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ABSTRACT

The objective of this study is the development of a

procedure for determining the large dynamic response of

structural systems consisting of beam and rectangular

plate elements. The analysis takes into account both

geometrical and material nonlinearities. The general

approach to the problem is based on the finite element

method and the use of displacement interpolation functions.

The energy expressions for both the beam and plate

elements are obtained and are used to generate the stiffness

and mass matrices of the elements. Also, the geometric

stiffness matrices are derived which account for the

effect of geometric nonlinearities. Plastic deformations

are taken into account by means of an incremental theory

of plasticity coupled with the concept of initial strain.

A computer program is developed for the analysis of

structures which consist of beam and rectangular plate

elements. This program may be used to perform an elastic

static, elastic dynamic, or plastic dynamic analysis with

or without the inclusion of geometric nonlinearity effects.

It can also be used to perform a free vibration analysis

of a structure, leading to the natural frequencies and modes

of vibration. The computer program is used in this study

to obtain the solution to several example structures



subjected to static or dynamic loads. Results indicate that

both geometric and material nonlinearities have an important

effect in the deformation of structures composed of beam

and plate elements.
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I. INTRODUCTION

1.1 General and Review of Literature

Large deformations of a structural system give rise to a

nonlinear phenomenon. This leads to nonlinear equations which

immediately render classical methods of analysis inapplicable.

Among many approaches to the solution of the problem, the

finite element method has been the one most commonly used in

recent years. The structure is first idealized as an assembly

of discrete structural elements, and some assumptions on the

displacement distribution with respect to these elements are

then made. The complete formulation is obtained by combining

these individual approximate displacement distributions in a

manner which satisfies the force-equilibrium and displacement

compatibility relations at the junctions of these elements.

Numerical methods of analysis may then be used to solve the

equations. In such a formulation of the problem, matrix algebra

is appropriately utilized and conveniently lends itself to solu-

tion by means of a digital computer.

In dealing with large deformations of structures two types

of nonlinearities have to be taken into account, i.e., geometrical

and material nonlinearities. The concept of using the finite

element approach in solving geometrically nonlinear structures

was initially advanced by Turner et al (1). Martin (2) reviewed

the work on geometrically nonlinear problems and presented geo-

metric stiffness matrices for a number of-structural elements,
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while Oden (3) gave special attention to incremental formulations

of these problems. Oden also studied the problem from dual view-

points: first, the approach in which nonlinear stiffness relations

with complete generality were generated and solved by the Newton-

Raphson method. Secondly, the approach in which the structural

problem was viewed as one of minimizing a scalar-valued function

defining the total potential energy of the system of n-variables.

The behavior of geometrically nonlinear frames was the

subject of several investigations, such as (4-7). The problem

of large deformation of plate structures was previously investi-

gated by Timoshenko (8), who considered the interaction of

bending and in-plane (membrane) action. Greene (9), and Kapur (10)

derived separately the stiffness properties for a rectangular

plate for various static loading conditions. Murray and Wilson (11)

studied the large deflection of plates by using triangular elements

in which in-plane as well as out-of-plane displacements were

permissible. Brebbia and Connor (12) investigated the same prob-

lem by initially setting up the stiffness matrix for the structure

and then solving the system of force-displacement equations using

a limited number of load steps, and followed by corrections based

on the Newton-Raphson method.

Zienkiewicz and Cheung (13) analyzed a plate with edge beams

subjected to'static loading of relatively small magnitude, and

compared the finite element solution to the classical solution

given by Timoshenko (8). The elastic-plastic analysis of plates

with edge beams was considered by McNeice (14). Weaver et.al. (15)
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considered a rectangular plate with in-plane and torsional action.

Timoshenko (16) studied the problem of the small deformation of

a rectangular plate subject to a concentrated lateral load at

center and uniformly compressed in the in-plane directions.

In recent years, there have been other significant contri-

butions, for example (17,18). Furthermore, the problem of

material nonlinearity as related to structural systems has

received increased attention by several investigators, such as

(19-21). In most of these investigations, plastic behavior

beyond the elastic range has been determined by the use of the

Prandtl-Reuss equations (22) of the classical plasticity theory.

Concurrently, two distinct methods of incorporating plastic behavior

into a finite element analysis have been developed, and are refer-

red to in the literature as the "initial strain" and the "tangent

modulus" methods (20). Such techniques are very suitable in
I

dealing with problems that involve both geometric and material

nonlinearities.

Very few solutions to structural dynamics problems have

been reported in the literature which aim at determining the

complete response of a structural system, including the elastic

and inelastic deformations, as well as the effect of geometric

nonlinearities. In this connection Farhoomand, Iverson, and

Wen (23) developed a method of dynamic analysis of space frames

considering the combined effect of material and geometric non-

linearities. In their analysis, the mass properties of the

structural components were lumped at the joints and the material

5



was assumed to be elastic-perfectly plastic, with inelastic

deformations taking place at member ends only. Likewise,

Toridis et al (24,25) presented an incremental finite element

procedure for the dynamic analysis of framed structures with both

geometric and material nonlinearities. Their solution was based

on the concept of initial strain and the use of the geometric

stiffness matrix for a beam element. Strain hardening and

hysteretic effects were also taken into atcount.

More recently, McNamara and Marcal (26) developed a numerical

procedure aimed at the use of the finite element method to analyze

large elastic-plastic deformations of structures under a variety

of dynamic loadings. In their procedure, the basic equations

for nonlinear finite element analysis were linearized based on

an incremental process and the addition of two error terms to

account for discretization errors. It was shown that the

corrected incremental equations, in the form used in their

analysis give stable and accurate solutions even with

relative large time increments.

1.2 Object and Scope

The objective of the present investigation has been the

development of a procedure for determining the large dynamic

response of structural systems consisting of beam and rectangular

plate elements. The analysis takes into account both geometrical

and material nonlinearities. The general approach to the problem

is based on the finite element method and the incremental plasticity

theory coupled with the use of the geometric stiffness matrices of.

the elements to account for significant changes in the geometry of

6



the structure. From the practical viewpoint, one of the additional

objectives of this study has been the development of a general

purpose computer program for the analysis of the type of structures

under consideration. The computer program is designed with suf-

ficient flexibility for possible use with various classes of

structural elements. Presently, the classes of elements that

have been incorporated into the program consist of two types of

beam elements corresponding to plane or three-dimensional action,

and five types of thin rectangular plate elements corresponding

to membrane and/or bending and twisting action. The beam and

plate elements may be used alone or in combination (beam-plate

assemblage) to perform a static, elastic dynamic or free vibration

analysis of a structural system. Likewise, a plastic dynamic

analysis may be performed, but the type of plate elements that

can be used for this purpose is presently restricted to rectangular

elements with membrane (in-plane) action only.
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II. BRIEF REVIEW OF BASIC CONCEPTS

The use of the finite element method in solving structural

problems is well known. For comprehensiveness, related topics

such as Castigliano's theorem, the strain energy expression,

and the stress-strain relationship for the problem under con-

sideration are briefly discussed. The concept of the direct

stiffness method is next outlined and is followed by the formula-

tion of the dynamical expressions governing the behavior of the

system. Temperature is assumed to be constant throughout all

the derivations.

2.1 Brief Review of Basic Concepts

2.1.1 Strains and Displacements

The structure under study is first partitioned into

a set of idealized elements. For each idealized element, the

interior displacements [u] are assumed to be expressible in terms

of the nodal displacements [U] by the matrix equation

[u] = [a] [U] (1)

where [a] = [a(x,y,z)] is a rectangular matrix and a function

of the position coordinates. The matrix [a] is usually determined

by assuming the form of the displacement distribution. This

displacement'distribution must be continuous and should preferably

satisfy compatibility of deflections and slopes on the boundaries

of the elements. The satisfaction of the stress-equilibrium

equations is also desirable. It is thus clear that in general,
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only approximate expressions for the matrix [a] are expected

since the latter depends on the complete displacement distri-

bution of the entire structure.

Since the total strains [c] are functions of the dis-

placements [u], which in turn are functions of [U], the follow-

ing matrix equation is valid:

[E] = [b] [U] (2)

where [b] is again a rectangular matrix.

2.1.2 Castiliano's Theorem, Strain Energy Expression

Stress-Strain Relationship

The well-known Castigliano's Theorem (27) states that

if a structure is subjected to a system of external forces

Sl, S2' ... , Sn and if only one virtual displacement 6u is

applied in the direction of the load SY, and if V represents the

strain energy of the system, then

= V (3)

Y D

If u is identified as a nodal displacement and if the index is

varied from y = 1 to y = n, then the following matrix equation

may be obtained from this set of n equations

IS] = [ (4)

The strain energy, V, shown in Eq. (4), may be expressed

in matrix notation as (dv represents an infinitesimal volume element)

V[c] [a] dv. (5)v = T dv

9



The stresses [a] and strains [c] shown in Eq. (5) are

related by the following equation:

[a] = [D] [c] (6)

where [D] is a rectangular matrix, referred to as the "elasticity

matrix."

2.2 Stiffness and Inertial Properties of Elements

The concept underlying the direct stiffness method is the

determination of the displacements of an idealized structure

under some specified external loading by investigating the

stiffness properties of individual structural elements which can

be used to represent the idealized structure. The displacements

will be considered -as the unknowns throughout the analysis. The

stiffness properties of an individual element may be obtained

by substituting Eqs. (2), (6) into Eq. (5), so that

fv1 T£ o dv = 1 v[OT T
V = [a] d v f ([b] ID] [b]) [U]dv. (7)

Differentiating the above equation with respect to the ith nodal

displacement and substituting the result into Eq. (4), the follow-

ing equation is obtained

[S] = 3 = (U ([b]T[D] [b]dv) [U]. (8)

Defining

[K] = fv ([b]T[D][b]dv (9)

where [K] represents the elastic stiffness matrix of the element,

Eq. (8) now becomes

10



[S] = [K] [U] (9a)

which is the force-deformation relationship of the element under

consideration. It can be observed from Eqs. (8)-(9a) that the

stiffness matrix components may be represented as

2
K = U (10)
jk DU i uk

It should also be observed that in view of Eqs. (7) and (9), the

strain energy expression V may be represented as

1 T

[U] [K][U] (11)

If only one element is used to idealize the structure,

Eq. (9a) is the representative equation. However, in the general

case of a structure consisting of several elements, the force-

deformation relation of all the elements, as given in Eq. (9a),

may be appropriately assembled to form the representative equa-

tion of the entire system.

In considering the dynamic response of a structure, the

inertial properties of the system must first be determined. As

shown in Refs. (25) and (27), the mass matrices of the individual

elements of the structure may be computed through a process

similar to the generation of the stiffness matrices. Again, an

integration over the volume of the element is needed, so that,

letting [M] represent the element mass matrix

[M] = Iv p[a] T[a]dv (12)

where, p, represents the mass density of the material.

11



As in the case of the stiffness matrices, the mass matrices

of the individual elements may be assembled appropriately to form

the generalized mass matrix for the entire structure.

2.3 Effect of Geometric and Material Nonlinearities

As will be shown later in this report, the effect of

significant changes in the geometry of the structure can be

accounted for by the inclusion of higher order nonlinear terms

in the strain-displacement relations. This, in turn, intro-

duces an additional stiffness matrix KG, referred to as the

"geometric stiffness matrix." In such a case, it has already

been demonstrated in Ref. (25) that for a framed structure

consisting of beam elements, the strain energy expression given

by Eq. (12) takes the form of

V = 1 [U] T([K] + [K]) [U] (13)

where, as before, [K] represents the elastic (first order)

stiffness matrix of the element defined by Eq. (9), and [KG]

refers to the geometric stiffness matrix.

When inelastic deformations take place, it is assumed

(24) that the total strain vector [c] may be divided into an

elastic part [ e] and a plastic part [cP]. In turn, the

plastic strain vector may be treated as an initial strain vector

[eo], so that

,e] = [ -] _ [ ] (14)
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In a similar manner, it is assumed that the nodal displacements

of the element may be separated into an elastic part [Ue I and

plastic or initial part [U°]. Furthermore, it is assumed that

the interpolation or shape functions chosen to represent the

elastic displacement distributions within the elements may also

be used to represent the plastic displacement distribution in the

elements. Following this approach, it is shown in Refs. (24)

and (25) that the effect of the plastic actions occurring in the

elements may be represented as equivalent forces acting at the

nodal points of the elements. In this manner, the modified

equilibrium equations can be easily formulated.

2.4 Transformation Matrices

So far, the discussion has centered on the generation of

the stiffness and mass properties of an individual element

referred to the local coordinate system of the element. In

order to determine the corresponding properties of the entire

structure, a global coordinate system must be established. The

displacements and corresponding forces of the elements are then

transformed to the global coordinate system, prior to the appli-

cation of the direct stiffness method.

Let [U] and [S] be the element displacements and forces

with respect to the local coordinate system, and [U] and [§] be

the same element displacements and forces with respect to the

global coordinate system, respectively. Let [Xl] be the trans-

formation matrix between these two coordinate systems. Then,

[U] = [ U] (15)
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Additionally, by using the principle of virtual work, the follow-

ing expression may be written

[S] = [X][S]. (16)

Substitution of these two equations into Eq. (10) yields

[] = [K] [] (17)

where

[K] = lil [K] [XI] (18)

Eq. (17) is analogous to Eq. (10) except that the stiffness

matrix of anyone element is now expressed with reference to the

global coordinate system.

The element mass matrices may be transformed in a similar

manner. Letting [M] represent the element mass matrix with

respect to the global coordinate system

[M] = lX]T[M] [X] (19)

2.5 The Basic Dynamical Equation

The dynamical equation of the system is derived based on

Hamilton's Principle and the calculus of variations. The

Hamiltonian function is formed by considering the total kinetic

and potential energies of the system. The variation of the

integral of the Hamiltonian function between two discrete times

t and t 2 is then set equal to zero in accordance with Hamilton's

Principle. The basic dynamical equation for the structure under

14



consideration is then derived by following through some rather

tedious mathematical operations, as reported in Refs. (24) and

(25). Since details of the various steps involved in this

derivation are given in the above references, they will not be

repeated here. The resulting expression is in the form given

below:

[i] [j] + ([k] + [kG]) [q] = [F] + [F°] (20)

where

[m] = assembled (generalized) mass matrix.
[q],[i] = generalized displacement and acceleration vectors,

respectively.

[k] = assembled (generalized) elastic stiffness matrix.

[kG] = assembled (generalized) geometric stiffness matrix.

[F] generalized nodal force vector.

[F°] = ([k] + [kG]) [q'] = equivalent generalized nodal force
vector due to plastic strains.

Eq. (20) represents the basic equation governing the dynamic

behavior of the entire structure. In considering the effect of

significant changes in the geometry of the structure due to large

deformations (second order analysis), both the stiffness and mass

matrices have to be recomputed at various time intervals, based

on the current deformed configuration of the structure. On the

other hand, eliminating the matrix [kG] from Eq. (20) leads to

the basic equation for the small deformation (first order) analysis

of the structure. Thus, it is clear that the particular expressions

15



corresponding to the first and second order static, elastic

dynamic and plastic dynamic analysis of the structure under

consideration may be obtained easily from Eq. (20) by con-

sidering only those terms in the equation that are appropriate

in each case.

16



III. THE BEAM ELEMENT

The fundamental relations outlined in the previous chapter

form the basis of the present study aimed at analyzing the

behavior of a structural system consisting of straight beam and

rectangular thin plate elements. In forming these expressions,

the properties of the individual elements of the structure must

first be derived. In this chapter the force-deformation and

inertial properties of a three-dimensional beam member are dis-

cussed and the stiffness and mass matrices are presented. The

behavior of a rectangular thin plate element is studied in the

next chapter.

3.1 Strain Energy Expression for a Beam Element

Consider a typical beam element with an arbitrary orienta-

tion in space, as shown in Fig. 1. A set of axes X, Y, Z are

chosen to represent a global coordinate system of reference.

The element local coordinate axes are x, y, z with the x-axis

extending along the axis of the element, and the y, z-axes

pointing in the principal directions of the cross section. The

set of element nodal (end) displacements and forces are designated

by

[U] = [UIU 2 ,...,U1 2 ] and [S] =[SI,$2,...,S12

respectively.

In order to define the element displacements and forces with

respect to the global system of axes, both during the initial and

17



deformed configurations of the elements, a transformation matrix

[X] is utilized (see Eq. (15)). Letting x,y,z represent the

current coordinates of an element nodal point (the original co-

ordinates of the nodal point plus the current translational

displacements of the point), the transformation relation is expressed

as

H= [1 [ (21)

in which [X] is represented as a diagonal matrix, so that in

partitioned form

[X] = diag (HTI],[T2 ],[T3 ],[T4]) (22)

where r- -

[TI] = [T 2 ] [T3 ] = [T4 ] = Km m2  m 3 (23)

nI n2 n3

In the above ki, mi and n. are the instantaneous direction

cosines of the ith local coordinate axis with reference to the

X, Y and Z global axes, respectively.

Let [u] represent the vector of element displacements at any

point in the interior of the element with components u , uy and

uz along the x, y and z-directions, respectively. Making use

of simple beam theory, [u] can be expressed in terms of the nodal

displacement vector [U] as

18



EuIx
[u] Lui [a] [U] (24)

u

where, the transpose of the matrix [a], containing the inter-

polation (shape) functions, has the form of

x

1-i.0 0

2 y 1 3x2 32x3
6(L - -) - 2+ 30

2x_) z 0 3x 2  2x 3

2, + )z -x+ 2x 2 3

k2 2 32

T( 4x 3x 2 2x2 x3

[a +% ,%2 ,%y + ,x-• 0 (25).

x0 0

6 (- + x 2 Y 3x 2 2x 30

2 kX2 3

6(- [ + 2---) L 032 (253

0 xz xy

2x-+ 3x)z 0_ x 2
k 2 2 3

2x 3X2)y x2 3
0 2 - i+ 2.
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When large deformations take place, the normal strain com-

ponent cxx in the local x-direction contains certain non-linear

terms which cannot be neglected. In terms of the element dis-

placements, cxx may be represented as

•U•x a2u 1 u ( 2 a•x u 1 auz 2
xx ax a 2 + ) z- + 2 (-)ax (26)

In this expression the first, second and fourth terms represent

the contributions of the axial and bending forces in the usual

small deflection theory. The third and fifth terms are approxi-

mations to the contributions due to rotations resulting from

bending around the z and y-axes, respectively.

In order to obtain initial estimates of the displacements

within each increment of loading, the elastic relations based

on Hooke's Law may be utilized at the beginning of each time step.

The strain energy in a beam element may then be expressed as

E 2 2
V =E f 2xx dv + 2fG v2 dv (27)

2 v x 2  yz

where E is the modulus of elasticity. Combining Eqs. (26) and

(27)

E _Ux 2 u 21 au2 D2 ýu i 2( 2V = -y---- + z) z + dv
2v ax 22 ax -z 2 2 ax~ 1  du ax2

x
G au au 2

+ yf [(~y + z) dv (28)2 v az + )

Each individual term in the above brackets can be evaluated

based on Eqs. (24) and (25). Substituting the resulting relations

into the expression for V, neglecting higher order terms (such as,
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(_x)4 1 4
1 ( , ) (-u) ) and performing the indicated integration,

Eq. (28) can then be rewritten in the form given previously as

Eq. (13).

3.2 Stiffness and Mass Matrices for a Beam Element

Referring to Eq. (13), for a beam element, the elastic

matrix [K] and geometric stiffness matrix [KG] have been

derived in Refs. (25) and (27), and are in the form given

below.

EAI-
12EIZo

12EI

SGI 0 SYMMETRIC
0 0 0 -1-

6EI 4EI
o 0 0 o

6EI 4EI
o0 ~ 0 0 0 -z 9.

EA AE
0 - 0 0 0 0 ( 9

E12EI 6E 12E 1 2(9
0 - 0 0 0 0 0 0 12E I

0 0 2 0 0 0 00

o ~ ~ ~ GGI,

GEiz E1 2EE 6Ez £ 4E1

o 0 o0 o 0 o -0 0 0 0 o 0
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0

0 6
3T

o 0 6

0 0 0 Ixo o o

o o - a o
0 1 021TU IT

o5• 1 SYMMETRIC

0 0 0 0 0 0 0

[KJG "N 6 0 0 a -1 0 6 (30)
o " o3a o oS- a

61W

0 0 0 -0 0 0 0 0

0 1 0 0 0 -L 0' -1 j 0 0, 0 2

where, in Eqs. (29) and (30), GI is the torsional stiffness

of the beam cross section and Iy and Iz refer to the moments

of inertia around the y and z axes, respectively. A denotes the

cross sectional area of the beam element, k is its length and

G represents the shear modulus. The axial force N is defined as

S~EA
N = constant = EA (U7 - Ul)

in which, according to the previous definition, U1 and U7 refer

to the nodal displacements in the axial direction, corresponding

to the left (first) and right (second) end of the beam element,

respectively.

Based on Eq. (24) the velocity and acceleration distribution

within the element may be approximated as
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[u] = [a] [U] (31)

[i] = [a] [U] (32)

With the assumed velocity distribution within the element, the

"consistent mass matrix", [M], of the element can be obtained

easily (25). This matrix as defined by Eq. (12) is

£

o 13t 1 2

61
o 0 ++i

xII
o 0. 0 Tr

0 1L2; 3 21 1 SYMMETRIC

2 1 123 21 2

0 - o+ 0 0 0 o + o (33)

0M-P 0 0 0 10

o91 61 132 6
o o 0 0 131

S 0 0 Ix 0 0 0 0 ** * 0

2 ~ 1 _ 111 2 1 9 21.1-
00 3 0 0 00ih C

o 132 I 13 Xzl 1112 -1 3 212t
0 -4 +IT, IS.-• 0 0 0 -r" ' M 0 -0 i i 0 0 0o . .x-

where, the various symbols appearing in the above matrix have

been defined previously in presenting the stiffness matrices

of the element.

The element stiffness and mass matrices as given above

(with respect to the element local coordinate system) can now

be transformed to the global coordinate system by utilizing

the transformation matrix represented by Eqs. (22) and (23).

The matrix operations involved in such a transformation are

given by Eqs. (18) and (19).
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IV. THE RECTANGULAR PLATE ELEMENT

In this chapter the general strain energy expression for a

thin rectangular plate subject to in-plane and bending effects

is first derived. In the derivation, the interaction between

the two effects is also taken into account. The stiffness and

mass matrices for a rectangular plate under in-plane action and

later under bending action are derived independently by assuming

some suitable displacement functions. Following that, the deri-

vation of the geometric stiffness matrix is given. The complete

form of the stiffness and mass matrices with respect to both

local and global coordinate systems are then given.

4.1 The General Strain Energy Expression

In order to derive the stiffness properties of a rectangular

plate in which coupling between in-plane forces and bending is

considered due to large deformations, it is convenient to obtain

first the strain energy expression.

The middle plane of a plate before deformation is to be con-

sidered as the x-z plane, and y is to represent the axis perpen-

dicular to this plane. The notation used in subsequent dis-

cussions is similar to the one used by Timoshenko (8).

The initial stresses and strains in a rectangular element of
0 0 0 0 0 0

the plate are denoted by ax 0 az 0 Txz and 6x 0 Ez ' Yxz 0

respectively. It is assumed that stresses, ax , az Txz 0 have

no influence on subsequent displacements of the element within

the initial plane. They do, however, have a significant effect

on displacements of the element out of its initial plane.
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Starting from the initial position, subsequent deformation

of the element is assumed to take place such that

0 a S= E +E
X X X

e = + E (34)z z z

0 a
Yxz = Yxz + Yxz

a a a
in which 6x' ,z' Yxz are given by the following equations

(8): 2
Ex= x~- + -y( Y)

2au z u 2 a 2u
Sz = --- + 2 ( ) -y( )(35)

a + x (z-) - 2y(+ ).
Yxz • + x-F)

In the above equations ux, Uy and uz represent the displacements

of the middle surface in the x, y and z directions, respectively.

The strain energy expression for a thin rectangular plate

may be found in various references, such as Timoshenko (8), and

is in the form of:

1 (E + G + T Y )dxdzdy (36)
2 = (xx z z xz Yxz

If the generalized Hooke's Law for an isotropic material is used,

then

ax| 1 ,o 0 6 x

L]z -v 2 E (37)

Txz2 0 0 X Yxz5

2S



Here, E is Young's modulus; v, Poisson's ratio and X = (1-v)/2.

Substitution of Eqs. (34), (37) into Eq. (36), leads to the

following equation

V = V0 + V1 + V2  (38)

where

E 02 02 0 0V0 - 2(12 [(x ) + (E z) + 2v(X )(sz)

+ X(y ) ] dxdzdy (39)

SE a2 fir [(Cxa 2  (Cza 2  2v(Cxa (a[(E ) +( ) +2)(e )( )2(1-

+ X(Yxz a) dxdzdy (40)

V2 _ E 0 a + V(Cxa 6 0 + E 0 Fza

(1-vi ) X [

+za + Xyxz Yxz I dxdzdy (41)

Note that V0 is a constant, and since its second order.

partial derivatives are zero (see Eq. (11), it does not contribute

to the stiffness matrix. It can therefore, be ignored in subsequent

discussions.

Suppose the following assumptions are made:

(1) u, = u (x,z)X x

uz = uz (x,z) (42)

u = u (x,z)
YY
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(2) The cubic and higher order displacement terms are ignored.

The first assumption is a general assumption for solving

the plate problem. This assumption allows the elimination of

terms containing odd powers of y during the integration process.

The second assumption limits the stiffness matrix to that of a

constant matrix (2). Substitution of Eqs. (35) into Eq. (40) and

utilizing these two assumptions, leads to the following:

V1 = V1 ,P + Vl,B (43)

where
Eh ux 2 + uz 2 Dua 2

_2(1-v 2 ax + X ((a + (az_)

ux uz
+ 2v(--)(@---)]dxdz (44)

Da2 u y a2 u 2 a 2 Ua2 u
Vl1,B 2= ( - )

22
u 2

- (__!y) )]dxdz (45)

In Eqs. (44) and (45) the constant, h, is the thickness of

the plate and D = (Eh 3)/(12(1-v 2)) is the flexural rigidity of

the plate. It should be noted that the two terms represented by

Eqs. (44) and (45) correspond to the strain energy due to in-plane

forces and bending effects respectively.

Similarly, substitution of Eqs. (35) into Eq. (41) and using

the same assumptions as in the derivation of Eq. (41), the follow-

ing expression is obtained.
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V2 = 2,G + V2 1  22 (46)

where

S1 Y 2  a u 2 +u U
2,G x ax D z 9z +x°ax dzd (

[O0 Du x 0 DU z 0 Du 9z

V2 , 1 = x (a-) + Gjz (.z-) + Txz (-- + ax--)Idxdzdy (48)

2 u2 2

V = - fff y[x- + y + 2 -- ]dxdzdy (49)
2,2 z2 ýxaz

Note that V2,1 contains only terms with first order displace-

ment functions and hence does not contribute to the stiffness

matrix. The integrand of V2,2 is an odd function of y and hence

the value of the integral is zero.

Combining results from Eqs. (38) to (49) the following

equation is obtained

V Eh [u 2 uZ 2 + u u 2

2(1-v[(----) + ax + ( + 9 -

9u au
+ 2v(---) (9---)]dxdz

2 a2

a 2 2 2

+ h ff [CF (-9iY + 0.~ 3u 2 l) 2 + .uY)DuY]xz

2Su 2

h • 2 (•_•)2 u •u
+ • II [O0 2• + oz U)2+ 2Txz 0 (x-X) (z- 1 )]dxdz.

(50)
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This is the strain energy expression due to the coupling of

in-plane and bending actions, including the effect of large

deformations. The first term on the right-hand side of the above

equation is the contribution of in-plane action; the second term

represents the contribution of bending action; and the last term

is the contribution due to large deformations.

Timoshenko (8) has indicated that the expression represented

by Eq. (50) may be obtained by considering the strain energy

expression separately for each of the effects due to in-plane,

bending, and large deformations. These results are then added

together to form the complete strain energy expression. The authors

believe that the present derivation gives a better insight into the

problem.

4.2 Coordinate Systems and Degrees-of-Freedom

A Cartesian coordinate system is used in the following

derivation. As before, let the global coordinate system be de-

fined as x,y,z (see Fig. 2). In general, a rectangular plate

element may be oriented in any arbitrary direction in space,

therefore, coordinate transformation relations have to be estab-

lished as explained previously. However, for simplicity in this

discussion let its middle plane be considered to be parallel to

the X-Z plane. Let the origin of the local coordinate system

x,y,z be placed at one of the corners of the plate such that the

x-z plane coincides with the middle plane of the plate. In a

general case, at each corner of the plate, there may be six

possible degrees-of-freedom. For convenience, odd numbers are

used to designate those pertaining to in-plane action, and even
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numbers to designate those pertaining to bending action. Fig. 2

depicts a typical plate element and the associated element

coordinates corresponding to both in-plane and bending actions.

It may be observed that, in a general case, the plate element

may possess a total of 24 degrees-of-freedoms corresponding to

both in-plane and bending actions. Figs. 3 and 4 illustrate the

element coordinates corresponding to membrane (in-plane) and

bending actions, respectively.

In what follows, stiffness matrices for the plate elements

are derived by considering in-plane and bending actions inde-

pendently of each other on the basis of the expressions given in

the previous section. The combination of these two matrices

together with the so-called geometrical stiffness matrix gives

the complete stiffness matrix of the structure. However, the

complete mass matrix contains matrices contributed by in-plane

action and bending action only.

4.3 Stiffness Matrix for In-Plane Action

This section considers the stiffness matrix contributed by

in-plane action. Fig. 5 shows the plate element displacements

corresponding to membrane action. The corner node points are

labelled in a clockwise manner as i,j,k,£, so that node i coin-

cides with the origin of the element coordinate system. The

x-dimension of the rectangular plate (distance from node i to

node j, or £ to k) is designated as "a" and the z-dimension

(distance from node j to node k, or i to k) is designated as "b".

Let the nondimensional variables ý and n be introduced, so

that a
a

b 30



A displacement vector U is defined containing the membrane dis-

placements at the corner nodes of the element, so that (referring

to Fig. 5)

U = (UIU 3 ,U5 ,U 7 ,U9,...,U 2 1 )T

The displacements in the x and z directions of any interior

point of the plate are referred to, as before, by ux and uz,

respectively. One of the critical steps in the analysis is to

find suitable representations for u and u in terms of the

nodal displacement. In this study, the following displacement

shape functions given by Weaver et al (15) are used, on the

basis that they represent shape functions that are compatible

with those previously employed for beam elements.

3 2 T

• (21 - 3 ri + 1) U7

0 U9

ux (•,n,U) = b (n 3 - 2 3 2 + 1) UI1 (51)( 3 2j+1

-C (2T -- 3Ti2) U13

0 U15

b (ri 3  2 17

-(l- ) (23 3- 2 319

0 U2 1

b (i -•) (3 2 23
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T
2 U3

(1 - n) (1 - 3C2 + 2ý ) U3

-a(i-) (13 - 22 +) U5

0 U7

-(1 - TI) (2 3 - 3 2)2 U9

u (C,n,U) = -a (1 - TI) ( 3 - 2 U11  (52)

0 U13

-n (2C - 3 2) U1 5

-an (C - 2 U1 7

0 U1 9

ii (24. - 3 2 + 1) U2 1

3 23
-an] (3_ 2•2 + •) U2 3

These two displacement functions have the following prop-

erties:

(1) For an arbitrary set of nodal displacements, the edges

of a series of elements describe continuous curves.

(2) For an arbitrary set of nodal displacements, the shear

strain at each corner of an element is zero.

(3) They are compatible with displacement functions of

beam elements described by Akkoush et al (25).

Although the stiffness matrix [K] of the plate element may

be obtained by partial differentiation of the strain energy ex-

pression given by Eq. (50), it is more convenient (15) to eval-

uate its components by using the following equation, based on the

principle of virtual work:
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K.. = h ff [ai] T [E] dxdz (53)

where the index j represents the corresponding strain due to

a unit displacement in the jth direction and [ai] represents

the stress component corresponding to the strain component [E.J.

Appendix A contains the various strain and stress components

corresponding to the displacement functions represented by Eqs.

(51), and (52). Thus, the stiffness matrix [KI] contributed

by the in-plane action with displacement functions given by

Eqs. (51) and (52) can be obtained by the substitution into

Eq. (51) of the stress and strain components given in Appendix A.

The resulting matrix is shown below:

P1

P2 02

-P3  -03 Ye S y mm e t r i c

P4 -P5 -P6 Pi

P5 05 06 -P 2  02

- P6 -06 Y6  -P 3  03 Y3

P1 0  "P2 P 1 2  P7  P5  P9  P1

-P2 11 012 P5 08 09 P 2  02

"P12 -012 Y1 2  "P9  09 Y9  P3 03 Y3

P7  PS P9  P1 0  P2 P 1 2  P4 -P5 P6 Pl

-P 5 08 -0 9 P 2  O1 1 " 01 2 P 5 05 - 06 "P2 02

-P 9  -09 Y9  "PI2 012 Y1 2  P6  06 Y6 P3 -03 Y3
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where, the various symbols appearing in the above equation are

defined in Table 1, given below (a and b, as before, pertain

to the dimensions of the rectangular plate element and

X = (l-v)/2, where v is Poisson's ratio):

TABLE 1 - Definition of Symbols Appearing in Equation (54)

i Pi Yi

13b + 2Xa1 35a 5b

2 (X+v) 13a + 2Xb
4 35b 5a

-llb2 +va 3Xa Ila2 vb 3Xb b3 a3 vab +3Xab
2T10 +24 40 21-b 2-4 + 2[ 105a 105b 72 40

-13b + Xa
35a 5b

(V-%X) 9a 2Xb
4 70-b 5 a.. . . . . .

llb2 'va +Xa 13a2 vb+ 3Xb -b3 a 3+vab+ Xab-f 21a -4 + To- - 2-0 + 72-4 0 105 a Tab -b 72b21a402 4 4105TlOa -140b +7-2-+ 40

9b 2Xa
70a 5b

8-13a + b
8 ........... 35 5a.............-3 +

35Sb 5a

13b2 2va 3Xa -lla2 +vb Xb -b 3 a3 vab +Xab
420a 24 40 210b 24 40 140a 105b +72 40

-9b Xta10

ii ........ .............-9a

122
12 -13b 2+ va + Xa 13a 2  vb Xb b 3  +- vab Xab

S2a 2+ T- + -4 -2-0- F "f-T TU 140a + T - 7 7 T(T-
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4.4 Mass Matrix for In-Plane Action

If the same displacement functions are used as represented

by Eqs. (51) and (52) for a rectangular plate under in-plane

action, then the corresponding mass matrix [MI] can be obtained

based on Eq. (12). However, for the plate element under con-

sideration, the matrix [a] in Eq. (12) is a 2 x 12 matrix in

which the first and second rows are represented by the first

matrices on the right-hand side of Eq. (51) and Eq. (52),

respectively. Since the procedure involved is straight forward

(although laborious), only the final result is presented below:

24a

a 24a

20b -20a y(a
2

+b
2
)

12a 0 Sb 24a

0 2p -2a& 0 24a Symmetric

Sb 2aa 6(-3a
2

+2b
2
) 28b 20a Y(&2+b 2

1X1  - (55)
p 0 ab 2p 0 2ab 24a

0 p -am 0 12a Oa 0 24a

-ab a& -?(a 
2 
+b

2
) -2ab Sa 6(2&

2
-3b

2
) -20b 20a y(a2+b2)

2p 0 2ab p 0 ab 12a 0 -Sb 24a

0 12a -0& 0 p a& 0 2p 2&& 0 24a

-2ab -0m 6(2&
2

-3b
2
) -eb -am -A(& +b 2 -Ob -2a& Ot-3m

2
+2b

2
) -2$b -20S y(a2 +b2
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where, a = 13/2520, P = 11/1260, y = 1/315, 6 = 1/1260, p = 3/140,

and X = 1/840.

4.5 Stiffness Matrix for BendingAction

Many displacement functions for a rectangular plate in bending

have been proposed. Among these, the one which satisfies the

deflection and slope compatibility has been chosen in this study

because it satisfies not only compatibility between adjacent plate

elements but also between beam and plate elements. Such a dis-

placement function representing the transverse displacement uY

of the plate has been derived and verified by Bogner et al (28)

and Przemieniecki (27,29). Fig. 6 illustrates the element dis-

placements corresponding to bending action.

In terms of the-geometry given by Fig. 6 and the non-
x z

dimensional variables a = ?, n = 5' this displacement function

has the following form:

2 T(i+2ý) (i-C) 2(l+2n)(l-n) 2U 2

-(i+2C) (i-C) 2 2(1-0b U4
2 2U

U(l-0) (i+2I) (l-n) a U6

(3-2C) 2 (I+2T) (1-n)2 U8

-(3-2•)2 rj (l-rD) b 10

-(i-U)E2 (l+2T) (1-) 2a U12 (56)Uy(•,rj,U) = 2 256
S(3-2ý)2(3-2n) 2u14

(3-2C)ý 2 (l-T) 1 2bu 16
2 2U

-(i-0) 2 (3-2) n2 a U18
22

(i+2g) (l-C) 2 (3-2) U20

((i+2l) (1-C) (1-•) 2b U22

il- 2) (3 -2T) T2a U24
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For a plate in bending, the strain components have the

following form:

x 4x2
Sz -y (57)

za

2u
a 2 u

axaz

The matrix [b] given in Eq. (2) may be obtained by sub-

stitution of Eq. (56) into Eq. (57). In turn, substitution of

matrix [b] into Eq. (9) allows evaluation of the stiffness

matrix [KB] , corresponding to bending action.

The matrix [K B in partitioned form is represented as

[KB ] Symmetric

[K] (58)

[KB21 [KB 3
1

The submatrices [KBI], [KB 2 ] , and [KB 3 ] are presented

below as Eqs. (60) - (62). In all three equations, the scalar

multiplier K is defined as

Eh 3

K = (59)
212(1-v )ab

The other symbols appearing in the submatrices are defined and

compiled in Table 2.
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a4(oi+w) +

-(o 2 z+G 3 W+x3 )b (Yla+yr2w+X4 )b 
2  

Symmetric

JKB, (03 a+O2w+x36)a -(8 1 (c+w)+A .0a~b ('r2 c+ylw+X4)a
2  ( 0

-o 4a+p 3w-A5  (6 2a-p2w+x 36)b (-c3a+o2.- x 3 )a 04 (at+w)+X 5

(e2aL-p2 w.+A36)b (-ylcx+p4 w.-x4)b
2 (81ao-alw+x 1 6)ab C-e2e.-a3w-x~38)b Cylca+y 2w+X4)b

2

(a 3o-o 2 wj+x3 )a (-elOL+cy1 -x1 6)ab (y 3 a-p~w-X 2 )a 
2  

(-G3Q-O2w-x36)a (e1 (a+w)+Xle)ab (y2a+y1.,+X4)a 2
1

03aw+5 (02a+p2w-x3)b (-P 2 ri-a2 w+A 3 )a P3 a-04w- x5  (-02a+o 3w+A 3)b (P 2 0+8e2w+X 3 6)a

(-02cL-P2w+x3)b (picx+p5w+x2)b
2  

(-al (c+w)+X,)ab (Gau-aT3w-x3)b (-Pla+Y 3t-x2)b
2  (-Ola+elw+x 1 )ab

Cp2 ct+02w-X 3)a (-a1(a+w)+X,)ab (p5 a+plw+x 2)&
2  (-p 2 a+0 2 w+x 3 6)a (acl~a-6 x1 6.-1 )ab Cp4ox-yl W-A4)

2

[KB1K 13-~-5 (-a2a+03w+X3)b (p2Q-e2w-x36)a -p3(a+w)+X 5  (ar2a+p2w-x3) b (p2a+a2w-x3)a (1

(02ci-03w-X3)b (-plcx+y3w-X2)b2 (o1la-e 13-X16)ab (-02a-p2w+x3)b (PCa+p5.,+ 2)b2 (a 1 (a+w)-X 1 )ab

(P2a-@2w-X 36)a (-a la+elw+-X1 6)ab (p4cx-yi W-A4)a
2  

(-p2o'-02w+x3)a (a 1 (a+w)-X1)ab 0p5 a+p Iw+x 2 )a
2

U4 (L+W) +X 5

(02CL0+3 .+x36)b ('r10+y2w+X4)b
2  symmetric

[K31K (03a+eW+Y3 )a -(el (c+w)+X 1Elab (y2a+ylw+X.)a 2(2

IK~ ~p31x K-~~~-3) (62)awx)a 0 a~)x

(-e2cI+P2(-x36)b (-YQo+P4w-X4)b
2  (eOa-al W0 I6)ab (e2ci+a3w+x36)b (koa+y 2w+x4)b2

(-ao. 3ci+a 2t-X 3 )a (-e1Q+Olw-?X16)ab (y3c1-P lw-) 2)a
2  

(o3c1+62w+X36)a (e1 (a+w)+X1e)ab (y2a+ylw+X 4)a2
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TABLE 2 - Definition of Symbols Appearing in Equations (60)-(62)

i=1 i=2 i=3 i=4 i=5
S= 

(b/a)
2

w = (a/b) 2

6 = 1+5v

S= 1+60v

P = 3/35 27/35 54/35 18/35 9/35

-i = 4/35 52/35 26/35

=i - 11/35 22/35

Ci = 13/70 13/35 78/35 156/35

Xi = 1/50 2/25 6/25 8/25 72/25

4.6 Mass Matrix for Bending Action

In generating the mass matrix for the plate element in bending,

if the same displacement function given by Eq. (56) for a rectangular

plate in bending is used, then the corresponding mass matrix [MB]

can be obtained by using Eq. (12). The matrix [a] in Eq. (12) is

a 1 x 12 matrix represented by the first matrix on the right-hand

side of Eq. (56). The resulting matrix [MB] is shown below.
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a

-ayb acb
2

Yea -Y 
2
ab toa2

00 -Byb Eua a2 Syn.tria

-Oyb OSb
2  

-8yab -ayb actb
2

-a dyab -Aa 2 -Yoe Y
2

Ab caa2

M IM = abhp a2 -06b doa 0 -cf -Yo, a (63)

Sab -xb b
2  

a
2
ab afb -rzb

2  
-_yah ayb atb2

-600 O
2
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where the various symbols appearing in Eq. (63) are defined as

13

9S= 7--0

11Y = 210

13S- 420

1
105

1
140

and, as before, a and b refer to the edge dimensions and h to the

thickness of the plate, and p represents the mass density of the

material.

40



4.7 The Comp lete Form of Stiffness and Mass Matrices

The results obtained in Sections 4.3 and 4.5 may now be

incorporated for the complete form of the local stiffness

matrix of a rectangular plate with coupling between in-plane

and bending effects. Let [KI] and [KB] be the stiffness

matrices corresponding to in-plane and bending actions, re-

spectively, then, the force-displacement relationship for the

combined effects has the following form:

[S] = [K] [U] (64)

where

[SI]

[S] = (65)

and [SI], [SB] are the nodal forces corresponding to in-plane

and bending actions, respectively. They are represented by the

following equations:

[SI [S1 S3 S5 S7 S9 Sll S13 SI5 SI7 SI9 S2 1 S23]T (66)

[SB]= [S2 S 4 S6 S8 S10 S12 S14 SI6 S18 S20 S22 S24]T. (67)

Similarly,

[U I]

[U] = (68)

[U B]
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and [UI], [UB] are the nodal displacements corresponding to in-

plane and bending actions, respectively. They have the following

forms:

[U1 ] = U1 U3 U5 U7 U9 U1 1 U1 3 U1 5 U1 7 U1 9 U2 1 U2 3 ]T (69)

T
[UB] = U2 U4 U6 U8 U1 0 U1 2 U1 4 U1 6 U1 8 U2 0 U2 2 U2 4 ] T (70)

Finally, the matrix [K] may be represented as follows:

[K] [0]

[K] = (71)

[ 0] [KB]

The linear orthogonal transformation [T] is introduced for

the purpose of rearranging the forces and displacements accord-

ing to the numbering scheme used in Fig. 2, so that:

[T] = [ [T1 ] [T 2 ] ] (72)

where [T] , [T2 ] , in partitioned form, are diagonal matrices

defined as:

[Tl = diag ([X ] , l[XI] ,[Xl] ,[X1]) (73)

[T 2 ] = diag ([A 2 ] I2 [I 2 ] [I 2 ]) (74)

and

1 0 0
0 0 0
0 1 0 (75)1 Ll 0 0 0 (5
0 0 1
0 0 0
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1 0 0

[02] = 0 0 0 (76)

0 0 0
0 0 1_

It is clear from the definition of [T] that

[T]T [T] = [TI [T]T = [I]

in which [T]T represents the transpose of [T], and [I], the

identity matrix.

Therefore, if

[S] = [K] [U] (77)

then

Tý

[T] [S] = [T] [K] [U] = [T] [K] (IT]T[T]) [U]

= ([TI[KI[T] ) [T][U].

Setting

[S'] = [T][S], (78)

[U'] = [T][U], (79)

and

[K'] TI[KI[T] (80)

Equation (77) is thus transformed to

Is'] = [K'][U'] (81)
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which is the complete force-displacement relationship for a

rectangular plate with coupling between in-plane and bending

effects in accordance with the numbering scheme indicated in

Fig. 2.

The complete mass matrix for a rectangular plate with

coupling between in-plane and bending effects again according

to the numbering scheme used in Fig. 2 may be obtained in a

similar way. It has the form of:

[M'] = [T] M][T]T (82)

where

[MI] [ 0]

[M] = (83)

I 1 0] M B I

The matrices [MI] and [MB] are the mass matrices corre-

sponding to in-plane and bending actions, as given by Eqs. (55)

and (63), respectively.

4.8 Geometrical Stiffness Matrix

It has been indicated above that the stiffness property of

a rectangular plate is contributed by three terms that appear

in the strain energy expression for the plate. Thus far, first

and second term contributions have been dealt with in the deri-

vations. The remaining term, i.e., the third term, is the one

which leads to the geometrical stiffness matrix. Since this

term involves only one displacement function uy , it is necessary
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to assume only this function. The derivation of this geometrical

stiffness matrix is very tedious, consequently, many investigators

have tended to use other simpler displacement functions, (e.g.,

see Gallagher et al. (30)) coupled with finer partitioning to com-

pensate for this effect. For the sake of being consistent, the

same displacement function as shown in Eq. (56) is used here.

The strain energy contributed by large deformations which

corresponds to the third term on the right of Eq. (50) may be

rewritten as follows (see also Eq. (47))

h yu a (•zy2 + T u •u
V2 G = f [ax0 (x-)2 + cz + z (x-!9+) (2z-jY)]dxdz. (84)

The derivation of the geometrical stiffness matrix may be

carried out in three parts, each of which corresponds to a term

in Eq. (84). Accordingly then

[KG] = ax 0 [KG ] + az 0 [KG ] + Txz 0 [KG ] (85)
x z xz

where [KG ], [KG z1, and [KG ] are the parts contributed by the
x zxz

first, second, and third terms, respectively, on the right of

Eq. (84). Utilizing Eqs. (56), (11) and the chain rules of

differentiation, the matrices [KG 1, [KG z, and [KG I may be
x zxz

obtained. They are presented below as Eqs. (86) - (88).

45



KA

coo

a

'4Q

44

II

£II I I

I 4 4

I I I

! !

x

46



00

14

A 4 A

t I I I
InI

-1 F.4 -* A 1-1 24 -A

4 N

~4



O01

OD0

48



The complete geometrical stiffness matrix may now be obtained

by substitution of the values [K G ], [K G ], and [K G ]into Eq. (85).
X Z XZ

This is the stiffness property contributed by the large deformation.

Note that a x 0, az0, and Txz0 are treated as constants during the

derivation since these quantities are assumed to be known during

the current state of deformation of the structure.

Since the geometrical stiffness matrix has contributions

only due to bending action, it can be rearranged easily to

correspond to the numbering scheme indicated in Fig. 2.

4.9 Transformation to the Global Coordinate System

In order to assemble individual elements to form a complete

structure, the local properties must be represented with respect

to the global coordinate system. It is seen from Eq. (18) that

the [X] transformation matrix between the local and global co-

ordinates has to be determined first. The stiffness matrix with

respect to the global coordinate system may then be obtained by

evaluating the quantity [XI]T[K] [X]. For the present case, let

i,j,k,k represent the four corners of the plate, then

[X] diag ([T i] ,[T i] ,[Tj] ,[Tj] ,[Tk ] ,[Tk ] ,[T£t] ,[T P]) (89)
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where

x.-X. y.-y. z .- Z.

L.. L.. L..
13 13 13

(Yt-Yi) (z j- zi) (x i-x i) (z k-Zi) (x -x i) (Y3 -Yi)

L jLit LijLik L ijLi

[Ti] - (90)
- (Yj-Yi)(z-i 1 (xk-xi)(z.-zi) (x-xi) (Yk-Yi)

LijLip LijLi Lij iL

x -xi Yk-Yi z -zi
L i t Lip, L i t

is the transformation matrix between the global coordinate system

and the local coordinate system at vertex "i". This transformation

[T.i] is actually determined by the direction cosines of the two

edges ij and it (see Figs. 5,6). In Eq. (90), xi,Yi,Zi denote the

respective coordinates of vertex "i" from the origin and L ij, Li

represent the distance between vertices "i" and "j" and vertices
"i" and "t", respectively. Moreover, the matrices [Tj], [Tk], [Tk]

have the same form as [Ti] except that they are determined by the

direction cosines of the edges ij and jk, jk and kk and it and kk,

respectively, rather than ij and it.

The transformations of mass and geometrical stiffness matrices

may be achieved by a similar procedure.
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V. PROCEDURE OF NUMERICAL ANALYSIS AND THE SOFTWARE PACKAGE

In this chapter, first the general procedure is outlined

for the plastic dynamic analysis of a structure undergoing large

deformations. This is followed by some general information per-

taining to the software package that has been developed for the

analysis of the class of structures under consideration.

5.1 General Procedure of Numerical Analysis

The general procedure for the numerical analysis of the

problem is based on an incremental approach which allows the

computation of the response of the structure at discrete time

instances. Within each interval of time the structure is

assumed to deform as a linear system in order to obtain initial

estimates of the incremental deformations. Nonlinear effects

due to changes in the geometry of the structure and plastic

deformations are then taken into account before considering a

new increment of time.

It is assumed that the response of the structure at time

t = tI has already been determined. Considering a sufficiently

small increment of time, At, the various steps for computing

the response of the structure at t 2 = t1 + At are outlined below:

1. Using the known accelerations at tl, the displace-

ments at t 2 can be determined based on a numerical

integration algorithm such as the following

[q]t [q]t + At[qtl + 0.5(At) 2 [q]t (91)
21
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in which [q], [q] and [j] represent the generalized

displacement, velocity and acceleration vectors,

respectively. The displacement increment vector

[Aq] is then defined as follows

[Aq] = [q] -t [q]tl (92)

2. The incremental element displacement vector, [AU ]

with respect to the global (generalized) coordinate

system, is determined from [Aq] by considering the

compatibility between generalized and element dis-

placements. Then, the incremental displacement

vector, [AU], with respect to the local (element)

coordinate system, is found based on the transformation

relations between the global and local coordinate

systems, so that

[AU] = [X] [AUg] (93)

where [X] refers to the transformation matrix deter-t1

mined on the basis of the deformed configuration of

the structure at tI.

3. Using the incremental element displacement components,

the corresponding incremental forces can be found

easily by employing the force-deformation properties

of the elements. However, it is not necessary at this

time to compute all components of the incremental force

vectors. Thus, in the case of a beam element, only the
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force increment in the axial direction is needed in

order to compute the geometric stiffness matrix of

the element. In the case of a plate element (see

Fig. 2) the components Sl,S 7 ,SI 3 ,SI 9 pertaining to

the forces in the x-direction and S3 ,S 9 1 S1 5 ,S 2 1 in

the z-direction, S4 ,SI 0 ,S 1 6 ,S 2 2 pertaining to the

moment around the x-axis and S6 S 1 2 1 S 1 8 ,S 2 4 around

the z-axis are needed to compute the scalar multi-

plicative factors operating on the elements of the

geometric stiffness matrices. Corresponding approxi-
o 0 0

mate stress components ax , az T xz may be obtained0 S0 ad xz0 ytetik

by dividing the forces S x , and Sxz by the thick-

ness of the plate. These forces are computed based

on an averaging process of the absolute values of the

force components, as follows:

0 = 1 is +s 1 3 1 ISl+S191Sx = -- T - ( 2 + 2 (94)
z

0 1 Is21+S151 Is 3+S91
Sz = + L_ ( 2 + 2 (95)

x

0 1 ($4+SI0+S16+$22) (S6+S12+S18+$24)
xz LL 4 + 4

(96)

in which Lx, Lz are the dimensions of the plate in

the x and z directions, respectively. The sign on

the right hand side of the above equations is taken

as positive for extension, and negative for compression.
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Obviously, this procedure of obtaining the stress
0 0 0

components a , az , and a is only an approximation;x zz

nevertheless, it has been utilized by other investi-

gators (for example, see Ref. (30)) and has been indi-

cated that no serious error will occur if sufficiently

large numbers of idealized elements are used to assemble

the structure.

In the case of a beam element the geometric stiff-

ness matrix is computed based on Eq. (30). The cumula-

tive geometric stiffness matrix (see Eq. (85)), for a

plate element is found by adding together the three

matrices computed from Eqs. (86) - (88). The geometric

stiffness matrix, [KG]t , computed in this manner for
2

a beam or plate element reflects the current deformed

configuration of the structure at time t 2 .

4. The total element stiffness matrix, [K tot]t2 , at t2

is then formed by adding the elastic and geometric

stiffness matrices for the element under consideration.

Thus,

[Kt o tt2 =[K]t2 + [KG]t2 (97)

It should be noted that although the elastic stiff-

ness matrix [K] is computed based on the element

coordinate system and the small deformation (first

order) theory, the effect of the large deformation

of the structure enters into the analysis through
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the transformation relations pertaining to the deformed

and undeformed configurations. Thus, the total element

stiffness matrix is transformed to the global coordinate

system through a matrix operation represented by Eq. (18),

i.e.,

[Kt]t2 [X]T2 [Ktot]t [X]t2 (98)

tgt2 t2 tt 2 t2

where, [Ktg] represents the total element stiffness

matrix with respect to the global coordinate system

and I]t is the current transformation matrix corre-t2

sponding to the deformed configuration of the structure

at t 2 .

Now, considering the entire structure, the gener-

alized stiffness matrix [k totI for the entire system

is obtained in the usual manner, through the applica-

tion of the stiffness method (27). The basic process

involved is that of considering the equilibrium at each

nodal point of the forces transmitted by all elements

which are incident to that particular node.

5. Although some parts of the structure may undergo plastic

deformations, in order to obtain estimates of the ele-

ment forces, initially the deformations are assumed to

be entirely elastic. On this basis, the increments

of the stress resultants acting at the nodal points of

the element can be found to be

[AS] = [Ktot]t2 [AU] (99)
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The total internal forces at time t = t2 are then

obtained from

[S]t = [S] + [AS] (100)

6. The internal stresses computed above may be used in

connection with the Mises-Hencky yield criterion (22)

to determine whether the element under consideration

undergoes elastic or inelastic deformations. In terms

of the stress resultants this criterion is expressed as

( ,S2, .. . ,...).= Y (101)

where S1 ,S 2 ,..., represent the normalized form of

the element forces Sl$2,..., and Y denotes the

"yield value" which may change through straining (for

simplicity, the subscript t 2 is omitted here and in

subsequent discussions, except where necessary).

7. If the yield function 0 is less than Y the element

under consideration is deforming elastically. However,

if the yield function is greater than Y or equal to Y

and its rate of change is positive, then plastic defor-

mations are taking place. If the material of the

element is assumed to have isotropic strain hardening

properties, subsequent yielding of the element will

occur whenever D attains a value equal to or greater

than the "current" value of Y. However, the consider-

ation of kinematic hardening properties is physically

more realistic and accounts for the Bauschinger effect.
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If all elements are found to behave elastically

within the current time increment, then the acceler-

ations can be found using Eq. (20), but omitting the

term [F 0 ]. Then returning to Step 1, the above process

can be repeated for the next increment of time.

8. The stress resultants used in forming P have been found

using stress increments based on elastic considerations.

In the case of plastic deformations, these stresses,

being only crude approximations to the actual values,

do not satisfy the plastic flow relations. Therefore,

for a plastically deforming material the correct values

of the stress resultants have to be approximated more

closely by using the procedure explained below.

As discussed previously, it is assumed that any

typical displacement increment AU. may be expressed as

the sum of an elastic and a plastic part, i.e.,

AU. = AUe + AUP (102)

J 3 3

The increments of the elastic components [AUe] of

each element are related to the internal force

increments through the inverse of the total element

stiffness matrix

-1

[AU] = [Ktot] [AS] (103)
t 2
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9. The j-th plastic component of the displacement incre-

ment vector may be found using the generalized form of

the Reuss-Mises plastic flow rule, so that

AuP = X (104)
33

where X is a constant of proportionality which usually

changes through straining.

This approach is applicable to the general case

of a stress-strain curve as shown in Fig. 7. However,

in order to simplify the numerical computations a piece-

wise linear stress strain curve may be used. For ex-

ample, the trilinear curve indicated in Fig. 8 is a fre-

quently used approximation. Let H' represent the inelastic

loading curve and S the slope of the unloading curve. The

initial estimates of the force components may be computed as

(AS.) : H' AU. (105)
nest 3

10. The elastic and plastic components of the displacements

are then found to be

(Asj)~ 5
AUe = est (106)
J S

AUP = AU. - AUe (107)
3 J J

11. Using the current element stiffness matrix (see

Eq. (97)), the final values of the force components

(stress resultants) may be found from
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[AS]f = [Ktot] [AUe] (108)

12. The above procedure is repeated for all other elements

deforming plastically. The vector [AU0 ] = [AUP] is

then formed and used to find the increments of the

equivalent generalized nodal forces due to plastic

deformations, i.e.,

[AF'] = [k tot [qO] = [X] T [Ktot] [AUo] (109)

Also,

[FO] = [FO]t + [AFO] (110)

13. The acceleration vector [q] at t = t2 can now be found

based on the governing equation of motion for the

entire system as given by Eq. (20). Also the velocity

vector [q]t2 is determined by numerical integration.

14. The entire procedure explained above may be repeated

for a new time increment At, and in fact for any

prescribed number of time increments. Thus, the history

of internal forces and displacements of the structure

for a given time interval can be determined.

5.2 General Remarks

It should be emphasized that the computation of the plastic

displacement components as indicated in Steps 9-11 of the above

procedure represents a somewhat simple and perhaps crude method

of calculation of these components. The main intent has been to
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minimize to the extent possible the size of a fairly complex

problem in order to realize solutions that are economically

feasible from the computational viewpoint. However, for com-

parison purposes a more sophisticated method of computation of

plastic deformations has also been utilized. This alternative

method is based on an iterative scheme aimed at examining the

accuracy of estimated quantities at successive steps of iteration.

In the iterative scheme, initial estimates of the incre-

mental element forces are utilized in order to compute the plastic

and elastic components of the displacement increments from

Eqs. (104) or (106) - (107). An initial value of the effective

strain is then calculated by utilizing well known relations,

as given for example, by Hill (22). New estimates of the incre-

mental element forces are now found from Eq. (108) and are used

to calculate a second set of plastic and elastic displacement

components. A new value of the effective strain is then computed

and compared with the previously determined value. If the dif-

ference between the two values is within a specified tolerance,

then the iterative process is terminated. Otherwise, the new

estimates of the incremental element forces are used towards a

new iterative step.

Comparison of the two methods has been made in the case of

a simple structure which was analyzed by means of the computer

program discussed in Section 5.3 of this report. Results indicate

that there is no significant difference in the two methods. How-

ever, before a final conclusion can be reached more extensive

60



numerical experimentation should be undertaken.

It should also be pointed out that the same general procedure

outlined in Section 5.1 can be used in the case of relatively

small deformations in the plastic range by neglecting the effect

of the geometric stiffness matrix, i.e., not taking into account

the matrix [KG]. This is equivalent to formulating the equilibrium

equations with respect to the original (undeformed) configuration

of the structure. In this manner, the need of recomputing the

total stiffness, mass, and transformation matrices at specified

time steps is eliminated.

Simplified forms of the general procedure in Section 5.1 may

be used to treat the case of the elastic deformations of the

structure. Thus, the procedures involved in the elastic static

and elastic dynamic analyses of a structure may be deduced easily

from the general procedure by following through those steps that

are appropriate to each particular type of analysis. It should

be emphasized, however, that in the case of the static large

deformation analysis, increments in the loading system rather

than time have to be considered. For each increment in the load

vector the corresponding increment in the displacement vector is

computed and added to the previously accumulated displacements.

The current total stiffness.and transformation matrices are then

determined prior to considering a new load increment. This

process is continued until the loads attain their final values.
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5.3 Plastic Behavior of In-Plane Stressed Plate Element

The implementation of the general procedure in Section 5.1

to the case of a plate element undergoing plastic deformations

poses some practical difficulties. If the most general type of

plate element with in-plane, bending and twisting action is used,

then the element possesses 24 degrees-of-freedom (see Fig. 2),

as indicated previously. Thus, if a plate subassembly of an

actual structure is modelled by several plate elements of this

type, the number of degrees-of-freedom for the structure under

consideration would increase rapidly. This may not be as sig-

nificant in the case of an elastic analysis of the structure,

but tends to be critical when attempting a plastic dynamic

analysis of the system, due to excessive computational times

involved. In such a case, a method of reducing the size of the

problem is highly desirable. In this study, a technique has

been developed for treating a rectangular plate element with

in-plane action as a single degree-of-freedom system only when

plastic deformations take place.

Consider the plate element shown in Fig. 9, with 8 degrees-

of-freedom at the nodal points corresponding to in-plane action

with no rotational displacements at the corners. The degrees-

of-freedom are labelled according to the numbering scheme indicated

in Fig. 2, and the corresponding stress resultants (generalized

stresses) are designated as Sl, S3f $7' S9' S13' S15' S19 and S21.

Considering the stress resultants acting on each edge of the plate

an average shear stress can be found as an approximation to the
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stresses acting over the area of the edge. Thus, referring to

Fig. 9

S1+S 7
TA = 2L h

x

S 1 3 +S1 9
TB 2L hx (ill)

S 9 +S1 5
TC 2Lzh

S 3 +S21

D 2L hz

An average shear stress for each pair of parallel edges is

then found using the stresses computed from Eqs. (111) and utiliz-

ing the usual sign convention in the theory of elasticity. Denot-

ing by TAB and TCD the average shear stresses acting on the edges

parallel to the x and z axes, respectively

_ ITAI+ITBITA = + 2(112)
AB 2

+ ITCI+ITDI (113)CD - 2

where, the minus sign in Eq. (112) is used when TA is positive,

while the plus sign in Eq. (113) corresponds to the case of TC

being positive.

Finally, an average shear stress for the entire plate

element is computed as follows

TTABI+ITCDITA = + (114)
AV - 2
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The sign in Eq. (114) is chosen to concide with the sign of

either TAB or TCD' This is based on whether ITABI>ITCDI, or

ITABI<ITCjI. In the former case, the sign of TAV is taken to

be the same as that of TAB, and in the latter case it is chosen

to be the same as that of TCD. In implementing the above pro-

cedure in a computational algorithm several intermediate checks

are performed to verify that the plate is in equilibrium in

both the x and z directions within specified tolerances.

The average shear stress found from Eq. (114) for each

plate element is then used in connection with the procedure in

Section 5.1 to determine whether plastic deformations are taking

place in the element. Also, in the computer program, TAV is

automatically checked against the ultimate stress of the material

(see Fig. 8) to determine whether the element has failed due to

excessive straining. If the ultimate stress is not exceeded

but plastic deformations have been found to take place, then an

initial estimate of the actual shear stress, Test, in the element

is computed from

IT AVI- Y
T T +( S ) H' (115)
est t 1 - S

where, Tt refers to the known shear stress in the element at the

end of time tl, and as before, H' and S pertain to the slope of

the inelastic loading and elastic unloading curve, respectively,

and Y is the current yield value. The sign in front of the second

term on the right hand side of Eq. (115) is chosen to agree with

the sign of Ttl'
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The equivalent element nodal force increment vector, [ASO],

due to plastic deformations can now be found based on the usual

procedure in the application of the initial strain method (20),

i.e., referring to the jth equivalent element force increment

AS?

T AV-T
AS? = (S) (Av est) (116)

t 2 TAV

where, the (S.) 's are again calculated from Eqs. (99) and (100).whereth )t 2

The transformation of the equivalent element force increment

vectors of all plate elements to the global coordinate system

and consideration of the equilibrium conditions at each nodal

point yields the vector [AF*]. The usual procedure outlined in

Section 5.1 is then followed. As explained in the previous

section, an iterative scheme can also be used in order to improve

on the values of the estimated stresses.

5.4 The Software Package

A general purpose computer program has been developed for the

analysis of frame and plate structures. This program represents

an extension of a previously reported (31) computer program known

as the GWU-FAP (George Washington University - Frame Analysis

Program) which deals with the analysis of rigid frame structures.

Extensions to GWU-FAP have been accomplished in order to incor-

porate a rectangular thin plate element and to develop the capa-

bility for second order (large deformation) analysis that accounts

for geometric nonlinearities. In addition, the plastic dynamic.

analysis branch of the program has been augmented in order to
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allow for the analysis of structures consisting of in-plane

stressed rectangular plate elements (see Section 5.3). A simpli-

fied form of the flow chart for the modified GWU-FAP is presented

in Appendix B.

The modified GWU-FAP is a general purpose program which

enables the user to perform the foll owing types of analysis for

both frame and/or plate structures (with certain exceptions in

the case of a plastic dynamic analysis as explained below):

(a) Elastic static small deformation (first order) analysis

(b) Elastic static large deformation (second order) analysis

which considers the effect of geometric nonlinearities

(c) Free vibration analysis leading to the natural frequencies

and modes of vibration, using the consistent mass

matrix of the structure

(d) Elastic dynamic first order analysis

(e) Elastic dynamic second order analysis

(f) Plastic dynamic first order analysis of structures

consisting of beam or in-plane stressed rec-

tangular plate elements.

When performing any of the above types of analysis for a

rigid (skeletal) frame, the structure is modelled as an assembly

of plane or three-dimensional beam elements, depending on the

loading and deformation states of the structure. When con-

sidering a structure which contains rectangular plate elements,

different types of plate action may be distinguished. In the

present study, five possible modes of plate action have been
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considered and are classified according to the following scheme:

Class 1 - In-plane action without rotational displacement

at the nodes.

This type of element possesses 8 degrees-of-

freedom corresponding to element coordinate

directions 1,3,7,9,13,15,19 and 21 indicated

in Fig. 2 (see also Fig. 9).

Class 2 - In-plane action with rotational displacements

at the nodes.

This type of element possesses 12 degrees-of-

freedom corresponding to element coordinate

directions 1,3,5,7,9,11,13,15,17,19,21 and 23

indicated in Fig. 2 (see also Fig. 3).

Class 3 - Bending action only.

This type of plate element also has 12 degrees-

of-freedom represented by coordinate directions

2,4,6,8,10,12,14,16,18,20,22 and 24 in Fig. 2

(see also Fig. 4).

Class 4 -Bending and in-plane action without rotational

displacements at the nodes.

This type of plate element possesses 20 degrees-

of-freedom represented by element coordinate

directions 1,2,3,4,6,7,8,9,10,12,13,14,15,16,18,

19,20,21,22 and 24 in Fig. 2.
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Class 5 - Bending and in-plane action with rotational

displacements at the nodes.

This type of plate element is the most general

type used in the present study and possesses

24 degrees-of-freedom as indicated in Fig. 2.

Any of the above classes of rectangular plate elements

may be used when performing an analysis of type (a) through

(e) for a structure consisting of plate elements or a combina-

tion of beam and plate elements. On the other hand, in the

case of a structure containing rectangular plate elements, a

plastic dynamic analysis corresponding to type (f) can be per-

formed only with Class 1 plate elements.

The computer program has been designed so as to minimize

the amount of input needed for any of the above types of

analysis. Most of the input information to be supplied by the

user of the program pertains to the type of the structure, its

geometry, its material, cross-sectional and inertial properties,

the type and duration of loading and the type of analysis de-

sired. The input format for some typical structures corre-

sponding to different types of analysis is given in Appendix C.

The computer program is written in Fortran IV language for

use on an IBM-OS/360 digital computer. It has been made oper-

ational on both the APL Model 91 and the George Washington Uni-

versity Model 50 Computer System.
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VI. COMPUTER ANALYSIS OF TYPICAL STRUCTURES-SUMMARY OF

NUMERICAL RESULTS

The software package discussed in the previous chapter is

used here to obtain solutions to typical problems. For this

purpose, different types of structures are analyzed and the

results of the numerical solutions are summarized in this chapter.

Several of the solutions presented in the initial part of the

chapter pertain to simple structures and serve the purpose of

checking the various branches of the computer program by comparing

with known solutions.

6.1 First Order Static Analysis of a Plate

One of the simplest type of structures considered in this

study for the purpose of testing the computer program consists

of a simply supported plate with a concentrated load at the center.

Both rectangular and square plates with dimensions (length x width

x thickness) 40 x 20 x 0.50 in and 20 x 20 x 0.50 in, respectively,

are used. The other constants are:

Young's Modulus: E = 30 x 106 lb/in2

Poisson's Ratio: v = 0.3

Concentrated load: P = 10,000 lb.

The type of plate element used corresponds to Class 3,

described in Section 5.4. As mentioned previously, this type

of plate element is subjected only to bending action, and

possesses 3 degrees-of-freedom at each node (corner) point, or,
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a total of 12 degrees-of-freedom. In order to compare the accuracy

of the numerical results, solutions are obtained for the rectangular

plate by subdividing it into 4, 16, and 32 pl.te elements; similarly,

solutions are obtained for the square plate by subdividing it into

4 and 16 elements.

Table 3 shows the comparison of the center deflections of the

plate obtained by the finite element method and the exact method

as given in Timoshenko (8):

TABLE 3 - STATIC ANALYSIS OF SIMPLY SUPPORTED PLATE--COMPARISON
OF CENTRAL DEFLECTION BETWEEN FINITE ELEMENT

AND EXACT METHODS

Displacements (in)

Square Plate Rectangular Plate
a = 20 in

a = 20 in b = 40 in

4 Elements .11767 .16920

16 Elements .12564 .17706

32 Elements -- .18332

Timoshenko (6) .1351 .1923
(exact)

It may be observed that in both cases the solutions appear

to converge to the exact values as the number of elements is

increased.

6.2 Free Vibration Analysis of a Simply Supported Plate

A free vibration solution is obtained for a simply supported

square plate with the following physical input:
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Young's Modulus: E = 30 x 106 lb/in2

Dimensions of plate: a x b x h = 20 x 20 x 0.50 in

Poisson's Ratio: V = 0.3

Density of plate: p = 0.001 lb-sec 2/in.

Again, a Class 3 plate element is used in modelling the

structure which is subdivided into 4 and 16 elements.

The theoretical results used for comparison are obtained

from Volterra (32). The eigenvalues, wmn' and the corre-

sponding eigenvectors, Wmn(x,y), for the problem under con-

sideration are given as follows:

2 22 m nWmn = • (- +b--•) (117)
a b

W (x,y) = sin (-n-) sin (n y) (118)
inn a b

where

= Eh 2/(12p(l-2 ) ,

is a numerical constant.

Table 4 shows the comparison of the fundamental frequencies

between results obtained by the use of Eq. (117) and the finite

element method as applied in this study.

TABLE 4 - FREE VIBRATION OF SIMPLY SUPPORTED SQUARE PLATE--
COMPARISON OF FUNDAMENTAL FREQUENCIES BETWEEN

FINITE ELEMENT AND EXACT METHODS

4 elements 16 elements Volterra(22)-(exact)

Fundamental Frequency .217630EOcyc/sec .212534E03cyc/sec .205913E03cyc/sec

Corresponaing Period .459496E-02 sec. .470513E-02 sec. .485642E-02 sec.
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It may be seen that even with the use of a small number of ele-

ments the finite element solutions are fairly close to the exact

solution.

Table 5 shows the comparison of the fundamental normal mode

shape between the finite element (16 elements) and the exact

method.

TABLE 5 - FREE VIBRATION OF SIMPLY SUPPORTED SQUARE PLATE--COMPARISON
OF FUNDAMENTAL NORMAL MODE SHAPES BETWEEN

FINITE ELEMENT AND EXACT METHODS

Volterra (32) (exact) 16 Elements

(39 degrees-of-freedom)

-0.536411E-01 -0.478539E-04 -0.549793E-01 -0.665452E-07

-0.758360E-01 0.340921E 00 -0.777525E-01 0.340488E 00

-0.535734E-01 0.338058E-04 -0.549791E-01 0.II0401E-06

0.536411E-01 -0.536749E-01 0.549792E-01 -0.549792E-01

0.241449E 00 -0.758359E-01 0.240762E 00 -0.777516E-01

-0.379180E-01 0.535734E-01 -0.388762E-01 0.549787E-01

0.379180E-01 0.241144E 00 0.388764E-01 0.240760E 00

0.341353E 00 0.379659E-01 0.340489E 00 0.388763E-01

-0.536072E-01 0.378701E-01 -0.549791E-01 0.388761E-01

-0.338485E-04 0.340921E 00 -0.503340E-07 0.340487E 00

0.241144E 00 0.536749E-01 0.240762E 00 0.549793E-01

-0.378701E-01 -0.338058E-04 -0.388761E-01 -0.116132E-06

-0.379659E-01 0.240840E 00 -0.388764E-01 0.240760E 00

-0.536410E-01 0.379179E-01 -0.549790E-01 0.388762E-01

0.758360E-01 -0.379179E-01 0.777519E-01 -0.388762E-01

0.341353E 00 -0.535733E-01 0.340488E 00 -0.549784E-01

0.338485E-04 0.536410E-01 0.144227E-07 0.549785E-01

0.536072E-01 0.758359E-01 0.549793E-01 0.777512E-01

0.482593E 00 0.535733E-01 0.481525E 00 0.549783E-01

0.478539E-04 0.443147E-07
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Comparison between the two methods indicates that in most cases

the agreement is good, except when the amplitude of vibration is

very small. This is attributed to rounding and truncation errors

in the computational process.

A comparison of higher frequencies corresponding to the two

methods is shown in Table 6.

TABLE 6 - FREE VIBRATION OF SIMPLY SUPPORTED SQUARE PLATE--COMPARISON
OF HIGHER FREQUENCIES OF VIBRATION BETWEEN

FINITE ELEMENT AND EXACT METHODS

Volterra (22)
4 Elements 16 Elements (m,n) (exact)

.217630E03/sec. .212534E03/sec. (1,1) .205913E03/sec.

.614070E03/sec. .530795E03/sec. (1,2) .514782E03/sec.

.614070E03/sec. .530796E03/sec. (2,1) .514782E03/sec.

.123725E04/sec. .870523E03/sec. (2,2) .823651E03/sec.

.106759E04/sec. (1,3) .102956E04/sec.

.106759E04/sec. (3,1) .102956E04/sec.

.131904E04/sec. .142567E04/sec. (2,3) .133843E04/sec.

.142567E04/sec. (3,2) .133843E04/sec.

It is worth noting that, even with only 16 plate elements, the

comparison of higher frequencies obtained in this study with

the frequencies given in Volterra (32) is in general favorable

even for the higher frequencies of vibration.

6.3 Second Order Static Analysis of a Square Plate

The second order static analysis of a square plate under a

concentrated load at the center is studied in this section.
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Two types of boundary conditions are used for this structure:

(1) all four edges clamped and (2) all four edges simply supported.

The plate dimensions are 30 x 30 x 0.25 in, Young's modulus and
Poisson's ratio are taken as 30 x 106 ib/in2 and 0.3, respectively.

For the purpose of comparison with the work of other investi-

gators, the type of plate element Chosen is of Class 4 (see

Section 5.4). This type of plate element is subjected to bending

and in-plane action without rotational degrees of freedom at the

nodes. The ultimate load is 50,000 lb., and 16 elements are used

to idealize the square plate. Numerical results corresponding

to the clamped plate solution are compared with results obtained

by Brebbia and Connor (12), and Adotte (33). Table 7 below,

shows the similarities and differences among the three methods.

TABLE 7 - COMPARISON OF METHODS USED IN SOLVING THE NONLINEAR PROBLEM
OF A SQUARE PLATE CLAMPED AT FOUR EDGES WITH

A CONCENTRATED LOAD AT THE CENTER

Adotte Brebbia and Connor Present Study

Finite difference
Method and experimental Finite element Finite element

Number of
Elements -- 36 16

Degrees-of-
freedom at
each corner -- 5 5

In-plane
displacement
functions -- simpler more complex

Numerical used linearized 100 piecewise
procedure -- equations for a linear in-

limited number of cremental
load steps, then steps
applied correc-
tions based on a
Newton-Raphson
iterative mthd
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Figure 10 shows the results obtained by the three different

methods. It is seen that Adotte's curve is enveloped by the

curve obtained in the present study and that of Brebbia and

Connor, with the former below and the latter above it. All

three results are, however, very close, and the characteristic

*of the second order analysis in which the structure becomes

stiffer as the load increases is clearly evident.

Figure 11 shows the results of both the clamped plate and

simply supported plate plotted on a different scale with the

coordinate axes switched around. Both curves show the same

characteristic of increasing stiffness of the structure with

increasing load.

6.4 First and Second Order Static and Elastic Dynamic
Analysis of a Beam-Plate Assemblage

In this section is presented the analysis of a beam-plate

assemblage including the first and second order static, the free

vibration, and the first and second order elastic dynamic

analysis. The structure consists of a horizontal square plate

elastically supported by four edge beams which, in turn, are

supported in the vertical direction by four edge beams. The

plate is subjected to a uniformly distributed load.

The following numerical values are used for the problem

under consideration:

Plate dimensions: 30 x 30 x 0.25 in

Poisson's ratio: v = 0.3

I =0x

EI = aD, where a is the length of square plate and
D the plate stiffness.
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Both a total of 4 and 16 Class 3 plate elements are used

to idealize the square plate in order to compare results with

solutions given by other investigators, such as, Timoshenko (8)

and Zienkiewicz (13). For this purpose, initially a uniformly

distributed load q = 1 lb/in2 is used. A comparison of the

results is given in Table 8.

TABLE 8 - FIRST ORDER STATIC ANALYSIS OF A SQUARE PLATE WITH FOUR
EDGE BEAMS--COMPARISON OF RESULTS

WITH KNOWN SOLUTIONS

Center Point Deflection at mid-point
Deflection of edge

4 Elements 0.1274 0.0626

16 Elements 0.1584 0.0713

v =0.30

Timoskenko (exact) 0.1639 not available

v = 0.25

Zienkiewicz 0.1639 0.0697

36 Elements

v = 0.30

It is seen from the above table that the 16 element

solution obtained in this study agrees fairly closely with

the solutions given by Timoshenko and Zienkiewicz.

6.4.1 Second Order Static Analysis - A uniform load of 10 lb/in2

is now applied to the plate in order to study the effect of

geometric nonlinearities. For this purpose a second order analysis
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is performed using a total of 100 incremental steps. Fig. 12

shows the force-deformation curve for the center of the plate

and for the mid-point of the edges. For comparison purposes,

also the first order force-deformation curve is plotted. It

may be observed again that the structure tends to become stiffer

as the intensity of the load is increased.

6.4.2 Free Vibration Analysis - The free vibration analysis of

the structure under consideration yields the following results:

Lowest Frequency = 0.766 cyc/sec.

Largest Period = 1.31 sec.

Highest Frequency = 410.6 cyc/sec.

Smallest Period = 0.0024 sec.

6.4.3 First and Second_ order Elastic Dynamic Analysis - The

frequencies and periods from the free vibration analysis may

be used as a guideline for the numerical input to the elastic

dynamic analysis. Thus, a time increment of 0.001 seconds

and a final time of 2.7 seconds is used for the numerical inte-

gration process as applied to the first order analysis. In

the case of the second order dynamic analysis, a smaller time

increment has to be used since the structure becomes stiffer

as the deformations increase, due to stretching of the middle

surface of the plate. It has been found that a time increment

of 0.0001 seconds satisfies the stability criterion for the

numerical integration algorithm and yields satisfactory results.

For the first order dynamic analysis, uniformly distributed

2
loads of intensity 1 and 10 lb/in are used. In the case of the
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second order analysis load intensities of 1,2,5 and 10 lb/in2

are utilized in conjunction with an incremental procedure. For

comparison purposes the time-history curves from both analyses

are plotted on the same figure (Fig. 13).

Curves S 1 and S10 in Fig. 13 correspond to the first order

dynamic analysis for load intensities of 1 and 10 lb/in 2, re-

spectively. Within a time interval of 2.4 seconds, two nearly

identical complete cycles are seen for each curve, each possessing

a period of oscillations of about 1.2 seconds, but, of course,

differing in amplitude by a factor of approximately 10. The

corresponding static displacements can be found from Fig. 12 and

although not plotted on Fig. 13, they represent horizontal

equilibrium lines for the dynamic oscillations.

Curves L1 and LI0 in Fig. 13 represent results obtained

based on a second order analysis for similar load intensities

of 1 and 10 lb/in 2, respectively. Those two curves clearly

demonstrate the difference between the first and second order

analyses. Within the same time interval of 1.2 seconds, approx-

imately four complete cycles appear for the 1 lb/in2 loading and

twelve complete cycles for the 10 lb/in 2. The maximum ampli-

tudes are much smaller than those of the first order analysis.

This is because the plate becomes stiffer due to the stretching

of the middle surface. It is also seen that initially, the

results for both first and second order analyses are quite close
(as may be observed by comparing curve SI0 with LI0 and S1 with

L ). However, after some time has elapsed (for a load intensity
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2of 10 lb/in2, this corresponds to about 0.2 seconds, and in the

case of 1 lb/in 2, to about 0.4 seconds), the solutions of the

first and second order dynamic analyses become markedly different.

Figures 14 shows the comparison of second order dynamic

analyses for uniformly distributed loads of different intensities.

Curves LI, L2 , L5 , and L10 represent the time history of the

center deflection of the square plate under uniformly distributed

loads of 1, 2, 5, and 10 lb/in 2, respectively.

These curves show the following characteristics:

(1) All curves are periodic, or at least tend to be

periodic, after some initial time has elapsed, since no damping

has been introduced into the analysis.

(2) The period of oscillations becomes shorter as the

load increases. There are about five complete cycles in L1 but

about fifteen or more complete cycles in L1 0 for the same time

* interval. Again, this reveals the fact that the plate is much

stiffer and vibrates much faster as the load increases.

(3) The amplitudes of oscillations increase but in a

nonlinear manner due to the nonlinear stiffness properties of

the structure.

6.5 Square Plate Subjected to a Lateral Load and
In-Plane Compressive Forces

In this section is discussed both the elastic static and

dynamic analyses of a simply supported square plate under a

lateral concentrated load at center and uniform compressive

forces in the x-direction.
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Up to now, only one direction of loading has been considered.

When a plate is under the effect of both a lateral load and a

uniform compressive load acting in its middle plane, the work done

by both the transverse load and the compressive forces has to

be considered in formulating the solution to the problem. This

problem may be solved by using the analytical expressions given in

Chapter IV since the work done by the compressive forces is equi-

valent to the last term on the right hand side of Eq. (50). In

order to compare results with Timoshenko (16), the case of a

simply supported square plate under a concentrated load at center

and uniformly compressed in the x-direction is considered. The

deflection surface of a simply supported rectangular plate as

given by Timoshenko is:

W(x,z) = E Z Amn sin a sin nb (119)

m=l n=l

where
2 2 2N

Amn 4P sin m7 sin n" / a bD74 n_(_)2 - N ]x

mn a b a bb2 2a2D

(120)

and, P represents the concentrated force at the point (•,n)

N is the compressive force in the x-direction.x

It is seen that when N = 0, the above equation reduces tox

the solution of a simply supported rectangular plate under a

lateral concentrated load. In order to compare results, the

concentrated load, P, is kept constant at 1000 lb., acting at
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the center of the square plate, whereas Nx is varied. In the

present solution by the finite element method, in most cases a

total of 16 Class 4 (see Section 5.4) plate elements are used

to idealize the square plate. The numerical constants used in

the first order static analysis are:

6 2Young's Modulus E = 30 x 10 lb/in

Poisson's ratio v =0.3.

Dimensions of plate = 30 x 30 x 0.25 in.

Flexural rigidity, D = 0.429258 x 105 lb-in.

As long as the denominator on the right hand side of Eq. (120)

does not approach zero, the double series on the right hand side

of Eq. (119) converges rapidly. Hence the solution obtained by the

finite element method is compared only with the first term of the

series using the coefficient All, and the results of the compari-

son are shown in Table 9.

TABLE 9 - FIRST ORDER STATIC ANALYSIS OF A SIMPLY SUPPORTED SQUARE PLATE
UNDER A 1000 LB. LOAD AT CENTER AND UNIFORM COMPRESSIVE

FORCES IN THE X-DIRECTION--COMPARISON OF CENTRAL
DEFLECTION BETWEEN FINITE ELEMENT

AND EXACT METHODS

Deflection - Inches

F.E. Method Timoshenko (24)
N (lb/in) 4 Elements 16 Elements (exact)x (exact)

S0 .22615 .21489
100. .23694 .22694
200. ---- .24892 .24041
400. ---- .27727 .27280
600. ---- .31358 .31528
800. ---- .36180 .37342
1000. .39909 .42901 .45787
1200. ---- .52926 .59166
1400. ---- .69523 .83592
1600. ---- 1.02366 1.42366
1800. ---- 1.98451 4.7953
1900. ----

81



It may be observed that, in general, the comparison is

fairly good for N less than 1200 lb/in. However, when N is
x x

greater than 1200 lb/in, A11 increases very rapidly due to the

fact that its denominator tends to become very small. This

is because the critical value of Nx is between 1800 to 1900 lb/in.

The same structure is now analyzed by performing a second

order static analysis to determine the center deflection of the

plate. The loads are increased to their final values by apply-

ing 10 equal increments. Table 10 shows a comparison of the

accuracy between a 4 and 16 element idealization of the square

plate, with P = 1000 lb., and Nx 1000 lb/in.

TABLE 10 - SECOND ORDER STATIC ANALYSIS OF A SIMPLY SUPPORTED SQUARE PLATE
WITH P = 1000 LB AT THE CENTER AND UNIFORM COMPRESSIVE

FORCES N = 1000 LB/IN--COMPARISON OFx

CENTRAL DEFLECTION FOR 4 AND 16
ELEMENT IDEALIZATIONS

Deflection - Inches

Step 16 Elements 4 Elements

1 .02369 .02221

2 .04807 .04503

3 .07188 .06729

4 .09397 .08793

5 .11372 .10642

6 .13107 .12272

7 .14624 .13704

8 .15957 .14968

9 .17134 .16089

10 .18182 .17091
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The values in the last line of Table 10 represent the deflections

at the center of the plate when the loads have attained their full

values. It is seen that the difference between the two idealizations

is about 6%.

The effect of geometric nonlinearities can best be studied

by varying both the lateral load and in-plane compressive forces

applied in the x-direction. For this purpose, values of P = 500,

1,000, 2,000, 10,000 lb. and N = 0, 1,000, 2,000, 3,000 andx

4,000 lb/in, are used. The results of the investigation are

summarized in Table 11.

TABLE 11 - SECOND ORDER STATIC ANALYSIS OF A SIMPLY SUPPORTED SQUARE PLATE
WITH VARYING LATERAL AND COMPRESSIVE FORCES--

COMPARISON OF CENTRAL DEFLECTIONS

Deflection - Inches

N
x 0 1000 2000 3000 4000

P

500 .0932 .1118 .1364 .1644 .1904

1000 .1542 .1709 .1891 .2079 .2264

2000 .2312 .2440 .25695 .2700 .28292

10000 .48755 .49481 .50235 .51026 .51865

It may be observed from the above table that for smaller

lateral concentrated loads, the effect of varying Nx on the

deflection of the plate is much more pronounced. For large

values of P, large deformations of the plate are accompanied by

stretching of the middle surface. This, in turn, nearly counter-

acts the compressive effect of the in-plane forces.
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An elastic dynamic analysis has also been performed for the

same structure. Initially, a free vibration solution is obtained

which indicates that the largest period is about 0.7 seconds.

Therefore, a time interval of 1.4 seconds is used for the numeri-

cal solution process in the forced vibration analysis. The time

increment used is 0.001 seconds. In Fig. 15 are shown the time-

history curves corresponding to the first order dynamic analysis.

Curves DN1 SNX are the dynamic and static displacement curves

for P = 2000, N = 1000; D 0 , S 0 are the dynamic and static dis-xo o

placement curves for P = 2000, Nx = 0. It is seen that D has

a much greater amplitude and slightly longer period of oscillations

than D0 . In fact, the fundamental period obtained from the free

vibration analysis no longer matches the period of oscillations

corresponding to response curve D , due to the existence of

the in-plane compressive forces.

6.6 First Order Elastic and Plastic Dynamic Analysis of

a Plate Structure

In several of the numerical solutions presented in this

chapter, it has been assumed that the stresses and strains in

every part of the structure remain elastic even when large

deformations are taking place. In such cases it is more realistic

to take into account plasticity effects which are brought about

by the yielding of the material. To accomplish this the "Plastic

Dynamic" branch of the computer program discussed in Section 5.4

is used to solve some typical problems.
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One of the simple structures considered for this purpose

consists of a square plate which is fixed along one of its edges

and free along the others (see Fig. 16). The dimensions of the

plate are 30 x 30 x 0.50 in. The structure is discretized using

4 plate elements corresponding to Class 1, as discussed in

Section 5.4. This type of plate element can sustain only in-

plane action without twist at the corner nodes. As shown in

Fig. 16, three concentrated in-plane loads of magnitude F = 100 kips

are applied in the x-direction at the nodes C, D and E on the

free edge of the plate parallel to the fixed support. For com-

parison purposes, first a static analysis of the structure is per-

formed. The results indicate that the maximum displacement due

to the applied loads is 0.146 in. and occurs in the x-direction

at the nodes C and E. The corresponding displacement at node D

is 0.137 in. Likewise, in order to obtain an estimate of the time

increment of integration to be used in the dynamic analysis of

the structure, a free vibration analysis is first performed. The

results of this analysis are

Lowest Frequency = 25.88 cyc/sec.

Largest Period = 0.0386 sec.

Highest Frequency = 233.7 cyc/sec

Smallest Period = 0.0043 sec.

Based on the above results, an elastic and plastic dynamic

analysis of the structure is performed. The same concentrated

loads used in the static analysis are now applied to the struc-

ture dynamically and are assumed to remain constant with time.
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A time increment of 0.0002 sec. is used for the numerical inte-

gration process. In the case of the plastic dynamic analysis a

trilinear stress-strain curve is used. Referring to Fig. 8, the

values of the various parameters defining the curve are:

Param. 1: Stress 01 = 20,000 lb/in2

Param. 2: Slope 2 = 11.50 x 106 lb/in2

Param. 3: Stress 02 = 33,000 lb/in2

Param. 4: Slope 3 = 2.50 x 106 lb/in2

Param. 5: Ultimate Stress = 130,000 lb/in2

Param. 6: Yield Point Stress = 33,000 lb/in2

It should be pointed out that initially a more realistic value

of 65,000 lb/in2 was used for the ultimate stress of the material.

However, it was found that the average stresses in some elements

exceeded the ultimate stress. This, in turn, led to an automatic

interruption of the computer analysis, as explained in Section 5.3.

The time-history curve of the x-displacement at node C for

both the elastic and plastic dynamic analysis is plotted in

Fig. 17. A comparison of the two curves indicates that in the

case of plastic deformations there is an increase of about 5%

in the maximum displacement and a slight increase in the period

of oscillations. However, the main difference between the results

of the two analyses is that plastic deformations are accompanied

by an noticeable permanent set, as may be seen from Fig. 17.

6.7 Elastic and Plastic Dynamic Analysis of a Plane Frame

The structure considered in this case consists of a plane

frame, as indicated in Fig. 18(a), that was previously analyzed
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in Ref. (25). The frame is made up of standard 4 inch diameter
2

steel pipe whose cross-sectional area A = 3.174 in and the

moment of inertia I = 7.233 in 4 . Furthermore, the modulus of

elasticity E is taken to be 29 x 106 lb/in 2, and a value of

46,000 lb/in2 is used for the yield value of the material. For

simplicity in the computation of plastic deformations a bilinear

stress-strain curve is used, with the inelastic branch having a

slope of 1/10 of that of the elastic branch. The loading consists

of two dynamically applied forces, Fv = 20 kips and FH = 5 kips

having a rise time of 0.20 seconds, as shown in Fig. 18(b).

The time-history of deflection at the point of application

of the vertical load is shown in Fig. 19. Also included in the

figure is the corresponding deflection if the loads are applied

statically and the structure is assumed to respond as a linear

system. The three time history curves shown in the figure corre-

spond to the elastic dynamic response with or without geometric

nonlinearity effects, and the plastic dynamic response of the

structure. As may be observed, the dynamic character of the load

results in a dynamic load factor of approximately 2.0 for the

case where the effects of geometric nonlinearities are neglected

(first order analysis). However, when such effects are retained

(second order analysis) the load factor increases to approximately

2.4 (20% increase). In the case of inelastic deformations, the

dynamic load factor becomes much larger. This is due to the

large magnitude of the applied loads which causes initiation of

yielding at an early stage of the response (i.e., at approximately
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0.16 sec.) and thus leads to considerable inelastic deformations.

6.8 Elastic and Plastic Dynamic Analysis of a Three-Dimensional
StructureC6onsi sting of In-Plane Stressed Plate Elements

The static, elastic and plastic dynamic analysis of

the structure shown in Fig. 20 is studied in this section. The

structure is composed of aluminum plates of uniform thickness.

It consists of three vertical walls (parallel to the y - z plane)

at 6 ft. apart and three horizontal floor decks at 2 ft. apart.

The plate thicknesses chosen are 1/8 in. for the vertical walls

and upper deck and 1/16 in. for the lower two decks. The struc-

ture is supported rigidly along the bottom edges of the vertical

walls and is restrained from movement in the x-direction.

A discrete model of the structure is obtained by inserting

a node at each corner point corresponding to the interconnection

between vertical and horizontal members. In this manner, each

vertical wall is subdivided into three and each deck into two

plate elements. These plate elements are of the type that can

sustain only in-plane stresses (see Sections 5.3 and 5.4) with

no twisting action. Thus, at each node point only a translational

movement in the y and z-directions is allowed, and therefore the

number of degrees of freedom for the entire structure is 36.

The structure is subjected.to a concentrated load of

F = 900 kips applied at node 16 and acting in the positive z-

direction. Initially, the load is considered to act statically

in order to determine the static displacement distribution of the

structure. Numerical results indicate that, as expected, the
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maximum displacement occurs in the direction of the applied load

and is equal to 0. 887 in. Also, a free vibration analysis of

the structure has been performed leading to the following results:

Lowest Frequency = 236.2 cyc/sec.

Largest Period = 0.00423 sec.

Highest Frequency = 4540 cyc/sec.

Smallest Peroid = 0.00022 sec.

It may be observed that the three-dimensional character of the

structure results in a fairly stiff system and corresponding high

frequencies of vibration. Although not plotted here, a study

of the fundamental mode of vibration indicates that the structure

deforms in a manner analogous to a cantilever beam. Thus, as

far as the z-direction is concerned, all nodal points move to-

gether in the same direction. However, the movement in the

y-direction is such that while all points in the frontal plane

(parallel to the x-y plane) move in one direction, all points

in the rear plane (x-y) plane move in the opposite direction.

The same concentrated load used in the static analysis is

now applied to the structure dynamically and is assumed to remain

constant with time. The elastic dynamic response of the structure

is first obtained by assuming the structure to act as a linear

elastic system. The time-history curve of the displacement in

the direction of the applied load is shown in Fig. 20. Some

secondary oscillatory effects are observed in the plot due to the

interaction between inertial effects in the two perpendicular

directions and the superposition of higher modes of vibration.
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For the plastic dynamic analysis a trilinear stress-strain

curve is used as represented by Fig. 8. The following values of

the parameters are used in this case:

Param. 1: Stress a = 6,530 lb/in2

Param. 2: Slope 2 3.87 x.106 lb/in2

Param. 3: Stress a2 = 20,800 lb/in2

Param. 4: Slope 3 = 0.03 x 106 lb/in2

Param. 5: Ultimate Stress = 30,000 lb/in2

Param. 6: Yield Point Stress = 20,800 lb/in2

The same magnitude of the load, i.e., F = 900 kips, is

used in the plastic dynamic analysis of the structure. The

time-history curve of the displacement in the direction of

the load is plotted also in Figure 21. The same oscillatory

behavior is observed as the case of the elastic dynamic

analysis, however, the displacements are larger. Also,

plastic action is accompanied by relatively large permanent

deformations, indicating possible damage to the structure.
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VII. SUMMARY AND CONCLUSIONS

A procedure of analysis has been presented for determining

the plastic dynamic response of structural systems consisting of

beam and rectangular plate elements. The analysis takes into

account both the geometric and material nonlinearities.

The general approach to the problem is based on the finite

element method using displacement interpolation functions. The

strain energy expressions for both the beam and plate elements

are obtained and are used to generate the stiffness and mass

matrices of the elements. Also, the geometric stiffness matrices

are derived that account for the effect of geometric nonlinearities.

Plastic deformations are taken into account by means of an incre-

mental theory of plasticity coupled with the concept of initial

strain. The governing dynamical equation of the system is

written based on Hamilton's Principle.

A general purpose computer program has been constructed

based on the analytical procedures developed in this study.

Although the program is primarily intended for the solution of

plastic dynamic problems, it can also be used to perform an

elastic static or elastic dynamic analysis with or without

geometric nonlinearities, as well as a free vibration analysis.

The program is used in this study to solve several simple struc-

tures subjected to static or dynamic loads. It is found that

even with the use of a relatively small number of elements of

the type chosen in this study, the results agree fairly well
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with solutions given by other investigators (whenever such

solutions are available). Results also indicate that both

material and geometric nonlinearities have a significant effect

in the total deformation of structures which consist of beam

and plate elements. In the case of plate structures subjected

to large bending effects, it is found that tension in the middle

surface of the plate causes a significant stiffening and an

appreciable change in the vibrational characteristics of the

structure.

In conclusion, the feasibility of the numerical procedure

developed in this study has been demonstrated by the solution

of some simple problems. The computer program generated as a

result of this study should be a useful tool to structural

analysts. However, further numerical experimentation may be

needed before the full potential of the program is realized.
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APPENDIX A

STRAIN AND STRESS COMPONENTS DUE TO IN-PLANE ACTION

Strain and stress components to be used in Eq. (53) corre-

sponding to the displacement functions defined by Eqs. (51), and

(52) are presented in this appendix.

A.1 Strain Components

The strain components corresponding to the in-plane

action may be obtained by substitution of Eqs. (51), and (52)

into the following equation

1
x x,x a x,E

1
[£i] = z Uz~ b-z~

1 1
Yu + U-u +1'xz x,z z,x b Ux,•n a z,_ _ i __ i -

The results are as follows:

] (2• - 3T2 + 1)

1 2

S(1 - r)(6n - 6T)

b

133

TI (i - (6 C - 6ý)



h 3 - 2r12 + Tr)

a

[E:a 3 _ 2C
(15 ] )- ( 33 I 2 4 +1 )

- (i - )(3ri2 - 4r7+li) + (i'-nr)(3 •2 - 4•+ i)

1- i 3 2 S(2r] - 3r] + i)

1 2 _ 6 T

0

[c ~ 1 (2 3E2)1 (1 - i ( 62 -6

a

(- 2 2 + T2)

_a H3 c2

- (3q2 - 4n + 1) + (1 -TI)(3C2 2ý)

1 (2rl 3 3ri2

[el1 3 ] 0

1 2C (6TI -6 )
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0

= _ (2C3 - 3 2)

1 2
a - (6C - 6C)

_b 3 2

a- ( -TI3

[17] a • 3 2

- (32 - q + q(3•2 - 2•)

1 3

a (2n - 3n2)

[E:19] 0

- (1 - U)(6Ti2 6 6T)

0

[E ~ ~ (2 C - 3 C + 1)1 2

1 Ti (6 C - 6C)

a (Ti - TI2
a 3 2

C 23] E; b ( 23 2 + C)

- (1 - C)(3T2 - 2 Ti) + T( 3 C - 4ý + 1)
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A.2 Stress Components

The corresponding stress components may be obtained by

substitution of the above results into the following equation.

CY 6 + ve
x x z

a.]z E V x + z

Txz Xyxz

The results are (all terms on the right-hand side of

the equations are to be multiplied by the factor E/I-v 2 )

_ 1 (2 3 _ 3 2 + 1)a

- -- (2q 3 - 3 2 + 1)

a

(1 - E) (6j2 - 6 )

- (2 (2( - 2 +1)
1(2 ý3 3 C2+ 1)

1 3 2[a 3 ] = - •(2• - 3 +1i)

_ 2a (1- TI)(6 - 6C)

(b -I 2 il2 + T) C 3 _ 2C 2 + C)

bv (q3 2 a 3 2

[a 5 ] a- 22 + a 3 -( 2 +

2 2
X[ (1 -C)( -T2 _ 4 T + 1) + (1 -4)(3C 2 4C 1)]
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1 (2n 3 _3 l2 + 1)

[a] =.(2TI3 _ 3 2 + 1

7A 2

x ý (6 Tj 2 - 6 -n)

S(2ý3 _ 3 ý2

[y1 2 3 _ ý2

- -n)(6ý2 -6ý)

a- (

-~ b n3 2T2 + av 3 _2

_ by (n3 -2~ a, + )3 _ 2
a b

X [C 3TI2 - 4rI + 1) + (1 - Tn) (3ý2 -2C) 1

1 ~ (2n3 _- T 2

13 2

A (6TI 2 - 6Tj)

cy1 ( 3 3 2)[ 1 5] b ~

a



b 3 2 av 3 2
a Fý (T,3 n 2) + a_ (ý3 ý2)

_ b (3 2 a •3 2

[017] a

(3TI2 - 2rT) + Ti (3C2 - 2C)]

1(2T3 - 3n 2

[a]- (2TI3_ r 2
19 a

(6T 2 6o- - • 2 - 61)
u (1

(2C - 3C2 + 1)

[°2] = F (2~ - 3• + 1)

2 2
a n (6C - 6C)

b 3 T( 2) + va ( ,3 _ 2 2 + E)
ab

[]=_ vb (rT 3 2 a 3 2

23 a -3 T2) + a ( - 22 + )

(- ) 2 - 2n) + n (3 2 - 4 + 1)
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APPENDIX B

SIMPLIFIED FLOWCHART OF THE MODIFIED GWU-FAP PROGRAM
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APPENDIX C

TYPICAL INPUT FORMAT

C.1 STATIC ANALYSIS-FIRST ORDER
STRUCTURE ANALYZED IN SECTION 6.4 OF THIS REPORT

THIN.PLATE ELASTICALLY SUPPORTED BY EDGE BEAMS-4 PLATE AND 8 BEAM ELEMENTS

STATIC ANALYSIS
SPACE FRAME FIRST ORDER
NUMBER OF JOINTS 8
NUMBER OF NODE POINTS 1
NUMBER OF BEAM ELEMENTS 8
NUMBER OF PLATE ELEMENTS 4
JOINT COORDINATES

1 0.0 0.0 0.0

2 15.0 0.0 0.0
3 30.0 0.0 0.0

4 0.0 0.0 15.0
5 15.0 0.0 15.0

6 30.0 0.0 15.0

7 0.0 3.0 30.0

8 15.0 0.0 30.0
NODAL COORDINATES

9 30.0 0.0 30.0

MEMBER INCIDENCES
1 1 2
2 2 3
3 3 6
4 6 9
5 9 8
6 a 7
7 4 7
S 1 4
1 1 2 5 4
2 2 3 6 5
3 4 5 a 7
4 5 6 9 a

NUMBER OF CONSTRAINED VERTICES 9
1111010
2101010
3111010
4101010
510±010
6101010
7111010
8101010
9111010

"MEMBER PROPERTIES
S1 a *212000E÷01 .000000E00 .440000E+00 .420000E-01 1.0

0000100004 0.25 1.0 3

MODULUS OF ELASTICITY 30.00
NU 0.30
LOADING

1 56.25

2 112.50
3 56.25
4 112.50
5 225.00
6 112.50
7 56.25

a 112.50
9 56.25

EJECT
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C.2 STATIC ANALYSIS-SECOND ORDER
STRUCTURE ANALYZED Ih SECTION 6.4 OF THIS REPORT

THIN PLATE ELASTICALLY SUPPORTED BY EDGE BEAMS-4 PLATE AND a BEAM ELEMENTS

STATIC ANALYSIS
SPACE FRAME SECOND ORDER
NUMBER OF JOINTS S
NUMBER OF NODE POINTS 1
NUMBER OF BEAM ELEMENIS I
NUMBER OF PLATE ELEMENTS 4
JOINT COORDINATES

1 0.0 0.0 0.0
2 15.0 0.0 0.0
3 30.0 0.0 0.0
4 0.0 0.0 ±5.0
5 1s.0 0.0 1S.0
6 30.0 0.0 ls1.
7 0.0 0.0 30.0
a 1S.0 0.0 30.0

NODAL COORDINATES
9 30.0 0.0 30.0

MEMBER INCIDENCES
1 1 2
2 2 3
3 3 6
I. 6 9
S 9 a
6 a 7
? 4 7
a 1 4
1 1 2 S 4
2 2 3 6 9
3 4 S 8 7
. 5 6 9 a

NUMBER OF CONSTRAINED VERTICES 9
1111010
2101010
3111010
4101010
5101010
6101010
7111010
8101010
9111010

MEMBER PROPERTIES
1 8 .212000E+01 .000000E+00 ,440000EO00 .. 200OOE-01 1.0

0000100004 0.25 1.0 5
MODULUS OF ELASTICITY 30.00
NU 0.30
LOADING

1 S62.50
2 112S.00
3 562.50
4 1125.00
s 2250.00
6 112s.00
7 562.50
a 1125.00
9 562.50

EJECT
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C3. ELASTIC DYNAMIC ANALYSIS-SECOND ORDER
STRUCTURE ANALYZED IN SECTION 6.4 OF THIS REPORT

THIN PLATE ELASTICALLY SUPPORTED BY EDGE BEAMS-4 PLATE AND 8 BEAN ELEMENTS
ELASTIC DYNAMIC ANALYSIS LTYPE I
SPACE FRAME SECOND ORCER
NUMBER OF JOINTS &
NUMBER OF NODE POINTS I
NUMBER OF BEAM ELEMENTS 8
NUMBER OF PLATE ELEMENTS 4
JOINT COORDINATES

1 0.0 0.0 0.0
2 15.0 000 0.c
3 30.0 0.0 .0.0
4 O.o 0.0 15.0
5 15.0 0.0 s5O0
6 30.0 0.0 1s5o
7 0.0 0.0 30.0
8 15.0 0.0 30.0

NODAL COORDINATES
9 30.0 040 30.0

MEMBER INCIDENCES
1 1 2
2 2 3
3 3 6
4 6
. 9 a

S S 7

7 1 4

1 1 2 5 4
2 2 3 6 9
3 4 5 8 7
4 5 6 9 a

NUMBER OF CONSTRAINED VERTICES 9'
1111010
2101010
3111010
4101010
5101010
61010107111010

8101010
9111010

LUMPED MASSES AT VERTEX POINTS
1 9 .L0100DE-02

MEMBER PROPERTIES
1 8 .212000E+01 .000000E+00 .440000E+00 .420000E-01 1.0

0000100004 0.25 1.0 5
MODULUS OF ELASTICITY 30.00
NU 0.30
TIME PARAMETERS

0.0 2.7 0.0001
LOADING

0.0 2.7
1 562.50
2 1125.00
3 562.50
4 1125.00
5 2250.00
6 1125.00
7 562.50
a 1125.00
9 562.50

EJECT
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