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FOREWARD

Automation of the control of an industrial process generally

entails three basic tasks:

i) design of a computer system (the computer
configuration, the sensors, the transistors,

and the contiol software);
ii) design of a control Strategy or control law
iii) representation, i.e., modeling of the process

There is normally a natural ordering of these tasks; that is,
one does not design the computer system without knowledge of the con-
trol strategy, and one does not design a control strategy without a
model of the process.

Often the first task is less process-dependent than the others,
and common computer technology is applicable. The second task is
straightforward for certain simple models; for example, linear systems,
systems with restricted size, and systems with only discrete or only
continuous control (decision) variables.

For many complex industrial processes, it is the second and
third tasks that limit realization of automated control. This is true
for the copper converter aisle described in this report. The converter
aisle process is large, nonlinear, and has mixed continuous and discrete
control and decision variables. For this type of system work is being

done on development of representative models and improved senrors, but

iii
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Work on design of control strategies has lagged. In part this is
because, in concept at least, optimal control design can be achieved
using standard techniques such as Bellman's dynamic Programming.
Unfortunately, for Systems such as the converter aisle, standard con-
trol design techniques lead to prohibitively large computational
tasks.

This paper reports a new ang simple approach for computation of the
control for a process as typified by the copper converter aisle. The
resultant control is open loop and locally optimal. The models used
to represent the process and to illustrate results are unrealis-
tically simple, but they serve to illustrate application of the

techricue.
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ABSTRACT

The task of dynamic optimization consists of manipulating the
inputs to a dynamic system (i.e., one in which the state varies with
tim;) so that the system performs in an advantageous manner.

' This Paper presents a systematic technique for solving the problem
of optimally controll;ng a converter aisle in a copper smelter. The
converter aisle is distinguished from the usual dynamic system in that
some of the control variables occur as discrete decisions while others
may vary continuously with time. In this sense, the converter aisle
typifies many indust?ial processes. The aisle is viewed as a total sys-
tem with the objective of optimizing overall performance as evaluated
using a mathematical'performance Criterion. Typical criteria reflect
total processing time and operating costs.

An essential step towards optimization is the development of a mathe-
matical model to predict the state of the system. a simple mathematical model
of the converter aisle is developed ;and using this model, two optimiza~
tion approaches are examined: direct optimization of the total system
and partitioning the system into interacting subproblems. The parti-
tioned approach is pursued in detail with techi.iques for solving the

optimization subproblems presented and illustrateqd by numerical examples.
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INTRODUCTION

The converter aisle in a copper smelter is composed of a number
of converters (or furnaces), a supply of input material, a receiver of
molten copper, and a crane (or cranes) which serves the converters.

The converters oxidize the input material to produce first an intermed-
iate material, and later molten copper. The crane delivers material to
the converters and removes waste material and molten copper. Viewed as
a "system" to be controlled in some advantageous manner, the aisle has
an important characteristic in that some of the "controls" are discrete
decisions (for example, the times that the crane visits each converter)
and others are continuous variables (for example, oxygen flow rate to
each converter).

The application of optimal control techniques to industrial pro-
cesses has commonly been limited to techniques for static optimization,
such as allocation and scheduli.g problems involving discrete decisions
and "set-point" type control of continuous variables. Because of its
complexities, there has been little attention given to the copper aisle.
Recently some papers have reported on this Process, but these have dealt
only with parts of the total optimal control problem.

This paper presents a technique for solving the problem of
optimal control of the converter aisle viewed as a total system. We
first establish a perspective of the problem from a general systems view-
point and then view optimal control of a converter aisle as a general

systems optimization problem. We point out major steps and approaches



to aisle optimization. Two optimization approaches are presented. The
first is a direct approach which results in a problem that is computa-
tionally large--so large, in fact, that a major investment in time and
effort is required to produce any results. Consequently, the direct
optimization approach is not used but rather, an alternative method

is developed whereby the problem is partitioned into smaller interacting
subproblems which may be solved with a reasonable effort in a relatively
short period of time. The contribution of this paper is the systematic
method cf partitioning a large complex problem, such as the converter
aisle, into a class of more easily solved subproblems and then com-

posing the solutions to the subproblems to form a total optimal solution.



CHAPTER I
SYSTEMS CONCEPTS

Modern control theory offers a richly developed body of techniques
for optimally controlling a dynamic system. These techniques will be
increasingly applied to control of industrial processes. This section
establishes basic systems terminology and perspective relating
to process control. We note the distinction between the physical pro-
cess and the system model and then discuss the role of the model in
design of the optimal control.

Associated with a physical brocess, we identify certain (time vary-
ing) quantities as controlled variables, control variables (or decision
variables), and interngl variables. Controlled variables are those which
we wish to observe, control, or regulate in some prescribed manner, or
which are used in evaluation of a performance criterion which measures
the process performance. Control variables are variables to be manipula-
ted or decisions to be made S0 as to achieve desired bProcess performance.
Internal variables are those additional variables which are physically
related (directly or indirectly) to either the controlled or control vari-
ables. As a conceptual abstraction, the physical process is viewed as
a system represented as the block diagram in Figure 1, where the arrows
represent flow of information. The system input is a vector of the pro-
cess control variasble. and the system output is a vector of the controlleg

variables of the brocess. The state vector is derived from the internal
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and controlled variables of the process; the state variables are the
minimum set of variables necessary to specify at any time the value

of the output given the value of the input at the same time. The
state vector is not necessarily unique, as it depends upon the choice
of output variables and upon the degree of approximation in specifying
the value of the output vector.

In design of the system control, it is necessary to evaluate the
output in response to choices of the input. Generally it is unfeasi-
ble or prohibitively expensive to experiment with the actual process;
consequently, a model of the system is develoraed. The model consists
of two sets of rules which specify the output and the st te. The output
equation is generally algebraic and it specifics the output as a function
of the state and the input. Commonly, the output will be merely a sub~-
set of the state variables. The state equation depends upon the type of
model, there being two primary types of models, static models in which
the state does not vary with time and dynamic models in which the state
does vary with time. In addition, a dynamic model is stationary if the
equations do not vary with time. For a static model, the state equations
are generally algebraic. Dynamic model state equations take a variety
of forms: for an analytic continuous model, i.e., with continuous vari-
ables, the state equations are differential equations which specify the
time rate of change of the state variables. If the state variables are
naturelly discrete or are quantized in time, the digcrete model may be
a difference equation or state transition equation which specifies the
next state as a function of the current state and input. Alternately, a

state transition equation may be given in a tabular or graphic form.



Computer simulation models incorporate analytic, tabular, and partially
verbal representationsof the mocel. Whereas the analytic and tabula:
models will be directly useful in design of optimal coiitrols, simulation
models are commonly used for PArametric experimentation on the system.

The system represented in FPigure 1 is shown as a single block,
although systems are often modeled as a selL of interacting subsystems,
for example, as illustrated in Pigure 2. Svstem structure may be natu-
rally implied by identification of subsystems associated with the physi-
cal process, or the system .itructure may be imposed to achieve computa-
tional advantages. Decomposition of a system into subsystems has the ad-
vaintage that the individual subsystems are more easily analyzed, but on
the other hand, the interaction of the subsystems may be difficult to
handle. (It should be kept in mind that subsystem input variables are
not. necessarily physical quantities, but may represent decisions, sched-
ules, etc.)

Generation >f a system model is 3 complex task (so much so that
there is danger of temporarily ignoring the optimization objective). The
modeling task has two basic Steps: determination of the model form, i.e.,
structure and type, and data acquisition and numerical construction of
the model. The forn of the model is usually motivated by physical knowl-
edge of or familiarity with the process. Numerical design of the model
often reduces to statistical estimation of a set of pParameters, which in
turn involves subtasks of filtering data and estimating state variables
which are not directly measurable.

The role of optimal cowntrol theory is to provide a method for deter-

mining dynamic inputs which cause the system to behave optimally in the
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that a performance criterion J, which measures the influence of

the inputs upon the System performance, will be minimized (or mexi-

mized) subject to system constraints. For application of optimization

.

techniques the performance criterion is commonly of the form

te
J = el‘i(tf), tf] +j ¢(x, u, 1)dr (1.1)
t
o
for a continuous dynamic model or
N
I =)  ¢Ix, u, t] (1.2)
t=0

for a discrete model, where 6 and ¢ are functionals (i.e., they take on
scalar values) and to to tf is the time interval of interest or t=0,...,
N are the discrete times of interest, although the final time need not be
fixed. The performance criteria Equations 1.1 and 1.2 are functions of
the system trajectory {x(t), u(t)}, that is, the time history of the
State and associated control. The system constraints reflect the physical
Or economic constraints on the brocess. Given the system model, perform-
ance criterion, and constraints, the optimization problem may be represen-
ted by the diagram in Figure 3, which should be distinguished from the
System block diagram. (The output of the problem diagram is the optimal
solution u° which is the input to the system,)

Depending upon the model, the criterion, and the constraints, there
are a number of techniques available for determining u°. Commonly, u®

is found as a control policy ° = u°(t) so that the control is "open
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loop." 1In contrast, for practical implementation, it is desired that
the control be a feedback law u® = u°® [x,t], a function of the measured
(cr estimated) state, as illustrated in Figure 4. 1In some cases, the
feedback law may be directly determined, but more often a neighbor
optimal controller is used. In this case, the open loop u°(t) and cor-
responding x°(t) are calculated and a simple controller is designed to
keep the system "near" the desired state in spite of random disturbances
which cause deviation from desired performance. We now apply these

systems concepts to the copper aisle process.
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CHAPTER II
CONVERTER AISLE SYSTEM

We will now formulate the converter aisle as a general system.

In order to identify the input variables, state variables and output
variables, a sequence of events in a converter aisle is briefly de-
scribed. For the purposes of illustration, let an example converter
aisle consist of one reverberatory furnace, three converter furnaces
and a holding furnace as shown in Figure 5.

Liquid matte (FeS and CuZS) is poured into the mouth of a con-
verter from a ladle which is manipulated by an overhead crane. Often
cold material, including matte shells, scrap copper, etc., is added with
the initial charge of matte. The converter is then rolled into the
blowing position, submerging the air inlet openiﬁgs (tuyeres) below the
surface of the molten hath and z2ir is blown into the bath, thus removy-
ing by oxidation, or slagging, the undesirable eiements (Fe,S) which
are in the bath. Flux is added through an overhead hopper or by means
of a conveyor belt which dumps the flux into the hood of the converter.
Blowing is continued long enough to use up the flux and to form slag
which is periodically skimmed (poured) from the converter by turning it
out of the blowing position. More matte, flux and cold material are
added and then the converter is turned back to the blowing position
and blowing is resumed. These partial blows continue until all the iron
sulfide has been oxidized and the converter contains essentially pure

cuprous sulfide (Cuzs). Several of these matte charges must be slagged
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before there is enough Cu,S accumulated to proceed with the finish or

2

copper blow. As soon as all of the sulfur in the Cu.S has been oxidized,

2
the metal, blister copper, is poured out and the converter is available
to begin another charge sequence.
As the converters process material, the crane moves along the
aisle track to deliver and remove material in response to needs of the
converters. The crane obtains matte and cold material at the reverber-
atory furnace site and delivers slag to the reverberatory furnace as
it delivers blister copper to the holding furnace, which is assumed to
be located near the reverberatory furnace. Generally, each service to
a converter requires several trips by the crane. Also, when a con-
verter is being serviced, it does not blow between visits by the crane.
The above descriptions suggest two activities that characterize
the converter aisle: (1) material handling by the cranes and (2) charge
processing by the converter furnaces. The behavior of the crane is
characterized by its location and the full or empty status of the ladle
which we will establish together as a two-dimensional state vector. The
input variable which affects the state of the crane is a decision which
specifies the position to which the crane will move. The result, or out-
put, of the crane activity is the transfer of material into or out of the
converters. From this it is apparent that discrete material inputs to
the converters are directly associated with the activity of the crane.
The second activity which characterizes the behavior of the con-
verter aisle is the processing of matte by the converter furnaces. The
input quantities that affect the state of the converter can be measured

in a straightforward way. Air flow into and exhaust gases from each
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converter can be measured continuously and the material input and out-
put of the converter can be weighed and the composition analyzed
with some degree of confidence. For the slag phase, essential inputs

indicated by the previously described events are:

uy, = Matte weight

u, = Flux weight

u, = Cold material weight
u4 = Oxygen input rate

In contrast to the input variables, the activities directly asso-
ciated with the progress of each converter are difficult to measure dir-
ectly. The state variables chosen to characterize the converting
process are somewhat arbitrary and certainly do not describe every ac-
tivity of the process exhaustively. The state variables are chosen in
accordance with the information needed to adequately and realistically
describe the observable and measurable activities of the process. Since
the function of the converter is to remove undesirable elements from the
copper bearing matte, the relative amount of FeS contained in the bath
at any time is of interest during the slag phase. Similarly, the amount
of Cuzs provides information concerning the progress of the finish phase.
The amount of slag produced would have an effect on the requirement for
skimming. The copper accumulated is of fundamental importance since that
is the objective of the converter furnace. +rthe bath temperature would
surely have an effect on the reaction rates within the process. Sum-
marizing, a typical set of state variables required to describe the pro-

cess activities during the slag phase are:
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X. = FeS concentration

X, = Cu_S weight

2 2
Xy = Flux weight
Xy = Slag weight
x5 = Temperature

X_ = Magnetic (Fe304) weight

The finish phase is similar in concept to the slag phase, except
that during the.finish phase, the bath consists essentially of Cuzs which
is being converted to blister copper.

The discrete decision variables of the system are:

1. Crane mcvement decision

2. Converter schedule

3. Batch material inputs
Of course, these are not independent decisions. The continuous control
variables are the continuous inputs such as oxygen blow rate and possi-
bly flux addition rate. The rules for determining the time history of
the state variables are discussed in detail in the succeeding chapter
on modeling. The copper production rate is specified as an output vari-
able as a matter of convenience in the development of the optimization
objective.

One objective of optimization of the converter aisle system is to
specify the control values which will influence the system to achieve

the greatest possible value for the output, where the output performance

criterion is expressed by:

3
Jg= i (2.1)
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where
Cui = ?lister coppef produced per charge cycle
1n converter i
T, = Duration of a charge cyclé for converter i

The charge cycle time is taken to be the time to complete a charge cycle
On a converter as shown in Figure 6. Crane movement decisions influence
the charge cycle time particularly when two or more converters are in
conflict for service. The converter furnace sciiedule affects the charge
cycle time by adjusting the time staggering between converters. The
batch material inputs influence the charge cycle times and the blister
copper production, while continu-~us material inputs affect the blowing
times. Thus, we observe that the performance criterion of Equation 2.1
is an implicit function of the State and control variables.

We next turn to establishing a system model.
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CHAPTER TIII

CONVERTER AISLE MODELS

Motivated by the ideas presented in the previous chapter, we
will develop a model of each subsystem of Figure 7. The emphasis of
this section is on modeling concepts rather than the exhaustive deri-
vation of a specific model. Thus, the models that are developed are
purposely simple with the assumptions used clearly stated.
It is not possible to specify general rules by which system
models are formulated, but a number of guiding principles can be stated:
1. The system will be organized in subsystems so as to sim-
plify the specification of interactions within the system.
The subsystems will be characterized by one type of variable

(i.e., discrete or continuous).

2. The model will include only those variables which are rele-
vant to the optimization objective.

3. The accuracy of the model will be limited by the data used
to develop the model.

4. The model must be capable of reproducing the behavior of
the system within an acceptable accuracy.

Crar: System Model

The physical structure of the converter aisle suggests a crane
routing model. The crane state will be a two-vector Ej which represents

the state after the jth crane move:

P. = (3.1)

Tt 1 o o - i+ s bt S
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The first component Pl represents the crane location, which can have

four possible values

The secord component P

Pl = 0 crane at reverberatory furnace or
holding furnace

Pl = 1 crane at converter 1

Pl = 2 crane at converter 2

Pl = 3 crane at converter 3

2 represents the ladle condition during the

move, where

o)
]

0 ladle empty

1 ladle loaded

jae)
]

The crane is modeled by a state transition equation represented as

where gj

E%+l = E{Ej' dj) (3.2)

is the current state, d is the crane move decision, and 2j+l

is the next state. Ej+l is determined by dj subject to the following

assumed constraints:

1.

Only one ladle of material will be input or output from a
converter at each visit.

Only an empty ladle will be moved to a converter that needs
to be skimmed or emptied.

Only a loaded ladle will be moved from a converter that has
been skimmed or (partially) emptied.

Only a loaded ladle will be moved to a converter which re-
quires input material, provided it does need output service.

Only an empty ladle will be moved from a converter after
delivery of input material.
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With these assumptions, it is seen that choice of the value of the
decision dj requires knowledge of the converter states; and given

that knowledge, the decision dj is a scaler value, i.e., it is neces-
sary only to choose (Pl)j+l subject to the constraints and then (P2)j+l
is uniquely determined.

For a giveﬂlcrane decision, the additional information required to
model the crane is the time required to move from the current location
to the uext location. This transition time information will be given in
the form of Tables 1 and 2, where it is assumed that the transition
time includes the loading time at the reverberatory furnace and the load-
ing or unloading time at the converter to which the crane moves. The
blanks in the tables indicate illegal moves.

As noted above, crane movements are made in response to material
input/output needs of the converters, and the moves in turn effect the
States of the converters. The constraints of converter requirements on
the crane decision can be described in terms of the converter state
variables, and the effect of a crane move on the converters can be
modeled by including the crane variables in the converter models. (This
is done in Chapter V in the direct optimization approach.) However,
even if the converters are not explicitly modeled, it may still be desir-
able to deal with the crane subsystem. For this case, to model the

crane interaction with the converters, we model requirement variables as

an input queue and an output queue. The input queue is a vector

=in 2




TABLE 1

STATE TRANSITION TIMES, (pz) =1
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where m, is the number of ladles to be input to the ith converter. The

cutput queue is expressed by

Soue = |8

[V}

w

where s; is the number of ladles of material to be removed from the ith
converter. Clearly, the queue variables can have only non-negative in-
teger values. 1In terms of the queues, the crane moves only in response
to norzero queue values or to returr to the reverberatory or holding
furnace. Each time the crane moves to a converter, the appropriate
queué variable for that converter decreases by one. Each time the crane
moves froﬁ a converter, P2 must change, i.e., (P2)j+l # (P2)j. A crane
move to the reverberatory furnace or holding furnace does not change the
queues .

In addition to the changes in queue variables, the state of the

converter must change since material is being removed or added. The

change in converter state due to crane service is given by the following

relationship
xl(k+l) = xl(k) + e’
x2(k+l) = x2(k) + e,m,
x3(k+l) = x3(k) + e3e2mi
x4(k+l) =0

xs(k+l) = [xs(k)xz(k) + (elmi + e2mi + e3elmi) e4]./

[xl(k+l) + x2(k+l) + x3(k+l)]
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x6(k+l) =0

where the subscripts (k+l) denote the time following crane service

and (k) the time preceeding crane service. The parameters er €y

e,r e, are defined as
e, = weight of FeS per ladle of input
e, = weight of Cuzs per ladle of input
e3 = number of tons of flux required per ton of FeS
€, = average temperature of input material

The model of temperature change is a simple linear extrapolation and
assunes there is no change in bath temperature due to radiation losses
during crane service.

The above crane service state transition equations for the ith con-

verter may be summarized by
x(k+1) = x(k) + A x(e,m,) (3.3)

where e is avector of model parameters defined above and mi is the num-
ber of ladles of input material.

The number of ladles of material to ke removed is a function of the
amount of material tc¢ be removed and the ladle capacity. For the ith
converter this may be expressed by

=00 7

W

Ii

for the slag and by
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+
0 3 (-.8)x2(k;]
i
©

for the finish phase, where:

amount of slag at end of slag blow

X, (k) =
X, (k) = amcunt of Cu2S at the start of the finish
blow
\' = weight capacity per ladle (assume slag and
copper are of equal density)
+

and where [ - ] denotes the nearest equal or greater integer.

The crane service time between any two consecutive blows is, of
course, a function of the routing used in performing service. 1If a
converter is serviced exclusively (i.e., the crane is not shared with

another converter) then the service time is given by
TS(i,j) = (t, + t~°, A § I S ] o
(1,3 ( io 01) ny ( oi tlo) Wy (B

2 adlla . , .th . th
where TS(i,3j) is the time to service the 3 blow on the i converter.
This modeling of the crane-converter interaction completes a model

of the crane subsystem.

Converter Furnace Model

We recognize from Chapter II that the activities which character~
ize the behavior of the converter furnace involve two major reactions.
The slag phase is characterized by the elimination of iron sulfide from

the matte charge as governed by the following chemical equations:

2FeS + 30, - 2Fe0 + 2S0 AH -105,000 Cal/mole

2 2

=306 Cal/mole (3.5)

2Fe0 + SiO - 2Fe0 - SiO OH

2 2
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6FeQ + 0, » 2Fe. 0 AH -133,000 Cal/mole

2 34

3Fe_ 0 ,+FeS - 10Fe0 +S0 AH

304 2 +110,000 Cal/mole

where AH is the heat of reaction at molten temperatures. The second

phase is described by the reaction

Cuzs + O2 -+ 2Cu + 802 AH = -56,000 Cal/mole (3.6)

In practice, these equations have been used for many years to estab-
lish material balance and heat balance relationships. These equations
do not, however, offer any information regarding the behavior of the
process in the course of time. It is an interest in controlling the
processing time of the converter furnace that motivates us to develop
a dynamic model which will predict the value of the state variables at
any time. Defining the slag phase state variables as in Chapter II,
we wish to formulate a slag phase model using oxygen input rate as the
only continuous control.
During each blow, the process involves only continucns vari-

bles, so that it may be modeled as a vector differential equation of

the form

T - X= % v (3.7)

where x is the state vector defined in Chapter II and u is the oxygen

input rate. The function f is inlgeneral a nonlinear function of the

arguments X, u and it is assumed to be stationary. Because of limited
theoretical knowledge about the dynamics cf copper cornverter furnaces,
we will approximate the function f with an empirical, stationary,

linear function. We offer no experimental justification for such a
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simple model but use it to illustrate a modeling technique and to serve
as a simple model in optimization examples. While the assumption of
linearity may seem unjustified, it does have practical merit. A non-
linear system such as Equation 3.7, operating "near" a known trajec-

tory {xo(t), uo(t)} may be linearized by the expansion.

Evaluating the partial derivatives as indicated and assuming equality

yields an equation of the form

[ -

= A(t)x + B(t)u + C(t)

This equation represents a nonstationary linear system. A further
approximation to this system is made by assuming the system is station-
ary over an interval of time. For the slag phase model, we assume the
system is stationary over all of the blows, thus yielding an approxi-

mate model with form

(3.8)

E

I
”3
+
w
£
+
Q

where A, B, and C are constant matrices which will be evaluated.

To further simplify the model, we assume that x (Cuzs weight)

2
is conscant during slag blows and that all other bath constituents
vary in proportion to the FeS oxidation rate. (These assumptions are

supported by observation of converter data.) With these assumptions,

the slag blow state equations become
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xl = Allx. + A12x2 + ... + Al6x6 + Blu + Cl
x2 =0
gaRw 1K
(3.9)
Xy T Kgxg
x5 = ASlxl + A52Xl + ... + A56x6 + B5u + C5
Xg = Kgxy

The unknown constants in Equation 3.9 will be determined empira-
cally based upon observation and estimation of converter state trajec-
tories. Direct measurements of many of the state variables associated
with the converter furnace are difficult to obtain. Consequently, some
of the data is obtained indirectly, such as through the use of matevial
balance relationships. For example, smoothed trajectories of the state
variables are shown in Figure 8 for a typical converter furnace with
fixed oxygen input rate during each blow. The original data was obtained
by direct measurement of 502 discharge rate, oxygen input rate, tempera-
ture, and initial material inputs and by computation of the trajectories
of the concentration of FeS and weights of flux, slag, and Fe304
using the reaction Equations 3.5. Denote the data points in Figure 8
by xk(tij) and the slope at each data point as ik(tij), where k denotes
the kth state variable and tij the ith discrete time in the jth slag blow.

To evaluate the constants, in particular the Bk coefficients, we
require a collection of data for different values of u. However, using

only the data in Figure 8, a very simple initial model can be obtained

by arbitrarily choosing
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B, = 84, k=1, 5

(3.10)
)
u(tij,

where the superscript bar denotes the average over all sample times

tij' Equation 3.10 has some physical justification in that oxygen input

rate is dominant in determining FeS oxidation rate. To evaluate the
remaining constants, arranqo the data in the matrix forms

7
xl(tll) , 32(tll) . x6(tll) 1
x) (£ x,(ty)) % (ty)) 1
2{_:
X (850 %yt Xs(tyy) 1
and
X (81) - Beule, )
X (£5)) = Bult,))
Y, = i , k=1, 5

% (t43) = Bpult,,)

For a least sum-square-error fit of the data,
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r Kk

1,5 (3.11)

Lr<

L]

L}
II-‘>€'_r
HES
T
?L'<

1k |

where superscript t denotes transpose. The constants K3, K4, and K6
in Equation 3.9 may be estimated as
t,.
K, = %54, k = 3, 4, 6 (3.12)
%) (8 4)
To complete the model, the system constraints are simply
0 < u(t) < u
== — ‘max
(3.13)
< =
0_<_xk(t)_kaax , Kk 1, /6
where U and X are fixed constants.
max k max

Together, Equations 3.9-3.13 constitute a simple initial slag
blow model. The model has validity only during the blows and only for
state and control valucs in the range of data used to derive the model
coefficients. Between slag blows, oxidation stops and the converter
state changes in accordance with equation 2.3 as previously discussed.
Thus, between blows, the crane actions determine the change in the con-
verter ctate. When a sufficient amount of CuZS has been accumulated

and when the FeS has been removed, the finish phase is started.

A finish phase model can be developed in manner similar to that
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used for the slag blow model, but with appropriate changes in the state
variables. A typical state trajectory for the finish phase is shown

in Figure 9. The temperature during the finish phase remains relatively
constant for a given oxygen input rate. As expressed by Equation 3.6,
there is only one principle reaction involved, thus the state vector will

be approximated by a scalar as

x2 = Cuzs weight (3.14)

As in the slag phase model, the finish phase model may be expressed as

a differential equation of the form of Eguation 3.7.

Ch . £(x, ) (3.15)

dt

where f is to be determined. The curve of Figure 9 suggests a non-

linear exponential form for the function f

f(x2,u) =2aq ute ¢ ut (3.16)

where o is a constant to be determined and t is the independent variable
time. The choice of an exponential function is based simply on the

fact that data best fit this form of curve. Clearly, the choice of f

is not unique but represents a judgment based on observation and experi-
ence. Combining Equations 3.15 and 3.16, we have the finish phase model
given by

2
aut

X. = =2 o ute (3.17)

2
the constant a can be determined by solving equation 3.15 and fitting

the solution to the data in Figure 9 using a standard curve fitting tech-
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nique, similar to the least squares method used in modeling the
slag phase.

The model illustrated in this section is, of course, quite
simple, and much remains to be done in modeling of copper conversion
dynamics. Towards this objective, more complex models have been con-
sidered, for example, Nenonen and Paqurek [8] and Niemi and Koskineu
[9]. However, this simple model will provide a basis for the optimi-

zation concepts which follow.
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CHAPTZR IV

SIMULATION STUDIES

In this chapter a simulation of the simple, single crane, three
converter aisle shown in Figure 5 is described. The purpose of the
simulation is twofold; first, to validate the model, and second, to
provide the motivation for studying the converter aisle as an optimiza-
tion problem. 1In the simulation study opportunities for optimal control
are identified and a measure of possible improvement in performance is
established. fThe simulation progrum is briefly described, some results

are presented, and a summary of promising optimization opportunities is given.

Simulation Program

This simulation study is conducted with the use of an IBM 1800
Process Control Digital Computer and a FORTRAN based simulaticn prog-
ram called GASP II (General Activity Simulation Program) [15]. fTwo
principle activities of the converter aisle system are identified as
crane service and processing of material by the converters {blowing) .
The crane service activity is performed by an entity of the system,
namely the crane, while the blowing activity is performed by another
entity, the converter furnace. Each of these entities have certain
attributes which characterize their behavior as shown in Table 3.

Clearly a mixture of continuous and discrete event models is
found at the boundary between the crane subsystem and the converter fur-

nace subsystem. Two types of events are specified. A type 1 event is
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defined at the endpoint of a trajectory which satisfies the differ-
ential equations of the converter furnace model (i.e., event type 1
occurs at the end of a blow). This event represents a discrete deci-
sion point. ihe type 2 event is defined at the completion of crane ser-
vice. This event represents a continuous decision point since it is
necessary at this event time to decide OxXygen input rate for the blow
that is to follow. Figure 10 illustrates the event model used in the
simulation.

Since there are three converters operating simultaneously, the
program maintains an event file as shown in Table 4. The time a partic-
ular event will occur is stored in the event time. On each iteration
in the program, the smallest event time is determined and the event
code, converter numbe; and blow number are removed from the event file.
At this point, another file is accessed to determine the duration of the
activity associated with the event code. The file containing the activ-
ity duration is the activity file as illustrated in Table 5. The pro-
gram (EVNTS) which stores and retrieves information from these files is
shown in Appendix 1.

The event code determines which one of two model subprograms is to
be executed. It the event code.is 1, then the event marks an end of
blow, and crane service is called for. The crane service subprogram
(CRNSV; appendix 1) calculates the change in state due to the action of
the crane and also the duration of the Crane service activity. It is
assumed that once crane service has been started on a converter, it will
continue until the needs of that converter have been satisfied (i.e.

time-sharing of the crane is not allowed). Thus the crane service mod-
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State Prior to Crane Service

Discrete EVENT TYPE 2
Material CRANE X(k+1)
Input — o SERVICE —
MODEL
-—————» Crane
Service
Time

State Prior to Blowing

EVENT TYPE 1
Continuous “——f CONVERTER X(te)

Oxygen FURNACE

Input——— &  MODEL

F———— Bl ow
Duration
[to’tf]

Flgure 10  SYSTEM EVENT MODEL




TABLE 4

TYPICAL EVENT FILE

41

EVENT EVENT CONVERTER BLOW
TIME CODE NUMBER NUMBER
0.0 1 1 3
50.0 2 2 4
75.0 1 | 3 1

| i
TABLE 5

TYPICAL ACTIVITY FILE

ACTTVITY CONVERTZR
DURATION ; NUMBER
70.0 ! 1
|
23.0 | 2
|
50.1 ; 3
B
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el is given by Equations 3.3 and 3.4. The time for the next event on
the particular converter is calculated by adding the activity dura-
tion to the current time. The event code is changed to an end of crane
service and a blow is initiated. The converter furnace subprogram
(CONVT; appendix 1) calculates the change in state due to the activity
of tke converting process. The converter furnace model as given by'
Equations 3.9 for the slag activity duration is the time required for
the converter to transfer the state from the initial condition at the
end of crane service to a specified terminal state constrained by

xi(tf) 20 fori=1, 2, 3, 4, 6
4 [+]
xs(tf) % 2250°F

Violation of any of the above terminal constraints will terminate the
blow simulation. In addition, the last slag blow and finish blow have
special terminal conditions. At the end of the final slag blow xl(tf) =
0 and at the end of the finish blow x2(tf)/x2(0) is spec._fied.

The model parameters and assumed oxygen input rates are found in
Appendix 2.

Simulation Results

Figure 11 shows some sample state trajectories obtained from a sol-
ution of the slag phase model and a comparison of interval 1 trajector-
ies from the model with interval 1 trajectories from observed data. Fig~
ure 12 illustrates a comparison of the state trajectory obtained from
the solution of the finish phase model and the state trajectory from
actual observation. The simulation results and actual results are nc+

directly comparable because some of the barameters associated with the
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actual data are unknown and thus are assumed for the model. These
assumptions lead to some differences in initial conditions between

the actual data and model results as observed in Figure li. However,
comparisons made between actual observation and model results showed
considerable similarity; and, therefore, this model will serve as a nomi-
nal starting point for further optimization studies.

The results of six simulation runs, each with a different assump-
tion or initial condition show a distinct difference in process perform-
ance. The model parameter values for each run are shown in Append-

ix 2. The first two simulation runs are designed to illustrate a dif~
ference in process performance due to two different material input deci~
sions as given in Table 6. The results of this experiment are shown in
Table 7. This variation in material input decision shows an improve-
ment in copper production rate of 10.4 percent. This is primarily a
result of the smaller number of conflicts for crane service in run 2.

Runs 3 and 4 illustrate the difference in performance for two
different initial starting conditions as given in Table 8. No signifi-
cant difference in performance was detected for these particular ini-
tial conditions, however, the number of conflicts for crane service on
each converter varied considerably.

Run 6 illustrates the performance assuming infinite crane service
flexibility (i.e. the crane is always available when a converter requires
service). The initial conditions are as in run 3. Table 9 shows a
comparison between run 3 and run 6.

A production rate improvement of 13.1 percent is obtained by assum-

ing infinite crane flexibility. An improvement this large may not be



TABLE 6

MATERIAL INPUT DECISIONS
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RUN 1 RUN 2
BLOW LADLES OF MATTE LADLES OF MATTE

1 ’ : 5 } 4

i
2 4 | 3

| J
3 ! 3 ! 3

' |
4 | 2 ! 3

i |

| ;

i i |
6 } 1 1 i
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feasible in practice, however, because a no-conflict crane schedule
will require increasing blow durations in some cases to avoid con-

flicts.

Optimization Opportunities

Summarizing the above results, we observe that at least four pos-
sible optimization problems may be identified. These include:

1. Optimum crane routing so as to minimize the time a
converter must wait for crane service.

2. Optimum scheduling of blow durations on each converter
So as to maximize the copper production rate on that

converter.

3. Optimum scheduling of activities so as to minimize the
number of conflicts for crane service.

4. Control of the converter furnaces in accordance with blow
duration specified by the crane schedule.

In the next chapter, these problems are clearly defined and sever-
al optimization techniques which may be applied are presented together

with some simple illustrative examples.



5y

CHAPTER V
OPTIMIZATION

If it were not for the mixed continuous control variables and
discreﬁf decisions with unspecified times of occurrence, optimiza-
tion of the aisle system would be relatively straight forward. &as is,
the problem requires modification of the model or modified applica-
tion of standard optimization techniques. 1In the following sections
we focus on two general approaches to aisle optimization. First,
for direct total system optimization, continuous variables are
quantized in time and combined with discrete decision variables to
form one ;arge discrete time model which is theoretically amenable
to solution; for the second approach, the primary optimization prob-
lem is partitioned into a number of smaller, less complex optimization
subtasks and these are related to total system optimization.

Because the problem for the direct approach is so large and comp-
lex that it is unwieldy, it is not solved. Instead the partitioned

method is developed to the point where a solution can be achieved.

Direct Optimization Approach

A number of optimization techniques apply to large discrete time
(or discrete state) models. The aisle model given in Chapter III can
be converted to a single combined model with this form. Let A be a
time increment such that time duration of any blow or any crane move-

ment can be represented as an integral multiple of A. A state trans-



ition equation for the ith furnace takes the general form:

i _ i i
iy = g; (x,» By uj) (5.1)
where j = 0, 1,... corresponds to t = 0, A, 24,...; 5; and u; are the

ith furnace state and control at time j, and pj is the crane state at
time j (which defines the crane service at time j); and uj is assumed
to be constant for ja<t<(j+1)A.

The functions g; are obtained by integrating Equation 3.7, and
adjusting the state to account for possible crane service. Of course,
E% only affects §;+l if the crane services furnace i at time J.

Note that by including Bj as an argument in 9 Equation 5.1 models the
furnace for the complete cycle including the times of the crane visit.

Similarly, the crane transition equation can be written as
P. =£(_E_-I d.) (5.2)

where Ej and dj are the crane state and transition decision as defined
in Chapter III, except for the altered choice of discrete times. Since
the discrete times are not restricted to the times of the crane visits,
(pl)_ assumes the discrete states 0, 1, 2, 3 described in Chapter III,
and an additional value corresponding to "crane in transit." Of course,
the crane can change state only at times when it has completed a pre-
viously initiated move.

Combining Equations 5.1 and 5.2, the total aisle system state

transition equation takes the form:

Lz.j+l = E(EJ’ XJ) (5‘3)
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where zi is the cor>ined state,

Xi is the combined control,

and g is given as

g (x: p., ul)

R L
(x2 2

g2 _jlgjl uj)

(x3 3)
93'%50By0 9y

h(p., 4.
_(pJ J)
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The system constraints and the performance criterion may be readily
expressed In terms of Ej and Ej' Let us now examine the magnitude of
the optimization task.

The model, Equation 5.3,still has mixed control variables with
continuous and discrete values. This can be treated, rut for simplicity
assume that each control u§ (oxygen irput rate) is quantized into Y
values. The control dj has five possiible values; but these are not
permissible at each time j; hence, assume that there are effectively v
crane decisions possible at each time. Assume that the total production
cycle lasts N time intervals. If an initial state were specified, there
would be (3y + v)N possible controls =-- a number which easily becomes
unwieldly. To compound matters, the initial state is not known. Speci~
fication of the initial state is equivalent to specification of the
staggering of charge cycles, which need not be known.

In spite of the enormity of the problem, direct optimization may
be feasible. We comment on three tec‘:hniques.ur

Dynamic programming.-- This is a highly efficier* technique for

solving many N-stage decision processes [2]. The technique is illustra-
ted later using a much smaller process model. The computational sav-
ing afforded by dynamic programming is that the number of controls to
be evaluated is proportional to (3y + V)N rather than (3y + v)N, again
assuming an initial state is specified. Larson [6] illustrates a fur-
ther computational savings over direct application of dynamic programm-

ing, for the case in which a nominal starting state can be specified.

T . .

Because of the size of the total aisle model, no examples are
presented in this section, but optimization techniques are illustrated
in the partitioning approach.
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Rather than determining the optimal control for each possible starting
state, only initial states "near" *“he nominal starting state are examined.

Gradient search.-- Gradient search in the space of control sequen-

ces {Xﬁ""’!N} is normally a very simple technigue for control calcula-
tion [7, 10], but it requires that the system performance J vary con-
tinuously with each control variable (vk)j and that each control vector
V. be independent of the value !i of the control at any other time.
Unfortunately, for the formulation of the model in this section, the con-
trol does not meet these requirements. Thus, the gradient technique is
not directly applicable for determination of the optimal aisle control.
On the other hand, the gradient technique may be applicable for searching
on values of the initial state, for use in conjunction with some other
technique for determining an optimal control with an initial state speci-
fied.

Random search.-- It has been shown, for example (4,14}, that as the

number of decision variables in a problem becomes large, a random search
rmay become more efficient than a grad:ent search. Intuitively, the
reason for this is the gradient must be computed for each decision vari-
able whereas in the same time, the random search is likely to have found
an improved value of the control. Further, control constraints do not
seriously hamper a random search because non-allowed controls are merely
ignored. Thus, random search may be a candidate for direct a'‘sle optimi=~
zation. Lest the random approach seem unjustified, we note that it is
the basis for EVOP [3], an "evo.utionary optimization" scheme which has

been applied to control of chemical processes.
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Optimization by Partitioning

Some of the difficulties encountered in the direct optimization

approach may be solved by use of the principle of invariant embedding

[12], according to which a very difficult or unsolvable problem is

embedded into a class of simpler, solvable problems. For aisle opti-

mization, we cunsider partitioning the problem into a number of more

simple subproblems which relate to the overall objective. The struc-

ture of the aisle problem suggests a possible hierarchy of control sub-

problems as listed below:

1.

Given material requirements of the converters, find an
optimum crane routing which will minimize the service
time for each converter service.

Given material input decisions for a converter, find the
minimum converter blow durations to minimize the total
charge cycle time.

Given fixed crane service times and minimum blow dura-
tions for each converter, find an optimum converter
schedule which will minimize the charge cycle time for
each converter.

Given a schedule of converter services, find optimum
continuous inputs (e.g., oxygen input rate) to each
converter furnace which will achieve that schedule and
satisfy the physical constraints of the converting pro-
cess.

A systematic structuring of these four problems is shown in Fig-

ure 13.

Of course, this structure is not unique, but it does have the

following advantages:

1.

The complexity of each subproblem is less than that of
the total problem.

The control variables in each subproblem are of one type
(i.e., discrete or continuous) .

The subproblems can be implemented separately, thus allow-
ing opportunity to evaluate the results of one problem
before proceeding to the next.
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The primary disadvantage to this approach comes with the problem of
composing a total system solution from the solutions to the subproblems.
In the fcllowing subsections a method for solving each of the above
subproblems is presented. Then, in Chapter VI, numerical examples are
given.

Crane routing.-- Let a converter aisle material handling process

be characterized by the netw0rk+ shown in Fiqgure 14. The nodes in the
network represent crane locations P; and the numbers on the branches re-
preseat the ladle state during transit and the transit times as given

in Tables 10 and 11l.

The crane routing problem is: given requirements for converter
services, determine the sequence of crane moves to meet the requirements
in minimum time for each converter. Clearly, if only one converter
needs service, the crane routing is trivial and the service time is im~
mediately determined. If several converters need service simultaneously,
it may be more efficient to service them jointlx rather than sequentu-
ally. This problem arises if either (i) several converters have been
scheduled for simultaneous service, or (ii) in actual operation of an
aisle, random fluctuations cause several converters to need services at
the same time.

The performance criterion of the total system was given by Equation

2.1 as

~IFigure 14 is not a state-transition diagram because the states
are partially associated with the branches.
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Figure 14 CRANE ROUTE NETWORK
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where the maximum of J is sought over all decisions and controls.
Holding all decisions and controls fixed except the crane routing

decisions dk' k =0,..., K required to meet a specified service re-

quirement, the charge cycle time Ti may be decomposed as Ti = T; + Ti
where TI is fixed and Ti is the time required for the service to be

S . 0
completed. Because Ti is small compared with TI, the performance object-

ive can be approximated as

c~M~w

max J ° maximum Cu, (T* - T?)
17 i

i=1
do,...,dK
which is equivalent to
3 S
max J ¥ minimum Z Cu, T, + constant
i=1

d ,...,d

(<A

This determines as a crane routing criterion to be minimized

§ §

J = Cu, t, 6§, (5.4)

K k=0 i=1 i "k ik

where tk is the crane transition time for the kth crane move and Gik =1

if the ith converter requires service during the kth crane move and Gik =
0 otherwise.

Formalizing the crane routing problem now: given an initial crane
state P, and initial service requirements Qing’ Soutp' determine crane
routing decisions do,...,dK such that ginK =0, SoutK =0, EK = 0 and
JK is minimum.

The method of dynamic programming offers a systematic approach to

problems of this type. The essential feature of this method is given
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by Bellman's "Principle of Optimality" [1,2]. A mathematical statement

of the principle of optimality is the recursion formula

J_=min t (5.5)
d

k

where J; is the optimal value of Jk' expressed as a function of the com-
bined state (gink, Qouty / Ek)' In practice, the problem is solved using
a technique of successive approximation. It is assumed that the optimal
Ji—l is tabulated for each combined state under consideration at the
(k-1) th step. For each state at the kth step, JE is evaluated by
searching over all tabulated states at the (k-1) th step and all values
of the decision dk. The procedure eliminates all routes to each state
that have Jk greater than minimum for that state. Incrementing k, the
optimal route will be determined if the final state is achieved for all
possible routes or if all other partial routes have Jz greater than JE
for a route which achieves the final state.

To illustrate this technique, let initial vectors be Sino = [2 2 0]t,
Qout, = [0 2 0]t, By = (o 0]t. Since converter three is not involved,
the third variable will be dropped from the queue vectors. The dynamic
programming tabulation of Ji as a function of the combined state is shown
in Table 12, where the eliminated rows were nonoptimal routes. For ease
in reading the table, the states for each k value are labeled with lower
case letters. The table is generated up to k = 10, at which stage
the optimal route is determined. Tracing backwards through the table,

the cptimal sequence of states is marked with asterisks . The optimal

sequence is
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TABLE 12

DYNAMIC PROGRAMMING CRANE ROUTING EXAMPLE

& State Plt qti:nk q:iutk jﬁ (Pl)k_l
0 a [0 0] [2 2] [0 2] 0
1 a [1 1] [1 2] [0 2] 10 a *
b [2 0] (2 2] [0 1] 8 a
i 2 a [0 0] [1 2] [0 2] 16 a
| b |2 01 | 11 21| [0 1] 16 a *
c [0 11| [2 21 | 1o 1] 14 b
3 a (1 1] | [0 21 | [0 2] 26 a
b [2 0] [1 2] [0 11 24 a worse than 2b
c [0 1] [1 2] [0 1 22 b *
d |1 11| o210 | o 1] 2 e
e |12 01 ] [2 21 | [0 o 22 c
4 a [2 0] [0 2] [0 1] 29 a
b [1 1] [0 2] [0 1] 32 c *
¢ |12 01| (v 21| [0 0] 30 c
4 |0 ol | 1 21| [0 1l 30 d worse than 3c
e [2 O] [1 2] {0 0] 30 d same as 4c
£ |0 11| [2 21| [0 o] 28 e
5 a [0 11 [0 2] [0 1] 32 a
b | [2 0ol | [0 2] | [0 o] 35 b %
¢ |10 11| 11 21| [0 o] 36 c
d [1 1]. [1 2] 0 0] 38 f
e |12 11| 12 11| [0 o 36 £




TABLE 12 continued
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k= | State I q:nk q;utk i} (pl)k_l
|
L6 a | [2 0] f [0 2] | [0 o] 36 a worse than 5b
j b | [0 1 i [0 21 | [0 o] 3 38 b %
| ¢ (1 1] | [0 2 [0 0] | 46 e
i d ; [2 1] f 1 1] | [0 o o 5 c
g e | [0 0] ; [1 2] [0 0] ; 4 . d  worse than 5c
f f ? [0 0l | (2 1] | [0 o] ; 40 g e
] 7 a 2 1] { [0 11 | [0 o] i 2 | b o
i b [0 o] ! 0 21 f 10 01 | 49 ' ¢ uorse than 6o
,’ c '![o o] [ 11 11 | [0 o] ,’ 8 | a
/ . d (L 1] (1 1] | [0 o] | s0 f e
i e 2 11 | 12 o] | [0 o] 48 ; e
"3 a [0 0ol | [0 1] [ (o o] | 5 a *
b (1 1] | (1 0 | [0 o] | sg | ¢ worse than 9e
/ c |12 11 | [0 1] | [0 0 56 ¢ worse than 7a
d 1[0 0] [ 1 1] | [0 o 56 | d worse than 7c
e |10 0] | [2 0] | [0 o 50 | e
9 a |21 1 o | 0 o 48 a *
b [ [0 0]l | [1 0] | [0 o 61 b from 8b
c [1 1] | (2 o] | [0 o] 55 e
10 a | [0 0] | [0 o] |0 o] 48 a optimal *
b | [0 0l | (1 0] | [0 o 58 c
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BLEL LD GLELELE]L B[]
o, 1], [0 },|1} 1y,o0Jd., 1 J,112},10,11214,1]o0 .
While the dynamic programming example may Seem complex, the algo-
rithm can be implemented simply and efficiently. The computational
savings over direct enumeration of all possible routings is evidenced
by the early termination of nine partial routes in Table 12. By com-
parison, only one route which reached the desired state was evaluated.
In spite of these arguments, the illustration. example was tontrived
and it could reasonably have been solved by enumeration of routes. On
the other hand, for a more complex aisle with additional cranes, con-
verters, end reverberatory and holding furnaces, routing problems can
become less trivial. Also, dynamic programming can be extended to

total system optimization as was discussed previcusly.

Minimum Blow Durations

Given the material input decision for each blow on the jth convert-
er, the problem is to find the oxygen input rate, u, and the blow dura-

. . - Cu, . q . L
tions, TB(n) which maximize u] . Since Cu, is fixed by the material
T, J
]
input decisions, then maximizing the copper production rate is equiva-

lent to minimizing

TBi(n) (5.06)

=
i
it 18

1

where TB(n) is the duration of the nth biow. If u is to be held constant
at the maximum rate during the finish blow, then the duration of the

finish phase blow is determined by the relationship
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ln x ) (5.7)

TB, (finish) = % (e
5 (0)
where the ratio x2(tf)/x2(o) is the concentration of Cuzs at the end
of the finish blow. The minimum blow duration of the finish blow then
is specified by the maximum u available. Thus, only the duration of
slag blows is considered in the optimization problem.

This problem, like the routing problem, yields to solution by us-
ing the dynamic programming technique. Expressing the state egquations

for the slag phase in terms of the two independent state variables FeS

and temperature, we obtain

xl = allxl + a15X5 + blu + Cl
. (5.8)
x5 + aSlxl + a55x5 + b5u + C5
where
a = a + k. a + k a + k. a

@]
[

5 7 G5+ agyX,

where unprimed constants and variables are defined in Chapter III.
The state variables are quantized into q levels for Xl and p levels

for x2 where Xl and X2 vary over the range

0 X< Xl max tons

(5.9)
1900 < X, < 2250°F
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The blow time decision variable TB may be quantized into y levels in

the interval given by
TB min < TB < TB max

The oxygen input rate u may be a constant during the slag blow or a
continuous function of time. If u is a continuous function the search
Space becomes infinite dimensional and thus adds a higher level of
complexity to the problem. For simplicity, assume u to be constant dur-
ing each slag blow, thus it may be quantized into m levels in the inter-
val

u . <u<u
min — -

max
Since there are n slag blows, the problem is formulated as an n stage
decision process as illustrated in Figure 15. The state transition

rule given by

fn
X(t) = ¢ X(n-1) + f $¢bu at (5.10)
— o E
where z(tn) is the state vector at the end of the nth blowing period,
x(n) is the state vector at the end of crane service following the nth
blow, and ¢ is the fundamental solution matrix to the homogereous form

of Equation 5.8. The state vector at the end of crane service following

the nth blow is given by

X(n) = 5-(tfn) + AX(e,m) (5.11)

where AX is the change in state due to crane service in Equation 3.3.
At each stage, all possible combinations of TB and u are considered

for each of the states attained from two separate states at stage (n-1)
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as illustrated in Figure 16. By the principle of optimality, we

choose the decisions (TB, u) which correspond to the minimum of

S, = min [S + TB(n)J (5.12)
i i-1

thus trajectory iC is the optimum path to state C at stage n. Clearly
each of the states at stage n-1 must be considered for all decisions
(TB, u).

Converter schedule.-- The third subproblem is that of several con-

verters systematically recciving all services via o limited facility,
i.e., a single crane. This leads to a scheduling prollem wherein the
abjective is to systematically arrange in time the services to each con-
verter so that the total production rate of all converters is maximizeq.
Solution of the scheduling problem results in a schedule for the crane
operator, which specifies the times crane service is required for each
converter, and a set of schedules for the converter operators, which speci-
fy the blow durations. To illustrate these ideas, we present a simple
example based upon the following assumptions:

1. The number of blows per charge cycle is given. This

determines a fixed number of services, one between

each pair of consecutive blows.

2. The number of ladles of output and input to complete
each service is given.

3. For simplicity, it is assumed that once a service is
initiated, it will be completed, i.e., all output
and input requirements will be met, before service to
another converter is begun. In other words, we require
a schedule with 0 conflicts in demands for crane ser-
vice. As previously noted service times are known.

assumption 3 may be unjustified. The crane routing example showed that

it can be more efficient to servicc two converters simultaneously ra-
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MINIMUM BLOW DURATION DYNAMIC PROGRAMMING

Figure 16
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ther than causing one converter to wait until the other completes ser-
vice. However, the routing example assumed that all other decisions
were fixed, whereas purposefully scheduling two converters for simul-
taneous service effects all other times for service. This requires fur-
ther investigation.

With the above assumptions, generation of a schedule is a small
enough problem that it may be solved by direct enumeration of all possi-
ble schedules which meet all the system constraints. A simple example
wiil illustrate the scheduling ideas. Typical service times and mini-
mum blow durations for a tﬁree converter, chree-blow-per-charge cycle de-
sign ere shown in Table 13. Service times are denoted as Ts(i, j) and
minimum blow durations by TB(i, j), where i denotes the ith converter
and j denotes the jth blow. Define TO(i, j) as the scineduled time to
service the ith converter prior to the jth blow. The system constraints
require that

TO(i, 3) > TO(i, j = 1) + TS(i, j - 1) + TBi, § - 1)  (5.13)

and

TO(i, j) # To(n, m) + o TS(n, m)
forn#i, m=1, 2, 3, and 0 < a < 1. The objective of scheduling is
to maximize J, Equation 2.1, and hence, with the assumed fixed material
input and output, to minimize the charge cycle times Ti’ given as

3
T, = jgl [TB(i, §) + TS(i, 3)] (5.14)

where TB(i, j) is the scheduled blow time, which is determined as



TABLE 13

SERVICE TIMES AND MINIMUM BLOW DURATIONS

73

Converter
1 2
Minimum
Service Blow
Time Duration
TS(1.,3) | TB (1,3) | TS(2,3) | TB (2,j) | T5(3,3) | TB (3,3)
1 40 80 37 80 39 80
Blow j 2 30 50 25 50 29 50
3 28 90 22 90 25 90
TABLE 14
CRANE SERVICE SCHEDULE, TO(i, j)
Converter
1 2 3
1 0 120 200
Blow j 2 40 150 228
3 65 172 267
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For the sample data in Table 13, a schedule was determined as shown in

Table 14, where we assume TO(1l, 1) = 0.
In order to achieve the blow durations determined by scheduling,
we turn attention to control of a converter furnace.

Converter furnace control.-- We are motivated to study converter

furnace optimization by the desire to control the blow durations in
accordance with a specified schedule. However, there are several other
variables that might be of interest in addition to blow duration. These
include temperature, sulfur dioxide (Soz) production rate and magnetite
formation. Temperature is important because high bath temperatures dam-
age the refractory lining of the converter and at low temperatures, mag-
netite is formed, which is generally undesirable. 802 production rate
is important since efficient operation of the facilities which process
802 often depend on a constant output from the converter aisle. We
new survey a number of optimal control solution techniques.

Perhaps the simplest control is to assume that the oxygen input
rate is constant over thz entire blowing period. The behavior of the
converter furnace is determined for each constant value of oxygen input

by solving the model equations, for example, Equations 3.9 and 3.13.

For a linear model state equation of the form
X(t) = Ax(t) + Bu + C (5.16)

where u is the scalar control variable (oxygen input rate), the solu-

tion takes the form
t

x(t) = o(t, to) i(to) +f 2(t, 1) [Bu + el & (5.17)
= e =

o}
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where 3 is the fundamental solution matrix corresponding to the homo-
geneous system [12]. Since we have assumed u to be constant, it can
be removed from under the integral sign, thus yielding an equation of

the form
x(t) =y, (t) +y,(t) u (5.18)

where Xi(t) and X2(t) are known. Substituting vario.s values of u into
the above equation, we obtain state trajectories which are to be evalu-
ated. By choosing from these the one that represents the most desirable
behavior, we have in a very simple way solved the problem.

If a constant control is not adequate, or it does not satisfy the
constraints (Equation 3.13), then we define a performance criterion J
and determine, in general, a time varying control function which will .
influence the converter to minimize 3. To illustrate, we pose the fol-
lowing problem: using the slag blow model developed in Chapter III and

assuming SO2 production rate to be linearly proportional to FeS oxida-

tion rate, we express a performance criterion as

t

& £ 5

J = min f (le1 - R dt (5.19)
t

" 0
where

tf = scheduled blow duration

le1 = SO2 discharge rate

R = desired SO2 discharge rate

u = oxygen input rate

We offer as a justification for this performance criterion, the physi-
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cal argument that it is desirable to maintain a constant 802 discharge
during each blow duration. The rate of oxidation of FeS was expressed

by the model Equation 3.9 as

xl = 315 + blu + cl (5.20)

where a = [all ...a16]. Substituting Equation 5.20 into Equation 5.19

~

and combining constants yields J of the form
\ te ,
J = min j (Elé + Blu + dl) dt (5.21)
0
Note that J is a quadratic function of u and thus u will be directly
determined by ainimizing J.

The system constraints are rewritten as

0<% (g <x ., k=1,5 (5.22)

0 <x(t), k=23, 4,6

< <
0 <ucx R (5.23)

We constrain the terminal value of the state variables via Equation 5.22
rather than constraining the state trajectories, because of the mono-
tonic nature of the state variables and because the terminal constraint
problem is generally easier to solve.

With the problem now eéxpressed mathematically, we point out two
dynamic optimization techniques: ( ) solution via a set of necessary
conditions determined by the maximum principle [7, 10}, and (ii) solu-
tion via a gradient search in the space of control functions (7, 10].

Both techniques employ a function H called the Hamiltonian, which is
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based upon calculus of variations.

For the approach via the maximum principle, the constraint Equa-
tions 5.22, 5.23 are absorbed in two ways, and then the set of neces-
sary equations are written which specify the optimal uo(t). Equation
5.22 is absorbed by attaching a penalty function [7, 10] to Equation

5.21.

1 /
J1 J + wlxl(tf) + wlxs(tf) (5.24)

where w, and w are penalty weights which must be determined, perhaps on
a trial basis, so that Equation 5.22 will be satisfied. Equation 5.23
is absorbed by defining niew variables Y1 and y2, where [yl(t)]2 = u(t),

and using the new constraint

2 2
Y, + y2 = umax (5.25)

The Hamiltonian for this problem is
2 2 t 2 2 2
H = (315 + Blyl + dl) + A (éf + Eyl + C) + F(yl + y2 - umax) (5.26)

where I' is a scalar Lagrange multiplier and A(t) is a vector Lagrenge

multiplier. The necessary equations are

Q
jso!
<5

-—..:O’-H,—_-O

I

QL

fi
% -

(5.27)

3H
ax =

subject to the boundary conditions
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sy = x,

Ak(tf) =w . k=1,5 X =0, k=2, 3, 4, 5

where X is assumed given and Wy and W must be determined. Equations
5.27 together with the boundary conditions, constitute a two-point
boundary value problem [7, 10] which yir + he optimal control uo(t).
In general, such a system is difficult to solve, but for this particular
case, Equation 5.27 reduces to a linear differential system which may
be readily solved.

In some cases, control solution via the above approach may be too
difficult. For example, if “lLe performance criteria are not a quadratic
function of the control u, the continl may be singular [8]. TIn these
cases, the control may be determined by an iterative gradient search,
which is simpler but less direct. At each iteration of the gradient

search, an approximate u(t) is known and

oH o]

E
and

gi - _ -

X =

are solved subject to known boundary conditions. Then, g%-is computed
and used to update the approximate u(t), and the next iteration is be-
gun. Nononen and Paquurek [8] illustrate a gradient search technique
using flux addition rate as the continuous control variable and tempera-
ture as a controlled variable.

Thus far we have assumed the blow duration to be fixed by a sched-

ule, based upon an estimate of the minimum blow times. If the scheduled
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blow times were not realistic, however, it may not be possible to

find a satisfactory solution, or any solution for that matter, with

the blow terminal time fixed. This is motivation to consider a
variable end time problem. Two basic methods of dealing with this prob-
lem are: (i) to imbed time into the original problem as a new variapble
and optimize using one of the above techniques, or (ii) simply to search
on the end-time by solving the problem for various values of ending
time. Solution of the variable end-time problem may result in blow
durations which are inconsistent with the schedule. To resolve this
difficulty, we turn to the final task of coordinating the subproblems

that have been presented so as to achieve a total system optimization.
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CHAPTER VI
OPTIMIZATION RESULTS

In the previous chapter, sever~l optimization problems are pre-
sented along with a survey of techniques for solving them. We now
focus attention on the optimization of the overall converter aisle
performance. To achieve the goal of system optimization, the problem
is partitioned into three subproblems as shown in Figure 17. The crane
routing subproblem is nct included in this study since it applies prim-
arily to converter aisles having a large number of converters Say¥ eight or
nine, while this is an example of a three-converter aisle. To eliminate

this problem, we schedule to avoid crane conflicts. Assuming material input

decisions, the minimum blow durations and corresponding terminz! states
are determined. Using these minimum blow durations and material! input
decisions, an optimum no-conflict schedule is calculated. As a result
of scheduling, the blow duration may be longer than the minimum, thus
the converter furnaces are regulated in accordance with these durations
by.manipulating the oxygen input rates. The important advantage of the
partitioned approach is that the problem has been reduced to a search
problem on a small set of decision variables, namely, the material
input decisions. 'The subproblems may be formulated as standard optimi-
zation problems and yield to solution by well-developed techniques.

For simplicity in solving each of the subproblems of Figure 17, the
following assumptions are made held constant at any level within a g..ven

range.
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1. The oxygen input rate is constant during each blow.

2. Material inputs are identical for all converters.

3. Five slag blow are assumed.

4. The system is not subject to random perterbations.
Using these assumpticns, numerical examples of the three subproblems
of Figure 17 are presented. Finall?, the converter aisle is optimized
for three choices of material inputs and the results are compared, but

a total search of the material inpu* space is not done.

Minimum Blow Durations

The objective isy given material input decisions, to find the oxygen
input rate, u, and minimu~ blow durations TB(n) which minimize the
objective function of Equation 5.6.

Since it is necessary to numerically integrate Equation 5.1 for
each investigation, the computer time required to solve the problem
(assuming one second per integration) could be several hours.

To establish the quantization size for the states and controls, it is
necessary to try several combinations of each. To shorten the time
required to obtain a solution, the state model is approximated by the

linear relationship

xl(tn) xl(n - 1) + .00177 u TB(n)

(6.1)

x5(tn) x5(n - 1) + .0156 u TB(n)

This approximation is reasonable for this problem since the model solu-

tions shown in Figure 11 are linear sor X and Xg+ An analysis of the

solutions to Equation 5.10 for various values of u shows X3 and x5 to
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be linear in u. To complete the state transition model for a given
state Equation, 5.11 is used. The amount of CuZS (i.e. x2) does not
change during a slag blow due to blowing but accumulates with each
material addition. Thus the state transition equations of 6.1 do
not reflect changes in ﬁ2 but Equation 5.11 does. The soluticn begins
at the initial state and solves forward by considering all combinations
of TB and u for all states X at each state. The solution has the con-
straint that all FeS must be cxidized at the end of the fifth blow.
The principle of optimality given by Equation 5.12 specifies the decision
rule for selecting the optimum decisions on TB and u. The dynamic pro-
gramming procedure is implemented on a digital computer and a listing
of the program is shown in Appendix 3. The results of a dynamic pro-
gramming solution using the material inputs of Table 6 Run 2, are given
in Table 15. For this solution, the states are quantized into 5 ton
increments for O < Xy < 30 tons and 50°F increments for 1900°F < X, <
2250°F. The controls are quantized into 10 minute increments for 30

min S TB < 100 min and 50 lb/minute increments for 100 < u < 250.

Schedulin

Giveir the material inputs of Table 6, Run 2; the crane service
times TS(i,j) as given in Table 16; and the minimum blow durations s
given in Table 15; find a schedule of converter aisle activities

which will maximize the copper production rate given by Equation 2.1.
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TABLE 15

MINIMUM BLOW TIMES

Blow X (TB) tons | Xg(TB)°F | 1B U
I 0 | 075 50 250
2 o s | s 200

|
3 o |' 2175 n 250
4 a 2225 4 750
5 0 | 22500 | 3 200




TABLE 16

CRANE SERVICE TIMES

Converter 1 il

Converter 2

Converter 3

]
TS(i,1) Minutes || TS(i,{) TS(1,§) |
Blow j Run 1 Run 2 | Run 1 Run 2 || Run 1 Run 2|
1 29 81 65 59 89 81
2 46 38 34 28 46 38
3 i 38 38 28 28 38 38
4 23 38 17 28 23 38
5 15 23 11 17 15 23
6 | 8 8 6 6 8 8
a i i i

85
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Cu, is a constant determined from the material input vector by the

relationship
6
cu, = )} m.GW (6.2)
=1
where G = matte grade (percent Cu)
W = weight of matte per ladle
m = number of ladles of input material

Since Cui is a constant, the maximization of Equation 2.1 is achieved
by minimizing the charge cycle time Ti which is given by equation

5.14
EI‘B(i,j) + TS(i,jZ'

The solution is a schedule of times to start the ith blow on the jth
converter and a Table of converter blow durations. The solution is
subject to the constraints of Equation 5.18. A computer program
which performs an exhaustive search on all possible schedules is
shown in Appendix 4. On each iteration of the search, the value of
J is computed and compared against the previous value. The schedule
associated with the optimum choice is retained and another iteration
is begun. The starting time TO(1l,1) is assumed to be zero in every
iteration. The results of this procedure using the material inputs
of Run 2 from Table 6, the minimum blow durations from Table 15 and
the crane service times for Run 2, Table 16 are shown in Table 17 and

and 18.



TABLE 17

CRANE SERVICE SCHEDULE (TO(i,j))

Converter i
Blow 1 1 2 3
1 0 642 701
2 147 81 169
3 251 185 213
4 355 289 i 317
5 433 393 410
6 486 456 1 463
i
TABLE 18

CONVERTER BLOW DURATIONS ((TB(i,j)) MINUTES

Convert?r i |
Blow j 1 : 2 | 3
1 66 | 162 : 109
2 66 6 | 66
3 66 2 76 66
4 40 E 76 ‘ 55
5 30 | 46 | 30
6 288 ! 180 230
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Having specified the blow durations as given in Table 18, we
turn to designing the oxygen input rates which will control the

oxidation rates of the converters in accordance with these durations.

Converter Furnace Control

Regulation of the converter furnace activity to achieve a fixed
blow duration is a terminal control problem. 1In general, the object-
ive for the slag blows is to find a continuous control uo(t) which
transfers the system from an initial state i‘to) = X to a terminal

state given by

0 j_zk(tf) < §kmax k=1,5 (6.3)

in a time interval [tf - to] = TB(i,j) for j = 1,...,5. For the finish
blow, the objective is to transfer the initial state x2(to) = x20 to
the terminal state x2(tf) ® 0 in the interval [tf - to] = fB(i,G).

The type of control functions u(t) which is to be obtained depends
on the method of its implementation. If the control adjustieents are to
be made manually by an operator, they must be much less frequent than
the case where an automatic controller is used. Thus, the optimization
method fof finding the control is chosen in accordance with the desired
form of the control. For manual adjustment u must be a discrete form
where the period between adjustments is sufficient to allow operator
response. For automatic control, u may be a continuous function of
the form u = u(t) for all “ in [to, tf].

In Chapter V, two techniques for Cetermining the optimum continu~

Oous oxygen input rate are presented. The Maximum Principle of Pontry-
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agin [10] specified the necessary conditions for an optimum solution,
The gradient search technique was considered as an alternative methaod
for a problem where the control is singular (i.e., the control cannot
be expressed explicitly as a function of the state variables and
Lagrange multipliers). |

For a discrete solution, the simplest control is to assume the
oxygen input rate is constant over the entire blowing period. As a
practical solution, the constant oxygen input problem is considered.

The probler is to find the constant oxygen input rate which will
transfer the state from a given initial value to a given terminal
value in a giver period of time TB(n), subject to the constraints of
Equation 5.9. The oxygen input rate is implicitly constrained by the
solution obtained in the minimum blow time problem. An iterative
search technique is used to find u. This is accomplished by solving
Equation 5.10 for various values of u and testing to determine if the
terminal constraints have been achieved. A computer program which
performs an iterative search for the optimum, u, is shown in Appendix
5t

The control for the finish phase may be ob-ained directly by

solving the finish phase state equation and inverting thus

1 1 %l
u = = 2 (6-4)
te X, (o)

where xé(tf)/xz(o) is the terminal concentration of Cu2S.
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A numerical example for a solution to this pProblem is shown in
Table 19. The blow durations TB(n) are obtained from Table 18 and

the initial and terminal States are obtained from Table 15.

Comparative Results

Three optimization studies were concucted, corresponding to
material input decision of Run 1 and Run 2 in Table 6 and Run 3 of
Table 20.

Applying the optimization technique for finding minimun blow dur-
ations te¢ the material inputs of Run 1 vyield a solution which does
not satisfy the constraints of the minimum blow time optimization
problem, namely that all FeS Must be oxidized at the end of Blow 5,
Therefore, Rin 1 is eliminated from future consideraticn as a material
input choice. 1In practice, when the Situation arises where FeS remains
in the bath at maximum temperature, cold copper scrap is added to
cool the bath ang blowing is resumec until all FeS has been oxidized.

The results of optimizing for the material inputs . f Rung 2 and
3 are compared in Table 21. Corparing the optimized Ruin 2 in Table
21 with the non-optimized Run 2 in Table 7 shows an improvement of 20
percent in favor of the optimally controlled aisle. Only a slight
difference is noted between the results of Runs 2 and 3 for the opti-
mally controlled aisle.

We now investigate the size of the material input search space,
The range of material input choices for this example is constrained by
the physical size of the converters and the assumption that only an

integer number of ladles may be transferred during crane service.
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TABLE 19
OPTIMUM OXYGEN INPUT RATES
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Converter 1 Converter 2 Converter 3

Blow l1b/min : 1b/min ! 1b/min :
1 ; 145 ; 25% j 70 ;
2 ; 150 ; 130 i 150 |
3 ’ 155 ; 135 | 155
4 j 250 | 125 ; 205
5 200 125 ‘ 200
6 ’ 185 , 475 : 290

*This is the minimum oxygen rate. Converter 2 will finish
in 143 minutes at this rate and thus must wait the re--
mainder of the blow duration.
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TABLE 20
MATERIAL INPUT DECISIONS FOR
RUN 3 OF THE OPTIMIZATION STUDIES

Number of l.adles

Blow of Input
1 | 4
2 | 4
3 3
4 2
5 2
6 1
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Assuming the maximum capacity of the furnaces to be Mc tons, the
objective is to determine the number of ladles of material and the

number of blows which minimize

M_ - .Z MWG) > 0 (6.7)
J=1

where W = weight per ladle of matte

., = weight fraction of Cu

1 S per ton of matte

2
i = number of slag blows

Mj = number of ladles on the jth blow

For this example the range of i is 3 to 13 and the range of M is 1
to 9.

Because of the accumulation of Cuzs on successive blows and the
capacity constraints, the search space is approximately 200 points.
With this size of space, direct enumeration is possible. However, a

search may be more efficient.
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CONCLUSIONS

A complex industrial optimization problem exemplified by
the converter aisle in a copper smelter has been identified.
Two approaches to solving this optimization problem have been
presented. The direct approach offered well developed methods
for solution, but the problem was too large from a practical
point of view. Thus, an alternative method of optimization by
partitioning the problem into managable subproblems was developed.
Then the solutions to the subproblems together compose a solu-
tion to the total problem. The results of applying the parti-
tioned optimization technique showed that an improvement of at least
20% in the copper production rate was achieved. This was accomp-
lished by minimizing the blowing times, scheduling the crane ser-
vice activities,and regulating the converter furnaces in accord-
ance with an optimum schedule. Some comments are in order re-
garding the interpretation of the findings in the numerical example.
The model used throughout this wofk is hypothetical. 1Its
purpose is to characterize the dynamics of a converter aisle with
sufficient realism for posing a practical optimization problem.
The importantlcontribution of this research is the development
of a technique for solving this type of optimization problem,

which otherwise had not yet been solved. To view in perspec-

* tive the meaningful results of the partitioning approach,

two important sensitivity considerations should be recog-
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nized. First, consider the sensitivity of the model parameters
to actual process operating data. The form of the model, for
example, may significantly influence the sensitivity of the model
to the data used in its formulation. One May also ask,
"How are the results obtained from the model changed, by varying
the model parameters (e.g., the coefficients in Equotion 3.9)?2"
This question has not been investigated in this work but clearly
is a prerequisite for accepting the results of any specific study
where this optimization method is applied. A second consideration
is the sensitivity of the optimization results to the model of the
process being optimized. Future work on this problem should include
an investigation of results obtained by optimizing with several
models.

Some considerations which may influence the results obtained
from the optimization approach are:

l. The numerical integration technique used to solve the
model equations.

2. The step size of the numerical integration.

3. The quantization levels used for the state and control
variables in the minimum blow duration problem.

Although these considerations were not investigated in this paper,
it should be recognized that they may have an important influence
on the results obtained from an actual application of the optimiza-
tion technique.
Practical application of this technique requires initially an abun-
dance of data from which to build and verify a model. For many pro-

cesses such as the converter aisle, the type of data needed to
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accomplish this is very difficult to obtain, principally due to the
lack of instrumentation for measuring the state variables. It should
be recognized that the physical environment is very harsh and special
instrumentation is required for measuring many of the variables. Cnce
a model has been developed and verified, application of the optimiza-
tion techniques presented herein will provide an optimal operating
Strategy. However, a strategy such as the one given in Table 22 does
not account for perturbations in the process such as changes in matte
grade, oxygen input rates, or equipment failures. To compensate for
this, we seek closed loop (i.e. feedback) control which continuous ly
monitors the activities of the process and adjusts the control variables
in accordance with the optimum operating strategy. This eventually
requires a control computer which performs the functions of monitoring
the system variables, filtering measurements, estimating the system
state, and computing the optimal control values. The necessity for
feedback control may be a factor in rejecting the direct optimization
approach as a method of swlving this problem. In the case where the
process disturbances are such that it is necessary to compute new
optimal control values, the direct approach would take a prohibitive
length of time to compute an updated Operating strategy while the par-
titioned approach produces a solution in a much shorter time. The
direct approach does have an advantage, however, in that a true optimal
solution is guaranteed. For the partitioned approach that claim cannot
be made since the composition of the subproblems into a total solution

may result in a suboptimal control wihich is a local optimum.
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Further research wight include continued Study of the direct
approach to seek methods of reducing size and solution time. Further
research should definitely be done on the partitioned approach to

consider improved models and the significarce of the simplifying

assumptions.
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Computer Program of the Simulation Model

Subroutine (EVHTS)

SUBROUTINE SVNTS(IX,NSET)

DIMENS ION NSET(6,1)
CcuvMmMon ID-I“.INIT.JEVNT-JWNIT.MFAoMSTOP,MX.MXC.NCLCT-NHISTo

lMOQ.N”HPT'NUT.NPRMS'NRUN.NPUNS'NSTAr'DUT'SCALE.IsEED‘TND'I
PTBEGeTFINyMXX, NPRNTosNCRDR yNEPR, VHO(4)
COMMON ATQ13(4)'EN0(A’QINN(A)QJCELS(SQZZ)oKRANK("oJLLRoMAXNQ(‘)O
IWFE(Q’n“LC(Q’oMLE(""NCELS(S)'NQ( 4) «PARAM('0,4,4) oQTlME(‘)!SSUM‘([O,
25)sSUMAL 1005’QNA'1E(6’0Np90J'MUN'NDA YoNYR
COMMON XMATL(3,6) ¢ X( 2e6)oXN{14) 4 XL(6E) .CQNB.IC.IE.NBJCU(J) +T5(3,6)
I+DELT, CU(C3)
IE=ATRIR(A4)
IC=ATRIB(3)
vIiCc=1c¢C
CALL FIND(VICO5'2020KC0L0NSET’
CALL RMOVE(KCOL s 29NSFT)
VAL=ATRIAR(1)
GO TO(I,2), IX
I IF(CRNE=1.)3,4,4
3 CALL CFNSV(TSV)
CALL COLCT(VAL. IC,NSET)
ATRIB(I)=TSV+TNOW
IF(IB=NE)S, 6,6
3 IE=19¢1
GO T 7
6 IB8=1
TCU(IC)=TCU(|C"CU!IC)
7 ATRIAS(A4)=1B
ATRIR(2)=2,
ATRI3(3)=1cC
CRNE=1,
SAV=ATRIB(I)-TNOW
CALL FILEM(1.NSET)
ATRIR(I)=SAV
ATRIB(2)=1IC
CALL FILFM{Z4NSET)
RETURN
4 CALL FlND(TNUNo?olnliKCDL'NSET’
CALLC RMOVE(KCOL +» 1,NSET)
WTM=ATRIB(I)-TNOW+,.?2
ICA=1C+3
CALL COLCT(WTM, ICW,NSET)
CALL TMST(CRNB;TND'.I.NSET)
WAIT=ATRIB(I)¢.2
CALL FILEM(I NSET)
ATRIB(I)=wWAIT
ATRIB(4)=18
ATRIB(3)=1IC
rTRIB(2)=1.,
CALL FILEM(I.NSET)
ATRIB(I)=VAL +WTM
ATRIB(2)=1C
CALL FILEM{2,NSET)
RETURN
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Appendix 1 (Cont'd.)

Subroutine (EVNTS) Cont'd.

2 ATRIRBR(A)=18
ICP=1C+6
CALL COLCT(VAL+ICP,NSET)
CALL CONVT(TMC)
ATRIB(1)=TMC
PAV=TNOW¢ATR1IB( 1)
CALL FILEM{2,NSET)
ATRIB(1)=PAV
ATRIB(2)=1.,
ATRIB(3)=1C
ATRIB(A)=1B
CRNB=0,.
CALL FILEM{1,NSET)
RETURN
ENC



Subrou

*ONE

Appendix 1 (Cont'd.)

tine (CRNSV)

WORLC INTEGERS

SUEBROUT INE CRNSV(TSV)

DIMENS IUN 1 AL(3)

CUOMMON ln-IM-INIT.JEVNT-JMNIT-MFA.MSTDP.MK-MxC.NCLCT.NHIST-
lNQO’NORPT-NQT.NPRMSoNRUNcNRUNS-NSTATcDUTcSCALE-lSEEDoTNO‘.
2TBEGy TF INyMXXyNPRNT NCFDR ¢NEP, VNG ( 4)

COMMON ATRIB(“).ENQ(‘)clNN(‘)oJCELS(5022)oKRANK(.,oJCLRcMAXNO(‘,c
IMFE(Q)OMLC(Q.oMLE(Q)oNCELS(S)oNQ{&)oPARAM(ZOc‘)'QTlME(‘)QSSUMA(IOc
25)9SUMA(1045)sNAME(6) sNPROJ +MON JNDAY s NYR

COMMON KMATL(3.6).K(3.6).KN(IQ)OXD(G)oCRNBoICoIB-NB-TCU(J)075(306,
19 DELT, CULI)oOXY(E)

TPL(1)=,7
TPL(?)=,.5
TPL(A)=,7

1F(IR-€6)4,5,4

XLCL=CU(IC)/15,.¢1,

YLCL=0.

GO T 7
XLCL=X({ICsa)/15.¢1,

YLCL=XLDL=~1,

LCL=XxLCL
XLCL=tCL
TSL=XLCL*TPL(1C

1F01R-S)1,42,1

C COMPUTE CONVERTIR STATE AT TH- END 0OF CPANE SERVICE FOR SLAG.BLDH

XE1Co 1)=XMATL( 14 IR+ X( IC 1)

X{ICs P?)=XMATL(2,19)+¢X{1Co2)

X(ICe3)=X(1ICe2)%42744X(1C43)

X{1Cov4)=X(1Coa)~YLDL*15,

X{1CeS)=X(1Ce5 )% 01
K(IC.6)=(X(1C.6)*(K(IC-I)-KMATL(I-IB))“(KMATL(I-IB)*XMATL(Z-IB)*I.
lZ?h)tIQCO-)/(X(ICol)fXMATL(E-IB)*l-2741
TSV=(TS(1Cs 10) ¢TSL )*RNORM( 4)

RETURN

ND 3 1=2,.,5

X{1Cy I)=0,0

XCICo 1)=X( ICo ) DEXMATL( 1, 16) *RNORM(] )

X{ICs6 =:X(IC0L)*(X\ICol)-XMATL(loIB))Q(KMATL(lolB)’KMATL(Z-IB)‘ia
1270)*1900-)/(X(KCoI)OKMATL(ZoIB)*l-274)
TSVS(TSOIC,IB) ¢ TSL)*INDORM( 4)

RETURN

ENC
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Appendix 1 (Cont'd.)

Subroutine (CONVT)

#ONE WORC INTEGERS

101

20
21

15

SUERQUTINE CONVT(TMC)
DIMENSION XM(14)

COMMON lean!NlTpJEVNTnJMNIT.MFA.MSTOP.MX-MXCnNCLCT-NHIST-
lNOGpNURPT-NOT.NPRMS.NRUN.NRUNS-NSTAT.DUT-SCALEplSEED-TNOV-

2TBEGs TFINsMXXs NPRNTyNCRDR ¢NEP s VNQ( &)

COMMON ATRIB(Q).ENQ(A’.lNN(»)-JCLLS(S-ZZ)nKRANK(Q)pJCLR-MAXNO(Q)r
IMFE(Q)pMLC(Q)nMLE(Q)pNCELS(S)pNQ(O)pPARAM(20n4).OTIME(Q)nSSUMA(IO-

25) s SUMAC10s5)s NAME( 6) s NPROJsMON sNDAY 4o NYR

COMMON XMATL(3,6)eX(3+6)¢XN(14)¢XD(6)sCRND sICIIBINBsTCU(3) s TS(3:6)

1+ CELT,CUCI)sOXY(E)
WRITEC(NPRNT,101)1C, 18
SCL=10.

FORMAT(S5%,216)

T=0.

IFCIR-€E)1s202
IF(X(1Ce6)-2250.)304,4
IF(XCICs2))4,2942)
IF(XCICs 3)IA21021

JL=1
WRITE(NPRNT 109 T (X(ICsL)osL=1,+6)
JN=0

DO 6 I=1+6

XKD(1)=0.

DO 15 I=1s14

XM{I)=XN(I)

K=2

DO 8 I=142

XMEILAIISXM(IL ¢1)/7CXCICoLI#X(IC2)4X(1CH»3))
DO 7 J=1,+6

JL=JL ¢+1

JN=JIN+ 1]
XOC(K)I=XMCIN)I&X( ICs J)¢XD(K)
JL=JL+1

JN=IN+1]

XOC(K)I=XD(K )¢XM(IN)

K=K+4§

U=0xv(18e)

XD(1)=0,
XD(2)=XD(2)~.0018%V
XD(3)=XD(2)%.274
XD(4)=XD(2)*(-.866)
XO0(S5)=XD(2)*%(=-.19)
XD(6)=XC(6)+.016*V

DO 9 1I=1+6

XCIC,) 1)=XCICos 1 )eXDCL)*DELT
T=T4DELTY

GO 7O 1

TMC=T/SCL

WRITE(NPRNT, 100)Ts(X(ICsL)sL=1,56)
RETURN

T=0.

CUCIC)I=X(ICs1)#*,.8
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Subroutine (CONHVT) Cont'd.

10 IF(X{1Co1)=0ald12s11011
11 U=0xY(1B)

WRITE(NPRNT, 100) T, ( X(ICsL D)ol =146)

ARG= o1 SOE~06SUKTH% 2,

X{1Ce 1 )=X{ ICs 1 V*EXP(~ARG)

T=T4DELT
GO TO 10
12 TMC=T/SCL

lRlTE(NPRNTolOO)To(X(lCoL).L:l.ﬁ)
100 FORMAT (2XsFBoa3+6(2XsE1444))

RETURN
ENC
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Aprendix 2

Model Parameters and Assumed Oxygen Input Rates

a. Coefficients of the Slag Phase Model as expressed by Equation 3.9

App = =29 Ag; = 085

Apy = 0005265 Agy = .000106
Aj3 = 008117 Agy = -.007658
Ay, = 001004 Ag, = --0004252
Ays = -.00006333 Age = -.00003307
Ajg = .00769 Age = =.005419
C, = .06282 C, = .2167

Ky = .274 by = .016

K, =-.93

Kg = -.19

b, = -.0018

Assumed u = 150 lb/minute

b, Coefficients of the Finish Phase Model as expressed by Equation 3.17

o = .15 x 10°®

Assumed u = 100 lb/minute



Computer Algorithm for the Minimum Blow Duration Problem

AFTER CATA CARD INSERT 11 = | (FOR 360 COMPUL.ER) OR 11
MUST DE PUNCHED AS FOLLOWS AND STACKED IN THIS ORDER:?

IST CARD - CU2S (AMOUNT ADDED FOR EACH OF 5 BLOWS) FORMATY §F10.0
2ND CARD = FES (AMOUNT ADDED FOR tACH OF
CARD - FLUX (AMDUNT ADNDED FOR EACH OF § BLOWS) FORMAT 5F10.0

DATA CARLCS

IRD

Appendix 3

5 BLOWS) FORMAT 5F19,0

109

(FOR 1809 COMPUTER)

4TH CARD - TB1 (INITIAL VALUE OF JLOW DURATION) s DELTH (INCREMENT FOR BLOW
DURATION)s M3 (NUMHER OF TIMES TO INCREMENT BLOW DURATIGN) FORMAT

STH CARD - VI (INITIAL VALUE OF OXYGEN RATE) s DELTV (INCREMENT FOR OXYGEMN
RATE) eM4 (NUMBER OF TIMES OXYGEN RATE 1S INCREMENTED) FORMAT

29

1001
10090
21
22

21
24

25

2F10.Ce110,

2F 10604110,

DIMENSION T(10410,€), U(lO.lOoﬁ).X(6)uCUZS(S)oFES(S).FLUX(S).XS(G)

DATA T,U¢X/1206%0,0/

11 =1
REAC(11,1)(CU25(1)el=1,5)
REAC(1141)(FES(1)el=1.5%)
READ( 114 1 I(FLUX(1)al=1,%)
FORMAT (5F10.0)
REAC(11,2)TR1,DELTB,M4
REAC(11,2) V1,DELTV,M3
FORMAT (2F10.04110)
X{(4)=J2,0

X{S) = 150C.00

X(€)=0,0

xX(1) = FES(1)

00 35 N=1,5

X(2) = CU2S(N) ¢+ x(2)
X{3) = FLUX(N)

Nl=1

N2=1]

1F(N=-1)20,20,4

IT = TINL1sN2+N)
1IF(1IT-0)31,21,5

X{1) = € = NI

X(1) X{1) - 2,

xX{1) FES(N) ¢+ x(1)

X{E) S%.%N2

x(€) X{S5) = 2540 ¢+ 1$23.00
A = FESIN) ¢ CU2S(N) + FLUX(N)
= X(1) ¢+ x(2) =FZS(N)-CU2S(N)
= X(1) ¢ X(2) + x(3)

(€) = (X(5) * B ¢+ 1900.0 * A) /C
= Vi

DO 20'Ml=],M2

TE = TP1

DO 29 M2=1,M4

TBT = TR + TINL1«N2.N1

CALL DONOT (Ti34VeXeXS)
IF(N-5)10CCe1001,1C0O1}
IF(XS(1)-54)21421426
IF(XS(1)~-0.0)29,29,21
1F({XS({S)-22€0.0)22,22,29

DO 23 I=1,46

R = S§x1]

IF{XS(1)-R)24, 24,21

CONT INVE

S=}19%0,

DD 25 J=1.7

IF{XS(5)=5)26, 26,25

3 =S ¢ 50,0

A
C
X
v
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26

27
28

70
29
30
31

32

35

44

45
46

Appendix 3 (Cont'd.)

NS=N¢1)
IT = T(14J4NS)
iFLIT-0)2R, 28, 27
IF(T(I1+J4sNS)~-TAT )29, 29,28
T(IlsJeNS) = TRT

UCIvJeNS) =V
WRITE(3s70)TBT,VylsJdeN1,N2
FORMAT (SXs2E12.5,41€)

TB = TE ¢ DELTH

V =V 4 DELTV
IF{N=-1)35, 35, 3}

N2 = N2 ¢+ 1}

IF(N2-7 )a,4,32

N2 = }

N1l = N} 4+ 1

IF(NI-€ )a,a,35

CONT INUE

WRITE(J, 44)

FDRMAT(*1v,* BLOW TOTAL BLOW TIME DXYGEN RATE

1P)*)

DO SO0 K=2,6

DO SO I=1,6

DD SO u=1,7

L=K=-1]

IT=T(1sJsK)

IFCIT-0)50. 50, 45
WRITE(IoA6ILeT(10DeKD)oUCTsJoK) o144
FORMAT (* '-2!.II-Sx.FIO.?.GX.FIO-2.HX.!2.7X.12)
CONT INVE

CALL EXIT

ENC

SUBROUTINE DDNOT(TEND, U, Xo XS)
DIMENSIDN X(6), XS(€)
XS(1)=X(1)=¢00177%UXTEND
XS(S)=X(S)4,01565*«L*TEND

RETURN

ENC

I(FES)

J(TEM
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Appendix 4

Computer Algorithm ¥cr the Optimum Scheduling Problem

DIMENS ION TS(J;O).TS!(J.O).TB(3.6’.78!(3.6)0750(3.6)0730(306,070(3
IQO)QT(JoG)oTU(Job)oAT(306)0L3(3o6)oTDO(JoQ)
DATA TDO/18%0.,0/

READ AND WRITE INPUT VALUES OF SERVICE TIME AND MINIMUM BLOW DURAT 1ON

A
110

39

40
R[]

0O 110 I=1,3
READ(141)(TSI(I4K)K=1,6)

READ(1+1)(TD1{14K1K=1,6)

FORMAT(6F1040)

CONT INUE

WRITE( 3, 39)

FORMAT (* ¢ *INPUT: CONVERTER BLOW SERVICE TIME MIN. RLOW DURATIO
INY)

0O 30 M=1,3

0O 30 N=1,6

WRITE(3480)MsNeTSI{MeNI 4 TRL(MN}

FORMAT(® *¢11Xe1106Xs1145KeF10e225XsF10.2)

CONT INUE

ROTATES INPUT VALUES TO TRY EVERY COMBINATION

GENERAYFS NEW ARRAYS OF INPUT VALYES FOR EAC

41

A2

432

“8

45

46
47

45

49

59

51

S2

S3
54

ATT=0

DI 13 1=1.6
D0 13 1A=1.6
DO 13 1B=1.6

DN 62 L=1.6
LC=L+I~1

GO TO (47.47.47.47.47.47.&[.42.43.44.“5.46).LC
LC=1

GO TO a7

LC=2?

GO TD a7

LC=3

GO TO a7

LC=4

GO TO &7

LC=S5

GO TN a7

LC=¢€

TSC1.L)=TS1(1.LC)
TE(14LIZTRI(1,LC)

DO 62 LA=1,5

LO=LA ¢ 1A - }

60 TO (54054.54054054.54048.“9050-51052053)0LD
LD=1

GO TO 54

LD=2

GO TO Sa

LC=3

GO TO Sa

LC=4

GO TOo Ssa

LD=S

GO TOo &4

LC=6

TS(2.LAI=TS1(24LD)
TR{24LA)=TB1I(2,LD)

DO 62 LL=146

LE=LL+1IR~-}

GO TO (6[06[061{6[06[.6[055056057053059060)-LE

111

H COMBINATIUN OF INPUT DATA
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S5 LE=1
GO TO 61
56 LE=2
GO 1O €1
57 LE=3
GO TO 61
SS9 LE=4
GO TO 61
59 LE=S
GO T0 €1
60 LE=6
61 TS(3.LL)=TSI(3.LE)
62 TBI3,LL)I=TBI(3,LE)
COMPUTES TOTAL TIME FOP A COMPLETE CYCLE (6 RLOWS AT ALL 3 CONVERTERS).
DO 28 1M=1,3
D0 28 IN=1,6
28 TD(IMe IN) = 0,0
D0 11 KAN=1,3
D0 11 J=1.6
Ji=J=-1
IF(J1-0)32,2,3
2 J1=6
J2=J+1
1F(J2=-7)5¢8,S
4 J2=1
TULeU)=TS(20J)4TSU30U)4TO(2,U1)+TC(3,41)
TO(1eJ I=TR(14J)=-T(1,J)
IF(TD(14J))64647
TD(1,0)=0
7 T(1eJ)=T(14J)+TD(1,4 )
T(20J)=TS(1eJ2)¢TSU3ed)+TD14J)I+TD(3,4J1)
TC(2:J)=TB(2:J)-T( 2+ )
IF(TD(2+J))848,9
8 TD(2,4)=0
9 T(2+J)=T(2:0)+TD(24J)
TUE20UI=TS{10U2)4TS(2,42)+TDU1,J)+TO(24J)
TD(3:J)=2TR(34J)-T(304)
IF(TD(3,0))10,10411
10 TD(3,u)=0
11 TU(34J)=2T(3:0)+TD(3,00)
TT=0
DO 22 xk=1,23
DO 22 L=1.6
22 TT=TO(KsL) ¢ TS(KeL) + TT
SFLECTS MINIMUM CYCLE TIME AND STORES ARRAYS OF SERVICE TIME. MINIMUM BLOW
ODURATION, AND OPTIMUM BLOW DURATION
TTI=1./TT
IF(TTI-OTT)13,13,12
12 OTT=TT1
DO 21 M=1,3
DO 21 N=1.6
TSO(MeN)=TS(MN)
TEBO(M N)I=TB(M,N)
TDO(MyN)=TD(MyN)
21 TO(MyN)I=T(MN)
10=1
1AQ=1A
IRC=13
TTO=1,/0TT
I3 CONTINUE

(=]

3]

o
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OUTPUTS RESULTS OF OPTIMIZATI AN, STATES NPTIMUM STARTING CONDITIONS FOR
EACH COMVERTER AND DPTINUM TOTAL CYCLE TIME,
WRITE(3,14)10, 1A0, B0, TTD
14 FORMAT(*0*, *AT T=9: CUNV. I IS ON BLOW *411,%, CONV. 2 IS ON BLOw
1*sI1e%s CONVe 3 1S ON BLIW *ello's'/ * THIS GIVES OPTIMUM TOTAL T1I
2ME OF *4F 1042, MINUTE S. *)
GENERATFS AN INDLCX F0OR EACH CONVERTER, TO INDICATE CORRECT HLOW NUMBERS
DO 71 L=1,6
LEBCl,L)=L +10 -1
LB(2oL) = L 4 1A0 - 1
71 LA(I,L) = L ¢+ 1RBND - 1
DD 77 M=1,3
B0 77 N=1,6
L = LO(MN)
GO TO (77.77.77.77.77.77.72o73.74-75.76)oL
72 LB(MyN)=1
GO TO 77
73 LB(M,N) = 2
GO YO 77
74 LB(M,N) = 2
GO TQ 77
75 LA(MyN) = 4
GO TO 77
76 LB(MyN) = =
77 CONTINUE
NUTPUYTS AN ARRAY QF OPTIMUM BLUW LURATIONS
WRITE(3,100)
100 FURMAT (*1°%,16X, *OPTIMUM BLOW DURATIONS® 7/ *AlSX.*BLOW 1 B3Low 2
1 BLOW 3 BLOW 4 BLOwW S BLDOW 6°)
DO 103 1=1,3
WRITE(Je 101014 (TO(1+KIoK=1,6)
101 FORMAT(*0*,*' CONVERTER el 1e6(2X4F7.2))
103 CONTINUE
GENERATES A TiIMmE SCHEDULE FOR 0P TIMalL CRANE SERVICE FOR CONVERTERS
DO 85 I=1,21
DD BS J=1,6
85 AT(IsJ) = 0.0
DO R2 KEN=1,3
1F(KEN=-1)96,96,98
96 AT (1,1)=0,0
AT(2¢1) =TSOC1, 1}
AT(3,1)=TSO(1.1) + TSO(2+1)
D0 97 1=1,3
DD 97 U=2,6€
97 AT(I+J) = AT(1.J=-1) ¢+ TOC14J-1) ¢ TSO(1,.J-1)
GO TO 99
973 CDNTINUE
DO 70 Kk=1,2
DO 70 L=1,6
L3=L-1
IF(L3-0)70,95, 70
95 LJA=6
TO AT(K,L) = AT(K,L3) + TO(KsL3) ¢ TSO(K,L3)
99 CONTINUE
DUTPUTS CRANE TIME SCHEDULE ,
WRITE(3,90)
89 FUFMAT('O'.JX.'TIME'.QX.'CONVERTER'.QXo'HLOW'.‘X.'DPTlMUM 3L0W DUR
1AT 10N SERVICE TI1ME*)
DD B2 J=1,6
on A2 =1,3
WRITE (J}GIDAT(l.J)ol.LB(l-J).TD(loJ)-TSO(l.J)
8l FDRMAT('O'.F8.2o7X-ll.QK-llollX.FlO.ZoQK-FlO.?}
B2 CONTINUE
CALL FXI1T
ENC
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Appendix 5

Computer Algorithm for the
Converter Furnace Control Problen

®CNC WORC INTEGERS
*L1S5T S7URCE PRNGRAM
SUEFQUT INE TDN”D(T:ND'U'XXQXTEST'T)
DIMENS 10N XM(]“)'A(lu)'Xr(ﬁ)oXS(ﬁ)'XD(é)'DUMVX(ﬁ)
DATA X4 /-0.0029: 02.0.5265E-03.0.8!l7F-02.0-1004E-02o
1 -0.63335—04.9-76’)CE—‘QZ’.0.523?E-CIo0.0BSOE 00+0¢1060E=034=0+7653E=
2 O?o-O.Q2525-03o-0n3307E-00.-0.5419E-02'002167E covs
CeeessTHIS PROGRAM IS SIVEMN THE STATE VARIASLES AND BLOW TIME FOR THE
CooeeeCONVEPTERS AND FINDS THE OPTIMUM L ,
CosonexM(1) 15 THE A(144) COEFFICIENTS
DELT=5,9
u=2«,
Cooes e DUMMHY ARRAY T PRISERVE A1l FOR CALCULATING All PRIME
DO 125 NQ=1,4
A(NG)=XMING)
125 CONT INUE
11 T=0.
CO 124 N3=1,6
XS (NP )=XX(NP)
124 CONTINUE
13 JL=0
CO 19 1L=1,6
XCOIL)=C,.
1?7 CONTINUE
T=T+CeLT
CO €9 [Yy=1,6
DUMYX (1Y )=xS5(1Y)
69 CONTINUE
K=1
Co 15 1=1,2
XM(JLG[)=A(JL*1)/(XS(I)GXS(2)0X3(3))
C) 15 J=1,.6
JL=JL +1
XD(K)=XM(JL)¥XS(J)4XD(K)
15 CONT INUE
I=uL+1
XD(K)=XD(K)0XM(JL)
K=K +4
16 CUNTINUSZ
XDC1)=XC(1)-,Co1a%L
XO(2)=XC(1)*% ,274
XD(O)=XC(1)*(--EEG)
XD(?):XD(S)G.OHF#U
XD(G)TXC(I)*(--IQ)
CO 2% I=1.6
'3(1)=X5(I)GXD(I)*DELT
25 CINT INUE-
lF(XS(l)-XTEST)77.77.lCC
122 1IF(T-TENC)Y13,79, 76
79 uUs=Uy+s,
GO 70 1]
77 lF(T-(TEND-S.))QQ'ICI'ICI
101 lF(T-(TEVDGS-))lC?olO?o?E
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CessesLINFAL INTERDULATION

73
HH

102

i

44
4%

£n 63 12=1.6

(Cont'd.)

XSCIZ)=(xSUIZ)eDUMYX(TI2) ) /2,

CINT INUF
F=T=-(0LLT/24)

WEITEC242)ToUs(XSUI) 0l 4 4h)

FORMAT (HE1144)
RETURN
WHRITE(3,45)

FORMAT (* WHAT HADPL NI ? MISSED RESULT.?)

HETURN
“NC
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