an example converter 

aisle consist of one reverberatory furnace, three converter furnaces 

and a holding furnace as shown in Figure 5. 

Liquid matte   (FeS and Cu2S) is poured into the mouth of a con- 

verter from a ladle which is manipulated by an overhead crane.  Often 

cold material,   including matte shells, scrap copper, etc., is added with 

the initial charge  of matte.  The converter is then rolled into the 

Uming  position, submerging the air inlet openings (tuyeres) below the 

surface of the molten haith  and air is blown into the bath, thus remov- 

ing by oxidation, or slagging,   the undesirable elements (Fe,s) which 

are in the bath. Flu.  is added through an overhead hopper or by means 

of a conveyor belt which dump« the flux into the hood of the converter. 

Blowing is continued long enough to use up the flux and to form slag 

which is periodically sKWd (poured) from ^ ^^ by ^.^ ^ 

out of the blowing position.  More matte, flux and cold material are 

added and then the converter is turned back to the blowing position 

and blowing is resumed.  These part.al blows continue until all the iron 

sulfide has been oxidized and the converter contains essentially pure 

cuprous sulfide (Cu2S).  Several of these matte charges must be slagged 
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before there is enough Cu S accumulated to proceed with the finish  or 

copper blew.     As soon as all of the sulfur in the Cu S has been oxidized, 

the metal, blister copper,   is poured out and the converter is available 

to begin another charge sequence. 

As the converters process material, the crane moves along the 

aisle track to deliver and remove material in response to needs of the 

converters.  The crane obtains matte and cold material at the reverber- 

atory furnace site and delivers slag to the reverberatory furnace as 

it delivers blister copper to the holding furnace, which is assumed to 

be located near the reverberatory furnace.  Generally, each service to 

a converter requires several trips by the crane.  Also, when a con- 

verter is being serviced, it does not blow between visits by the crane. 

The above descriptions suggest two activities that characterize 

the converter aisle:  (1)  material handling by the cranes and (2)  charge 

processing by the converter furnaces.  The behavior of the crane is 

characterized by its location and the full or empty status of the ladle 

which we will establish together as a two-dimensional state vector.  The 

input variable which affects the state of the crane is a decision which 

specifies the position to which the crane will move.  The result, or out- 

put, of the crane activity is the transfer of material into or out of the 

converters.  From this it is apparent that discrete material inputs to 

the converters are directly associated with the activity of the crane. 

The second activity which characterizes the behavior of the con- 

verter aisle is the processing of matte by the converter furnaces.  The 

input quantities that affect the state of the converter can be measured 

in a straightforward way.  Air flow into and exhaust gases from each 
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converter can be measured continuously and the material input and out- 

put of the converter can be weighed and the  composition analyzed 

with some degree of confidence.  For the slag phase, rssential inputs 

indicated by the previously described events are: 

u = Matte weight 

u = Flux weight 

u = Cold material weight 

u. = Oxygen input rate 

In contrast to the input variables, the activities directly asso- 

ciated with the progress of each converter are difficult to measure dir- 

ectly.  The state variables chosen to characterize the converting 

process are somewhat arbitrary and certainly do not describe every ac- 

tivity of the process exhaustively.  The state variables are chosen in 

accordance with the information needed to adequately and realistically 

describe the observable and measurable activities of the process.  Since 

the function of the converter is to remove undesirable elements from the 

copper bearing matte, the relative amount of FeS contained in the bath 

at any time is of interest during the slag phase.  Similarly, the amount 

of Cu2S provides information concerning the progress of the finish phase. 

The amount of slag produced would have an effect on the requirement for 

skimming.  The copper accumulated is of fundamental importance since that 

is the objective of the converter furnace,  x'he bath temperature would 

surely have an effect on the reaction rates within the process.  Sum- 

marizing, a typical set of state variables required to describe the pro- 

cess activities during the slag phase are: 
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x = FeS concentration 

X2 = CU2S wei9ht 

x = Flux weight 

x = Slag weight 

x = Temperature 

x
6 " Magnetic (Fe 0 ) weight 

The finish phase is similar in concept to the slag phase, except 

that during the finish phase, the bath consists essentially of Cu S which 

is being converted to blister copper. 

The discrete decision variables of the system are: 

It  Crane movement decision 

2. Converter schedule 

3. Batch material inputs 

Of course, these are not independent decisions.  The continuous control 

variables are the continuous inputs such as oxygen blow rate and possi- 

bly flux addition rate.  The rules for determining the time history of 

the state variables are discussed in detail in the succeeding chapter 

on modeling.  The copper production rate is specified as an output vari- 

able as a matter of convenience in the development of the optimization 

objective. 

One objective of optimization of the converter aisle system is to 

specify the control values which will influence the system to achieve 

the greatest possible value for the output, where the output performance 

criterion is expressed by: 

3  „ 
T -    V    CU- 
A  ST1 (2'U 1 = 1  T. 

1 
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where 

Cui ~ Blister copper produced per charge cycle 
in converter i 

IV  = Duration of a charge cycle for converter i 

The charge cycle time is taken to be the time to complete a charge cycle 

on a converter as shown in Figure 6.  Crane movement decisions influence 

the charge cycle time particularly when two or more converters are in 

conflict for service.  The converter furnace schedule affects the charge 

cycle time by adjusting the time staggering between converters.  The 

batch material inputs influence the charge cycle times and the blister 

copper production, while continuous material inputs affect the blowing 

times.  Thus, we observe that the performance criterion of Equation 2.1 

is an implicit function of the state and control variables. 

We next turn to establishing a system model. 
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CHAPTER III 

CONVERTER AISLE MODELS 

Motivated by the ideas presented in the previous chapter, we 

will develop a modri of each subsystem of Figure 7. The emphasis of 

this section is on modeling concepts rather than the exhaustive deri- 

vation of a specific model.  Thus, the models that are developed are 

purposely simple with the assumptions used clearly stated. 

It is not possible to specify general rules by which system 

models are formulated, but a number of guiding principles can be stated; 

1. The system will be organized in subsystems so as to sim- 
plify the specification of interactions within the system. 
The subsystems will be characterized by one type of variable 
(i.e., discrete or continuous). 

2. The model will include only those variables which are rele- 
vant to the optimization objective. 

3. The accuracy of the model will be limited by the data used 
to develop the model. 

4. The model must be capable of reproducing the behavior of 
the system within an acceptable accuracy. 

Crar/i  System Model 

The physical structure of the converter aisle suggests a crane 

routing model.  The crane state will be a two-vector P. which represents 

the state after the jth crane move: 

(3.1) 

T. 
1 

j 
P. = 
-j 

P2   . 
2 

-          — 
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The first component P1 represents the crane location, which can have 

four possible values 

P^ = 0 crane at reverberatory furnace or 
holding furnace 

P, = 1 crane at converter 1 

P, = 2 crane at converter 2 

P, = 3 crane at converter 3 

The secord component P2 represents the ladle condition during the 

move, where 

P_ = 0 ladle empty 

P2 = 1 ladle loaded 

The crane is modeled by a state transition equation represented as 

P^-, = h^p., d.) -]+l  -l*V  j/ (3.2) 

where P is the current state, d is the crane move decision, and P 
J '    —j+1 

is the next state, p   is determined by d. subject to the following 

assumed constraints: 

1. Only one ladle of material will be input or output from a 
converter at each visit. 

2. Only an e:npty ladle will be moved to a converter that needs 
to be skimmed or emptied. 

3. Only a loaded ladle will be moved from a converter that has 
been skimmed or (partially) emptied. 

4. Only a loaded ladle will be moved to a converter which re- 
quires input material, provided it does need output service. 

5. Only an empty ladle will be moved from a converter after 
delivery of input material. 
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With these assumptions, it is seen that choice of the value of the 

decision d. requires knowledge of the converter states; and given 

that knowledge, the decision d. is a sealer value, i.e., it is neces- 

sary only to choose (P^    subject to the constraints and then (P ) 
2 j+1 

is uniquely determined. 

For a given crane decision, the additional information required to 

model the crane is the time required to move from the current location 

to the uext location.  This transition time information will be given in 

the form of Tables 1 and 2, where it is assumed that the transition 

time includes the loading txme at the reverberatory furnace and the load- 

ing or unloading time at the converter to which the crane moves.  The 

blanks in the tables indicate illegal moves. 

As noted above, crane movements are made in response to material 

input/output needs of the converters, and the moves in turn effect the 

states of the converters. The constraints of converter requirements on 

the crane decision can be described in terms of the converter state 

variables, and the effect of a crane move on the converters can be 

modeled by including the crane variables in the converter models.  (This 

is done in Chapter V in the direct optimization approach.)  However, 

even if the converters are not explicitly modeled, it may still be desir- 

able to deal with the crane subsystem.  For this case, to model the 

crane interaction with the converters, we model requirement variables as 

an input queue and an output queue.  The input queue is a vector 

%n 

ml 

m2 

m3 
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where m. is the number of ladles to be input to th« 1th converter, 

output queue is expressed by 

The 

>ut 

where s. is the nurr^er of ladles of material to be removed from the ith 

converter.  Clearly, the queue variables can have only non-negative in- 

teger values,  in terms of the queues, the crane moves only in response 

to nonzero queue values or to return to the reverberatory or holding 

furnace. Each time the crane moves to a converter, the appropriate 

queue variable for that converter decreases by one. Each time the crane 

moves from a converter, ^  must change, i.e., (p^ ^ (p^ ,.  A crane 

move to the reverberatory furnace or holding furnace does not change the 

queuei,. 

in addition to the changes in queue variables, the state of the 

converter must change since material is being removed or added.  The 

change in converter state due to crane service is given by the following 

relationship 

x (k+1) = x.(k) + enm. 

x (k+1) « x (k) + em. 
*        * 2 i 

x (k+1) = x (k) + e e rn. 
-'        -J      3 2 i 

x4(k+l) = 0 

x5(k+l) = [x5(k)x2(k) + (e^. + e2m. + e^n.)   e^./ 

[x1(k+l) + x2(k+l) + x3(k+l)] 
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x-(k+l) = 0 
6 

ervice where the subscripts (k+1) denote the time following crane s 

and (k) the time preceeding crann service.  The parameters e , e , 

e , e  are defined as 

e1 = weight of FeS per ladle of input 

e2 - weight of Cu2S per ladle of input 

e3 = number of tons of flux required per ton of FeS 

e4 = average temperature of input material 

The model of temperature change is a simple linear extrapolation and 

assures there is no change in bath temperature due to radiation losses 

during crane service. 

The above crane service state transition equations for the ith con- 

verter may be summarized by 

x{k+l) = x(k) + A x(e,m.) (3,3) 

where e is a vector of model parameters defined above and m. is the num- 

ber of ladles of input material. 

The nuittoer of ladles of material to he removed is a function of the 

amount of material to be removed and the ladle capacity.  For the ith 

converter this may be expressed by 

n. ■ 
i 

x4(k) 

w 

+ 

for the slag and by 
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n. ■ 
i 

-i + 
(-.8)x2(k) 

w 

for the finish phase, where: 

x4 (k) = amount of slag at end of slag bl ow 

x  (k) = amount of Cu S at the start of the finish 
blow       2 

w     = weight capacity per ladle (assume slag and 
copper are of equal density) 

+ 
and where   [ • ]  denotes the nearest equal or greater integer. 

The crane service timn between any two consecutive blows is, of 

course, a function of the routing used in performing service.  If a 

converter is serviced exclusively (i.e., the crane is not shared with 

another converter) then the service time is given by 

TSU.j) - (tio + t;.) n. + (toi + t^) m.       (3.4) 

where TS(i,j) is the time to service the jth blow on the ith converter. 

This modeling of the crane-converter interaction completes a model 

of the crane subsystem. 

Converter Furnace Model 

We recognize from Chapter II that the activities which character- 

ize the behavior of the converter furnace involve two major reactions. 

The slag phase is characterized by the elimination of iron sulfide from 

the matte charge as governed by the following chemical equations: 

2FeS + 302 -> 2FeO + 2S02  AH = -105,000 Cal/mole 

2Fe0 + Si02 ^ 2Fe0 . S.02  AH = -306    Cal/mole (3.5) 
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6FeO + 0 -> 2Fe 0       AH = -133,000 Cal/mole 

3Fe 0 +FeS ■+ lOFeO +S0  AH = +110,000 Cal/mole 

where AH is the heat of reaction at molten temperatures.  The second 

phase is described by the reaction 

Cu S +  0    ->■  2Cu + SO    AH = -56,000 Cal/mole   (3.6) 

In practice, these equations have been used for many years to estab- 

lish material balance and heat balance relationships.  These equations 

do not, however, offer any information regarding the behavior of the 

process in the course of time.  It is an interest in controlling the 

processing time of the converter furnace that motivates us to develop 

a dynamic model which will predict the value of the state variables at 

any time.  Defining the slag phase state variables as in Chapter II, 

we wish to formulate a slag phase model using oxygen input rate as the 

only continuous control. 

During each blow, the process involves only continuous vari- 

bles, so that it may be modeled as a vector differential equation of 

the form 

dx 
— = x = f(x, u) (3.7) 

where x is the state vector defined in Chapter II and u is the oxygen 

input rate.  The function £ is in general a nonlinear function of the 

arguments x, u and it is assumed to be stationary.  Because of limited 

theoretical knowledge about the dynamics of copper converter furnaces, 

we will approximate the function f_with an empirical, stationary, 

linear function.  We offer no experimental justification for such a 
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simple model but use it to illustrate a modeling technique and to serve 

as a simple model in optimization examples. While the assumption of 

linearity may seem unjustified, it does have practical merit.  A non- 

linear system such as Equation 3.7, operating "near" a known trajec- 

tory {xo(t), u(t)} may be linearized by the expansion. 

x ~ f (x , u ) + _= 
— O    o 

9x 
x , u 
-o  o 

(x - x ) + 9f (u - u ) 
o 

X , u 
-o  o 

Evaluating the partial derivatives as indicated and assuming equality 

yields an equation of the form 

x = A(t)x + B(t)u + C(t) 

This equation represents a nonstationary linear system.  A further 

approximation to this system is made by assuming the system is station- 

ary over an interval of time.  For the slag phase model, we assume the 

system is stationary over all of the blows, thus yielding an approxi- 

mate model with form 

x = Ax + Bu + C (3,8) 

where A, B, and C are constant matrices which will be evaluated. 

To further simplify the model, we assume that x  (Cu S weight) 

is cons cant during slag blows and that all other bath constituents 

vary in proportion to the FeS oxidation rate.  (These assumptions are 

supported by observation of converter data.)  With these assumptions, 

the slag blow state equations become 
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x1 - A^ + A12x2+ ... + A16x6 + B1u+ ^ 

x2 = 0 

X3 " Vl 

X. = K.xn 4    4 1 

(3.9) 

x5 = A51x1 + A52x1 + ... + A56x6 + B5u + C5 

X6 = K6X1 

The unknown constants in Equation 3.9 will be determined empira- 

cally based upon observation and estimation of converter state trajec- 

tories.  Direct measurements of many of the state variables associated 

with the converter furnace are difficult to obtain.  Consequently, some 

of the data is obtained indirectly, such as through the use of material 

balance relationships.  For example, smoothed trajectories of the state 

variables are shown in Figure 8 for a typical converter furnace with 

fixed oxygen input rate during each blow.  The original data was obtained 

by direct measurement of S02 discharge rate, oxygen input rate, tempera- 

ture, and initial material inputs and by computation of the trajectories 

of the concentration of FeS and weights of flux, slag, and Fe 0 

using the reaction Equations 3.5.  Denote the data points in Figure 8 

by x (t ) and the slope at each data point as x, (t.,), where k denotes 

the kth state variable and t  the ith discrete time in the jth slag blow. 

To evaluate the constants, in particular the B coefficients, we 
k 

require a collection of data for different values of u.  However, using 

only the data in Figure 8, a very simple initial model can be obtained 

by arbitrarily choosing 
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B, = W, k - 1, 5 (3.10) 

u(t, .) 
ij 

where the superscript bar denotes the average over all sample times 

t.....  Equation 3.10 has some physical justification in that oxygen input 

rate is dominant in determining FeS oxidation rate.  To evaluate the 

remaining constants, arrangn the data in the matrix forms 

X = 

V1^    w 
Xl(t21) X2(t21) 

X6(tll! 

W      1 

MW      *i^) 43 2V   43' X6(t43) 

and 

4 = 

"k^i^ - V^i^ 

XK(t21)   "  V(t21) 

,  k  =  1,   5 

Xk(t43)   -Bku(t43) 

For  a least sum-square-error  fit of  the data, 
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4 = 

k6 

'Ik 

t -1 
"||    |\ , k = 1,5 (3.11) 

where superscript t denotes transpose.  The constants K , K , and K 
3   4      5 

in Equation 3.9 may be estimated as 

x, (t. ,) 
\  = k 1^ , k = 3, 4, 6 (3.12) 

To complete the model, the system constraints are simply 

0 < u(t) < u 
~     — max 

(3.13) 
0-Xk(t) ^kmax ' k=1 6 

Where "max and Xk max 
are fixed instants. 

Together, Equations 3.9-3.13 constitute a simple initial slag 

blow model.  The model has validity only during the blows and only for 

state and control values in the range of data used to derive the model 

coefficients.  Between slag blows, oxidation stops and the converter 

state changes in accordance with equation 2.3 as previously discussed. 

Thus, between blows, the crane actions determine the change in the con- 

verter ctate.  When a sufficient amount of Cu^ has been accumulated 

and when the FeS has been removed, the finish phase is started. 

A finish phase model can be developed in manner similar to that 
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used for the slag blow model, but with appropriate changes in the state 

variables.  A typical state trajectory for the finish phase is shown 

in Figure 9.  The temperature during the finish phase remains relatively 

constant for a given oxygen input rate.  As expressed by Equation 3.6, 

there is only one principle reaction involved, thus the state vector will 

be approximated by a scalar as 

x2 = Cu2S weight (3#14) 

As in the slag phase model, the finish phase model may be expressed as 

a differential equation of the form of Equation 3.7. 

—i = f(x ,u) (3 15) 
dt 

where f is to be determined.  The curve of Figure 9 suggests a non- 

linear exponential form for the function f 

f(x2,u) = 2 a ute " 
a ut (3.16) 

where a is a constant to be determined and t is the independent variable 

time.  The choice of an exponential function is based simply on the 

fact that data best fit this form of curve.  Clearly, the choice of f 

is not unique but represents a judgment based on observation and experi- 

ence.  Combining Equations 3.15 and 3.16, we have the finish phase model 

given by 

,     -cmt2 x2 = -2 a ute (3>17) 

the constant a can be determined by solving equation 3.15 and fitting 

the solution to the data in Figure 9 using a standard curve fitting tech- 



35 

o 

o <s> 
o <: 
1-H £ 
o IB- 
(TV 

O iZ 
oo 

o 
h«. LlJ § H- 

=9 ce 
<c 

o •-* > 
VO X 

LU 
UJ 1— 
mt <C 

o M »— 
to h- OO 

o 1 
o 

S 
CO 

en 

o V 
CM %. 

- o 

(SNOi)   S2nD JO  iH9I3M 



36 

nique, similar to the least squares method used in modeling the 

slag phase. 

The model illustrated in this section is, of course, quite 

simple, and much remains to be done in modeling of copper conversion 

dynamics.  Towards this objective, more complex models have been con- 

sidered, for example, Nenonen and Paqurek [8] and Niemi and Koskine.i 

[9].  However, this simple model will provide a basis for the optimi- 

zation concepts which follow. 
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CHAPTER IV 

SIMULATION STUDIES 

In this chapter a simulation of the simple, single crane, three 

converter aisle shown in Figure 5 is described.  The purpose of the 

simulation is twofold; first, to validate the model, and second, to 

provide the motivation for studying the converter aisle as an optimiza- 

tion problem.  In the simulation study opportunities for optimal control 

are identified and a measure of possible improvement in performance is 

established.  The simulation program is briefly described, some results 

are presented, and a summary of promising optimization opportunities is given, 

Simulation Program 

This simulation study is conducted with the use of an IBM 1800 

Process Control Digital Computer and a FORTRAN based simulation prog- 

ram called GASP II (General Activity Simulation Program) [15].  TWO 

principle activities of the converter aisle system are identified as 

crane service and processing of material by the converters fblowing). 

The crane service activity is performed by an entity of the system, 

namely the crane, while the blowing activity is performed by another 

entity, ttre converter furnace. Each of these entities have certain 

attributes which characterize their behavior as shown in Table 3. 

Clearly a mixture of continuous and discrete event models is 

found at the boundary between the crane subsystem and the converter fur- 

nace subs^tem.  Two types of events are specified.  A type 1 event is 
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defined at the endpoint of a trajectory which satisfies the differ- 

ential equations of the converter furnace model (i.e., event type 1 

occurs at the end of a blow).  This event represents a discrete deci- 

sion point.  Ihe type 2 event is defined at the completion of crane ser- 

vice.  This event represents a continuous decision point since it is 

necessary at this event time to decide oxygen input rate for the blow 

that is  to follow.  Figure 10 illustrates the event model used in the 

simulation. 

Since there are three converters operating simultaneously, the 

program maintains an event file as shown in Table 4.  The time a partic- 

ular event will occur is stored in the event time.  On each iteration 

in the program, the smallest event time is determined and the event 

code, converter number and blow number are removed from the event fUe. 

At this point, another file is accessed to determine the duration of the 

activity associated with the event code.  The file containing the activ- 

ity duration is the activity file as illustrated in Table 5.  The pro- 

gram (EVNTS) which stores and retrieves information from these files is 

shown in Appendix 1. 

The event code determines which one of two model subprograms is to 

be executed.  It the event code.is 1, then the event marks an end of 

blow, and crane service is called for.  The crane service subprogram 

(CRNSV; appendix 1) calculates the change in state due to the action of 

the crane and also the duration of the crane service activity,  it is 

assumed that once crane service has been started on a converter, it will 

continue until the needs of that converter have been satisfied (i.e. 

time-sharing of the crane is not allowed).  Thus the crane service mod- 
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TABLE A 

TYPICAL EVENT FILE 

EVENT EVENT CONVERTER BLOW 

TIME CODE NUMBER NUMBER 

0.0 1 1 3 

50.0 2 2 4 

75.0 

.—
1 3 1 

TABLE 5 

TYPICAL ACTIVITY FILE 

ACTIVITY CONVERTER 
DURATION NUMBER 

70.0 1 

23.0 2 

50.1 

i 

3 
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on el is given by Equations 3.3 and 3.4.  The time for the next event 

the particular converter is calculated by adding the activity dura- 

tion to the current time.  The event code is changed to an end of crane 

service and a blow is initiated.  The converter furnace subprogram 

(CONVT; appendix 1) calculates the change in state due to the activity 

of the converting process.  The converter furnace model as given by 

Equations 3.9 for the slag activity duration is the time  required for 

the converter to transfer the state from the initial condition at the 

end of crane service to a specified terminal state constrained by 

VV 1 0 for i = 1, 2, 3, 4, 6 

x_(t ) *: 2250oF of — 

Violation of any of the above terminal constraints will terminate the 

blow simulation.  In addition, the last slag blow and finish blow have 

special terminal conditions.  At the end of the final slag blow x (t ) = 
1 f' 

0 and at the end of the finish blow x2{tf)/x2(0) is specified. 

The model parameters and assumed oxygen input rates are found in 

Appendix 2. 

Simulation Results 

Figure 11 shows some sample state trajectories obtained from a sol- 

ution of the slag phase model and a comparison of interval 1 trajector- 

ies from the model with interval 1 trajectories from observed data. Fig- 

ure 12  illustrates a comparison of the state trajectory obtained from 

the solution of the finish phase model and the state trajectory from 

actual observation.  The simulation results and actual results are nc<- 

directly comparable because some of the parameters associated with the 
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actual data are unknown and thus are assumed for the model.  These 

assumptions lead to some differences in initial conditions between 

the actual data and model results as observed in Figure .U.  However, 

comparisons made between actual observation and model results showed 

considerable similarity; and, therefore, this model will serve as a nomi- 

nal starting point for further optimization studies. 

The results of six simulation runs, each with a different assump- 

tion or initial condition show a distinct difference in process perform- 

ance.  The model parameter values for each run are shown in Append- 

ix 2.  The first two simulation runs are designed to illustrate a dif- 

ference in process performance due to two different material input deci- 

sions as given in Table 6.  The results of this experiment are shown in 

Table 7.  This variation in material input decision shows an improve- 

ment in copper production rate of 10.4 percent.  This is primarily a 

result of the smaller number of conflicts for crane service in run 2. 

Runs 3 and 4 illustrate the difference in performance for two 

different initial starting conditions as given in Table 8.  No signifi- 

cant difference in performance was detected for these particular ini- 

tial conditions, however, the number of conflicts for crane service on 

each converter varied considerably. 

Run 6 illustrates the performance assuming infinite crane service 

flexibility (i.e. the crane is always available when a converter requires 

service).  The initial conditions are as in run 3.  Table 9 shows a 

comparison between run 3 and run 6. 

A production rate improvement of 13.1 percent is obtained by assum- 

ing infinite crane flexibility.  An improvement this large may not be 
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MATERIAL INPUT DECISIONS 
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BLOW 
RUN 1 

LADLES OF MATTE 
RUM 2 

LADLES OF MATTE 

1 5 i           4 
2 4 3 

3 3 3 

4 2 3 

5 I 
2 

6 1 1 
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feasible in practice, however, because a no-conflict crane schedule 

will require increasing blow durations in some cases to avoid con- 

flicts. 

Optimization Opportunities 

Summarizing the above results, we observe that at least four pos- 

sible optimization problems may be identified.  These include: 
i 

1. Optimum crane routing so as to minimize the time a 
converter must wait for crane service. 

2. Optimum scheduling of blow durations on each converter 
so as to maximize the copper production rate on that 
converter. 

3. Optimum scheduling of activities so as to minimize the 
number of conflicts for crane service. 

4. Control of the converter furnaces in accordance with blow 
duration specified by the crane schedule. 

In the next chapter, these problems are clearly defined and sever- 

al optimization techniques which may be applied are presented together 

with some simple illustrative examples. 
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CHAPTER V 

OPTIMIZATION 

If it were not for the mixed continuous control variables and 

discrete decisions with unspecified times of occurrence, optimiza- 

tion of the aisle system would be relatively straight forward.  As is, 

the problem requires modification of the model or modified applica- 

tion of standard optimization techniques.  In the following sections 

we focus on two general approaches to aisle optimization.  First, 

for direct total system optimization, continuous variables are 

quantized in time and combined with discrete decision variables to 

form one large discrete time model which is theoretically amenable 

to solution;  for the second approach, the primary optimization prob- 

lem is partitioned into a nuirfcer of smaller, less complex optimization 

subtasks and these are related to total system optimization. 

Because the problem for the direct approach is so large and comp- 

lex that it is unwieldy, it is not solved.  Instead the partitioned 

method is developed to the point where a solution can be achieved. 

Direct Optimization Approach 

A number of optimization techniques apply to large discrete time 

(or discrete state) models.  The aisle model given in Chapter III can 

be converted to a single combined model with this form.  Let A be a 

time increment such that time duration of any blow or any crane move- 

ment can be represented as an integral multiple of A.  A state trans- 
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ition equation for the ith furnace takes the general form: 

x.   = g. (x , p., u.) f S n 

where j » 0, 1,... corresponds to t = 0, A, 2A,. ..; x1 and u1 are the 
-j     j 

ith furnace state and control at time j, and p. is the crane state at 

time j (which defines the crane service at time j); and u is assumed 
j 

to be constant for JAlt<(j+l)A. 

The functions g. are obtained by integrating Equation 3.7, and 

adjusting the state to account for possible crane service.  Of course, 

£. only affects x     if the crane services furnace i at time j. 

Note that by including £, as an argument in ^, Equation 5.1 models the 

furnace for the complete cycle including the times of the crane visit. 

Similarly, the crane transition equation can be written as 

£j+1 = MPj' d.) (5>2) 

where p^ and dj are the crane state and transition decision as defined 

in Chapter III, except for the altered choice of discrete times,  since 

the discrete times are not restricted to the times of the crane visits, 

(p K assumes the discrete states 0, 1, 2, 3 described in Chapter III, 

and an additional value corresponding to "crane in transit." Of course, 

the crane can change state only at times when it has completed a pre- 

viously initiated move. 

Combining Equations 5.1 and 5.2, the total aisle system state 

transition equation takes the form: 

£j+1 - SLtZy  Zj) (5.3) 
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where z_.   is the coiroined state. 

z,  = 
-1 

2 
x , 
~3 

3 
x, 

£: 

v. is the combined control, 

v. 
-3 

d, 
L j 

and g is given as 

itej'Ij) 

%(Xj'Pr uj) 

- 2     2. 
2 -3 ^   ] 

/ 3     3, g3(xj,E), u.) 

-(pi' di] 
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The system constraints and the performance cricerion may be readily 

expressed in terms of z.   and u...  Let us now examine the magnitude of 

the optimization task. 

The model, Equation 5.3,still has mixed control variables with 

continuous and discrete values.  This can be treated, but for simplicity 

assume that each control uX.   (oxygen input rate) is quantized into y 

values.  The control dj has five possible values; but these are not 

permissible at each time j; hence,, assume that there are effectively v 

crane decisions possible at each time. Assume that the total production 

cycle lasts N time intervals.  If an initial state were specified, there 

would be (3Y + v)N possible controls - a nunfcer which easily becomes 

unwieldly.  To compound matters, the initial state is not known.  Speci- 

fication of the initial state is equivalent to specification of the 

staggering of charge cycles, which need not be known. 

In spite of the enormity of the problem, direct optimization may 

be feasible. We comment on three techniques.^ 

Dynamic programming.- This is a highly efficie! ' technique for 

solving many N-stage decision processes [2].  The technique is illustra- 

ted later using a much smaller process model.  The computational sav- 

ing afforded by dynamic programming is that the number of controls to 

be evaluated is proportional to (By + v)N rather than (By + v)N, again 

assuming an initial state is specified.  Larson [6] illustrates a fur- 

ther computational savings over direct application of dynamic programm- 

ing, for the case in which a nominal starting state can be specified. 

Because of the size of the total aisle model, no examples are 
presented in this section, but optimization techniques are illustrated 
in the partitioning approach. 
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Rather than determining the optimal control for each possible starting 

state, only initial states "near" the nominal starting state are examined. 

Gradient search.— Gradient search in the space of control sequen- 

ces {v^,...,^} is normally a very simple technique for control calcula- 

tion [7, 10], but it requires that the system performance J vary con- 

tinuously with each control variable (v ). and that each control vector 

v.    be independent of the value v. of the control at any other time. 

Unfortunately, for the formulation of the model in this section, the con- 

trol does not meet these requirements.  Thus, the gradient technique is 

not directly applicable for determination of the optimal aisle control. 

On the other hand, the gradient technique may be applicable for searching 

on values of the initial state, for use in conjunction with some other 

technique for determining an optimal control with an initial state speci- 

fied. 

Random search.— It has been shown, for example [4,14], that as the 

number of decision variables in a problem becomes large, a random search 

may become more efficient than a gradient search.  Intuitively, the 

reason for this is the  gradient must be computed for each decision vari- 

able whereas in the same time, the random search is likely to have found 

an improved value of the control.  Further, control constraints do not 

seriously hamper a random search because non-allowed controls are merely 

ignored.  Thus, random search may be a candidate for direct e'sle  optimi- 

zation.  Lest the random approach seem unjustified, we note that it is 

the basis for EVOP [3], an "evo.'utionary optimization" scheme which has 

been applied to control of chemical processes. 
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Optimization by Partitioning 

Some of the difficulties encountered in the direct optimization 

approach may  be solved by use of the principle of invariant embedding 

[12], according to which a very difficult or unsolvable problem is 

embedded into a class of simpler, solvable problems.  For aisle opti- 

mization, we consider partitioning the problem into a number of more 

simple subproblems which relate to the overall objective.  The struc- 

ture of the aisle problem suggests a possible hierarchy of control sub- 

problems as listed below: 

1. Given material requirements of the converters, find an 
optimum crane routing which will minimize the service 
time for each converter service. 

2. Given material input decisions for a converter, find the 
minimum converter blow durations to minimize the total 
charge cycle time. 

3. Given fixed crane service times and minimum blow dura- 
tions for each converter, find an optimum converter 
schedule which will minimize the charge cycle time for 
each converter. 

4. Given a schedule of converter services, find optimum 
continuous inputs (e.g., oxygen input rate) to each 
converter furnace which will achieve that schedule and 
satisfy the physical constraints of the converting pro- 
cess. 

A systematic structuring of these four problems is shown in Fig- 

ure 13. Of course, this structure is not unique, but it does have the 

following advantages: 

1. The complexity of each subproblem is less than that of 
the total problem. 

2. The control variables in each subproblem are of one type 
(i.e., discrete or continuous). 

3. The subproblems can be implemented separately, thus allow- 
ing opportunity to evaluate the results of one problem 
before proceeding to the next. 
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The primary disadvantage to this approach comes with the proclem of 

composing a total system solution from the solxxtions to the subproblems. 

In the following subsections a method for solving each of the above 

subproblems is presented.  Then, in Chapter VI, numerical examples are 

given. 

Crane routing.— Let a converter aisle material handling process 

be characterized by the network shown in Figure 14.  The nodes in the 

network represent crane locations p1 and the numbers on the branches re- 

present the ladle state during transit and the transit times as given 

in Tables 10 and 11. 

The crane routing problem is: given requirements for converter 

services, determine the sequence of crane moves to meet the requirements 

in minimum time for each converter.  Clearly, if only one converter 

needs service, the crane routing is trivial and the service time is im- 

mediately determined.  If several converters need service simultaneously, 

it may be more efficient to service them jointly rather than sequentu- 

ally.  This problem arises if either (i) several converters have been 

scheduled for simultaneous service, or (ii) in actual operation of an 

aisle, random fluctuations cause several converters to need services at 

the same time. 

The performance criterion of the total system was given by Equation 

2.1 as 

a=   I    f!i 
i=l  T, 

i 

Figure 14 is not a state-transition diagram because the states 
are partially associated with the branches. 
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3,P9=0 

^2-0 

Figure 14     CRANE ROUTE NETWORK 
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State 

(-1). 
j+i 

{pi). 

0 

1 

2 

3 

TABLE 10 

TRANSITION TIMES FOR (p^    =1, LADLE LOADED 
j 

TABLE  11 

State 

ipiX j+1 

TRANSITION TIMES FOR (p^ =0, LADLE EMPTY 

j 

H" \ 
0 

0 - 

1 3 

2 2 

3 3 

1 2 3 

5 4 5 

i 3 3 

3 - 4 

3 4 
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where the maximum of J is sought over all decisions and controls. 

Holding all decisions and controls fixed except the crane routing 

decisions d , k = 0,..., K required to meet a specified service re- 

s quirement, the charge cycle time T. may be decomposed as T. = T* + T. 

g 
where T* is fixed and T. is the time required for the service to be 
11 

completed.  Because T. is small compared with T*, the performance object- 

ive can be approximated as 

3 
ZCJ 

Cu.(T* - T.) 

do dK 

ii   i 

i=l 

which is equivalent to 

$ S 
max J • minimum     / Cu. T. + constant 

i-1 1 1 

do dK 

This determines as a crane routing criterion to be minimized 

K 

'K " 
1  ^    I     X cui h 6ik (5-4) 

k=0  i=l 

where t, is the crane transition time for the kth crane move and 6 ,  =1 
k ik 

if the ith converter requires service during the kth crane move and <S.  = 

0 otherwise. 

Formalizing the crane routing problem now:     given an initial crane 

state p    and initial service requirements cjin  »  Sout   »  determine crane 

routing decisions d  ,...,d    such that q^,,,, = 0,  qout    = 0, p    =0 and 

J    is minimum. 
K 

The method of dynamic programming offers a systematic approach to 

problems of this type.  The essential feature of this method is given 
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by Bellman's "Principle of Optimality" [1,2].  A mathematical statement 

of the principle of optimality is the recursion formula 

J° = min t^j^ (5>5) 

where J° is the optimal value of J^ expressed as a function of the com- 

bined state (qink, qoutk' E^•  
In practice, the problem is solved using 

a technique of successive approximation.  It is assumed that the optimal 

o 
Jk-l 1S tabulated for each combined state under consideration at the 

(k-l)th step.  For each state at the kth step, J° is evaluated by 

searching over all tabulated states at the (k-1)th step and all values 

of the decision dk.  The procedure eliminates all routes to each state 

that have Jk greater than minimum for that state.  Incrementing k, the 

optimal route will be determined if the final state is achieved for all 

possible routes or if all other partial routes have J0 greater than J0 
K ' K 

for a route which achieves th« final state. 

To illustrate this technique, let initial vectors be cy^ =[2 2 0]t, 

aout0 ^ [0 2 0] , ^ = [0 0] . since converter three is not involved, 

the third variable will be dropped from the queue vectors.  The dynamic 

programming tabulation of J° as a function of the combined state is shown 

in Table 12, where the eliminated rows were nonoptimal routes. For ease 

in reading the table, the states for each k value are labeled with lower 

case letters.  The table is generated up to k = 10, at which stage 

the optimal route is determined.  Tracing backwards through the table, 

the optimal sequence of states is marked with asterisks .  The optimal 

sequence is 
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TABLE 12 

DYNAMIC PROGRAMMING CRANE ROUTING EXAMPLE 

k State 
t 

pk H 
p—  

t 
qout1 k 

^ Ww 
0 a [0 0] [2 2J [0 2] 0 

1 a [1 1] [1  2] [0 2] 10 a  * 

b 12 0] [2  2] [0 1] 8 a 

i 
| 2 a [0 0] 11  2] [0 2] 16 a 

i 
i 
i b [2 0] [1  2] [0 1] 16 a  * 

c [0 1] [2  2] [0 1] U b 
i 1 

3      a [1 1] [0 2] [0 2] 26 a 

b [2 0] [1  2] [0 11 24 a  worse than 2b 

c [0 1] [1  2] [0 11 22 b  * 

d [1 1] [1  2] [0 1] 24 c 

e [2 0] [2  2] [0 0] 22 c 

4 a [2 0] [0 2] [0 1] 29 a 

b [1 1] [0 2] [0 1] 32 c  * 

c [2 0] U  2] [0 0] 30 c 

d [0 0] [1  2] [0 1] 30 d  worse than 3c 

e [2 0] [1  2] [0 0] 30 d  same as 4c 

f [0 1] [2  2] [0 0] 28 e 

5 a [0 11 [Ü 2] [0 1] 32 a 

b [2 0] [0  2] [0 0] 35 b   * 

c [0 1] [1  2] [0 0] 36 c 

d [1 13, [1  2] 
r.O 01 33 f 

e [2 1] [2  1] [0 0] 36 f 
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TABLE 12 continued 
'" T -■"  

X 
■■-. - __   

k State t 
pk 

t q 
0Utk 

„ 1 

£ H-: 
6 a 12  0]  j [0 2] 

;       ' 1  
1 [0 0]     36  I  a  worse than 5b 

— 

b [o i] ; [o 2] 
1 

[0 0]  i  38     b  * 

c | U U   [0 2] [0 0]  :  46     c 

d ; 12   i]   i [i   i] 
tO 0]     44  j  c 

e | [0 0]   [1 2] [0 0]  j  AA  .  d  worse than 5c 
f [0 0]  j [2  1] [0 0]  ;  40  j  e 

7 a 12 1]  j [0 1] [0 0] 1  42  ;  b  * 
■ 

b 1 [0 0]   [o 2] [0 0] 49     c  worse than 6b 
c 

1 
[0 0]   [l  i] [0 0] 48  i  d 

d [1 1] [1  1] [0 0]     50  i  e 

e [2  1] [2 0] 
f0 0]  |  48  ;  e 

1 

8 a [0 0] [0 1] 
t0 0]  |  44  |  a  * 

b [1  1] [1 0] [0 0J     58  1  e  worae than 9e 
c [2  1] [0 1] to 0] 56  1  c  worse than 7a 
d [0 0] [1 1] to 0] 56  j  d  worse than 7c 
e [0 0] [2 0] to 0] 50 e 
a [2  1] [0 0] [0 D] 48 a  * 
b [0 0] [1 0] to 0] 61 b  from 8b 
c fl  1]    [1 0] to 0] 55 e 

10 a [0 0] [0 0] to 0] ^8     a  optimal * 
b [0 0J [1 0] t0 0]     58 c 
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[oiiiKoj.H, [ij.[o],ra.ü].H.p].[s]. 
While the dynamic programming example may seem complex, the algo- 

rithm can be implemented simply and efficiently.  The computational 

savings over direct enumeration of all possible routings is evidenced 

by the early termination of nine partial routes in Table 12.  By com- 

parison, only one route which reached the desired state was evaluated. 

In spite of these arguments, the illustration, example was contrived 

and it could reasonably have been solved by enumeration of routes. On 

the other hand, for a more complex aisle with additional cranes, con- 

verters, end reverberatory and holding furnaces, routing problems can 

become less trivial.  Also, dynamic programming can bi? extended to 

total system optimization as was discussed previously. 

Minimum Blow Durations 

Given the material input decision for each blow on the jth convert- 

er, the problem is to find the oxygen input rate, u, and the blow dura- 

Cu 
tions, TB(n) which maximize  j_ . since Cu. is fixed by the material 

T. 
j 

input decisions, then maximizing the copper production rate is equiva- 

lent to minimizing 

n 
T -  I TB (n) (5.6) 
J   i=l 

where TB(n) is the duration of the nth blow.  If u is to be held constant 

at the maximum rate during the finish blow, then the duration of the 

finish phase blow is determined by hhe relationship 
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TB. (finish) = i ln W (5-7) 

i u    —, 
x2(o) 

where Üie ratio x2(tf)/x2(o) is the concentration of Cu S at the end 

of the finish blow.  The minimum blow duration of the finish blow then 

is specified by the maximum u available.  Thus, only the duration of 

slag blows is considered in the optimization problem. 

This problem, like the routing problem, yields to solution by us- 

ing the dynamic programming technique. Expressing the state equations 

for the slag phase in terms of the two independent state variables FeS 

and temperature, we obtain 

Xl = ailXl + ai5X5 + blU + CI 

x5 + a51x1 + a55x5 + b5u + c^ 
(5.8) 

where 

ail = ail + k3ai3 + k4ai4 + k6ai6 

a51 = a51 + k3a53 + k4a54 + k6a56 

Cl = Cl + ai2X2 

C5 = S + a52X2 

where unprimed constants and variables are defined in Chapter III. 

The state variables are quantized into q levels for X and p levels 

for X2 where X1 and y, 2  vary over the range 

0 1 x 1 ^ max tons 

(5 9) 
1900 < X,, < 2250oF — 5 — 
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The  blow time decision variable TB may be quantized into Y levels in 

the interval given by 

TB min £ TB _< TB max 

The oxygen input rate u may be a constant during the slag blow or a 

continuous function of time.  If u is a continuous function the search 

space becomes infinite dimensional and thus adds a higher level of 

complexity to the problem.  For simplicity, assume u to be constant dur- 

ing each slag blow, thus it may be quantized into m levels in the inter- 

val 

u .  < u < u 
mm —  — max 

Since there are n slag blows, the problem is formulated as an n stage 

decision process as illustrated in Figure 15.  The state transition 

rule given by 

ftfn 
X(tn) -iX(n-l) +      ib u d t (5.10) 

J o 

where XitJ   is the state vector at the end of the nth blowing period, 

x(n) is the state vector at the end or crane service following the nth 

blow, and | is the fundamental solution matrix to the homogereous form 

of Equation 5.8.  The state vector at the end of crane service following 

the nth blow is given by 

X(n) = X (t  ) + AX(e/m) 
111 (5.11) 

where Ax is the change in state due to crane service in Equation 3.3. 

At each stage, all possible combinations of TB and u are considered 

for each of the states attained from two separate states at stage (n-1) 
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as illustrated in Figure 16.  By the principle of optimality, we 

choose the decisions (TB, u) which correspond to the minimum of 

s. = min [s.^ + TB(n)j (5>12) 

thus trajectory AC is the optimum path to state C at stage n.  Clearly 

each of the states at stage n-1 must be considered for all decisions 

(TB, u) . 

Converter schedule.- The third subpxoblem is that of several con- 

verters systematically reroiving all services via ö limited facility, 

i.e., a single crane.  Thir, leads to a scheduling problem wherein the 

^jective is to systematical:y arrange in time the services to each con- 

verter so that the total production rate of all converters is maximizeo. 

Solution of the scheduling problem results in a schedule for the crane 

operator, which specifies the times crane service is required for each 

converter, and a set of schedules for the converter operators, which speci- 

fy the blow durations.  To illustrate these ideas, we present a simple 

example based upon the following assumptions: 

1-  The number of blows per charge cycle is given.  This 
determines a fixed number of services, one between 
each pair of consecutive blows. 

2. The number of ladles of output and input to complete 
each service is given. 

3. For simplicity, it is assumed that once a service is 
initiated, it will be completed, i.e., all output 
and input requirements will be met, before service to 
another converter is begun,  m other words, we require 
a schedule with io conflicts in demands for crane ser- 
vice. As previ^MSly noted service times are known. 

assumption 3 may be unjustified.  The crane routing example showed that 

it can be more efficient to servxcu two converters simultaneously ra- 
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ther than causing one converter to wait until the other completes ser- 

vice. However, the routing example assumed that all other decisions 

were fixed, whereas purposefully scheduling two converters for simul- 

taneous service effects all other times for service.  This requires fur- 

ther investigation. 

With the above assumptions, generation of a schedule is a small 

enough problem that it may be solved by direct enumeration of all possi- 

ble schedules which meet all the system constraints. A simple example 

will illustrate the scheduling ideas.  Typical service times and mini- 

mum blow durations for a three converter, chree-blow-per-charge cycle de- 

sign ere shown in Table 13.  Service times are denoted as TS(i, j) and 

minimum blow durations by TBU, j) , where i denotes the ith converter 

and j denotes the jth blow.  Define TO(i, j) as the scaeduled time to 

service the ith converter prior to the jth blow.  The system constraints 

require that 

TO(i, j) > TO(i, j - 1) + TS(i, j - 1) +  TBU, j - i)   (5.13) 

and 

TO(i, j) ^ TO(n, m) + a TS(n, m) 

for n ^ i, m = 1, 2, 3, and 0 < a < 1.  The objective of scheduling is 

to maximize J, Equation 2.1, and hence, with the assumed fixed material 

input and output, to minimize the charge cycle times T., given as 

3 
Ti =  I tTB(i' J) + TS(i, j)] (5^4} 

where TB(i, j) is the scheduled blow time, which is  determined as 

TB(i, j) = TO(i, j + 1) - TO(i, j) - TSU, j)       (5.15) 
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TABLE 13 

SERVICE TIMES AND MINIMUM BLOW DURATIONS 

Converter 
1 2 3 

Service 
Time 

TS(l,j) 

Minimum 
Blow 

Duration 
TB (l,j) TS(2,j) TB (2,:) TS(3,j) TB (3,j) 

1 40 80 37 80 39 80 

Blow j 2 30 50 25 50 . 29 50 

3 28 90 22 90 25 90 

Blow j   2 

TABLE 14 

CRANE SERVICE SCHEDULE, T0(i, j) 

Converter 

40 

65 

120 200 

150 228 

172 267 



74 

For the sample data in Table 13, a schedule was determined as shown in 

Table 14, where we assume T0(1, 1) =0. 

In order to achieve the blow durations determined by scheduling, 

we turn attention to control of a converter furnace. 

Converter furnace control.— We are motivated to study converter 

furnace optimization by the desire to control the blow durations in 

accordance with a specified schedule. However, there are several other 

variables that might be of interest in addition to blow duration.  These 

include temperature, sulfur dioxide (S02) production rate and magnetite 

formation.  Temperature is important because high bath temperatures dam- 

age the refractory lining of the converter and at low temperatures, mag- 

netite is formed, which is generally undesirable.  SO production rate 

is important since efficient operation of the facilities which process 

S02 often depend on a constant output from the converter aisle.  We 

new survey a number of optimal control solution techniques. 

Perhaps the simplest control is to assume that the oxygen input 

rate is constant over ths entire blowing period.  The behavior of the 

converter furnace is determined for each constant value of oxygen input 

by solving the model equations, for example. Equations 3.9 and 3.13. 

For a linear model state equation of the form 

x(t) = Ax(t) + Bu + C (5.16) 

where u is the scalar control variable (oxygen input rate), the solu- 

tion takes the form 

t 

x(t) = Ht,   to) x(t ) + [  $(t, T) [Bu + C] dT        (5.17) 
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where £ is the fundamental solution matrix corresponding to the homo- 

geneous system [12].  Since we have assumed u to be constant, it can 

be removed from under the integral sign, thus yielding an equation of 

the form 

x(t) = y^Ct) + y2(t) u (5.18) 

where y^t) and y2(t) are known.  Substituting varies values of u into 

the above equation, we obtain state trajectories which are to be evalu- 

ated.  By choosing from these the one that represents the most desirable 

behavior, we have in a very simple way solved the problem. 

If a constant control is not adequate, or it does not satisfy the 

constraints (Equation 3.13), then we define a performance criterion J 

and determine, in general, a time varying control function which will 

influence the converter to minimize J,  To illustrate, we pose the fol- 

lowing problem:  using the slag blow model developed in Chapter III and 

assuming SO production rate to be linearly proportional to FeS oxida- 

tion rate, we express a performance criterion as 

f f 2 
J = mm     (Kixi " R^  dt (5 19) 

U   ^O 

where 

t = scheduled blow duration 

K x, = SO discharge rate 

R = desired SC  discharge rate 

u = oxygen input rate 

We offer as a justification for this performance criterion, the physi- 
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cal argument that it is desirable to maintain a constant S02 discharge 

during each blow duration. The rate of oxidation of FeS was expressed 

by the model Equation 3.9 as 

*! = %£ + V + c1 (5_20) 

where ^ = [a11 ...a^].  Substituting Equation 5.20 into Equation 5.19 

and combining constants yields j of the form 

ftf 
J-min  j  (^x + 3^ + d^2 dt (5.21) 

0 

Note  that J is   a quadratic  function of u  and  thus  u will be directly 

determined by ...inimizing j. 

The system constraints  are  rewritten  as 

0l\   {tf]   -^max'   ^^   5 (5.22) 

0   <  xk(tf) ,   k  =   2,   3,   4,   6 

0   <  u  <  u 
"~      -    max (5.23) 

We constrain the terminal value of the state variables via Equation 5.22 

rather than constraining the state trajectories, because of the mono- 

tonic nature of the state variables and because the terminal constraint 

problem is generally easier to solve. 

With the problem now expressed mathematically, we point out two 

dynamic optimization techniques:  ( ) solution via a set of necessary 

conditions determined by the maximum principle [7, 10], and (ii) solu- 

tion via a gradient search in the space of control functions [7, 10]. 

Both techniques employ a function H called the Hamiltonian, which is 
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based upon calculus of variations. 

For the approach via the maximum principle, the constraint Equa- 

tions 5.22, 5.23 are absorbed in two ways, and then the set of neces- 

sary equations are written which specify the optimal u0(t).  Equation 

5.22 is absorbed by attaching a penalty function [7, 10] to Equation 

5.21. 

J1 = a + w^Ctj) + w^t^ (5.24) 

where w1 and w5 are penalty weights which must be determined, perhaps on 

a trial basis, so that Equation 5.22 will be satisfied.  Equation 5.23 

is absorbed by defining new variables y     and y   ,  where [y   (t)]2 = u(t), 

and using the new constraint 

Yl + Y2 = Vx (5.25) 

The Hamiltonian  for this problem is 

H -   (ax +  3  yj + d  )2 +  xVx + By2 + c)   +   T(y* + y2-  u       )    (5.26) 
— ± 12 max 

where F is a scalar Lagrange multiplier and A(t) is a vector Lagr...ige 

multiplier.  The necessary equations are 

9H ~ n  3H  A 
9^-°' 37= 0 

_9H = • 
3A  - _ (5.27) 

8H 
8x " "A 

subject to the boundary conditions 
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x(t ) = x 
— o   —o 

\(V = Wk   k = ^ 5; \ = 0, k = 2, 3, 4, 5 

wnere x^ is assumed given and v^ and Wg must be determined.  Equations 

5.27 together with the boundary conditions, constitute a two-point 

boundary value problem [7, ]0] which yi,    .he optimal control u0(t). 

In general, such a .system is difficult to solve, but for this particular 

case, Equation 5.27 reduces to a linear differential system which may 

be readily solved. 

In some cases, control solution via the above approach may be too 

difficult.  For example, if Che performance criteria are not a quadratic 

function of the control u, the control may be singular [8].  In these 

cases, the control may be determined by ar iterative gradient search, 

which is simpler but less direct.  At each iteration of the gradient 

search, an approximate u(t) is known and 

and 

3H    O 
S  — -A 
dx    — 

3H 
'6X 

are solved subject to kncwn boundary conditions.  Then, |ä is imputed 

and used to update the approximate u(t) , and the next iteration is be- 

gun.  Nononen and Paquurek [8] illustrate a gradient search technique 

using flux addition rate as the continuous control variable and tempera- 

ture as a controlled variable. 

Thus far we have assumed the blow duration to be fixed by a sched- 

ule, based upon an estimate of the minimum blow times.  if the scheduled 
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blow times were not realistic, however, it may not be possible to 

find a satisfactory solution, or any solution for that matter, with 

the blow terminal time fixed.  This is motivation to consider a 

variable end time problem.  Two basic methods of dealing with this prob- 

lem are: (i) to imbed time into the original problem as a new variaole 

and optimize using one of the above techniques, or (ii) simply to search 

on the end-time by solving the problem for various values of ending 

time.   Solution of the variable end-time problem may result in blow 

durations which are inconsistent with the schedule.  To resolve this 

difficulty, we turn to the final task of coordinating the subproblems 

that have been presented so as to achieve a total system optimization. 
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CHAPTER VI 

OPTIMIZATION RESULTS 

In the previous chapter, sever?1 optimization problems are pre- 

sented along with a survey of techniques for solving them.  We now 

focus attention on the optimization of the overall converter aisle 

performance.  To achieve the goal of system, optimization, the problem 

is partitioned into three subproblems as shown in Figure 17.  The craae 

routing subproblem is not included in this study since it applies prim- 

arily to converter aisles having a large number of converters sav^,- u* 
'    ergnt Dr 

nine, while this is an example of a three-converter aisle. To eliminate 

this problem, we schedule to avoid crane conflicts.  Assuming material input 

decisions, the minimum blow durations and corresponding terminal states 

are determined.  Using these minimum blow durations and material input 

decisions, an optimum no-conflict schedule is calculated.  As a result 

of scheduling, the blow duration may be longer than the minimum, thus 

the converter furnaces are regulated in accordance with these durations 

by manipulating the oxygen input rates.  The important advantage of the 

partitioned approach is that the problem has been reduced to a search 

problem on a small set of decision variables, namely, the material 

input decisions.  The subproblems may be formulated as standard optimi- 

zation problems and yield to solution by well-developed techniques. 

For simplicity in solving each of the subproblems of Figure 17, the 

following assumptions are made held constant at any level within a g. ven 

range. 
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1. The oxygen input rate is constant during each blow. 

2. Material inputs are identical for all converters. 

3. Five slag blow are assumed. 

4. The system is not subject to random perterbations. 

Using these assumptions, numerical examples of the three subproblems 

of Figure 17 are presented.  Finally, the converter aisle is optimized 

for three choices of material inputs and the results are compared, but 

a total search of the material input space is not done. 

Minimum Blow Durations 

The objective is, given material input decisions, to find the oxygen 

input rate, u, and minimu-. blow durations TB(n) which minimize the 

objective, function of Equation 5.6. 

Since it is necessary to numerically integrate Equation 5.1: for 

each investigation, the computer time required to solve the problem 

(assuming one second per integration) could be several hours. 

To establish the quantization size for the states and controls, it is 

necessary to try several combinations of each.  To shorten the time 

required to obtain a solution, the state model is approximated by the 

linear relationship 

X1(V =: Xl(n " 1) + -00177 u TB(n) 

(6.1) 
X5(tn) = X5(n " 1) + -O156 U TB(n) 

This approximation is reasonable for this problem since the model solu- 

tions shown in Figure 11 are linear for x1 and x^  An analysis of the 

solutions to Equation 5.10 for various values of u shows x and x  to 
1     5 
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be linear in u.  To complete the state transition model for a given 

state Equation, 5.11 is used.  The amount of Cu S (i.e. x ) does not 

change during a slag blow due to blowing but accumulates with each 

material addition.  Thus the state transition equations of 6.1 do 

not reflect changes in x2 but Equation 5.11 does.  The solution begins 

at the initial state and solves forward by considering all combinations 

of TB and u for all states x at each state.  The solution has the con- 

straint that all FeS must be cxidized at the end of the fifth blow. 

The principle of optimality given by Equation 5.12 specifies the decision 

rule for selecting the optimum decisions on TB and u.  The dynamic pro- 

gramming procedure is implemented on a digital computer and a listing 

of the program is shown in Appendix 3.  The results of a dynamic pro- 

gramming solution using the material inputs of Table 6 Run 2, are given 

in Table 15.  For this solution, the states are quantized into 5 ton 

increments for 0 £ x £ 30 tons and 500F increments for 19000F < x  < 
"L — 2 — 

2250oF.  The controls are quantized into 10 minute increments for 30 

min £ TB £ 100 min and 50 lb/minute increments for 100 <_ u < 250. 

Scheduling 

Givp;i the material inputs of Table 6, Run 2; the crane servier 

times TS(i,j) as given in Table 16; and the minimum blow durations  s 

given in Table 15; find a schedule of converter aisle activities 

which will maximize the copper production rate given by Equation 2.1. 

3 
Cu. 

J "   L         
i-1 T, 

1 
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TABLE 15 

MINIMUM BLOW TIMES 

Blow X^TB) tons  X5(TB)
0F TB U 



TABLE 16 

CRANE SERVICE TIMES 

85 

Converter 1   |j  Converter 2 

Blow j Run 1 
riinuces 

Run 2 Run 1 Run 2 

1 

■ 

j    89 81 65 59 

2 46 38 34 28 

3 38 38 28 28 

4 23 38 17 28 

5 15 23 11 17 

6 
* 

i 

8  I 6 6 
-i_ 

1  Converter 3 
TS(i,j) 
Run 1    Run 2 

89 

i 

81 

46 38 

38 38 

23 38 

15 23 

8 8 
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Cu. is a constant determined from the material input vector by the 

relationship 

6 
Cu =  |   m GW (6.2) 

j=l   3 

where G = matte grade (percent Cu) 

W = weight of matte per ladle 

m = number of ladles of input material 

Since Cu. is a constant, the maximization of Equation 2.1 is achieved 

by minimizing the charge cycle time T. which is given by equation 

5.14 

T. = =  I rTB(i,j) + TS(i,j)| 
j-1   ^ -' 

The solution is a schedule of times to start the ith blow on the jth 

converter and a Table of converter blow durations. The solution is 

subject to the constraints of Equation 5.18.  A computer program 

which performs an exhaustive search on all possible schedules is 

shown in Appendix 4. On each iteration of the search, the value of 

J is computed and compared against the previous value.  The schedule 

associated with the optimum choice is retained and another iteration 

is begun.  The starting time TO(1,1) is assumed to be zero in every 

iteration.  The results of this procedure using the material inputs 

of Run 2 from Table 6, the minimum blow durations from Table 1^ and 

the crane service times for Run 2, Table 16 are shewn in Table 17 and 

and 18. 



TABLE 17 

CRANE SERVICE SCHEDULE (TO(i,j)) 

87 

Converter i 1 
Blow i 1 !      2 3 

1 0 642 701 

2 147 81 109 

3 251 185 213 

4 355 289 317 

5 433 393 410 

6 486 456 463 

TABLE 18 

CONVERTER BLOW DURATIONS ((TB(i,j)) MINUTES 

Converter i 
Blow i 1 2 3 

1 66 
1 

162 
1 

109 

2 66 76 
i 

66 

3 66 76 66 

4 40 76 55 

5 30 46 30 

6 288 180 230 
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Having specified the blow durations as given in Table 18, we 

turn to designing the oxygen input rates which will control the 

oxidation rates of the converters in accordance with these durations. 

Converter Furnace Control 

Regulation of the converter furnace activity to achieve a fixed 

blow duration is a terminal control problem.  In general, the object- 

ive for the slag blows is to find a continuous control u0(t) which 

transfers the system from an initial state x(t ) = x to a terminal 
— o   —o 

state given by 

OlW-V135'  k = i'5 (6.3) 

in a time interval [tf - t^ = TB(i,j) for j = 1 5.  For the finish 

blow, the objective is to transfer the initial state x (t ) = X  to 
2 o    20 

the terminal state x2(tf) * 0 in the interval [t - t ] = 18(1,6). 

The type of control functions u(t) which is to be obtained depends 

on the method of its implementation,  if the control adjustments are to 

be made manually by an operator, they must be much less frequent than 

the case where an automatic controller is used.  Thus, the optimization 

method for finding the control is chosen in accordance with the desired 

form of the control.  For manual adjustment u must be a discrete form 

where the period between adjustments is sufficient to aJlow operator 

response.  For automatic control, u may be a continuous function of 

the form u = u(t) for all ■. in [t- , t 1 . 
o'  fJ 

In Chapter V, two tecimiques for determining the optimum continu- 

ous oxygen input rate are presented.  The Maximum Principle of Pcntry- 
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agin [10] sptcified the necessary conditions for an optimum solution. 

The gradient search technique was considered as an alternative method 

for a problem where the control is singular (i.e., the control cannot 

be expressed explicitly as a function of the state variables and 

Lagrange multipliers). 

For a discrete solution, the simplest control is to assume the 

oxygen input rate is constant over the entire blowing period. As a 

practical solution, Lhe constant oxygen input problem is considered. 

The probleir is to find the constant oxygen input rate which will 

transfer the state from a given initial value to a given terminal 

value in a giver, period of time TB (n) , subject to the constraints of 

Equation 5.9.  The oxygen input rate is implicitly constrained by the 

solution obtained in the minimum blow time problem.  An iterative 

search technique is used to find u.  This is accomplished by solving 

Equation 5.10 for various values of u and testing to determine if the 

terminal constraints have been achieved.  A computer program which 

performs an iterative search for the optimum, u, is shown in Appendix 

5. 

The control for the finish phase may be obtained directly by 

solving the finish phase state equation and inverting thus 

1      in VV 
U = ~ tf

2       x ,0) (6.4) 

where  X2(tf)/X2(o) is the terminal concentration of Cu S, 
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A numerical example for a solution to this problem is shown in 

Table 19.  The blow durations TBin)   are obtained from Table 18 and 

the initial and terminal states are obtained from Table 15. 

Comparative Results 

Three optimization studies were concucted, corresponding to 

material input decision of Run 1 and Run 2 in Table 6 and Run 3 of 

Table 20. 

Applying the „ptimi^tion fdmi«. for finding „im.,, , W(w dur. 

«ions to the „aterial Inpute of Hun 1 yield . Solutio„ „hloh does 

not satisfy the constraints of the „inl^ blow time optindzation 

problem, namely that all Pes must be oxidized at the end of Blow 5. 

O-erefore, RJn 1 is eliminated from future oonsideration as a material 

input ohoioe. m praotloe, „hen the situation arises „here Pes remains 

in the bath at maximum temperature, oold oopper scrap is added to 

cool the bath and blo„ing is resumet. until aU Pes has been oxidized. 

The results of optimizing ,„ ^ m,terial inpMs   ^  ^ ,, ^ 

3 are compared in Table 21. comparing the optimized Bun 2  in Table 

21 „ith the non-optimized Bun 2 in Table 7 sho„s an improvement of 2, 

percent in favor of the optimally controlled aisle, only a sUght 

difference is noted bet„ee„ the results of Buns 2 and 3 for the opti- 

mally controlled aisle. 

We now investigate the size of the material input search space. 

The range of material input choices for this examnl^ 4. j-ui. cms example is constrained by 

the physical size of the converters and the assumption that only an 

integer number of ladles may be transferred during crane service. 



91 

TABLE 19 
OPTIMUM OXYGEN INPUT RATES 

Blow 
Converter 1 

Ib/min 
Converter 2 

Ib/min 
Converter 

Ib/min 
3 

; 
1 145 25* i       70 ( 

2 150     i 
i            i 

130 
1 

150 

3 155     i 135 155 

4 250 125 205 

5 200 125 200 

6 iss      ; 475 
i 290 

1 

*This is the minimum oxygen rate.  Converter 2 will finish 
in 143 minutes at this rate and thus must wait the re- 
mainder of the blow duration. 
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TABLE 20 
MATERIAL INPUT DECISIONS FOR 

RUN 3 OF THE OPTIMIZATION STUDIES 

i          Number of Ladles 
Blow of Input 

1 4 

2 4 

3 3 

4 2 

5 2 

6 1 
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Assuming the maximum capacity of the furnaces to be M tons, the 
c 

objective is to determine the number of ladles of material and the 

number of blows which minimize 

i 
M -   I       M WG > 0 (6.7) 

j=l  3 

where   W = weight per ladle of matte 

it,    =  weight fraction of Cu S per ton of matte 

i = number of slag blows 

M, = number of ladles on the jth blow 

For this example the range of i is 3 to 13 and the range of M is 1 

to 9. 

Because of the accumulation of Cu s on successive blows and the 

capacity constraints, the search space is approximately 200 points. 

With this size of space, direct enumeration is possible. However, a 

search may be more efficient. 
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CONCLUSIONS 

A complex industrial optimization problem exemplified by 

the converter aisle in a copper smelter has been identified. 

Two approaches to solving this optimization problem have been 

presented.  The direct approach offered well developed methods 

for solution, but the problem was too large from a practical 

point of view. Thus, an alternative method of optimization by 

partitioning the problem into managable subproblems was developed. 

Then the solutions to the subproblems together compose a solu- 

tion to the total problem.  The results of applying the parti- 

tioned optimization technique showed that an improvement of at least 

20% in the copper production rate was achieved.  This was accomp- 

lished by minimizing the blowing times, scheduling the crane ser- 

vice activities,and regulating the converter furnaces in accord- 

ance with an optimum schedule.  Some comments are in order re- 

garding the interpretation of the findings in the numerical example. 

The model used throughout this work is hypothetical.  Its 

purpose is to characterize the dynamics of a converter aisle with 

sufficient realism for posing a practical optimization problem. 

The important contribution of this research is the development 

of a technique for solving this type of optimization problem, 

which otherwise had not yet been solved.  To view in perspec- 

tive the meaningful results of the partitioning approach, 

two important sensitivity considerations should be recog- 
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nized. First, consider the sensitivity of the model parameters 

to actual process operating data.  The form of the model, for 

example, may significantly influence the sensitivity of the model 

to the data used in its formulation. One may also ask, 

"How are the results obtained from the model changed, by varying 

the model parameters (e.g., the coefficients in Equction 3.9)?" 

This question has not been investigated in this work but clearly 

is a prerequisite for accepting the results of any specific study 

where this optimization method is applied. A second consideration 

is the sensitivity of the optimization results to the model of the 

process being optimized. Future work on this problem should include 

an investigation of results obtained by optimizing with several 

models. 

Some considerations which may influence the results obtained 

from the optimization approach are: 

1. The numerical integration technique used to solve the 
model equations. 

2. The step size of the numerical integration. 

3. The quantization levels used for the state and control 
variables in the minimum blow duration problem. 

Although these considerations were not investigated in this paper, 

it should be recognized that they may have an important influence 

on the results obtained from an actual application of the optimiza- 

tion technique. 

Practical application of this technique requires initially an abun- 

dance of data from which to build and verify a model. For many pro- 

cesses such as the converter aisle, the type of data needed to 
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accomplish this is very difficult to obtain, principally due to the 

lack of instrumentation for measuring the state variables.  It should 

be recognized that the physical environment is very harsh and special 

instrumentation is required for measuring many of the variables.  Once 

a model has been developed and verified, application of the optimiza- 

tion techniques presented herein will provide an optimal operating 

strategy.  However, a strategy such as the one given in Table 22 does 

not account for perturbations in the process such as changes in matte 

grade, oxygen input rates, or equipment failures.  To compensate for 

this, we seek closed loop (i.e. feedback) control which continuougly 

monitors the activities of the process and adjusts the control variables 

in accordance with the optimum operating strategy.  This eventually 

requires a control computer which performs the functions of monitoring 

the system variables, filtering measurements, estimating the system 

state, and computing the optimal control values.  The necessity for 

feedback control may be a factor in rejecting the direct optimization 

approach as a method of solving this problem.  In the case where the 

process disturbances are such that it is necessary to compute new 

optimal control values, the direct approach would take a prohibitive 

length of time to compute an updated operating strategy while the par- 

titioned approach produces a solution in a much shorter time.  The 

direct approach does have an advantage, however, in that a true optimal 

solution is guaranteed.  For the partitioned approach that claim cannot 

be made since the composiflon of the subproblems into a total solution 

may result in a suboptimal control which is a local optimum. 
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Further research might include continued study of the direct 

approach to seek methods of reducing size and solution time.  Further 

research should definitely be done on the partitioned approach to 

consider improved models and the significarce of the simplifying 

assumptions. 
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Subroutine (EVIJTS) 

SUePODTINE    SVNTS(IX.NSfTl 
UIMFNS ION   NSEK 6,1) 

COMMON    ^•^.INIT.JCVNT.JMNIT.MFA.MSTa3,M)<.MXC,NCLCT 

?TBEG.TFIN.MXX,Nn«NT.NCR0R,Nfc-p.VtJ0(4) *l-L . I SEED .TNOW . 

CUMMIN    *THI3^).ENQ<4).tNN(4).JCELS<5.2P).KRANK(4(..   LP.MAXNQ.4. 

^5).SJ.1A^10.5».NAME(6),NPROJ,MC1N.NOAy.Nrp U'" " UT ' ME « * > • SS-JMA < I 0 . 

.XT;cU
x;3iL<3,6,,x<',6,,xN(i4,'xD<6,<c,'NB-,c''B-NQ'Tc^3..TS,3.fi, 

ie=ATR ie(A ) 
IC=ATRID(3> 
VIC=IC 

CALL    FINO(VIC,5,2.J.KCOL.NSET) 
CALL   RMnvf£(KCOL. 2,NSFT ) 
VAL=ATR If»( | ) 
GO    TO ( 1, ? ) , I X 

1     IF(CPNP-l.)3,4,A 
3    CALL    CRNSV(TSV) 

CALL    CCLCTI VAL, ICNStT) 
ATflI=?( I ) = TSV*TNC1W 
IF(IQ-NC)5,ö.6 

5   iQxig+i 
GO   TO    7 

ft    IB= I 
TCU( ICJ = TCU( IC)*CVi IC) 

7    ATRI6(4)-IH 
ATB IF3(2)=2, 
ATRI'3(3(= IC 
CRNP=l. 
SAV=ATRI9(I)-TNOW 
CALL    F ILEM( l.NSET) 
AT^ieC H = SAV 
ATRie(?)=IC 
CALL    F ILFM<?,NSET) 
RETURN 

>   CALL    FIND(TNUW,2t 1, KKCOL.NSET» 
CALc   RMQVE(KCOL . UNSET» 
»(TM=ATRie< 1 )-TN01«*.2 
ICH*IC+3 

CALL    COLCTIWTM,ICW,NSET> 
CALL    TMST(CRNH.TNOW,l.NSET) 
WAIT-ATRIB!1t*,2 
CALL    F H..EM( l^SET) 
ATRIBI1»=WAIT 
ATRIB(4»=I3 
*TRIB(3)3IC 
^TB IB(2)s1. 
CALL   FILEMIl.NSET» 
ATR IB( J l = VAL*WTM 
ATRIB(2)= IC 
CALL    ^ ILeM( .?,NSET» 
RETURN 
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Subroutine  (EVNTS)   Cont'd. 

ATPlB(4)sIB 
ICP=IC-f6 
CALL   COLCTCVAL. IC.NSET) 
CALL    CONVKTMC» 
ATBIBC n = TMC 
PAV=TNOI*»ATRlB( 1 I 
CALL   FILEMCZ.NSET) 
ATniB( llaPAV 
ATRIB(2)3|. 
ATRIB(3)=IC 
ATniB(4)=IB 
CRNB^O. 
CALL   FILEM(l.NSET) 
RETURN 
5NC 
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Subroutine   (CRflSV) 

♦ONE   WORC    INTEGERS 
SUBROUTINE   CRNSV(TSV» 
OIMENS IUN   ', ^L( -T) 

CUMMON ID,IM.INIT.JEVNT,JMNIT.MFA.MSTOP.MX.MXC. 
1 NOO» NflRPT, N3T, NPRM S.NR UN,NR UNS, N STA T, OUT,SCALE, 
^TBEG,TF IN,MXX,NPRNT.NCPDR,NEP,VN0(4) 

COMMON ATRI a« 4),ENQI4),INN« «),JCELS(5,22 »,KRANK 
1MFE(4»,MLC(4 »,MLE«4),NCELS(5>,N0^ 4| ,PARAM(20,4) 
25),SUMA< 10,r)),NAMr(6»,NPR0J,M0N.NDAV,NVR 

COMMON    XMATL(3,6).X( 3.6».XN( I 4) .XD<6) ,CRNB,IC,I 
I.DELT, CU( .1),OXY( £) 
TPL(1)=.7 
TPL(?>=.= 
TPL<3)=.7 
IF< IR-6)4,5, 4 

■5   XLCL = CU( IC)/15. + 1. 
YLCL^O. 
GO    TO    7 

4   XLCL=X( ICtO/lS.-H . 
rLCL=XLDL-l. 

7   LCL=XLCL 
XLCL = LCL 
TSL=XLCL»TPL(ICi 
IF« IB-6J1.2, 1 

C   CrT4PIJTF    CJNVERT^R    STATE   AT    TMt    END    OF   CPANE    SEPVICF 
I    X( IC, 1 )=XMATL( 1 ,in )tX( IC,1) 

X«IC,?)=XMATL«2,IB)+X(IC,2) 
X(IC,l>=X(IC.P)*.274+X<IC.l) 
X« IC, 4 »=X( IC,4 )-YLDL*l?-. 
X« IC,5)=X( IC,5)*.0I 
X« IC,6) = <X( IC,6)*« X( IC,1 )-XMATL( J ,IB| > v( KMATLn 

1274)*19C0.)/'<X«IC,1 )*XMATL( 2 , I B I ♦ 1 . 274 , 
TSV=«TS( IC. IB)*TSL )*f<NORM< 4) 
■TETUKN 

2 no    3    1=2.5 
3 X( IC, I »=0.0 

X« IC. I ) = X« IC. ) )*XMATH 1, nU*RNOOM( I > 

X< IC,f>)= ;X( IC,.   >♦« x» IC, I )-XMATL< 1 ,IB) »«■« XMATL«! 
1274)«l90 0,)/{X(!C,l)fXMATL(2.IH)*1.2 74) 
TSV=(TS( IC. 13)♦rSL I*. NORM« 4) 
RETURN 
ENC 

NCLCT.NHIST. 
ISEED.TNOW, 

(41,JCLR,MAXNa«4), 
,OTIM£<4»,SSUMA«I0, 

Q,N8,TCU«3*,TS(3.6) 

FOR   SLAG   BLOW 

.IB>*XMATL«2,IBI*I. 

.IB»*XMATL(?.IB)*J 
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Subroutine   (CONVT) 

♦ ONE   V»0«C    INTEGERS 
SUEROUTINE   CONVTCTMC» 
DIMENSION   XM(14) 
COMMON    10,IM.JNIT,JEVNT.JMNIT.MFA.^STOP.MX.MXC.NCLCT.NHIST, 

INOCNrtRPT.NOT.NPHMStNRUN.NRUNStNSTAT.OUT.SCALt.ISEEDiTNOW. 
2TBEG,TFIN.MXX.NPRNT.NCRDR.NeP,VNQ(4) 

COMMON    ATRia(4».EN(H4),INN<'.). JCtL5(5,22».KRANK(4) , JCLR tMAXNOJ 4) . 
lMFE<4I.MLC(4),MLE(4).NCELS<5).NQ«4»,PARAy(20.4»,QTIME(4l,SSUMA(I0, 

25t«SUMAC10«5>.NAME<6»,NPROJ,MÜN.NDAY,NYR 
COMMON    XMATLI J.6),X(3.6),XN( 14».XD<6) ,CRND,IC.IB.NQ,TCU<3I .TS<3,6» 

l,CELT.CU(3),0XY(el 
WRITE (klPRNT, 10 1 »IC, IR 
SCL=10. 

101    F0RMAT(5X, 216) 
T=0. 
IF(IR-eiI,2.2 

1 IFCX(IC.6)-2250. )3.4,4 
3 IF(X(1C.2))4.20,23 

20 IF(X(IC.3))4.21.2I 
21 JL^l 

WR ITECNPRNT. 100)T.(X(IC.L) »I.»! .6) 
JN=0 
00   6    1=1.6 

6 X0( I NO« 
00    15    1=1.14 

15   XM(I»=XN(I) 
K=2 
OO   fl    1=1.2 
XM(JL*1)=XM(JL*1)/<X(IC.l)*X<IC.2)+X(IC.3)) 

00   7   J=1.6 
JL=JL*1 
JN=JN*1 

7 XC(K)=XM(JN)*X(IC.J)*XD(K) 

JL»JL*1 
JNaJN4 1 
K0»K)=X0<K)*¥M(JN) 

8 K=K44 
U=0XY(161 
X0(1I=C. 
XDm=XD<2)-.00ia«U 
XD(3)=X0(2I*.274 
XD(4I=XD(2>*(-.866I 
X0(5»=XD<2)«<-.19) 
XD(6)=XC<6>«.016«U 
00   9    Is 1.6 

9 xi ic, n = x( ici )*xr>( I)*DELT 
TaT*DELT 
GO   TO    I 

4 TMC«T/SCL 
WRITE(NPRNT, 100»T, (X( IC .L),L=1 ,6) 
RETURN 

2 T = 0. 
CU<IC)=X(IC,i)*.e 
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Subroutine   (CONVT)   Cont'd 

10 
n 

12 

100 

iF(x(iCt i »-.niz. lit ii 
U=OXVJIB) 
• HITE1NPRNT. l00)Tt(X(ICiH.L = 1.6) 
*RC=.1S0E-06«U*T«*2. 
X( IC.1>=X« IC.l)*EXP«-AftG) 
T=T»OELT 
GO   TO    10 
TMC«T/SCL 
WHITE(NPRNT.100)T,<X(1C,L».L=l.6» 
FORMAT(2XtF8.3.6C 2X,Ei4.*l» 

RETURN 
ENC 
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Appendix 2 

Model Parameters and Assumed Oxygen Input Rates 

a.  Coefficients of the Slag Phase Model as expressed by Equation 3.9 

'11 

42 

l13 

k14 

45 

l16 

K, 

K£ 

-.29 

.0001265 

.008117 

.001004 

-.00006333 

.00769 

.06282 

.274 

-.93 

-.19 

-.0018 

^1 

^52 

v53 

l54 

^55 

v56 

.085 

.000106 

-.007658 

-.0004252 

-.00003307 

-.005419 

.2167 

.016 

Assumed u = 150 lb/minute 

b.  Coefficients of the Finish Phase Model as expressed by Equation 3.17 

^6 a = .15 x 10 

Assumed u = 100 lb/minute 
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Computer Algorithm for the Minimum Blow Duration Problem 

AFTER CATA 
DATA CARDS 

1ST    CARD 
2NO 
3RD 
♦ Th 

CARD 
CARD 
CARO 

20 

100 I 
1000 

21 
2? 

23 
24 

25 

CARD    INSERT    11    =    1    (FOR    JftQ   COMPLME 

MUST   BE   PUNCHED   AS   FOLLOWS   AND    STAC 
- CU^S   (AMOUNT   ADDED   FOR   EACH   OF   5 
- FES    (AMOUNT   ADDED   FOR   EACH   OF      5 
- FLUX   (AMOUNT   ADOED   FOR   tACH   OF   5 
- TQI (INITIAL VALUE OF TLOW DLRATI 

OURAT ION), M3 (NUMHER OF TIMES TO 
2F10.C.I 10. 

5TH   CARU   -   VI    (INITIAL   VALUE    OF    OXYGEN   RATE» 
RATE).M4    (NUMbER   OF    TIMES   OXYGEN 
2F10.0. 110., 

DIMENSION   T(lO.lO.e).    U(10.10,6».X(6),rU2S 
DATA   T,U, X/1206*C!.0/' 
11=1 

REAC( I 1. I MCU2S( I I. 1 = 1 .5) 
REAC( I 1, I )(FES( I ). 1 = 1,5) 
REAO( I I. 1 l(FLUX( I).1 = 1,5» 

1 FOKMAT(5F10.0» 
RE AC( I 1.2»TGI.DELTO,Mü 
REACI II,?»   VI,DELTV,M3 

2 FOBM*T(2FI0.0, I 10» 
X(4 » = 0.0 
X(S »   =    1900.00 
x(e»=o.o 
K( i> = Fes( i > 
DO    35   N=l,5 
X(2»    =    CU2SiN»    ♦    X(2» 
X(3>   =    FLUX(N> 
Nl=l 
N2=I 
IF(N-1»20,20,4 

I    IT   =   T(NI,N2,N > 
IF»IT-0J3I,31,5 

i   X( 1 »   =    5   ♦   Nl 
X( 1>   =    X( 1»   -    2.5 
X( 1»   =    FES(N »    ♦    X( I | 
X(E»   =    50.*N2 
X(5>   =    X(5>   -    25.0    ♦    1903.00 

A   =    FES(N»    ♦   CU2S(N»    ♦   FLUX(N» 

»•    X(U    ♦    X(2>    -Fi:S(Nj-CU2S(N» 
C   =    X( I »    ♦    X(2)    ♦    X(3) 
X(5»   =    (X(5)   ♦    0    ♦    190 0.0   ♦   A»/C 
V    =   VI 
DO    30'Ml=I,M3 
TG   =   TPI 
00    29   M2=1,M4 
TBT   =    TB    ♦   T(N1.N2,N» 
CALL    DONOT    (Tl3,V,X,XS» 
IF(N-5»ncC, 1001, 1001 
IF(XS(H-S.»21,21.29 
1F(XS( 1 »-0,0)29,29,21 
IF(X5(5)-225 0.0»22,22,29 
DO    23    1=1,6 
R   =    5« I 

IF<XS(1»-R»24,24,23 
CONTINUE 
S=I950. 
DO   25   J=I,7 
IF(XS(S»-S)26,26,25 
3   =   S   ♦   50.0 

R»    OH   II    =2      FOR    1803    COMPUTER» 
KEO   IN  THIS   OROtn: 
BLOWS»    FORMAT   SFIO.O 
BLOWS»    FORMAT   5F10.0 
BLOWS»    FORMAT   SFIO.O 
ON),   DCLTO   (INCREMENT   FOR   BLOW 

INCREMENT   BLOW   OUP*TIGN»   FORMAT 

.    DEL TV    (INCREMENT   FOR   OXYGEN 
RATE    IS    INCREMENTED»    FORMAT 

(5» ,FES(S) ,FLUX(5».XS(6I 
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26 N5«NM 
IT   «   T( I.J.NSt 
IF(IT-O>2fl(20,27 

27 IF(T(I,J,NSI-TRT>29.29.28 
29   T« I.J.NSI   =   TBT 

U( I.J,N5)   =V 

WRITEI3,70tTeT.V.I,J.Nl.N2 
70   FO(:MAT(5K,2El2.5,4ie) 
29 TB   »   TB   ♦   DELTB 
30 V   s   V    ♦   OELTV 

IF(N-I)3S.3S.3I 
H H9 * HB *  t 

IFJN2-7    14,«,32 
32   N2   s    1 

Nl   «   Nt   4   | 
IF<Nl-e    14,4,35 

39   CONTINUE 
WRITE(3.44) 

44 FORMATCI','   BLOW TOTAL   BLOW   TIME OXYGEN   RATE MFES» J(TEM 

DO 50 K=2,6 
00 50 1=1,6 
00 50 Js I , 7 
L = K-1 
IT«T( I,J,K) 
!F(IT-0>50.£a,4£ 

45 l«RIT5(3,46»L.T( I,J.KI.mi,J,KI ,I,J 
46 FORMATC ' . 2X, I l , 5X ,F I 0. 2, 6X .F l 0. 2, 8X , 12 ,7X. 12 » 
50 CONTINUE 

CALL EXIT 
ENG 

SUEPOUTINE 0ONOT<TEND,U,X,XS» 
DIMENSION X(6),XS(e) 
XS( IMX( I)-.00177«IJ*TENO 
XS(5)=X<£)4.01seS*L*TEND 
RETURN 
ENC 
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Computer Algorithm ior the Optimum Scheduling Proble m 

.0i,JET?i0*.TTnf;6!:TS,<3,*,,TB<3,6,,Ta,(3'6,'TSQ<3'*>«T«0«3,6I.T0«3 
l.6>.T(3.ei.TO(.l,6).AT(3.6).L8l3,6).TDOI3.6) 

DATA   T00/I8«0.0/ 

C        ""S    UO   Will   INPUT   VALUES   0F   SERV'CE    TIME   AND   M,NIMl,M   aLO,'   DURATION 
READd.l MTSK I,K),K = 1,6» 
REACCI.1t(TDI(I.KI.K=|.6) 

I    FOHMAH6F10.0) 
110   CONTINUE 

WniTE(3,39) 

J^FORMAK.    ...INPUT:    CONVERTER   nLO-      SERVICE    TIME      MIN.    «LOW   DURATIO 

DO    30   M= 1 , 3 
00    10   N=l,6 

WRITE<3,40H.N,TSi(M.NI.TBI(M.N) 
• 0   FORMAT!.     ■.nX,Il.6X,Il,5X.Fl0.2,,5X.FI0.2» 
30   CONTINUE 

ROTATES    INPUT   VALUF!",   TO    TRY   EVERY   COMBINATION 
OTT=0 
00    13    1=1.« 
DO    11    1A= 1,6 
00    13    IG=1,6 

"Srjrj.lf!   *™*rS  0F   ,N"UT   VAUJES F0R   EACH   COMBINATION  OF   INPUT   DATA 
LC=L+I-1 

GO   TO    <'»'.47,47.47.A7.47.*1.4?,A3,44.4'i.46» .LC 
41 LC=1 

GO   TO    4 7 
42 LC=? 

GO   TG    4 7 
43 LC=3 

GO   TO    4 7 
44 LC=4 

GO   TO    4 7 
45 LC=5 

GO   TO    4 7 
46 LC=f 
47 T5( l.L ) = TSI( l.LC) 

TBH.L ) = TBI( l.LC» 
00   62   LA=1,5 
LD=LA    ♦    IA   -    1 

GO TO «54,54.54.54,54,54,48,AR.SCSI ,52.53) ,LD 
A1? L0=1 

GO TO P4 
49 L0=2 

GU TO 54 
50 L0=3 

GO TO 54 
5 1 LD=4 

GO TO 54 
52 1.0=5 

GO TO S4 
5 3 LD=6 
54 TS(2.LA)=TSI<2,L0) 

Tg(2,LA) = TQM2,LD) 
00 62 Ll.= l,6 
LE=LL*IB-1 

GO TO «61.61,61,61,61,61,55,56,57,5R,59,60) .LE 
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55 LE=1 
GO   TO   6 1 

56 LE=2 
GO   TQ    Cl 

57 Le=3 
GO   TO    6 1 

59   LE=4 
GO   TO    61 

59 LE=5 
GO   TO    61 

60 LE=6 
61 TS(l.Li.) = TSI< J.LE» 
62 TB( 3,LL)=!TBIC3tLE) 

C COMPUTES   TOTAL    TIME   FOP   A   COMPLETE   CYCLE    (6   HLOWS   AT    ALL   3   CONVERTERS). 
00   28    IM=1,3 
00   2a    IN=1.6 

28   TD(IM,INI   =    0.0 
00    11    KAN=1.3 
00    11    J=1.6 
Jl=J-l 
IF(Jl-0)3,2,3 

2 Jl = 6 
3 J2=J*1 

IF(J2-7»5,4,5 
»   J2=l 

5 T< l.J)=TS(2.J)»TS( 3,J)-fT0< 2,J1 MT0(3,JI ) 
TO«1.J »^TBI l.J )-T( 1,J) 
IF(TD( l.J J16.6. 7 

6 T0(1.J 1 = 0 
7 TI 1.J > = T( l.J l*TD( l.J) 

T(2,Jl = Tc < l.J2)fTS(3.J)+TD( 1.JI«TD(3.Jl> 
TCI2,J)=TB< 2.J)-T< 2. J) 
IF(TC(2.J))R.H.9 

t 8   T0I2.J)=0 
t   T(2.J) = T(2.J)+Tü( ^. J I 

TC3.JI = TS< l.J2l + TS<2.J2)*TD( 1.J)*TD(2.J) 
TD(3. J )-=TB< 3.J )-T( 3. J) 
IF(TD(3.J))10.10.11 

10 TD( 3. J 1 = 0 
11 T(3.J) = T(3.J)*TD( 3.J) 

TT = 0 
DO    22   K=1.3 
00   22   Lsl.6 

22   TT=TD(K,LI    ♦   TS(K.L)   +   TT 
C SFLECTS   MINIMUM   CYCLE   TIMF   ANO    STORES   ARRAYS   OF   SERVICE   TIME.    MINIMUM   BLOW 
C DURATION,    AND   OPTIMUM   BLÜ«   DURATION 

TTIsl./TT 
IF|TTI-OTT)13.13.12 

12 OTT=TTI 
DO   21    Ms I.3 
DO    21    N=l,6 
TSO(M,NI = TS(M,N » 
TGO(M,N)=TR(M,NI 
TD0<M,N)sTD(M,N) 

21   TO(M,N)=T<M,N) 
10=1 
1*0*1A 
ir!C=I[3 
TTO=l./OTT 

13 CONTINUE 
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CONV.    2    IS    ON   BLUW 
THIS   GIVCS   OPTIMUM   TOTAL   TI 

. 6 

♦ 10 
L    ♦ 

71 

72 

7J 

7-» 

76 
77 

- 1 
IAO 

IRQ 

OF   OPTIMUM   BLOW   (JURATIONS 

6») 
tlSX.'BLOW    1 <3L0m   2 

OUTPUTS   RESULTS   OF   OPT IM IZATION.       STATES   OPTIMUM   STARTING   CONDITIONS   FOR 
EACH   CONVERTh«    ANU   rjPTINUM    TOTAL    CYCLE    TIME. 

WRITE(3,1A)IO.IAO,100.TTO 

4   FOKMATCO«. «AT    J=i:   CÜNV.    I    IS   ON   tJLOW   '.11 
I»I lit« .    CONV.    3    IS   ON   QLJW    •.1 I , •. </ 
2ME   OF    '^10.2. '    MINUTES.') 

86NeBAtFa   AN    INOCX   ro*   EACH   CONVERTER.    TO    INDICATE   CORRECT    BLOW   NUMBERS 
DO    71    L= I i ^ 
Le( lit»=L 

LB(2.L » 

LH(3,L »    =   L 

DO    77   M=1,3 

DO    77   N= 1.6 

L   =   LHiM.N ) 

GO   TO    (^7,77.77,77,77,77.7?.73,T4.75,76».L 
La(M,N »= t 
GQ   TO    77 

Le(M,N)    =    2 

GQ   TO    77 
L B ( M , N I   =    3 

GO   TO    7 7 

LSIM.N)   =    4 

GO   TO    7 7 

Le(M,N)    -    5 

CONTINUE 

OUTPUTS    AN    ARRAY 

*RITE(3, 100 > 

100 FORMATC !•, 16X, «OPTIMUM   HLOW   DURATIONS'//» 
I       PLOW    3 BLOW    A BLOW   -i BLOW 

DO    10 1    la It 3 

WRITE(3, 101 )1. (TO( I,K>,K-1 ,6) 
101 FOHMATCO'.'    CONVERTER 
103   CONTINUE 

GENERATES    A   TIME    SCHEDULE    FOR    OPTIMAL   CRANE    SERVICE   FOR   CONVERTERS. 
00   85    I — 1t 3 
DO   S5   J=l,6 
AT( I,J )   =    o.O 

DO   fl2   KEN= 1 ,3 

IF(KEN-1»96.96,Q" 

AT ( 1, I )=0.0 
AT(2, 1 )   =TSO< 1,11 

AT(3,1)=TSO{1.1) 
DO   97    |»l, 3 

DO   97   J=2,6 
AT( I,J )    ■   ATI I,J-l ) 

GO   TO   99 

CONTINUE 
DO    70   K= 1,3 

DO    70   L=l,6 
L3=L-1 

IF(L3-0»70,95,70 
L3=6 

ATIK,L) = ATtKtLl) + 
CONTINUE 

OUTPUTS CRANE TIME SCHFDULF. 
WR ITI(3,90I 

«0 ^««*T<'0'.3X,.TlME',4X,.CONVt-RTtR.,A 
1ATION  SERVICE TIME') 
00 82 J=l,6 
DO B2 1=1,3 

' . I 1 ,6( 2X,F7.2) ) 

85 

96 

97 

9H 

95 
70 
99 

TSO(2.1 ) 

♦ TO( I ,J-l ) TSO(I,J-l) 

TOIK.Ll) ♦ TSO(K,L3) 

X.'ULOW«,4X,'0PTIMUM OLOW OUR 

81 
12 

•RITE «3-,fll»AT(I,J».I.LEM,.J,,TQ(I>J,f 

CALL 
ENC 

FXIT 
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Converter Furnace Control Proble.i 

•CNL  WOHC   INTCGFRS 
♦LIST   SJURCt    PROGRAM 

SUEPüUTINr    TnNl)0(Tc:MD,U,XX.XTt ST.T) 

C XM'I)    IS   THE   A(I.J)    CnEFr!ciENT = 
DCLTrS.O 

r:LA^:.:0 p*z^ *" F- cAtc^t.^ A.. pRIMe 1.4 
4(NC»-=XM(Na ) 

125   CONTINUE 
1 1    T=0. 

CO    12*   N'>= I, 6 
XS(NP|=XX(NP) 

12*   CONTINUE 
13   JL=0 

CO    19    IL=1,6 
X0(IU)»0. 

11   CONTINUE 
T=T+CfcLT 
CO    e9    IY=1,6 
DUMVX( IY »=XS( IV) 

09    CON "INUE 
K= 1 
DO    lf>    1=1,2 

XM(JLf n = A(JL+l»/(xS(l)*X5<2)+X3(3)) 
D3    15   J=l,6 
JL=JLtl 

XO(K)=XM{JLI*XS(J)+xn(K) 
15 CONTINUE 

iL=JU+l 
XD(K)=XD(K)*XM(JL) 

16 CONTINUE 

X0( 1 )=xc( 1 )-.i;cia*L 
xj(i)=x(:< i )* .?//> 

XÜ(4I=XC(tl«(>.e«6i 
K3(9)«X0(8)♦•Od«»U 
X0tö)«XS(l)«(-,l9) 
CO    ?5    1=1,6 
XS( I)=XS( I )-»X0( I )«DLLT 

25   CONT INUii- 

IF(X5( U-XT5ST )77, 77,1-C 
130    IF(T-TENCH3,79,7q 

79   U=U*5. 
GO   TO    ii 

77    IF(T-(TcND-5.) M^, Kl, id 
101     IF(T-{TEND*S.) »1C2, 102.78 
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....L1NF4-     INTcW-'ULATIDN 
N   no   6 ■i   iz=i.fc 

XS( !/) = ( <S( I/MOUMVK 17 ) )/ Z, 
'JH    CJNTINUF 

r»TH   ■LLT/?. ) 

10 2   « - I T f ( J . ? ) T . U, ( X S (  I ) , I     , , f, I 
3    FflKMAT (HHl 1 .H ( 

4')    KORMATC        WHAT    HAIMMMIT?       MtSSliU    MfSUUT.'l 
t.|"TIIRN 

:rNC 
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