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ABSTRACT

Static constitutive stress-strain relations are developed for concrete
at intermediate pressure levels, up to 10-12 ksi mean normal stress. An
elastic-plastic model is developed that qualitatively fits the loading
features exhibited fcr a variety cf controlled laboratory tests conducted
in this program and found in the literature. Laboratory tests were
conducted on several batches of concrete with 3/8-inch maximum aggregate.
Considerable attention was paid to the casting of the concrete so that
batch-to-batch repeatability could be obtained, and to specimen preparation.
Some data are presented for aggregate variation from 3/16-inch to 3/4-inch
so that scaling to different aggregate could be performed. The laboratory
tests presented represent a series of tests where all stresses and strains
have been measured, thereby allowing the shear and dilatation stress-strain
responses to be observed during a variety of load-unload paths.

Strain rate effect.s are not considered in the model developed, nor
are the features of unloading correctly handled. Each of these represents
an area where addir.ior:al detailed work is needed.
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SECTION I

INTRODUCTION

Concrete is a composite material of naturally occurring sand and gravels

or crushed rock, bonded together by some form of cement, and may contain as

many as eight different components. These include coarse aggregate, sand,

unhydrated cement, cement gel, gel pores, capillary pores, air voids and

free water. For many engineering purposes,concrete may be considered as a

composite of aggregate, cement oatrix, water and unfilled voids. This

simplified model does not in any way imply that all ccncretes are similar in

material response. Quite the contrary, 'concrete' alone is not aoequate to

specify a given material. The nature of concrete, including the complicated

chemical reactions that take place, is well documented, for example by

K. Newman (Ref. 1).

The response of concrete to either very rapid, quasistatic or long-term

loading is quite different, and sufficient data are available to indicate

that concrete exhibits a relatively complicated stress-strain response, very

different from the frequently used approximation of linear elasticity. Under

quasistatic loading nonlinear effects become particularly significant at

stresses greater than about one-half the maximum stress, as indicated for

example by the papers shown in Reference 2, "The Structure of Concrete" (1968).

Under very rapid loading, concrete shows viscous response, and a recent report

by Read and Maiden (Ref. 3) gives a good survey of the response of concrete

to shock loading.
I

Even though plain concrete is a composite material, the work indicated

here treats it as a homogeneous continuum. That is, the aggregate, cement

matrix, water and voids are assumed to be distributed in a homogeneous manner,



and the geometry of the concrete specimen is assumed sufficiently large so

that the size of the aggregate and voids are relatively small compared to

the geometry of the specimen. Testing methods have receotly become available

to determine the bulk, or continuum, response of concrete for a variety of

loading conditions (Ref. 4), which thereby makes the continuum approach to

modeling tlhe stress-strain response particularly attractive. Admittedly

for some applications, such as shock loading where the load pulse may be

small compared with size of the aggregate and voids, the continuum model may

need additional detail. A reinforced concrete structure would need to be

treated as a 'composite' structL'r2 consisting of the reinforcement in a

concrete matrix, and the continuum model developed here would suffice to

model the matrix.

The work here considers only quasistatic loading and does not address

creep or high strain rates. The objective of this research was to dpvelop

general three-dimensional constitutive equations which qualitatively fit the

features of deformation exhibited by concrete at intermediate pressures, up

to 10-12 ksi, and to this end a variety of loadings were made on specimens

from a specific laboratory cast batch of concrete.

A constitutive model was developed that represented the data obtained

in this program. Although this ir del fits only the specific concrete studied,

it could be applied to another concrete of interest by using different values I
for the constants involved.

I

I
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SECTION II

REVIEW OF EXISTING LITERATURE ,

Strength: Considerable attention has been given to the tensile and compressive

strength of plain :oncrete. The effect of mix ratios, aggregate size and

grading, curing tirne and environment, have generally been investigated (Ref. I

and 5). The water-cement mix ratio appears to have the greatest influence

on strength, with lower water ratios giving greater strength. Different

mixing and casting techniques can give different amounts of entrapped air,

and hence. large differences in porosity.

Specimen design, fabrication and end conditions, or constraints, have

lik wise been investigated. Although 'casting' of specimens to the desired

size and shape has been extensively useo (Rets. 1,5,6), the surface mortar

layer and nonuniformity of specimens due to the different casts may be less

desirable than casting a single large block and diamond cutting or coring

samplts from the single casting. Compressive specimens with length to

diameter ratio of two are generally considered adequate to obtain a region

with uniform stress, while shorter specimens will undoubtedly exhibit non.-

hoogeneous stress through the specimen (Ref. 7). The type of end lubrication

used, if any, seems to vary; however, te- ts on hard rocks by Wawersik (Ref. 8)

suggest that 'lubricar.ts' may lead to low apparent strength caused by intrusion

in pores and splitting of the end. End conditionl which lead to apparent

in-reased or decreased strength must carefully be separated from the effect

of triaxial loading on strength. Although end effects due to unknown end

conditions lead to triaxial stress loading in the specimen, the results will

likely not be scalable or subject to interpretation.

Tests under triaxial compressive stress (Refs. 9-13) show that the compressive

3



strength of concrete is sensitive to confining pressure and increases

rapidly with increases in confining pressure. Figure 1, taken from Newnan

and Newman (Ref. 5),illustrates this effect. This ,igure also shows that

the classic expression of Richart, et al. (Ref. 9)

ci= fc + 4.1 o.

is inaccurate at the higher confining pressures.

Concrete tensile strenyth is much 7ower than compressive strength, but

the ratio of these strengths depends on the mix parameters (Ref. ]4). A

ratio of uniaxial compressive strength to tensile strength of about ten may

be considered typical although ratios on the ordEr of twenty have been

observed (Ref. 13).

Tests under triaxial extensio stress (Refs. 12,13) and under biaxial

stress (Refs. 15,16,17) indicate that strength is not only sensitive to

confining pressure but is also more precisely dependent upon the treqs

state. For example, the inaximum stress differenct is jreat . triaxial

compression than in triaxial extension at the same confining pressure, as

shown by Figure 2 which is a replot of data by Hobbs (Ref. 13).

The tension plus biaxial compression data of McHenry and Karni (Ref. 18),

Presler and Pister (Ref. 10) and others as surmarized by Newman and Newman

(r(ef. 5) all indicate that a steady reductiin in tensile strength results as

the biaxial compressive stress is i;ncre?;.ed. This can be seen in Figure 2

which also indicates that as the lateral compressive stress is raised, a point

is reached where the axial stress is zero. This should correspond to the biaxial

strength under equal biaxiol stresses, and thus provides a comparison point

between the two kinds of tests. Further increases in the lateral compressive

stress produce failure under axial compressive stress, again as Illustrated

4
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Figure 1. Effect of confining pressure on strength
of concretc, from Newman and Newman (5).
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figure 2. Effect of triaxial stress state on strength of concrete.



in Figure 2.

The strength of concrete under biaxial compressive loading has been

investigated by Kupfer, Hilsdorf and Rusch (Ref. 15) using special brush|I
platens to minimize adverse end conditions. A strength increase of 16 percent

in equal biaxial compression relative to uniaxial compression was obtained,i 'f

which is in accord with the value of 10 to 25 percent suggested by Newman

and Newman (Ref. 5). This value is not universally obtained; for example,

the extension tests of Chinn and Zimmerman (Ref. 12) show an increase of

approximately 110 percent in equal biaxial compressive strength over

uniaxial compressive strength.

A number of failure criteria have been proposed to predict concrete

strength under general multiaxial stress conditions.. A recent review by

Newman and Newman (Ref. 5) indicates that this is not a settled issue. The

classic Mohr-Coulomb criteria states that strength can be described by

a1 -03 f(O1 + 03)

This expression has been used by a number of investigators. For example,

the expression by Richart, et al. (Ref. 9) given previously can be put in

this form with f being a linear function. However, the Coulomb-Mohr hypothesis

implies that the strength value does not depend on the intermediate principal

stress, in variance with biaxial test results. Bresler and Pister (Ref. 19)

and McHenry and Karni (Ref. 18) have used a generalization of the Mohr-Coulomb -

criterion in which the octahedral shear stress is taken as a function of the

octahedral normal stress. A good fit to data in the mixed tension-compression j
stress range was obtained.

Chinn and Zimmerman (Ref. 12) foun' that neither the Mohr theory nor the ,

octahedral stress generalization fit thir compression and extension test

7



results. This conclusion was supported by Mills and Zimmerman (Ref. 20).

They proposed that their data could be fitted by using a modification of

the octahedral shear stress, however, the application of this theory was

not presented.

Stress-Strain Response: During loading in uniaxial compression, concrete

behaves in a nearly linear elastic manner up to about half the maximum stress,

where significant microcracking begins. Unloading from above this stress

level will result in permanent set, while continued loading will eventually

result in massive break up of the concrete microstructure and large scale

dilation as maximum stress is neared (Refs. 1,5). Careful control of the

testing machine strain rate allows the complete stress-strain curve to be

obtained (Refs. 8,21), and shows that fracture does not occur immediately

after reaching peak load. The load tends to drop with increasing strain,

with large scale cracking, slabbing and complete loss of cohesion occurring

well after peak load. Specimens loaded to slightly beyond peak load and

then unloaded may show no macrocracks, and in general have the appearance

of an urdeformed s-pecimen.

The stress ievel i.L the onset of significant microcracking is termed

the "discontinuity strL-s' (Ref. 5) and can be observed by deviations from

linearity in the str,.ss-stroin response. The microcracking has been detected

by r nuii;be" o, rethocs including microscopic and X-ray examination of specimen

extcrior arid cross section surfaces, measurement of acoustic emissions, and

otier methods (Ref. 5). A measurement of all three principal strains permits

the calculatiun of the relative change in volume. Increases in volume (relative

to the elastic deformation) due to microcracking have been observed by a

number of investigators (Ref. 5).

Concrete is capable of large deformations under confining pressure.

{B



Chinn and Zirmerman (Pef. 12; appied axial strain of 16% to triaxial cQm-

pression specinens at corOioing pressures of 25 ksi or more, and many other

investigators have noted similar increases in maximum axial deformation

(Refs. 10,11,13). The stress-strair response becomes significantly non-

linear at hig-, deformations and permanent set upon unloading is large.

'leasurement of all principal strains has not received widespread

ttention,and,.'n general,insufficient data are available to define the

triaxial stress-sraia response. Also relatively little daL -),ost to

determine the unloading and reloading path, the effect of varying amournts

of free water (dry or saturated), temperature and thermal cycling or other

preccndit~onin9 effects on the triaxial stress-strain response.

Concrete Constitutive Uaws: Little previous work has been performed on

developing constitutive equations that even reasonably represent the triaxial

stress-strain response of concrete. This is likely due to two factors;

first, that expcrimental techniques for measuring all the independent com-

ponents of the strain tensor with sufficient accuracy have only recently

become available, and secondly, the usage of large computers that can

effectively utilize more accurate (and perhaps complicated) stress-strain

representations has only recently become common. Because of this, the stress-

strain behavior of plain concrete has usually been modeled as either elastic

or elastic-perfectly plastic. Nilson (Ref. 22) has presented a typical computer

program for structural analysis of reinforced concrete using nonlinear

propertie.. However, an adequatc representation of the necessary properties

was not available.

On the basis of a careful study of the stress-strain behavior of several

rocks, Swanson (Ref. 23) .ind Brown and Swanson (Ref. 4) proposed that a strain

hardening plasticity model could be used to phenomenologically represent the

9



features of dilatancy (bulking) and permanent set. Baron, et al. (Ref. 24)

have added to the model a strain hardening "capped" yield surface that was

particularly appropriate for modeling soils, because the capped yield

surface permitted some control over the amount of dilatancy exhibited by

the plasticity model. Recently Swanson (Ref. 25) has shown how his earlier

strain hardening model could be combined with a capped yield sirface in a

marner appropriate for some porous rocks.

Herrmann (Ref. 26) has recently given a survey of constitutive equations

for the shock compaction of porous materials, but only briefly touches on

jeneral three-dimensional, stress-strain response.

10
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SECTION III [

EXPERIMENTAL TECHNIQUES

r=

Concrete Mix: Smooth aggregate was selected which contained very small

percentages of crushed, irregular, or elongated material. ThE primary

mineralogical components are sandstone, quartzite, limestone/marble,

granite, gneiss, and schist, which are naturally occurring around Salt Lake

VCity, Utah. The aggregate is generally rounded to subangular because it

is stream deposited material. To achieve a minimum aggregate to specimen

cross section ratio of one to five, 3/8 inch was selected as the maximum

aggregate size for the detailed tests on thick-walled,hollow cylirders and

I; solid cylinders, with some unconfined compression tests run on different

batches of concrete having 3/16, 1/2, and 3/4 inch maximum aggregate sizes

to investigate the strength depE .ence on maximum aggregate size.

Grading curves were selected for the four different aggregates so as

to maintain the overall surface area per unit of concrete weight (in 2 /b)

constant within the resolution of the calculations, estimated at ±30%.

This was considered important since surface area is a major factor in

establishing the water/cement ratio. The surface area was calculated for

the aggregate by assuming all aggregate was spherical in shape. This

calculation was thus only approximate.

The aggregate/cement ratio by weight of 6.3/1 was selected to afford

a 'medium workability' (Ref. 27) of the 3/8-inch aggregate mix. Figure 3

shows the actual qrading curves, where the percentages are given as weight

percentages of the total aggregate passing through the screen size indicated.

A single lot of aggregate was obtained and stored for all batches cast, and

a laboratory check analysis was run on each aggregate mixture to determine the

11
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I

actual grading curve.

A water/cement ratio (by weight) of 0.6, and a Type I Portland cement

were selected. To .nsure homogeneity of the cement, a local supplier ran

a special batch which was bagged directly from the mixer. This one lot was

used for all concrete batches cast. Table I presents the batches cast.

Table I

Concrete Specimen Batches

Maximum.
Batch No. Aggregate Size, Comments

Inches

1 3/8 1 tub, inadequate vibration
2 3/8 1 tub
3 3/4 1 tub, different surface area
4 3/16 1 tob
5 3/4 1 tub
6 1/2 1 tub
7 3/8 1 tub, plus 5 hollow cylinders
8 3/8 5 hollow cylinders

Mixing, Pouring and Curing: The desired amount of graded dygregate was

weighed and placed in a 5-cubic foot drum mixer, and mixed several

minutes to ensure an even distribution. A sample was taken for moisture

analysis, and the mixer was sealed with a clear plastic film. A moisture

analysis, which entailed careful weighing, then heating to 250-F and weighing

at 30-minute intervals until no further weight loss was observed, was run

on the aggregate sample. A dry aggregate weight of 1% was allowed as normal

interstitial w.iter content, and the remainder was considered as excess water

which reduced tr., amount of water, added to the mix.

Appropriate cemnent and water quantities were weighed and added to the

mi xer to bring the water', cement, Ill moisture aggregate ratio by weight to

13



0.6 / 1 / 6.3. The batch wa mixed 5 minutes and then poured into approximately

2-foot diameter tubs (to bc cored later for solid cylinders) or in forms

r for hollow cylinders. The tt,,bs were vibrated 15-20 seconds with a 1 -Inch

diameter conmercial concrete vibrator and the forms for thick walled cylinders

lesser amounts. In general, this amount of vibration was adequate to stop

air bubbles from appearing on the surface and to produce only very slight

amounts of water at the surface.

The concrete was moved immediately to a constant temperature-humidity

curing room. After 4 days the forms were removed and the cist specimens

covered with saturated burlap material kept moist by absorptL.n .om water

reservoirs. Solid cylinder, specimens were wet diamond core drilled from

the tubs at about 20 days and then placed under water for continued curing

(except for a few specimens as iioted later). Some specimens were removed

IIfrom the water at 24 days to be ground on sides and ends, strain gaged, and

then tested at 28 days. Oher" specimens remained submerged until about

80 days and then were kept in the constant temperature (780F)/constant

humidity (,_;0/,) room unLi I time of test. A

Specien Preparation - Solid Cylinders: Solid cylinders were core drilled to

about 2 3/4-inch diameter using a water lubricated diamond core bit on a

large verLical drill pr'ss as shown in Figure 4 with each specimen marked for

identification and location in the larger block. By using proper core bit,

feed, speed, lubrication, and very rigid alignment, solid cylinders were

obtained with no rippieLciable chipping or loosening of the exposed aggregate.

No indication uf internal cracking was suggested by either microscopic

observation o, by sc. Lter in tensile or compressive strengths. The solid I
cylinders were (iround to 2.7-inch diameter with a tolerance of .001 inch

on roundness and straightness. Thereafter they were cut and ground to length,
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(6 inches for most of the tests) parallel and flat to within .0003 inch.

Specimens for unconfined tests had strain gages applied directly to the

concrete surface with commercial strain gage adhesives. Typically gages

were applied at the specirmen center in axial and transverse orientations

spaced 1800 apart around the specimen. Foil gages with a 3/4-inch gage

length (Micro Measurements EA-06-750DT-120) were selected for most of the

tests, as discussed later. Terminal strips and leads were attached, and the

specimens appeared as shown in Figure 5a. For tensile testing, aluminum

alloy tension grips were epoxy bonded to the specimen ends, as shown in

Figure 5b.

Specimens for tests under confining pressure had large surface voids

filled with a fine commercial grout, and then a .005-inch-thick soft

aluminum sleeve was shrunk onto the specimen with about a .005-inch inter-

ference fit. Strain gages were bonded to the aluminum jacket as shown in

ilirn i. and tho specimen was then sealed in tygon tubing as shown in

Figijr. !i. Tn- effect of the aluminum sleeve on strength was considered

rFegIiyiLe (Refs. 4,28).

,erine Preparation - ,Lollow Cylinders: The thick-walled, hollow-cylinder

s-ecicos,, t) Ine tested in axial compression and internal pressurization (hoop

tensior) vwere cast in forms 7 inches inside diameter by 11 inches outside

diamieter by 20+ inches long. The metal forms, as illustrated in Figure 6a,

%ere rei.oved after 4 days,and the specimens were covered inside and out with

situratea buriap naterial. At about 20 days the specimens were placed under

water until about 80 days. The specimen ends were diamond ground flat and

perpendicular to the specimen axis, to within .001 inch. The inside of the

cylinders were lightly sandblasted with fine grit to expose subsurface voids

(which might collapse under internal pressure), and these voids were filled

16
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with a fine commercial grout. Because of the matrix cement surface layer

inherent in cast specimens, 2-inch-long foil strain gages (Micro Measurements

EA-06-20CBW-120) were selected (as opposed to 3/4-inch-long gages) for use

on the hollowi cylindars. The gages were applied at about the specimen

center internally and externally at axial and transverse directions 1800

apart. A specimen ready for testing is shown in Figure 6b.

Testing - Solid Specimens: Specimens tere tested using a very stiff, well

aligned servocontrolled press. The press for unconfined tension and com-

pression tests is shown in Figure 7. Load was measured from a precalibrated

load cell and strains from high elongation strain gages directly mounted

on the test specimen as previously discussed. Axial strain rate was kept

constant at 10-4/second by the servocontrolled press, and because of the

high stiffness of the press the compressive stress-strain curve beyond

maximum stress was recorded in some cases.

For tests on solid cylinders under confining pressure, a test vessel

and loading press shown in Figure 8a were used. The specimen was aligned

inside the test vessel, with a precalibrated load cell and pressure measuring

manganin -oil inside the test vessel. Strains were again measured by high

elongation strain gages directly mounted on the specimen, with a pressure

correction of +0.5 x 10-8/psi (Ref. 29) applied to all strain gage readings

(which was generally insignificant for the pressures tested here). Kerosene

was used as the fluid inside the test vessel, with pressure generated by a

servocontrolled intensifier shown in Figure 8b. The manganin pressure coil

inside the test vessel, a strain gage on the specimen, or the load cell,

provided the input signal to control the intensifier unit such that the desired

pressure or load, or the desired specimen strain condition was met. Axial

strain rate was generally kept at 10-4/second, as for the unconfined tests.
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All signals were recorded in analog form with direct signal calibration.

Load and pressure are accurate to ±2%, while strains are somewhat less accurate

with uncertainty mainly due to the porous, inhomogeneous nature of the concrete.

Repeatability of stresses and strains from similar tests on adjacent concrete

specimens Was ±3-4%. No specimen end lubrication was used for compression

tests; the concrete was loaded directly against a steel end platen.

Preliminary Tests: The sign convention adopted throughout this report is

that tensile stress and extensional strain are positive, and compressive

stress and shortening strain are negative. Axial refers to length of the

specimen and transverse to the diameter. No apparent anisotropy was noted

from visual or microscopic examinations, and no difference in strength or

stiffness was noted for different directions; therefore, no distinction has

been made between transverse strains, and in general, isotropic behavior

is assumed.

Variation in Strain Gage Size: Previous work reported in the literature has

suggeste! that strain gage readings on concrete and mortar specimens are a

measure of tne average strains to within at least 50, as long as the gage

length 4 r atclr than four times the maximum aggregate size (Ref. 30). To

better rtc;-o inir the effect of strain gage size on strain reading, several

2.7-incb diamete- by 6.0-inch long specimens were prepared and tested in

uncunifined compression with 2.0-inch long (>5 times maximum aggregate dimension),

0.75-ihum lonq and 0.5-inch long strain gages applied directly to the specimen

and adjacent to each other, to indicate axial strain. The strain indication

difference between the longest and shortest gages was less than 8%, with

essentially no difference between the 2.0-inch and 0.75-inch long gages, as

shown in Figure 9a. Since experience had revealed that larger strain gages

are more subject to failure at confining pressure because they are more likely
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to cover and be deformed into specimen voids, the gage length selected was

0.75 inch, which is. twice the maximum aggregate size (for most tests).

Cylinder Length/Diameter Ratio: Newman and Lachance (Ref. 31) and Johnson

and Sidwell (Ref. 7) suggest a length over diameter (1/d) ratio of >2.5 to

ensure freedom from end effects in the central gage section. To verify an

adequate length to diameter ratio for our test techniques, several 2.7-inch

*diameter by 6.0-inch long specimens were instrumented with three 0.75-inch

.long strain gages to indicate transverse strains ovcr about a 2-inch center

section length of the specimen. These were specimens from batch 2 cured about

28 days. One gage was located at the center of the specimen and one gage

I inch above and 1 inch below center, with lateral strain selected as the most

sensitive indication of end effects since typical specimen barreling, due

to the end constraint, would be indicated by lateral gages. The three

lateral strains were uniform to <5% difference for specimens tested without

lubrication between platens and specimen, as shown in Figure 9b.

To further investigate the effect of specimen configuration on apparent

physical properties, unconfined compression tests were run on specimens with

l/d ratios of 1.1, 2.2 (similar to the previous tests) and 3.3 (nominal

3, 6, and 9-inch lengths by 2.7-inch diameter). These were specimens from

batch 2 cured for about 90 days, but not under water. The stress-strain

curves indicate that all specimens exhibit an initial tanget modulus (slope

of axial stress-axial strain curve at near zero stress) of 4.7x106 psi ±8%

as seen in Figure 1Oa; however, maximum loads were 9710, '279, and 7660 psi

for l/d ratios of 1.1, 2.2, and 3.3, respectively, as plotted in Figure lOb.

This represents a 17% apparent trength reauction from 3 to 6-inch specimen

length, but only a 7-:t reduction from ' to 9 inches, further indicating that

a 1/d of 2.2 is adequate for tests here (7'" is considered small, of the
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order of batch scatter as will be shown later). From these tests it was

.nd effects are negligible for our techniques, if a l/d ratio

-d.

Var____ n Aggregate Size: To determine the effect of maximum aggregate

size an strength, 28-day unconfined compressive tests were performed on

specimens with maximum aggregate sizes of 3/16, 3/8, 1/2, and 3/4 inch

(2.7-inch aiameter by 6.0-inich long specimens). Aggregate specific surface

area was held constant by selecting grading curves to give an appropriate

distribution of various sizes of aggregate in each mix. Other concrete

parameters were also held constant, as listed below.

Cement
Water-cement ratio
Aggregate-cement ratio
Mixing timre and techniquePoMring time and technique
Vibrating time and technique

Curing time and technique

Specihen preparation I
Maximum stress increases only slightly with increasing aggregate size as

shown in Figure 11. A strength decrease of less than 11% was observed

with decrease in maximum aggregate size from 3/4 to 3/16 inch. These values

cannot be compared directly with other published tests, for example that given

by Walker and Bloein (Ref, 32) for 3/8 and 3/4-inch aggregates, since no attempt

wus made to hold specific surface area constant for different aggregate

mixes in the',,u other testing programs.

One cuncrete batch with 3/4-inch maximum aggregate (batch 3) war mixed

with a specific surface area (in2/lb) about 20-50% lower than the other batches.

The strength w&s 17% lower than the other 3/4-inch aggregate, batch 5, with the

weakening believed to occur because the lower surface area ties up less water

in surface bending and 0f)',ictively increases the water available for hydration,
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Figure 11. 28-day compressive strength of various batches cast,
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or equivalently this gives an effective increase in the water-cement ratio,

which is known to produce weaker concrete CRef. 27). In another batch, about

50% less vibration during casting resulted in excessive air entrapment and

substantially weakened concrete, as shown by the pont for batLh 1 on

Figure 11.

From these tests on variable aggregate size concretes it is concluded

that the strength Is more dependent on aggregate surface area than on

aggregate size, and that careful aggregate grading with consideration for

specific surface area is required to produce concrete with similar properties.

Furthermore, such sensitivity to pouring and casting processes points out

the need for extreme quality control in obtaining test specimens.
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SECTION IV

EXPERIMENTAL DATA i

All tests reported in this section were conducted on 2.7-inch diameter

by 6.0-inch long solid cylinders, cast and aged for greater than 200 days.

lhe tests were performed on servocontrolled machines that maintained a

constant axial strain rate of 10-4/second. Specimens were nominally 'dry',

in that they had been exposed to dry laboratory environment for several days

prior to test, and tests were performed at room temperature, about 701F.

Average density at the time of test was 2.27 ± .03 9/cc.

Unconfined Tests: Figure 12a shows the results of compression tests, with

engineering stress plotted versus engineering strain, while Figure 12b

shows the tension test results. Each curve is the average of 2-4 tests with

materidl scatter shown as bars on the curves. The apparent elastic nmduius

is ahout 6x2O6 psi in compression and 7x10C psi in tension, with an unconfined

compressive strength of 7020 psi and a tensile strength of 805 psi.

If the test machine is adequately controllable, the decreasing stress

part of the stress-strain curve can be readily mapped as was done in Figure 13

where a compression specimen was loaded beyond maximum stress and unloaded,

then reloaded until large scale slabing occurred (as shown by the picture in

insert). Visible, prominent axial cracks and slabing occur well after maximum

compressive strOss. In tension fractur occurs mainly through the mortar,

with fracture seldom runninn through the (;ggregate (Refs. 1,5). This fracture

pattern is quite different than for extension tests, which are discussed later.

The aging of concrete is generally well duc0mented (Refs. 1,5) and shows a

rapid increase in strength during the first 28 days followed by slower increase

in strength for the next 60 days, and relatively little increase in strength
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after 90-100 days. The strength of the concrete tested here is plotted

versus log time in Figure 14.

Constant Confining Pressure Tests: Compression tests were conducted at

constant confining pressure of 0.5, 1.0, 2.0 and 3.0 ksi. Strains were

obtained only at 0, 1.0 and 2.0 ksi. The compressive stress (difference)

versus axial shortening and transverse extension strains are shown in

Figure 15, with each curve the average of 4-6 tests and scatter as shown

by bars. Increased strength is shown with confining pressure, quantitatively

agreeing with other data available (Ref. 5). At 2 ksi confining pressure

ductile behavior is shown, and relatively largt compressive strains are

possible. The negative ratio of transverse to axial strains (the apparent

Poisson ratio) and the slope of the stress difference-shortening strain curve

(the apparent Young's elastic modulus) near zero stress difference increase

slightly with confining pressure.

Th2 data from the constant confining pressure tests are replotted in

the shear plane in Figure 16 and in the dilatation plane in Figure 17.

in Figure 16 the square root of the second deviatoric invariants of stress

and strain are olotted (equal to 21/3 times shear stress and 1//3 times

engineering shear strain, respectively), with each defined as shown below

in terms of principal stresses, 01, ),, 0- and principal strains, c€,

C2 , C3 (Ref. 33).

S(11-) ,(-ol2)z + (02-03)2 + (oy1 -G 3 )2 (1)

/T = (IV6) / (/-2 ) 2 + (C- 3 ) 2 + (c-( 3 )2)2 + (2)31

The slope of this curve is equal to twice the apparent shear modulus, G.

The values taken near zero shear stress (4' < 0.005 ksi) increase only
2
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Figure 14. Aging curve for batcb tested.
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slightly with pressure.

In the dilatational plane, Figure 17, the mean normal stress, p o is

plotted versus volume change, AV/V o, defined as

Pm 1/3 (a + 02 + G3) (3)

6VlVo F + C + E. (4)

The slope of this curve is equal to the apparent bulk modulus, B. Pure

hydrostatic loading shows that the hydrostat tends to stiffen at very low

pressures, up to 2-3 ksi, then the concrete structure begins to collapse

arid the hydrostat softens until about 25 ksi where it again stiffens

(as shown by the insert). Several pure hydrostatic load-unload tests, which

were conducted to determine at what i -essure permanent compaction begins,

indicated that measurable permanent compaction begins at about 6 ksi pressure.

Unconfined and constant confining pressure tests show dilation begins

at some load below maximum stress; however, before large dilation begins,

compaction in excess of the hydrostatic compaction occurs. This compaction

is believed due to collapsing of the structure caused by the shear stress,

and has been observed on other porous materials (Ref. 28).

In tension, bulking is observed, with the volume change increasing toward

greater volume increase with increased load. To simulate the bulking in

tension and dilation in compression the apparent Poisson ratio would have to

vary from negative to greater than 0.5. These curves show that the assumption

of a linear elastic material with a fixed Poisson ratio is not reasonable

even for the low stresses shown here.

Variable Load Path Tests: In addition to the unconfined and constant confining

pressure tests, other load path tests were perforined, incluing extension,
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constant shear stress (proportional to 432-), constant mean stress (proportional

to JI), and uniaxial strain.

The load paths for these tests are shown in Figure 18, where stress

difference, a -otis plotted versus the transverse stress at. Each curve

represents a single test. For the constant J, /3 and uniaxial strain tests,

all three stresses are compression, while for the extension tests the

transverse stresses are compression while the axial stress may be compression

or tension.

Figure 19 shows the stress difference plotted versus axial shortening

and transverse extension strains; that is, the strains during the hydrostatic

loading part of the test have not been included. The strains during the

hydrostatic loading can be obtained from Figure 17 by assuning axial and

transverse strains to be equal and thus given by 1/3 of the volume change.

Figure 20 show's the tests plotted in the mean normal stress-volume change

plane, aid Figure 21 shows the tests plotted in the deviacoric invariant

str' s-strain plane.

Failure Envelope: The magnitude of the deviatoric stress at the brittle

maximUtM stress cr at .he ductile yield, which is defined as the stress at

Y, axial strdin, is plotted versu.i mean normal stress in Figure 22. A

variety of load paths are shown, including triaxial compression and extension,

constant rmean normal stress, constant deviatoric invariant stress and uniaxial

strain. The triaxial compression tests fsrm an upper bound while the two

extension tests suggest that triaxial extension forms a lower bound. The

uniaxial strain load pathi yields at a point between the triaxial compression

and extension bounds. Thu 'failure envelope' suggests that fur selected loads,

such as triaxial compression, deviatoric invariant yield stress (or yield

shear stress) may be related to the first stress invariant (mean normal stress),

38



00

TLn

L
IiLon

4J

I.-.

'I, -~ LO

39)



LrIAXIAL
14 STRAIN

LLL

Z 1

x 12

NSTANT 472

CONSTANT J,

6

I101<51 EXTENSION~
5 1<51 EXTENSION

4

2

TRANSVERSE AXIALI

Figure 19. Principal stress-strain curves for varilo's load paths.
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but that for more general loading, a unique relationship does not exist.

Unloading Response: Thus far, the test data show loading only, with tests

generally conducted until strain gages fa;led or (rapid) fracture occurred.

A number of tests were specifically conducted to define the unloading

response, after some amount of inelastic deformation hod occurred. Figures

23-26 show stress-strain curves for a number of load-unload paths. The data

are plotted showing mean normal stress, (1/3)(ci+o2 +o 3 ), versus volume

change, F+-2+c3; as square root of the second deviatoric invariant of stress

versus strain; and as stress difference, a1 -o:j, .ersus strains, c and E3.

Here o, EI refer to axial direction and o2 =0, and E3 refer to transverse

direction.

The unloading curves show that unloading paths do not follow an 'elastic'

unload path, but instead suggest both an anisotropic hardening that causes

yielding during unloading and strain induced anisotropy of the elastic

constants. The former is suggested by the complex unload paths as the axial

compression is removed at constant confining pressure, while the latter is

suggested by the shape of the unload 'hydrostat' as the confining pressure

is removed,

Reloading follows nearly the previous unload path If the unload-reload

occurs under nearly the same load ratio. If reload occurs for a grossly

different load ratio, as for example Lompression under constant confining

pressure followed by compression without confining pressure, then the reload

path does not follow the previous unload path.

Fracture: Fracture patterns are shown in the photographs of Figure 27. The

photographs represent specimens taken either to brittle fracture (well beyond

maximum stress) or to large ductile strains, which generally produced macro

shear failures. Figure 27a shows spucimens which were subjected to compressive
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Figure 23. Triaxial compression load-unl~oad at constant confining
pressure of about 2 ksl.
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46



w -

S-4

VOLUME CHANGE %

r .2 .4 .6.8 1. 0 1.2
DEVIATORIC INVARIANT STRAIN -412 %

-14

TRANS VERSE AXIAL

0 .5 0 -5 -1.0 -1.5 -2.0
STRAIN %

Figure 25. rriaxial compression load-unload, reload-unload, reload path at
V constant confining pressure of about 2 ksi.

47



-6"

C',4

VOWNE CHANGE %

0

DEVIATORIC INVARIANT STRAIN4TI 16*
-14

-I

TRANSVERSE STAN06 AXIAL

Figure 26. Triaxial compression load-unload, reload-unload path at constant
confining pressure of about 2 ksi followed by compressive
reloading unconfined.

48



- - - ~ ~ - - - - - In

0 -

.-0: 4J 0)U
1.4-'L -O

G V GJ C

*~ C )

OLCA

o ~ - 4;,,4&

C~x

_ AN

LL



0

0 L0

4-

-or

W

*L -a

0 (U

50



loads. The unconfined test shows brittle behavior, while 1.0 ksl confining

pressure and above clearly show ductile response. The constant mean normal

stress (constant J1) and the constant deviatoric invariant stress (constant

vr') tests were at sufficiently high enough confining pressure so that ductile

behavior occurs. Under uniaxial strain loading, ductile yield is observed.

Figure 27b shows specimens which were subjected to tension or triaxial

extension stress. A brittle behavior is shown, even for an extension test at

10 ksi confining pressure; however, the inserts k and 1 show the different

failure mode between tension, where failure occurs almost totally due to A

fracture in the cement matrix and aggregite-cement separation, and extension

at high confining pressure, where failure occurs due to fractures of the

cement matrix and fracture of the aggregate. For both tension and extension

tests, fracture occurred in the specimen mid-section, suggesting that the

bonded end tabs were not producing an unfavorable stress concentration at

the ends.
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SECTION V

THEORETICAL FORMULATION OF MODEL

The features of the concrete stress-strain behavior observed in the

laboratory data, particularly permanent set and hysteresis on unloading,

suggest that a mathematical representation can be based on a plasticity

model. This has been accomplished in that a representation of the stress-

strain behavior has been developed that fits the data reasonably well.

The plasticity model employed uses a strain-hardening yield surface, with

two segments, and an associated flow rule.

The general characteristics of the concrete mechanical behavior are

a strong dependence of stress-strain response and maximum stress (or fracture)

on mean normal stress, nonlinearity, hysteresis, permanent set on unloading,

and a coupling of the shear and dilatational behavior. Similar mechanical

behavior has been observed in rocks and mathematical representations have

been studied previously that were based on plasticity models (Refs. 23,

25, 34). The volume expansion due to shearing seen in much of the concrete

data is a well-known feature for many materials a.id has been often termed

dilatancy in the soil mechanics and rock mechanics literature. The behavior

seen in the mean stress versus volume strain curves for concrete is complex,
t

exhibiting both compaction and bulking due to shearing in different stress

ranges in the same test. This can easily be seen in the comparison illustrated

in Figure 28. In this figure the mean stress versus volume strain curve

of a test without shearing (a hydrostatic compression loading) is compared

with the same curve from a triaxial compression test. As illvustrated in

the figure, a compaction first occtjrs due to the shearing stress followed

by bulking or volume expansion. This same behavior has been observed recently
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Figure 28. Illustration of compaction and bulking seen in
volume beha~ior of porous materials.
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in tests of porous rocks (Refs. 28,35). In addition, a relatively large

amount of compactior can be observed in hydrostatic pressure tests at higher

mean .'- s levels.

Following discussion a plasticity model used to represent this

mechanicai behavior will be described. The mooel uses an associated flow

law and is based on a strain hardening yield surface with two separate

segments. One of the surfaces is in the form of a "cap," as used previously

by Sandler, et al. (Ref. 24). The reasons for the selection of the yield

surface in this form will be discussed below.

Multiple Yield-Surface Model: In the thcury of plasticity it is assumed

that material behavior is elastic until the applied stresses reach a critical

value. Continued loading results in both elastic and irrecoverable plastic

straining. The critical value of stress may be ccnsidered to be a surface

in stress space and thus is referred to as a yield surface.

lhe yield surface to be employed for cc.ncretc i.: illustrated in Figure 29.

Two independent segments a,'e employed, termed F1 a(. as shown. The use

of two segments appears advantageous for modeling the volume plastic strain.

As discussed previously, the concrete can show either compacticn or bulking

in the plastic (irrecoverable) volume strain. It can be shown that a yield

surface with a negative slope as the segment F2 (note that the abscissa of

Figure 29 is negative tu the right) will siow plastic volume bulking. C Pn-

versely a yield surface with the opposite slope, such as F2 , will shrei plastic

volume compactiun. Thus the bulking behavior is guverned by the segment F1

and the compaction by F2.

le theory of multiply segmented yield surfaces has been developed by

Koiter (Ref. 36) and may be considered a pirt of the classical theory of

plasticity. It should be noted that the overall yield surface does not have
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to be smooth. For example, as illustrated in Figure 29 the segments F1

and F2 are not tangent to each other at their intersection.

A number of assumptions necessarily have to be made to carry out the

formulation of the model. The use of the stress invariants VIJ' and J, to

describe the yield surface is a simplifying assumption that is inaccurate

in fine detail. This assumption will be discussed further in Section VI.

It is also assumed that tension stress states can be handled similarly to

compression, with the decrease in /J- as illustrated in Figure 29

accounting for the weakness in tension. Further assumptions are that an [
associated flow rule and isotropic hardening can be used in the plasticity

model. The use of an associated flow rule relates the plastic strain

increments to the shape of the yield surface in a specific manner which

will be mdde explicit below. It is advantageous in the sense that it

greatly simplifies certain theoretical problems such as whether or not

the stress-strain law is thermodynamically admissable. Isotropic hardening

means that the yield surface expands uniformly as the material strain

hardens. This assumption in effect insures that the unloading behavior

will always be elastic, which apparently is not appropriate in detail for

concrete. However isotropic hardening is at least a first step and can be

considered an approximation to the real unloading behavior. In general

these assumptions can be changed as detailed investigations of the various

aspects of mechanical behavior are carried out.

In the theory of plasticity for sniall strains the strain increment can

bc separated into elastic and plastic components as

dLij = due + d(5)
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The elastic strain increment component is related to the stress increment

through the elastic stress-strain law. The plastic strain increment can

be expressed by the associated flow law as (Ref. 37)

dEi.P = F A (6)

where F is the yield function and A is a constant that for strain hardeningIi
L7 materials will contain the stress increments, thus providing a relationship

between the plastic strain increments and the stress increments.

Koiter (Ref. 36) has shown that the associated flow rule for a yield

surface with two segments can be written as

deijP = aF A + aF, x2 (7)

Daij aij

where F, and F2 are the two yield surface segments. It can be seen that

equation (7) is similar to (6) except that plastic strain increments can

be obtained from both yield surface segments. It will be shown later that

Al and ,2 will both be nonzero only if the state of stress is that defining

the intersection of the two yield segments. At this point the plastic strain

increment is the sum of contributions from both yield surface segments. This

explains why the intersection does not have to be smooth. It is only

necessary that each segment be individually smooth so that the terms

F1  and aF2

i j o ij

each exist.

The constants A, and X, can he defined by specifying appropriate strain

hardening rules. This will be carried out in general forn here and the
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specific forms necessary to fit the experimental data will be examined in

Section VI.

The yield surface segments are assumed to have the following forms

F, 1 02' + 91 (Jj)-. K, (8)

F2 ( /J1)2 + r2 (J)' _ K2  (9)

where g (J) is a function to be determined, and r is a constant. As usual,

/vX is the second stress deviator invariant and J1 is the first stress2

invariant given by

Sij (al-2)2+(022-033 u)+(33" 11)+ 012' + 023 + 031

6

and
J, + rl +r f7

J , -+ 22 33

The initial values of the constants K, and K2 define the locations of

the yield surface segments. When the stress state is located inside the

yield surface the stress-strain response is elastic, thus F, = 0 or F2 = 0

is a necessary condition for yielding.

In a strain hardening material the yield surface can move as plastic

straining occurs. This can be accounted for by changing the values of the

constants K, and K2.as plastic straining takes place. The relationship of

the change in the constants to the straining is termed the strain hardening

rule. Since in the present case it is desired to have the two yield surface

segments move independently it is necessary to have a hardening rule for

each segment. Once the form of the yield function is established the plastic

stress strain '.esponse is fully determined by the hardening rule employed.
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It was assumed that the movement of the segment F1 depended on the

plastic shearing strain and that the movement of F2 depended on the plastic

compaction strain. Specifically the hardening rules were taken as

P h (10)
2 1

and

dc vcP h2 dK2  (11)I !
where dvI p is the second invariant of the plastic strain increment tensor,

drvcP is the volume strain increment associated with compaction only, and h,

and h2 are functions to be determined by the experimental data. The total

plastic volume strain has thus been divided into two parts as
F

d P (ddvcP
dv (dvbP)bulking + (dvcP)compaction (12)

This distinction in the plastic volume strain is made for purposes of the

derivation only and will not appear in the final stress strain law. 1
The assumption of the form of the hardening rules (equations 10 and 11)

is difficult to justify until more is known about microstructural response

Mechanisms of concrete. The use of the deviatoric invariant in equation 10 is

standard in the plasticity literature for metals (Refs. 33,37) and has been

used for geologic materials (Refs. 4,23). The use of tht. compaction strain in

equation 11 appears desirable since the yield segment F2 should harden (expand)

as compaction occurs ;n both hydrostatic and nonhydrostatic loadings. However,

it should be recognized that these are plausibility arguments. While the

appropriateness of the assumptions of equations 10 and 11 can in part be

examined by the fit between the resulting model and experimental data, the

full validity oi extrapolation to new stress conditions is not establisned.

59



The constants ?1 and A2 are determined by substituting the hardering

rules into the appropriate equations as follows. Since plastic shearing

strains are obtained from loading on both yield segments, the plastic strain

obtained from both segments (equation 7) should be substituted in equation 10.

This substitution is straightforward but lengthy and is given in Appendix C.

The result is

aF1 A1 + DF2 )-2 2h) dK1  (13)

The compaction plastic volume strain is obtained only from the F2

yield surface segmrent, provided that the slopes of the segments F, and F2

arL restricted appropriately. With this implicit restriction, the strain

from the F? segment which is given as

(d~ijP) F F2 2  (14) 1F2  :

should be substituted into the hardening rule for compaction, equation 11.

The result of this substitution gives

aF2 A = 1/3 h2 dK2  (15)

jJx

To ensure that plastic straining occurs only when the material is

yielding, it is necessary to define the con-tdnts A, and A2 as follows:
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( Aif F, 0

AdF 1>O
> I0 if {F,,O

or dFI O (16)

and

X2 if F2 0

dFz>0
>2 = F2<0

or dF21<O7)

Equation 15 can then be solved for X2 , subject to equation 17 above, as

1/3 h, dK2
A2  = (18)

and equation 13 can be solved as

1 (2h1 dK - aF2  X2 )

1 
=  FI (19)

It should be noted that the yield surface segments do not move inward

during any loading. This observation follows directly from the hardening

rules assumed in equations 10 and 11, and the assumption of isotropic

hardening. It is assumed that the plastic deviatoric strain invariant and

the plastic compaction strain are non-decreasing in absolute magnitude.

Thus the functions h, and h2 are restricted to not changing sign during yielding.

The above equations comDIete the basic derivation of the two yield

surface segment plasticity model. In Section VI the zcessary functions and

constants will be fitted to experimental data on concrete and the basic utility

]i
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of the model will be demonstrated.

Derivation of Strain Increment as Independent Variable: The usual plasticity

model formulation as shown above considers the strain increments resulting

from a stress increment loading, so that the stress increments can be considered

to be the independent variables. In continuum analysis codes, particularly

those using the finite-element formulation, it is often necessary to have

the incremental stress-strain relationship in the inverse form so that the

strain increments are the independent variables. This reformulation can be

readily carried out without introducing any changes in the assumptions of

the material behavior. This reformulation is carried out as follows:

Consider the usual separation of ;train increments into elastic and

plastic components stated previously asI
de d,.. + dcP (5) Iij ii J i

The elastic stress-strain law can be written as

dij = Ldekk 6ij + 2Gdej (20)

where the symbol L is used f.?re for the Lame constant

(1+v)(1-2v)

In in,'ex notation this can be written as

doi=C dEkl (21)

where C is the elastic coefficient matrix. Substituting equation 5 into

21 gives

do.. C de -C P(2
ij ijkl kl ijkl kl (22)
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Using the flow rule developed for the two segment yield surface

d4 1 = x, + 9F2  X2 (7)

3okl kl

then equation 22 can be written as

doij = j C. d ck- C. / aF, A, + aF2  X2 \ (23)

\ ak1 ackl

The hardening rules were expressed previously as

dT2P hl dF : h, aF, do.. (10)

de c h2 dF2  h2 3F2 doij (11)

aoi 1

where dEc is the volumetric compaction from the F2 yield surface. The I
equations previously developed for A and 2 were 3 -

1 23

F2  2 h, /3 h2  F2 doi (15)

3J] Do ij-

Substituting equation 23 for d ij into the right hand sides of equations

13 and 15 above gives

J, + J, 2h F C dr -C F + \2) (24)
-- 1- ijkl 'k1 ijkl

21



and

aF2  x2= h2 aF2  Cijk - C ijk aF1  A,1 + aF2  A2 (25)

a 3 Icij a)k 3kl

These equations can be rearranged as

+ 2 hi aFI Cijkl aFI .i + F2 + 2 h, aF, Cijk I 9F2  X2

/ ij Ok a 3kl

=2 h aF Cijkl dEkl (26)

and

h F 2 Cijkl F, +1 3F2 + h2 aF2  Cijkl aF2  A2
;3 ackl JJ 3 5ajaok

=h 2 aF2  Cijkl d Ekl (?7)

3 3oij

These equations can be written in shorthand notation as

A, x, + A2 A2 a A3  (28)

A AL + As X2 = A6  (29)

and equations 28 and 29 solved for A1 and A2 . This gives

=A 3 A,. - A2 A6  (30)

Al A5 - A2 A4

A A A6 - A, A4

Al A5 - A2 A4 (31)
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If either ?1 = 0 or X2 = 0 because loading does not occur on both yield

surfaces, equations 28 and 29 should be used. Thus, if either '2 < 0

or dF2 0 0, then

A2 =0

x= A3 = A6  (32)

A, A4

Likewise, if either F, < 0 or dF, . 0, then

A1  =0

A2 = A3 = A6  (33)

A2  As

The final stress-strain law is given in equation 23 as i

doij Cijkl dckl - Cijkl aF1 x, + aF2  x2) (23)

\aakl Okl ,

where \1 and A2 are given as equations 30, 31 or 32, 33 above.
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SECTION VI

COMPARISON OF MODEL AND EXPERIMENT

In this section the functions in the previous equations will be specified

to fit the experimental dat3 on concrete. Stress is expressed in units of

psi with the convention of tensile stresses taken as positive.

The elastic behavior of the concrete was taken as linear in both shear

and bulk with constants

G = 2.0 x 106 psi shear modulus

B = 3.0 x 106 psi bulk modulus (34)

The yield functions were taken as

F, = 1000. [12.2 - 11 exp (J,/40000.) [I. -exp((J 2-800.)/700.)-K 1

(35)

F2 = (/J1) 2 + 2 J12 - K2  (36)
2

The yield surface segment F1 is taken as the locus of points where

deviation from the initial elastic and approximately linear behavior in shear

occurs. This definition is somewhat arbitrary as the point of deviation

from linearity depends on subjective judgment and experimental accuracy.

However, the problem is not serious if the hardening rule parameters are

specified accordingly.

The segment F, is based on the tension, unconfined compression, and

triaxial compression test results. As a smooth transition from tension to

compression is assumed, no specific provision for a tension cutoff is necessary.

The yield surface segment F2 is defined in a,! arbitrary manner. That is,

it was taken as being small with respect to tension and compression failure

stresses and thus not well defined by the experimental data. The hardening
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rule was adjusted, however, so that the combined effect of yield surface

and hardening rule did match experimental data. A comparison of equation 36

with equation 9 shows that the ratio of the radii of the F2 ellipse has

been taken as 2. Trial runs showed that the resulting fit was not sensi-

r tive to this parameter, thus the value of 2 is somewhat arbitrary. The

constants K, and K2 change as strain hardening occurs according to strain

hardening rules given below and have initial values

KI = 0.0 psi

K- = 5 x 107 (psi) 2  (37)

The hardening rules are given as

d/1 p P h dF1  h1 dK1  if dF 38)

with

10h 6 1- 100 [1- exp(120 -iiP/(1-0 " J))] (39)

2 -7 x 10-r J1

i and

e th P :h 2 dF2  h2 dK2  if 4F2 >0 (40)

0.702 x 10-11 [1 -exp(J 1 
3/(1.35>.101 3))] [epJ/6I4) (41) i

with

As discussed in the previous section the constants K1 and K2 defining the

yield surface are chang.ed as strain hardening occurs and are defined so as to

be nondecreasing. Thus, each yield surface segment moves away from the

origin as it is loaded. During loading on F. (i.e.,PI = 0 and dF1 :0 ) dF1 =

dKI and during loading or, F2 (i.e., F2 = 0 and dF^ > 0) dF2 : dK2 . Othzrwise,
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dKI = dK2 = 0. Unloading from and reloading back to the yield surface is

thus assumed to be elastic. Changes in stress from tension to compression

are defined by the above procedure, i.e., no special or additional assumptions

need be made.

Tke stress-strain behavior based on these equations has been computed

and compared with the laboratory data in Figures 30 through 41. Figure 30

shows a hydrostatic loading comparison. In this figure the nonlinearity of

the curve above a pressure of about 6,000 psi is caused by compaction.

A comparison with unconfined tension, unconfined compression, and triaxial

compression is shown in Figures 31 and 32. The shearing curves in Figure 31

demonstrate the nonlinearity due to yielding. The dilatational response,

clearly shows compaction and bulking in both the model and experimentaldata.

Other comparisons are shown in Figures 33 through 41. Figures 33 and 34

show the comparisons for the tests in which rT2 and J1 are held constant over

part of the loading. Figures 35 and 36 show comparisons for an extension

test at a confining pressure of approximately 5 ksi. Figures 37, 38, and 39

give the one-dimensional strain test comparison. Figures 40 and 41 show

load and unload triaxial compression test results.

In general, the comparison between model and experiment is reasonably

good and the qualitative features are well represented in-the model. The

one-dimensional strain test comparisons are somewhat poorer than the other

tests. This can largely be ascribed to the high mean stress levels in this

test. The mean stress levels in the triaxial compression tests were lower

and the model parameters were based primarily on these tests. Thus, the

model had to be extrapolated significantly for the one-dimensional strain

test. It should also be noted that the variations in the experimental data

in the one-dimensional strain test were significant. For this reason the
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experimental data from both tests performed are shown individually in

Figures 37 through 39.

Computer Subroutine: The equations of the previous section have been programmed

as a subroutine that calculates a stress increment for a given strain increment,

state of stress, and plastic strain. A list of definitions of the subroutine

variables and a listing of the subroutine are given in Appendix A. In general

the variable names have been chosen tn conform to the usage of the SLAM

computer code. The subroutine utilizes an index notation for stress and strain

according to the following notation, using stress as an example:

SIGI (1) - radial stress, arr
SIGI (2) hoop stress, e
SIGI (3) E axial stress, a
SIGI (4) - shear stress, rz

A description of the subroutine as presently written can best be

suranarized by the subroutine statement

SUBROUTINE PLASTK (DEPST, SIGI, S12P, EPSPI, ZKI, ZK2)

The variables are defined as

DEPST (I) Strain increments
SI2P - Plastic strain deviatoric invariant, ,1 'Tp
EFSPI (I) V' cdStiC strains 2

ZK1 - Constant in first yield surface
ZK2 - Constant in second yield surface

The strain increments are calculated in the main program. The remaining

variables are appropriately incremented in the subroutine and rnst be saved

in storage in the main program. The storage of SI2P, the plastic strain

devidtoric invariant could be eliminated as this parameter could be cal.ulated

from the plastic strain.

Examination of Model Parameters: Although a iaryj number of constants 6re

used in the curve fitting expressions, only six material functions are
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actually involved. These are the two linear elastic constants, the two

yield functions, and the two hardening rules. Although a systematic study

of how these functions would vary with concrete manufacturing variables has

not been undertaken, it appears reasonable to assume that the functions would

vary in a systematic manner with changes in the concrete material properties.

In the following an estinate of how the functions could be changed to

accommodate different concrete properties is given.

The minimum test data necessary to define the six functions could consist

of stress-strain data from an unconfined compression test, a triaxial

compression test at 2 ksi confining pressure, and a hydrostatic loading test.

Further tests would, of course, add confirmation to the results. The six

material functions would then be obtained as follows:

Bulk Modulus B: The slope of the approximately linear portion,

say up to a pressure of 4 ksi, of the hydrostatic test plotted as

pressure versus volumetric strain.

Shear Modulus G: One half times the slope of the approximately

linear initial portion of the triaxial test, plotted as /J-' versus
J 2VT:.

Yield Function F1 : The function F, is given in the form of

F V_ + {g 1(J 1 ) - KI

The term in brackets ( I should be multiplied by the ratio of the unconfined

compressive strength to -7000 psi, which is the value of the unconfined

compressive strength of the concrete used in the present studies, that is

multiplied by c 1-7000.
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Yield Function F2 : No change

Hardening Rule hj: No change

Hardening Rule h2 : The function h2 is written in two terms as

h -f(/j2) 0g(J)

The function f should be multiplied by the ratio of the strain termed "S"

in the P = 2 ksi triaxial test illustrated in Figure 42 to the same strain

in the present concrete, taken as 0.0018. That is, multiply "f" by S/0.0018. ]
The function g of h2 should be nultiplied by the ratio of the strain

termed "T" in the hydrostatic test illustrced in Figure 43 to the same

strain in the present concrete, taken to be 0.029. That is, multiply "g"

by T/0.029. I

It should be emphasized that the above procedure has not been verified

experimentally. Rather it represents an estimate of how the model of the

present investigation might be modified for a somewhat different concrete.

Discrepancies Between Model and Data: Certain features of concrete behavior

exhibited in the laboratory have not been expressed explicitly In the

mathematical representation at this time. One of these features is a path

dependent unloading seen in the dilatational stress-strain curves of tests

unlo.ided from near maximum load. In the model, elastic unloading is assumed

in both shear and bulk. The real material behavior indicates that part of

the volumetric bulking may be recoverable, and in a way that depends on the A

unloading path. An example of unloading in a triaxlal (constat confining

pressure) test is shown in Figures 40 and 41. The model assumes isotropic

behavior and does not include the anisotropy produced by directional

microcracking. This behiavior would show up in reloading tests of concrete

loaded near maximum stress, and particularly if the directions of the
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Volurie Change

Figure 42. Illustration of volumetric strain "S" used for correction
of model parameter H2 for different concrete.

20 Hydrostat

o T 0.029 for present concrete

T
Volume Change

Figure 43. Illustration of volumetric strain "T" used for correction
of model parameter H., for different concrete.
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principal stress axes were rotated.

Another area of uncertainty in the present model is in the detailed

description of the yield surface and maxitrium stress surface. The maximum

stress locus has been represented in v'J versus J coordinates in the model.

It has been well established in the literature and in the present program

that the maximu stress locus is not unique in these coordinates, but can

vary with the type of test. In general a.; discussed earlier, the triaxial

extension and triaxial compression ter.c rasuits appear to form separate

curves, with biaxial compression result; falling in between. Various

techniques have been used to rectify this. Mills and Zimmerman (Ref. 20)

have modified the shearing invariant with the addition of a "rotational

term." In a similar situation for rocks, Mogi (Refs. 3B,39) have modified

the mean normal stress invariant by adding a weighting factor to the inter-

miediate principal stiess. An example of this for granite is shown in Figure 44.

It should be noted that although the fit is apparently quite consistent

in the coordinates of Figure 44, a replotting of the data in terms of a

biaxial stress envelope can lead to anomalies. Further complicating the

situation is the normality rule (associated flow rule) used in the plasticity

model that serves to link the strength and stress-strain behavior. Although

some biaxial stress-strain data are available, as by Kupfer, Hilsdorf, and

Ruscli (Ref. 15) for example, the situation has not been adequately studied.
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SECTION VII

COMPARISON TO THICK WALLED CYLINDER TESTS

A series of tests was performed on thick-walled concrete cylinders.

These tests consisted of combinations of axial compression and internal

pressure, producing combined compressive and tensile stresses in the

concrete. To ensure an adequate wall thickness to aggregate ratio,

3/8-inch nominal aggregate size was used with a 2-inch-thick cylinder wall.

The overall cylinder configuration was 7 inches I.D., 11 inches O.D.,

and 20 inches long.

Since the concrete constitutive model was formulated before thei cylinder tests were performed, these tests served as a verification check

of model parameters. A description of the analysis and comparison of theory

and experimental results follows.

An_alysis : if the concrete cylinders are treated as "thin walled", the hoop

stresses are given simply as

7=

t

where p is the internal pressure, r is the radius (presumably an average

of the inside and outside radius), and t is the wall thickness. However,

because the radius varies from 3.5 inches to 5.5 inches it was considered

necessary to use thick-walled cylinder thecry to determine the distribution

of radial and circumferential stresses and strains. Thi; was accomplished

by developing a finite difference computer code that used the concrete

elastic-plastic constitutive model. The equations were derived by considering

the usual equations (Ref. 40).
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equilibrium: do + orr 0  0 (42)ee i

dr r AJ

strain-displacement: Err dU (43)
Ulrdr

EO U/r

stress-strain law (in incremental forr);

do = C de (44)

where C is the concrete elastic-plastic stress-strain matrix. These

equations were written in finite difference form after eliminating the

strains in terms of the radial displacement U. The finite difference

equations were readily programmed; a listing of the program is given in

Appendix B. Tiie axial stress and internal pressure were input in incremental

form. The axial stress was assumed uniformly distributed throughout the

cylinder and related to the measured axial load by the relationship

- =F/A (45)

A check solution is shown in Figure 45 for the case of internal pressure

only using elastic properties. It can be seen that good agreement was

obtained using 11 mesh points. This nizrber was used for all of the concrete

cylinder solutions.

Discjssion of Results: The results of the cylinder tests are shown in Figures

46 through 52. In these figures the axial f-tress, internal pressure, axial and

circumferential strain both at the inner and outer surface of the cylinder are

plotted versus the elapsed time of the test. Also shown in these figures are the

strains in the axial and circumferential directions at the inner and outer surface
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ri 3.5 -- Exact

o 5.5 ONumerical, 11 mesh
points

200-* .8

00

((D

00

105) .4

50-o

3.5 4.0 4.5 5.0 5

r Radius, in.

Figure 4r. Comparison of numerical and exact solution for elastic
thick-walled cylinder.
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predicted by the numerical solution.

-: In general the comparison between the numerical solution and the

experimental results is within "he consistency of the test results. The

comparisons for tests 8.-3 and :3-4 shown in Figures 51 and 52, respectively,'

were relatively much poorer than the others. It is not apparent why this

should be; however, both of these tests had a very high initial axial pre-

load before the internal pressure was applied. Apparently the model

exaggerates the circumferential strain at these stress levels. This could

indicate that the yield function F, should be increased somewhat more

for the cylA. er concrete, or else the dilatancy effect may be too pro-

nounced for this stress condition. However, the relatively much better

comparison for the other tests suggest that the experimental results for

tests 8-3 and 8-4 may not be entirely consistent with the others.

An interesting phenomenon V;ab noted in the analysis of the cylinders.

In the usual Elastic-plastic cylinder under internal pressure, using say a

Tresca or Von Mises yield criterion, yielding starts at the inner Dore and

progresses outward as the pressure is increased. In the present analysis

yielding was observed to start at or near the outer surface. This can be

L..plained by considering the pressure sensitivity of yielding in concrete. A1

The pressure at the inner bore was evidently sufficient to shift the location

of initial yielding. As a consequence of this, the "thick-wall" effect is

not as pronounced for the concrete analysis as it would be for a pressure-

independent elastic-plastic material.

Surqiarv_: Axial force and internal pressure tests were run on concrete

cylinders. These cylinders were analyzed using thick-walled cylinder theory

in conjunction with the material property model deveJoped for concrete.

Comparison of theory and experiment was relatively good for all tests,
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although cylinders 8-3 and 8-4 were much poorer than the others. The

evidence for explaining the poorer comparison of these two tests is not

conclusive.
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SECTION VIII

SUMMARY AND CONCLUSIONS

I. Although comparison of test data from different laboratories is

very difficult because of the large variability and the complex response

of concrete, data available in the literature do show some of the deformation

features of concrete, including the increase in strength with pressure,

the dependence of the yield on stress state and dilation which occurs near

maximum stress. Tests here provided added detail to the stress-strain response

and showed added features of deformation including a) compaction associated

with shear deformation occurs before the onset of large scale dilation and

b) the unloading is not elastic but shows complex unload paths which suggest

anisotropic hardening and strain induced anisotropy. To a lesser extent

the tests here showed the extreme sensitivity of the mechanical properties

to casting procedures, i-d 'he importance of the specific aggregate surface

area in deteriiinir,9 concrete strength. The strength appeared to be far

more sensitive to surface area than to aggregate size variation from 3/16

to 3/4-ineii diamete, aggregate.

2. The lidom and ,elatively homogeneous distribution of aggregate,

cement matrix, water and voids and the general respFnse of the concrete,

including dilatiun and permanent set, are suggestive of a continuum, elastic-

plastic model. It is not implied that concrete exhibits 'metal plasticity',

but that plasLicity models might adequately be used to phenomenologically

model concrete as has previously been done very successfully for geologic

materials. In a sense the model used here is an extension of the initial

plasticity model used by Swanson to fit rock data, with the yield cap as

suggested by Baron, et al. An associated flow law and a segmented yield
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function have been used with a hardeiinG law which includes the shear and

dilatation terms. The segmented yield and selected hardening laws allow

for compaction followed by dilation, as well as the more conventional pressure' i1
sensitivity of yield.

3. An independent check of the model has been made by calculating surface JI
strains on a thick-walled cylinder subjected to a prograrmed internal pressLre p

and axial load, and comparing the calculated strains to those measured

during the loading. The thick-walled cylinders represented a concrete with

a somewhat different strengih, and hence, in effect represented a different

batch of concrete. Comparison between the finite difference calculation and

measured strain was relatively good and provided some confidence rflat the

model developed to generally fit the features of deformation of concrete was

adequate for predicting the loading response of a conLrete structure.

4. The model developed does not adequately handle unloading, nor does

it fit in detail the stress state dependence of yield. The latter effect

would not be difficult to include as sufficient data become availAble.

Anisotropy is not considered, nor are environmental effects s- as temperature

or water, or preconditioning effects such as a preshock or preload.

Time-dependent effects, creep or high-strain rate loading, are not considered.
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APPENDIX A

CONSTITUTIVE EQUATION SUBROUTINE

SUBROUTINE VARIABLE DEFINITIONS

AB1, AB2, AB3, AB4, AB4
Al, A2, A3, A4, AS, A6 Terms in expression for X, and ),2

BI(I), B2(I)
AGO Shear modulus, psi
AKBULK Bulk modulus, psi
Adl1 First stress invariant, J1 , psi
AJ21 Second deviator stress invariant, J2
C(I,J) Matrix of elastic constants
DEHP 1st plastic strain invariant, IlP
DEPST(I) Total strain increments
DF1 Loading increment on Ist yield surface
DF2 Loading increment on 2nd yield surface
DS(I)" Stress increment associated with elastic strain
EL1 Lame constant, psi
EPSPI(I) Plastic strains
FSI(I) Partial derivative vector of F, with respect to stress
FS2(J) Partial derivative vector of F2 with respect to stress
F1 1st yield surface
F2 2nd yield surface
H1 Strain hardening function for Ist yield surface
H2 Strain hardening function for 2nd yield surface
PDE(J) Plastic strain increment
SIGI(I) Stresses
SIGDI(I) Deviator stress
SI2P 2nd plastic deviator -;train invariant, /VIP
SI2PS Square of S12P
SJ2 Square root of rJ, v -
TDS(1) Stres" increment associated with plastic strain
TZL2 Temporary name for A2

Ti, T2, T3, T4, T5, T6 Terms of various functions
ZKi Constant in 1st yield surface
ZK2 Corstant in 2nd yield surface
ZL Crstant in associated flow law, Xi
ZL2 Constant in associated flow law, ),2
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LL -

DFI, 0F2 
L=

ZL2LO (DF2*ZL2) 0

I No

r0 (iF*L1 KI,~ F2*ZL;> 7K2=ZK2+DF2 230
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figure 53 (Continued)
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C-----THIS SUPROUTINJ7 CALCULATES STRESS INCREMENTS FROM AN INPUT OF
C "TPATN INC; EMENTS9 STATE OF STRESSPLASTIC STRAIN, AND THE YIELD

0 FUNCTION i'ONSTANTS
C-----THIS SUBPOUTINE USES TWO STRAIN*HARDENING YIELD SURFACES

SUBROUTINE pLSK(?PSTSIGIqSI2FPEPSPI ,ZI'iZ21

TOS('.l),a1,+92(4,EPSPI(4),PDE(4)
A §0=2 * +6
A'(8ULK=3. E+b

ELI1.166667E+6
00 10 1=1 94
00 10 J=1,'.

00 1 11, 3
D00 15 J =1 3

00 20 1 =I,.
2 C (Iil)=C (1,1)+2. *AGO

Ajl1zS! (-' ) +SIGI( 2) +SIGI( 3)
AJ2IrC.

SiLu0I(I)=SIGil(1)-AJ1I/3.

AJ2!=.5*(AJ2I+SISI (L)2)
5J2=AJ2I**.5

C------CALCULATIO'4 OF ELASTIC STRESS INCREMENTS FOLLOWS
00 30 1=1,+

00 3F 1=1,4

ZL2Zr .

13=E.YPC(AJ1I- 800.)1700.)

F?=.cV4j2.#'AjiIAJIIZK2
C------IES1 FCR. YIELDING FOLLQWS

IF(Fl) ,4'*
,o Hj:;(.L-Ei'(1. 4. :O.*(-1.+E-yP(120.*SI2P/1.*-.OOCI*AJII)fl I

I(2.-7.E-5*AJlI)
1= 27 *1 1#(1.T 3) + TZ*T3/70Co

+2 F5+()(~II().1~b6'JI/J T4 A
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SFSl ('.) =s I (I(")# *./SJ2
J3 IF (F2) 7 0,60 , O

63J TS= -(2,OE-1..) *S J2 I.E XP (-S.)2/40 00.) EXP t-(SJZ/9457, )*4))
1/1 (l.E!*E-)*AJiI)
H.2- (7 .0 2E- 12) 1(e -E XP (AJI/2 3811.)**3))'EXP AJ1i/60OOO.0)+T5
00 65 1 =1I, 3

6,5 FS2 (T1=,5 4:SIGI(I)+3 8333333*AJlI
F S2 5'. 5S I G 1 (4

70 IF ((F .LT . 0.).ANO. (F2. LT. 0.)) G0 TO 250
C------CALCULATION OF PLASTIC STRESS INCREMENTS FOLLOWS

0O 52 1=i,4
13 1 1 I0.

2 92 1 0
00 85 1=i,4'
no 85 )I194
91 (1) 1'1l(1)+C(IPJ)*FSI(J)

55 82(I)-;:32' I) ".(I,J)*FS?(J)

A 3A 2 0

A -3 0.

Aa2=A32+FS1(I)*82 CI)
al2A63+FS! I I *D (

~3Ar3.=AB,+FSE 1(*132S(I)

3A9j 2.&* +. 1 HI.' (i 11

A2zSJ2+2. 4t-t1'A 32
A3=2.4 Hl 4 A93
A..- =.3333333H~~fA32
A;=4.'AJlI+,33,33333H2Ab4S

A:* 3 33 3 3 3 .33 Hl?'AtUl3
IR (Fl) 91 9c, 3

G-'r) TQ r,,

93 7 L 1 15A
GO TO 9E

I + 2.S A 5 A ? - 3 a&.I

3o CONTINUE
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0F2=0.
00 loc I=1,4
TOS(I)zDS(I)-B±(I)*ZL£-82(I)#ZL2
OFi=OFI.FSj (I)*TOS(I)

130 OF2=0F2.FS2(I)*TDS(I
TZL2=Z12
TF(OF1#ZLi) 102,130,130

102 IF (OF2*ZL2) 105 v110, 110
135 ZL 2=0*

GO TO 95
1103 ZL1=0.

ZL2=TZL2
GO TO 95

133 IF(OF2*ZL2) 135,203,200
135 ZL2=O.

GO TO 95
230 CONTINUE

C-----INCREIIENTIN1G OF YIELD SURFACES FOLLOWS
IFCOF1*ZLI) 21092109205

235 ZI<1=ZK1+DF1
219 Il:rF2*ZL2) 2309233,220
220 ZI2=ZK2.UIF2
233 00 235 I=1,L.

SIGI (I) :SIGI CI) +TDS(1J
235 P9E(I)=zF".li)*ZLjg.FS2(1)#ZLA

0EHP=EPSPI (1)+EPSPI (2)4EPSPi (3)
TF(SI2P) 245,24~5,239

239 00 21#0 1=1,3
24, 1t2F:=SI2P+(.5eEPSPI(I)/SI2P-OEHP/6.)ePoEzj)

ST2P=SI2P+(.5'EPSPI(4)/Sl2P)*PDE (1)
GO TO 248

2.5 S12PS=(C(POCi(l)-POE(2) )'*2+(PDEC2)-POE(3))**2+(POE(3)-POE(l))**2)
I /6.+POEC-4)**2
St 2P=SOPT (SI2PS)

2:od 00D 249 I=194
243 E%-1PIml=E:PSPI(I+POE(I

GO TO 3CC
253 CONTINUE

00 26C 1:1,4

333 RTETURN
ENO
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A APPENDIX B

INELASTIC THICK WALLED CYLINDER PROGRAM

Read and Print
READ and LSP, LTIM, SZ, B

Start PRINT LTWC SZ(1), EZIN, AP2, 3
EIN

Paea0
is.

C Call, ateuae e

or aSbroune SurC50 bouii

CaEquation
Plast kris n imberec If+1 y

C (-3 tantst

ENNo

Figuatri E lastic 80idrpr~anflwcatCofiinsIV xe:SrisPoete
Solve



E=4.9091 106

v=3. 22 727

Figure 5-'. Flow Chart of elastic coefficient subroutine of
cyl inder program.

Gaussian
El imi nation

> A(In±I)4J) =RETURN

F I' 'Ji 5 ~6 Ilow chtirt of nJtrix solver 5subroutine of
Ly I i nder program.



(FCvqIS MATN,MAIN
DIMENSION STC4O9,O),SR(40,4O),SZ(40)E(p&) ,EZc4a)9
1. U(40,4C),C(4,4),F(40),X(4O),8(LD),AE(404)q,,C3),
2 S(4),XP?(4O)tT(4O,3),EE(3),Ai(4),,A2(4),GPI(3093),GP2(30O,3),
3 RKI (30) 93K2 (3 0),1D( 393)

3~3 FORMAT (7(/v I2E12.4),/,E16.4)
OrAr) 109LTWC
00 ICI NtW1i,LTWC
DEAD 109LSPILTIM

H=2,/LSP

POINT ic5,HLTIm
t5 FORMAT (//,5X,*THIuU WALLED CYLINOER1,il5XqtAoIAL MESH =%,

1. F8*4q*INC"*,1OX,15,* LOAr)ING STEPS*)
NN=LSP+i
PEAD 25,S7(1) ,E7INAP2,EIN

25 FOPMAT C4E?0.8)
PRI N1 25,S7(1)vEZINA02,pEI

r 2C I=1,NI

ET (I1) =E I,',
ER (I) EINi
EZ(I)'EZTN
1<1 (I)=C.

YD2 (T) =1102

LTItl=LTIM+I

DEAD 40J,(SZ(J),J=2,LTIM)
.*0 FORMAT ($AFLG45)

no 37 J=29LTvI
rZ(J) .F7(J)

37 S R 1J) =9(J)
'Q@ 3*NN-2

Do 1ic J=2,LTIM
no 41 K=jgKK
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00 4.1 L1,vKK

s (1)=SR (1 J-i)
S(?)=ST (I ,j-j)

CP2=YP2(i)
CK1=OKI(1)
C K? 8K2 ( 1)
CALL PLAST (OSvC~(1,Ci2,CP?,Ai,.A2,C)
00) 1 M=i,3
GPi(iMM,)=At(f4M)
GP2 (1,f*1 A2(MM)

I. T(1,M)=C(3.M)
C*t**tFIPST C 'FQUATION

A(1,52)=-D(21)/P-D22/

I+0)(2,!)*~(SZ (J) -SZ(J-i))
C,*tt*FIPST B EQUATION

A (2,l5h0(1i) ,P
A (212)=(O(192)/R) -A( 295)

1-o(i,3)'*(S7(J)-SZ(J-1))
C*ttttFTRST A EON, SECOND POINT

A (3,F)=1.
A (3,3*) =2. H/(R+H)
F (3) =2(J)
A (3,L) =-A (3,3)

C't*t*CE=NTPAL A EQUATIONS
00 45 I=3,NT
L=3*(I-1)+1
M=L-1
A(I.,L+2)=Io

A (M ,L -1)=2* H/ (R+ (I-I) #H)
45A C ,L) =-A CM, 1-1)
00 50 I= 2,LSP
S (1)=SP.(IJ-t)
S9(2) =ST (I 9,J-1)
S (3) :SZ (J-1)
C02=XP2(I)
CK1=8KI (I
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r K2=nK(T)
rCALL PLAST (DSCK1,CK2,CP2,AIA2,C)
Orf) 3 1M=1,7

rP2(I,MM') :2(Mm,)
3 T(I,f'M)=C(3,MM)

LM3~-1

r*9ttICCMTPAL 9 COUATIONS

A CL,L-1):1.
A (L,L+4)=-3*5*D (, 1)/N

A(L , t) =-f) (12) /PT

1 'U(IJ-I) +o(1,3)*(SZ(J)-SZ(J-.1))
C**t**CENTPAL C EOIJATIONS

A Ws L)= lo

aCm, L- 2) =-A (149L +')
A0(t*,!')=-0i9,2)/PT

515 CONTI NUF
* L=!*LSP-7

Ct~fttfIEXT -rn LAST A EOUATION, NEXT TO LAST POTNT
A (L ,V) =-1 .
A (L,L) =2.*N/(P*(LSP.1)*H)
A (L ,L +!) =-A (LPL )

OttfttIcXT TO LAST It EONCA00ITION TO)

AQ+L2tL+h)=-IC.5'D(2,1)/H
L- 37'LSP+i.

t L -1I
PT=Rt (LSr*IH)

CfttLST A EOiCTTON

A (M, )PfPT * I* 057
Cttt.-LAST C r-QUATTON

SC?) VT (IN ,J-i)

SC3):SZ (J-1)
CP2=Y(P2 (t'N)
C K1= F! K 1 tI! )



CK2=PK2 CNN)
CALL PLAST (D, SPCK~1CK2vCP2,A1,A2vC)
90 4 MM=j,3
GPj(NNMM)=A1{M)
GP2(NN:.A) A2 (MM)

4 T(NN qlM)=CC3,m'i)
P-I 091'H
A CLt)=l.
A (LL) - C0(29,1)/RT+0(2,i)/P1)

i(S7C(J) -S7 (J-1) )
CALL SOL(NNqAF,X)
ST(1,J) :(j)
U (1,J)XY(2)
ST CNMwJ)=X C NN--3)
U(NNJ)=X (3'NN-2)
00 EzC I=2,LSP

SR (Nt.,J)=Oo

ST (NM, J) =X (3NN-3)

00 7C, IT,1NN

nO 71 I=?,LSP

1 E(I)(U(T+,J-UC(I-iH))-S(J.* ) S7JI) ,3

IU(lJ-I) /R)- (SZ(J)-SZ(J-i)))/T(i,3)
E? (NOM) (U (NN, J) -U (NN-19,J) ) /H
E7 (NMf)=EZ NN) -CT(NN9ib4 (EQ(NHl)-(U(NNJ-i)-U(NN-iPJ-L) )/MI.T(W4N,2)
4* (t-T NN)-UCNN J-i) /(R+LSP'H) I-(SZ(J) -SZ( J-1.) ) IT NN,3)

qS(3)=SZ U)
CALL PR0P(3)
00 90 I~tNN

! (1)=SP (I J)
!N2)=ST CIJ)
90 82 Mi,3
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00o 8?~ L1,SJ
4? -E(M)=EE(M)4+C(ML)*S(L)

PE (2) =ET (T)-EE (2)
PS ( 3) =EZ (1) -EE(C3)
P1= (FE.(i) +PE (2) .PE (3)) /3.
90 83 M=193

YP)2(I)=Oo
00 8'. M1,93

43 YP2(I)=SO:?T(XP2(I)O.5S)
00 220 119NN

- m3<2GP?(I, 1)*(SR(I,#J)-SP(IJ-1) )+GP2(I,2) #(STCIJ)-ST(1,J-1))+

I GP2(I,3)*'SZ(J)-SZ(Ji1))
TF(0j'KI) 210,2109205

*2.15 R~i((1) =PK(1) +DBKI

2t5 32 (T) =K2 (1) +OK2
2!0) CONTINUE

?SZ(J)

130) CONTTNUE
ENl

113



OTME rIoI C (4114)
EM=,.. 9OqlqiE+s
CL=O. 2272727

00 5J=9
5 C(T,J)=.-EU/EM1

no ic I=193

PcTUPN
END

(F0,qTS S(UP2,SUR2
SuaPUTINE- SOL(NN,A,F,X)
DIMEMSION A(40,41)tF(40)'X(40)
N=:!*NJ- 2
N.P= N+ I
00 2 11,vN

90 9 I11N

00 9 J=lN
IF (I-J) 4,9,4

'GZ-A(J,T)/ACII)

fl0 3 K=IP,NP
3 A (J,K) =A (J,K) +G*A(I, K)
9 CONTINUE

13 XCI) =A(I.,NP) /ACI, I)
OcETUPM
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(F0~gIS SUP3,SU93
SUI!)OUTINE PLAST(DSIGIZitiZK2,SI2P,FS1,FS2,C)

* C------THIS SUe'P0UTINE CALCULATES STRESS INCREMENTS FROM AN INPUT OF
r TP'1IN INCPEMENTS, STATE OF STRESSPLASTIC STPAIN, AND THE YIELD

* C FUNCTION CONSTANTS
----- THIS SUBROUTINE USES TWO STRqAIN*HAP.OENING YIELD SURFACES

1 1(4) 902 (4), Pi(393),P2(393)9
2 P3(73,3)qP4(393)vD(3q3)
AGC=2.E+6
AK'3tLKz=.E+E
SLi=1*66667E46
0a it I~i,'.
FSl (It =C.
FS2(I) =G.
00 IC J=i,4

00 IF I=iVl

00 2C ~9

AJI=SIGI (i)+SIGI(2)+SIGI(3)
AJ2I=0e
00 205 I10

115 AJ21=AJ2T+SIGDI(I)**2
AJ21=*5* (AJ21+SjG1 (4)*2)
SJ2=AJ2I**o5
7L1&.u
ZL ?:C.
TI=_YR( AJII/4.OOOO.)

T2=I1C.* (12.2 -11**Ti)

F2=eE*AJ2I.+2,*AJ1IIAJiI-ZK2
r...----TEST FOP YIELDING FOLLOWS

IF(Fi) E'3,4C,'.
f,,G HI=C1.E-E)4 (I9 + IOQ.'(-I,+EX(P(12O.'SI2P/(i.-.OOO1*AJII))))/

I (2.-77-5*AJIT)
T4= o27F* T1'(i.-T3) +9 T2*T3/700*
00 4.2 1=1,3

1,7 FSI(T)=(.5'SIGI(I)-.1i666EE667*AJIT)/SJ2 +T.
FS1 U.)=SIG'.) '.5/SJ2

iv T5= -(2.eE-14)*SJ2(.-EX'(-SJ2/OI*)) EXP(-((SJ2/94579)4*4))
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H2=- 7.C2E-12z'u.-EXPuAJi/23811.)"*3))*EXPAJI60000.)-.T..5--
rJ) 55 1=1, 3

5i5 Fl? (1 )=5'SIGI (I +3. 8333333'AJI
FS2 ')=.5*S IGI U')

'1 IF((F1.LT. 0,j.AN[O.(F2.LT. 10,) GO TO 250 V
C-----CALCULATION OF PLASTIC STRESS INCREMENTS FOLLOWS

00 82 Iit4

S2 $q2(I)=6*
00 85 I=1#4
00 8 J=il0.
11(1)=eII) +C (I tJ) *FS1 (J)

35 '3? (1)=824!) +C(IJ) 'FS2(J)

r 9C I1 4

90 ONTIN~UE

AZ=SJ?.2. *H1#AIIZ
A4=.7313333*H2'A82

A5=4..*AJ1T*.3333333*H2'Ae4
00 2e C 1=1, 3
00 2801 J=1, 3

P2(1, J~ z3j T) 82 Li)

211 03 (1 ,J) =92 (I ) *2(J)
A 8:?., *H 1
A 9=0. 3333.3'H2

00 2Q5 1=1,7
or) 29S J= I,

I -PL (I ,J) *A;**AB) /Ala
250 r 0)HT1INUE
300 C ON T INUF

00 310 1:1,?l

00 31 C J=1, 2
310 DCI, J)C(I,J)-CCI,3) *G(J,3)/C(3,3)

Pc- TUP h
TNO

1 -- 6



,i-

APPENDIX "

DERIVATION OF EQUATIONS FOR A AND A
1 2

In Section V it was stated that equations 13 and 15 could be developed

by substitution of previous equations. This will be shown in this Appendix.

Starting with the hardening rule assumed in the form of equation 10,

Section V

"- I-;P dK1  (10)2

where by dl'T' it is meant
2

d "P,~ I(dc~lp -d 2 
P )2 + (d 2 P-d, 3 P)2 + (de3 P-dE)2 (46)

6

+- (d >) + (d& P)2.+ (dc P)2

122.3 31'

As explained in Section V, since d/'ip involves strains from both yield

surfaces, the flow rule given by

dliiP DjFi i + J2F "2 (7)

_- j ij

should be considered. This equation (7) is substituted into (10) to obtain

the desired result. Making this substitution

j F + +  +F. 2,;6

+ [,F . + F + -- h~ dK, (47)
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Since the yield surface segments are functions of the stress invariants

/J' and J only, the derivatives can be written as

aFl aFi  a/Y2 + aFl aJ1 (48)

30ij a/J4Y aOlj adl au i

and similarly for F2 . Noting the definition of the stress invariants, the

derivatives can be written as

DJ o - 6i J (49)

dO .. 2' 6/12
13

and J ij

Ij

13"
where 0 if i € j

I i f i = j =" j
substituting equation C-3 into C-2 and rearranging gives

SI [aF1  (3vT' a a/J2 'x~ + F 2  (VJ a v'3 -

2L2y7'- 8011 3(22 / II 1 3II 3022/

+ F1 ( ~J1  -J d1  X1 + F2 (231 -J Xd ~ 2 12 +---

Adl 'JdOIl 0022 3dJ2 \031 a022/

dF b/. + aF2 Yd- 1 2+-
)AFi j'+ F ' I + ( IrI 2 J 22

3 J2312 1d 13/2 12 1J 0:

- hl dK -

and using 49 simplifies this to
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1 [aFI (1-L722 ) ,i + aF2 01 1-22\A ~2 2 +---

6 L,/2 2v'Y2 2 rJ 2

+ F I I 1 + ;F2  012 X2 2 + h, dK1
J 2VTI a 2,J2

Factoring the terms gives

'i F, x + 2F 2 ~2 (CII-a22 )2 + -- + 312 2 +--I6

2 2 22

h, dK1  (50)

Noting that the last term is just vT'
2

_1 .JF1  i + ;.F2  '2 J = h, dK1_7 (51 )
2 2' J

and finally equation 13 of Section V is obtained as

J 11 + ;F2  .. 2 h, dKI (13)

Equation 15 is obtained in a similar manner. Starting with the

hardening rule assumed in the form

dr.vcP =h 2 dK2  (11)

where bydKvcP it is meant

d P= (d,:]] + 2p + d ) segment F2  (52)
V C 

(52

J



As discussed in Section V, equation 11 involves the compaction strain

from the F2 segment of the yield surface only. Thus the strains obtained

from this yield segment only should be used. These are given by

(di. P) F X2  (14)
13F 2  .Laa..

I j

Substituting equation 14 into equation 11 gives

aF2 2 + aF2  A2 + F2  X2 = h2 dK2  (53)

Since F2 has been assumed to be a function of 15 and J only, the
22 1onyth

derivatives can be expressed as done previously in C-3 fcr F1 . Making

this substitution gives

A2 ' F 2 [ 1I+c 2 2 +a 3 3 - 3J, 1 + F2 [3 ] = h2 dK 2  (b4)

, i/T- L 21 /61,5iJ 2- j

Noting that the first term is zero gives

3 F2  2  = h2  dK2  (55)

and finally equation 15 of Section V is obtained as

aF 2 2 = 1/3 h2 dK (15)
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