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ABSTRACT

The objective of this study is the development of a
procedure for determining the large dynamic response of
structural systems consisting of beam and rectangular
plate elements. The analysis takes into account both
geometrical and material nonlinearities. The general
approach to the problem is based on the finite element
method and the use of displacement interpolation functioné.
The énergy expressions for both the beam and plate
elements are obtained and are used to generate the stiffness
and mass matrices of the elements. Also, the geometric
stiffness matrices are derived which account for the
effect of geometric nonlinearities. Plastic deformations
are taken into account by means of an incremental theory
of plasticity coupled with the concept of initial strain.

A computer program is developed for the analysis of
structures which consist of beam and rectangular plate
elements. This program may be used to perform an elastic
static, elastic dynamic, or plastic dynamic analysis with
or without the inclusion of geometric nonlinearity effects.
It can also be used to perform a free vibration analysis
of a structure, leading to the natural frequencies and modes
of vibration. The computer program is used in this study

to obtain the solution to several example structures




subjected to static or dynamic loads. Results indicate that
both geometric and material nonlinearities have an important
effect in the deformation of structures composed of beam

and plate elements.
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I. INTRODUCTION

1.1 General and Review of Literature

Large deformatiqns of a structural system give rise to a
nonlinear phenomenon. This leads to nonlinear equations which
immediately render classical methods of analysis inapplicable.
Among many approaches to the solution of the problem, the
finite element method has been the one most commonly'used in
recent years. The structure is first idealized as an assembly
of discrete structural elements, and some assumptions on the
displacement distribution with respect to these elements are
then made. The complete formulation is obtained by combining
these individual approximate displacement distributions in a
manner which satisfies the force-equilibrium and'displacement
compatibility relations at the junctions of these elements.
Numerical methods of analysis may then be used to solve the
equations. In such a formulation of the problem, matrix algebra
is appropriately utilized and conveniently lends itself to solu-
tion by means of a digital computer.

In dealing with large deformatiéns of structures two types
of nonlinearities have to be taken into account, i.e., geometrical
and material nonlinearities. The concept of using the finite
element approach in solving gebmetrically nonlinear structures
was initially advanced by Turner et al (l). Martin (2) reviewed
the work on geometrically nonlinear problems and presented geo-

metric stiffness matrices for a number of. structural elements,




while Oden (3) gave special attention to incremental formulations
of these problems. Oden also studied the problem from dual view-
points: first, the approach in which nonlinear stiffness relations
with complete generality were generated and solved by the Newton-
Raphson method. Secondly, the approach in which the structural
problem was viewed as one of miniﬁizing a scalar-valued function
defining the total potential energy of the system of n-variables.

The behavior of geometrically nonlinear frames was the
subject of several investigations, such as (4-7). The problem
of large deformation of plate structures was previously investi-
gated by Timoshenko (8), who considered the interaction of
bending and in-plane (membrane) action. Greene (9), and Kapur (10)
derived separately the stiffness properties for a rectangular
plate for various static loading conditions. Murray ahd Wilson (11)
studied the large deflection of plates by using triangular elements
in which in-plane as well as out-of-plane displacements were
permissible. Brebbia and Connor (12) investigated the same prob-
lem by initially setting up the stiffness matrix for the structure
and then solving the system of force-displacement equations using
a limited number of load steps, and followed by correétions based
on the Newton-Raphson method.

Zienkiewicz and Cheung (13) analyzed a plate with edge beams
subjected to static loading of relatively small magnitude, and
compared the finite element solution to the classical solution
given by Timoshenko (8). The elastic-plastic analysis of plates

with edge beams was considered by McNeice (14). Weaver et.al. (15)

o



considered a rectangular plate with in-plane and torsional action.
Timoshenko (16) studied the problem of the small deformation of

a rectangular plate subject to a concentrated lateral load at
center and uniformly compressed in the in-plane directions.

In recent years, there have been other significant contri-
butions, for example (17,18). Furthermore, the problem of
material nonlinearity as related to structural systems has
received increased attention by several investigators, such as
(19-21). In most of these investigations, plastic behavior
beyond the elastic range has been determined by the use of the
Prandtl-Reuss equations (22) of the classical plasticity theory.
Concurrently, two distinct methods of incorporating plastic behavior
into a finite element analysis have been developed, and are refer-
red to in the literature as the "initial strain" and the "tangent
modulus" methods (20). Such techniques are very suitable in
dealing with problems that involve both geometric and material
nonlinearities.

Very few solutions to structural dynamics problems have
been reported in the literature which aim at determining the
complete response of a structural system, including the elastic
and inelastic deformations, as well as the effect of geometric
nonlinearities. In this connection Farhoomand, Iverson, and
Wen (23) developed a method of dynamic analysis of space frames
considering the combined effect of material and geometric non-
linearities. 1In their analysis, the mass properties of the

structural components were lumped at the joints and the material




was assumed to be elastic-perfectly plastic, with inelastic
deformations taking place at member ends only. Likewise,

Toridis et al (24,25) presented an incremental finite element
procedure for the dynamic analysis of framed structures with both
geometric and material nonlinearities. Their solution was based
on the concept of initial strain and the use of the geometric
stiffness matrix for a beam' element. Strain hardening and
hysteretic effects were also taken into account.

More recently, McNamara and Marcal (26) developed a numerical
procedure aimed at the use of the finite element mephod to analyze
large elastic-plastic deformations of structures under a variety
of dynamic loadings. 1In their procedure, the basic equations
for nonlinear finite element analysis were linearized based on
an incremental précess and the addition of two error terms to
account for discretization errors. It was shown that the
corrected incremental equations, in the form used in their
analysis give stable and accurate solutions even with
relative large time increments.

1.2 Object and Scope

The objective of the present investigation has beén the
development of a procedure for determining the large dynamic
response of structural systems consisting of beam and rectangular
plate elements. The analysis takes into account both geometrical
and material nonlinearities, The general approach to the problem
is based on the finite element method and the incremental plasticity
theory coupled with the use of the geometric stiffness matrices of . -

the elements to account for significant changes in the geometry of




the structure. From the practical viewpoint, one of the additional
objectives of this study has been the development of a general
purpose computer program for the analysis of thé type of structures
under consideration. The computer program is designed with suf-
ficient flexibility for possible use with various classes of
structural elements. Presently, the classes of elements that

have been incorporated into the program consist of two types of
beam elements corresponding to plane or three-dimensional action,
and five types of thin rectangular plate elements corresponding

to membrane and/or bending and twisting action. The beam and

plate elements may be used alone or in combination (beam-plate
assemblage) to perform a static, elastic dynamic or free vibration
analysis of a structural system. Likewise, a plastic dynamic
analysis may be performed, but the type of plate elements that

can be used for this purpose is presently restricted to rectangular

elements with membrane (in-plane) action only.



II. BRIEF REVIEW OF BASIC CONCEPTS

The use of the finite element method in solving structural
problems is well known., For comprehensiveness, related topics
such as Castigliano's theorem, the strain energy expression,
and the stress-strain relationship for the problem under con-
sideration are briefly discussed. The concept of the direct
stiffness method is next outlined and is followed by the formula-
tion of the dynamical expressions governing the behavior of the
system. Temperature is assumed to be constant throughout all
the derivations.

2.1 Brief Review of Basic Concepts

2.1.1 Strains and Displacgments

The structure under study is first partitioned into
a set of idealized elements. For each idealized element, the
interior displacements [u] are assumed to be expressible in terms

of the nodal displacements [U] by the matrix equation
[ul = [a] [U] (1)

where [a]l = [a(x,y,z)] is a rectangular matrix and a.function

of the position coordinates. The matrix [a] is usually determined
by assuming the form of the displacement distribution. This
displacement distribution musf be continuous and should preferably
satisfy compatibility of deflections and slopes on the boundaries
of the elements. The satisfaction of the stress-equilibrium

equations is also desirable. It is thus clear that in general,



only approximate expressions for the matrix [a] are expected
since the latter depends on the complete displacement distri-
bution of the entire structure.

Since the total strains [e] are functions of the dis-
placements [u]l, which in turn are functions of (U], the follow-

ing matrix equation is valid:
[e] = [b] [U] (2)

where [b] is again a rectangular matrix.
2.1.2 Castigliano's Theorem, Strain Energy Expression
Stress-Strain Relationship
The well-known Castigliano's Theorem (27) states that
if a structure is subjected to a system of external forces
S

S ooy Sn and if only one virtual displacement SuY is

1’ =2
applied in the direction of the load Sy, and if V represents the

strain energy of the system, then
S = e (3)

If uY is identified as a nodal displacement and if the index is
varied from vy = 1 to y = n, then the following matrix equation

may be obtained from this set of n equations

[s] = a—?%r | (4)

The strain energy, V, shown in Eq. (4), may be expressed

in matrix notation as (dv represents an infinitesimal véolume element)

T

vV = %~f [e] [o] dv. | (5)

v




The stresses [0] and strains [€] shown in Eg. (5) are

related by the following equation:
[c] = [D] [e] (6)

where [D] 1is a rectangular matrix, referred to as the "elasticity

matrix."

2.2 stiffness and Inertial Properties of Elements

The concept underlying the direct stiffness method is the
determination of the displacements of an idealized structure
under some specified external loading by investigating the
stiffness properties of individual structural eleﬁents which can
be used to represent the idealized structure. The displacements
will be considered as the unknowns throughout the analysis. The
stiffness properties of an individual element may be obtained
by substituting Egs. (2), (6) into Eq. (5), so that

T
v = %f el [0] dv = = /(01T ([b]T [DI[b]) [Uldv. (7).

v

N

Differentiating the above equation with respect to the ith nodal
displacement and substituting the result into Eg. (4), the follow-

ing equation is obtained

(5] = 5o = U (Ip1T (D] [b1av) [U]. (8)
Defining .
[K] = /, (Ib1T(D][blav (9)

where [K] represents the elastic stiffness matrix of the element,

Eg. (8) now becomes

10



[s] = [K][U] (9a)

which is the force-deformation relationship of the element under
consideration. It can be observed from Egs. (8)-(%9a) that the

stiffness matrix components may be represented as

It should also be observed that in view of Egs. (7) and (9), the

strain energy expression V may be represented as
v =3 (07K (U] (11)

If only one element is used to idealize the structure,

Eq. (9a) is the representative equation. However, in the general
case of a structure consisting of several elements, the force-
deformation relation of all the elements, as given in Eq. (9a),
may be appropriately assembled to form the representative equa-
tion of the entire system.

In considering the dynamic response of a structure, the
inertial properties of the system must first be determined. As
shown in Refs. (25) and (27), the mass matrices of the individual
elements of the structure may be computed through a process
similar to the generation of the stiffness matrices. Again, an
integration over the volume of the element is needed, so that,

letting [M] represent the element mass matrix
_ 4T '
M] = fvp[a][a]dv (12)
where, p, represents the mass density of the material.

11




As in the case of the stiffness matrices, the mass matriées
of the individual elements may be assembled appropriately to form
the generalized mass matrix for the entire structure.

2.3 Effect of Geometric and Material Nonlinearities

As will be shown later  in this report, the effect of
significant changes in the geometry of the structure can be
accounted for by the inclusion of higher order nonlinear terms
in the strain-displacement relations. This, in turn, intro-
duces an additional stiffness matrix KG’ referred to as the
"geometric stiffness matrix." 1In such a case, it has already
been demonstrated in Ref. (25) that for a framed structure
consisting of beam elements, the strain energy expression given

by Eq. (12) takes the form of
_ 1 T
vV =35 [U]I7([K] + [K;])[U] (13)

where, as before, [K] represents the elastic (first order)
stiffness matrix of the element defined by Egq. (9), and [KG]
refers to the geometric stiffness matrix.

When inelastic deformations take place, it is assumed
(24) that the total strain vector [e] may be divided into an
elastic part [e®] and a plastic part [eP]1. In turn, the
plastic strain vector may be treated as an initial strain vector

[e°], so that

(€] = [e] - [e°] (14)

12



In a similar manner, it is assumed that the nodal displacements
of the element may be separated into an elastic part [U®] and
plastic or initial part [U°]. Furthermore, it is assumed that
the interpolation or shape functions chosen to represent the
elastic displacement distributions within the elements may also
be used to represent the plastic displacement distribution in the
elements., Following this approach, it is shown in Refs. (24)
and (25) that the effect of the plastic actions occurring in the
elements may be represented as equivalent forces acting at the
nodal points of the elements. 1In this manner, the modified
equilibrium equations can be easily formulated.

2.4 Transformation Matrices

So far, the discussion has centered on the generation of
the stiffness and mass properties of an individual element
referred to the local coordinate system of the element. 1In
order to determine the corresponding properties of the entire
structure, a global coordinate system must be established. The
displacements and corresponding forces of the elements are then
transformed to the global coordinate'system, prior to the appli-
cation of the direct stiffness method.

Let [U] and [S] be the element displacements and forces
with respect to the local coordinate system, and [U] and [S] be
the same elemeﬁt displacements and forces with respect to the
global coordinate system, reséectively. Let [A] be the trans-

formation matrix between these two coordinate systems. Then,
[ul = [A] [U]. - (15)

13



Additionally, by using the principle of virtual work, the follow-

ing expression may be written

[sl = [X1[S]. (16)

Substitution of these two equations into Eg. (10) yields

[S] = [K]IU] (17)

where

(K] (A1 T K] [A] (18)

Eg. (17) is analogous to Eg. (10) except that the stiffness
matrix of anyone element is now expressed with reference to the
global coordinate system.

The element mass matrices may be transformed in a similar

manner. Letting [M] represent the element mass matrix with

respect to the global coordinate system
= T
M] = [A]°IM][A] (19)

2.5 The Basic Dynamical Equation

The dynamical equation of the system is derived based on
Hamilton's Principle and the calculus of variations. The
Hamiltonian function is formed by considering the total kinetic
and potential energies of the system. The variation of the
integral of the Hamiltonian function between two discrete times
ty and t, is then set equal to zero in accordance with Hamilton's

Principle. The basic dynamical equation for the structure under

14



consideration is then derived by following through some rather
tedious mathematical operations, as reported in Refs. (24) and
(25). Since details of the various steps invoived in this

derivation are given in the above references, they will not be

repeated here. The resulting expression is in the form given

below:
m] [g] + ([k] + [kG])[q] = [F] + [F°] (20)

where
[m] = assembled (generalized) mass matrix.

[ql,[d] = Ggeneralized displacement and acceleration vectors,
respectively.

[k] = assembled (generalized) elastic stiffness matrix.
[kG] = assembled (genefalized) geometric stiffness matrix.
[F] = generalized nodal force vector.

[F°] ([k] + [k.]1)[g°] = equivalent generalized nodal force

vector due to plastic strains.

Eq. (20) represents the basic equation governing the dynamic
behavior of the entire structure. 1In considering the effect of
significant changes in the geometry of the structure due to large
deformations (second order analysis), both the stiffness and mass
matrices have to be recomputed at various time intervals, based
on the current deformed configuration of the structure. On the
other hand, eliminating the matrix [kG] from Eq. (20) leads to
the basic equation for the small deformation (first order) analysis

of the structure. Thus, it is clear that the particular expressions

15



corresponding to the first and second order static, elastic
dynamic and plastic dynamic analysis of the structure under
consideration may be obtained easily from Eq. (20) by con-

sidering only those terms in the equation that are appropriate

in each case.

16



III. THE BEAM ELEMENT

The fundamental relations outlined in the previous chapter
form the basis of the present study aimed at analyzing the
behavior of a structural system consisting of straight beam and
rectangular thin plate elements. In forming these expressions,
the properties of the individual elements of the structure must
first be derived. In this chapter the force-deformation and
inertial properties of é three-dimensional beam member are dis-
cussed and the stiffness and mass matrices are presented. The
behavior of a rectangular thin plate element is studied in the
next chapter.

3.1 Strain Energy Expression for a Beam Element

Consider a typical beam element with an arbitrary orienta-
tion in space, as shown in Fig. 1. A set of axes X, Y, Z are
chosen to represent a global coordinate system of reference.
The element local coordinate axes are x, y, 2z with the x-axis
extending along the axis of the element, and the y, z-axes
pointing in the principal directions of the cross section. The

set of element nodal (end) displacements and forces are designated

by

.and {[S8] = [Sl,Sz,...,S

12]’

[U] = .[Ul'U2""'U12]

respectively.
In order to define the element displacements and forces with

respect to the global system of axes, both during the initial and

17




deformed configurations of the elements, a transformation matrix

[A] is utilized (see Egqg. (15)). Letting x,y,z represent the

current coordinates of an element nodal point (the original co-
ordinates of the nodal point plus the current translational
displacements of the point), the transformation relation is expressed

as

X X
Y = [A] Y (21)
z Z

in which [A] is represented as a diagonal matrix, so that in

partitioned form

[A) = diag ([T,],IT,],IT4],I[T,]) (22)
where — -
ST BE
[T;] = [T,] = [T3] = [T,] = |m m my (23)
B P2 M3

In the above Qi, m, and n, are the instantaneous direction
cosines of the ith local coordinate axis with reference to the
X, Y and Z global axes, respectively.

Let [u] represent the vector of element displacements at any
point in the interior of the element with components u uy and
u, along the x, y and z-directions, respectively. Making use

of simple beam theory, [u] can be expressed in terms of the nodal

displacement vector [U] as
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[U] : (24)

i
(o]
I

o

[u]

where, the transpose of the matrix [a], containing the inter-

polation (shape) functions, has the form of
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When large deformations take place, the normal strain com-
ponent €__ in the local x-direction contains certain non-linear
terms which cannot be neglected. 1In terms of the element dis-

placements, € may be represented as

XX
bu,  o%w, g du p  dfuy g du,
fxx T Tox ¥ " tz (%) . 7 (5% (26)

In this expression the first, second and fourth terms represent
the contributions of the axial and bending forces in the usual
small deflection theory. The third and fifth terms are approxi-
mations to the contributions due to rotations resulting from
bending around the z and y-axes, respectively.
In order to obtain initial estimates of the displacements
within each increment of loading, the elastic relations based ;
on Hooke's Law may be utilized at the beginning of each time step.

The strain energy in a beam element may then be expressed as

E 2 G 2 .
V== v+ 2 v
5> Jv €xx @ 5 /e, d (27)

where E is the modulus of elasticity. Combining Egs. (26) and

(27)
2 2
du 9°u du_ 2 3°u ou 2
=k x ooy L Dyt 0 T2 L (227 g
Vs y gy v—5+ 35 (5h) -z— 7 ()7 &
u 9X
X
' au au 2 ‘
G
= X 2z
+ > é [( e + By)] dv (28)
Each individual term in the above brackets can be evaluated
based on Egs. (24) and (25). Substituting the resulting relations

into the expréssion for V, neglecting higher order terms (such as,

20



z, 4

du
% (—2) , % (—§§) ) and performing the indicated integration,

Eq. (28) can then be rewritten in the form given previously as

Eqg. (13).

3.2 stiffness and Mass Matrices for a Beam Element
Referring to Eq. (13), for a beam element, the elastic
matrix [K] and geometric stiffness matrix [KG] have been

derived in Refs. (25) and (27), and are in the form given

below.
_EA
EA
12EI
z
° T
L 12E1
0 0
L 61
x SYMMETRIC
0 0 0 -
6EI 4EI
0 0 - 0 —X
3 L
) GEIZ o o o 4}31z
12 2
1~ | B 0 0 0 0 0 E
12E1, 6EI, 12E1,
0 —Z 0 0 0 -—= 0 —=
L 12ET 6EI L L 12E1
0 0 —L 0 —L o 0 0 —X
t 61 . * 61,
0 0 o 0 0 0 0 0 -
6EI 2EI 6ET 4EI
0 o —X 0 —X 9 0 0 —L 0 —I_l
6EI L L 2E1 6EI L 4E1,
0 —= 0 0 0 .0 -2 0 0 0 ,
) £ L —
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[0
6
0 111
0 0 i
1
0 0 0 x’f
0 0 1 o 21
17 I%
1 2t
o - 0 0 0 15 SYMMETRIC
0 0 0 0 0 0 0
Me="1y & o o o 1 o & (30)
13 b11) 5T
0 o fy o h- 0 0 0 &
1 I
0 0 0 -ﬁ‘- 0 0 0 0 0 i’,_‘-
0 0 I 0 0 I o &
1 1} 1 21
0 I O 0 0 E 0 -, O o, o L

where, in Eqgs. (29) and (30), GIx is the torsional stiffness
of the beam cross section and Iy and Iz refer to the moments
of inertia around the y and z axes, respectively. A denotes the

cross sectional area of the beam element, % is its length and

G represents the shear modulus. The axial force N is defined as

EA
X (U, = U

N z constant = o

1)
in which, according to the previous definition, U1 and U7 refer
to the nodal displacements in the axial direction, corresponding
to the left (first) and right (second) end of the beam element,
respectively;

Based on Eq. (24) the velocity and acceleration distribution

within the element may be approximated as
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[u] [a] [U] (31)

1l

[G] = [a] [U] | (32)

With the assumed velocity distribution within the element, the

"consistent mass matrix", [M], of the element can be obtained

easily (25). This matrix as defined by Eq. (12) is

) ]
]
61
132 3
L L ks + 7Y ]
1
) ° B
12
.
0 0 0 k7w .
21 3 ar
o o B o e rovee
21 3 212
o Bk o o 0 denk
¢ 0 0 (] (] (33)
(5] = on 61 21 6I
9% 2 132% °» 13 (3 .
o - O ° o m-mx 0 e
61 21 6I
0 0 - o -Bf+rdx 0 0 0 P
Iul xxt,
0 0 0 w 0 0 [} 0 0 o
21 3 18 271 3 212
° o it ¢ -mo- 0 © o Jgeds 0 e
21 3 It 21 3 21t
1 e ] P S 3 1125z £ 3
| ¢ wormR O 0 o oWk ° s R O o o 105 *T5A~
el

where, the various symbols appearing in the above matrix have
been defined previously in presenting the stiffness matrices
of the element.

The element stiffness and mass matrices as given above
(with respect to the element local coordinate system) can now
be transformed to the global coordinate system by utilizing
the transformation matrix represented by Egs. (22) and (23).
The matrix operations involved in such a transformation are
given by Egs. (18) and (19).
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IV. THE RECTANGULAR PLATE ELEMENT

In this chapter the general strain energy expression for a
thin rectangular plate subject to in-plane and bending effects
is first derived. In the derivation, the interaction between
the two effects is also taken into account. The stiffness and
mass matrices for a rectangular plate under in-plane action and
later under bending action are derived independently by assuming
some suitable displacement functions. Following that, the deri-
vation of the geometric stiffness matrix is giveq. The complete
form of the stiffness and mass matrices with respect to both
local and global coordinate systems are then given.

4.1 The General Strain Energy ExXpression

In order to derive the stiffness properties of a rectangular
plate in which coupling between in-plane forces and bending is
considered due to large deformations, it is convenient to obtain
first the strain energy expression.

The middle plane of a plate before deformation is to be con-
sidered as the x-z plane, and y is to represent the axis perpen-
dicular to this plane. The notation used in subsequent dis-
cussions is similar to the one used by Timoshenko (8).

The initial stresses and strains in a rectangular element of

0 0 0 0 0 0

the plate are denoted by Ox PO, 1 Ty, and Ep 1 Ep 1 Yyq
0 0

x ' 9, Teg ! have

4
respectively. It is assumed that stresses, o
no influence on subsequent displacements of the element within
the initial plane. They do, however, have a significant effect

on displacements of the element out of its initial plane.
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Starting from the initial position, subsequent deformation

of the element is assumed to take place such that

e. = ¢ %+¢°
x b X
_ 0 a
e, = €, *+¢, (34)
_ 0 a
Yxz = Yxz *t Yxz
in which e:, ez, Yiz are given by the following equations
8):
(8 a aux 1 ou_ 2 32u
% T o I YD
a Buz 1 su_ 2 Bzu
EZ = az + 7 (az ) - Y( 2 ) (35)
0z
2
a Bux Buz Ju ou d uy
Yaa = Gzt b GRD) GeD) - 2 yp) -

In the above equations U, uy and u, represent the displacements

of the middle surface in the x, y and z directions, respectively.
The strain energy expression for a thin rectangular plate

may be found in various references, such as Timoshenko (8), and

is in the form of:

_ 1
V= 3 Irr (oxex +oe, + T yxz)dxdzdy (36)

If the generalized Hooke's Law for an isotropic material is used,

then
_ — 94 - -
ox 1 v O ex
" E
o = v 1 0 € (37)
z lTVZ 2 '
L 0O 0 A sz




Here, E is Young's modulus; v, Poisson's ratio and A = (l-v)/2,

Substitution of Egs. (34), (37) into Eq. (36), leads to the

following equation : -

V = V0 + Vl + V2 (38)
where
E 0,2 0,2 0 0
Vo = ———— [J[ [(e.7) + (e_ ") + 2v(e_")(e_ ")
0 2(l—v2) X z X z
0.2
+ Ay, ) ] dxdzdy (39)
E a, 2 a,?2 a, , a
V, = ——————— JJJ [(e.T) + (¢.9) + 2v(e. ) (e.T)
1 2(l—v2) X VA X 2
+ Ay, dxdzdy (40)
E 0 a a 0 0 a
V2 = (l—vz) IrS [ex € + v(ex €, + €, €, )
+ € 0 e 2+ Ay 0 Y a] dxdzdy (41)
4 z Xz X2

Note that V0 is a constant, and since its second order.
partial derivatives are zero (see Eg. (11), it does not contribute
to the stiffness matrix. It can therefore, be ignored in subsequent
discussions.

Suppose the following assumptions are made:

(1) u, = ux(x,z)
u, = uz(x,z) (42)
uy‘ = uy(x,z)
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(2) The cubic and higher order displacement terms are ignored.
The first assumption is a general assumption for solving
the plate problem. This assumption allows the elimination of
terms containing odd powers of y during the integration process.
The second assumption limits the stiffness matrix to that of a
constant matrix (2). Substitution of Eqs. (35) into Eq. (40) and

utilizing these two assumptions, leads to the following:

Vi=Vip*tVig (43)
where
Eh 8u 2 Buz Bu Bu
e Ty [+ (50) + A + (5 ))
aux au
+ 2\)(ax )(Bz =——) 1dxdz . (44)
vV, . =2/s [(-a—zul + —8—2;1’-) - 2(1-v) (-az—uz o7
1,B 2 sz 9z 8x2 9z
32,
- (5==%) )]dxdz ~ (45)

In Egs. (44) and (45) the constant, h, is the thickness of
the plate and D = (Eh3)/(12(l—v2)) is the flexural rigidity of
the plate. It should be noted that the two terms represented by
Egs. (44) and (45) correspond to the‘strain energy due to in-plane
forces and bendiné effects respedtively.

Similarly, substitution of Egs. (35) into Eg. (41) and using
the same assumptions as in the derivation of Eq. (41), the follow-

ing expression is obtained.
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V2= V2,6t V2,1t V20 (46)
where
du ou du au
_ 1 0 y 2 0 2 0 y
V2,G =5 [/ fo, " (559 + o, (gzx) +2T (SEX'+ 5 Jdxdzdy (47)
0 99, 0 ou, 0 du,  du,
V2,l = frf [OX (———ax )y + OZ (s-z——) + TXZ (5—2—— + W)]dXdZdy (48)
azuy azgy 82u
V2,2 ==~ [ y[8x2 + X 74 + 2 5;3%]dxdzdy (49)

Note that VZ’1 contains only terms with first order displace-
ment functions and hence does not contribute to the stiffness
matrix. The integrand of V2,2 is an odd function of y and hence
the value of the integral is zero.

Combining results from Egs. (38) to (49) the following

equation is obtained

ju_ 2 ou_ 2 Ju ou_ 2
Eh X z X z
Ve —=0 1 IG5 A 4
2(l—v2) 0xX 0z 0z 0xX
Ju Ju

+ 2V (ﬁé) (-a-—z—z) ] dxdz

D 82u 82u 2 a2u 82u
3 M =T+ —)7 - 2(1-v) (X —0)
0xX 9z 9x 3z
azu 2
= (535y) )1dxdz
ou._. 2 ' du,.. 2 Ju 3u
300 20 40 Y o2 0 D) (oY) 1axdz.
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This is the strain energy expression due to the coupling of
in-plane and bending actions, including the effect of large
deformations. The first term on the right-hand side of the above
equation is the contribution of in-plane action; the second term
represents the contribution of bending action; and the last term
is the contribution due to large deformations.

| Timoshenko (8) has indicated that the expression represented
by Eq. (50) may be obtained by considering the strain energy
expression separately for each of the effects due to in-plane,
bending, and large deformations. These results are then added
together to form the complete strain energy expression., The authors
believe that the present derivation gives a better insight into the
problem.

4.2 Coordinate Systems and Degrees-of-Freedom

A Cartesian coordinate system is used in the following
derivation. As before, let the global coordinate system be de-
fined as x,y,z (see Fig. 2). 1In genefal, a rectangular plate
element may be oriented in any arbitrary direction in space,
therefore, coordinate transformation relations have to be estab-
lished as explained previously. However, for simplicity in fhis
discussion let its middle plane be considered to be parallel to
the X-Z plane. Let the origin of thg local coordinate system
X,Y,2 be placed at one of the corners of the plate such that the
x-z plane coincides with the middle plane of the plate. 1In a
general case, at each corner of the plate, there may be six
possible degrees-of-freedom. For convenience, odd numbers are

used to designate those pertaining to in-plane action, and even
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numbers to designate those pertaining to bending action. Fig. 2
depicts a typical élate element and the associated element
coordinates corresponding to both in-plane and bending actions.
It may be observed that, in a general case, the plate element
may possess a total of 24 degrees-of-freedoms corresponding to
both in-plane and bending actions. Figs. 3 and 4 illustrate the
element coordinates corresponding to membrane (in-plane) and
bending actions, respectively.

In what follows, stiffness matrices for the plate elements
are derived by considering in-plane and bending aptions inde~
pendently of each other on the basis of the expressions given in
the previous section. The combination of these two matrices
together with the so-called geometrical stiffness matrix gives
the complete stiffness matrix of the structure. However, the
complete mass matrix contains matrices contributed by in-plane
action and bending action only.

4,3 sStiffness Matrix for In-Plane Action

This section considers the stiffness matrix contributed by
in-plane action. Fig. 5 shows the plate element displacements
corresponding to membrane action. The corner node points are
labelled in a clockwise manner as i,j,k,%, so that node i coin-
cides with the origin of the element coordinate system. The
x-dimension of the rectangular plate (distance from node i to
node j, or & to k) is designated as "a" and the z-dimension
(distance from node j to node k, or i to %) is designated as "b".

Let the nondimensional variables £ and n be introduced, so

that £ =

=3
|
TPk X
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A displacement vector U is defined containing the membrane dis-
placements at the corner nodes of the element, so that (referring

to Fig. 5)
U= (U,,Uq,Us,U,,U ..,U )T
17937551 7r¥greecr¥oq

The displacements in the x and z diréctions of any interior
point of the plate are referred to, as before, by u, and u, .
respectively. One of the critical steps in the analysis is to
find suitable representations for uy, and u, in terms of the
nodal displacement. In this study, the following displacement
shape functions given by Weaver et al (15) are used, on the
basis that they represent shape functions that are compatible

with those previously employed for beam elements.

- @d-mten | o, |
0 U3
b (L-8 (- 20%+n U,
£ (2n° - 3% + 1) v,
0 U9
u, (€,1,0) =| bE (° = 20 + n) U, (51)
-£ (217 - 3n%) Uy
0 Uis
bt (n° - n?) Uy 4
-(1 - &) (2n° - 3n%) Uyg
0 Ua1
b - o’ -ah | Uy3




— —_— T — —
0 Ul
(1-n @ - 362+ 267 u,
—a (1 - n) (87 - 267 + ) Uy
0 U7
-1 - (28 - 38%) U
I _ 3 _ .2
u, (&n,U) =|-a (1 -n) (& £7) Uyq (52)
0 U13
3 2
-n (28° - 38%) Uy,
3 2
=an (g - g ) Ul7
0 U19
3 2
n (2§ - 387 + 1) U21
3 2
—an (g7 - 262 4 g) u
L — L_z%_

These two displacement functions have the following prop-

erties:

(1) For an arbitrary set of nodal displacements, the edges

of a series of elements describe continuous curves.

(2) For an arbitrary set of nodal displacements, the shear

strain at each corner of an element is zero.

(3) They are compatible with displacement functions of
beam elements described by Akkoush et al (25).

Although the stiffness matrix [K] of the plate element may
be obtained by partial differentiation of the strain energy ex-
pression given by Eg. (50), it is more convenient (15) to eval-
uate its components by using the following egquation, based on the

principle of viftual work:
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N T
Kij = h [Sf [oi] [ej] dxdz (53)

where the index j represents the corresponding strain due to

a unit displacement in the jth direction and [0;] represents

the stress component corresponding to the strain component [ei].
Appendix A contains the various strain and stress components

corresponding to the displacement functions represented by Egs.

(51), and (52). Thus, the stiffness matrix [KI] contributed

by the in-plane action with displacement functions given by

Egs. (51) and (52) can be obtained by the substitution into

Eg. (51) of the stress and strain components given in Appendix A.

The resulting matrix is shown below:

31
2 B
-Py -By Yg Symmetric

Py ~Pg ~Pg Py

P B Ye Py By vy

} = . .
I avh |, (54)
10 ~P2 P12 Py =P P Py

X

~Pa 811 By2 Pg ﬂa 39 Pa 32
"2 "P12 Yi2 Py By vy by By 7,
f7 Pg Py 910 Pa 912 Pa '95 Pg Dl

s Pa By Py By By g Bs -Bg -by B,

Py “Bg Y9 P13 By Yi2 P Bg Yg Py =By Y,
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where, the various symbols appearing in the above equation are

defined in Table 1, given below (a and b, as before, pertain

to the dimensions of the rectangular plate element and

A (1-v)/2, where v is Poisson's ratio):
TABLE 1 - Definition of Symbols Appearing in Equation (54)
. Py By Vi
13b 2)\a
l -3—5'5' + B—b__' e e e 0 006 860860 | ®6 s0 060600900000
(A4v) 13a , 2xb
2 7 ——-—35b + g—a—— .............
; -1b® va _ 3a|11a® _vb, 3ab | b2 ad® _vab . 3rab
210a 24 0 210b 24 40 105a 105b 72 40
-13b Aa
4 35a + '5_5' 6 00 00 e 00 00 « o 00 00 00 0 .
5 (v=2) 9a _ 2)b
4 70 Sa .............
¢ 1b° _va  xa | _13a®  vb . 3ip|-p> a> , vab _ Aab
210a 24 40 420b 4 40 [ 105a 140b 72 40
; 9b _ 2)a
70a 5b ® 0 @ o % o 9 8 0 o ® & 8 & 0 & 0 " O a8 s 0o
-13a Ab
8 nnnnnnn * o 0 000 ﬁ + 'g‘é" “ % o e 0 8 008 0 0 0
9 13b2 _ 2va _ 3la —1la2 + Vb _ Ab —b3 a’ 4+ vab Aab
420a 24 40 210b 24 40 {140a 105b 72 40
-9b Aa
lo m - _5—'b" ® ¢ 0o 00000 0008 | e e s 0000000 eac
~-9a Ab
ll ooooooooooooo 7"0"'5' - gg ® ® 00000000 . e
1, 13 va . ra [13a2 _wb _ab | B3 . a3 vab _ 2ab
420b 24 0 140a 140b 72 40

220a t 22 T 10
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4.4 Mass Matrix for In-Plane Action

If the same displacement functions are used as represented
by Egs. (51) and (52) for a rectangular plate under in-plane
action, then the corresponding mass matrix [MI] can be obtained
based on Eq. (12). However, for the plate element under con-
sideration, the matrix [a] in Eq. (12) is a 2 x 12 matrix in
which the first and second rows are represented by the first
matrices on the right-hand side of Eq. (51) and Eq. (52),
respectively. Since the procedure involved is straight forward

(although laborious), only the final result is presented below:

_ . ' .
24a ) . T
0 24a
280 -28a  yla?epd)
12¢ © b 240
0 2p ~20a [ 24a

Symmetric

Bb  2aa  &(-3a%+20%) 28b 28a  y(aiepd)

(g1 = pabh ' (55)
P o0 ab % 0 2 24a
0 p -aa ] 12a fa 0 240
[=sb  aa rafph)  c2ap sa sc2a?-?) -2 288 viaZend)
2% 0 2ab P 0 ab 12 0  -pb 24a
0 12a =-pa 0 o aa 0 2p FTTY -0 24a
[-200 ~pa  s(2a%-3b%) -ob  caa aate?w?) b “20a  8(-3a%+2b%) -20b -28a y(.’obz
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where, o = 13/2520, § = 11/1260, y = 1/315, § = 1/1260, p = 3/140,
and A = 1/840,

4.5 Stiffness Matrix for Bending Action

Many displacement functions for a rectangular plate in bending
have been proposed. Among these, the one which satisfies the
deflection and slope compatibility has been chosen in this study
because it satisfies not only compatibility between adjacent plate
elements but also between beam and plate elements. Such a dis-
placement function representing the transverse displacement uy
of the plate has been derived and verified by Bogner et al (28)
and Przemieniecki (27,29). Fig. 6 illustrates the’element dis-
placements corresponding to bending action.

In terms of the.geometry given by Fig. 6 and the non-

X

dimensional variables £ = 3/ N = %, this displacement function

has the following form:

(1426) (1-6) % (1e2n) (1) 2| P—uz ]
- (1+28) (1-8)2 n(1-m) b u,
£(1-£) 2 (1+2n) (1-n) °a U
(3-2£)£2 (1+2n) (1-n) 2 Ug
-(3-26)&%n (1-m)%b U,
-(1-8)€% (1+2n) (1-n) 2a Uy,
T ey £ (3m2m) 0?2 Uy, )
- (3-28)£2 (1-mn%b Ul
-(1-5)€? (3-2n)nZa Uy,
(1+28) (1-6) % (3-2n)n? Uy,
(1+28) (1-£)% (1-m)n’b u,,
__;(1—5)2 (3-2n)n°a B B
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For a plate in bending, the strain components have the

following form:

e = -y —L (57)

¥ 2 —X

xz 9x9z

AR — hsmemties Lo

The matrix [b] given in Eq. (2) may be obtained by sub-
stitution of Eq. (56) into Eq. (57). 1In turn, substitution of
matrix [b] into Egqg. (9) allows evaluation of the stiffness
matrix [KB], corresponding to bending action.

The matrix [KB] in partitioned form is represented as

[KBl] Symmetri:_
[Kg] = (58)
(g, [Kp3]

The submatrices [K

below as Egs. (60) -

Bl

(62).

multiplier k is defined as

K =

1, [Kg,], and [Ky;] are presented

In all three equations, the scalar

Eh3

12 (1-v%)ab

(59)

The other symbols appearing in the submatrices are defined and

compiled in Table 2.

37




[KBl]=K

[KB2]=K

F;‘(u+m)+xs

-(820+03w+k36)b
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2
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- _ 2
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(p,a+p _w+A )b2
1 5 2

(-ol(u+w)+kl)ab
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(—0204-03 3

2
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{(~0,a+8

1 1w+X16)ab

2
(ylu+72w+x4)b
-(01(u+w)+xl£)ab
(~02u+p2m—x36)b

2
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2
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2
(P a-v 0-A)a
(61)
(pzu+ozw-xa)a
(ol(a+m)-A1)ab
{pa+p w+) )a2
) 1 2
(62)
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TABLE 2 - Definition of Symbols Appearing in Equations (60)-(62)

i=1 i=2 i=3 i=4 1i=25
o = (b/a)?
w = (a/b)2
§ = 145v
€ = 1+60v
Py = 3/35 27/35 54/35 18/35 9/35’
Yi = 4/35 52/35 26/35
6, = 11/35 22/35 .
o, = 13/70 13/35 78/35 156/35
Ai = 1/50 2/25 6/25 8/25 72/25

4.6 Mass Matrix for Bending Action
In generating the mass matrix for the plate element in bending,

if the same displacement function given by Eq.

(56) for a rectangular

plate in bending is used, then the cofresponding mass matrix [MB]

can be obtained by using Eq. (12).

The matrix [a] in Eq.

(12) is

a l x 12 matrix represented by the first matrix on the right-hand

side of Eqg. (56). The resulting matrix [MB] is shown below.
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[M_] = abhp

where the various symbols

-ayb
Yoa
Ba
~BYb

~Saa

" pen

~48a
af
adb

Yha

acb
=y“ab
~8Yb
Bcb2
Syab
-Béb
-san?
4%ab
-adb
=alb

~y8ab

~ayb
~yaa
af

adb

e {1

8éb

(1.1

appearing in Eq.

~géb
-gab?

-6%ap

=
(V)

W
w

= ~jw
[ (@)

|

&)
-
<o

13
420

1

et

05

|

1

[o——
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=

ayb
-yaa
Ba
Byb

Saa

Symmetric
ucbz
-anb ¢0l2
ByYb -8aa az
Btbz ~8yadb ayb ncbz
Syab -Aunf Yoa yzab conz

(63) are defined

(63)

as

and, as before, a and b refer to the edge dimensions and h to the

thickness of the plate, and p represents the mass density of the

material.
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4.7 The Complete Form of Stiffness and Mass Matrices

The results obtained in Sections 4.3 and 4.5 may now bé
incorporated for the complete form of the local étiffness
matrix of a rectangular plate with coupling between in-plane
and bending effects. Let [KI] and [KB] be the stiffness
matrices corresponding to in-plane and bending actions, re-
spectively, then, the force~displacement relationship for the

combined effects has the following form:

[s] = [K][U] (64)
where
[s;]
[s] = (65)
[SB]
and [SI]’ [SB] are the nodal forces corresponding to in-plane

and bending actions, respectively. They are represented by the

following equations:

_ T
[S;1 = [S) S5 85 57 Sg S1; Sy3 S35 S37 S19 Sp1 Sp3] (66)
_ T
Similarly,
(v,]
[Ul] = (68)
[vy)
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and [UI]’ [UB] are the nodal displacements corresponding to in-
plane and bending actions, respectively. They have the following

forms:

T

;] =0y U3 Uy U; Ug Uyy Upy Upg Upqg Upg Uy Upsld (69)
_ T
[Ugl = U, Uy Ug Ug Uy Upy Uyy Ugg Upg Upg Upp Upgl™- (70
Finally, the matrix [K] may be represented as follows:
k1 [ 0] |
K L
[K] = , (71)
Lo kg

The linear orthogonal transformation [T] is introduced for
. the purpose of rearranging the forces and displacements accord-

ing to the numbering scheme used in Fig. 2, so that:
[T] = [ [Ty] [T,] ] (72)

where [Tl]’ [T2], in partitioned form, are diagonal matrices

defined as:

[T,] = diag ([;],(2y1, 120, 0] (73)
[T,] = diag ([A,1,[2,1, 02,1, [3,]) (74)
and
_—l 0 0‘—1
0 0 O
_ 0 1 0
0 0 1
’_0 0 O_J
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0 0 O
1 0 0
_ 0 0 0
=10 1 o (76)
0O 0 O
0 0 1
- p—
It is clear from the definition of [T] that
(11 T = [mmT o= (1
in which [T]T represents the transpose of [T], and [I], the
identity matrix.
Therefore, if
[s] = [K][U] : (77)
then ‘
[Tl1[s] = [T]1[K][U] = [T][K]([TjT[T])[U]
= (IT1IKIITIT) [T](U].
Setting
[s'] = [T][s], : (78)
fu'l = [T]lU], (79)
and
[K'] = I[TI[KI[T]T. ‘ (80)
Equation (77) is thus transformed to
[S'] = [K'I[U'] | (81)
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which is the complete force-displacement relationship for a
rectangular plate with coupling between in-plane and bending
effects in accordance with the numbering scheme indicated in
Fig. 2.

The complete mass matrix for a rectangular plate with
coupling between in-plane and bending effects again according
to the numbering scheme used in Fig. 2 may be obtained in a

similar way. It has the form of:

M'] = [T](M]IT)T , (82)
where
M) [ 0]
M) = (83)
[ 0] ()

The matrices [MI] and [MB] are the mass matrices corre-
sponding to in-plane and bending actions, as given by Egs. (55)

and (63), respectively.

4.8 Geometrical Stiffness Matrix

It has been indicated above that the stiffness property of
a rectangular plate is contributed by three terms that appear
in the strain energy expression for the plate. Thus far, first
and second term contributions have been dealt with in the deri-
vations. The remaining term, i.e., the third term, is the one

which leads to the geometrical stiffness matrix. Since this

term involves only one displacement function uy, it is necessary
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to assume only this function. The derivation of this geometrical
stiffness matrix is very tedious, consequently, many investigators
have tended to use other simpler displacement functions, (e.g.,
see Gallagher et al. (30)) coupled with finef partitioning to com-
pensate for this effect. For the sake of being consistent, the
same displacement function as shown in Eg. (56) is used here.

The strain energy contributed by large deformations which
corresponds to the third term on the right of Egq. (50) may be

rewritten as follows (see also Eq. (47))

ou ou Ju su
V, o= 510 10,0 (0% + 0,0 (5D % ¢ 21,0 (52D (D 1axdz. (sa)

The derivation of the geometrical stiffness matrix may be
carried out in three parts, each of which corresponds to a term

in Eq. (84). Accordingly then

0
z

0 0

K 1+ 1y [Kg ] (85)

[KG] =0,
XZ

[KG ] + 0
X

where [KG 1, [KG 1, and [KG ] are the parts contributed by the
X z X2

first, second, and third terms, respectively, on the right of
Eq. (84). Utilizing Egs. (56), (11) and the chain rules of

differentiation, the matrices [KG 1, [KG ], and [KG ] may be

b z X2z
obtained. They are presented below as Egs. (86) - (88).
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The complete geometrical stiffness matrix may now be obtained

by substitution of the values [KG 1, [KG ], and [KG ] into Eq. (85).

X 2z : Xz
This is the stiffness property contributed by the large deformation.

Note that ¢ 0, g 0
X V4

, and szo are treated as constants during the
derivation since these quantities are assumed to be known during
the current state of deformation of the structure.

Since the geometrical stiffness matrix has contributions

only due to bending action, it can be rearranged easily to

correspond to the numbering scheme indicated in Fig. 2.

4.9 Transformation to the Global Coordinate System

In order to assemble individual elements to form a complete
structure, the local properties must be represented with respect
to the global coordinate system. It is seen froﬁ Eg. (18) that
the [A] transformation matrix between the local and global co-
ordinates has to be determined first. The stiffness matrix with
respect to the global coordinate system may then be obtained by
evaluating the quantity [A]T[K][A]. For the present case, let

i,j,k,% represent the four corners of the plate, then

(\] = diag ([T;1,(T;1, 751, (T,], (T, 0, (71, 0T, 0,1)  (89)
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where
X, =X V=Y. zZ.~2Z
! 1 | 1 | 1
L., . ..
13 i]J ij
(yy-v;) (245-25) (%ifxi)(zk~zi) (x=%4) (v5-¥;)
Lijlig Lislie Liglig
[Ti] = (90)
_(yj—yi)(zg"zi) _(XE—Xi)(Zj-zi) —(gj—xi)(yg-yi)
LisPia Ligbie LisPig
% Yo Y3 20724
L—_ Liﬂ, ) LiQ, Lig
.

is the transformation matrix between the global coordinate system
and the local coordinate system at vertex "i". This transformation
[Ti] is actually determined by the direction cosines of the two

edges ij and i% (see Figs. 5,6). In Eg. (90), X:0¥4024 denote the

57 iy

represent the distance between vertices "i" and "j" and vertices
P J

respective coordinates of vertex "i" from the origin and Li

"i" and "4", respectively. Moreover, the matrices [Tj], [Tk], [TE]
have the same form as [Ti] except that they are determined by the
direction cosines of the edges ij and jk, jk and %k and i% and 1k,

respectively, rather than ij and if.

The transformations of mass and geometrical stiffness matrices

may be achieved by a similar procedure.
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V. PROCEDURE OF NUMERICAL ANALYSIS AND THE SOFTWARE PACKAGE

In this chapter, first the general proceduie is outlined
for the plastic dynamic analysis of a structure undergoing large
deformations. This is followed by some general information per-
taining to the software package that has been developed for the
analysis of the class of structures under consideration.

5.1 General Procedure of Numerical Analysis

The general procedure for the numerical analysis of the
problem is based on an incremental approach which allows the
computation of the response of the structure at discrete time
instances. Within each interval of time the structure is
assumed to deform as a linear system in order to obtain initial
estimates of the incremental deformations. Nonlinear effects
due to changes in the geometry of the structure and plastic
deformations are then taken into account before considering a
new increment of time.

It is assumed that the response of the structure at time
t = t1 has already been determined. Considering a sufficiently
small increment of time, At, the various steps for computing
the response of the structure at t2 = t, + At are outlined below:

1

1. Using the known accelerations at t the displace-

ll
menté at t2 can be determined based on a numerical

integration algorithm such as the following

(91)

[ql, = [ql, + Atld], + 0.5(a0)% (41,

2 1 1 1
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in which [q], [q] and [§] represent the generalized
displacement, velocity and acceleration vectors,
respectively. The displacement increment vector
[Ag] is then defined as follows

[Aq] = [q]t2 - [q]tl | (92)
The incremental element displacement vector, [AUg],
with respect to the global (generalized) coordinate
system, is determined from [Ag] by considering the
compatibility between generalized and element dis-
placements. Then, the incremental displacement
vector, [AU], with respect to the local (element)
coordinate system, is found based on the transformation
relations between the global and local coordinate

systems, so that

[AT] = [ADy [AUg} (93)

1

where [A]t refers to the transformation matrix deter-
1

mined on the basis of the deformed configuration of

the structure at tl.

Using the incremental element displacement components,
the corresponding incremental forces can be found
easily by employing the force-deformation properties

of the elements. However, it is not necessary at this
time to compute all components of the incremental force

vectors. Thus, in the case of a beam element, only the
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force increment in the axial direction is needed in
order to compute the geometric stiffness matrix of
the element. In the case of a plate element (see
Fig. 2) the components Sl,S7,Sl3,S19 pertaining to
the forces in the x—direction and 83,89,815,821 in
the z~direction, S4’Slo’516’822 pertaining to the
moment around the x-axis and 86,812,818,824 around
the z-axis are needed to compute the scalar multi-
plicative factors operating on the elements of the
geometric stiffness matrices. Corresponding approxi-
0

0 0 .
mate stress components Op + O, 4 sz may be obtained

0 0

by dividing the forces S, v S, and szo by the thick-

ness of the plate. These forces are computed based

on an averaging process of the absolute values of the

force components, as follows:

S.+S; 4| |S,+S, 4]
o _, 1 I84%513 1519
Sx Tt T e ) (94)
So,+S.c | |S,+Sg4 |
o _ . 1 I821%S55 359
S, Tt T S — (95)
X
g 0 1 ‘54%510*516%22) | (56%512718%5,54)
X2 L L 4 4
X 2
(96)

in which Lx’ L, are the dimensions of the plate in
the x and z directions, respectively. The sign on
the right hand side of the above equations is taken

as positive for extension, and negative for compression.
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Obviously, this procedure of obtaining the stress
components GXO, ozo, and szo is only an approximation;
nevertheless, it has been utilized by other investi-
gators (for example, see Ref. (30)) and has been indi-
cated that no serious error will occur if sufficiently
large numbers of idealized elements are used to assemble
the structure.

In the case of a beam element the geometric stiff-
ness matrix is computed based on Eq. (30). The cumula-
tive geometric stiffness matrix (see Eg. (85)). for a
plate element is found by adding together the three
matrices computed from Egs. (86) - (88). The geometric
stiffness matrix; {KG]tZ, computed in this manner er
a beam or plate element reflects the current deformed
configuration of the structure at time t2.

The total element stiffness matrix, [Ktot]tz' at t2

is then formed by adding the elastic and geometric

stiffness matrices for the element under consideration.

Thus,

(97)

(Reoele = K1, + K],

K
tott, 2 2

t

It should be noted that although the elastic stiff-
ness matrix [K] is computed based on the element

coordinate system and the small deformation (first
order) theory, the effect of the large deformation

of the structure enters into the analysis through
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the transformation relations pertaining to the deformed
and undeformed configurations. Thus, the total element
stiffness matrix is transformed to the global coordinate
system through a matrix operation represented by Eq. (18),

i.e.,

K 1, = (A} M (98)

[Kigt]
tot't 2

tg t2

2 2
where, [th] represents the total element stiffness
matrix with respect to the global coordinate system
and [>\]t2 is the current transformation matrix corre-
sponding to the deformed configuration of the structure
at t2.

Now, considering the entire structure, the gener-
alized stiffness matrix [ktot] for the entire system
is obtained in the usual manner, through the applica-
tion of the stiffness method (27). The basic process
involved is that of considering the equilibrium at each.
nodal point of the forces transmitted by all elements

which are incident to that particular node.

5. Although some parts of the structure may undergo plastic
deformations, in order to obtain estimates of the ele-
ment forces, initially the deformations are assumed to
be éntirely elastic. On this basis, the increments
of the stress resultants acting at the nodal points of

. the element can be found to be

[AS] = [Ktot]t2 [AU] : (99)
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The total internal forces at time t = t2 are then
obtained from

[S]t = [S]t + [AS] (100)

1

The internal stresses computed above may be used in
connection with the Mises-Hencky yield criterion (22)
to determine whether the element under consideration
undergoes elastic or inelastic deformations. 1In terms

of the stress resultants this criterion is expressed as

¢(§l,'s°2,....,§j,...) =Y (101)
where §i,§2,..., represent the normalized form of
the element forces Sl’SZ""’ and Y denotes the

"yield value" which may change through straining (for
simplicity, the subscript t, is omitted here and in
subsequent discussions, except where necessary).

If the yield function ¢ is less than Y the element
under consideration is deforming elastically. However,
if the yield function is greater than Y or equal to Y
and its rate of change is positive, then plastic defor-
mations are taking place. If the material of the
element is assumed to have isotropic strain hardening
properties, subsequent yielding of the element will
occur whenever ¢ attains a value equal to or greater
than the "current" value of Y. However, the consider-
ation of kinematic hardening properties is physically

more realistic and accounts for the Bauschinger effect.
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If all elements are found to behave elastically
within the current time increment, then the acceler-
ations can be found using Eq. (20), but omitting the
term [F°]. Then returning to Step 1, the above process

can be repeated for the next increment of time.

The stress resultants uséd in forming ¢ have been found
using stress increments based on elastic considerations.
In the case of plastic deformations, these stresses,
being only crude approximations to the actual values,
do not satisfy the plastic flow relations. Therefore,
for a plastically deforming material the correct values
of the stress resultants have to be approximated more
closely by using the procedure explained below.

As discussed previously, it is assumed that any
typical displacement increment AUj may be expressed as

the sum of an elastic and a plastic part, i.e.,

AU, = AUS + AUP (102)
j j j

The increments of the elastic components [AU?] of
each element are related to the internal force
increments through the inverse of the total element
stiffness matrix

-1

t,

[aU®] = [K, .17+ [AS] (103)

tot
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10.

11.

The j-th plastic component of the displacement incre-
ment vector may be found using the generalized form of

the Reuss-Mises plastic flow rule, so that

0
9

(Sl

AU? = A (104)

n

j
where A is a constant of proportionality which usually
changes through straining.

This approach is applicable to the general case
of a stress-strain curve as shown in Fig. 7. However,
in order to simplify the numerical computatioﬁs a piece-
wise linear stress strain curve may be used. For ex-
ample, the trilinear curve indicated in Fig. 8 is a fre-
quently used approximation. Let H' represent the inelastic
loading curve and S the slope of the unloading curve. The
initial estimates of the force components may be computed as

(AS.) = H' AU, (105)
est J

The elastic and plastic components of the displacements

are then found to be

(AS =)
AU? = ___%_EEE (106)
AU? ='AUj - AU? (107)

Using the current element stiffness matrix (see
Egq. (97)), the final values of the force components

(stress résultants) may be found from
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_ e
(48], = [K ] [AU°] (108)

12. The above procedure is repeated for all other elements
deforming plastically. The vector [AU°] = [AUP] is
then formed and used to find the increments of the
equivalent generalized nodal forces due to plastic

deformations, i.e.,

[AF°] = [k, .1[a°] = [AJT[K, ,10AU°] (109)

tot tot

Also,

[F°] (F°] + [AF°] (110)

t t

2 1

13. The acceleration vector [g] at t = 12 can now be found
based on the governing equation of motion for the

entire system as given by Eg. (20). Also the velocity

vector [é]t is determined by numerical integration.
2

1l4. The entire procedure explained above may be repeated
for a new time increment At, and in fact for any
prescribed number of time increments. Thus, the history
of internal forces and displacements of the structure

for a given time interval can be determined.

5.2 General Remarks

It shoula be emphasized that the computation of the plastic
displacement components as indicated in Steps 9-11 of the above
procedure represents a somewhat simple and perhaps crude method

of calculation of these components. The main intent has been to
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minimize to the extent possible the size of a fairly complex
problem in order to realize solutions that are economically
feasible from the computational viewpoint. However, for com-
parison purposes a more sophisticated method of computation of
plastic deformations has also been utilized. This alternative
method is based on an iterative scheme aimed at examining the
accuracy of estimated quantities at successive steps of iteration.

In the iterative scheme, initial estimates of the incre~
mental element forces are utilized in order to compute the plastic
and elastic components of the displacement increments from
Egs. (104) or (106) ~ (107). An initial value of the effective
strain is then calculated by utilizing well known relations,
as given for example, by Hill (22). New estimates of the incre-
mental element forces are now found from Eg. (108) and are used
to calculate a second set of plastic and elastic displacement
components. A new value of the effective strain is then computed
and compared with the previously determined value. If the dif-
ference between the two values is within a specified tolerance,
then the iterative process is terminated. Otherwise, the new
estimates of the incremental element forces are used towards a
new iterative step.

Comparison of the two methods has been made in the case of
a simple structure which was analyzed by means of the computer
program discussed in Section 5.3 of this report. Results indicate
that there is no significant difference in the two methods. How-

ever, before a final conclusion can be reached more extensive
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numerical experimentation should be undertaken.

It should also be pointed out that the same general procedure
outlined in Section 5.1 can be used in the dase of relatively
small deformations in the plastic range by neglecting the effect
of the geometric stiffness matrix, i.,e., not taking into account
the matrix [KG]. This is equivalent to formulating the equilibrium
equations with respect to the originél (undeformed) configuration
of the structure. 1In this manner, the need of recomputing the
total stiffness, mass, and transformation matrices at specified
time steps is eliminated.

Simplified forms of the general procedure in Section 5.1 may
be used to treat the case of the elastic deformations of the
structure. Thus, the procedures involved in the elastic static
and elastic dynamic analysés of a structure may be deduced easily
from the general procedure by following through those steps that
are appropriate to each particular type of analysis. It should
be emphasized, however, that in the case of the static large
deformation analysis, increments in the loading system rather
than time have to be considered. For each increment in the load
vector the corresponding increment in the displacement vector is
computed and added to the previously accumulated displacements.
The current total stiffness.and transformation matrices are then
determined'prior to considering a new load increment. This

process is continued until the loads attain their final values.
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5.3 Plastic Behavior of In-Plane Stressed Plate Element

The implementation of the general procedure in Section 5.1
to the case of a plate element undergoing plastic deformations
poses some practical difficulties., If the most general type of
plate element with in-plane, bending and twisting action is used,
then the element possesses 24 degrées—of—freedom (see Fig. 2),
as indicated previously. Thus, if a plate subassembly of an
actual structure is modelled by several plate elements of this
type, the number of degrees-of-freedom for the structure under
consideration would increase rapidly. This may not be as sig-
nificant in the case of an elastic analysis of the structure,
but tends to be critical when attempting a plastic dynamic
analysis of the system, due to excessive computational times
involved. In such a case, a method of reducing the size of the
problem is highly desirable. 1In this study, a technique has
been developed for treating a rectangular plate element with
in-plane action as a single degree-of-freedom system only when
plastic deformations take place.

Consider the plate element shown in Fig. 9, with 8 degrees-
of-freedom at the nodal points corresponding to in-plane action
with no rotational displacements at the corners. The degrees-
of-freedom are labelled according to the numbering scheme indicated
in Fig. 2, and the corresponding stress resultants (generalized
stresses) are designated as Sl' S3, S7, Sg, 813, 515, 819 and S2l'
Considering the stress resultants acting on each edge of the plate

an average shear stress can be found as an approximation to the
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stresses acting over the area of the edge. Thus, referring to
Fig. 9

Sl+S7

'a T 2L n
P
_ S13*519
B 2Lxh
(111)
_ Sg*835
C 2L h
- SB+521
D 2Lzh
An average shear stress for each pair of parallel edges is
then found using the stresses computed from Egs. (111) and utiliz-
ing the usual sign convention in the theory of elasticity. Denot-
ing by 1T and Tep the average shear stresses acting on the edges

AB
parallel to the x and z axes, respectively

IENEEN

Tap Tt | (112)
|tcl+]p
Top = * ———0- (113)

where, the minus sign in Eq. (112) is used when Ta is positive,
while the plus sign in Eq. (113) corresponds to the case of To
being positive.

Finally, an average shear stress for the entire plate

element is computed as follows

| Tap !+l Top]
_ AB CD
Tav = £ - 3 (114)
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The sign in Eq. (114) is chosen to concide with the sign of

either 1,, or T This is based on whether [1,,[>|1,pl, or

AB CD"’

In the former case, the sign of T is taken to

< AV

[ tasl<lteyl-

be the same as that of T and in the latter case it is chosen

AB'

to be the same as that of Tep: In implementing the above pro-
cedure in a computational algorithm several intermediate checks
are performed to verify that the plate is in equilibrium in
both the x and z directions within specified tolerances.

The average shear stress found from Eg. (114) for each
plate element is then used in connection with the procedure in
Section 5.1 to determine whether plastic deformations are taking
place in the element. Also, in the computer program, Tav is
automatically checked against the ultimate stress of the material
(see Fig. 8) to determine whether the element has failed due to
excessive straining. If the ultimate stress is not exceeded
but plastic deformations have been found to take place, then an

initial estimate of the actual shear stress, Tast’ in the element

is computed from

) H' (115)

where, Ttl refers to the known shear stress in the element at the
end of time tl, and as before, H' and S pertain to the slope of
the inelastic loading and elastic unloading curve, respectively,
and Y is the current yield value. The sign in front of the second

term on the right hand side of Eg. (115) is chosen to agree with

the sign of t1_ .
Y
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The equivalent element nodal force increment vector, [AS°],
due to plastic deformations can now be found based on the usual
procedure in the application of the initial strain method (20),
i.e., referring to the jth equivalent element force increment

ASS

A3 = (s;) (-2V__est, (116)

where, the (Sj)t 's are again calculated from Egs. (99) and (100).

The transformatign of the equivalent'element force increment
vectors of all plate elements #d“the global cdofdinate system
and consideration of the equilibrium conditions at each nodal
point yields the vector [AF°]. The usual procedure outlined in
Section 5.1 is then followed. As explained ih the previous

section, an iterative scheme can also be used in order to improve

on the values of the estimated stresses.

5.4 The Software Package

A general purpose computer program has been developed for the
analysis of frame and plate structures. This program represents
an extension of a previously reported (31) computer program known
as the GWU-FAP (George Washington University - Frame Analysis
Program) which deals with the analysis of rigid frame structures.
Extensions to GWU-FAP have been accomplished in order to incor-
porate a rectangular thin plate element and to develop the capa-
bility for second order (large deformation) analysis that accounts
for geometric nonlinearities. In addition, the plastic dynamic

analysis branch of the program has been augmented in order to
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allow for the analysis of structures consisting of in-plane

stressed rectangular plate elements (see Section 5.3). A simpli-

fied form of the flow chart for the modified GWU-FAP is presented

in Appendix B.

The modified GWU~FAP is a general purpose program which

enables the user to perform the following types of analysis for

both frame and/or plate structures (with certain exceptions in

the case of a plastic dynamic analysis as explained below) :

(a)
(b)

(c)

(d)

(e)
(£)

Elastic static small deformation (first order) analysis

Elastic static large deformation (second order) analysis

which considers the effect of geometric nonlinearities

Free vibration analysis leading to the natural frequencies

and modes of vibration, using the consistent mass

matrix of the
Elastic dynamic
Elastic dynamic
Plastic dynamic

consisting of

structure

first order analysis

second order analysis

first order analysis of structures

beam or in-plane stressed rec-

tangular plate elements.

When performing any of the above types of analysis for a

rigid (skeletal) frame, the structure is modelled as an assembly

of plane or three-dimensional beam elements, depending on the

loading and deformation states of the structure. When con-

sidering a structure which contains rectangular plate elements,

different types of plate action may be distinguished. In the

present study, five possible modes of plate action have been
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considered and are classified according to the following scheme:

Class 1 -~

Class 2 -

Class 3 -

Class 4 -

In-plane action without rotational displacement

at the nodes.

This type of element possesses 8 degrees-of-
freedom corresponding to element coordinate
directions 1,3,7,9;13,15,19 and 21 indicated
in Fig. 2 (see also Fig. 9).

In-plane action with rotational displacements

at the nodes.

This type of element possesses 12 degrees-of-
freedom corresponding to element coordinate
directions 1,3,5,7,9,11,13,15,17,19,21 and 23
indicated in Fig. 2 (see also Fig. 3).

Bending action only.

This type of plate element also has 12 degrees-
of-freedom represented by coordinate directions
2,4,6,8,10,12,14,16,18,20,22 and 24 in Fig. 2
(see also Fig. 4).

Bending and in—plane action without rotational

displacements at the nodes.

This type of plate element possesses 20 degrees-
of-freedom represented by element coordinate
directions 1,2,3,4,6,7,8,9,10,12,13,14,15,16,18,

19,20,21,22 and 24 in Fig. 2.
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Class 5 - Bending and in~-plane action with rotational

displacements at the nodes.

This type of plate element is the most general
type used in the present study and possesses
24 degrees-of-freedom as indicated in Fig. 2.

Any of the above classes of rectangular plate elements
may be used when performing an analysis of type (a) through
(e) for a structure consisting of plate elements or a combina-
tion of beam and plate elements. On the other hand, in the
éase of a structure containing rectangular plate elements, a
plastic dynamic analysis corresponding to type (f) can be per-
formed only with Class 1 plate elements.,.

The computer program has been designed so as to minimize
the amount of input needed for any of the above types of
analysis. Most of the input information to be supplied by the
user of the program pertains to the type of the structure, its
geometry, its material, cross-sectional and inertial properties,
the type and duration of loading and the type of analysis de-
sired. The input format for some typical structures corre-
sponding to different types of analysis is given in Appendix C.

The computer program is written in Fortran IV language for
use on an IBM-0S/360 digital computer. It has been made oper-
ational on both the APL Model 91 and the George Washington Uni-

versity Model 50 Computer System.
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VI. COMPUTER ANALYSIS OF TYPICAL STRUCTURES-SUMMARY OF

NUMERICAL RESULTS

The software package discussed in the previous chapter is
used here to obtain solutions to typical problems. For this
purpose, different types of structures are analyzed and the
results of the numerical solutions are summarized in this chapter.
Several of the solutions presented in the initial part of the
chapter pertain to simple structures and serve the purpose of
checking the various branches of the computer program by comparing

with known solutions.

6.1 First Order Static Analysis of a Plate

One of the simplest type of structures considered in this
study for the purpose of testing the computer program consists
of a simply supported plate with a concentrated load at the center.
Both rectangular and square plates with dimensions (length x wiath
x thickness) 40 x 20 x 0.50 in and 20 x 20 x 0.50 in, respectively,

are used. The other constants are:

Young's Modulus: E = 30 x lO6 lb/in2
Poisson's Ratio: v = 0.3
Concentrated load: P = 10,000 1b.

The type of plate element used corresponds to Class 3,
described in Section 5.4. As mentioned previously, this type
of plate element is subjected only to bending action, and

possesses 3 degrees-of-freedom at each node (corner) point, or,
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a total of 12 degrees-of-freedom. 1In order to compare the accuracy
of the numerical results, solutions are obtained for the rectangular
plate by subdividing it into 4, 16, and 32 plate elements; similarly,
solutions are obtained for the square plate by subdividing it into
4 and 16 elements.

Table 3 shows the comparison of the center deflections of the
plate obtained by the finite element method and the exact method
as given in Timoshenko (8):

TABLE 3 - STATIC ANALYSIS OF SIMPLY SUPPORTED PLATE--COMPARISON

OF CENTRAL DEFLECTION BETWEEN FINITE ELEMENT
AND EXACT METHODS

Displacements (in)
Square Plate Rectangular Plate
a = 20 in
a = 20 in b = 40 in
4 Elements .11767 .16920
16 Elements .12564 .17706 ’
32 Elements —— .18332
Timoshenko (6) .1351 .1923
(exact)

It may be observed that in both cases the solutions appear
to converge to the exact values as the number of elements is

increased.

6.2 Free Vibration Analysis of a Simply Supported Plate
A free vibration solution is obtained for a simply supported

square plate with the following physical input:
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30 x 10° 1b/in?

]

Young's Modulus: E

Dimensions of plate: a x b x h = 20 x 20 x 0.50 in

]

Poisson's Ratio: v 0.3

Density of plate: p = 0.001 lb-secz/in.

Again, a Class 3 plate element is used in modelling the
structure which is subdivided into 4 and 16 elements.

The theoretical results used for comparison are obtained
from Volterra (32). The eigenvalues, Win? and the corre-
sponding eigenvectors, Wmn(x,y), for the problem under con-~

sideration are given as follows:

2 m2 n2
o, =18 5+ %) (117)
a b
W (x,y) = sin (Egi) sin (E%X) (118)
where

8 = Eh®/ (120 (1-v?)),

is a numerical constant.

Table 4 shows the comparison of the fundamental frequencies
between results obtained by the use of Eg. (117) and the finite

element method as applied in this study.

TABLE 4 - FREE VIBRATION OF SIMPLY SUPPORTED SQUARE PLATE--
COMPARISON OF FUNDAMENTAL FREQUENCIES BETWEEN
FINITE ELEMENT AND EXACT METHODS

4 elements 16 elements Volterra (22) - (exact)

Fundamental Freéuency .217630E0cyc/sec|.212534E03¢cyc/sec| .205913E03cyc/sec
Corresponaing Period |.459496E-02 sec.|.4705138~02 sec. |.485642E-02 sec.
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It may be seen that even with the use of a small number of ele-

ments the finite element solutions are fairly close to the exact

solution.

Table 5 shows the comparison of the fundamental normal mode

shape between the finite element (16 elements) and the exact

method.

TABLE S - FREE VIBRATION OF SIMPLY SUPPORTED SQUARE PLATE--COMPARISON

OF FUNDAMENTAL NORMAL MODE SHAPES BETWEEN

FINITE ELEMENT AND EXACT METHODS

Volterra (32)

(exact)

16 Elements
(39 degrees-of-freedom)

~0.536411E-01
~0.758360E~-01
-0.535734E-01
0.536411E-01
0.241449E 00
~0.379180E-01
0.379180E-01
0.341353E 00
~0.536072E~01
-0.338485E-04
0.241144E 00
~0.378701E-01
~0.379659E-01
~0.536410E-01
0.758360E~01
0.341353E 00
0.338485E~04
0.536072E-01
0.482593E 00
0.478539E-04

0.478539E-04

0.340921E 00
0.338058E-04

1 1
o ©

O O O O O o o O ©

I 1
O O O

.536749E-01
.758359E-01
.535734E-01
.241144E 00
.379659E-01
.378701E-01
.340921E 00
.536749E-01
.338058E-04
.240840E 00
.379179E-01
.379179E-01
.535733E-01
.536410E-01

0.758359E-01

.535733E-01

-0.549793E-01
-0.777525E-01
-0.549791E-01

0.549792E-01

0.240762E 00
.388762E-01
0.388764E-01
0.340489E 00
.549791E-01
.503340E-07
0.240762E 00
.388761E-01
.388764E-01
.549790E-01
0.777519E-01
0.340488E 00
0.144227E-07
0.549793E-01
0.481525E 00
0.443147E-07

~-0.

665452E-07

0.340488E 00
0.110401E-06

.549792E-01
.777516E-01
.549787E-01
.240760E 00
.388763E-01
.388761E-01
.340487E 00
.549793E-01
.116132E-06
.240760E 00

0.388762E-01

.388762E-01
.549784E-01
.549785E-01

0.777512E-01
0.549783E-01
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Comparison between the two methods indicates that in most cases
the agreement is good, except when the amplitude of vibration is
. very small. This is attributed to rounding and truncation errors
in the computational process.
A comparison of higher frequencies corresponding to the two

methods is shown in Table 6.

TABLE 6 - FREE VIBRATION OF SIMPLY SUPPORTED SQUARE PLATE--COMPARISON
OF HIGHER FREQUENCIES OF VIBRATION BETWEEN
FINITE ELEMENT AND EXACT METHODS

Volterra (22)

4 Elements 16 Elements (m,n) (exact)
.217630E03/sec. .212534E03/sec. (1,1) .205913E03/sec.
.614070E03/sec. .530795E03/sec. (1,2) .514782E03/sec.

. .614070E03/sec. .530796E03/sec. (2,1) .514782E03/sec.
. .123725E04/sec. .870523E03/sec. (2,2) .823651E03/sec.
.106759E04/sec. (1,3) .102956E04/sec.

.106759E04/sec. (3,1) .102956E04 /sec.

________________ o e e o e e o o o s o om0 o ] . o e o e S o S ot T . o s o A e o i A
.131904E04/sec. .142567E04/sec. (2,3) .133843E04/sec.
.142567E04/sec. (3,2) .133843E04/sec.

It is worth noting that, even with only 16 plate elements, the
comparison of higher frequencies obtained in this study with
the frequencies given in Volterra (32) is in general favorable

even for the higher frequencies of vibration.

. 6.3 Second Order Static Analysis of a Square Plate

The second order static analysis of a square plate under a

concentrated load at the center is studied in this section.
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Two types of boundary conditions are used for this structure:
(1) all four edges clamped and (2) all four edges simply supported.
The plate dimensions are 30 x 30 x 0.25 in, Young's modulus and
Poisson's ratio are taken as 30 x 106 lb/in2 and 0.3, respectively.

For the purpose of comparison with the work of other investi-
gators, the type of plate element chosen is of Class 4 (see
Section 5.4). This type of plate element is subjected to bending
and in-plane action without rotational degrees of freedom at the
nodes. The ultimate load is 50,000 lb., and 16 elements are used
to idealize the square plate. Numerical results corresponding
to the clamped plate solution are compared with results obtained
by Brebbia and Connor (12), and Adotte (33). Table 7 below,

shows the similarities and differences among the three methods.

TABLE 7 - COMPARISON OF METHODS USED IN SOLVING THE NONLINEAR PROBLEM
OF A SQUARE PLATE CLAMPED AT FOUR EDGES WITH
A CONCENTRATED LOAD AT THE CENTER

Adotte Brebbia and Connor Present Study
Finite difference
Method and experimental Finite element Finite element
Number of
Elements - 36 16
Degrees-of-~
freedom at
each corner - 5 5
In-plane
displacement
functions _ simpler more complex
Numerical used linearized 100 piecewise
procedure - equations for a linear in-
limited number of|cremental
load steps, then |steps
applied correc-
tions based on a
Newton-Raphson

iterative method
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Figure 10 shows the results obtained by the three different
methods. It is seen that Adotte's curve is enveloped by the
curve obtained in the present study and that of Brebbia and
Connor, with the former below and the latter above it. All
three results are, however, very close, and the charactéristic
of the second order analysis in which the structure becomes
stiffer as the load increases is clearly evident.

Figure 11 shows the results of both the clamped plate and
simply supported plate plotted on a different scale with the
coordinate axes switched around. Both curves show the same
characteristic of increasing stiffness of the structure with

increasing load.

6.4 First and_Sechd‘nge;“Static and Elastic Dynamic
Analysis of a Beam~Plate Assemblage

In this section is presented the analysis of a beam-plate
assemblage including the first and second order static, the free
vibration, and the first and second order elastic dynamic
analysis. The structure consists of a horizontal square plate
elastically supported by four edge beams which, in turn, are
supported in the vertical direction by four edge beams. The
plate is subjected to a uniformly distributed load.

The following numerical values are used for the problem
under consideration:

Plate dimensions: 30 x 30 x 0.25 in

Poisson's ratio: v =0.3

I._ =0

EI, = aD} where a is the length of square plate and
D the plate stiffness.
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Both a total of 4 and 16 Class 3 plate elements are used
to idealize the square plate in order to compare results with
solutions given by other investigators, such és, Timoshenko (8)
and Zienkiewicz (13). For this purpose, initially a uniformly
distributed load g = 1 lb/in2 is used. A comparison of the

results is given in Table 8.

TABLE 8 - FIRST ORDER STATIC ANALYSIS OF A SQUARE PLATE WITH FOUR
EDGE BEAMS--COMPARISON OF RESULTS
WITH KNOWN SOLUTIONS

Center Point Deflection at mid-point
Deflection of edge
4 Elements 0.1274 0.0626
16 Elements 0.1584 0.0713
v = 0.30
Timoskenko (exact) 0.1639 not available
v = 0.25
Zienkiewicz 0.1639 0.0697
36 Elements
v = 0.30

It is seen from the above table that the 16 element
solution obtained in this study agrees fairly closely with

the solutions given by Timoshenko and Zienkiewicz.

6.4.1 Second Order Static Analysis - A uniform load of 10 1lb/in

is now applied to the plate in order to study the effect of

geometric nonlinearities. For this purpose a second order analysis
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is performed using a total of 100 incremental steps. Fig. 12
shows the force-deformation curve for the center of the plate
and for the mid-point of the edges. For compafisoh purposes,
also the first order force-deformation curve is plotted. It
may be observed again that the structure tends to become stiffer

as the intensity of the load is increased.

6.4.2 Free Vibration Analysis - The free vibration analysis of
the structure under consideration yields the following results:
Lowest Frequency = 0.766 cyc/sec.
Largest Period = 1.31 sec.
Highest Frequency = 410.6 cyc/sec.

Smallest Period = 0.0024 sec.

6.4.3 First and Second Order Elastic Dynamic %ﬁglysis - The
frequencies and periods from the free vibration analysis may
be used as a guideline for the numerical input to the elastic
dynamic analysis. Thus, a time increment of 0.001 seconds

and a final time of 2.7 seconds is used for the numerical inte-
gration process as applied to the first order analysis. In
the case of the second order dynamic analysis, a smaller time
increment has to be used since the structure becomes stiffer
as the deformations increase, due to strefching of the middle
surface of the plate. It has'been found that a time increment
of 0.0001 seconds satisfies the stability criterion for the

numerical integration algorithm and yields satisfactory results.

For the first order dynamic analysis, uniformly distributed .

loads of intensity 1 and 10 lb/in2 are used. In the case of the
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second order analysis load intensities of 1,2,5 and 10 lb/in2

are utilized in conjunction with an incremental procedure. For
comparison purposes the time-history curves from‘both analyses
are plotted on the same figure (Fig. 13).

Curves Sy and SlO in Fig. 13 correspond to the first order
dynamic analysis for load intensities of 1 and 10 1b/in2, re-
spectively. Within a time interval of 2.4 seconds, two nearly
identical complete cycles are seen for each curve, each possessing
a period of oscillations of about 1.2 seconds, but, of course,
differing in amplitude by a factor of approximately 10. The
corresponding static displacements can be found from Fig. 12 and
although not plotted on Fig. 13, they represent horizontal
equilibrium lines for the dynamic oscillations.

Curves L, and Llo in Fig. 13 represent results obtained
based on a second order analysis for similar load intensities
of 1 and 10 lb/inz, respectively. Those two curves clearly
demonstrate the difference between the first and second order
analyses. Within the same time interval of 1.2 seconds, approx-
imately four complete cycles appear for the 1 lb/in2 loading and
twelve complete cycles for the 10 lb/inz. The maximum ampli-
tudes are much smaller than those of the first order analysis.
This is because the plate becomes stiffer due to the stretching
of the middle sﬁrface. It is also seen that initially, the
results for both first and second order analyses are quite close
(as may be observed by comparing curve S10 with Lio and S; with

Ll). However, after some time has elapsed (for a load intensity
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':. | .of 10 lb/inz, this corresponds to about 0.2 secohds,‘ana‘in the
case of 1 lb/inz, to about 0.4 seconds), the solutions of the
first and second order dynamic analyses become markedly different.

Figures 14 shows the comparison of second order dynamic
analyses for uniformly distributed loads of different intensities.
Curves Ll' L2, L5, and Llo represent the time history of the
center deflection of the square plate under uniformly distributed
loads of 1, 2, 5, and 10 lb/inz, respectively.

These curves show the following characteristics:

(1) All curves are periodic, or at least tend to be
periodic, after some initial time has elapsed, since no damping
has been introduced into the analysis.

(2) The period of oscillations becomes shorter as the
load increases. There are about five complete cycles in Ll but
SRR about fifteen or more complete cycles in Lo
| interval. Again, this reveals the fact that the plate is much

for the same time

stiffer and vibrates much faster as the load increases.
(3) The amplitudes of oscillations increase but in a
nonlinear manner due to the nonlinear stiffness propefties of

the structure.

6.5 Square Plate Subjected to a Lateral Load and
In-Plane Compressive Forces

In this section is discussed both the elastic static and
dynamic analyses of a simply supported square plate under a
lateral concentrated load at center and uniform compressive

forces in the x-direction.




Up to now, only one direction of loading has been considered.
When a plate is under the effect of both a lateral load and a
uniform compressive load acting in its middle plane, the work done
by both the transverse load and the compressive forces has to
be considered in formulating the solution to the problem. This
problem may be solved by using thé analytical expressions given in
Chapter IV since the work done by the compressive forces is equi-
valent to the last term on the right hand side of Eq. (50). In
order to compare results with Timoshenko (16), the case of a
simply supported square plate under a concentrated load at center
and uniformly compressed in the x-direction is considered. The
deflection surface of a simply supported rectangular plate as

given by Timoshenko is:

_ o o ., mTX _, nnz
Wix,z) = il i:l Amn sin —= sin =~ (119)
where
2 2 m2N
AL~ 4P sin Egé sin E%ﬂ / abDﬂ4 [(mf + 97)2 - —E—g—]
a b ma D
(120)

and, P represents the concentrated force at the point (&,n),
N, is the compressive force in the x-direction.

It is seen that when N =v0, the above equation reduces to
the solution of a simply supported rectangular plate under a
lateral concentrated load. In order to compare results, the

concentrated load, P, is kept constant at 1000 1lb., acting at
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the center of the square plate, whereas Nx is varied. 1In the
present solution by the finite element method, in most cases a
total of 16 Class 4 (see Section 5.4) plate elements are used
to idealize the square plate. The numerical constants used in
the first order static analysis are:

6

Young's Modulus E = 30 x 10 lb/inz.

0.3.

Poisson's ratio v
Dimensions of plate = 30 x 30 x 0.25 in.
Flexural rigidity, D = 0.429258 x 10° lb-in. “

As long as the denominator on the right hand side of Eq. (120)
does not approach zero, the double series on the right hand side
of Eq. (119) converges rapidly. Hence the solution obtained by the
finite element method is compared only with the first term of the

series using the coefficient All' and the results of the compari-

son are shown in Table 9,

TABLE 9 - FIRST ORDER STATIC ANALYSIS OF A SIMPLY SUPPORTED SQUARE PLATE
UNDER A 1000 LB. LOAD AT CENTER AND UNIFORM COMPRESSIVE
FORCES IN THE X-DIRECTION--COMPARISON OF CENTRAL
DEFLECTION BETWEEN FINITE ELEMENT
AND EXACT METHODS

Deflection - Inches
F.E. Method .
. Timoshenko (24)
Nx (1b/in) Elements 16 Elements (exact)

0 ———— .22615 .21489
100. - .23694 .22694
200. ———— .24892 .24041
400. ——— 27727 .27280
600. ———— .31358 .31528
- 800. —— .36180 .37342
1000. .39909 .42901 .45787
1200. ——— .52926 .59166
1400, - .69523 .83592
1600, - 1.02366 1.42366
1800, —_———— 1.98451 4,.7953
1900. ——— ——— ©
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It may be observed that, in general, the comparison is
fairly good for Nx less than 1200 1b/in. However, when Nx is
greater than 1200 lb/in, Aqq increases very rapidly due to the
fact that its denominator tends to become very small. This
is becaﬁse the critical value of Nx_is between 1800 to 1900 1b/in.

The same structure is now analyzed by performing a second
order static analysis to determine the center deflection of the
plate. The loads are increased to their final values by apply-
ing 10 equal increments. Table 10 shows a comparison of the
accuracy between a 4 and 16 element idealization of the square

plate, with P = 1000 1b., and Nx = 1000 1lb/in.

TABLE 10 - SECOND ORDER STATIC ANALYSIS OF A SIMPLY SUPPORTED SQUARE PLATE
WITH P = 1000 LB AT THE CENTER AND UNIFORM COMPRESSIVE
FORCES Nx = 1000 LB/IN--COMPARISON OF

CENTRAL DEFLECTION FOR 4 AND 16
ELEMENT IDEALIZATIONS

Deflection - Inches

Step 16 Elements 4 Elements
1 .02369 .02221
2 .04807 .04503
3 .07188 .06729
4 .09397 .08793
5 . 11372 .10642
6 .13107 .12272
7 .14624 .13704
8 .15957 | .14968
9 | .17134 .16089

10 : .18182 .17091
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The values in the last line of Table 10 represent the deflections
at the center of the plate when the loads have attained their full
values. It is seen that the difference betweén the two idealizations
is aboﬁt 6%.
The effect of geometric nonlinearities can best be studied

by varying both the lateral load and in-plane compressive forces
applied in the x-direction. For this purpose, values of P = 500,
1,000, 2,000, 10,000 1b. and N, = o, 1,000, 2,000, 3,000 and
4,000 1b/in. are used. The results of the investigation are

summarized in Table 11.

TABLE 11 - SECOND ORDER STATIC ANALYSIS OF A SIMPLY SUPPORTED SQUARE PLATE
WITH VARYING LATERAL AND COMPRESSIVE FORCES--
COMPARISON OF CENTRAL DEFLECTIONS

Deflection ~ Inches
Nx
p 0 1000 2000 3000 4000
500 .0932 .1118 .1364 .1644 .1904
1000 .1542 .1709 .1891 .2079 .2264
2000 .2312 .2440 .25695 .2700 .28292
10000 .48755 .49481 .50235 .51026 .51865

It may be observed from the above table that for smaller
lateral concentrated loads, the effect of varying N, on the

deflection of the plate is much more pronounced. For large

values of P, large deformations of the plate are accompanied by
stretching of the middle surface. This, in turn, nearly counter-

acts the compressive effect of the in—plane'forces.
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An elastic dynamic analysis has also been performed for the
same structure. 1Initially, a free vibration solution is obtained
which indicates that the largest period is about 0.7 seconds.
Therefore, a time interval of 1.4 seconds is used for the numeri-
cal solution process in the forced vibration analysis. The time
increment used is 0.001 seconds. Ih Fig. 15 are shown the time-
history curves corresponding to the first order dynamic analysis.,
S are the dynamic and static displacement curves

Nx" "Ny
for P = 2000, Nx = 1000; Do’ SO are the dynamic and static dis-

Curves D

placement curves for P = 2000, N, = 0. It is seen that DNX has

a much greater amplitude and slightly longer period of oscillations
than Do' In fact, the fundamental period obtained from the free
vibration analysis no longer matches the period of oscillations
corresponding to response curve DN , due to the existence of

X
the in-plane compressive forces.

6.6 First Order Elastic and Plastic Dynamic Analysis of
a Plate Structure

In several of the numerical solutions presented in this
chapter, it has been assumed that the stresses and strains in
every part of the structure remain elastic even when large
deformations are taking place. In such cases it is more realistic
to take into account plasticity effects which are brought about
by the yielding of the materiai. To accomplish this the "Plastic
Dynamic" branch of the computer program discussed in Section 5.4

is used to solve some typical problems.
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One of the simple structures considered for this purpose
consists of a square plate which is fixed along one of its edges
and free along the others (see Fig. 16). The dimensions of the
plate are 30 x 30 x 0.50 in. The structure is discretized using
4 plate elements corresponding to Class 1, as discussed in
Section 5.4. This type of plate élement can sustain only in-
plane action without twist at the corner nodes. As shown in
Fig. 16, three concentrated in-plane loads of magnitude F = 100 kips
are applied in the x-direction at the nodes C, D and E on the
free edge of the plate parallel to the fixed support. For com-
parison purposes, first a static analysis of the structure is per-
formed. The results indicate that the maximum displacement due
to the applied loads is 0.146 in. and occurs in the x-direction
at the nodes C and E. The corresponding displacement at node D
is 0,137 in. Likewise, in order to obtain an estimate of the time
increment of integration to be used in the dynamic analysis of
the structure, a free vibration analysis is first performed. .The

results of this analysis are

Lowest Frequency 25.88 cyc/sec.

Largest Period = 0.0386 sec.

Highest Frequency = 233.7 cyc/sec

Smallest Period 0.0043 sec.

Based on the above results, an elastic and plastic dynamic
analysis of the structure is performed. The same concentrated
loads ﬁsed in the static analysis are now applied to the struc-

ture dynamically and are assumed to remain constant with time.
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A time increment of 0.0002 sec. is used for the numerical inte-
gration process. 1In the case of the plastic dynamic analysis a
trilinear stress-strain curve is used. Referring to Fig. 8, the

values of the various parameters defining the curve are:

20,000 1b/in®
6

Param. l: Stress ol

11.50 x 10% 1b/in?

n

Param. 2: Slope 2

Param. 3: Stress 9, 33,000 lb/in2
Param., 4: Slope 3 = 2,50 x 106 lb/in2
Param. 5: Ultimate Stress = 130,000 1b/in’
Param. 6:; Yield Point Stress = 33,000 lb/in2
It should be pointed out that initially a more realistic value
of 65,000 lb/in2 was used for the ultimate stress of the material.
However, it was found that the average stresses in some elements
exceeded the ultimate stress. This, in turn, led to an automatic
interruption of the computer analysis, as explained in Section 5.3.
The time-history curve of the x-displacement at node C for
both the elastic and plastic dynamic analysis is plotted in
Fig. 17. A comparison of the two curves indicates that in the
case of plastic deformations there is an increase of about 5%
in the maximum displacement and a slight increase in the period
of oscillations. However, the main difference between the results

of the two analyses is that plastic deformations are accompanied

by an noticeable permanent set, as may be seen from Fig. 17.

6.7 Elastic and Plastic Dynamic Analysis of a Plane Frame

The structure considered in this case consists of a plane

frame, as indicated in Fig. 18(a), that was previously analyzed
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in Ref. (25). The frame is made up of standard 4 inch diameter

steel pipe whose cross-sectional area A = 3.174 in2 and the
moment of inertia I = 7.233 in4. Furthermore, the modulus of
elasticity E is taken to be 29 x 106 lb/in2, and a value of

46,000 1b/in2 is used for the yield value of the material. For
simplicity in the computation of plaétic deformations a bilinear
stress-strain curve is used, with the inelastic branch having a
slope of 1/10 of that of the elastic branch. The loading consists
of two dynamically applied forces, FV = 20 kips and FH = 5 kips
having a rise time of 0.20 seconds, as shown in Fig. 18(b).

The time~history of deflection at the point of application
of the vertical load is shown in Fig. 19. Also included in the
figure is the corresponding deflection if the loads are applied
statically and the structure is assumed to respond as a linear
system. The three time history curves shown in the figure corre-
spond to the elastic dynamic response with or without geometric
nonlinearity effects, and the plastic dynamic response of the
structure. As may be observed, the dynamic character of the load
results in a dynamic load factor of approximately 2.0 for the
case where the effects of geometric nonlinearities are neglected
(first order analysis). However, when such effects are retained
(second order analysis) the load factor increases to approximately
2.4 (20% increase). 1In the case of inelastic deformations, the
dynamic load factor becomes much larger. This is due to the
large magnitude of the applied loads which causes initiation of

yielding at an early stage of the response (i.e., at approximately
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0.16 sec.) and thus leads to considerable inelastic deformations.

6.8 Elastic and Plastic Dynamic Analysis of a Three-Dimensional
Structure Consisting of In Plane Stressed Plate Elements

The static, elastic and plastic dynamic analysis of
the structure shown in Fig. 20 is studied in this section. The
structure is composed of aluminum plates of uniform thickness.

It consists of three vertical walls (parallel to the y ~ z plane)
at 6 ft. apart and three horizontal floor decks at 2 ft. apart.
The plate thicknesses chosen are 1/8 in. for the vertical walls
and upper deck and 1/16 in. for the lower two decks. The struc-
ture is supported rigidly along the bottom edges of the vertical
walls and is restrained from movement in the x-direction.

A discrete model of the structure is obtained by inserting
a node at each corner point corresponding to the interconnection
between vertical and horizontal members. In this manner, each
vertical wall is subdivided into three and each deck into two
plate elements. These plate elements are of the type that can
sustain only in-plane stresses (see Sections 5.3 and 5.4) with
no twisting action. Thus, at each node point only a translational
movement in the y and z-directions is allowed, and therefore the
number of degrees of freedom for the entire structure is 36.

The structure is subjected to a concentrated load of
F = 900 kips aﬁplied at node 16 and acting in the positive z-
direction. Initially, the load is considered to act statically
in order to determine the static displacement distribution of the

structure. Numerical results indicate that, as expected, the
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maximum displacement occurs in the direction of the applied load
and is equal to 0. 887 in. Also, a free vibration analysis of

the structure has been performed leading to the following results:

Lowest Frequency 236.2 cyc/sec.

Largest Period = 0.00423 sec.

Highest Frequency = 4540 cyc/seé.

Smallest Peroid = 0,00022 sec.

It may be observed that the three-dimensional character of the
structure results in a fairly stiff system and corresponding high
frequencies of vibration. Although not plotted here, a study

of the fundamental mode of vibration indicates that the structure
deforms in a manner analogous to a cantilever beam. Thus, as

far as the z-direction is concerned, all nodal points move to-
gether in the same direction. However, the movement in the
y-direction is such that while all points in the frontal plane
(parallel to the x-y plane) move in one direction, all points

in the rear plane (x-y) plane move in the opposite direction.

The same concentrated load used in the static analysis is
now applied to the structure dynamically and is assumed to remain
constant with time. The elastic dynamic response of the structure
is first obtained by assuming the structure to act as a linear
elastic system. The time—history curve of the displacement in
the direction of the applied load is shown in Fig. 20. Some
secondary oscillatory effects are observed in the plot due to the

interaction between inertial effects in the two perpendicular

directions and the superposition of higher modes of vibration.
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For the plastic dynamic analysis a trilinear stress-strain
curve is used as represented by Fig. 8. The following values of
the parameters are used in this case:

Param. l: Stress 0; = 6,530 lb/in2

6 1b/in?

Param. 2: Slope 2 3.87 x 10

Param. 3: Stress 0y 20,800 1b/in2

0.03 x 10°1b/in?

Param. 4: Slope 3
30,000 1b/in?

Param. 5: Ultimate Stress

20,800 1b/in?

Param. 6: Yield Point Stress

The same magnitude of the load, i.e., F = 900 kips, is

used in the plastic dynamic analysis of the structure. The
time-history curve of the displacement in the direction of
the load is plotted also in Figure 21. The same oscillafory
behavior is observed as the case of the elastic dynamic
analysis, however, the displacements are larger. Also,
plastic action is accompanied by relatively large permanent

deformations, indicating possible damage to the structure.
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VII. SUMMARY AND CONCLUSIONS

A procedure of analysis has been presented for determining
the plastic dynamic response of structural systems consisting of
beam and rectangular plate elements. The analysis takes into
account both the geometric and matefial nonlinearities.

The general approach to the problem is based on the finite
element method using displacement interpolation functions. The
strain energy expressions for both the beam and plate elements
are obtained and are used to generate the stiffness and mass
matrices of the elements. Also, the geometric stiffness matrices
are derived that account for the effect of geometric nonlinearities.
Plastic deformations are taken into account by means of an incre-
mental theory of plasticity coupled with the concept of ihitial
strain. The governing dynamical equation of the system is
written based on Hamilton's Principle.

A general purpose computer program has been constructed
based on the analytical procedures developed in this study.
Although the program is primarily intended for the solution of
plastic dynamic problems, it can also be used to perform an
elastic static or elastic dynamic analysis with or without
geometric nonlinearities, as well as a free vibration analysis.

The program is used in this stidy to solve several simple struc=-

tures subjected to static or dynamic loads. It is found that
- even with the use of a relatively small number of elements of

the type chosen in this study, the results agree fairly well
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with solutions given by other investigators (whenever such
solutions are available). Results also indicate that both
material and geometric nonlinearities have a significant effect
in the total deformation of structures which consist of beam
and plate elements. In the case of plate structures subjected
to large bending effects, it is found that tension in the middle
surface of the plate causes a significant stiffening and an
appreciable change in the vibrational characteristics of the
structure.

In conclusion, the feasibility of the numerical procedure
developed in this study has been demonstrated by the solution
of some simple problems. The computer program generated as a
result of this study should be a useful tool to structural
analysts. However, further numerical experimentation may be

needed before the full potential of the program is realized.
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Figure 6 - Element Displacements Corresponding to Bending Action

(i, j, k, % represent the four nodes of the plate)
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Figure 20 - Three-Dimensional Structure Consisting of In-Plane
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APPENDIX A

STRAIN AND STRESS COMPONENTS DUE TO IN-PLANE ACTION

Strain and stress components to be used in Eq. (53) corre-
sponding to the displacement functions defined by Egs. (51), and
(52) are presented in this appendix.

A.l1 Strain Components

The strain components corresponding to the in-plane
action may be obtained by substitution of Egs. (51), and (52)

into the following equation

] B N 1 ]
£ ———
X ux,x a ux,E
_ _ _ 1
[e;] = €, = u, = 5 Yz,m
1 1
u + u = + =
sz X,2 Z,X b ux,n a uz,E
| i L 1 - i

The results are as follows:

-1 @ -3n? s
[El] = 0
5 (L~ o n? - en)
_ . _
leg] = |- f (26® - 3.2 + 1)
L - n(ee? - 66
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A.2

Stress Components

The corresponding stress components may be obtained by

substitution of the above results into the following equation.

[Oi

The results are

o]
X

(all terms on the right-hand side of

the equations are to be multiplied by the factor E/l-vz):

[03]

[o.]
2

e

1
-3 (2n

V
—E(Zn

A

- b

b , 3
3 (n

v

= (n

2+n)

Al-(1 - €) (3n° - 4n

114

ol

+

(83 - 262 + )
(82 - 2¢% + §)

1) + (1 - n) (322

- 4 + 1)]



[og,]

[o

131 =

[015] =

N

b

P> oI~ bl<

Lo - Ui< ol

Ol<

pi> O

= - 2m? ey -2 -

E(6n° - 6n)

(2e3 - 3£2)

(23 - 3g2)

(1 - n) (682 - 6¢)

—£(3n2 - 4n + 1) + (L - n) (322 - 26)]

(20 - 3n?)
(2n3 - 312
(6n% - 6n)
—
(2e3 - 3g2)
(2e3 - 382
n(6€? - 6¢)
—

115

2

)

—



[o

[o

[o

[c

17

23] =

b 3 2 V 3 2
a

-y (n™ - n%) + B (87 - &%)

vb a 2

-2’ -nd 423 - e

AI=E(3n% = 2n) + n(3E% - 2£)]

“é{ (203 - 3%
Y (2n? - 303

-5 @ -6 e’ - 6n) |

r——% (263 - 3% 4 1) |
T o263 - 382 + 1)

A6 - 6t

v
L

b 3 20 va .3 2
7 (n ‘T])+B—(E - 287 + §)

= - n?) e g - 282 4 g

AM-(1 - &) (302 = 2n) + n(3E2 - 45 + 1)

116



APPENDIX B

SIMPLIFIED FLOWCHART OF THE MODIFIED GWU-FAP PROGRAM
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APPENDIX C

TYPICAL INPUT FORMAT

Cel STATIC ANALYSIS~FIRST ORDER
STRUCTURE ANALYZED IN SECTION 6.4 OF THIS REPORT

THIN PLATE ELASTICALLY SUPPORTED BY EDGE BEAMS=4 PLATE AND 8 BEAM ELEMENTS
STATIC ANALYSIS

SPACE FRAME FIRST ORDER

NUMBER OF JOINTS 8

NUMBER OF NODE POINTS 1 4

NUMBER OF BEAM ELEMENTS 8

NUMBER OF PLATE ELEMENTS &

JOINT COORDINATES

1 0.0 0.0 0.0

2 15.0 0.0 0.0

3 3040 0.0 0.0

& 0.0 0.0 15.0

5 15.0 0.0 15.0

6 30.90 0.0 15.0

7 0.0 3.0 30.0

8 15.0 3.0 30.0 .
NODAL COORDINATES

9 30.0 1.0 30.0
MEMBER INCIDENCES

1 1 2

2 2 3

3 3 6

4 6 9

5 9 a

6 8 7

? & 7

8 1 L3

1 1 2 5 [}

2 2 3 6 S

3 b 5 8 7

b 1) 6 9 8
NUMBER OF CONSTRAINED VERTICES 9

1111010

2101010

3111010

4101010

5101010

6101010

7114010

8101010

9111010

MEMBER PROPERTIES

< 1 8 +212000E+01 «000000€+00 «4%0000E+0D +420000E-01 1.0
0000100004 0.25 1.9 3

MODULUS OF ELASTICITY 30.00

NU 0.30

LOADING

1 56.25

2 112.50
3 56.25
4 112,50
5 225,00
6 112.50
L4 ' 56.25
8 112,50
9 56.25
T
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C.2 STATIC ANALYSIS~-SECOND ORDER
STRUCTURE ANALYZEDC IN SECTION 6.4 OF THIS REPORY

YHIN PLATE ELASTICALLY SUPPORTED 8Y EDGE BEAMS=& PLATE AND 8 BEAM ELEMENTS
STATIC ANALYSIS

SPACE FRAME SECOND ORCER

NUMBER OF JOINTS 8

NUMBER OF NODE POINTS 4

NUMBER OF BEAM ELEMENTS 8

NUMBER OF PLATE ELEMENTS &

JOINT COORDINATES

1 0.0 0.0 0.0
2 15.0 0.0 0.0
3 30.0 0.0 0.0
] 6.0 0.0 15,0
5 15.0 0.0 15.0
] 30.0 8.0 15.0
L4 0.0 0.0 30.0
8 15.0 6.0 30.0
NOOAL COORDINATES
9 30.0 0.0 30.0

MEMBER INCIOENCES

FWNEONOWNE WN
NENSLIFOOPEN»
CVMUNENNTNRORWUN

@ W
D NN

9

NUMBER OF CONSTRAINED VERTICES 9

1111010

2101010

3111010

4101010

5101010

6101010

7111010

8101010

9111010
MEMBER PROPERTIES

1 8 «212000E+01 «000000E+00 «440000E+00 +420000€E~01 1.0
0000100004 .25 1.0 5
MODULUS OF ELASTICITY 30.00
NU 0.30
LOADING
1 562.50
2 1125,.00
3 562.50
L] 1125.00
5 2250.00
6 1125.00
7 562,50
8 1125.00
3 562.50
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C3. ELASTIC DYNAMIC ANALYSIS-SECOND ORDER
STRUCTURE ANALYZED IN SECTION 6.4 OF THIS REPORY

THIN PLATE ELASTICALLY SUPPORTED BY EDGE BEAMS~4 PLATE AND 8 BEAM ELEMENTS
ELASTIC OYNAMIC ANALYSIS LTYPE 1

SPACE FRAME SECOND ORCER

NUMBER OF JOINTS 8

NUMBER OF NODE POINTS 4

NUMBER OF BEAN ELEMENTS 8

NUMBER OF PLATE ELEMENTS &

JOINT COORDINATES

1 0.0 0.0 0.0 o

2 18.0 0.0 0.0

3 30.0 0.0 . 0.0

) 0.0 0.0 15,0 -

5 15.0 0.0 15,0

6 30.0 0.0 15,0

14 0.0 8.0 30,0

8 1%.0 0.0 30,0
NODAL COORDINATES

9 30.0 0.0 30.0
MEMBER INCIDENCES

b3 1 2

2 2 3

3 3 6

[ ] 9

5 9 ]

] [ ] 4

L4 [ 7

8 i L)

1 i 2 ] L]

2 2 3 [ 5

3 [ 5 8 ?

L) 1] 6 9 8
NUMBER OF CONSTRAINED VERTICES 9

1111010

2101010 .

3111010

4101010

5101010

6101010

71411010

6101010

9111010

LUMPED MASSES AT VERTEX POINTS
1 9 +101000€E-02
MEMBER PROPERTIES
1 8 +212000€E+01 +000000E+00 «440000E+00 +420000E-01 1.0
L]

0000100004 0.25% 1.0
MODULUS OF ELASTICITY  30.00
NU  0.30
TIME PARAMETERS
0.0 2.7 0.0001
LOADING
0.0 2.7
1 562450
2 1125.00
3 562,50
4 1125,00
5 2250,00
6 , 1125.00
7 562,50
) 1125.00
9 562.50
EJECT
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