| ®
A O
AD759199 NTls

One Source. One Search. One Solution.

STRESS ANALYSIS MANUAL

TECHNOLOGY INC DAYTON OHIO

AUG 1969

U.S. Department of Commerce
BEST AVAILABLE COPY National Technical Information Service

26002 VYKD D)




§ .

One Source. One Search. One Solution.

Providing Permanent, Easy Access
to U.S. Government Information

National Technical Information Service is the nation’s
largest repository and disseminator of government-
initiated scientific, technical, engineering, and related
business information. The NTIS collection includes

almost 3,000,000 information products in a variety of
formats: electronic download, online access, CD-
ROM, magnetic tape, diskette, multimedia, microfiche

and paper.

Search the NTIS Database from 1990 forward
NTIS has upgraded its bibliographic database system and has made all entries since
1990 searchable on www.ntis.gov. You now have access to information on more than
600,000 government research information products from this web site.

Link to Full Text Documents at Government Web Sites
Because many Government agencies have their most recent reports available on their
own web site, we have added links directly to these reports. When available, you will
see a link on the right side of the bibliographic screen.

Download Publications (1997 - Present)
NTIS can now provides the full text of reports as downloadable PDF files. This means 3

that when an agency stops maintaining a report on the web, NTIS will offer a
downloadable version. There is a nominal fee for each download for most publications.

-

For more information visit our website:

www.ntis. gov
f # %  U.S. DEPARTMENT OF COMMERCE
PO * Technology Administration

¢ National Technical Information Service
- ;.f Springfield, VA 22161




AD-759 199

AFFDL-TR-69-42

STRESS ANALYSIS MANUAL

by
GENE E. MADDUX
Air Force Flight Dynamics Laboratory

LEON A. VORST
F. JOSEPH GIESSLER
TERENCE MORITZ

Technology Incorporated
Dayton, Ohio

RODUCED BY _
REP U.S. DEPARTMENT OF COMMERCE ...
NATIONAL TECHNICAL
INFORMATION SERVICE
SPRINGFIELD, VA. 22161




AFFDL-TR-69-42
FOREWORD

This report is the result of a combined in-house and contract effort.
Under Project 1467, JStructural Analysis Methods" and Task 146702
"Thermoelastic Stress. Analysis Methods" an in-house effort collected and
categorized available analysis and design techniques. This collection was
further reduced and through an automated search technique a comparison
of approaches and references was made under Contfact F33615-67~C-1538 which
was initiated and sponsored by the USAF Flight Dynamiés Laboratory. This
contract with Technology Incorporated, Dayton, Ohio, covered the time
period 30 April 1967 to 30 April 1969.

Mr. Gene E. Maddux, of the Flight Dynamics Laboratory, served as the
Air Force contract monitor. For Technology Incorporated, Mr. Dudley C. ﬁard,
manager of the Aeromechanics Department, was the project directr-; and
Mr. Leon A. Vorst, senior research engineer, was the project engineer.

The authors are grateful for the assistance and the contributions of
other Technology Incorporated persomnnel, particularly Mr. Robert R. Yeager,
junior research enginéer; Mr. Thomas J. Hogan, scientific programmer; and
Mr. Harold B. Zimmerman, scientific programmer.

This technical report has been reviewed and i approved.

Chief, Solid M ch nics Bran
Structures Division
Air Force Flight Dynamics Laboratory
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KEYWORD INDEX
Introduction

This Keyword Index is based on the headings in Chapters 1 through 11.
In the preparation of this index, first all significant words in these headings
were extracted and arranged alphabetically. Words closely related such as
"loads, " '"loading, ' and '"load'" were denoted by the single word '"loading. "
The resultant significant words are presented on this page. Second all
headings with significant words were grouped alphabetically under each
significant word. The following pages present the grouped headings, each
with its number identification, under the respective significant words.
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KEYWORD INDEX (continued)

ACCESS :
PARTIAL TENSIUN FIELD BEAMS WITH ACCESS HoLES
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LUG ANALYSIS
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NOMENCLATURE FOR COLUMN ANALYSIS
NOMENCLATURE FGR THE ANALYSIS OF BEAMS
NOMENCLATURE USED IN TRANSMISSIUN SHAFTING ANALYSIS
SAMPLE ANALYSIS OF CIRCULAR TRANSMISSION SHAFTING
SAMPLE PROBLEM»-PLATE ANALYSIS
TRANSHISSIUN SHAFTING ANALYS1S

GLE

CRIPPLING STRESS UF ANGLE ELEMENTS AND COMPLEX SHAPES

ANISOTROPIC
ANISOTROP1C PRESSURE VESSELS

ARCHES
CIRCULAR K1iGS AND ARCHES
SAMPLE PRObLEM=CIRCULAR RINGS AND ARCHES

AXTAL
APPROXIMATE METHUD FOR BEAMS UNDER COMBINED AXIAL ANL TRANSVERSE LOADS . BEAM COLUMNS
AXIAL COMPRESSION OF CURVED PLATES
AXIAL COMPRESSIGN OF FLAT PLATES
AXIAL LUG DESIGN FOR PIN FAILURE
AXIAL LUG UESIOGN FOR PIN FAILURE IN THE BENDING MODE
AXIAL LUG LESIGH FOR PIN FAILURE IN THE SHEARING MODE
AXTALLY LGADED LUG DESIGN
BEARING STRENGTH OF AXIALLY LOADED LUGS WITH LESS THAN 5 PCT ELONGATION
BUCKLING OF STIFFENED FLAT PLATES IN AXIAL COMPRESSION
BUCKLING GF UNSTIFFENED FLAT PLATES IN AXIAL COMPRESSION
BUSHING BEARING STRENGTH UNDER UNIFGRM AX]AL LOAD
BUSHING STKENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD
COMBINED LUG.BUSHING DESIGN STRENGTH UNDER UNIFORM AX]AL LOAD
DISTRIBUTEL AXIAL LOADS
DOUBLE SHEAR JOINT STRENGTH UNDER UNIFORM AXIAL LOAD
EXACT METHOD FOR BEAMS UNDER COMBINED AXIAL AND TRANSVERSE LOADS « BEAM COLUMNS
EXAMPLE OF AXJALLY LOADED LUG DESIGN
EXAMPLE OF UNJFOKM AXIALLY LOADED LUG ANALYSIS
INTRODUCTION TO BgAMS UNDER COMBINED AXIAL AND TRANSVERSE LOADS - BEAM COLUMNS
LUG AND BUSHING STRENGTH UNDER UMIFQRM AXIAL LOAD
LUG BEARING STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXJAL LOADS
LUG BEARING STRENGTH UNDER UNIFURM AXIAL LOAD
LUG BUSHING STRENGTH IN AXIALLY LOADED SINGLE SHEAR JOINT WITH LESS THAN 5 PCT gLONGATION
LUG DESIGN STRENGTH UNDER UNIFORM AXIAL LoAD
LUG NET-SECTION STRENGTH FOR SINGLE SHEAR JOINTS UNDLR UNIFORM AXIAL LoAD
LUG NET=SECTION STRENGTH UNDER UNIFGRM AXIAL LOAD
LUG TANG STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNIFURM AXIAL LDAD
LUG-BUSHING DESIGN STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNIFQRM AXIAL LOAD
NET-SECTION STRENGTH OF AXIALLY LUADED LUGS WITH LESS THAN 5 PCY ELONGATION
PIN BENDING STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNJFORM AXIAL LOAD
PIN BENDING STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNJFORM AXIAL LOAD
PIN SHEAR STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD
PIN SHEAR STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM axIAL LOAD
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BAR

BEAM

KEYWORD INDEX (continued)

SAMPLE PRUBLEM~BEAMS UNDER COMBINED AXIAL AND TRANSVERSE LOADS « BEAM COLUMNS
SINGLE SHemR JOINT STRENGTH UNDER UNIFORM AX1AL LOAD
STRENGTH OF LUG TANGS IN AXJALLY LOADED LUGS WITH LESS THAN § PCT ELONGATION

BAR ANALYSIS

BENDING LUADS ON dARS

COMPRESSIVE LOADING OF BARS

CYCLIC TENSILE LOADING OF BARS

INTRODUCTION TO BAR ANALYSIS

LACING BARS IN COLUMNS

NOMENCLATURE FOR BAR "ANALYS]S

SAMPLE PRUBLEM = BAR UNDER CYCLLIC TENSILE LOAD
SAMPLE PRUBLEM = BAR UNDER STATIC TENSILE LOAD
STATIC TENSILE LOADING QF BARS

TORSIONAL LOADING OF BARS

ALLOWABLE STRESSES IN THE UPRIGHTS OF A PARTIAL TENSION FIELD BEAM
ANALOGIES FOR BEAMS IN TORSION

APPLICATION OF THE THREE MOMENT EQUATION TO SOLVING FOR THE REACTIONS ON CONTINUQUS BEAMS
APPROXIMATE METHOD FOR BEAMS UNDER COMBINED AX]AL ANU TRANSVERSE LOADS o BEAM COLUMNS
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BEAMS

CIRCULAR BEAMS IN TORSION
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EFFECTIVE AREA OF THE UPRIGHT OF A PARTIAL TENSION FIELD BEAM

ELLIPTICAL BEAMS IN TORSION
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INTRODUCTION TO BEAMS IN BENDING
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INTRODUCTION TO RgACTION FORCES AND MOMENTS ON BEAMS UNDER TRANSVERSE LOADING
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MEMBRANE ANALOGY FOR BEAMS IN ELASTIC TORSION
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SAMPLE PROBLEM - REACTIONS ON BpAM wlTH ONE FIXED AND ONE PINNED SUPPORY
SAMPLE PROUVLEM ~ REACTIONS ON CUNTINUOUS BEAMS BY THE THREE MOMENT EQUATION
SAMPLE PRUBLEM-BEAMS UNDER COMBINED AXIAL AND TRANSVERSE LOADS - BEAM COLUMMNS
SAMPLE PROBLEM=-CIRCULAR BEAMS IN TORSION

SAMPLE PRUBLEM=MULTICELL CLOSED BEAMS [N TORSION

SAMPLE PRObLEM-NONCIRCULAR BEAMS WITH THIN OPEN SECTIUNS [N TORSION
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SIMPLE BEAMS IN BENDING

SIMPLE BEAMS IN ELASTIC BENVING

SIMPLE BEAMS IN PLASTIC BENDING

SINGLE CELL NONCIRCULAR CLOSED BEAMS IN TORSION

SINGLE CELL NONCIRCULAR CLOSED BEAMS WITH UNIFORM CROSS SECTION IN TORSION
SINGLE CELL NONCIRCULAR TAPERED CLOSED BEAMS IN YORSION
STIFFENED SHEAR RESISTANT BEAMS [N BENDING
STIFFENER-TU-FLANGE RIVETS IN SHEAR RESISTANT BEAMS
UNIFORM CIKCULAR BEAMS IN TORSION

UNSTIFFENED SHEAR RESISTANT BEAMS IN BENDING
UPRIGHT=TU-FLANGE RIVETS IN A PARTIAL TENSION FIELD BEAM
UPRIGHTS AT THE ENDS OF PARTIAL TENSION FIELD BEAMS
UPRIGHTS QF PARTIAL TENSION FIELD BEAMS WITH ACCESS HOLES
WEB=TO~FLANGE RIVETS IN A PARTIAL TENSION FIELD BEAM
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BEARING STRESSES
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EMPIRICAL FURMULAS FOR ALLOWABLE BEARING LOADS OF A CYLINDER ON A FLAT PLATE
EMPIRICAL TREATMENT OF ALLOWABLE BEARING LOADS

INTRODUCTION TO BEARING STRESSES
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LUG BEARING STRENGTH UNDER UNIFORM -AXIAL LOAD

NOMENCLATURE FOR BEARING STRESSES

SAMPLE PROBLEM -~ BEARING STRESSES IN RIVETED CONNECTIONS

BENDING

AXIAL LUG DESIGN FOR PIN FAILURE IN THE BENDING MODE
BEAM~SUPPORTED FLAT PLATES IN BeNDING
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BENDING FAILURE OF CONCENTRICALLY LOADED SHORT COLUMNS
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BENDING FAILURE OF SHORY COLUMNS
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BENDING OF FLAT PLATES
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CRIPPLING STRESS OF SIMPLE THIN CYLINDERS IN BENDING
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INTRODUCTION TU BEAMS IN BENDING
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INTRODUCTION TO PARTIAL YENSION FIELD BEAMS IN BENDING
INTRODUCTION TO SHEAR- RESISTANT BEAMS IN BENDING

INTRODUCTION TO SHEAR WEB BEAMS IN BENDING
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PIN BENCING STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD
PIN BENDING STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD
SAMPLE PR(BLEM - CONCENTRICALLY LOADED LONG COLUMN IN BENDING
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SAMPLE PRUBLEM - ECLENTRICALLY LOADED SHORT COLUMN IN BENDING
SAMPLE PROBLEM~SIMPLE BEAMS IN ELASTIC BENDING
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CELL

KEYWORD INDEX (continued)

BUSHING STKENGTH UNDER 0BLIQUE LOAD

BUSHING STRENGTH UNDER TRANSVERSE LOAD

LUG AND BUSHING STRENGTH UNDER OBLIGQUE LOAD

LUG-AND BUSHING STRENGTH UNDER TRANSVERSE LOAD

LUG AND BUSHING STRENGTH UNDER UNIFORM AXIAL LOAD

LUG BUSHING STRENGTH IN AXIALLY LOADED SINGLE SHEAR JOINT wiTH LESS THAN 5 PCT ELONGATION
STRESSES DUE TU PRESS FIT BUSHINGS

EFFECT OF CUTOUTS ON CLOSED SINGLE CELL BEAMS IN TOURSION

SINGLE CELL NONCIRCULAR CLOSED BEAMS IN TORSION

SINGLE CELL NONCIRCULAR CLOSED HBEAMS witH UNIFORM CROSS SECTION IN TORSION
SINGLE CELL NONCIRCULAR TAPERED CLOSED BEAMS [N TORDION

CIRCULAR

CIRCULAR BEAMS IN TORSION

CIKRCULAR MEMBRANES

CIKCULAR RINGS AND ARCHES

DESIGN PROCEDURE FOR 'CIRCULAR TRANSMISSION SHAFTING
GENERAL DESIGN EQUATION FOR CIRCULAR TRANSMISSION SHAFYING
LOADINGS ON CJRCULAR YRANSMISSION SHAFTING

NONUNIFORM CIRCULAR BEAMS IN TORSION

SAMELE ANALYSIS OF CIRCULAR TRANSMISSION SHAFTINb

SAMPLE PRUBLEM « CIRCULAR MEMBRANES

UNIFORM CIRCULAR BEAMS IN TORSION

CLOSED

EFFECT OF CUTOUTS ON CLOSED SINGLE CELL BEAMS IN TORSION

EFFECT OF STIFFENERS ON NONCIRCULAR CLOSED BEAMS IN TORSION

MULTICELL CLOSED BEAMS IN TORSION

NONCIRCULAR CLOSED BEAMS IN TORSION )

SAMPLE PROBLEM « NONCIRCULAR CLOSED STIFFENED UNIFORM SECTION BEAM IN TORSION
SAMPLE PROBLEM~MULTICELL CLOSED BEAMS IN TORSION

SINGLE CELL NONCIRCULAR CLOSED BEAMS IN TORSION

SINGLE CELL NONCIRCULAR CLOSED HBEAMS WITH UNIFORM CRQSS SECTION IN TORSION
SINGLE CELL NONCIRCULAR TAPERED CLOSED BEAMS IN TORSION

COEFFICIENT

COLUMN

COEFFICIENT OF CONSTRAINT FOR END LOADED COLUMNS

APPRoxIMArg METHOD FOR BEAMS UNDER COMBINED AXIAL AND TRANSVERSE LOADS ~ BEAM COLUMNS
BeNDING FAILURE OF CONCENTRICALLY LOADED LONG COLUMNS

BENDING FAILURE OF CONCENTRICALLY LOADED SHORT COLUMNS

BENDING FAILURE OF ECCENTRICALLY LOADED LONG COLUMNS

BENOING FAILURE OF ECCENTRICALLY LOADED SHORT COLUMNS

BENDING FAILURE OF SHORYT COLUMNS

COEFFICIENT OF CONSTRAINT FOR gND LOADED COLUMNS

COLUMN ANALYS]S

COLUMN DATA APPLICABLE Y0 BOTH LONG AND SHORT COLUMNS

COLUMN DATA APPLICABLE YO BOTH LONG AND SHORT COLUMNS

COMPLEX COLUMNS

EQUIVALENT ECCENTRICITY FOR IMPLRFECT COLUMNS

EXACT METHOD FOR BEAMS UNDER COMBINED AXIAL AND TRANSVERSE LOADS . BEAM COLUMNS
INTRODUCTION TU BgAMS UNDER COMBINED AXIAL AND TRANSVERSE LOADS - BEAM COLUMNS
INTRODUCTION TO COLUMN ANALYSIS

‘INTRODUCTION TO CRIPPLING FAILURE OF COLUMNS

LACING BARS IN COLUMNS

LATTICED COLUMNS

NOMENCLATURE FOR COLUMN ANALYS]S

PRIMARY FAILURE OF SIMPLE COLUMNS

SAMPLE PROBLEM « COLUMN DATA APPLICABLE TO BOTH LONG AND SHORT COLUMNS

SAMPLE PROBLEM ~ COLUMN DATA APPLICABLE TO BOTH LONG AND SHORT COLUMNS

SAMPLE PRGBLEM =~ CONCENTRICALLY LOADED LONG COLUMN IN BENDING

SAMPLE PROBLEM - ECCENTRICALLY LOADgD SHORT COLUMN It BENDING

SAMPLE PRUBLEM = LONG gCCENTRICALLY LOADED COLUMNS AND EWUIVALENT ECCENTRICITY
SAMPLE PRUBLEM -« STEPPED COLUMN

SAMPLE PROBLEM =~ TORSIONAL FAILURE OF SIMPLE COLUMNS

SAMPLE PROBLEM ~ USE OF STRAIGHT LINE EQUATION FOR CONCENTRICALLY LOADED SHORT COLUMNS
SAMPLE PROBLEM « USE OF TANGENT MODULUS EQUATION FUR CONCENTRICALLY LOADED SHORT COLUMNS
SAMPLE PRUBLEM-BtAMS UNDER COMBINED AXIAL AND TRANSVERSE LOADS « BEAM COLUMNS
SIMPLE COLUMNS

STEPPED AND TAPERED COLUMNS

TORSIONAL FAILURE OF SIMPLE COLUMNS

COMBINED

ANALYS]S OF COMBINEV STRESSES IN TRANSMISSIUN SHAFTING

APPROXIMATE METHOL FOR BEAMS UNUER COMBINED AXIAL ANV TRANSVERSE LOADS - BEAM COLUMNS
COMBINED LUG=BUSHING DESIGN STRENGTH UNDER UNIFORM AXIAL LOAD

CURVED PLATES UNDER COMBINED LOADINGS

EXACT METHOD FOR BEAMS UNDER COMBINED AXIAL AND TRANSVEKSE LOADS ~ BEAM COLUMNS

FLAT PLATES UNDER COMBINED LOADINGS

INTRODUCTION TO BgAMS UNDER COMGINED AXIAL AND TRANSVERSE LOADS . BEAM COLUMNS
PLATES UNDER COMBINED LOADINGS

SAMPLE PRUBLEM«BEAMS UNDER COMBINED AXIAL AND TRANSVERSE LOADS « BEAM CQLUMNS
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KEYWORD INDEX (continued)

COMPLEX
COMPLEX CULUMNS
CRIPPLING STRESS UF ANGLE ELEMENTS AND COMPLEX SHAPES
SAMPLE PROBLEM « CRIPPLING STRESS OF A COMPLEX SHAPL
CONCENTRICALLY
BENDING FAALUR& GF CONCENTRICALLY LOADED LONG COLUMNS
BENDING FAILURE OF CONCENTRICALLY LOADED SHORT COLUMNS
SAMPLE PRUBLEM « CONCENTRICALLY LOADED LONG COLUMN IN BENDING
SAMPLE PROBLEM ~ USE OF STRAIGHT LINE EQUATION FOR CUNCENTRICALLY LOADED SHORT COLUMNS
SAMPLE PRUBLEM = USE OF TANGENT MODULUS EQUATION FOR CONCENTRICALLY LOADED SHOKT COLUMNS
CONICAL
DISCONTINUITY STRESSES IN THIN CVLINDRICAL PRESSURE VESSELS WITH CONICAL HEADS
SAMPLE PROBLEM = DISCONTINUITY STRESSES IN PRESSURE VESSELS WITH CONICAL HEADS
CONNECTIONS -
BEARING STRESSES IN RIVETED CONNECTIONS
MULTIPLE SHEAR AND SINGLE SHEAR CONNECTIONS
SAMPLE PRUBLEM -~ BEARING STRESSES IN RIVETED CONNECTJUNS
CONSTRAINT
COEFFICIENT OF CONSTRAINT FOR EIWD LUADED COLUMNS
CONTACY
ELASTIC STRESSES ANV DEFORMATION OF VARIOUS SHAPES IN CONTACT
EMPIRICAL FORMULA FOR ALLOWABLE BEARING LOAD OF STEEL SPHERES IN CONTACI
CONTINUOUS .
APPLICATION OF THEg THREE MUMENT LUUATION TO SOLVING FOR THe REACTIONS ON CONTINUQUS BEAMS
REACTION FORCES AND MOMENTS ON CONTINUQU® BEAMS

SAMPLE PROBLEM = REACTIONS ON CONTINUOUS BEAMS BY THE THREE MOMENT EQUATION
CRIPPLING

CRIPPLING FAILURE OF FLAT STIFFENED PLATES IN COMPRESSION

CRIPPLING STRESS UF ANGLE ELEMENTS AND COMPLEX SHAPES

CRIPPLING STHESS UF | BEAMS

CRIPPLING STRESS OF OUTSTANDING FLANGES

CRIPPLING STRESS OF PRESSURIZED AND UNPRESSURIZED THIN SIMPLE CYLINDERS

CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDERS IN BENDING

CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDERS IN COMPRESSION

CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDERS JN TORSION

CRIPPLING STRESS OF ROUND TUBES _

CRIPPLING STRESS OF SIMPLE THIN CYLINDERS IN BENDING

CRIPPLING STRESS OF SIMPLE THIN CYLINDERS IN COMPRESSION

CRIPPLING STRESS OF SIMPLE THIN CYLINDERS IN TORSION

CRIPPLING STRESS OF UNPRESSURIZED SIMPLE THIN CYLINDERS IN BENDING

CRIPPLING STRESS OF UNPRESSURIZED SIMPLE THIN CYLINDERS IN COMPRESSION

CRIPPLING STRESS OF UNPRESSURIZED SIMPLE THIN CYLINDERS IN TORSJON

INTERACTION FORMULAS FOR THE CRIPPLING OF PRESSURIZED AND UNPRESSURIZED CYLINDERS
INTRODUCTION TO CRIPPLING FAILURE OF COLUMNS

SAMPLE PRUBLEM « CRIPPLING INTERACTION OF SIMPLE THIN CYLINDERS IN COMPRESSION AND BENDING
SAMPLE PROBLEM = CRIPPLING STRESS OF A COMPLEX SHAPE

SAMPLE PROBLEM -~ CREPPLING STRESS OF PRESSURIZED SIMPLE YHIN CYLINDERS IN YORSION

SAMPLE PRUBLEM « CRIPPLING STRESS OF ROUND TUBES
CRITER]A

DESIGN CRITERIA FQOR THE UPRIGHTS OF A PARTIAL TENSION FIELD BEAM
CRITICAL

CRITICAL EFFECTIVE SLENDERNESS RATIO

NONCIRCULAR CPEN BEAMS WITH VAKIOUS CROSS SECTIONS IN TORSJON -
SINGLE CELL NONCIRCULAR CLOSED BZaMS WITH UNIFORM CROSS SECTION IN TORSION
CURVED .
AXIAL COMPRESSION QF CURVED PLATES
CURVED PLATES UNDER COMBINED LOADINGS
SHEAR LDADING OF CURVED PLATES
CuTouTS .
EFFECT OF CUTOUTS ON CLOSED SINGLE CeLL BEAMS IN TORSJON

CYLINDER
BUCKLING OF THIN SIMPLE CYLINDERS UNDER EXTERNAL PRESSURE
CRIPPLING STRESS OF PRESSURJZED AND UNPRESSURIZED THIN SIMPLE CYLINDERS
CRIPPLING STRESS QF PRESSURIZED SIMPLE THIN CYLINDERS IN BENDING
CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDERS IN COMPRESSION
CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINODERS IN TORSION
CRIPPLING STRESS OF SIMPLE THIN CYLINDERS IN BENDING
CRIPPLING STRESS OF SIMPLE THIN CYLINDERS IN COMPRESSION
CRIPPLING STRESS OF SIMPLE THIN CYLINDERS IN TORSION
CRIPPLING STRESS OF UNPRESSURIZED SIMPLE THIN CYLINDERS IN BENDING
CRIPPLING STRESS OF UNPRESSURIZED SIMPLE THIN CYLINDERS IN COMPRESSION
CRIPPLING STRESS OF UNPRESSURIZED SIMPLE THIN CYLINDERS IN TORSION
DISCONTINULITY STRESSES AT JUNCTION OF THIN CYLINORICAL PRESSURE VESSEL AND HEAD
DISCONTINUITY STRESSES AT THE JUNCTION OF A TRIN CYLINDRICAL PRESSURE VESSEL AND 175 HEAD
DISCONTINULTY STRESSES IN THIN CYL_INORJCAL PRESSURE VESSELS WITH CONJCAL HEADS
OISCONTINUITY STRESSES IN THIN CYLINDRICAL PRESSURE VESSELS WITH FLAT HEADS
EMPIR]ICAL FORMULAS FOR ALLOWABLE BEARING LOADS OF A CYLINDER ON A FLAT PLATE
HEADS OF THIN CYLINDRICAL PRESSURE VESSELS
INTERACYION FORMULAS FOR THE CRIPPLING OF PRESSURIZED AND UNPRESSURIZED CYLINDERS
MEMBRANE STRESSES IN HEADS OF THIN CYLINDRICAL PRESSURE VESSELS
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DATA

DLEP

KEYWORD INDEX (continued)

MEMBRANE STRESSES IN THIN CYLINDERS
SAMPLE PRULLEM « BUCKLING OF THIN SIMPLE CYLINDERS UNDER EXTERNAL PRESSURE
SAMPLE PROBLEM - CRIPPLING INTERACTION OF SIMPLE THIN CYLINDERS IN COMPRESSION AND BENDING
SAMPLE PROBLEM =~ CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDERS [N TORSION
SAMPLE PRCOBLEM = DISCONTINUITY FORCES IN CYLINDRICAL PRESSURE VESSELS WITH DISHED HEADS
SAMPLE PRUBLEM = ELASTIC STRESS AND OEFORMATION OF CYLINDER ON CYLINDER
SAMPLE PROBLEM - gLASTIC STHESS AND OEFORMATION OF CYLINDER ON CYLINDER
SAMPLE PRUBLEM - MEMBRANE STRESSES IN THIN CYLINDERS AND SPHERES
SAMPLE PROBLEM o STIFFENED THIN CYLINDRICAL PRESSURE VESSEL WITH lNTERNAL PRESSURE
SAMPLE PRUBLEM = THICK CYLINORICAL PRESSURE VESSEL
SAMPLE PROBLEM « THIN CYLINDRICAL PRESSURE VESSELS WITH STRINGERS UNDER INTERNAL PRESSURE
STRESSES IN SIMPLE CYLINDRICAL PRESSURE VESSELS OUE TO SUPPORTS
THICK CYLINDRICAL PRESSURE VESSELS
THICK CYLINDRICAL PRESSURE VESSELS UNDER gXTERNAL PHRESSURE ONLY
THICK CYLINDRICAL PRESSURE VESSELS UNDER INTERNAL PHESSURE ONLY
THIN CYLINURICAL PRESSURE VESSELS WITH RINGS UNDER INTERNAL PRESSURE (STRINGERS OPTIONAL)
THIN CYLINDRICAL PRESSURE VESSELS WITH STRINGERS UNDER JNTERNAL PRESSURE

CoLUMN DATA APPLICABLE 7O BOTH LONG AND SHORT COLUMNS
SAMPLE PhyubLEM - COLUMN DATA APPLICABLE TO BOTH LONG AND SHORY COLUMNS

INTRODUCTLUIN TU LATERAL INSTABILITY OF DEEP BEAMS IN BENDING
LATERAL InSTABILITY OF DEEP I BEAMS
LATERAL InSTABILITY OF DEEP RECTANGULAR BEAMS IN BENDING

DEFLECTIONS

DEFLECTIONS IN STATICALLY DETERMINATE TRUSSES

DEFORMATION

ELASTIC STRESSES ANU DEFORMATION OF VARIOUS SHAPES IN CONTACT
SAMPLE PRUbLEM = ELASTIC STRESS AND UgFORMATlON OF CYLINDER ON CYLINDER

DESIGN

AXIAL LuG LESIGN FOR PIN FAJLURE

AXTAL LUG LESIGN FOR PIN FAILURE IN THE BeNUING MODE

AXIAL LUG LESIOGN FOR PIN FAILURE IN THE SHEARING MOVE

AXTALLY LOAVED LUu DESIGN

COMBINED LUG-BUSHING DESIGN STRENGTH UNDER UNIFORM AX1AL LCAD

"DESIGN CRITERIA FUR THE UPRIGHTS QF A PARTIA| TENSION FIELL BEAM

DESIGH PRCCEDURE FOR CIRCULAR THANSMISSION SHAFTING

DESIGH STRLSSES AND LOAD VARJATIONS FOR TRANSMIDSION SHAFTING
EXAMPLE OF AXIALLY LOACED LVUG DESIGN

GENERAL DeSIOGN EQUATION FDOR CLRCULAR TRANSMISSION SHAFTING

LUG DESIGN STRENGTH UNDER UNIFORM AX1AL LOAD

LUGBUSHIinG DESIGN STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAC

DLTERMINATL

APPLICATION OF THE METHOD OF JOINTS 10 STATICALLY DETERMINATE TRUSSES

APPLICATIUN UF THE METHOD OF SECTIONS TO STATICALLY DETERMINATE TRUSSES

DEFLECTIUNS IN STATICALLY DETERMINATE TRUSSES

INTRODUCTIUN TO STATICALLY DETERMINATE TRUSSES

SAMPLE PRUBLEM = STATICALLY DETERMINATE TRUSSES BY ThE METHOD OF SECTIONS

SAMPLL PRUBLEM=-APPLICATION OF THE METHOD OF JOINTS TU STATICALLY DETERMINATE TRUSSES
SAMPLE PRUBLEM=DEFLECTIONS 3N STATICALLY DETERMINATE TRUSSES

STATICALLY DETEKMINATE TRUSSES

DISCONTINUITY

DISCONTINUITY STRESSES AT JUNCTION 'OF THIN CYLINDRICAL PRESSURE VESSEL AND HEAD
DISCONTINUITY STRESSES AT THE JUNCTION OF A THIN CYLINDRICAL PRESSURE VESSEL AND ITS HEAD
DISCONTINULTY STRESSES IN THIN CYLINDRICAL PRESSURE VESSELS WITH CONICAL HEADS
DISCONTINUITY STKgSSES IN THIN CYLINORICAL PRESSURE VESSELS WITH FLAT HgaDS

INTRODUCTIUN TU DISCONTINUITY STRESSES

SAMPLE PRubLEM « wISCONTINUITY FOKCeS IN CYLINDRICAL PRESSURE VESSELS wWITH DISHED HEADS
SAMPLE PROBLEM = QIDCONTINUITY STRESSES IN PRESSURE VESSELS WITH CONICAL HEADS

SAMPLE PRUBLEM « UISCONTINULITY STRESSES IN PRESSURE VESSELS wWlTH FLAT HEADS

DISHED

SAMPLE PRGBLEM « OISCONTINUITY FORCES IN CYLINDRICAL PRESSURE VESSELS WITH DISHED HEADS

DISTRIBUTEL

DISTRIBUTED AXIAL LOADS

DISTRIBUTION

SAMPLE PRULLEM-SOLUTION OF FRAMLS BY THE METHQD OF NUMENT DISTRIBUTION

. " SOLUTION UF FRAMES BY THE METHUL OF MOMENT DISTRIBUTION
DUUBLE

DOUBLE SHEAR JOLNT STRENGTH UNDER UNLFORM Axlal LOAD

DDUBLE SHEAR JOINTS UNDER OBLIWUE LOAD

DOUVBLE SHE AR JUINTS UNDER TRANSVERSE LOAVL

LUG TANG STRENGTH FUR DOUBLE SHEAR JOINTS UNDER UNIFURM AXIAL LOAD
LUG-BUSHING VESIGie STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD
PIN BENDING STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNJFORM AXIAL LOAD

PIN SHEAR STRENGYH FOR DQUBLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD

ECCENTRICITY

BENDING FAILURE OF ECCENTRICALLY LOADED LONG COLUMNS
BENDING FALLURE OF ECCENTRICALLY LOADED SHORT COLUMNS
EQUIVALENT ECCENTRICITY FOR IMPERFECT COLUMNS
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KEYWORD INDEX (continued)

SAMPLE PKOLLEM = £CCENTRICALLY LOADED SHOKT COLUMN IN BENDING
SAMPLE PRUBLEM = LONG ECCENTRICALLY LOADED COLUMNS AND EGUIVALENT ECCENTRICITY
¢ ?ACPLE PRUBLEM « LONG ECCENTRICALLY LOADED COLUMNS AND EQUIVALENT ECCENTRICITY
FFECTIVE
CRITICAL LFFECTIVE SLENDERNESS RATIO
EFFECTIVE AREA OF THE UPRIGHT UF A PARTIAL TENSION FlelD BpAM
ELASTIC
ELASTiC STRLSSES AND OEFORMATION OF VARIOUS SHAPES IN CONTACT
MEMBRANE ANALUGY FOR BEAMS IN ELASTIC TORSION
SAMPLE PROBLEM = ELASTIC STRESS AND VEFORMATION OF CYLINDER ON CYLINDER
SAMPLE PROBLEM=S1MPLE BEAMS IN ELASTIC BENDING
SIMPLE BEAMS IN ELASTIC BENDING
ELLIPTICAL .
ELLIPTICAL BEAMS LN TORSION
ELONGATIUH
ANALYSIS UF LUGS wITH LESS THAN S PCT ELONGATION
BEARING STRENGTH OF AXIALLY LOADED LUGS WITH LESS THAN & PCT .eLONGATION
BEARING STKENGTH OF TRANSVERSELY LOADED LUGS wITH LESS THAN $ PLT ELONGATION
LUG BUSHING STRENGTH IN AXJALLY LOUADED SINGLE SHEAR JOINT WITH LESS THAN S PCT ELONGATION
NET-SECTION STRENGTH OF AXIALLY LOADED LUGS WITH LESS THAN & PCT £LONGATION
STRENGTH yF LUG TANGS IN AXIALLY LOADED LUGS WITH LESS THAN 5 PCT ELONGATION
EMPIRICAL
EMPIRICAL FURMULA FUR ALLOWABLE BEARING LUAD OF STetl SPHEKRES IN CONTACT
EMPIRICAL FURMULAS FOR ALLOWABLE BEARING LOADS OF A CYLINDER ON A FLAT PLATE
EMPIRICAL TREATMENT OF ALLOWASBLy BEARING LOADS
EnD
COEFFICIENT OF CONSTRAINT FOR £ND LOADED COLUMNS
EFFECT OF WD RESTRAINT ON NONCIRCULAR BEAMS IN TORSION
ENDS OF PARTIAL TENSION FIELD BEAMS
REACTION FURCES AND MOMENTS ON BEAMS WITH BOTH ENDS FlXED
REACTION FORCED AND MOMENTS,ON BEAMS WITH ONE FIXED £END ANU ONE PINNED SUPPCRT
RIVETS AT THE &NDS OF PARTIAL TENSION FIELD BEAMS
UPRIGHTS AT THe END> OF PARTIAL TENSION FIELD BEAMS
WEBS AT THp ENVS OF PARTIAL TENSION FIELD BEAMS
EGQUATION
APPLICATION OF THE THREE MOMENT EGUATION TO SOLVING FUR THe RgACTJONS ON CONTINULUS BEAMS
GENERAL DgSIGN EUUATION FOR CIRCULAR TRANSMISSION SHAFTING
JOHNSON=EULER EGUATION
REDUCED MOLULUS EWUATION
SAMPLg PRUBLEM = REACTIONS ON CUNTINUOUS BEAMS BY THe THREE MOMENT EQUATION
SAMPLE PRUbLEM = USE OF STRAIGHT LINE EWUATION FOR CONCENTRICALLY LOADED SHORT COLUMNS
SAMPLy PROBLEM = USE OF TANGENT MODULUS EWUATION FUR CONCENTRICALLY LOADED SHORT CULUMNS
STRAIGHT LINE EGUATION
TANGENT MUDULUS EWUATION
EQUIVALENT
EQUIVALENT ECCENTRICITY FOK IMPeRFECT COLUMNS
SaMPLE PROBLEM ~ LONG ECCENTRICALLY LOADED COLUMNS ANV EQUIVALENT ECCENTRICITY
EXACT
EXACT METRUL FUR BEAMS UNDER COMBINEY AXIAL AND TRANSVERSE LOADS - BEAM COLUMNS
EXTERNAL
BUCKLING OF THIN SIMPLE CYLIWDEKS UNDER EXTERNAL PRESSURE
BUCKLING GF THIN SIMPLE PRESSURE VESSELS UNDER EXTERNAL PRLSSURE
BUCKLING GF THIN SIMPLE SPHERES UNDER EXTERNAL PRESSURE
SAMPLE PRUBLEM « gUCKLING OF THIN SIMPLE CYLINDERS UNDER EXTERNAL PRESSURE
THICK CYLINDRICAL PKESSURE VESSELS UNDER EXTERNAL PRESSURE ONLY
FAILURE
AXIAL LUG UESIGN FOR PIN FAILYRE
AXIAL LUG DESIGN FOR PIN FAILURE IN THE BENDING MODE
AXIAL LUG DESION FOR PIN FAILURE IN THE SHEARING MODE
BENDING FAILURE OF CONCENTRICALLY LOADED LONG COLUMNS
BENDING FAILURE OF CONCENTRICALLY LOADED SHORT COLUMNS
BENDING FAILURE OF ECCENTRICALLY LOADED LONG COLUMNS
BENDING FAILURE UF ECCENTRICALLY LUAUED SHORT COLUMNS
BENDING FAILURE UF SHORY COLUMNS
CRIPPLING FAILURE OF FLAT STIFFENED PLATES IN COMPKESSION
INTROOUCTIUN TU CRIPPLING FAILURE OF COLUMNS
PRIMARY FAILURE OF SIMPLE CULUMNS
SAMPLE PRUBLEM = TORSIONAL FAILURE OF SIMPLE COLUMNS
TORSIUNAL FAILUKE OF SIMPLE COLUMNS
FATIGUE
EXAMPLE PrubLEM UF LUG FATJGUE ANALYSIS
LUG FATIGUEL ANALYSIS
FIELD
ALLOWABLE STRESSES IN THE UPRIGHTS OF A PARTIAL TENSIUN FIglD BpAM
COMFUTED STRESSES IN THE UPKIGHTS OF A PARTIAL TENSION FIgLD dEAM
DESIGN CRITERIA FUR THE UPRIGHTS OF A PARTIAI TENSIUN FlgLb BpAm
EFFECTIVE AKEA UF THE UPRIGHT OF A PARTIAL TENSION FIELD BEAM
ENDS OF PAKTIAL TENSION FIgLD brAMS
FLANGES OF PARTIAL TENSION FIELL BEAMS )
INTHROUUCTIUN TO PARTIAL TENSION FIELDL BEAMS IN BENLING
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'KEYWORD INDEX (continued)

MOMEHT GF INERTIA OF THE UPRIGHTS OF A PAKTIAL FeNSIun Figll BEAM
PARTIAL TeNSION FLeLD BEAMS WwltH ACCESS HULES

RIVETS AT THe ENDS OF PARTIAL TENSIOiM FIELD BEAMS

RIVETS IN PARTIAL TENSION FLELD BEAMS

saMPLE PROBLEM-PARTIAL TENSION FIELD BEAMS
UPRIGHT=TU=FLANGE RIVETS IN A PARTIAL TENSION FIely EEAM
UPRIGHTS AT THE ENDS OF PARTIAL TENSION FIELD BEAMS
UPRIGHTS UF PAKTIAL TENSION FlELD BEAMS WITH ACCESS HULES
WEB-TOFLANGE KIVETS 1IN A PARTIAL TENSION FIELD BEAM
WEB-TO-UPRIGHT RIVETS 1IN PARTIAL TENSION FIELD BEAM

WEBS AT Thi ENDS OF PARTIAL TENSION FIELU BEAMS

WeBS UF PaKTIAL TENSION FIELD BLAMS

WEBS UF PARTIAL TENSION FIELD BLAMS wlTH ACCESS WOLES

Fl1
STRESSES DUE TU RRESS FIT BUSHINGS

FIXED
REACTION FORCES AND MOMENTS ON BEAMS wlTH BOTH ENDS FIXED
REACTION FORCES AND MOMENTS ON BEAMS AITH ONE FIXED END ANL ONg PINNED SUPPORTY
SAMPLE PRUBLEM = REACTIONS ON brAM wiTH ONE FIXED AND ONE PINNED SUPPORT

' FLANGES

CRIPPLING STRESS OF OUTSTANDING FLANGES
FLANGES OF PARTIAL TENSION FIELL BEAMS

: FLANGES OF SYIFFENED SHEAR RESISTANT BEAMS

FLAT
AXIAL COMPRESSION OF FLAT PLATES
BEAM~-SUPPCKTED FLAT PLATES IN BENDING
BENDING OF FLAT PLATES
BUCKLING OF STIFFENED FLAY PLATES IN AXIAL COMPRESSIUN
BUCKLING UF UNSTLFFENED FLAT PLATES IN AXIAL COMPRESSION
CRIPPLING FAILURE OF FLAT STIFFENED PLATES IN COMPRESSION
DISCONTINLITY STRESSES IN THIN CYLINDRICAL PRESSURE VESSELS WITH FLAT HEADS
EMPIRICAL FURMULAS FOR ALLOWAbLE BEARING LOADS OF A CYLINDER ON A FLAT PLATE
FLAT PLATES UNCER CUMBINED LOADINGS
SAMPLE PRUBLEM = DISCONTINUITY STRESSES IN PRESSURE VESSELS WITH FLAT HgADS
SHEAR BUCKLING OF FLAT PLATES
UNSTIFFENED FLAT PLATES IN BENDING

FORCES
INTRODUCTIUN TU REACTION FORCES AND MOMENTS ON BEAMS UNDER TRANSVERSE LOADING
REACTION FORCES AND MOMENTS ON BEAMS WITH BOTH ENDS FIXED
REACTION FUKCES AnD MoMgNTS ON BEAMS WITH ONE FIXED £ND ANC ONE PINNED SUPPURT
REACTION FORCED ARD MOMENTS ON CONTINUQU®S BEAMS
SAMPLE PROUBLEM = UISCONTINUITY FORCES IN CYLINDRICAL PRESSURE VESSELS WITH DISHEVD HEADS

FURMULA
EMPIRICAL FURMULA FOR ALLOWABLE BEARING LOAD OF STEEL SPHERES IN CONTACT
EMPIRICAL FORMULAS FQR ALLOWABLE BEARING LOADS OF A CYLINDER ON A FLAT PLATE
FORMULAS FUR SIMPLE FRAMES
INTERACTION FORMULAS FOR THE CRIPPLING OF PRESSURIZED AND UNPRESSURIZED CYLINDERS

FRAMES
FORMULAS FUR SIMPLE FRAMES
FRAMES AND RINGS
INTRODUCTION TU FRAMES AND RINGS
NOMENCLATURE FOR FRAMES AND RINGS
RECTANGULAR FRAMES :
SAMPLE PROLLEM=FORMULAS FOR SIMPLE FRAMES
SAMPLE PROUBLEM=RECTANGULAR FRAMES
SAMPLE PRUBLEM=-SOLUTION OF FRAMcS BY THE METHOD OF MOMENT LISTRIBUTION
SOLUTION uf FRAMES BY THE METHUD OF MOMENT DISTRIBUTION

HEAD . .
DISCONTINUITY STRESSES AT JUNCTION OF THIN CYLINDRICAL PRESSURE VESSEL AND HEAD
DISCOMTINUITY STRESSES AT THE JUNCTIUN OF A THIN CYLINDRICAL PRESSURE VESSEL AND 175 HEAD
DISCONTINGITY STRESSES IN THIN CYLINDRICAL PRESSURE VESSELS wlTH CONICAL HEADS
DISCONTINUITY STRESSES IN THIN CYLINDRICAL PRESSURE VESSELS wlTH FLAT HEADS
HEADS OF ThIN CYLINDRICAL PRESSURE VESSELS
MEMBRANE STRESSES IN HeADS OF THIN CYLINURICAL PRESSURE VESSELS
SAMPLE PROBLEM = DISCONTINUITY FORCES IN CYLINDRICAL PRESSURE VESSELS WITH DISHEV HEADS
SAMPLE PRUBLEM = UISCONTINUITY STRESSES In PRESSURE VESSELS WITH CONICAL HEADS
SAMPLE PRUDLEM = UISCONTINUITY STRESSES IN PRESSURE VESSELS WlTH FLAT HgAUS

HEAP
SAND HEAP ANALOGY FOR BEAMS N PLASTIC TORSION

HELICAL
HELICAL SPRINGS

« HELICAL SPRINGS UF RQUNY WIRE

HELICAL SPRINGS UF SQUARE WIRE

HOLES
PARTIAL TENSION FIELD BEAMS WITH ACCESS HOLES

‘ RIVETS IN PARTIAL TENSION BEAMS wlTH ACCESS HOLES

UPRIGHTS GF PARTIAL TENSION FlelD BEAMS WITH ACCESS HOULES
WgBS UF PAKTIAL TENSION FIELD prAMS wiTH ACCESS HOLES

IMPERFECT

EQUIVALENT ECCENTRICITY FOR IMPLRFECT COLUMNS
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KEYWORD INDEX (continued)

INDETERMINATE
INTROUUCTION TU STATICALLY INOETERMINATE TRUSSES
SAMPLYE PRUBLEM=-STATICALLY INDETLRMINATE TRUSSES wiTH A SINGLE REDUNDANCY
STATICALLY INDLTEKMINATE TRUSSES
STATICALLY INDETERMINATE TRUSSES WITH A SINGLE REDUNDANCY

STATICALLY INDETERMINATE TRUSSES WITH MULTIPLE REDUNDANCIES
INERTIA

MOMENT OF INERTIA OF THE UPRIGHTS OF A PARTIAL TENSIUN FIELD BEAM
INSTABILITY

INTRODUCTION TO LATERAL INSTABILITY OF DELP BgAMS IN BENDING
LATERAL INSTABILITY OF DEEP I BrAMS
LATERAL INSTABILITY OF DEEP RECTANGULAR BpAMS IN BENDING
. INTERACTION
INTERACTION FORMULAS FOR THE CRIPPLING OF PRESSURIZED AND UNPRESSURIZED CYLINDERS
. ER:A:PL: PROGLEM « CRIPPLING INTEKACTION OF SIMPLE THIN CYLINDERS IN COMPRESSION AND BENDING
NTERNA
SAMPLE PRQULEM - STIFFENED THIN CYLINDRICAL PRESSURE VESSEL WITH INTERNAL PRESSURE
SAMPLE PROBLEM « THIN CYLINDRICAL PRESSURE VESSELS WITH STKINGERS UNDER INTERNAL PRESSURE
THICK CYLINDRICAL PRESSURE VESSELS UNDER INTERNAL PKESSURE ONLY
THIN CYLINDRICAL PRESSURE VESSELS WITH RINGS UNDER INTERNAL PRESSURE (STRINGERS UPTIONAL)

THIN CYLINDRICAL PRESSURE VhSSLLS WITH STRINGERS UNDER INTERNAL PKESSURE

JOHNSON=tLULER
JOHNSUN=EULER EWUATION

APPLICATIUN OF THg METHOD OF JOINTS YO STATICALLY UETERMINATE TRUSSES

BUSHING STRENGTH FOR SINGLE SHEAR JOINTS UNVER UNIFOKM AXJAL LOAD

DoVBLE SHEAR JOINT STRENGTH UNDgR UNIFORM AXIAL LOAD

DOUBLE SHLAR JOINTS UNDER ObLIGWUE LOAD

DOUBLE SHEAR JOLINTS UNDER TRANSVERSE LOAD

LUG BEARING STHENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOADS

LUG BUSHING STRENGTH IN AXIALLY LOADED SINGLE SHEAR JOINT wlTH LESS THAN 5 PCT ELONGATION
LUG NET=SLCTION STRENGTH FOR'SIHGLE SHEAR JOINTS UNDER UNIFORM AXJAL LOAD

LUG TANG STRENGTH FOR DOUBLE SHEAR JUINTS UNDER UNIFORM AXIAL LOAD

LUG~BUSHING DgSIGN STRENGTH FUR DOUBLE SHEAR JOINTS UNDER UNIFORM AX[AL LOAD

PIN BENDING STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD

PIN BENDING STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD

PIN SHEAR STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNIFURM axlAL LOAD

PIN SHEAR STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFOURM AXIAL LOAD

SAMPLE PRCHLEM=APPLICATION OF THE METHOD OF JOINTS TO STATICALLY DETERMINATE TRUSSES
SINGLE SHEAR JUIRT STRENGTH UNDER UNIFORM axlal LOAD

SINGLE SHEAR JOINTS UNDER OBLIWUE LOAD

SINGLE SHEAR JOINTS UNDER TRANSVERSE LOAD

JUNCTION
DISCONTINUITY STRESSES AT JUNCTION OF THIN CYLINDRICAL PRESSURE VESSEL AND HEAD

JOINT

DISCONTINLITY STRESSES AT THE JUNCTION OF A THIN CYLINDRICAL PRESSURE VESSEL AND ITS HEAD
LACING

LACING BARS IN CGLUMNS
LATERAL

INTROUUCTIUN 10 LATERAL INSTABILITY OF DEEP BEAMS IN BENDING
LATERAL INSTABILITY OF DEEP 1 BLAMS
LATERAL INSTABILIYY OF DE&P RECTANGULAR BEAMS IN BENUING
LATYICED
LATTICED COLUMNS
‘LOADING
APPROXIMATE METHOD FOR BEAMS UNDER COMBINED AXJAL AND TRANSVERSE LOADS -~ BEAM COLUMNS
AXJALLY LUADED LUG DESIGN
BEARING STRENGTH OF AXIALLY LOALEL LUGS WITH LESS THAN 5 PCT ELUNGATION
BEARING STRENGTH OF TRANSVERSELY LOADED LUGS WITH LESS Tran 5 PLY ELONGATION
BENDING FAILURE OF CONCENTRICALLY LOADED LONG COLUMNS
BENGING FALLURE OF CONCENTRICALLY LOADED SHORT COLUMNS
BENUING FALLURE OF ECCENTRICALLY LOADED LONG COLUMNS
BENDING FAILURE OF ECCENTRICALLY LOADED SHORT COLUMNS
BENDING LUADS ON BARS
BUSHING BLARING STRENGTH UNDER UNIFORM AXJAL LOAD
BUSHING STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD
BUSHING STRENGTH UNVER OBLIGUE LOAD .
BUSHING STRENGTH UNDER TRANSVERSE LOAD
COEFFICIENT OF CONSTRAINT FOR END LOADED COLUMNS
COMBINED LUG~BUSHING DESIGN STRENGTH UNDER UNIFORM AXIAL LUAD
COMPHRESSIVE LOADING OF BARS
CURVEL PLATES UNDER COMBINED LOUADINGS
CYCLIC TENSILE LUADING OF BARS
DESIGN STRESSES AND LOAD VARIATIONS FOR TRANSMISSION SHAFTING
DISTRIBUTED AXIAL LUADS
DOUBLE SHEAR JOINT STRENGTH UNDLR UNIFORM AXIaL LOAD
OOUBLE SHEAR JOINTS UNDER OBLIGWUE LOAD
OOUBLE SHEAR JUINTS UNDER TRANSVERSE LOAD
EMPIRICAL FURMULA FOR ALLOWABLE BEARING LOAD OF STEEL SPHERES IN CONTACT
EMPIRICAL FORMULAS FOR ALLOWASLE BEARING LOADS OF A CYLINDER ON A FLAT PLATE
EMPIRICAL TREATMENT OF ALLOWABLY BEARING LOADS

xviii

4ebel
4e4,3
Gob

bobo2
LI T

Lede3e4

le3eled
ledels?
Ledelot

Be3sle5,4
Be3eleSe40ld

Be3e2elsl
Bedelelel
Bebelel
8e34242
8.3.2'1

2e3slell, e

be3,e2
9.5.3
9.“
9411
98
94541
Fel5e4
9e5e2
Yebes
Febel
Febo3
9545
9eby2
Y544
4e343
S5
9el2
9e9

B8s3eledelel
843010242

3410

ledeleS
ledelo?
ledelad

20443

lebol

Selb
941501
941545
2e3¢lel3
20301571 ¢
2e3ele?
2edelell,d
3.8

Fe304
9543
941062
9eTe2
2e30le



LUNG

LUG

KEYWORD INDEX (continued)

EXACT METHUD FUR SEAMS UNDER COMBINED AXIAL AND TRANSVERSE LOADS « BEAM COLUMNS
EXAMPLE OF AXIALLY LOADED LUG DESIGN

EXAMPLE OF UNIFURM AXTALLY LOADED LUG ANALYSIS

FLAT PLATES UNDER COMBINED LOADINGS

INTRODUCTION TU BgAMS UNDER COMBINED AXIAL AND TRANSVERSE LOADS « BEAM COLUMNS
INTRODUCTION TU REACTION FORCES AND MOMENTS ON BEAMS UNDER TRANSVERSE LOADING
LOADINGS yh CIKCULAR TRANSMISSIUN SHAFTING

LUG AND BUSHING STRENGTH UNDER UBLIWUVE LOAD

LUG AD BUSHING STRENGTH UNDER TRANSVERSE LOAD

LUG AND BUSHING STRENGTH UNDER UNIFQRM AX]AL LOAD

LUG UBLARING STRENGTH FOR SINGLE SHEAR JOINTS UNDEK UNIFORM AXIAL LOADS

LUG BEARING STRENGTH UNDER UNIFORM AXIAL LOAD

LUG BUSHING STRENGTH IN AXIALLY LOADED SINGLE SHEAR JOINT WITH LESS THAN 5 PCT ELONGATION
LUG DESIG STRENGTH UNDER UNIFURM AXIAL LDAD

LUG NET=SECTION STRENGYTH FOR SINGLE SHEAR JOINTS UNDEk UNIFORM AX]AL LQAD

LUG HET=SECTION STRENGTH UNDER UNIFORM AX1AL LOAD

LUG STRENGTH UNDER OBLIUUE LOAD D

LUG STRENGTH UNDER TRANSVERSE LODAD

LUG TANG STHENGTH FUR DOUBLE SHEAR JOINTS UNDER UNTFURM AXIAL LOAUL

LUG.BUSHING DESIGN STRENGTH FOR DUUBLE SHEAR JOINTS UNDER UNIFORM AXJAL LOAL
NETLSECTIUN STRENGTH OF AXIALLY LOADED LUGS WITYH LESS THAN 5 PCT CLONGATION
PIN UBENDING STREWGTH FOR DOUBLE SHEAR JUINTS UNDER UNIFORM AXIAL LOAD

PIN BENDING STHRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFURM AXIAL LOAD

PIN SHEAR STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNIHORM AXIAL LOAD

PIN SHEAR STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD

PLATLES
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPLE
SAMPL
SAMPLy

UNDER COMBINED LOADINGS

PROBLEM = BAR UNDER CYCLIC TENSILE LOAD

PRUBLEM - dAR UNDER STATIC TENSILE LUAD

PRUBLEM ~ CONCENTRICALLY LOADED LONG COLUMN In BENDING

PROBLEM - ECCENTRICALLY LOADED SHORT COLUMN IN BENDING

PRUBLEM « LONG ECCENTRICALLY LOADED COLUMNS AND EQUIVALERT ECCENTRICITY :
PRUBLEM « USE OF STRAIGHT LINE EWUATION FOR CONCENTRICALLY LOADED SHORT CULUMNS
PROBLEM « USE OF TANGENT MODULUS EQUATION FOR CONCENTRICALLY LOADED SHORT COLUMNS
PKOULEM-BEAMS UNDER CQMUINED AXIAL AND TRANSVELRSE LOADS - BEAM COLUMNS

SHEAR LOADING OF CURVED PLATES

SINGL:
SINGLE
SINGLE

SHEAK JOINT STRENGTH UNDeR UNIFORM AXIAL LOAV
SHEAR JOINTS UNDER OBLIWVE LOAD
SHE AR JOINTS UNDER TRANSVERSE LOAD

STATIC TENSILE LUADING OF BARS
STRENGTH UF . LUG TANGS IN AXIALLY LOADED LUGS WITH LESS THAN 5 PCY ELONGATION
TORSIUNAL LUADING OF BARS

BENDING FAILURE OF CONCENTRICALLY LOADED LONG COLUMNS

BENDING FAILURE OF ECCENTRICALLY LOADED LONG COLUMNS

COLUMN DATA APPLICABLE TO BOTH LONG AND SHORT COLUMNS

LONG RECTANGULAR MEMBRANES

SAMPLE PRUBLEM < COLUMN DATA APPLICABLE TO BOTH LONG AND SHORT COLUMNS

SAMPLE PROBLEM « CONCENTRICALLY LUADED LGNG COLUMN v BENDING
SAMPL:Z PROLLEM = LONG ECCENTRICALLY LOADED COLUMNS ANV £QUIVALENT ECCENTRICITY
SAMPLE PRUBLEM « LONG RECTANGULAR MEMBRANES

ANALYSIS UF LUGS
AXIAL LUG LESIGN
AXIAL LUG VESIGiH FOR PIN FAILURE IN THE BENDING MODE

AXIAL LUG LgSIGH FOR PIN FAILUKE IN THE SHEARING MODE

AXJALLY LUADED LUG DESIGN

BEARING STKENGTH OF AXIALLY LOADED LUGS WITH LESS THAN 5 PCT ELONGATION
BEARING STKENGTH F TRANSVEKSELY LOADED LUGS WITH LESS THAN $ PCT ELONGATION
COMBINED LUG-BUSHING DESIGN STRENGTH UNDER UNIFORM AX]AL LOAD

EXAMPLE OF AXJALLY LOADED LUG DESIGN

EXAMPLE OF UNIFORM AXTALLY LOADLD LUG ANALYSIS

EXAMPLE PRUBLEM UF LUG FATIGUE ANALYSIS

INTRODUCTIUN TO LUG ANALYSIS

LUG ANALYSIS

LUG ANALYSIS NOMENCLATURE

LUG AnD BUSHING STRENGTH UNDER (BLIWUE LOAD

LUG AND BUSHING STRENGTH UNDER TRANSVERSE LOAD

LUG AND BUSHING STRENGTH UNDER UNIFORM AX[AL LOAD

LUG 3EARING STHRENGTH FOR SINGLE SHEAR JOINTS UNDtR UNIFORM AXIAL LOADS

LUG SpARING STKENGTH UNVER UNIFURM AXIAL LOAD

LUG BUSHING STRLNGTH IN AXIALLY LUADED SINGLE SHEAK JOINT wWITH LESS THAN S PCT ELONGATION
LUG DESIGH STRENGTH UNDER UNIFOKM AXIAL LUAD

LUG FATIGUE ANALYSIS

LUG WETWSECTION STRENGTH FUR SINGLE SHEAR JOINTS UNDER UNIFURM AXIAL LOAD
LUG NET-SECTION STRENGTH UNDER UNJFURM AXIAL LOAL

LUG STRENGTH UNDER OBLIWUE LOAD

LUG STRENGTH UNDER TRANSVERSE LuAD

LUG TANG SIRENGTH FUR DOUBLE SHEAK JOINTS UNDER UNIFURM AX1AL LOAD
LUG-dUSHINL OLS1GN STRENGTH FOR DUUBLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAC
NET-SECTIUN STRENGTH OF AXIALLY LOADED LUGS WITH LESS THAN 5 PCT ELONGATION
STRENGTH F LUG TANGS IN AXTALLY LOADED LUGS WITH LESS Than 5 PCT ELONGATION
STRENGTH UF LUG TANGS IN AXIALLY LOADED LUGS WITH LESS THAK 5 PCT ELONGATION

WITH LESS THAN 5 PCT ELONGATION
FOR PIN FalLVRe

xix

lebgd
Felbol,d
9.6
64841
le%

| PEIYLY
1043
910

Y7

9.3
95,41
9.3‘1
9el5e%
9343
Ge5e2
92342
9¢10e1
9eTel
Felob
Fedel
9e1542
Fedee3d
94545
Febhe2
Fe5e4
648

XY

3ot
2e30let
2e3elell,?
2434109
2434141l,0
2e3e1,11,2
leded
6e7

95

912

. 99

343
9el15e3
3.9

2430143
2e3ele?
2e34lel
Te5el

2.3"'2
2634166
2430149
Ti5e2

9419
Felb,l
Feléglel
Yeléelel
el
9el15.1
91545
9.3.5
Geléeled
9.6
9.18
91

9

9.2
9.10
97
943
94541
9¢3.1
YelSe4
9.3'3
947
94552
94342
Fel00l
YeTel
Fehro4
Qebal
9e1542
901543
9el543




MEMB

MODE

KEYWORD INDEX (continued)

RANE

APPLICABILITY OF THEORETICAL RESULTS FOR SHORT RECTANGULAR MEMBRANES
CIRCULAR MEMBRANES

INTRODUCTIUN TO MEMBRANES

LONG RECTANGULAR MEMBRANES

MEMBRANE ANALOGY FOR BEAMS JN gL ASTIC TORSIUN

MEMBRANE STRESSES IN HEADS OF THIN CYLINVKICAL PRESSURE VESSELS
MEMBRANE STRESSES IN SIMPLE THIN SHELLS OF REVOLUTION

MEMBRANE STRESSES IN THIN CYLINDERS

MEMBRANE STRESSES IN THIN SPHERcS

MEMBRANES

NOMENCLATUKe FOR MEMBRANES

RECTANGULAR MEMBRANES

SAMPLE PRUBLEM = CIRCULAR MEMBRANES

SAMPLE PROBLEM « LONG RECTANGULAR MEMBRANES

" SAMPLE PRUGLEM « MEMBRANE STRESSES IN THIN CYLINDEKS AND SPHERES

SAMPLE PRUBLEM « SHORT RECTANGULAR MEMBRANES
SHORT RECTANGULAR MEMBRANES
THEORETICAL RESULTS FOR SHOKYT ReCTANGULAR MEMBRANES

AXIAL LUG LESIGN FOR PIN FAILURE IN THE BENDING mMODE
AXIAL LUG LESIGN FOR PIN FAILURE IN THE SHEARING MOLE

MGOULUS

REDUCED MULULUS EUUATION
SAMPLE PKULLEM « USE OF TANGENT MODULUS EGUATION FOR CONCENTRICALLY LOADED SHORT CULUMNS

TANGENT MGLULJS EQUATION

MOMENT

MuLT
MULT

APPLICATIUN OF THE THREE MOMENT EQUATION TO SOLVING FOR THE REACTIONS ON CONTEINUOUS BEAMS
INTRODUCTIUN TO ReACTION FOKCES AND MOMENTS ON BEAMS UNDER TRANSVERSE LOADING
MOMENT OF INERTIA OF THE UPRIGHTS OF A PARTIAL TENSIUN FIELD BEAM

REACTION FURCES AND MOMENTS ON BEAMS W]TH BOTH ENDS FIXED

REACTION FORCES AND MOMENTS ON BEAMS WITH ONE FIXED &ND, ANL ONE PINNED SUPPGKT
REACTION FOWCES AND MOMENTS ON (ONTINUOU® BEAMS

SAMPLE PRubLEM = REACTIONS UN CONTINUQUS BEAMS BY THE THREE MOMENT EQUATION
SAMPLE PRUBLEM=SOLUTION OF FRAMES BY THE METHOD UF MUMENT L1STRIBUTION
SOLUTION OF FRAMES 8Y THE METHOU OF MOMENT OISTRIBUTIUN

1CELL

MULTICELL CLOSED BEAMS IN TURSIUN

1PLE

MULTIPLE SHEAR AND SINGLE SHEAR CONNECTIONS

STATICALLY JWOUETERMINATE TRUSSES WITH MULTIPLE REDUNUDANCIES

NONCIRCULAR

EFFECT OF gND RESTRAINT ON NONCIRCULAR BEAMS IN TORSIUN

EFFECT OF STIFFENERS ON NONCIRCULAR CLOSED BEAMS IN TORSION

NONCIRCULAK BEAMS IN TORSION

NUNCIRCULAK BEAMS WiTH THIN OPEN SECTIONS InN TORSION

NONCIRCULAK CLUSED BEAMS IN TORSION

NONCIRCULAK UPEN BEAMS IN TORSIUN

NONCIRCULAK OPEN BEAMS WITH VARIUUS CROSS SECTIONS IN TORSION |

SAMPLE PRUBLEM « WONCIRCULAR CLUSED STIFFENED UNIFORM SECTION BEAM IN TURSION
SINGLE CELL NONCIRCULAR CLOSED beAMS IN TORSION

SINGLE CELL HWUNCIRCULAK CLOSED BEAMS wITH UNIFORM CRUSS SECTION IN TORSION
SINGLE CELL NUNCIRCULAR TAPERED "CLOSED BEAMS IN TORSIUN

NONUNIFORM

NONUNTFORM CIRCULAR BEAMS IN TORSION

0BLIQUE

OPEN

BUCKLING UF UBLIGWUE PLATES

BUSHING STRENGTH UNDER UBLIQUE LOAD

DoUbi.t SHEAR JOINTS UNDER OBLJWUE LOAD

LUG AiD BUSHING STRENGTH UNDER UBLIWUE LOAD
LUG STRENGTH UNGER UBLIGUE LOAD

SINGLE SHEAR JUINTS UNDER OBLIWUE LOAD

NONCIRCULAR BLAMS WITH THIN OPEN SECTIONS IN JORSIOM

NONCIRCULAKR OPEN BEAMS IN TORSION

NONCIRCULAR OPEN JEAMS WITH VARIGUS CROSS SECYIONS IN TORSION
SAMPLE PRUBLEM-NONCIRCULAR BEAMS wiTH THIN OPEN SECTIONS IN TORSION

OUTSTANDING
CRIPPLING S1RESS OF OUTSTANDING FLANGES
PANELS
BUCKLING Gt SANCWICH PANELS
PIN
AXIAL LUG DESIGN FOR PIN FAILURE
AXIAL LUG DESIGN FOR PIN FAILURL IN THE BENDING MODE
AXIAL LUG UESIGN FOR PIN FAILURe IN THE SHEARING MOLE
PIN BENDING STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNLIFORM AXIAL LOAD
PIN BENOING STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD
PIN SHEAKR STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNIFURM AXIAL LOAD
PIN SHEAK STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD
PINNED

"REACTION FURCES AND MOMENTS ON OEAMS wITH ONE FIXED £ND AND ONE PINNED SUPPORT
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KEYWORD INDEX (continued)

SAMFLE PRULLEM - REACTIONS ON beAM wiTH ONE FIXEV AND ONE FINNED SUPPORT

PLASTIC

SAMFLE PRUBLEM=SIMPLE BEAMS IN PLAST]C BENDING
SANU HEAP ANALUGY FOR BEAMS IN PLASTIC TOKSION
SIMFLE BEAMS IN PLASTIC BENDING

PLATE

ANALYS]S OF PLATES

Axlal COMPRESSION OF CURVED PLATES

AXIAL COMPKESSICN OF FLAT PLATES

BEAN=SUPPUKTED FLAT PLATES IN BENCING

BENCING OF FLAT PLATES

BUCKLING GF OBLIGUE PLATES

BUCKLING GF STIFFENED FLAT PLATES IN AXIAL COMPRESSION

" BUCKLING GF UNSTIFFENED FLAT PLATES IN AXIAL COMPRESSION

CRIFPLING FAILURE OF FLAT STIFFENED PLATES IN COMPRESSION

CURVED PLATES UNDER COMBINED LOADINGS

EMPIRICAL FORMULAS FOR ALLOWABLL BEARING LOADS OF A CYLINDER ON A FLAT PLATE
FLAT PLATLS UNDER COMBINED LOADINGS

INTRGUDUCTIUN TU ANALYSIS OF PLATES

NOMENCLATURE FUR ANALYSIS OF PLATES

PLATES UNUER COMBINED LOADINGS

SHEAR BUCKLING OF FLAT PLATLS

SHEAR LOALING OF CURVED PLATES

UNSTIFFENEL FLAT PLATES IN BENDING

PRESS

STRESSES LUE TU PRESS FJT BUSHINGS

PRESSURE

ANISGTROPIC PRESSURE VESSELS

BUCKLING oF THIN SIMPLE CYLINDtRS UNDER EATERNAL PRESSURE

BUCKLING CF THIN SIMPLE PRESSUR: VESSELS UNDER EXTERNAL PRESSURE

BUCKLING UF THIN SIMPLE PRESSUkt VESSELS UNDER EXTERNAL PRESSURE

BUCKLING OF THIN SIMPLE SPHERES UNDER EXTERNAL PRESSURE

DISCONTINUITY STRESSES AT JUNCTION OF THIN CYLINDRICAL PRESSURE VESSEL AND HEAD
DISCONTINUITY STRESSES AT THE JUNCTION OF A THIN CYLINDRICAL PRESSURE VESSEL AND I1TS HEAD
DISCONTINUITY STRESSES IN THIN CYLINDRICAL PRESSURE VESSELS WITH CONICAL HEADS
DISCONTINULTY STRESSES IN THIN CYLINDRICAL PRESSURE VESSELS wITH FLAT HEADS

HEALS OF TRIN CYLINDRICAL PRESSURE VESSELS

INTRODUCTIUN TO PRESSURE VESSELS

MEMBRANE STRESSES I[N HEADS OF THIN CYLINVURICAL PRESSURE VESSELS

NOMENCLATURE FOR PRESSURE VESSELS

PRESSURE VESSELS -

SAMPLE PRUBLEM « BUCKLING OF THIN SIMPLe CYLINDERS UNDER EXTERNAL PRESSURE

SAMPLE PRUBLEM « UISCONTINUITY FORCES IN CYLINDRICAL PRESSURE VESSELS WITH CISHEDL HEADS
SAMPLE PRCBLEM « OISCONTINVITY STRESSES IN PRESSURE VESSELS WITH CONICAL HEADS

SAMPLE PRUBLEM = DISCONTINUITY STRESSES IN PRESSURE VESSELS WITH FLAT HEADS

SAMPLE PRUBLEM « STIFFENED THIN CYLINDRICAL PRESSURE VESSEL WITH INTERNAL PRESSURE
SAMPLE PRCUBLEM « STIFFENED THIN CYLINDRICAL PRESSURE VESSEL WITH INTERNAL PRESSURE
SAMPLE PRUbLEM = THICK CYLINDR]CAL PRESSURE VESSEL

SAMPLE PROBLEM « THIN CYLINDRICAL PRESSURE VESSELS WITH STRINGEKS UNDER INTERNAL PRESSURE
SAMPLE PRUBLEM « THIN CYLINURICAL PRESSURE VESSELS WITH STRINGEKRS UNDER INTERNAL PRESSURE
SIMPLE THIN PRESSURE VESSELS

STIFFENED THIN PRCSSURE VESSELS

STRESSES 16« SIMPLE CYLINDRICAL PRESSURE VESSELS DUL TU SUYPPURTS

THICK CYLINDRICAL PRESSURE VESSELS

THICK CYLINDRICAL PRESSURE VESSELS UNDER EXTERNAL PRESSURE ONLY

THICK CYLINDRICAL PRESSURE VESSELS UNDER EXTERNAL PHESSURE ONLY

THICK CYLINDRICAL PRESSURE VESSELS UNDER INTERNAL PHESSURE ONLY

THICK CYLINDRICAL PRESSURE VESSELS UNDER INTERNAL PRESSURE ONLY

THICK PRESSURE VESSELS .

THICK SPHERICAL PRESSURE VESSELS

THIN CYLINGRICAL PRESSURE VESSELS WITH RINGS UNDER INTERNAL PRESSURE (STRINGERS OPTIONAL}
THIN CYUIMRICAL PRESSURE VESSELS wilTH RINGS UNDER INTERNAL PRESSURE (STRINGERS OPTIONAL)
THIN CYLINUKICAL pRESSURE VESSELS WITH STRINGERS UNDER INTERNAL PRESSURE

THIN CYLINGRICAL PRESSURE VESSELS W1TH STRINGERS UNDER INTERNAL PRESSURE

THIN PRESSURE VESSELS

PRESSURIZED

CRIPPLING STYRESS OF PRESSURIZED AND UNPRESSURIZED THIN SIMPLE CYLINDERS

CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDERS IN BENOING

CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDERS IN COMPRESSION

CRIFPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDERS IN TURSION

INTERACTIUN FORMULAS FOR THE CRIPPLING OF PRESSURIZEV AND UNPRESSURIZED CYLINDERS
SAMPLE PRUBLEM = CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDERS IN TURSION

PRIMARY

RATI

PRIMARY FAILUKE OF SIMPLE COLUMNS
0
CRITICAL tFFECTIVE SLENDERNESS RATIO

REACTION

APPLICATIUN OF The THREE MOMENT EQUATION TO SOLVING FOR THE REACTIONS ON CONTINUOUS HEAMS
INTRODUCTIOUN TO REACTION FGRCES AND MOMENTS ON BEAMS UNDLR TRANSVERSE LOADING
REACTION FORCES AND MOMENTS ON BEAMS WITH BOTH ENDS FIXED
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KEYWORD INDEX (continued)

REACTION FURCES AND MOMENTS ON bEAMS WITH ONE FIXED END AND ONE PINNED SUPPURY
REACTION FURCED AnD. MOMENTS ON CONTIWUOUD BEAMS
SAMPLE PRUBLEM = HEACTIONS ON BEAM wITH ONE FIXED ANV ONg PINNED SUPPORY
SAMFLE PRUBLEM = KEACTIONS ON CONTINUOUS BEAMS BY THE THREE MOMENT EQUATION
RECTANGULAR
APPLICABILITY OF THEORETICAL RESULTS FOR SHORT RiCTANGULAR MEMBRANES
LATERAL INSTALILITY OF DEEP RECTANGULAR BEAMS IN BENUVING
LONG RECTANGULAR MEMBRANES
RECTANGULAK BEAMS N TORSION
RECTANGULAR FRAMES
RECTANGULAK MEMBKANES
SAMPLE PRUBLEM = LONG RECTANGULAR MEMBRANES
SAMPLE PROBLEM = SHORT RECTANGULAR MEMBRANES
SHORT RECTANGULAR MEMBRANES
. THECRETICAL RESULTS FOR SHOUKT RELCTANGULAR MEMBRANES
REDUCED
REDUCED MLLULUS EWJUATION
REDUNDANCY
SAMPLE PRUBLEM~STATICALLY INDETERMINATE TRUSSES wlTH A SINGLE REDUNDANCY
STATICALLY INDETERMINATE TRUSSES wITH A SINGLE REDUNUANCY
STATICALLY INDETERMINATE TRUSSES wlTH MULTIPLE REDUNUANCIES
RESISTANT
FLANGES OF STIFFEREV SHEAR RESISTANY BEAMS
INTROOUCTIUN TU SHEAR RESISTANT BEAMS IN BENDING
RIVETS [N SHEAR KCESISTANT BEAMS
SAMPLE PROBLEM=STIFFENED SHEAR KESISTANT BEAMS
STIFFENED SHEAK R SISTANT BEAMS IN BENDING
STIFFENER-TO=FLANGE RIVETS IN SHEAR RESISTANT BEAMS
UNSTIFFENEL SHEAR RESISTANT BEAMS IN BENDING
WEB-TO~FLANGE RIV:TS IN SHEAR ReSISTANT BEAMS
WEB=TO=STIFFENEK RIVETS IN SHEAR RESISTANY BEAMS
WEBS OF STIFFENED SHEAR RESISTANT BEAMS
RESTRAINT
EFFECT OF LD RESTRAINT ON NONCIRCULAR BEAMS IN TORSION
REVOLUTION
MEMBRANE STRESSES IN SIMPLE THIN SHeLLS OF REVOLUTION
RINGS .
CIRCULAR KINGS ANU ARCHES
FRAMES ANU RINGS
INTRODUCTIUN TO FRAMES AND RINGS
NOMENCLATURE FUR FRAMES AND RINGS
SAMPLE PROLLEM-CIRCULAR RINUS aND ARCHES
THIN CYLINURICAL PRESSURE VESSELS WITH RINGS UNDER INTERNAL PRESSURE (STRINGERS OPTIONAL)
RIVETS
BEARING STHESSES IN RIVETED CONNECTIONS :
RIVETS AT THE ENDS OF PARTIAL TeNSION FIELD BEAMS
RIVETS IN PARTIAL TENSION BEAMS WITH ACCESS HOLES
RIVETS IN PARTIAL TENSION FIELD BEAMS
RIVETS IN SHEAR RESISTANT BEAMS
SAMPL: PRUBLEM « BEARING STRESSES IN RIVETED CONNECTLIONS
STIFFENER-TUFLANGE RIVETS IN SHEAR RESISTANT BEAMS
UPRIGHT=TU~FLANGE RIVETS IN A PARTIAL TENSIUN FIELD BEAM
WEB~TOFLANGE RIVETS IN A PARTIAL TENSION FIELD BEAM
WEB=TOFLANGE RIVETS IN SHEAR ReSISTANT BEAMS
WEB=TU-STIFFENER RIVETS IN SHEAR RESISTANT BEAMS
WEB=TUUPKIGHT KIVETS IN PARTIAL TENSION FIELD BEAM
ROUND
CRIPPLING STRESS UF ROUND TUBES
HELICuL SEKINGS OF ROUNY WIRE
SAMPLE PRUBLEM = CRIPPLING STRESS OF ROUND TUBES
SANOWICH
BUCKLING UF SANDWwICH PANELS
SECTION
APPLICATIUN OF THE METHOD OF SECTIONS TO STATICALLY DETERMINATE TRUSSES
NONCIRCULAR BEAMS WITH THIN OPEN SECTIONS IN TORSJION
NONCIKCULAK OPEN BEAMS WITH VARIOUS CROSS SECTIONS IN TORSION
SAMPLE PROBLEM = NONCIRCULAR CLOSED STIFFENED UNIFORM SECTION 8eAM IN TORSION
SAMPLE PROBLEM « STATICALLY DETERMINATE TRUSSES BY Thg METHOD OF SECTIUNS
SAMPLE PRUBLEM~-NOWCIRCULAR BEAMS wITH THIN OPEN SECTIONS IN TORSIOUN
SINGLE CELL NONCIRCULAR CLOSED BEAMS WITH UNIFORM CKOSS SECTION In TORSION
SHAFT
ANALYSIS OF COMBINEV STRESSES In TRANSMISSION SHAFTING
DESIGH PROCEDURE FOR CIRCULAR TRANSMISSION SHAFTING
DESIGN STRESSES AND LOAD VARIATIONS FOR TRANSMISSION SHAFTING
GENERAL DESIGN EWUATION FOR CIRCULAR TRANSMISSION SHAFTING
INTRODUCTION TO TRANSMIOSION SHAFT ANALYSIS
LOADINGS OoN CIRCULAR TRANSMISSIUN SHAFTING
NOMENCLATURE USED IN TRANSMISSION SHAFTING ANALYSIS
SAMPLE ANALYS]S OF CIRCULAR TRANSMISSION SHAFTING
TRANSMISSION SHAFTING ANALYS]S

SHAPE
CRIPPLING STRESS OF ANGLE ELEMENTS AND COMPLEX SHAPES
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KEYWORD INDEX (continued)

ELASTIC STRESSES AND DEFORMATION OF VARIOUS SHAPES IN CONTACY
SAMPLE PROBLEM =« CRIPPLING STRESS OF A COMPLEX SHAPE

SHEAR

AXIAL LUG LESIGN FOR PIN FAILURE IN THE SHEARING MODE

BUSHING STRENGTH FOR SINGLE SHEAR JUINTS UNDER UNJFORM AXIAL LOAD
DOUBLE SHEAR JOINT STRENGTH UNDeR UNIFORM AXIAL LOAD

DOUBLE SHEAR JOINTS UNDER OBLIQUE LOAD -

DOUBLE SHEAK JOINTS UNDER TRANSVERSE LOAD

FLANGES OF STIFFENED SHEAR RESISTANT BEAMS

INTRODUCTIOUN TO SHEAR RESISTANT BEAMS IN BENDING

INTRODUCTION TU SHEAR WEB BEAMS IN BENDING

LUG BLARING STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOADS
LUG BUSHING STRENGTH IN AXIALLY LOADED SINGLE SHEAR UOINT WITH LESS THAN 5 PCT ELONGATION
LUG NET=-SECTION STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD
LUG TANG STRENGTH FUR DOUBLE SHEAR JOINTS UNDER UNIFURM AXIAL LOAD
LUG-BUSHING DeSIGH STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD
MULTIPLE SHEAR AND SINGLE SHEAR CONNECTIONS

MULTIPLE SHEAR. Ahy SINGLE SHEAR CONNECTIONS

PIN BENDING STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD
PIN BENDING STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD
PIN SHEAR STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD
PIN SHEAR STRENGTH FOR DQUBLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD
PIN SHEAR STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD
PIN SHEAR STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD
RIVETS IN SHEAR RESISTANT BEAMS

SAMPLE PRUBLEM=STIFFENED SHEAR RESISTANT BEAMS

SHEAR BUCKLING OF FLAT PLATES

SHEAR LOAUING UF CURVED PLATES

SINGLE SHEAR JGINT STRENGTH UNDER UNJFORM AXIAL LOAD

SINGLE SHEAR JOINTS UNDER OBLIGQUE LOAD

SINGLE SHEAR JOINTS UNDER TRANSVERSE LOAD

STIFFENED SHEAR RESISTANT BEAMS IN BENDING

STIFFENER-TO-FLANGE RIVETS IN SHEAR RESISTANT BEAMS

UNSTIFFENED SHEAR RESISTANT BEAMS JN BENDING

WEB=TO=FLANGE RIVETS IN SHEAR RESISTANT BEAMS

WEB-TO~ST[FFENER RIVETS IN SHEAR RESISTANT BEAMS

WEBS OF STIFFENED SHEAR RESISTANT BEAMS

SHELLS

MEMBRANE STRESSES IN SIMPLE THIN SHELLS OF REVOLUTION

SHORT

APPLICABILITY OF THEORETICAL RESULTS FOR SHORT RECTANGULAR MEMBHANES

BENDING FAILURE OF CONCENTRSCALLY LOADED SHORT COLUMNS

BENDING FAILURE OF ECCENTRICALLY LOADED SHORT COLUMNS

BENDING FAILURE OF SHORT COLUMNS

COLUMN DATA. APPLICABLE TO BOTH LONG AND SHORY COLUMNS

SAMPLE PROBLEM - COLUMN DATA APPLICABLE TO BOTH LONG AND SHORT COLUMNS

SAMPLE PROBLEM ~ ECCENTRICALLY LOADED SHORT COLUMN IN BENDING

SAMPLE PRUBLEM - SHORT RECTANGULAR MEMBRANES

SAMPLE PROUBLEM « USE OF STRAIGHT LINE EQUATION FOR CONCENTRICALLY LOADED SHORY COLUMNS
SAMPLE PROBLEM = USE OF TANGENT MUDULUS EQUATION FOR CONCENTRICALLY LOADED SHORT COLUMNS
SHORT RECTANGULAR MEMBRANES

THEORETICAL RESULTS FOR SHORT RECTANGULAR MEMBRANES

SIMPLE

BUCKLING OF THIN SIMPLE CYLINDERS UNDER EXTERNAL PRESSURE

BUCKLING OF THIN SIMPLE PRESSURE VESSELS UNDER EXTERNAL PRESSURE
BUCKLING GF THIN S xang SPHERES UNDER EXTERNAL PRESSURE

CRIPPLING STRESS OF PRESSURIZED AND UNPRESSURIZED THIN SIMPLE CYLINDERS
CRIPPLING STRESS (F PRESSURIZED SIMPLE THIN CYLINDEKS IN BENDING
CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINOERS IN COMPRESSION
CRIPPLING STRESS 'UF PRESSURIZED SIMPLE THIN CYLINDERS IN TORSJON
CRIPPLING STRESS uF SIMPLE THIN CYLINDERS IN BENDING

CRIPPLING STRESS OF SIMPLE THIN CYLINDERS IN COMPRESSION

CRIPPLING STRESS uF SIMPLE THIN CYLINDERS IN TORSJUN

CRIPPLING STRESS OF UNPRESSVRIZED SIMPLE THIN CYLINDERS IN BENDING
CRIPPLING STRESS UF UNPRESSURIZED SIMPLE THIN CYLINOERS IN COMPRESSION
CRIPPLING STRESS UF UNPRESSURIZED SIMPLE THIN CYLINDERS IN TORSION
FORMULAS FOR SIMPLE FRAMES

MEMBRANE STRESSES IN SIMPLE THIN SHELLS OF REVOLUTION

PRIMARY FALLURE OF SIMPLE COLUMNS

SAMPLE PROBLEM -~ BUCKLING OF THIN SIMPLE CYLINDERS UNDENR EXTERNAL PRESSURE

SAMPLE PRUBLEM ~ CRIPPLING INTERACTION OF SIMPLE THIN CYLINDERS IN COMPRESSION AND BENDING

SAMPLE PRGBLEM ~ GRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDERS IN TORS1ON
SAMPLE PROBLEM = TORSIONAL FAILURE OF SIMPLE COLUMNS

SAMPLE PKUGBLEM=FORMULAS FOR SIMPLE FRAMES

SIMPLE BEAMS IN BENDING

SIMPLE BEAMS IN ELASTIC BENVING

SIMPLE BEAMS IN PLASTIC BENDING

SIMPLE COLUMNS

SIMPLE THIN PRESSURE VESSELS

STRESSES Ih SIMPL: CYLINDRICAL PRESSURE VESSELS OUE 10 SUPPORTS

TORSIONAL FAILUKE OF SIMPLE COLUMNS
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KEYWORD INDEX (continued)

SLENDERNESS
CRITICAL eFFECTIVE SLENDERNESS RATIO
SPHERES

BUCKLING OF THIN SIMPLE SPHERES UNDgR EXTERNAL PRESSURE

EMPIRICAL FORMULA FUR ALLOWABLE BEARING LOAD OF STEEL SPHERES IN CONTACT

MEMBRANE STRESSES IN THIN SPHERES
SAMPLE PRUBLEM « MEMBRANE STRESSES IN THIN CYLINDERS AND SPHERES
THICK SPHERICAL PRESSURE VESSELS

SPRINGS

HELICAL SPRINGS
HELICAL SPRINGS OF RQUNV WIRE
HELICAL SPRINGS OF SQUARE WIRE

SQUARE

HELICAL SPRINGS OF SQUARE WIRE

STATIC *

SAMPLE PRUBLEM ~ BAR UNDER STATIC TENSILE LQAD
STATIC TENSILE LOADING OF BARS

STATICALLY

APPLICATION OF THg METHCD OF JOINTS TU STATICALLY DETERMINATE TRUSSES

APPLICATION OF THE METHOD OF SgCTIONS TO STATICALLY DETERMINATE TRUSSES

DEFLECTIONS IN STATICALLY DETERMINATE TRUSSES
INTRODUCTIUN TO STATICALLY VETERMINATE TRUSSES
INTROOUCTION TO STATICALLY INDETERMINATE TRUSSES

SAMPLE PROBLEM - STATICALLY DETeRMINATE TRUSSES BY THE METHOD OF SECTIUNS
SAMPLE PRULLEM-APPLICATION OF THE METHOD OF JOINTS TU STATICALLY DETERMINATE TRUSSES

SAMPLE PROBLEM=-DEFLECTIONS N STATICALLY WETERMINATE TRUSSES
STATICALLY DETERMINATE TRUSSES

STATICALLY INDETERMINATE TRUSStsS

STATICALLY INDETERMINATE TRUSSES wITH A SINGLE REDUNDANCY
STATICALLY INDETERMINATE TRUSSES WITH MULTIPLE REDUNDANCIES

STEEL

EMPIRICAL FORMULA FOR ALLOWABLE BEARING LOAD OF STEEL SPHERES IN CONTACT

STEPPED

SAMPLE PRUBLEM = STEPPED COLUMN
STEPPED AND TAPERED COLUMNS

STIFFENERS

BUCKLING OF STIFFENED FLAT PLATES IN AXIAL COMPRLSSION
CRIPPLING FAILURE OF FLAT STIFFENED PLATES IN COMPRESSION
EFFECT OF STIFFENERS ON NONCIRCULAR CLOSED BEAMS IN TORSION
FLANGES OF STIFFENEVY SHEAR RESISTANT BEAMS

SAMPLE PROBLEM « NONCIRCULAR CLUSED STIFFENED UNIFORM SECTION BeAM IN TORSION
SAMPLE PROBLEM = STIFFENED THIN CYLINDRICAL PRESSURE VESSEL WITH INTERNAL PRESSURE

STIFFENED SHEAR RESISTANT BEAMS IN BENDING
STIFFENED THIN PRESSURE VESSELS

STIFFENER-TU-FLANGE RIVETS IN SHEAR RESISTANT BEAMS
WEBS UF STIFFENED SHEAR RESISTANT BEAMS

STRAIGHT

SAMPLE PRUBLEM « USE OF STRAJGHT LINE EQUATION FOR CONCENTRICALLY LOADEV SHORT COLUMNS

STRAIGUHT LINE EQUATION

STRENGTH

BEARING STReNGTH OF AXJALLY LOALED LUGS WITH LESS THAN 5 PCY eLONGATION
BEARING STReNGTH OF TRANSVERSELY LOADED LUGS WITH LESS THAN 5 PCT ELONGATION

BUSHING BLARING STRENGTH UNDER UNIFORM AXJAL LOAD

BUSHING STRENGTH FOR SIHGLE SHEAR JOINTS UNDER UNJFOKM AXIAL LOAD
BUSHING STHKENGTH UNDER UBLIGUE LOAD

BUSHING STHRENGTH UNDER TRANSVERSE LOAD

COMBINED LUG-BUSHING DESIGN STRENGTH UNDER UNIFORM AXIAL LCAD
DOUBLE SHLAR JOINT STRENGTH UNDER UNIFORM AXIAL LOAD

LUG AND BUSHING STRENGTH UNVER UBLIGUE LOAD

LUG AND BUSHING STRENGTH UNDER TRANSVERSE LOAD

LUG AND BUSHING STRENGTH UNUER UNIFQORM AXJAL LOAD

LUG BEARING STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOADS
LUG BEARING STKENGTH UNDER UNIFORM AXIAL LOAD

LUG BUSHING STRENGTH IN AXTALLY LOADED SINGLE SHEAR JOINT WITH LESS THAN 5 PCT ELONGATION

LUG DESIGHK STRENGTH UNDER UKIFORM AXIAL LUAD

LUG WET-SECTION STRENGTH FOR SINGLE SHEAR JUINTS UNDLR UNIFORM AXIAL LOAD

LUG NET-SECTION STRENGTH UNDER UNIFORM AXIAL LOAD

LUG STRENGTH UNDER OBLIGUE LOAD

LUG STRENGTH UNDER TRANSVERSE LOAD

LUG TANG STRENGTH FOR DOUBLE SHEAR JUINTS UNDER UNIFURM AX1AL LOADL

LUG-BUSHING DESIGN STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAC
NET=SECTIUN STRENGTH OF AXIALLY LOADED LUGS WITH LESS THAN 5 PCT ELONGATION

PIN BENDING STRENGTH FOR DOUBLE SHEAR JUINTS UNDER UNIFORM AXIAL LOAD
PIN BENDING STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AXIAL LOAD
PIN SHEAR STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNIFURM AX]AL LOAD
PIN SHEAR STRENGTH FOR SINGLE SHEAR JOINTS UNDER UNIFORM AX1AL LOAD
SINGLE SHEAR JOINT STRENGTH UNDER UNIFORM AXIAL LOAV

STRENGTH OF LUG TANGS IN AXIALLY LOADED LUGS WITH LESS THAN 5 PCT ELONGATION

STRESS

ALLOWABLE STREDSES IN THE UPRIGHTS OF A PARTIAL TENSION FItLD BEAM
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KEYWORD INDEX (continued)

ANALYSIS OF COMBINEV STRESSES IN TRANSMISSIUN SHAFTING

BEARING STRESSES :

BEARING STRESSES IN RIVETED CONNECTIONS

COMPUTED STKESSES IN THE UPRIGHTS OF A PARTIAL TENSION FIELD BEAM

CRIPPLING STRESS UF ANGLE ELEMENTS AND COMPLEX SHAPES

CRIPPLING STRESS OF 1 BEAMS

CRIPPLING STRESS OF OUTSTANDING FLANGES

CRIPPLING STRESS OF PRESSURIZED AND UNPRESSURIZED THIN SIMPLE CYLINDERS
CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDERS IN BENDING
CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDERS IN COMPRESSION
CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDERS IN TURSION
CRIPPLING STRESS OF ROUND TUBES -

CRIPPLING STRESS OF SIMPLE THIN CYLINDERS IN BENDING

CRIPPLING STRESS OF SIMPLE THIN CYLINDERS IN COMPRESSJON

CRIPPLING STRESS oF SIMPLE THIN CYLINDERS IN TORSION

CRIPPLING STRESS OF UNPRESSURIZED SIMPLE THIN CYLINOELRS IN BENDING
CRIPPLING STRESS OF UNPRESSURIZED SIMPLE THIN CYLINDERS IN COMPRESSION
CRIPPLING STRESS OF UNPRESSURIZED SIMPLE THIN CYLINDERS IN TORSION

DESIGN STRESSES AND LOAD VARIATIONS FOR TRANSMIDSION SHAFTING

DISCONTINULITY STRESSES AT JUNCTION OF THIN CYLINDRICAL PRESSURE VESSEL AND HEAD
DISCONTINUITY STRESSES AT THE JUNCTION OF A THIN CYLINDRICAL PRESSURE VESSEL AND ITS HEAD
DISCONTINUITY STRESSES IN THIN CYLINDRICAL PRESSURE VESSELS WITH CONICAL HEADS
DISCONTINULTY STRESSES IN THIN CYLINDRICAL PRESSURE VESSELS WITH FLAT HEADS
ELASTIC STRESSES AND DgFORMATION OF VARIOUS SHAPES IN CONTACT

INTRODUCTIGN TO BEARING STRESSES

INTRODUCTION TO DISCONTINUITY STRESSES

MEMBRANE STRESSES IN HEADS OF THIN CYLINURICAL PRESSURE VESSELS

MEMBRANE STRESSES IN SIMPLE THIN SHELLS OF REVOLUTION

MEMBRANE STRESSES IN THIN CYLINDERS

MEMBRANE STRESSES IN THIN SPHERES

NOMENCLATURE FOR WEARING STRESSES

SAMPLL PROBLEM - BEARING STRESSES IN RIVETED CONNECTIONS

SAMPLY PRUBLEM « CRIPPLING STRESS OF A COMPLEX SHAPE

SAMPLE PROBLEM = CRIPPLING STRESS OF PRESSURIZED SIMPLE THIN CYLINDERS IN TORSION
SAMPLE PROBLEM « CRIPPLING STRESS OF ROUND TUBES

SAMPLE PROBLEM = OISCONTINYITY STRESSES IN PRESSURE VESSELS WITH CONICAL HEADS
SAMPLE PROBLEM = DISCONTINUITY STRESSES IN PRESSURE VESSELS WITH FLAT HEADS
SAMPLE PRUBLEM « ELASTIC STRESS AND VEFGRMATION OF CYLINDER ON CYLINDER

SAMPLE PRUBLEM - MEMBRANE STRESSES IN THIN CYLINDERS AND SPHERES

STRESSES DUE TU PRESS FIT BUSHINGS

STRESSES I SIMPLE CYLINDRICAL PRESSURE VESSELS DUE TO SUPPORTS .
STRINGER ’ .

THIN CYLINDRICAL PRESSURE VESSELS WITH RINGS UNDER INTERNAL PRESSURE (STRINGERS OPTIONAL)
STRINGERS .

SAMPLE PROBLEM « THIN CYLINDRICAL PRESSURE VESSELS WITH STRINGERS UNDER INTERNAL PRESSURE

THIN CYLINDRICAL PRESSURE VESSELS WITH STRINGERS UNDLR INTERNAL PRESSURE
SUPPORT .
REACTION FORCES ARD MOMENTS ON BEAMS WITH ONE FIXED END ANU ONE PINNED SUPPORT

SAMPLE PRUBLEM - REACTIONS ON BEAM WITH ONE FIXED AND ONE PINNED SUPPORT

STRESSES IN SIMPLE CYLINDRICAL PRESSURE VESSELS DUE TO SUPPORYS
TANG .
LUG TANG STRENGTH FOR DOUBLE SHEAR JOINTS UNDER UNIFORM AXJAL LOAD
STRENGTH OF LUG TANGS IN AXIALLY LOADED LUGS WITH LESS THAN S5 PCT ELONGATION .
TANGENT .

SAMPLE PRUBLEM - USE OF TANGENT MUDULUS EQUATION FOR CONCENTRICALLY LOADED SHORT COLUMNS
TANGENT MODULUS' EQUATION

TAPERED
SINGLE CELL NONCIRCULAR TAPERED CLOSED BEAMS IN TORSION

. STEPPED ANL TAPERED COLUMNS

TENSILE
CYCLIC TENSILE LOADING OF BARS
SAMPLE PROBLEM « BAR UNDER CYCLEC TENSILE LOAD
SAMPLE PROBLEM ~ BAR UNDER STATIC TENSILE LOAD
STATIC TENSILE LOADING OF BARS

TENSION .
ALLOWABLE STRESSES IN THE UPRIGHTS OF A PARTIAL TENSION FIELD BeAM
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INTRODUCTION

This introduction serves a threefold purpose: (l) it summarizes the
eleven chapters making up this manual; (2) it references several publications
which contain related information; and (3) it lists the nomenclature most
commonly used in the chapters.

CHAPTER SUMMARIES

Chapter 1 ~ Beams

Section 1.3 of this chapter presents the method of analysis for simple,
shear web, and partial-tension-field beams in bending, as well as methods
of determining the reactions on statically indeterminate beams. Section 1.4
treats beam columns, and Section 1.5 covers beams in torsion including
helical springs.

Chapter 2 - Column Analysis

Section 2.2 of this chapter treats primary bending and torsional failure
as well as crippling failure of columns of uniform cross section. Stepped and
tapered columns are treated in Section 2. 3, and the material on beam columns
is in Chapter 1.

Chapter 3 - Bar Analysis

This chapter treats bars in tension with emphasis upon the effect of
stress raisers.

Chapter 4 - Trusses

Section 4.3 of Chapter 4 gives methods of determining the stresses and
deflections of statically determinate trusses, and Section 4. 4 treats statically
indeterminate trusses.

Chapter 5 - Frames and Rings -

This chapter gives a general treatment of frames composed of straight
elements of uniform cross section, in addition to particular solutions for
various simple frames and circular rings under several types of loadings.

Chapter 6 - Plates

Methods for determining the critical buckling stress of both flat and
curved plates with and without stiffeners and having various loadings are
given. Charts and curves covering most common loadings and supports
facilitate analysis.




Chapter 7 - Membranes

Circular, square, and rectangular membranes under uniform pressure
are treated in this chapter.

Chapter 8 - Pressure Vessels

Section 8. 3 treats thin pressure vessels both with and without stiffeners.
Stresses due to supports as well as membrane and discontinuity stresses are
considered for thin pressure vessels without stiffeners. The analysis of thick
"pressure vessels is considered in Section 8.4, and glass fiber pressure
vessels are briefly discussed in Section 8. 5.

Chapter 9 - Lug Analysis

This chapter presents methods of analyzing lugs and their pins and
bushings under various loading angles.

Chapter 10 - Shafts

The analysis of power transmission shafting is presented for circular
shafts. Methods for treating discontinuities such as keyways, grooves, holes,
and steps are given. A general design equation is presented to facilitate
analysis.

Chapter 11 - Bearing Stresses

This chapter treats bearing stresses in riveted joints as well as those
between elastic bodies of various shapes. Formulas are also given for the
deformations of elastic bodies in contact.

REFERENCES

The following references are given to aid the reader in finding other
treatments of the work contained in this manual. It is evident that a work
of this nature owes a great deal to previous works. In particular, the
editors wish to acknowledge the kind permission of the Frederick Ungar
Publishing Company, 250 Park Avenue South, New York, N.Y. for the use
of material from the volume '"Handbook of Formulas for Stress and Strain"
(1966) by William Griffel. Much of the data in Chapters 6 and 8 was
derived from this handbook.
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NOMENCLATURE

The most commonly used nomenclature is presented here. Complete
lists of nomenclature are available at the beginning of each chapter.

area
1/2 the major diameter of an ellipse

plate length

linear dimension as indicated in diagrams
subscript, allowable

subscript, allowable

subscript, axial

ductility factor for lugs with less than 5% elongation
1/2 the minor diameter of an ellipse

plate width

linear dimension as indicated in diagrams
effective bearing width

subscript, bending

subscript, bearing

centroid

coefficient of constraint for columns
numerical constant

torsion - bending coefficient

rivet factor

1/2 the minor diameter of an ellipse
distance from neutral axis to extreme fiber
linear dimension as indicated in diagrams
subscript, compression

subscript, crippling

subscript, critical

D diameter

DF distribution factor

.mean diameter

linear dimension as indicated in diagrams
modulus of elasticity

reduced modulus

secant modulus

tangent modulus

eccentricity

strain

allowable stress

allowable stress for concentrically loaded column
allowable bending stress

allowable bearing stress

allowable ultimate bearing stress
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allowable yield bearing stress
allowable compressive stress
allowable crippling stress
allowable column stress (upper limit of column stress
for primary failure)
proportional limit in compression
critical stress

compressive yield stress
allowable web shear stress
crippling stress in shear
critical buckling stress
allowable ultimate shear stress
yield stress in shear

yvield stress in tension
fixed-end moment

factor of safety

calculated stress

calculated bending stress
calculated bearing stress
calculated compressive stress
calculated shear stress
calculated tensile stress
modulus of elasticity in shear
horizontal reaction

height

horsepower

moment of inertia

polar moment of inertia
subscript, inside

torsion constant

" polar moment of inertia

a constant, generally empirical

radius of gyration

diagonal tension factor

a constant, generally empirical

length

effective length

moment

empirical constant in straight line column equation
number of cycles

empirical constant in straight line column equation
number of elements

factor of safety

empirical constant

subscript, outside

applied concentrated load

axial load

allowable load
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alternating load

crippling load

critical load

pressure or pressure difference
rivet spacing

subscript, polar

subscript, pressurized

statical moment of a cross section
shear flow

notch sensitivity factor

reaction force

radius or radius of curvature
stress ratio - f/F

radius

cylindrical or polar coordinate
subscript, radial

subscript, ring

subscript, rivet

tension force per inch on the edge of 2 membrane
distance measured along a curved path
subscript, shear

subscript, skin

subscript, stringer

torque

tensile force

thickness of pressure vessel head

thickness
subscript, tension
subscript, transverse o

subscript, ultimate
subscript, upright

shear force

vertical reaction
velocity

applied concentrated load
total load

potential energy

applied distributed load
width

subscript, web

force in redundant member of a truss
rectangular coordinate
rectangular coordinate
deflection

subscript, yield
rectangular coordinate
empirical constant

angle
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empirical constant

angle

increment or difference
deflection

strain

plasticity coefficient
cylindrical coordinate
angle or angular deflection
empirical constant

half wavelength of buckling
Poisson's ratio

torsional spring constant
elastic Poisson's ratio
plastic Poisson's ratio
Poisson's ratio

elastic Poisson's ratio
plastic Poisson's ratio
radius of gyration

density

summation

angle or angular deflection
angular deflection
empirical constant

angular velocity



1. BEAMS

1.1 ' Introduction to the Analysis of Beams

Beams under various loadings are considered in this chapter. Section 1.3
treats beams in bending while beams under combined axial and transverse loads
and beams in torsion are treated in Sections 1.4 and 1.5, respectively.

1.2 Nomenclature for the Analysis of Beams
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cross-sectional area

area of moment diagram

constant of integration

width of the larger leg of an angle section
cross-sectional area of tension or compression flange
cross-sectional area of upright or stiffener

effective cross-sectional area of upright or stiffener
1/2 the major diameter of an ellipse

linear dimension
ds
T

v Ely h2/4 GJ for anI beam of depth h

distance from the left end of a span to the centroid
of its moment diagram

width of the smaller leg of an angle section
constant of integration

1/2 the minor diameter of an ellipse

width of section

developed length of thin section

linear dimension

subscript, bending

distance from the right end of a span to the centroid
of its moment diagram

centroid of moment diagram

stress concentration factors

rivet spacing - rivet diameter)

rivet factor ( - -
rivet spacing

distance from neutral axis to extreme fiber

linear dimension

distance from neutral axis of flange to the extreme
fiber of flange

subscript, critical

diameter

inside diameter

outside diameter

linear dimension

stiffener spacing
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E = modulus of elasticity

distance from centroid of upright to web

= subscript, effective

allowable crippling stress of upright

= column yield stress (allowable column stress at
L%/p =0)

= allowable column stress

ultimate allowable compressive stress for natural

crippling

¥ = ultimate allowable compressive stress for forced

crippling

F,’ = reduced ultimate allowable compressive stress for
forced crippling

= allowable web shear stress

= reduced allowable web shear stress

= collapsing shear stress for solid unstiffened webs
critical (or initial) buckling stress

= torsional modulus of rupture

ultimate stress in pure shear

yield stress in pure shear

ultimate tensile stress

= subscript, flange

calculated primary bending stress

calculated compressive stress at the centroidal axis

of the upright

= calculated critical compressive stress

i, = calculated stress in flange due to the horizontal component

of diagonal tension in a partial tension field beam

o
)

ce

hy
]

co

ool

T =
I

nax

[ ]

g g g g g e b

o d
=

Mo thoo
ft o

esnt

£, = calculated shear stress

= secondary bending moment in flange

£, = calculated average compressive stress in upright

fimax = calculated maximum compressive stress in upright

G = modulus of elasticity in shear

h = height or depth - height of shear web beam between
centroids of flanges

I = moment of inertia

I, = average moment of inertia of beam flanges

L = polar moment of inertia

I, = required moment of inertia of upright or stiffener
about its base

I, = moment of inertia of upright or stiffener about its base

' = subscript, inside

J = torsion constant

= a constant

1 -2




>

- o
o e ]

-

"5 g RERRERELER

ORI B VI o R

2 00

9, ,
9

H

-

n n N+ A"
o

nax

AT EEl

ot oo
- o

[

[ B o S o SR o o

c

diagonal tension factor

length

effective length of beam

applied bending moment

critical moment

fully plastic bending moment
secondary bending moment in flange

bending moment due to transverse loads alone

bending moment at the onset of yielding
coefficient given by Figure 1-8
number of active spring coils
constant given in Section 1,3.1.6
subscript, outside
applied. concentrated load
axial load
upright end load
rivet spacing
pressure
statical moment of cross section - J‘ vdA
1
shear flow
beam shear at a distance of 2h/3 from the beam end
shear load of web to flange rivets (lb/in.)
tension load on web to upright rivets (lb/in.)
increased tension load on web to upright rivets (1b/in.)
reaction '
radius
subscript, rivet
inside radius
outside radius
tension force on edge of membrane (1b/in.)
distance measured along curved path
distance from centroidal axis to point of application
of load
subscript, shear

-torque

maximum allowable torque
thickness

subscript, tension
effective thickness

flange thickness

skin thickness

thickness of closed stiffener
upright thickness

web thickness

L £ for beam column
\/ EI
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c
1

developed length of elongated section
= subscript, ultimate

= subscript, upright

= shear force

concentrated transverse load

= distributed transverse load

= subscript, web

rectangular coordinates

= deflection of beam due to bending
= subscript, yield

= angle of diagonal tension

£ 5 <°°
n

< K=
=
N
i

= coefficient given by Table 1-14

= coefficient given by Table 1-14

= spring deflection

portion of spring deflection due to direct shear
= plasticity coefficient

= radius of gyration

slope of beam

= summation

Moo I3 oo™ Q-«
1

1.3 Introduction to Beams in Bending

For the purposes of discussion, beams in bending are divided here into
simple beams (Section 1.3.1) and shear web beams (Section 1.3.2). Shear
web beams are further subdivided into shear resistant beams and partial
tension field beams. If a beam is statically indeterminate, Section 1.3.4
must be consulted in order to determine the reaction forces and moments.
Otherwise, the equations of statics may be used to determine the reactions.

1.3.1 Simple Beams in Bending

Simple beams in elastic and plastic bending are treated in Sections
1.3.1.1 and 1. 3. 1. 3, respectively, while the possibility of lateral instability
of deep beams in bending is treated in Section 1.3. 1. 5.

'1.3.1.1 Simple Beams in Elastic Bending

This section treats simple beams in bending for which the maximum
stress remains in the elastic range.

The maximum bending stress in such a beam is given by the formula

g, = Me (1-1)
I .
while the shear flow is given by va
9= (1-2)

1 -4




where Q = IA ydA. The use of these equations is illustrated in Section 1. 3.2, 2.
1

The vertical and angular displacements of a simple beam in elastic
bending are given by Equations (1-3) and (1-4), respectively, where A and B
are constants of integration.

y= ([ M ax?+ax+B (1-3)
24 EI

e:__dyzf._M_dx+A (1-4)
dx El ‘ |

1.3.1.2 Sample Problem - Simple Beams in Elastic Bending

Given: The cantilever beam shown in Figure 1-1.

y 50 1b.
1 in. square aluminum bar
I=0.0833

-

- 20

AW
!

Figure l-1. Cantilever Beam in Bending

Find: The maximum bending and shear stresses.

Solution: From the equations of statics, the shear and moment
diagrams in Figure 1-2 may be obtained.

vV i
50

V = 50.

— X -~

M &

— X

M = 50x - 1000

-1000

Figure 1-2. Shear and Moment Diagrams for the
Beam in Figure 1-1
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Since c and I are constant along the beam, the maximum bending
stress occurs at the point of maximum bending moment; and from
Equation (1-1),

Mc _ -1000(0. 5)

f. = =
b 1 0.0833

= 6,000 psi

Q may be computed at a distance ¥y, from the neutral axis by
considering the bearm cross section shown in Figure 1-3:

2
1 1 v

Q=f ydA:f y () dy =4 -

A

1 Y1

Q is maximum at yp =0 where Q = 1/2. Thus, the maximum
shear flow occurs at the neutral axis and is given by Equat1on
(1-2) a

_ VO _ 50(0. 5)
q=-3 = 5.0833 300 1b/in.

The maximum shear stress is thus,

300 1b/in. = 300 1b/in. 2
1l in. :
v A
Iy 1

) neutral axis
NN :
Y1 i

l

Figure 1-3. Cross Section of Beam

1.3.1.3 Simple Beams in Plastic Bending

In some cases, yielding of a beam in bending is permissible. If
the beam material may be considered to be elastic-perfectly plastic, the
bending moment at failure is given by

M, = k My (1-5)

where M, is the moment that causes initial yielding of the extreme fibers
and K is the shape factor given in Table 1-1.
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TABLE 1-1

Values of the Shape Factor, K

Scction

o—=0

| thin
walled

0O

=

1.0% 1.

w
~
<

1.70

1.27(1.. ‘;)

* All mass is assumed to be concentrated at the centroids of the flanges.

1.3.1.4 Sample Problem - Simple Beams in Plastic Bending

Given: The simply supported beam shown in -Figure 1-4,

20

P

20

\- 2x1 C1045 Annealed Steel Bar

F, = 55,000 psi, 1= 0.666 in.%

Figure 1-4. Simply Supported Beam in Bending

Find: The load, P, that causes fully plastic bending.

g+
J T

Solution: Rearranging Equation (1-1) and replacing the bending
stress with the yield stress gives

FJl  55000(0.666)

= 36, 600 in. /1b.

Inserting the value of K from Table 1-1 into Equation (1-5) gives

M, = KM, =

1.5 (36,600) = 54, 900 in. /1b.

From statics, the maximum moment on the bar is 10P. Thus,

for fully plastic bending,

P = Ve = 5,490 1b.




1.3.1.5 Introduction to Lateral Instability of Deep Beams in Bending

Beams in bending under certain conditions of loading and restraint
can fail by lateral buckling in a manner similar to that of columns loaded in
axial compression. However, it is conservative to obtain the buckling load
by considering the compression side of the beam as a column since this
approach neglects the torsional rigidity of the beam.

In general, the critical bending moment for the lateral instability
of the deep beam, such as that shown in Figure 1-5, may be expressed as

KVEI GJ
M, — (1-6)
where J is the torsion constant of the beam and Kis a constant dependent on
the type of loading and end restraint. Thus, the critical compressive stress
. is given by
M,. ¢
fo, = I—— (1-7)

X
where c is the distance from the centroidal axis to the extreme compression
fibers. If this compressive stress falls in the plastic range, an equivalent
slenderness ratio may be calculated as '

L’ e :
Cm)=r o o-e
; d
\bk .
¢

Figure 1-5. Deep Rectangular Beam
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The actual critical stress may then be found by entering the column curves

of Chapter 2 at this value of (L.“/p). This value of stress is not the true com-
pressive stress in the beam, but is sufficiently accurate to permit its use as
a design guide.

| - 1.3.1.6 Lateral Instability of Deep Rectangular Beams in Bending

The critical moment for deep rectangular beams loaded in the
elastic range loaded along the centroidal axis is given by

M,, = 0.0985 K_E (‘3_314_*1.) (1-9)

where K, is presented in Table 1-2, and b, h, and L are as shown in Figure
1-5. The critical stress for such a beam is

£, = KE (%) (1-10)

where K 1is presented in Table 1-2.

If the beam is not loaded along the centroidal axis, as shown in
Figure 1-6, a corrected value K;* is used in place of K; in Equation (1-10).
This factor is expressed as

\ (1-11)

Ke” = K (1-n)

3
L
where nis a constant defined below:

(1) For simply supported beams with a concentrated load at mid-
span, n = 2.84.

(2) For cantilever beams with a concentrated end load, n = 0. 816.
(3) For simply supported beams under a uniform load, n = 2. 52.

(4) For cantilever beams under a uniform load, n = 0, 725.

Note: s is negative if ' i‘ .
the point of appli- __L____ / ;:?strmdal
cation of the load s )
is below the cen- ’ -
troidal axis.

-
Figure 1-6. Deep Rectangular Beam Loaded at a Point Removed
- from the Centroidal Axis

1 -9




Constants for Determining the Lateral Stability of Deep

TABLE 1-2

Rectangular Beams in Bending

Type of Loading and Constraiat

Case Kf Km
Side View Top View '
/'ll - —N E‘ 4
1 { 1y, _‘@%— 1.86 3.1
% L . /A
2 |- - A\ eyl 3.71 | 6.28
|
\J )/ ’ :
~ "‘—Lﬁ_’l
3 J\{ - I & &F——3—13.71 [6.28
P L/2—=
r %L/~
4 | - ) T 5.45 | 9.22
lllll;i:l]l]lT
5 | —] L‘“L”-*- — - ———=8—12.09 | 3.54
| ARRERERRNEERRE Y,
6 _.;uu_uuw_... - _ 361 |6.10
IHENEESEAREERRR -
7 EREINREY —_— ‘% 4.87 8.24
]
8 { 1 i ——&5—5&— 2.50 | 4.235
T )
41 7
9 i i ] /i e 1382 | 6.47
; 7 17 — ¥
[
10 iT L ‘} =8 |6.57 |11.12
i ) ] ? 7
n | * ] * 7.74 [13.1
/s
e |
12 » ; =3 |3.13 | 5.29
2 1 X 7 2
13 4 1 R - 3.48 | 5.88
a ; . 2
7 e L —4
14 *52' = —+ ————12.37 | 4.01
7 4—— L —-
15 ﬁ;r - - -?—‘Q 2.37 | 4.01
7 [o TN
/I NREREARARENI 7
17 | —3 N ey —% =—————|3.80 | 6.43
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TABLE 1-2

Constants for Determining the Lateral Stability of Deep
Rectangular Beams in Bending (concluded)

Ky = Kf/. 591

3.0} \

1.0 710 20 T30 20 50
c/L

1.3.1.7 Lateral Instability of Deep I Beams

Figure 1-7 shows a deep I beam.

¢

Figure 1-7. Deepl Beam - .

~The critical stress of such a beam in the elastic range is given by

wem(B)(BPE

x

where K; may be obtained from Table 1-3, and a is given by
a= V\EL h*/4GJ (1-13)
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e

where J is the torsion constant of the I beam. This constant may be approxi-
mated by

T=1/3@2bt > +ht,>) (1-14)

This method can be applied only if the load is applied at the centroidal axis.

TABLE 1-3

Constants for Determining the Lateral Stability of I-Beams

Type of Loading and Constraint

Case - KI s
- Side View Top View

Ny _ A E 2L (g
| &=——3 | =

\
: _ W = ®
\\ - L - \

. N
3 1 —1—6—- (E)
) i —— b——= :
R e
4 &:ﬁ 3z F)

#* Use Figure 1-8 to obtain m

PPl
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40

30 Case 4
20 !
\ Case 2
EE=
o
o VT VI
X \\ \ T\
L 4 \ , \\
a 3 \ . \ \
\ \ J \\
2 \ \\ N\ \\
NI .
1 O \, \ \\
: N\
. Nd—\ N
6 \\ \ N,
:5 \ \\\ Case 3 N
4 A
3 :Ca se1 1 \\
3 4 56 8 10 20 30 40 5060 80 100
m '
Figure 1-8. Values of m for Table 1-3
1.3.2 Introduction to Shear Web Beams in Bending

—~

The most efficient type of beam is one in which the material resist-
ing bending is concentrated as near the extreme fiber as possible and the
material resisting shear is a thin web connecting tension and compression
flanges. The simplifying assumption that all the mass is concentrated at the
centroids of the flanges may be made for such beams, thus reducing the
simple beam formulas to f, = M/A;h for bending and to f, = V/ht for shear.
The flanges resist all bending and the web resists all shear.

These beams are divided into two types, shear resistant and partial
tension field beams. The webs of shear resistant beams resist the shear load

1 .13




without buckling, and the webs of partial tension field beams buckle at less
than the maximum beam load.

1If/V/h is less than seven, the use of a partial tension beam is
recommended on the basis of weight economy; and the use of a shear resis-
tant beam is recommended if / V/h is greater than eleven. If 7</V/h<l1l,
factors other than weight will determine the type of beam used.

1.3.2.1 Introduction to Shear Resistant Beams in Bending

If the web of a shear resistant beam is sufficiently thin, the sim-
p11fy1ng assumption that all the mass is concentrated at the centroids of the
flanges may be made. This reduces the simple beam formulas to

M
f = 2 1-15
*  Ah ( )
for bending, and
Vv q ‘
f =2 =9 1-16)
8 ht t (

for shear. The flanges resist all of the bending and the webs resist all of
the shear. Unstiffened shear resistant beams are discussed in Section
1.3.2.2 while stiffened shear resistant beams are treated in Section 1. 3.2. 3.

1.3.2.2 Unstiffened Shear Resistant Beams in Bending

Both the web and flanges of an unstiffened shear resistant beam
must be checked for failure. The flange is generally considered to have
failed if the bending stress in it exceeds the yield stress of the material,
although bending in the plastic range may be used if some permanent set can
be permitted.

The web must be checked for ultimate load as well as for collapse.
If the web is not subject to collapse, the allowable average stress at ultimate
load, F,, will be either 85% of the ultimate strength in shear or 125% of the
yield strength in shear. Figure 1-9 gives the collapsing stress for two alumi-
num alloys. It should be noted that for thinner webs (h/t > 60), initial buck-
ling does not cause collapse.

In conclusion, the required thickness of a thin unstiffened web is

given by
t= Y (1-17)
hF,
or
bt | (1-18)
thcoll
whichever is larger.
1«14
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Figure 1-9, Collapsing Shear Stress, ¥ for Solid Webs of 245-T

and 755-T Alclad Sheet

sooll’

1.3.2.3 Stiffened Shear Resistant Beams in Bending

The vertical stiffeners in a shear resistant beam resist no com-
pressive load, as is the case for tension field beams, but only divide the web
into smaller unsupported rectangles, thus increasing the web buckling stress.
The flange web and rivets of such a beam must be analyzed.

1.3.2.4 Flanges of Stiffened Shear Resistant Beams

The flanges of a stiffened shear-resistant beam must be checked
for yielding or ultimate strength by means of Equation (1-15) as in the case of
unstiffened shear resistant beams. i

1.3.2.5 Webs of Stiffened Shear Resistant Beams

The web panel of a stiffened shear-resistant beam must be checked
for strength as well as for stability.

The strength of such a web may be checked by Equation (1-16) as
‘ in the case of unstiffened shear resistant beams, and the stability of such a
beam may be checked by Equation (1-19) in conjunction with Figures 1-10
through 1-16.
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SAMPLE PROBLEM 1.3.2.7

KS = 6.9
t = 081 in.
L2 = 6 e
F = 10x10
S€r = K .E (_t_) ‘ X psi
n d d = 6in.
SCr . 12,500 psi
n

Figure 1-11. Nomograph for Critical Buckling Stress (Equation 1-19)
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Critical Buckling Stress - Ksi

sSCr
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Figure 1-12. F__ versus F__./n for Alloy Steel

sor sor
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Figure 1-13. F,, versus F,../n for Stainless Steel
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Figure 1-15. F,, versus F,q./n for 6061-T6 Sheet and Plate
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The critical buckling stress of a web panel of height h, width d,
and thickness t, is given by

IP .
1;“ = KE/_d— (1-19)

In this equation, K, is a function of d/h and the edge restraint of the web panel.
Figure 1-10 relates K, to d/h and I, /ht3.  Once K, has been found, F,_  /n may
be obtained from the nomogram in Flgure 1-11. F’cr may then be found from -
Figures 1-12 through 1-16. It should be noted that the moment of inertia of
the stiffener, I, for Figure 1-10 should be calculated about the base of the
stiffener (where the stiffener connects to the web). Also, the modulus of

elasticity of the web has been assumed to be equal to that of the stiffeners.

1.3.2.6 Rivets in Shear Resistant Beams

Rivets are required to fasten the web to flange in shear resistant
beams. In addition, rivets are used to fasten the web to the stiffener and the
stiffeners to the flange in stiffened shear resistant beams.
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1.3.2.6.1 Web-to-Flange Rivets in Shear Resistant Beams

The spacing and size of web-to-flange rivets should be such that
the rivet allowable (bearing or shear) divided by q x p (the applied web shear
flow times the rivet spacing) gives the proper margin of Safety. The rivet
factor, C, (rivet spacing - rivet diameter/rivet spacing), should not be less
than 0.6 for good design and in order to avoid undue stress concentration.

1.3.2.6.2 Web-to-Stiffener Rivets in Shear Resistant Beams

. No exact information is available on the strength required of the
attachment of stiffeners to web in shear resistant beams. The data in Table
1-4 is recommended.

TABLE 1-4

Recommended Data for Web-to-Stiffener Rivets
in Shear Resistant Beams

Web Rivet Rivet
Thickness, in. Size Spacing, in.
.025 AD 3 1.00
.032 AD 4 1.25
. 040 AD 4 1.10
.051 AD 4 1.00
.064 AD 4 .90
.072 AD 5 ' 1.10

.081 AD 5 1.00
.091 AD S5 .90
. 102 . DD 6 1.10
. 125 DD 6 1.00
. 156 DD 6 -90
.188 DD 8 ‘ 1.00
1.3.2.6.3 Stiffener -to-Flange Rivets in Shear Resistant Beams h

No information is available on the strength required of the attach-
ment of the stiffeners to flange. It is recommended that one rivet the next size
larger than that used in the attachment of stiffeners to web or two rivets the
same size be used whenever possible.

[

1.3.2.7 Sample Problem - Stiffened Shear Resistant Beams

Given: The beam shown in Figure 1-17 made of 755-T6 Alclad.
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stiffener moment of inertia
about base, 1=0.0175

oo d = 6 s

o}

8550 1b.

f

10 x 106 psi

’- 1 - - . . . - . . . . . - -~ a .
bk . ——— e~
£ > .2 —

. . I v
: ) : .
) : a

LFIange L web thickness, t = 0.081 in.

web-to-flange rivets,
AD5 at spacing p = 0.625 in.

Figure 1-17. Stiffened Shear Resistant Beam

Find: The margin of safety of the web and the load on each web

to flange rivet.

Solution: From Equation (1-16) the web shear stress is given by

f =V . _ 8550 _ 1y 720 psi
s “ht 9(0.081)

d :_6.__ = 0667
9
and

I .
o __0.0175 _'3 ¢¢

ht3  9(0.081)3

-~

From Figure 1-10, K‘ = 6.9. From Figure 1-11, F."/n = 12, 500 psi.
From Figure 1-14, F, = 12,500 psi.

Since the critical buckling stress of the web is less than the yield
stress, the most likely type of failure is buckling. Thus, the
margin of safety of the web may be given by

F
M.S. = _*°° _ 1 =12500 ;4 g4
£ 11720
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The load per web-to-flange rivet is

qxp = -‘{1— p= 85950 (0. 625) = 594 1b.
1.3.3 Introduction to Partial Tension Field Beams in Bending

A tension field beam is defined to be one for which the web is in-
capable of supporting any compressive load, and thus buckles upon applica-
tion of any load, and the web of a stiffened shear resistant beam is designed
so that it will not buckle. The web of a partial tension field beam is capable
of resisting compressive loads, but buckles at a load less than the ultimate
beam load. The vertical stiffeners in a partial ‘tension field beam serve to
resist a compressive load and also increase the web buckling stress by
dividing the web into smaller unsupported rectangles.

The curves given for partial tension field beams give reasonable
assurance of conservative strength predictions provided that normal design
practices and proportions are used. The most important points are:

(1) The ratio of the thickness of the uprights to that of the web, tu/t,
should be greater than 0. 6.

(2) The upright spacing, d, should be in the range 0.2 <d/h<1.0.

{3) The method of analysis presented here is applicable only to
beams with webs in the range 115 < h/t < 1500.

In the following preéentation, it is considered sufficiently accurate to take the
distance between flange centroids, h, as the web height and upright length.

The methods of analysis of the web, uprights, flanges, and rivets
of partial tension field beams are given in the following sections. The end
of a partial tension field beam must be treated differently and is covered in
Section 1.3.3.9. If a partial tension field beam has access holes, it should
be treated according to Section 1. 3. 3. 14.

1.3.3.1 Webs of Partial Tension Field Beams

The web shear flow and shear stress of a partial tension field beam
are given to a close degree of approximation by Equations (1-20) and (1-21):

q:.Vh_ (1-20)
v
£ =9 = _V 1-21)
¢ t ht (
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The diagonal tension field factor, k, of a partial tension field beam specifies
the portion of the total shear that is carried by the diagonal tension action of
the web. This factor can be found from Figure 1-18 as a function of the web
shear stress, f,, and the ratios d/t and d/h. This curve is based on the
assumption that the shear panel has simply supported edges. The accuracy,
however, is sufficient for tension field beams whose webs have varying .
degrees of edge restraint. It is recommended that the diagonal tension fac-
tor at ultimate load satisfy the following inequality:

1/2

"k<0.78 - (t - 0.012) (1-22)

This criterion is presented in tabular form in Table 1-5.

TABLE 1-5

Tabular Presentation of Equation (1-22)

.0201.025 1.0321.040{.051 |.064 |.072 [.081 {.091 }{.102|.125 {.156 |.188 |.250

18-1-0.012)72 | 69 |67 |6 [.e1 |58 lss |.s3 |.s2 .50 .48 |41 [La0 |36 |29

The allowable web shear stress, F,, can be obtained from Fig-
ure 1-19 for 755-T6 or 245-T4 aluminum sheet. These values are based
on tests of long webs subjected to loads approximating pure shear and con-
tain an allowance for fthe rivet factor, C,. The allowance for rivet factor
is included because the ultimate allowable shear stress based on the gross
section is almost constant in the normal range of the rivet factor (C, > 0.6).
The values of F, are given as a function of the stress concentration factor,
Cp, which can be found from Figure 1-20 as a function of h/t, d, and I,.
The higher values of C, are largely theoretical, but a few scattered tests
indicate that the values of C, become 1ncreas1ng1y conservative in the
higher ranges.

1.3.3.2 Effective Area of the Upright of a Partial Tension Field Beam

The total cross-sectional area of the uprights for double or single
uprights is designated as A . In order to make the design charts apply to
both single and double uprights, the followmg effective upright areas, A
are to be used in the analysis,.

ue’

For double uprights, symmetrical with respect to the web,

A, =A (1-23)

us u
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For single uprights,

A 2y
“—1.4}-(-6—-\2
p.~/

where p is the radius of gyration of the stiffener and e is the distance from
the centroid of the stiffener to the center of the web. If the upright itself
has a very deep web, A, should be taken to be the sum of the cross-
sectional area of the attached leg and an area 12 tu2 (i. e., the effective
width of the outstanding leg is 12 times t ).

(1-24)

The properties of standard extruded angles commonly used as
uprights may be obtained from Table 1-6.

1.3.3.3 Design Criteria for the Uprights of a Partial Tension Field Beam

The uprights or web stiffeners of a partial tension field beam must
have a sufficient moment of inertia to prevent buckling of the web system as a
whole before formation of the tension field, as well as to prevent column
failure under the loads imposed on the upright by the tension field. The up-
right must also be thick enough to prevent forced crippling failure caused by
the waves of the buckled web. This forced crippling failure is almost always
the most critical.

1.3.3.4 Moment of Inertia of the Uprights of a Partial Tension Field Beam

The required moment of inertia of the upright about its base (the
surface attached to the web) is given in Figure 1-21 as a function of ht3 and
d/h. These curves are essentially derived by equating the critical buckling
stress of the sheet between the stiffeners to the general instability stress of
the web as a whole.

1.3.3.5 Computed Stresses in the Uprights of a Partial Tension Field Beam

The lengthwise average stress in the upright at the surface of ~
attachment to the web, fu, may be obtained from Figure 1-22 as a function
of k, A, /td, and f, as

f, = £, (£,/£,) (1-25)
The upright stress varies from a maximum at the neutral axis of the beam
to a minimum at the ends of the upright. The maximum stress, £, may

be obtained from Figure 1-22 as a function of k, d/h, and f, as

/£,) o (1-26)
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TABLE 1-6

Properties of Standard Extruded Uprights

x Oy
--7 -~
Tf——"w
1
g ty
A
+ - ¥ Oy
k——_\ y
2 , y
f
B \

v om R . -
Baedy = 7 &l ) Baels = 3 W
Angle - Equal Leg, Extruded

Po. 1,
A ty Ay or or A“e
Foy Iy
500] . 063 L0582 }.147 .0025 |.0297
.063 -0749 | .186 .0C49 {.0400
.625) .078 .0908 |.185% L0080 |.0467
. 094 1968 | . 181 .0071 |.0525
.063 .0908 {.227 L0085 .04938
L7501} .094 .130 |.220 L0123 |.0665
L1256 .167 .216 .0163 |.0802
.063 . 107 .265 .0135 }.0597
.875] .094 .154 .262 .0179 |.0819
.125 .198 .256 .0259 ].0999
.063 .128 {.302 .0205 |{.0735
1.6201 .094 183 . 296 .0296 {.0989
dazs 235 [.293 | .0373 j.12!
.063 .159 383 .0399 {.0932
1.2501.094 230 .379 L0588 1.129
L1235 . 298 2373 L0773 §.160
. 188 427 .362 -1139 {.210
.063 .191 . 464 L0693 [.113
1.500] .094 277 . 460 L1024 {.158
125 360 .45 . 1343 1.199
.188 521 443 .1989 |.268
.094 330 .53 L1627 {.198
1.750 128 .429 532 2154 {.249
. 188 .621 .521 .3180 }.329
L094 377 617 L2440 |.222
2.000 125 .49 612 .3217 |.28%
. 188 715 .601 L4768 {.388
- 250 924 -591 L6267 {.479
125 616 ST74 L6324 |.3%9
2.5901.183 .903 .762 . 9399 |.507
. 250 1.17 . 751 1.2345 25
‘ .18 1.09 . 924 1.6334 !.021
3.000( .252 1.42 .912 2.1476 |.788
L33 1 1.75 .aqc 2.6665 .932 .
- i

Angle - Unequal Leg, Extruced
A B i Ag o, I, W(Aue)y fo
.625 1 500f .030] .0535 -1931 .9039 f.0276 | . 1461 00195
750 | -3001 0830 L0739 .2355 L0085 }.0357].159] .0024%
6251 .063| .0818 1} .232) .0084 |.0427].181] .0ss84
.625] .063 | .0922} .274) .0136 |.0370[.177} .00457
.875 750} .063] .100 .j .270] .0136 }.0539!.221 00851
_{-t25} es 258 .0259 [.0872{.211{ .01639
.625] .063} .100 316 .0202 |.0494].170) .00486
c125) 184 | .304) .0388 |.0807].165] .0097i
1.000 ) .7501 .063] .108 313} .0203 }.0565].217] .00832
.125] .200 302} .0389 }.0937}.208} .01652
.875) .063) .116 310] .0203 |.0637).262| .01351
.094{ .167 | .305] .0297 [.0872{.257( .0199: |
L0631 .124 300} .0398 |.0616 |.209] .00854
.759] .094 1 .179 393 .0586 |.0845}.203} .01257
1.250 J125{ .231 387] .0767 |.104 |.200) .01678
.063] .139 394} .0398 |.07561{.298| .02034
1.000] .094] .202 389 | .0587 |.105 |.291| .02973
L1258 .262 3821 .0769 j.130 |.286] .03921
.750( .094 ] .204 476 1019 |.0927 | .194 .01266
L1251 . 264 465 .1337 [.114 {.191] .01697
.094 | .228 474 1620 |.1114 |.282] .03006
1.500 |1.000] .125) .295 468 1341 |.142 |.276) .03944
156 ) .361 |} .463] .1656 |.169 |.271) .04798
094] .251 ] .468 1021 {.135 }.372 05232
1.250! (125 .327 462! .1343 |.170 }.365] .0773
L1561 .400 557} .1662 }.201 1.360} .0956
1.000} .125] .327 553°1 .2140 {.153 |.269{ .0397
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1.500] .125] .389 5421 .2140 |.208 |.447 1347
156 | .478 537| .2655 |.248 |.441] .1666
1.000] .125] .358 | .637! .3212 |.162 |.261} .0399
156 .439 | .63i} .3970 ].193 }.236] .0493
125 ] .392 1 .643) .3217 |.195 3481 .0778
1.250] .156] .480 629] .3978 |.229 }.333| .0963
.188] .568 | .622| .4747 {.263 336 .1154
2.000 125 .423 | .62 3213 }.221 |.437 1348
1.500] .156] .519 €231 .3979 |.263 |.431 1672
.1881] .615 618] .4756 ].304 |.426] .1997
125( .454 | .623| .3215 [|.249 |.526]| .2147
1.750) . 156 .558 617] .3983 |.298 520 .2661
L1838 .662 611 .4761 |.344 514} .3181
1.250) .156] .558 796 .7822 |.252 |".326} .097)
L1881 662 | .790) .9369 }.292 321 1170
1.500] .156§ .597 | .795] .7827 }|.288 414 1677
L1884 .709 1 .789] .9371 |.334 | .409] .2009
2.80011.759) .155] 636 7911 .7828 {.324 |.503] .266%
L1881 .756 | .785] .9378 |.376 |.497] .3196
2.000| . 1561 .o81 | .783] .7843 |.363 |.s90] .3997
.188 | 809 777) .9391 [.421 | .s584| .479
2.250) .15} .720 | .776) .7841 {.398 | .679] .s572
. 188 .&56 7701 .9392 {.462 | .674] .684
1.500| .188| .809 936 11.6306 {.367 391) .202
250 [1.030 | .943;2.1344 |.458 | .381] .269
3.000[2.000| .185) .903 | .950]:.6305 {.451 576} .480
.250 (1. 17 2938 12.i394 §.564 5561 .629
i 2.500| .250 }1.30 Q27)2.1471 |.676 73411.239
: .313 41,60 L215]2.6647 .803 | .722}1.537
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1.3.3.6 Allowable Stresses in the Uprights of a Partial Tension Field Beam

The maximum upright stress, fmm, should be checked against an
allowable forced crippling stress, F , which is obtained from Figure 1-23.
If the upright has legs of unequal thickness, the thickness of the leg attached
to the web should be used to determine the ratio t,/t. In the case of double
uprights, f . should also be checked against the allowable natural crippling
stress of the flange.

The stress, f, should be no greater than the column yield stress,
F,, (the stress at L°/o = 0). The centroidal upright stress, foent = £, Aua/Au,
should be checked against an allowable column stress, F_,. F_ and F_,, can
be found from the column curves in Chapter 2.

For simplicity, the effective column length of the upright, h’, may
be taken as h, since this effect is rarely critical. However, the following
values of h” may be used if necessary:

h’ = h (1-27)

I 2 2d
1+ K (3'“ﬁ‘>

for double uprights, and

. (1-28)
for single uprights.

1.3.3.7 Flanges of Partial Tension Field Beams

The total stress in the flanges of a partial tension field beam is
the result of the superposition of three individual stresses: the primary
beam stress, f,, the compressive stress, f,, caused by the horizontal com-
ponent of the diagonal tension in the web, and the secondary bending stress,
f,,» caused by the distributed vertical component of the diagonal tension.

The primary beam stress is given by

£, = M | (1-29)

The compressive stresses due to the horizontal component of diagonal tension

is given by

~__kgh
£, = q!
* 7 2A,+0.5(1-Kk) th (1-30)

1 - 34




245-T ALUMINUM ALLOY

26, 000 k2/3 (tu/tyl/3 - Single Uprights
21, 000 k2/3 (ta/ty!/3 - Double Uprights

[ NEE— wﬁwwwa

:Ji‘_,

l’lnllllIllllllllllllllﬂ[ll lI]lll] ll T TT""P“‘F"‘I”"I”"P”ll“”l“”‘”””l”l] Tl ‘

OO"G)K‘-\D u'\ 'sf

[T To T - o o o — —

. . —

, ksi
Single
Uprights

O ON 0 -~ D W

g o © O 1~ O
-8 =
oo ™
LS
) O~ 0 ~ O n
~ o <t ) ~ — —~ 0 0 o © o
llllllllll‘llllll!lllllJl‘llllllllllllI|l | I | lllllllllllllllllllllllHJ
X
" "
(o] (o]
[CTR 1
® w
- :é :Ia
-g’o o0
. S T TN o iy Jrri i TR T T [ er T v vy 111
RoOA AL RARR i l I l'"l“"l'llll"l‘ l 1
©
5P . Qo R T p 2
>‘ ) 2 O w «ft o o - — .
— el
0 W g -
1 £ o a g 35
-1 wn &) s P o]
< ' ' p EDED
o el
= B 25
o)
- 2 0
e ~ -~ .
s} — — (=] [} (] [« [Te} oc»oo:s No} n < [N 3N
S0 ol = s X -
o) <<
j 2 2 ‘[5 , i
o O oie o o [T GO~ o W0 < )
S ~ <t o) o} — —
€L Yy B o2
A % 8=
IYsY o o O oo
~ o o -3
o €l a « oo & o 0
8 < ~ O 0 q- o b DN — ~ oo o ©
] . . e e e e
1 " l!llllllllllll||lul|llllllll||lillll|ll|l ‘nulnulnullullnd
o} o)
X
ST

1 - 35

Nomograms for Upright Forced Crippling Allowable Stress

Figdre 1-23,




where k is the diagonal tension field factor which may be found by referring
to Figure 1-18. The secondary bending moment due to the distributed vertical
component of diagonal tension is given by

1

2
Msb =-—1—-2—'-ka td C3 (1-31)

where C3is given in Figure 1-20. M,, is the maximum moment in the flange
and exists in the portion of the flange over the uprights. If C3 and k are near
unity, the secondary bending moment in the flange midway between the up-
rights is half as large as that given and of opposite sign. The secondary
bending stress is then
M,,
(1-32)

£ =
b (If \
—ee }
\ Cf /

where (I;/c,) is the section modulus of the flange. The total stress in the
flange is equal to £, + £, + f, .

1.3.3.8 Rivets in Partial Tension Field Beams

Three types of rivets must be analyzed in partial tension field
beams. These are web-to-flange rivets, web-to-upright rivets, and upright-
to-flange rivets.

1.3.3.8.1 Web-to-Flange Rivets in a Partial Tension Field Beam

The shear load per inch acting on the web-to-flange rivets
in partial tension field beams is given in Figure 1-24. The rivet factor, C,
should be greater than 0.6 to justify the allowable web stresses used in
Section 1.3. 3.1 and to avoid undue stress concentration.

1.3.3.8.2 Web-to-Upright Rivets in Partial Tension Field Beam

The tensile load per inch acting on the web-to-upright rivets
is given in Figure 1-25. This tensile load is a result of the prying action of
the buckled web. Although these loads reflect time-tested practice, they
should be considered only tentative because of the limited test data presently o
available. The tensile load criteria is believed to insure a satisfactory design
as far as shear strength is concerned.

1.3.3.8.3 Upright-to-Flange Rivets in a Partial Tension Field Beam

The shear load on the upright-to-flange rivets in a partial
tension field beam is given by .
P = quue (l_ 33)

u

where f is the average compressive stress in the upright and A, is the
effective area of the upright as given in Section 1. 3. 3. 2.
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1.3.3.9 Ends of Partial Tension Field Beams

The end of a partial tension field beam must be specially handled
since the web is discontinuous at the end and the tension component of web
stress must be transferred to the flanges in the end panel.

The following treatment is based on the assumption that the basic
beam shear, q, is constant over a length 2h/3 from the end of the beam.
When the basic beam shear, q, varies over this length, the terms (q+ 1. 5kq),
(q+ 1.0 kq), and (g kh/4A ) should be replaced by the terms (q + 1.5 kq"),
(@+1.0 kq"), and (q'kh/4A ), respectively, where q is the actual beam shear
at the point being considered, and q° is the beam acting at a distance 2h/3
from the end of the beam. ‘

1.3.3.10 Webs at the Ends of Partial Tension Field Beams

The web in one corner must carry a shear flow of q+1.5 kqg. If
reinforcement is necessary, a doubler of the dimensions shown in Figure 1-26
should be added to the web, resulting in a combined shear strength of g+ 1.5 kq.
This is usually necessary in one corner only. If the applied shear flow is oppo-
site to that shown in Figure 1-26, the doubler should be attached to the lower
corner of the web. The shear flow in the web in the corner not reinforced is

q - 1.5 kg, where q is the shear flow in the web at points removed from the end.

—*

h/2 1

doubler

=2

A}

~Figure 1-26. Doubler at the End of a Partial
Tension Field Beam

If the shear can act in either direction, double reinforcement may
be necessary. In general, the basic web is capable of carrying about a 60%

reversal of shear without double reinforcement.

1.3.3.11 Uprights at the Ends of Partial Tension Field Beams

The following stresses act simultaneously on the end stiffener of
a partial tension field beam:
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l. A compressive stress due to the vertical component of web
diagonal tension. This compressive stress varies from
(f, - fumx/Z) at either end to fumu/Z at the midp-oint of the
stiffener.

2. A compressive stress due to the variable shear flow along
the end stiffener. The equivalent shear flow distribution
curve is assumed to vary linearly from (q - 1.0 kq) at one
corner to {(q + 1.0 kq) at the other corner. This compressive
stress builds up from zero at either end of the stiffener to
kgh/4A, at the midpoint of the stiffener.

Thus, the maximum compressive stress in the end stiffener (exclusive of
additional external loads acting) is equal to

f
umzax + qkh (1_34)
4A,

This stress should be compared with the lower of F, or F,, for the upright
in computing the margin of safety,.

1.3.3.12 Rivets at the Ends of Partial Tension Field Beams

The doubler should be attached to the web in accordance with Table 1-7.
The diagonal edge of the doubler should be attached with a minimum of two
rows of rivets with a minimum distance between rows of four rivet diameters.
The strength of this attachment in lb/in. should be equal to the thickness of the
doubler times 30, 000 psi.

TABLE 1.7
Doubler-~to-Web Rivets

Doubler Gage Rivet Size Rivet Spacing -
.020 - .032 AD-4 1.5 in. on centers
.040 -~ .051 AD-5 2.0 in. on centers
.064 & greater DD-6 2.5 in. on centers
1 - 40



The web-to-flange attachment adjacent to the doubler must be strong
enough to carry a shear flow of (g + 1.5q) (1 + 0.414k) 1b/in. The other flange
attachment must carry a shear flow of q(l + 0.414k) ib/in.

The attachment of the end stiffener of a partial tension field beam to
the web must be strong enough to carry a shear flow of (q+ 1.5kqg)(1 +0. 414k)
1b/in. ir the region of the doubler and q(l +0. 414k) elsewhere.

1.3.3.13 Sample Problem - Partial Tension Field Beams

Given: The partial tension field beam shown in Figure 1-27.

web - 0.051 755-T6 Alclad

log———— d = 8§ ———
. q = 1250 1b. /in.

T

h=10

N N T T - Hp i m]
X—-— Flanges "1-25X1-25X0~188\—upright - 0.75x0.75%C.094

755-T6 angle 755-T6 angle

——. RS SRS TR SR

Figure 1-27., Partial Tension Field Beam with Single Uprights

- -

Find: The margins of safety of web and uprights and the rivet
loads. '

Solution: The method of obtaining the desired quantities is
summearized in Table 1-8.
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1.3.3.14 Partial Tension Field Beams with Access Holes

Figure 1-28 shows a partial tension field beam with access holes
of diameter, D. Such a beam may be analyzed in the same manner as one
without access holes except that the substitutions described in Sections
1.3.3.15, 1.3.3,16, and 1.3.3.17 must be made.

—

N S R B

L]

T v

r U

Figure 1-28. Partial Tension Field Beam with Access Holes

1.3.3.15 Webs of Partial Tension Field Beams with Access Holes

The method of analyzing webs, given in Section 1.3.3.1, should
be used for partial tension field beams with access holes except that the
allowable web shear stress, F,, must be replaced by a reduced allowable

web shear stress given by

. td (d-D)+A, DC
FS = FS r (G ) s

where the design reduction factors, Cy

2
Cg td

]

and Cg, are givenin Figure 1-29.

This method gives good correlation with tests if beamn parameters are in the

following ranges:

.020 in.
. 040 in.
.4 in.
.0 in.
.375 in.

- & o

N~

<
<
<
<
<

t < 0.132in.
t, < 0.079 in.
h < 19.4in.
d < 18.0in.
D < 5.875in.

1.3.3.16 Uprights of Partial Tension Field Beams with Access Holes

The method of analyzing uprights, given in Sections 1.3.3.2
through 1.3. 3.6, may be used for partial tension field beams with access
holes except that the forced crippling allowable, F_, should be replaced by
a reduced forced crippling allowable given by

F

(1-35)

(1-36)



0

w

1.0

0.8

0.6

0.4

Figure 1-29,

D‘lU

Design Reduction Factors Due to Access Hole
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1.3.3.17 Rivets in Partial Tension Beams with Access Holes

The method given in Section 1. 3. 3.8 for analyzing rivets may be
used for partial tension field beams with holes except that the tensile load on
the web-to-upright rivets, q,, should be replaced by an increased load given by

qt’:qt (l'l"%—) (1-37)

1.'3. 4 Introduction to Reaction Forces and Moments on Beams Under
Transverse Loading

Figure 1-30 shows a beam under transverse loading. Two equations
of equilibrium may be applied to find the reaction loads applied to such a beam
by the supports. These consist of a summation of forces in the vertical direc-
tion and a summation of moments. If a beam has two reaction loads supplied
by the supports, as in the case of a cantilever beam or a beam simply sup-
ported at two points, the reaction loads may be found by the equilibrium
equations and the beam is statically determinate. However, if a beam has
more than two reaction loads, as in the case of a beam fixed at one end and
either pinned or fixed at the other end, it is statically indeterminate and beam
deflection equations must be applied in addition to the equations of statics to
determine the reaction loads.

Figure 1-30. Beam Under Transverse Loading

. Section 1.3.4.1 presents a method for determining reaction loads
on beams fixed at one end and pinned at another point, and Section 1.3.4.3
treats reaction loads for beams fixed at both ends. Beams on three or more
supports are treated in Section 1. 3. 4. 5. -
1.3.4.1 Reaction Forces and Moments on Beams with One Fixed End and

One Pinned Support

Figure 1-31(a) shows a uniform beam with one fixed and one pinned
support. The following procedure may be used to determine the support reac-
tions on such a beam if its stresses are in the elastic range.

1. Split the beam at the pinned support as in Figure 1-31(5) and find
M, from the equations of statics.
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2. Consider the right section of the beam as a single beam simply
supported at both ends as in Figure 1-31(b). Find the moment
diagram for this beam as in Figure 1-31(c). A is the area of
this moment diagram and C is the centroid of this area.

NN

Figure 1-31.

m
L L2}
A
C
o
[4————'5-———-9
| '\MB

%RA rRB

Method of Determining Reaction Forces and Moments
on a Beam Fixed at One End and Pinned at One Point
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3. Find M, by the equation

_ -3Aa _ (1-38)

The evaluation of the first term of this equation may be facilitated
by the use of Table 1-10.

4. Evaluate R, and R; by applying the equations of statics to
Figure 1-31(d).

Once the support reactions have been determined, the moment and shear
diagrams may be constructed for the beam. If the pinned support is at the
end of the beam, M, may be set equal to zero.

1.3.4.2 Sample Problem - Reactions on Beam with One Fixed and One
Pinned Support

Given: The beam shown in Figure 1-32.

10 s L=20

l-——lO ——m———tod
500 1b. 500 ib. _
L~
L~
’ L~
>
AN . z
7%7 1 in. square aluminum bar [~
‘ -
E =10x107 :

I =0.083%

Figure 1-32. Beam with One Fixed End and One Pinned Support
Find: The reaction moments and forces on the beam.

Solution: Figure 1-33(a) may be obtained by redrawing the beam
as in Figure 1-31(b). The moment diagram may then be drawn
for the right portion; and A, 3, and M, may be determined as in

Figure 1-33(b).

From Equation (1-38), ' v

| M, - z38F O Mu -3(25000010) | 5000 . _4 375410,
L2 2 (20)2 2
1-48
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Now that M, is known, R, and R, may be found by applying the
equations of statics to Figure 1-33(c). Doing this gives
R, = 781 1b. and R, = 219.0 Ib.

500 1b. 500 1b.
M, = 5000 in.lb.

Ay

(2)

A= Z_%L?_O_ = 25000 in. %1b.

®° (b)

20 in.

s 2= 10 ———n]

500 1b. 500 lb.

(@)
)
1

Ry

Ra

Figure 1-33. Solution for the Reaction Forces and Moments on
the Beam in Figure 1-31

1.3.4.3 Reaction Forces and Moments on Beams with Both Ends Fixed -

Figure 1-34(a) shows a uniform beam with both ends fixed. The
following procedure may be used to determine the support reactions on such
a beam if its stresses are in the elastic range.

1.  Consider the beam to be simply supported as in Figure 1-34(b).
~ 2. Find the moment diagram for this simply supported beam as in

Figure 1-34(c). A is the area of the moment diagram and C is
the centroid of this area.
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(a)

NN \&\\\
AAARN

(b)

N

(c)

) s ] |

R
Ry B

ol

Figure 1-34. Method of Determining Reaction Forces and Moments
on a Beam Fixed at One End and Pinned at One Point

3. Find M, and M, by the equations

2 — —

M, =-_%— 2b - 2) (1-39)
L

M, = 22 (23 - b) (1-49)
L2

The evaluation of the terms in these equations may be facilitated
by the use of Table 1-10.

Evaluate R, and R, by applying the equations of statics to
Figure 1-34(d).

Once the end reactions have been determined, the moment and shear diagrams
may be constructed for the beam.
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The above procedure may be avoided by using Table 1-9 which gives
equations for the reaction moments for beams fixed at both ends under various
loadings. The sign convention for this table are as shown in Figure 1-34(d).

TABLE 1-9

End Moment Reactions for Beams with Both Ends Fixed
Under Various Loadings

l. P 2. P
4 } 7 4 } 2
A : 230 : . B
4 iR e L 7 Ao g —sle b 4
7 2 2 E y L 4
la . , 2 2 V
PL ) PL _ Pab® _Pap
My = 75" Mp = 2= Mp= 712 Mp="3
3 w 1b. /in. 4. wlib. 7in. Ty
AfﬂﬂﬂTﬂHiHHﬂiH ZP AfTﬂ]_HTﬂTt ¢B
/ . B
2 2 2 2
wl, w L 11wl 5wl
M = 2 e—— e M Z ———
A 12 Mp = =5 Ma 192 B 192
5. w 1b. /in. 16 wIb 7in.
/L ERRALBLARERAL 2 ] 2
O R ) N
2 L2 2
wa 2 2 5wl 5wL
M, = 6L% -8aLl+3 My = Mp =
AT e al.+3a%) AT Tog B* T
2
wa
Mp = — (4aL - 3a2
B e )
' e V,
A QHHU Mo o | L 7 : o
C . " — 7
é—:—---—»————— 1 r; ;A L ?;
5 _
w2 o wL? My = ——5 (10L%-T0aL+3a%)]
Ma= % MBTT3p 601,
Mp = _wa’ (5L -3a)
601.2
P A
4 ] W
A7 & U B | A . , 7
A 3
7 : % L L .
Je—a -~ b - o 2 —tf——— 2 /B
7 L 4 2, 2 »
Mb a Ma b wL wlL
=MD a2 )y, Mp=—(32 -1 Mp = WL - wL”
MpA=TT G- Mp=7 B - D Ma= 75 32
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TABLE 1-9

End Moment Reactions for Beams with Both Ends Fixed
Under Various Loadings (concluded)

11 12. P P P _
PP L, L b ond o1 b
24———— a-—-c»T — a —c—E ﬁa-‘-i—c- _z'.‘}ia-—o«--"T —r—~a~;}—~b~g
A7 B | AL B
/] L ad ¥ L 4
a 15PL .
MA=Pa(l--I:') MB’-" MA I\'IA = "48 = MA
13.;1' . 14'$ a — w lb. /in. a-—s—l;
‘ w
AN Ty 7 ARRERRRARE z..
A B A /I.‘J
Jad —a L / P— .
wa - .2 o M
My = %o~ (3L-2a) Mp = My My = IZL (L3-a®L+4ad)Mp = My
15. a;‘..._... a ————d e
3 eyt T I - T o /
A 7 / A B
/e L é ,‘ L . ;
2 2 2 2
. wa a a wlL 3wl
M = — = — M = e M =
A= 3 (10-157+6.77) AT T30 B® TT160
_ wa a '
MB 20 (5~ 4 'i'; )
17. pom—w elliptic load 18. w = f(x)
L ’
A AT L | A z
Y L 4 ;L.-.___ X —ofa— L - x—-—-—-—»;
. WL2 - wL2 o M
AT 13052 B~ 15.86 A '
My = = [ x(L-x)2f(x)dx
.2
Fo)
My = L5 [ (Lt
= < -x )M {x)dx
B 1.2 J x“(L-x ¢
o
1.3.4.4 Reaction Forces and Moments on Continuous Beams
A continuous beam is one with three or more supports. Such a

beam is statically indeterminate and deflection equations must be applied to

find the support reactions.
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1.3.4.5 Application of the Three Moment Equation to Solving for the
Reactions on Continuous Beams

Figure 1-35(a) shows a uniform beam that is simply supported at
three colinear points, A, B, and C. In order to obtain the reactions, the
beam is broken into two simply supported sections with no end moments, as
shown in Figure 1-35(b). The moment diagrams are then found for these
sections and the area A and centroid C of these diagrams are found as shown
in Figure 1-35(c). The quantities found may now be substituted into the three-
moment equation:

-6A, 3, 6Ay by

M,Lj + 2M, (L + L3) + McLy = - (1-41)
. Ly L

If M, and M, are known, this equation may be solved for the moment at B,
M,. Knowing this moment, the support reactions at A, B, and C may be
found by applying the equations of statics.

The terms to the right of Equation (1-41) may be found for various
simple loadings by use of Table 1-10.

' |
MA@ - . J 1] ' M (a)
2 gy &
L———.—‘Ll =:L ‘

9!

Ay, A

QC

Figure 1-35. Beam Simply Supported at Three Points

(c)
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TABLE 1-10

w
2 2 _o2y_42 2_a2
il [c (2L% ~-c%)-a%(2L~-a ):\

Values of 6AF and 6Ab
L L
Type of Loading 6AT 6Ab
on Span 1. L
(1) W
a ——af
[/
WI:% (L2 - 22) —XVL— (L-a)(2a-a?)
(2)
r-—aaih——- | J——
o 1 - M 5.2 1% + M % 0 LY
VM [ L
¢ L —*
(3) w 1b/in.
1 wL3 wL3
P 4 4
L R .
(4) wlib/1in

w
2 2_p2y_g2 2 42
" [b (2L.4<b%).d~(2L4.d

)

L
kw%
8 13 T .3
i l €0 wL ) wL
L
wﬁw\}b\/i‘n\.'\ )
| ? oo 5
L =
() wlb/in{.
1 , )
1 L I
P T3
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If a beam has a number of concentrated loads as shown in Figure
1-36, Equation (1-42) becomes

P,a P
ML, + 2M, (L] + L) + MeL, = -y -0 (1.2 2 2. 2%2 (1.2 1,2) (1-42)
1 2 27T 1 [T 2. -b
1 2

where P; denotes any one of several concentrated loads which may act on the
left span at a distance a; from support A. Similarly, P, denotes any load in
the right span at a distance from support C.

P, by

MAG | B 1 lJ , \ M

3C C

e

Figure 1-36, Continuous Beam Under Several Concentrated Loads

If a beam is simply supported at more than three points, the three-
moment equation may be written for each intermediate support. The equations
may then be solved simultaneously to obtain the moments at each support.

This procedure is illustrated by the sample problem in Section 1. 3.4, 6.

1.3.4.6 Sample Problem - Reactions on Continuous Beams by the Three
Moment Equation

Given: The continuous beam shown in Figure 1-.37.-

10 15 20
b. /in.
5 | 10 10 1b. /in
5001b. 3001b.
1 0 Jd
span #1 span#2 span #3 ﬁ\
/ support #4
support #3
support #2
support #1

Figure 1-37. Continuous Beam on Four Supports
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Find: The support reactions.

Solution: The three-moment equation may be written for spans
1 and 2. Since only concentrated loads are present, the special
case given by Equation (1-42) may be used. Thus,

-Pray 2. P2by 2 _p.2

1

Inserting numerical values gives
-500(5) (102 _ 52 30;)(5)(152_ 52
10

0(10) + 2M, (10 + 15) + M3(20) =

Simplifying gives 5M, +'2M3 = 3875.

The more general form of the three-moment equation given by
Equation (1-41) may now be written for spans 2 and 3 with the
aid of cases one and three of Table 1-10.

3
M,(15) + 2M3(15 + 20) = 2200010) ;52 4 142) _ 10(20)
. 15 4

Simplifying gives 3M, + 14Mg = -15, 000.

The two equations in M; and M3 that were just obtained may be
solved simultaneously to find-that M, = -376 and M3 = -990.

The equations of statics may now be applied as illustrated in
Figure 1-38 to find the reaction forces.
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(1)  p=——10

o 5 ot 10 Ry - 5(500) = -386
lSOOlb ‘ Therefore, R; = 211.4 1b.
4 J)Mz = -386
R| span 1
(2)
po—10 ——~en-—— 15

~° *‘150011;. ~10-" =3 501m.
)\

i '
Ry = 211.4‘ R>

25(211.4) -20{500)+ 15R2 -5(300)= -990
Therefore, R, = 348 1b.

(3}

e 20 ]

10 1b. /in.
M3 = —990C ‘ .
j

20 R4 - 10(200)= -990

Therefore, Rgq = 50.5 1b.
(4) Summing the vertical forces gives
R1+R2+R3+ R, - 500 - 300-200=0

211.4+348+R3+50.5— 500 - 300-200=0
Therefore, Ry = 390.1 1b.

Figure 1-38. Solution for Reaction Forces
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The beam may now be drawn as in Figure 1-39.

10 ~—mofat—— 15 ot 20—
5 bt ‘L“”’“‘ﬁ 101b. /in.
500 | -

| - 'ERE
ﬁ11.4 }348 t39o.1 ' 50.5

Figure 1-39. Continuous Beam on Four Supports with Reaction Forces

1.4 Introduction to Beams Under Combined Axial and Transverse Loads -
Beam Columns

A beam under combined axial and transverse loads cannot be analyzed
by simply superposing the effects of the two types of loading. The method of
solution must take into account the simultaneous effect of these loads, and
may thus become quite complex. Axial tension tends to straighten the beam,
thus counteracting the bending moments produced by the transverse load. On
the other hand, since axial compression may greatly increase the bending
moment and the slope and deflection of the beam, it is the more serious type
of axial load.

Two methods of analysis may be used to determine the total fiber stress
in members under combined axial and transverse loads. The first method,
"which is approximate in nature, assumes that the elastic curve of the deflected
member is similar in form to the curve for a like member under the action
of transverse loads alone. The moment due to deflection is estimated on this
assumption and combined with the moment due to transverse loads. This
approximate method is treated in Section 1.4.1. The other method, which is
the exact one, makes use of the differential equation of the elastic curve and
i's treated in Section 1.4.2. The criteria for the use of these methods is given
in these sections.

1.4.1 Approximate Method for Beams Under Combined Axial and
Transverse Loads - Beam Columns

For any condition of combined axial and transverse loading, the
maximum stress in the extreme fiber is given by

P M

O 1-43
max A i‘ I/C ( )

where P is the axial load and M is the maximum bending moment due to
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the combined effect of axial and transverse loads. (The plus sign is for
fibers in which the direct stress and the bending stress are in the same
direction, the minus sign for fibers in which they are in opposite directions. )

If a column is comparatively stiff so that the bending moment due to the axial
load is negligible, M may be set equal to the maximum moment due to trans-

verse loads M, alone. This may be done with an error of less than five

percent if P < 0.125 EI/L.2 for cantilever beams, P < 0.5 EI/LZ' for beams

with pinned ends, or P < ZEI/L2 for beams with fixed ends.

If 0.125 EI/L2 <P<0.8 EI/L2 for cantilever beams and
0.5 EI/L2 <P<3 EI/L2 for beams with fixed ends, the value of M for

Equation (1-43) may be given by *

M =

M,

t

2
(1+K—E—L—>
FI

for an error of less than five percent where K is given in Table 1-11 for

various manners of loading and end support.
denominator if P is a tensile load and the minus sign is used if P is a com-
pressive load. Equation (1-44) is appropriate only for beams in which the

The plus sign is used in the

(1-44)

maximum bending moment and maximum deflection occur at the same section.

TABLE 1-11

Values of g for Equation (1-44)

Manner of Loading and Support K
Cantilever, end load 1/3
Cantilever, uniform load 1/4
Pinned ends, center load 1/12
Pinned ends, uniform load 5/48
Equal and opposite end couples 1/8
Fixed ends, center load 1/24

Fixed ends, uniform load

1/32 (for end moments)
1/16 (for center moments)

1.4.2 Exact Method for Beams Under Combined Axial and Transverse

Loads - Beam Columns

Table 1-12 gives exact formulas for the bending moment, M,
deflection, y, and end slope, 6, in beams which are subjected to

* Griffel, William, Handbook of Formulas for Stress and' Strain
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TABLE 1-12

Formulas for Beams Under Combined Axial and Transverse Loading

Case Formulas

Max Mz WL tan U/U at x = L.
.. .
Max y = - —— (LtanU/U - Lyatx= 0
P

_ W (i-cosL/U) -
o - (fzsoeliPl)stx -0

Max M = --‘i‘vi‘-[x,(l.uc,m/u + L tan U]u x=L

vyl W -
mﬂm;w Maxy:.w_l': _L_<l+J—Uz-ich)+L(tanU-U)]atx:O
- - PU LU H .
L E
P = J; a=_v_1_£ 1 . l-cos2U
L, ...... P PP P L cosU Usin2U
3. WL
MaxM:E-u— tan—-i—Uatx:-;—L

I WL 1 1 1
B em— — t — - — I s
Max y > PU(MZU Zu)atx ZL

2o (eh® aexso

" Tep
4.
Max M = wiL? (secd U - 1707 st x = L/2
N Ma -wLZ (sec-l—U-l-—l—-Uz\atx=—l-L
xy = py? 2z 8 / 2
wlL [ 1 l.cos U -
zediZ e — U =2t Rt x=0
° PU 2 sin U }
5.
Moment equation: x = Otox =a:
WL indU_ gnxU
T sin - sin =
M=.——-—.—1:'—-—-—; MaxMatx:-’—"-if&<a
sin U 2u 2U
. Moment equation: x = a to x = L:
w WL .. aU . L~x)U
Viw-on - —eb - sin nn-(—]:-—
p,‘ * I b'IP Me D L ;MaxMa:x=(L-£E-it(L.§.':_)>a
! . - x sin U A 2U U
I-\—/j ii'—zr—;'— >aand(L-fz—:"—)<a, Max Misatx=a
""" L==-== . oBU L xU
sin —— 8in =
ot e o Cen. v WL L L~ _ bxy
Deflection equation: x=0tox =a: y= U PRI 12
2in2Y sin (kXU
. . wL L aU(L-x}
Deflection equation: x =a to x = L: = -
9 4 U ( sin U LZ
sin 2U w sin-‘—% -~ -
PR A T mcos 2 Yarx=09=Y(2 . atx =L
¢ P\T tanU ) P L sin U
6. sin =X
2
Moment equation: x =0tox=L; M= —%‘i— P 'j‘ - % )
_ L sin U
Max M at x = T arc cos (———-—U
y| W= -;- wL .
mw Deflection equation: l_‘Z i Ux
O3, U2 L |

\
= = Ly = . X -
x=0tox=1L; x = P(_&_:f T ——zu s )

L1
9:-!’5 *u{‘.:u"{,? —G—L)atx=0

w L ] =
q=.l_;( +-F‘—--3-—L)atx-]..

Utan U
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TABLE 1-12

Formulas for Beams Under Combined Axial and Transverse Loading (continued)

Case Formulas
7.
Max M = M, secdUat x =3}l
PVLMI_ h:l p Maxy = -~—-( cos )alx —-L.
W x cos U -
MU i
-L - 9 = “BC ““‘Z—U“A"=o
¥ My -M u
Moment equation: x:=Dtox= L: M = (____________z 190 7 Y ain 20 M, cos XU "U
sin U ) L
M, -M,cosV
s eLare g2 1 )
MaxMa(x-—Uan tan { My sin U
¥ sin x[U
oA Deflection equation: <+ 0to x= Li  y= & [\41 . m,-m,)-— - {M-M) cas ) S - My eos BT
in
-t M; - M U{M; - M cosU)
g L2 7L e T Jatx=0
P ¢ L . sin' U .
SRR e —
| p My My UMy MjeosU) MU 5
a:——r o ———reee—e. €08 U 4 e sin U . at x = L
P L L sinU L s
9 fleam with tixed ends under axial comi-
pression and transverse center load My s M2 ot WL “f.-cosel
. R TT RN D ,-
vi W = center load
v arxs d ML Ly
o, 755 : o i .
2
L ossU)® 1
t e XU LTS e
el AT Maxy s -3py LB : 20 s £C J
10. Weam with fixed ends under axial com-
pression and uniform transverse load
-1
2 . '
o wl _ . A 1
Max y = PUZ \ v 1
L1. Beam with one end fixed, other end Mas M : M, - WL [tanUisecd u-1)”
pinned under axial compression and i 20 ¢+ Lwnu-L <
transverse center load M U
k- Lwo 2
: L
Lo Ux oo Lo Ux
Y sin —— ) sin 5 U sin 4—
I W = center load Monent equation: s —l; woxs L M M - L. cos-— V. WL (un—i-h cos U_" —i = )
Defleciiom «quati -
L sin UX v W sin —;— U sin 'UT:
. x5 VLE(L.x)U
PN IE TIINI PERY —— - GO —— ). — + -nn—Ucos— .
3 tan U T T tan U ]}

12. Beam with one end fixed, other end sap.
ported, under axial compression and M wi?

uniform transverse load Max M U
.}
. L
1 w Lo sindE
,uIDI&m N Momert equation: - 0o x= L M= M) (co! U -inﬁ - cos =% U" UsVew LT i1+ cos Ut = cos —U—‘- 10 i
4 p—— r__l < ye sinU
M \..;
1
Deflection squation: x =z 9t x = L
...... [
AT Ux Ux L2/ Ux ”"“‘f‘i Ux , tix - x3ud | \1 -
¥ = P‘_.x\l-le:olbnn—-cus.—Lﬁl‘-w.‘F co(l,nn-—-i—._;n_u.-:os—,_—' 312 bll;J-

13. Same a5 Gase | {cantilever with end Max M = - WL tanh U/U at x = L
W

load) except that P is tension Maxy s - F v - U tanh Ui at x = 0

= [ -
14. Same as Case ? (vantilever with uniform Max M= - wL{Ltanh U U (1 - sech UJ/Uatx =L

load) except that P is tension Maxy = - lt (l . __ U2 - sech U)- Lianht - L) j at s s 0
wy
15. Same as Case 3 (pinncd ends, center Max M = # U tanh 3 at x = 4L \
1uad) except that P ix tension PR A 5 ST 1 =4
Max y P(‘L 3G unhZU)n:& 7 L
2 2
Max M = wL® (1 sech 3 UY/U
16. Sarne as Case 4 {pinned ends, uaiform 2
load) except that P is tension w2 Lo . sech-L U
Mnxy--?—[-s_l.. o2 (l sec! 2 )]
M e M, s 21'; (cu'::h UU- l>. Max + M = k! 1-coshby o

17. Same as Case 9{lixed ends, center load} Z'U \ Jian 92U cush 2U

. . s
except that P is tension WL 1 (1 - cosh #U)
. 1 A A TR Y ]
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TABLE 1.12

Formulas for Beams Under Combined Axial and Transverse Loading (concluded)

Case Formulas

2 12, 2y L
My = My = WL 24U -tanh 3 U M M:=¥ 1- txs =1
. 1= M2 = u2 tanh 4 U )' ax + uz \ sinh$U )a Y2 )
1B. Same as Case 10 ({ixed ends, uniform

load cept that P is tension 2 . '
oad) excep! Maxy:-‘”‘ [4U(‘_"°shiu)¢uz]agx=l!.
BPUZ sinh 2 1] 2

2,2,6 ' 1
19. Beam with ends pinned to rigid supportd ETATK? ;9. _212 ud . 50U+ 2 tann _% . ;l{ tanh? ZE where K = /_A_
#0 horizontal displacement is prevented. wzl 8 4 z

Uniform traneverse load and unknown
axial tension

This equation is solved for U, and P determined therefrom

L 8 EICT [, -62 \
4 w When € = %L 3 is small (loss than 4), P = '623—0 E-%— (1 - S5 CZ)
- z 2, 2
- When C is large {greater than 15), P = lﬂ{ (C~.\) -2 J
. 2L \%
—————— ] —————— o

When P has been found by one of the above formulas, M and y may be found by the formulas of Case 16

20. Continuous beam, spans | and 2 q ML, U, cosec Uy~ 1 | MsL, p U, cosec Uy - 1
and unequally loaded et St ( ) Tl e S )
L Uy LA U,
Ly . 1-UjcotlU; . Ly ,1-Ujycot Ua (4
Mz[ ) 1 1 R __._z__z__ﬁ ]
N T, N ¢ f
1 \ u, 1 \ U, /
\\-ll..l3 ;o tan 8U) - 2Uy w:Lz3 ( tan 8 U, - 30 ;.
= +
L u,’ ) I, )
(Theorem of Three Moments: Subscripts with P, L, w, 1, and U refer to first and second spans. Mj

acts on span 1, Mz' on span 2}

combined axial and transverse loading. Although these formulas should be .
used if P > 0.125 EI/L2 for cantilever beams, P > 0. 5 EI/L% for beams with
pinned ends, or P > 2 EI/L? for beams with fixed ends, they may be used for
beams with smaller axial loads. In these formulas, U = LL/P/EI. The quan-
tity U may be found rapidly through the use of the nomogram in Figure 1-40.
The formulas for beams under a compressive axial load may be modified to
hold for a tensile axial load by making the following substitutions: -P for P;
U/-T for U; /-1 sinh U for sin U; and cosh U for cos U. This has been done .
for some of the more common loadings and the resulting formulas given in

: cases 13 to 18 of Table 1-12,
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Sample Problem - Beams Under Combined Axial and Transverse
l.oads - Beam Columns

Given: The beam column shown in Figure 1-41.

30 -

20 1b. /in.

2500 1b. 1 ‘ !

AR RN

2 in. square aluminum bar
E=10x10° psi
I =1.33in.4

Figure 1-41. Cantilever Beam Under Combined Axial and
Transverse Loads

Find: The maximum bending moment, M, vertical deflection,
y, and angular deflection, 8, of the bar.

Solution:
6
0. 125}?1_2 _ 0. 125 {10x10°)(1. 33)

= 1, 850 1b.
L (30)2

According to Section 1.4.2, the exact method must be used
for cantilever beams if P < 0. 125 EI/L% as is true in this
case. From Figure 1-40,

U = L\ﬁi = 30 \/ 2500 = 0.41
/ EI /(10x10°)(1.33)

From Table 1.12, Case 2,

Max M

=wL [—Ii—(l-sec U>+ LtanU]
u U

.20 (30.0)[30.0 (l-sec 0.41)
0. 41 0.41

+ 30 tan 0.41] = 8200 in.lb.
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Max'y = “wh L (1 +—%— U2 - sec U) + L (tan U-U)]
py L U

2
_ =20(30.0) ([ 30 (1 L0410 e o.41>]
2500(0.40) LLo.41 2

+

[30 (tan0.41 -.0.41)]} = 2.92 in.

g = W I L L 7 1l-cos?U >‘|
TP L cos U Uk sin 2U J
. 20 T_30 _ 30 7 1-c‘osO.82 >J - 0.0095 rad
2500 L .915 0.41\ sin 0.82

0.55°.

1.5 Introduction to Beams in Torsion

For purposes of discussion, beams in torsion are broken into two
categories: circular beams, which are treated in Section 1.5.1, and non-
circular beams, which are treated in Section 1.5.2. Circular beams are
further divided into those with uniform cross sections (Section 1.5.1.1)
and those with nonuniform cross sections {Section 1.5.1.2). Noncircular
beams are divided into open noncircular beams (Section 1.5.2.1) and closed
or hollow ones (Section 1.5.2.2), and the effect of end restraint on non-
circular beams is treated in Section 1. 5.2, 3.

Section 1.5.3 treats the membrane and sandheap analogies for beams
in torsion. Since the loading of the wires of helical springs is primarily

torsional, they are listed under beams in torsion and treated in Section 1.6. 4.

1.5.1 Circular Beams in Torsion

This section considers the torsion of solid or concentrically hollow
circular beams.

1.5.1.1 Uniform Circular Beams in Torsion

Figure 1-42 shows a uniform circular beam in pure torsion. If
the stresses in such a beam are in the elastic range, the stress distribution
at a cross section is as shown in Figure 1-43.
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.

Figure 1-42. Uniform Circular Beam in Torsion

-

Figure 1-43. Stress Distribution of Circular Beam in Torsion

The shear stress at a distance r from the center is given by

£, = ;rr (1-45)

P

The angle of twist of the beam is

TL :
8 = 1-46
& | (1-46)
Inserting the value of I, for a circular cross section into Equations (1-45) - .
and (1-46) gives
2
f, = —— Tr4 (1-47)
m(r,” -1 ")
and
5 = 2 TL (1-48)
w2t onha
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In order to treat solid circular shafts, r, may be set equal to zero in
Equations (1-47) and (1-48).

It should be noted that Equations (1-47) and (1-48) apply only to
beams with circular cross sections.

The maximum shear stress occurs at the outside surfaces of
the beam and may be computed by setting r equal to r, in Equation (1-47).
The maximum tensile and compressive stresses also occur at the outside
surface and both are equal in magnitude to the maximum shear stress.

If a circular beam is twisted beyond the yield point until the
outer portions are at the ultimate torsional stress, a stress distribution
such as that shown in Figure 1-44 is obtained. The maximum torque that
such a2 beam may sustain in static loading is given by

T - (1-49)

where F, is designated as the torsional modulus of rupture. This torsional
modulus of rupture is shown graphically for steel beams in Figure 1-45.

At
(N

Figure 1-44. Plastic Stress Distribution of Circular Beam in Torsion
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Figure 1-45. Torsional Modulus of Rupture for Steel Beams

In many cases, the torsional modulus of rupture of a material may
not be available. These may be treated by assuming the uniform shear stress
distribution shown in Figure 1-46.

Figure 1-46. Assumed Plastic Stress Distribution
of Circular Beam in Torsion

The magnitude of the uniform shear stress may be assumed to be
equal to the yield shear stress (F,,) for conservative results or the ultimate
shear stress (F,,) for nonconservative results. In the first case, the maxi-
mum torque in the beam may be expressed as
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F.I

4 sy P
']:"mx :—3— —_— (1—50)

To

and in the second case, the maximum torque in the beam may be expressed
as

F I

_ 4 wu *p
T T3

max

(1-51)

To .

It should be noted that the possibility of crippling in thin-walled
tubes was not considered in the previous discussion. Crippling of circular
tubes is treated in Chapter 8. This tubes should be checked for crippling.

1.5.1.2 Nonuniform Circular Beams in Torsion

When a circular beam of nonuniform cross section is twisted, the
radii of a cross section become curved. Since the radii of a cross section
were assumed to remain straight in the derivation of the equations for stress
in uniform circular beams, these equations no longer hold if a beam is non-
uniform. However, the stress at any section of a nonuniform circular beam
is given with sufficient accuracy by the formulas for uniform bars if the
diameter changes gradually. If the change in section is abrupt, as at a
shoulder with a small fillet, a stress concentration must be applied as ex-
plained in Chapter 10.

Figure 1-47 shows a nonuniform circular beam in torsion.

L .

Figure 1-47. Nonuniform Circular Beam in Torsion

If its diameter changes gradually, its angle of twist is

T .
- dx
e =

o] P

This equation is used to obtain the formulas for § for various beams of uni-
form taper that are shown in Table 1-13.
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Formulas for the Angle of Twist of Nonuniform Circular Beams in Torsion*

TABLE 1-13

Type of Beam

Angle of Twist

L_(IS ----------- i
Dy | ) D2 P3
I |

inside taper,
outside uniform

5 8TL
nG(D, - D])D3

D5 -
f 720
3 {Zarctan \03)

)1

"D3—Dl
\D3+D1

D ~sD,+D
-2 arctan(#) + Loge?L'\Dz ‘Di)

3

B

—

L
inside uniform,
outside taper

__32TL o, 1, 1L,
3rGD Dy \;{2 DD,  p,? )
solid beam,
outside taper
D
s = 8TL 3 -( 2 arctan <~£—>
TG(D, -D|)D3” * D3

v Log. /D3 * D2y /D3 - Dy
geL\D3-D2) D3 + D)

D1
- 2 arctan '—-—)
\ 3

)y

thin tapered tube with
uniform wall thickness

2TL(D, +D,)

<1y
]

% Griffel, William, Handbook of Formulas for Stress and Strain
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1.2.1.3 Sample Problem - Circular Beams in Torsion

Given: The circular beam shown in Figure 1-48,

Aluminum - G = 4x106 psi

$10000 in. 1b. ‘ 10000 'm.lle
D{=2.5 et — : - D,=3

¥

20

Figure 1-48. Tapered Circular Solid Beam in Torsion
Find: The angle of twist and maximum stress in the beam.
Solution: From Table 1-13,

32TL_ /1, _ 1 . 1
31GD Dz \p,? DD, p,2 /

(40

32(10000)(20) ;1 , 1 . 1\ _ g goor o
3m(4x108)(2.5)(3) \2.52  2.5(3) 32 >

= 0.52°

Applying Equation (1-47) to the outside of the thin end of the beam

. 2T 21100001, 23
Symar T 1 - = 29 4‘ 3 = 3,260 psi
~ir, -r,4) ~¢1.237 -0
1.5.2 Noncircular Beams in Torsion

In the derivation of formulas for circular beams in torsion, it was
assumed that plane sections remain plane and radii remain straight in the
. deformed configuration. Since these assumptions no longer hold for non-
circular sections, the equations for circular sections do not hold. The

warping of plane sections of a square bar under torsion is illustrated in
Figure 1-49.

Figure 1-49. Warping of the Sections of a Square Bar in Torsion
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In this section, open beams are treated first and closed beams are
treated second. Closed beams are those with hollow sections, and other beams
are called open beams. Since plane sections remain plane for round beams in
torsion, the end constraint of such a beam does not effect its behavior. How-
ever, end constraint can be an important factor in the treatment of noncircular
beams in torsion and is treated in Section 1.5.3.3. At a sufficient distance
from the application of the load, however, the stresses depend only on the
magnitude of the applied torque according to Saint-Venant's principle.

1.5.2.1 Noncircular Open Beams in Torsion

This section deals with noncircular beams whose cross sections are
not hollow. Section 1.5.2.1.1 gives the stress distribution in elliptical beams
in torsion, and Section 1.5.2.1.2 treats beams with rectangular cross sections.
Section 1.5.2.1.3 treats open noncircular beams with thin sections with for-
mulas for thin rectangular sections. Table 1-15in Section 1.5.2.1.5 gives
formulas for stress and deformation in noncircular beams with various sections.

All of the material in this section is based upon the assumption that
cross sections are free to warp.

1.5.2.1.1 Elliptical Beams in Torsion

Figure 1-50 shows a cross section of an elliptical beam in
torsion and the two components of shear stress that are present. The
shear stress components shown are given by

e 2Ty ' (1-53)

#x® 11 ab3

and

2 Tz
f = —— (1-54)

sxy m 8,3 b

where T is the torque applied to the beam. The maximum shear stress
occurs at {(z = 0, y = b) and is given by

2T . (1-55)

smax

1'|'ab2

Figure 1-50. Cross Section of Elliptical Beam in Torsion




The angle of twist of an elliptical beam of length, L, is

2 2
e:T(a +b7) L (1-56)
mal bl G
1.5.2.1.2 Rectangular Beams in Torsion

Figure 1-51 shows a rectangular beam in torsion. The maxi-
mum stress id such a beam occurs at the center of the long side and is

given by
T , .
smax = 2 (1-57)

abt

where o is a constant given in Table 1-14. The angle of twist of a rectangu-

lar beam in tension is
TL
9 = (1-58)

B bt3 G

where 8 is given in Table 1-14.
T

Figure 1-51. Rectangular Beam in Torsion

TABLE 1-14
Constants for Equations {1-57) and (1-58)

b/t} 1.00 | 1.50 | 1.75 | 2.00 | 2.50 | 3.00 4 6 8 10 =

a 10.208 10.23110.23910.246 {0.258}0.2670.28210.299|0.30710.313}0.333

B 10.141 [0.196 {0.214|6.229 |0.249}0.26310.281[0.29910.307{0.313)0.333
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The maximum stress and angle of twist of a rectangular beam
in torsion may also be computed with satisfactory accuracy (error less than 4%)
from the following equations:

T t
fone =TT <3+1.8—E—> (1-59)
- 3TL " (1-60)
3[, _0.63t (; _ _t
bt> 11 - ==22- {1
: bV 12bpt
1.5.2.1.3 Noncircular Beams with Thin Open Sections in Torsion .

If a rectangular beam is very thin relative to its length (b>>t)
Equations (1-59) and (1-60) become

_ 37T
fsmax - -13—{2'— (1-61)
and
: :%@— (1-62)
bt G

From Table 1-14, it can be seen that these expressions are correct within
10 percent if b/t = 8,

Although Equations (1-61) and (1-62) have been developed for
rectangular beams, they can be applied to the approximate analysis of shapes
made up of thin rectangular members such as those in Figure 1-52. If sharp
corners exist, however, large stress concentrations may result so that
Equation (1-61) is not valid. The effect of sharp corners is explained by the
membrane analogy in Section 1.5.3.1. Egquations (1-61) and (1-62) may be
applied directly to sections such as those at the top of Figure 1-52 if b is
taken to be the developed length of the cross section as shown.

If a thin section is composed of a number of thin rectangular .
sections as are those at the bottom of Figure 1-52, the following equations
may be applied:

o 3TL _ 3 TL (1-63)
GI bt Gbyty3 +byty> +...) ’
3Tt 3Tt

£an. = - (1-64)
L g e £,3 +b,t,>
byt)3 +byty 3 4
174



3 t
3Tt2 T

_ 2
smax., =
2 gt byeyS + byt L
3Tt 3Tt
Frexn th3 b1t13+b2t23+...

In the above equations, fwaxn is the maximum stress in the nth rectangular
portion of the section, L is the beam length, and T is the applied torque.

If a section is composed of thick rectangular sections, the
equations in Section 1.5.2.1.5 should be used. The advantage of the equa-

tions in this section is that they may be applied to specific shapes for which

a more exact formula may not be available.

x-i[

T

t

A W " ] s
.|

L
-
-

L

T\ - 1 @—_/
| |
k- TN R

1

Figure 1-52. Beams Composed of Thin Rectangular Members

1.5.2.1.4 Sample Problem - Noncircular Beams with Thin Open Sections

in Torsion

Given: A 50-in. -long beam with a cross section such as that
shown in Figure 1-53 under a torsional load of 500 in.lb.
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1.5.2.1.5

Figure 1-53. Thin Open Section

Find: The maximum shear stress and the angle of twist of the

beam.

Solution: The developed length of the section is

b=34+3+2+m=11.141in.

Equations (1-61) and (1-62) may now be applied to obtain

3T 3(500 .
smax 2 - ( ) 2 = 8,610 psi
bt (11.14)(0.125)
and
3 50
g - 3TL _ COCY .~ 086 rad. = 49°

bt> G 11.14(0.125)°(4x 10°)

Noncircular Open Beams with Various Cross Sections in Torsion

Table 1-15 gives formulas for the deformation and stress of open

noncircular beams with various cross sections in torsion. The formulas for
Case 1 are based on rigorous mathematical analysis, and the remaining for-
mulas are obtained either by approximate mathematical analysis or the mem-
brane analogy and are normally accurate within 10 percent. '
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TABLE 1-15

Formulas for Deformation and Stress of Various Open Section in Torsion

Form of
Cross Section

Angle of Twist

Magnitude and Location of
Maximum Shear S ress

(1)
a
80TL _ 207 | ;
< Y = — fsmax = 7~ i the mid-
_ 3Ga a
E;u%latelral point of each side
riangle
(2)
a
) o 38.31 TL § 18.05T
v = G4 smax E
Right
Isosceles
Triangle
(3) ‘ .
y 161 For cases (3) to (9) inclusive, f a5
TL 1+ X oczurs at or very near ore of the
o - \ AU2 ) points where the largest inscribed
- - - 41.G circle touches the boundary, unlegs
X
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there is a sharp reeutrant angle at
some other point on the hLoundary
causing high local stress. Of the
points where the largest inscribed
circle touches the boundary, fonay




TABLE 1-15

Formulas for Deformation and Stress of
Various Open Sections in Torsion (continued)

Form of . Magnitude and Location of
- Angle of Twist .
‘Cross Section Maximum Shear Stress
(4) t

Any elongated section
or thin tube.

dU = elementary length
along median line

t = thickness normal to
median line

A = area of section

where

(5)

Any solid, fairly com-
pact section without
reentrant angles.

Ip = polar moment of
inertia about cen-
troidal axis

A = area of the section

40 TLI
cat
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occurs at the one where the boundary
curvature is algebraically least. (Con-
vexity represents positive, concavity
negative, curvature of the boundary.
At a point where the curvature is posi-
tive (boundary of section straight or
convex) the maximum stress is given
approximately by

¢ _ G¢tc
smax L
where
= D ¥-_1 +
©= m2pd L
1+ )
16 A
2 n4 -
mls(E—EL -ll);
16 A2 2r /|
where

-

D = diameter of largest inscribed

circle

r = radius of curvature of boundary
at the point {positive for this
case)

A = area of the section



TABLE 1-15

Formulas for Deformation and Stress of
Various Open Sections in Torsion (continued)

Form of
. Cross Section

Angle of Twist

Magnitude and Location of
Maximum Shear Stress

(6)
[ +F

1

r

0O g O et

d

!
i

TL
L —Y
G(2K| + K » 2aD

At points where the boundary of a
section is concave or re-entrant,
the maximum stress is given
approximately by

£ _ Gbec
smax =~ 1,
where
I section, flange thick-
ness.
Ky = ab3[l -0t (1 .__"4—3)] where
r = fillet radius ! 3 2 12a
D= diameter of largest 13 N D X
inscribed circle K2ry el < s D PO tseee U gr)
) ; and . . 16 a4
t=bif b<d, t=4dif u='{T(°-15*°'l'£)
d<b, t; = bif b>d,
tj=difd>b .°'Zz3r30}unh _Z_Q]
P —
VSRS 5. T where D, A and r have the same mean-
b Do G(K; +Ky+aD ing as before and § = angle through
= . which a tangent to the boundary rotates
where

‘Q—-n——-—‘o‘\‘—

— 4 e

T section, flange thick-
ness uniform: r, D, t
and t) as for Case (6)

3 l.o.21® /1
K, = ab [3 OZla\

4
1:34 )]

4

t r
a s {0.15+0.10 £
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TABLE 1-15

Formulas for Deformation and Stress of
Various Open Sections in Torsion (concluded)

Form of Angle of Twist Magnitude and Location of

Cross Section ) Maximum Shear Stress
N i
a

f. L
GIK) - Kp-aD’
r
-~
:'D—‘l ‘ where )
l\ / ] d ‘v‘<’;"l_0_:1.'i.l UM
- < { Ky=ab?)y a v 12at 4]
4
1 ca L
. Kz""d][_l- -0.1037\1 l‘?Zr"/]
L section
r and D as for Cases (6) and
and (7)
a: yn 0790076 8
b b
(9)
i FR ¥ S
| E— GI(K) -Ka -a D)

L) where the summation is
for the constituent L, sec-
tions computed as for
case (8)

1.5.2.2 Noncircular Closed Beams in Torsion

Closed beams have one or a number of hollow portions in their
cross section. This type of beam is much more efficient in torsion than
open beams.

Section 1.5.2.2.1 treats single cell closed or box beams in tor-
sion, and Section 1.5.2.2.7 treats multicell closed beams in torsion.

1.5.2.2.1 Single Cell Noncircular Closed Beams in Torsion

This section treats box beams with a single hollow portion in
their cross section. Section 1.5.2.2.2 treats such beams having uniform
cross section, and Section 1.5.2.2. 3 treats tapered box beams. The effect
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of stiffeners and cutouts in box beams are treated in Sections 1.5.2.2.4 and
1.5.2.2.6, respectively.

1.5.2.2.2 Single Cell Noncircular Closed Beams with Uniform Cross
Section in Torsion

Figure 1-54 shows a cross section of a thin box beam. The
angle of twist of such a beam of length, L, due to an applied torque, T, is
given by

TL
g = dU

- (1-67)
4nl g ¢t

In this equation, A is the area enclosed by the median line, t is the thickness
at any point, and U is the length along the median line. The shear flow in
such a tube is uniform at all points and is given by

T
= 1-68
1= 57 { )
If the shear stress is assumed to be uniform across any thickness, itis
given by
T
f = 3. = ‘ (1—69)

s t 2 At

From this expression, it can be seen that the maximum shear stress occurs
where the thickness is minimum.

Figure 1-54, Cross Section of a Single Cell Closed Beam
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If the thickness of the tube is uniform, Equation (1-67) becomes

_ITLu (1-70)

6 =
4A2 Gt

and Equations (1-68) and (1-69) remain the same.

1.5.2.2.3 Single Cell Noncircular Tapered Closed Beams in Torsion

Figure 1-55 shows a tapered box beam under a torsional load, T.
Since all four sides are tapered in such a way that the corners of the box would
intersect if extended, the equations in Section 1.5.2.2.2 may be applied to
this beam if A is taken to be the area at the cross section in question.

Figure 1-55, Tapered Box Beam in Torsion

However, these equations no longer apply for box beams for
which the taper ratio of the horizontal webs is not the same as that of the
vertical webs since the shear flows will not have the same distribition for all
webs. Such a beam is shown in Figure 1-56. Although the equations in
Section 1.5.2.2.2 are not valid for a box beam such as that shown in Figure
1-56, they are quite accurate for the common airplane wing structure with
closely spaced ribs. The ribs divide the web into several smaller webs and
serve to distribute shear flows so that they are approximately equal in the
horizontal and vertical webs. '

Figure 1-56. Box Beam with Nonuniform Taper

1 - 82




1.5.2.2.4 Effect of Stiffeners on Noncircular Closed Beams in Torsion

Thin-walled airplane structures usually contain longitudinal
stiffeners spaced around the outer walls as shown in Figure 1-57. If the
open-type stiffener, as shown to the left in Figure 1-57, is used, the tor-
sional rigidity of the individual stiffeners is so small compared to the tor-
sional rigidity of the thin-walled cell that it is negligible. However, a
closed-type stiffener is essentially a small tube and its stiffness is thus
much greater than that of an open section of the same size. Thus, a cell
with closed-type stiffeners attached to its outer walls could be treated as a
multicell closed beam with each stiffener forming an additional cell. Since
the analysis of a beam with a large number of cells is difficult and, in gen-
eral, the torsional stiffness provided by the stiffeners is small compared to
that of the overall cell, an approximate simplified procedure may be used
with sufficient accuracy.

L L 1 L g WSS ey R S VHUN b WO L
I S SN T S— N s NUSUON s DU s IUREY s MRS,
Open-Type Stiffener Closed-Type Stiffencr

Figure 1-57. Types of Stiffeners

In the approximate method, the thin-walled tube and closed
stiffeners are cornverted into an equivalent single thin-walled tube by modi-
fying the closed stiffeners by one of two procedures. This equivalent tube
is then analyzed according to the material in Section 1.5.2.2.2. The two
procedures for modifying the closed stiffeners are:

1. Replace each closed stiffener by a doubler plate having an
effective thickness given by

t, =t, s/d T1-71)

This procedure and the necessary nomenclature are illustrated
in Figure 1-58.

2. Replace the skin over each stiffener by a "liner' having a thick-
ness given by

t, =t, d/s (1-72)
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This method and the necessary nomenclature are illustrated
in Figure 1-59. The first of these procedures slightly over-
estimates the stiffness effect of the stiffeners, whereas the
second procedure slightly underestimates this effect.

fastener centerline
F/__ d ] | r te = tgts/d rts
lL rd

=
7

tS
S L
= — 1 ¥

pap—————— d e

N

Lot —e

s

Figure 1-58. First Method of Transforming Closed Stiffeners

/—— fastener centerline
- d —— K rts et — d "
L rd y.d ]
S — —

1 ts
tst t=tge + .

Original Stiffener Transformed Stiffener

Figure 1-59. Second Method of Transforming Closed Stiffeners

Since the corner members of a stiffened cell are usually open
or solid sections such as those shown in Figure 1-57, their torsional re-
sistance can be simply added to the torsional stiff ness of the thin-walled
overall cell.

1.5.2.2.5 Sample Problem - Noncircular Closed Stiffened Uniform
Section Beam in Torsion

Given: A 120-in. -long beam under an applied torque of
10, 000 in.1lb. with a cross section as shown in Figure 1-60.

Find: The angle of twist and maximum shear stress in the
beam.
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Stiffener Detail

1x1x 1/8 angles at corners

b I: G = ax10°

st 24 o

Figure 1-60. Cross Section of Stiffened Single Cell Open Beam

Figure 1-61. Doubler Equivalent to Beam Stiffeners

Solution: From Section 1.5.2.2.4, a doubler plate equivalent
to a stiffener may be drawn as shown in Figure 1-61. The
area enclosed by the median line of the transformed section

is thus

A= (24x16) -8 (tg ) (d) -4 <Tl'6‘> (2)

where the last term takes into account the effect of the corner

angles. Thus,

A= (24x16) -8 (272-) (105) -4 (L Y2) = 381
1

Applying Equation (1-67) to the equivalent beam gives
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g = TL JP du _ 104(120) { 8d
b 438152y ax100) it +t

e

2
4(2) N 2(24+16)1-[8d+4(2)]}
16

+
£, + L
8

s

where the terms in the parenthesis represent integration over
the doubler, angles and skin, respectively. Thus

5 = 104(120) { 8(1.5) N 4(2)
4(38152)(4x106) (0.33+0.0625) (0.0625+0.125)
p 224+ 16)-[8(L.5)+4@)1 ) - 5. 35107 rad = 0.0306°

0.0625

From Equation (1-69)

P 104 13,1
2At 2(381. 5)t t

Thus, the maximum shear stress occurs at the point of mini-
mum thickness and '

13.1
T ————— . = 210 si
' 0.0625 P
1.5.2.2.6 Effect 6f Cutouts on Closed Single Cell Beams in Torsion

Typical aircraft structures consist of closed boxes with longi-
tudinal stiffeners and transverse bulkheads. It is necessary to provide many.
openings in the ideal continuous structure for wheel wells, armament instal-
lations, doors, windows, etc. These cutouts are undesirable from a struc-
tural standpoint but are always necessary. A closed torque box is necessary
for most of the span of an airplane wing but may be omitted for a short length
such as the length of a wheel well opening. When a portion of the skin is
omitted for such a region, the torsion is resisted by differential bending of
the spars, as indicated in Figure 1-62, since the open section has low tor-
sional rigidity. If the torsion is to be assumed to be resisted by the two side
webs acting independently as cantilever beams, as shown in Figure 1-62(b),
one end must be built in as shown in Figure 1-62(a).
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Bottom Skin
Removed (2)

Note:

{b)

Figure 1-62. Illustration of the Effect of a Cutout

The existence of a cutout and the resultant axial loads ia the
{flanges also increase the shear flow in closed portions of the box adjacent

to the cutouts.

Multicell Closed Beams in Torsion

™
~

—
Ut

Figure 1-63 shows the internal shear flow pattern on a multicell

tube consisting of n cells under a pure torsional load, T. The torque applied
- to this tube is given by
+2q_ A,

T= quA + ZqZA

1 21‘...

where A) through A, are the areas enclosed by the medium lines of cells 1
through n. The line integral, : ds/t, where s is the length of the median of
a wall and t is the wall thickness, may be represented by a. Then a,, is
the value of this integral along the wall between cells K and L., where the
area outside the tube is designated as cell (0). Using this notation, the fol-
lowing equations may be written for cells (1) through (n):

. 1 . -
cell {D “ la,210 + {q; - qp) ajp) = 2Gs
1

cell (2) --l_—[(q2 -qy)ajyt 4230 t+ (q2 - q3) a23] =2G=
A
2

cell (3) —l—-[q3 - qz) az3 + q3a3g + (43 - qy) a34] =2 G2
A
3
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cell (n-1) 1 ((9n-1 - 9n-2) 3p-2,0-1+9,-12,-1,0

L |

+(q, .1 'qn)an—l,n]:ZGe (1-77)
cell (n) — o [(q, - 9, -1)2,-1,n - 95240] = 2G8 (1-78)

n

The shear flows, q; through q_, may be found by solving Equations (1-73)
through (1-78) simultaneously. From these shear flows, the shear stress
distribution may be found since f, = q/t.

CELL (0)

q1 q2 q3 — C; An~ 1 qn

' SN
’ Ay Az }' An-i ’ An
t Cell (1) Cell (2)

Cell (na1) *i Cell (n)
7 7

Figure 1-63. Multicell Tube in Torsion

-—g—

1.5. Sample Problem - Multicell Clcsed Beams in Torsion

o
~N
e}

Given: A multicell beam with the cross section shown in
Figure 1-64 under a torsional load of 5,000 in.1b.

Cell (0) watl (1) wall (1, 2)
L /- / ,

4 L —
t, = 0.1875 Cell (2
1 ell (2) G=4x106psi
' ty = 0.125 jrat—
_ 2 2.5
g

Cell (1) :
—s=f |-t 5 =0.250

6.5 i 4 ™ \—wall (3)

Figure 1-964. Two Cell Closed Beams

Find: The shear stress in each of the walls.

Solution: Assuming the cell corners to square gives

2

I

(2.5)(6.5) = 16.25 in.

(2. 5)(4) = 10 in. 2

Ay

i

)
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1t

ajg = [2(6.5) +2.5]/0.1875 = 77.3

ajp = 2.5/0.250 = 10

[2(4) + 2.5]/0.125 = 84

Hi

220

Applying Equations (1-73), (1-74), and (1-75) to the given
beam gives

T = 2q,A) +2q,4,,

1
Ay lay210 + (a) - 9p) 22 = 2G9,

and
l ) bl ZG
, [(ay - q3) ajp t anzol 6.

Inserting numerical values into these equations gives
5000 = qu(lé. 25) + 2q2(10),

1

o355 (11(77-3) + (a) - q2)(10)] = 2(4x10%)s,

and

—1}6‘ [(az - 91)(10) + q,(84)] = 2(4x 10%)p.

Solving these equations simultaneously gives

q; = 78 1b/in., g, = 123 1b/in. and

0 =1.345%x10"% rad = 0.0077°
The shear stress in wall (1) is
q] 78
f = = = 415 psi
* =% 0.1875 psi
The shear stress in wall (2) is
q
£, = 2 = 123 = 984 psi
ty 0.125




The shear stress in wall (1.2) is

9; -9 -
g - o179 12378 g4 o
t 2 0.250

1.5.2.3 Effect of End Restraint on Noncircular Beams in Torsion

The equations for noncircular beams in torsion in previous sec-
tions assumed that cross sections throughout the length of torsion members
were free to warp out of their plane and thus there could be no stresses
normal to the cross sections. In actual structures, restraint against the
free warping of sections is often present at the point of attachment of a beam.
For example, the airplane wing cantilevers from its attachment to a rather
rigid fuselage structure and is restrained against warping at its point of
attachment. The effect of end restraint is greater at points close to the
restraint than those further removed. Sections such as I-beams are more
effected by end restraint than compact sections such as circles and squares.

Figure 1-65 shows an I-beam with one end restrained under a
torsional load, T. The maximum flange bending moment is

M,,, = —~ atanh — (1-79)
where
RN
a=Xr (T 2IyEe ©(1-80)
2\ TL

-and @ is the angle of twist of an [-beam with unrestrained ends given in
Table 1-15. The angle of twist of such an I-beam with restrained ends is

=9 (1 -2 tanh L 1-81
8, =9 (1- - tanh — ) (1-81)
From this equation, it can be seen that the end restraint has a stiffening
effect on the beam. - .
1.5.3 Analogies for Beams in Torsion

Two analogies for beams in torsion are useful both for visualiza-
tion of stress distributions and magnitudes and for experimental work. The
membrane analogy, which is described in Section 1.5.3.1, is valid for open
beams for which the shear stress is in the elastic range. The sand heap
analogy (Section 1.5.3.2) may be used to treat open beams under torsional
‘loads for which the plastic shear stress is the same at all points on the
cross section.
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1.5.3.1

P
e

Figure 1-65, I-Beam Restrained at One End

Membrane Analogy for Beams in Elastic Torsion

The equation for the torsion of a beam in the elastic range is

analogous to that for small Jeflections of a membrane under uniform pres-
sur:, Figure 1-66 shows such a membrane. The pressure on the membrane
is designated as p, and S is the uniform tension per unit at its boundary. The
membrane znalogy gives the following relationships between the deflected
membrune and a beam of the same cross section in torsion:

(1)

(2}

(3)

(4)

Lines of equal deflection on the membrane (contpur lines) corre-
spond to shearing strecss lines of the twisted bar.

. The tangent to a contour line at any point on the membrane surface

gives the direction of the resultant shear stress at the corre-
sponding point on the cross section of the bar being twisted.

The maximum slope of the deflected membrane at any point with
respect to the edge support plane is proportional to the shear
stress at the corresponding point on the cross section of the
twisted bar. Thus, the shear stress is greatest where the con-
tour lines are closest.

The applied torsion on the twisted bar is proportional to twice
the volume included between the deflected membrane and a plane
through the supporiing edges. If p/S = 2 G§, this torque is equal
to twice the volume. ‘ ' . :
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Figure 1-66. Membrane Under Pressure

The membrane analogy may be used to experimentaliy measure
quantities for beams in torsion. However, possibly the main advantage of
the membrane theory is that it provides a method of visualizing to a con-
siderable degree »f accuracy how stress conditions vary over a complicated
cross section of a bar in torsion. For example, consider the bar with rec-
tangular cross secticn shown in Figure 1-67(a). A membrane may be
stretchec over an opening of the same shape and deflected by a uniform
pressure. Equal deflection lines for the deflected membrane will take the
shape as shown in Figure 1-67(k). These contour lines tend to take the
shape of the bar boundary as it is approached as does the direction of shear-
ing stress. The shear stress is maximum where the contour lines are closest
(center of long side). Since the applied torsion is proportional to the mem-
brane volume, the more elongated of two rectangular bars of equal area has
the smaller torsional rigidity. Also, it is obvious that bending a long thin
rectangular section will not appreciably change the membrane volume and,
thus, the tcrsional rigidity of a bar of this shape.

R
—_“ﬁ—ﬁh_——.—- @ ‘
1 1Y

(a) (b)

Figure 1-67. Rectangular Bar in Torsion
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The membrane analogy also makes it apparent that stresses are
very low at the ends of outstanding flanges or protruding corners and very
high where the boundary is sharply concave. For example, Table 1-16
gives the stress concentration factor for the concave side of the shape in
Figure 1-68. Multiplying the maximum stress obtained from the formula
for thin rectangular sections in torsion by this factor gives the maximum
stress on the concave side of a thin bent section.

TABLE 1-16

Stress Concentration Factor for Thin
Sections in Torsion

v/t

Factor

~

Figure 1-68. Thin Curved Section

1.5.3.2 Sand Heap Analogy for Beams in Plastic Torsion

The maximum ultimate torque that an open beam may withstand
in torsion is given by

T=2VF,, , (1-82)
where V is the volume of a sand heap with a maximum slope of unity, piled
on a plate having the same shape as the beam cross section. Table 1-17

gives the volume of sand heaps with various bases of various shapes.

1.5.4 Helical Springs

The primary stresses in the wire of a helical spring are due to
torsion. Section 1.5.4.1 treats helical springs composed of round wire,
and those composed of square wire are treated in Section 1. 5. 4. 2.
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TABLE 1-17

Sand Heap Volumes for Equation (1-82)

Type Section Sand Heap Volume

Rectangle

3
t Vzi_?’lz)'"t) b2t
1

Circle
. v o p3
24
— D
Triangle
v AL

“N

A.= arca of triengle

r = radius of inscribed circle
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1.5.4.1 Helical Springs of Round Wire

Figure 1-69 shows a helical spring made of round wire under an
axial load, P. If the spring radius (r) is much greater than the wire diam-
eter (D), the wire may be treated as a straight round beam under a tor-
sional load, Pr, as indicated in Figure 1-69. Superposing the stress due
to torsion of the wire on the uniform shear stress due to direct shear
(4P/ﬂD2), the following equation for the maximum shear stress in the spring
may be obtained:

= 16Pr (. DY (1-83)
T I)3 \ 4r .

saax

In the cases of heavy coil springs composed of wire with a relatively large
diameter, D, in comparison to r, the initial curvature of the spring must
be accounted for. This is done in the following equation:

f;ux _ 16 Pr (4m-1 0.615 (1-84)
7 D3> - 4m-4 . m
where
m = 2L (1-85)
D
This equation reduces to Equation (1-83) as r/D becomes large.
The total deflection (§) of a round spring of n free coils is given by
3
§ = 64 Pr'n (1-86)
Gp4
This equation neglects the deflection due to direct shear which is given by - .
6, = 2EE0 (1-87)
Gd

This portion of the deformation, however, is generally negligible compared
to the value of § given by Equation (1-86) and is thus generally ignored.

All of the equations in this section apply to both compression and

tension springs, and in both cases the maximum shear stress occurs at the
inside of the wire.
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Figure 1-69. Helical Spring of Round Wire

1.5.4.2 Helical Springs of Square Wire

Figure 1-70 shows a helical spring made of square wire under an
axial load, P. The maximum shear stress in the square wire is given by

_ 4.80 Pr 4m-1 3 0.615

smax

!

] (1-88)
b3 “4m-4 m

where

m = 2L

1‘89

3
s - 44.5 Prih (1-90)
Gb4

where n is the number of active or free coils in the spring. This equation
neglects the deflection due to direct shear as did Equation (1-86). However,

the deflection due to direct shear is normally negligible compared to that
given by Equation (1-90).

Figure 1-70. Helical Spring of Square Wire
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2. COLUMN ANALYSIS

2.1 Introduction to Column Analysis

The stresses that a structural element can sustain in compression are
functions of several parameters. These parameters are:

(1) the length of the element along its loading axis,

(2) the moment of inertia of the element normal to its loading axis,
(3) the cross-sectional variation of the element with length,

(4) the eccentricity of the applied load,

{5) the continuity of the integral parts of the element,

(6) the cross-sectional characteristics of the element,

{(7) the homogeneity of the element material,

(8) the straightness of the element, and

(9) the end fixity of the element.

The effects of these parameters can be categorized by first establishing
certain necessary assumptions. For the following analysis, it is assumed
that the material is homogeneous and isotropic. It is further assumed that
the element is initially straight and, if it is composed of several attachedparts,
that the parts act as integral components of the total structural configuration.

The remainder of the previously mentioned parameters dictate more
general classifications of compression elements. If a compression element is
of uniform cross section and satisfies the previously mentioned assumptions,
it is referred to as a simple column and is treated in the first part of this
chapter. On the other hand, compression members having variable cross-
sectional properties are called complex columns and are covered in the latter
part of this chapter. Stepped and latticed columns are included in the treat-
ment of complex columns.

The possible basic types of failure defined for columns are primary and
secondary failure. Primary failure occurs when a column fails as a whole
and may be defined by the fact that cross sections of the element retain their
original shape although they may be translated and/or rotated with respect t&~ -
their original position. If cross sections are translated but not rotated, the
primary failure is of the bending type. Failures for which cross sections of
a column are either rotated or rotated and translated are treated in the sec-
tion on torsional instability.

If a column experiences a failure due to lateral bending at a stress level
below the elastic limit of the material, it is defined to be a long column while
failures at a maximum stress greater than the elastic limit are characteristic
of short columns.

Secondary failures occur when buckling or crippling occur in sections
of a column before it is loaded enough to produce a primary failure.
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A column failure of a selected element is influenced by the eccentricity
of the applied load and by the end fixity of the element. Both of these dictate
boundary conditions that modify the solutions to the differential equations
governing column response. ‘

In general, a column must be designed to prevent both the bending and
torsional types of primary failure as well as crippling. Crippling is likely
to occur in columns having thin portions in their cross sections. The tor-
sional type of primary failure is likely to occur at a lower load than the bend-
ing type in columns having cross sections of relatively low torsional stiffness.
Closed sections have enough torsional stiffness to insure that any primary
failure will be of the bending type so they must only be designed against this
and crippling.

2.2 Nomenclature for Column Analysis

A = area

a = linear dimension as indicated in diagrams

a = subscript, allowable

b = linear dimension as indicated in diagrams

b’ = b+h/2 in Section 2.3.2.4

C = coefficient of constant = (L/L')2

Cyr = torsion - bending constant

G = distance from neutral axis to the concave side of
loaded column

or = subscript, critical

D = diameter

E = modulus of elasticity

E. = reduced modulus of elasticity

E, = secant modulus of elasticity

E, * = tangent modulus of elasticity

e = eccentricity of loading

e = strain

R = subscript, for Euler's equation

ec/pZ = eccentric ratio ‘ -~

Focor = working concentrically loaded column stress

F, = working bending stress

F, = allowable compressive stress

F. = working compressive stress in bending

F.. = allowable crippling stress

F,., = empirical constant in Johnson parabolic equation
{column yield stress)

Foot = maximum fiber stress for primary failure of a
column

F. = proportional limit in compression

F. = compressive yield stress

FS = factor of safety

f = calculated stress
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= calculated compressive stress

= stress at which the secant modulus of elasticity
is equal to 0.7

= modulus of elasticity in shear

= height

= moment of inertia

= polar moment of inertia

= torsion constant

= spring constant

= empirical constant

= empirical constant

= length

= effective length = L//C

slenderness ratio

L2
—
f

CcCPE R RR<9STTEQ
;\
1

L]

S~
©
It

effective slenderness ratio
(L°/p),, = critical effective slenderness ratio

-

empirical constant in straight line column equation
= empirical constant in straight line column equation

<
"

= empirical constant in Ramberg-Osgood equation

= axial load

= allowable load

crippling load

= critical load

Euler critical load

radius

torque

thickness

rectangular coordinates

Ee/fl where e is strain

= Poisson's ratio

= torsional spring constant

radius of gyration = /I/A

summation

£,/

angular deflection - .
= angular deflection ‘

K S Oggdd e
=

N

TINNTI T TR il

non

1]

oA MO FTE o K
1]

2.3 Simple Columns

A simple column acts as a single unit and has a uniform cruos:

» oction
along its length. Such columns are treated in the following materiui.

2.3.1 Primary Failure of Simple Columns

A simple column has a primary failure when its cross seciions are
translated and/or rotated while retaining their original shape, that =, when
the column fails as a whole without local instability. If the column vr.ss
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sections are translated but not rotated as shown to the left of Figure 2-1, it
is said to fail by bending while pure rotation or a combination of rotation and

translation are characteristic of torsional failures.

,\
—-——-n R >
I t ] J l .7 ¢
i AR
1 ! ’/ o \\ ”~
| ( N ~ NN
I AR o ’
]
I \) e
H ' 7 7/
1 J { //
\V

Figure 2-1. Modes of Primary Failure

2.3.1.1 Column Data Applicable to Both Long and Short Columns

A stable section (not subject to crippling) testing for various lengths
will generate data of the form shown in Figure 2-2. The stress F_, is the
stress at failure, and L  /pis. the ratio of the effective column length to the
radius of gyration of the section. This L“/p ratio is called the effective
slendern_ss ratio of the column. '

% o Euler Column Curve

col

Figure 2-2. Typical Column Failure Curve

From the figure, it is apparent that the Euler column curve is quite
accurate beyond a critical L~ /p which defines the separation between long and
short columns. A great amount of test data, collected for particular materials,
is available and eliminates the need to determine whether a long or a short N
column curve is applicable. A summary of column allowable curves that are
applicable to both long and short columns is outlined and presented on the fol-
lowing pages. These curves are based upon the tangent modulus equation which
is discussed in Section 2.3.1.11.1. The column allowables are based on mini-
mum guaranteed properties, Basis A, or probability properties, Basis B, if
the latter are available. The pertinent basis is indicated in the figures.
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INDEX OF COLUMN ALLOWABLE CURVES

Figure
Aluminum Alloys
2014 Extrusion . . . . . . . .0 i e e 2.3
2024 Bare Sheetand Plate. . . . . . . . . . oo v .. 2.4
Bare Plate . . . . .. .. ... oo o oo, T ... 2<5
Extrusion . . . . . . . . o e e e e e e e 26
Clad Sheet and Plate . . . . . . . . . . . o v oo . 2-7
Clad Sheet. . . . . . . . . e e e e e e 2-8
7075 Bare Sheetand Plate. . . . . . . . . . .. .. ... ... 2-5
Extrusions. - . . . . . . . e e e e e e e e 2-3
Die FOrging - « « « v v v v vt eiteee e et a e ... 2-9
Clad Sheet. . . . . .« o i i i e e e e e e e e e 2-8
7178 Bare Sheet and Plate, Clad Sheet and Plate, and
EXtrusions . . . v v v v v i i e e e e e e e e e e e 2-10
356 Casting. . « .. v v oo oL e e e e e e e e e e 2-11
Magnesium Alloys
AZ63A-T6 Casting. . . . . . . . . i e e 2-12
ZK60A-T5 Extrusion . ...............o.o...... 2212
AZ31B-H24 Sheet » + - « « v o v v v vt e e e e e e e e e e e 2-13
HM21IA-T8 Sheet . . o oo v vee e e, 2-14
HM31A-F  Extrusion, Area< 1.0in% . ... . ........ 2-15
HM31A-F  Extrusion, Area: 1-3.99in%. . ... ... .... 2-16
Steel Alloys
Heat-treated Fy = 180-260 Ksi. . . ... e 2-17
Heat-treated F¢y = 90-150 Ksi . . . . . . o oo oo o 0oL 2-18
Stainless Steel
18-8 Cold rolled - with grain. . . .. .. .. .. .... 2-19
Cold rolled - cross grain. . . . .. ... ... .. 2-20
AM 350 Sheet . o . v o i e e e e e 2-21
PH 13-8 Mo Pilate and Bar . ... ... .. e e e e e e e 2-22
PH 14-8 Mo Sheet . .. .. e e e e e e e e e e e e .. 222
PH 15-7 Mo Sheet and Plate . . .. . ... ... ... ...... 2-23
17-7 PH Sheet and Plate . . . . . . . . . .. ... 2-24
17-4 2-21

PH Bar . . .. e e e e e e e
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INDEX OF COLUMN ALLOWABLE CURVES (Cont'd.)

Figure
Titanium Alloys
Commercially Pure Sheet . . .. ... ... ... ......... 2.25
8 Mn Annealed Sheet. . ... ... ... e e e e e 2.25
4 Al-3Mo -1V Solution Treated and Aged Sheet and ,

; Plate. . . . . .« v v v v v oo 2-26
5Al1-2.55n Annealed Sheet, Plate, Bar and Forging. 2-27%
6 Al-4V Annealed Extrusion. . . . . . . . . . ... .. 2-28

Annealed Sheet. . . . .. .. .. .. e 2-29
Solution Treated and Aged Sheet . . . . .. 2-30
Solution Treated and Aged Extrusion . .. 2-31
8 Al-1Mo-1V Single Annealed Sheet and Plate . . .. .. 2-32
13V-11Cr-3Al Solution Treated and Aged Sheet and
Plate. . . . . . oo oo oo oo 2-33
Annealed Sheet and Plate . . . . .. e e . 2-34
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F.o] - Column Stress - Ksi
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2014 AND 7075 EXTRUSIONS
| ] 1 | |
. Thickness
C6 Curve Designation and Area Basis

7 1 2014-T6 .125-.499 B

2 2014-T6 .500-.749 B

3 2014-T6 2 .750, AS25 B

5 NN 4 2014-T62 2 .125,AS32 A
- 5 <.250,.750-1.499 B

8 6 7075-T6510 .250-.499 B
\ PN 7 and -T6511 .500-.749 B

3 8 1.500-2.999 B

2 \
It
4 \
h
/"‘ l; 2: 3! & 4 p .

N\

20 40 60 80 100 120

L'/p
Figure 2-3. Column Allowable Curves




| | i | 1 |
2024 BARE SHEET AND PLATE

90

80

2
|

70 \ é) Material
'\ \ Curve Designation Thickness Basis
TN 1 2024-T42 <. 250 A
\ 2 2024 -T4 501-2.00 B
60 2024-T3 <.250 - J—
® 3 2024-T36 <. 500 B
X ~\ 4 2024-T6 <2.00 A
. 3) 5 2024-T86 <.063 A =
@ 6 2024-T86 >.063,<.5 A
S 50 AN
wn
E \\ \
E D)
S \ \
— 40 NN G A
; SN
(A \
1
30

10 ‘ - ~—

0 20 40 60 80 100 120
L'/p

Figure 2-4. Column Allowable Curves
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1 1 L .1 T 1
2024 BARE PLATE
90 : . 7075 BARE SHEET AND PLATE
80 \
\ Material
Curve Designation Thickness Basis
f')__
70 6 > 1 2024-T42 .250-3.00 A
C 2 2024-T4 .250-.500 B
3 7075-T6 .016-.039 B
% 4 7075-T6 .040-.249 B
X 5 7075-T6 .501-1.00 B
. 60 _ - [ 250-.500 B
2 & ] 6 7075-T6 S o
[V L
o 4 AN
%)
g
2 50 '
o
O
]
3
2, 2
40
J
30 J
20
1 X2
10
L3
0
, 0 20 40 60 80 100 120
Lt/p
- Figure 2-5. Column Allowable Curves
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Fcol - Column Stress - Ksi
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2024 EXTRUSION

Figure 2-6. Column Allowable Curves

210

Material Thickness s |
Curve Designation and Area Basis
1 2024-T4 <.250 B
2 2024-T4 .250-.749 B
3 2024-T4 .750-1.499 B
2024-T4 21.50, A<25 B
’Q 4 2024-T42 =2.250, AS32 A
5 2024-T62 All A B ——
6 2024-T81 <.750 A
6
\ >
\ 1
\\
20 40 60 80 100 120
L'/p




Fcol -~ Column Stress - Ksi

2024 CLAD SHEET AND PLATE
90
80 —
Material
Curve Designation Thickness Basis
— 1 2024-T42  .500-3.00 A
20 \ 2024 -T42 .063-.249 B
2 -
\ 2024-T42 .250-.499 A
N\ - 3 2024-T3 .063-.249 B
— 2024-T4 .250-2.00 B e
\< 4 2024-T36  .063-.500 B
\ 5 2024-T6 .063-.249 A
60 6 2024-T81 .063-.249 A —
@ \ 7 2024-T86  .063-.249 B
N
\ \
AN
\\ >)
40 R @ \\
N
\ N
30 ] P
20
\\
10
'\\
0
0 20 40 60 80 100 120
L'/p

Figure 2-7. Column Allowable Curves

2 - 11




Fcol - Colu@n Stress - Ksi

N B
2024 CLAD SHEET
90 7075 CLAD SHEET
80 Material ~
Curve Designation Thickness Basis
1 2024-T42 <. 063 B n
2 2024-T3 <.063 B
70 8) 3 2024-T36 <.063 B
4 2024-T6 <.063 A
9 5 2024-T81 <063 A
= N\ 6 2024-T86 <063 B
'\\ \ 7 7075-T6 .016-.039 B
1 10) | 8 7075-T6 .040-.062 B |
60 . 9 7075-T6 .063-.187 B
6 10 7075-T6 .188-.249 B
5
50
3 \
4
* N ) - \\
@\ \\\
30 F\\
20
10
N\
0
0 20 40 60 80 100 120
L'/p
Figure 2-8. Column Allowable Curves
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Fcol -~ Co}umn Stress - Ksi
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R L L} L
7075-T6 DIE FORGINGS

\\ (1 ! Basis - A
\ N Curve Thickness

1 <2.000

2 2.001-3.000

\N
\\
0 20 40 60 80 100 120
L'/p
Figure 2-9. Column Allowable Curves



F.o] - Column Stress - Ksi

aa

L 4 R |
7178-Té6
Basis - B
Curve Type Thickness —t
1 Clad Sheet .016 - .044
2 Clad Sheet & Plate .045 - 1.000 ™
3 Bare Sheet .016 - .044
4 Bare Sheet & Plate -045 - 1.000 _]
5 Extrusion .750 - 2.999
6 Extrusion <.250
7 Extrusion 500 - .749 —
8 Extrusion .250 -  .499

40

30

20

AN

) | \\

0 20 40 60 80 100 120
L'/p

Figure 2-10. Column Allowable Curves
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Fcol - Column Stress - Ksi

45

40

35

30

25 |

20

15

10

1 1 ] 1 I
CASTING - ALUM. ALLOY

Basis - A

Curve Material Designation

1 356-T6 Sand Casting

2 356-T6 Permanent
Mold Casting

\
\ .\>
A\
\\ -
\

20 40 60 80 100 120
' L'/p
Figure 2-11. Column Allowable Curves
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Fco] - Column Stress - Ksi

T L |
MAGNESIUM
36
28 )
’ \ Curve Material ——
1 AZ63A-T6 Casting
\ 2 ZK60A-T5 Extrusion
24 \ ‘
- \

20

16 \

12 : N

8 :

4 \N

0 ‘

0 20 40 60 80 100 120

L'/p
Figure 2-12. Column Allowable Curves
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Fcol - Column Stress - Ksi
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SHEET
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1

Curve
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300°F
400°F
500°F

75

\

N\

N

\

N

N

AN

N

N

\
N©
N
N

BN
N

X

~_

A AVAY Ve

KL\

\

~

4 3

20 40

Figure 2-13.
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Column Allowable Curves
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Fcol - Column Stress - Ksi

18

16

14

i2

10°

I 1 1

SHEET

HMZ21A-T8 MAGNESIUM

1

Basis - A

Curve Temperature

Room
200°F
300°F
400°F
500°F

[ I S L

20 40 60
Lt/p

80 100

Figure 2-14. Column Allowable Curves
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Feol - Cotumn Stress - Ksi

L T 1 1 1 I 1
HM31A-F MAGNESIUM EXTRUSION
36 .2
AREA <1.000 in.
32
Basis - A
28
Curve Temperature
1 Room
2 200°F
3 300°F
24 4 400°F
5 500°F
1
20 -’
i\
e 3
12 \ \
\\
@/\
8
4
0 .
-0 20 40 60 80 100 120

L'/p

Figure 2-15. Column Allowable Curves
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1- Column Stress - Ksi

FCO
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| P I | [ |
HM31A-F MAGNESIUM EXTRUSION

AREA: 1.000 - 3.999 in. 2

Basis - A
-

\ Curve Temperature

p— 1 Room

2 2 200°F

x 3 300°F

\ 4 400°F

5 500°F

40 60 80 100
L'/p

Figure 2-16. Column Allowable Curves
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Fcol - Column Stress - Ksi
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2 200
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Figure 2-17. Column Allowable Curves
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HEAT-TREATED ALLOY STEEL
180
160
Basis - A _
\\ 1 Curve Ftu (ksi)
140 ~< —
1 150
\ 2 125
3 95 (t<.188)
\ ;I'A 90 (t >.188)
95 (¢t <.188)
120 0 —
fj 90 (t >.188)
1 \'< D -As received (Cond. N) e
a '\k [OJ~-Normalized by User
5100
0
&
E
3
.-o‘ \
© 3
! 80 /
Lug \\ k
{
4
60 \ - 5 \
od
40 : AN
20
0
0 20 40 60 80 100 120
L'/p
Figure 2-18. Column Allowable Curves *
2 - 22




Fc01 - Column Stress - Ksi
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Figure 2-19. Column Allowable Curves
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1- Column Stress - Ksi

F
co

T | p— T T T
\ STAINLESS STEEL (18-8)
180 ‘h COLD ROLLED - CROSS GRAIN
160 \]\ ,4@
\@ Basis - A
140 \ Curve Temper
1 Annealed
2 1/4 Hard
3 1/2 Hard
120 4 3/4 Hard
(a\‘ \ 5 Full Hard
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Curves

Figure 2-20. Column Allowable
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Fcol - Column Stress - Ksi

STAINLESS STEEL
SHEET AND BAR

220
200
Basis - A ]
180 _-\ Curve Alloy Condition Thickness _|
f2>_ 1 AM-350 (sheet) SCT <.1870  _|
\ 7‘ 2 17-4PH (bar) H-900 <8.00
160 \
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Figure 2-21. Column Allowable Curves
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Fcol - Column Stress - Ksi
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Feol - Column Stress - Ksi
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Figure 2-23. Column Allowable Curves




Feol - Column Stress - Ksi
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Figure 2-24. Column Allowable Curves
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Figure 2-25. Column Allowable Curves
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.Fcol ~ Column Stress - Ksi
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- Column Stress - Ksi
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Figure 2-27. Column Allowable Curves
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Fcol - Column Stress - Ksi
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Figure 2-28. Column Allowable Curves
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Feol - Column Stress - Ksi
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Figure 2-29. Column Allowable Curves
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F.o1 - Column Stress - Ksi
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Figure 2-30. Column Allowable Curves
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" Feol - Column Stress - Ksi
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Figure 2-31. Column Allowable Curves
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Figure 2-32. Column Allowable Curves
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Fcol - Column Stress - Ksi
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Fcol - Column Stress - Ksi
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2.3.1.2 Sample Problem - Column Data Applicable to Both Long and
Short Columans

Given: The 0.6 in. square concentrically loaded column
shown in Figure 2-35.

)
P'_——q—zgn L—0.6 v

2014-T6 aluminum alloy extrusion

-——e P

Figure 2-35. Pinned End Column in Axial Load

Find: The critical load, P_,, by using column curves appli-
cable to both long and short columns.

Solution: Since the column is pinned at both ends, L= L =6 in.
For a square, I = b%/12 and A = b2, Thus,

- 2 2
S S 4 Sl A ST S
A 12 12
L' '
== _bin. . 44
: 0.173 in.

From Figure 2-3, curve 2, find F_,, = 56,200 psi. Thus,
P,, = F ;A = 56,200 (.6)% = 20, 200 1b.

2.3.1.3 Bending Failure of Concentrically Loaded Long Columns

In the process of describing column behavior in this chapter, the
simplest cases are covered first and then various complications are covered.
Historically, the first type of column to be successfully studied was the long
concentrically loaded one for which Euler developed an equation giving the
buckling load in terms of column parameters. This is also the simplest case.

The Euler formula, which is perhaps the most familiar of all col-
umn formulas, is derived with the assumptions that loads are applied con- -
centrically and that stress is proportional to strain. Thus, it is valid for
concentrically loaded columns that have stable (not subject to crippling) cross
sections and fail at a maximum stress less than the proportional limit, that
is, concentrically loadgd long columns. The form of the Euler formula is
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Per - C‘l‘I'ZE or Pcr - _TT_Z_}_«_:__ (2_1)
A (L )2 A ( L’ \\2
\O ;

Here, P/A is the ratio of the axially applied load at failure to the cross-
sectional area of the column. E is the modulus of elasticity of the column
and L/p is the ratio of the column length to the least radius of gyration of
its section. The radius of gyration is defined to be equal toVI/A, wherel
is the moment of inertia of the section. The constant, C, which is called
the coefficient of constraint, is dependent upon end restraints and is dis-

cussed in Section 2.3.1.4 . In the second form of Equation (2-1), L  is
an effective length which takes into account end restraint conditions.

2.3.1.4 Coefficient of Constraint for End Loaded Columns

In the discussion of columns, the coefficient of constraint C often
occurs., As was mentioned before, this coefficient depends upon the manner
in which the ends of a column are restrained, which, in turn, determines
the boundary conditions that must be satisfied by the equations describing
the column.

Sometimes, the use of a coefficient is avoided by using an effec-
tive length L” instead of the actual length L in formulas derived for a
column with both ends pinned of length L. The term L~ is then the distance
between points of inflection of the loaded column curve. For example, the
effective length of a column of length L that is rigidly supported at both ends
is 1./2 as can be seen in Figure 2-36,

L'=L

}

Figure 2-36. Example of Effective Length

The relationship between L* and L, and C is

rd

2
(t ) = C. (2-2)

2 - 40




-

By assuming various combinations of idealized end restraints, a
table of theoretical end constraint factors may be constructed. This is
shown in Table 2-1. '

TABLE 2.1
Coefficients of Constraint for Idealized End Conditions
Type of Fixity C Type of Fixity C
.25 2.05
[ ]
1.00 4.00
(J

The end restraints of an actual column are never exactly equivalent
to pinned or fixed ends, but lie somewhere between the two extremes. This
discrepancy is due to the fact that a pinned joint is never entirely frictionless
and a member to which a column is fixed is never perfectly rigid.

Cases for which one or both of the ends of a column are fixed to
nonrigid members may be treated by considering these ends to be restrained
by a torsional spring of spring constantu. The constant y is defined to be
dT/dd where T is a torque applied to the support at the point where the col-
umn is attached and 6 is the angle of twist at this point. Given this definition,
W may be calculated by applying formulas from strength of materials to the
member to which the column is attached before attachment. For example,
consider the column shown in Figure 2-37. The torsional spring constant for
the end is found by considering the beam supporting the column and calculating
dT/dB where T and 6 are as shown in the middle diagram. dT/df is a constant
for small deflections so T/ may be found from beam formulas. The column
is then redrawn with the attached beam replaced by an equivalent torsional
spring.

it -

0

L/ a6

BN

2 £

Figure 2-37. Example of Equivalent Torsional Spring
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Equations have been developed that give the end fixity coefficient, C,
as a function of y, L, E, and I for columns equally elastically restrained at
both ends and for those pinned at one end. These equations are given and
plotted in Figure 2-38. From these plots, it can be seen that C approaches
the value corresponding to a fixed end rather than an elastically restrained
end as U increases. ILikewise, C approaches the value corresponding to a
pinned end as the spring constant approaches zero.

4.0 I 1 ]
Foru=®, C=4.0
3.8 1
//
3.6 e Both Ends Equally Restrained
s /
/ ey .V AR o p
3.2 )@_— :7‘))'{
L
3.0 / u ‘ ¥
O
C
s 8 C LL:n/ECot”Zf—.
c ' El _
S e mm—
= / C = fixity coefficient
3 y E = modulus of elasticity
3 2.4
- I = moment of inertia
° L = length of column
; ¢ < u = bending restraint coefficient -
E spring constant (in-1b/rad)
2.0 _x__r -
- // One End Restrained }
AL B O
/ 2
1.4 _ -
2 ub m?c 4 -
El n/C Cot /T - 1
g = = 2.05
1.0 Forw=wo, C=2.0
T I I |

0 10 20 30 40 50 60 72 80 90 100 119

uL
EI

Figure 2-38. Fixity Coefficient for a Column with End Supports Having
a Known Bending Restraint
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At times, a column may be supported along its length as well as at
the ends. For example, the column shown in Figure 2-3" i» supported at its
midsection by another member.

oo

L8N
777

Figure 2-39. Simply Supported Column with Intermediate Support

In order to treat such a case, namely that illusirated in Figure
2-39, we may consider the member supporting the columin at its midsection
to be a spring of spring constant K lbs/in. which may bhe found by applying
strength of materials to the support. Charts that give the coefficients of
restraint of a pinned column with a single lateral suppart along its mid-
section or two lateral supports symmetrically placed :»1: its midsection are
available. Figure 2-40 shows a simply supported columnn with one lateral
restraint and gives the coefficient of constant of such a column as a function
of column parameters. Figure 2-41 shows a simply supported column with
two symmetrically placed lateral restraints and gives the coefficient of con-
straint as a function of column parameters.

The previous discussion of coefficients of constraint was-limited
to relatively simple cases. At times, however, a column may be attached ~
to members for which an equivalent torsional spring constant is not easily
found or it may be attached in more complicated ways than those previously
discussed. In such cases, certain general rules may be applied.

In normal practice, the coefficient of constraint is less than two
and the effect of end fixity is smaller for short columns than for long ones.

2 - 43




1 —

Yt Note:
s [: s
L : K A center support tzmhaves
x ] rigidly if g > 16

4.0
I

5 g | B = Modulus of ////
. Elas:tmlty \ A{//// LI
safa- KL ///(// 2120
-/ 55

3.0 q= 1001

2:6 ‘”ZV// j////:f q=80 ]
7 //

Fixily Coefficient, C
~ \\\
SN
N

/
AN SIS A o
VA
1.8 for S S 00\ / ac
LA A
» 0///,//// (A;?_j 20
Wiy =

Figure 2-40. Fixity Coefficient for a Column with Simply Supported Ends |
and an Intermediate Support of Spring Constant, K
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ot where X = spri
l = spring
adjet- b —pfe 2 j constant lb/in
L
9

Fixity Coefficient, C
—~——
N
N
N\

AN
3 #Lii \/%0“‘
5
1 NQL\J“ \
0 1 .2 .3 .4 . . .8 .9 1.0
b/L

Figure 2-41., Fixity of a Column with Two Elastic, Symmetrically
Placed Supports Having Spring Constants, K

The ends of a compression member in a welded truss of steel tubes,
like those that are often used in aircraft structures, cannot rotate without
bending all of the other members at the end joints. Such a truss is shown
in Figure 2-42. It is difficult to obtain the true end fixity of a compressive
member in such a truss since the member may buckle either horizontally o -
vertically and is restrained by the torsional and bending rigidity of many
other members. Itis usually conservative to assume C = 2.0 for all mem-
bers. A smaller coefficient of constraint might be used for a heavy com-
pressive member restrained by comparatively light members. Likewise, a
larger coefficient of constraint may hold for a light compressive member
restrained by heavier members. A coefficient of constraint of one should be
used if all of the members at a joint are in compression. Steel tube engine
mounts are usually designed with the conservative assumption of a coefficient
of constraint of unity.
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N

Figure 2-42, "Welded Truss

Stringers which act as compression members in semimonocoque
wing or fuselage structure, such as that shown in Figure 2-43, are usually
supported by comparatively flexible ribs or bulkheads. The ribs or bulk-
heads are usually free to twist as shown so that their restraining effect may
be neglected and the value of C is taken to be unity, where L is the length
between bulkheads. If the bulkheads are rigid enough to provide restraint
and clips are provided to attach the stringers to the bulkheads, a value of 1.5

is sometimes used for C.
T A— ——-—*1
—— — —

P e t——— P
\ / |

\ ]

\

|

|

Figure 2-43. Semimonocoque Structure

2.3.1.5 Distributed Axial Loads

Columns subjected to distributed axial loads may be treated by
formulas developed for end loaded columns if a coefficient of constraint is
used that takes into account both the load condition and end fixities. Fig-
ure 2-44 shows columns under a uniformly distributed axial load of P/L
lbs/in. with various end restraints and their corresponding coefficients of
constraint. The values P, L, and C are used in the formulas for end loaded
columns.

P P ' P P

i oy !

/ / / -~ -

#—T , /1 £L _z_zT
1 1 1 1
1 L 1 L 1 L 1 L
1 1 A 4

1 1 l
7777

C=3.55 C=7.5 C=1.87 C = .794

P/L 1b/in P/L lb/in P/L ib/in P;L lb/in

Figure 2-44. Coefficients of Constraint for Columns Under a Uniformly
Distributed Axial Load
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2.3.1.6 Sample Problem - Concentrically Loaded Long Columns
in Bending

Given: The concentrically loaded rectangular bar shown in
Figure 2-451is fixed at one end and attached to a round bar
at the other end. Both bars are made of steel for which

E = 30 x 10° psi and G = 11. 5 x 10° psi.

P
7.25 7. 25
A
|
| 1 in. diameter
round bar
a0 | IIF—2x1/2- in. bar

jié?r
|

P

Figure 2-45. Example of Constrained Column

Find: P_ .

Solution: From elementary strength of materials, § = TL/L,G for
a torsion bar. In effect, there are two 7.25-in. -long bars
attached to the end of the column so that the equivalent tor-

sional spring constant is

2JG
L

M= 2 —I_— =
8
Substituting the appropriate values into the expression for y gives

4
(2)3%12)— (11.5x100)

5 .
= = 3.12 .-
"l T x 1‘0 in. -1b/rad
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The column may now be redrawn as Figure 2-46.

Figure 2-46. Free Body Diagram of Constrained Column

uL  _ (3.12 x 10°) (40) _ 20
F (30 x 106)[ 2(.5)° ] )
12

From Figure 2-38, we find that C = 1.88. Solving Equation
(2-2) for L’ gives

L' = L = 0 = 29.2 in.

NG V1.88

The radius of gyration of the bar is

3
JI/A = /——(1;2-5—)—'/2(.'5) = 0. 144 in.

The slenderness ratio

4

L°_ _30.5 _,q;
o 0. 144

From Section 2.3.1.11.7, it is found that a steel column for
which L/p is greater than 120 is a long column. Thus, the
Euler formula, Equation (2-2), becomes

AT?E

Por = ==
(+)
p
Substituting the values for the given column into this equation

gives

2 6
_(.5%2)77 (30x107) _ 13,100 lb.
150%

P

cr
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In general, a column such as this must also be checked for
buckling in the plane through the bar and the column. 1In this
case, however, the column will not fail by this mode.

2.3.1.7 Bending Failure of Eccentrically L.oaded Long Columans

A theoretically correct formula that holds for eccentrically loaded
columns is the secant formula:

F
P epl
A e (2-3)
1+ =E sec l-_];'“_~ /i]
02 L2p ¥ AE

In this formula, P, A, o, L, C, and E are defined as before, and e is the
eccentricity of the load. The distance between the central axis and the con-
cave side of the loaded column is designated as ¢. In the case of a long eccen-
trically loaded column, F o may be taken to be the value of Pc‘_/A found from
the Euler formula in Section 2.3.1.3. If a factor of safety, FS, is applied,
the corresponding formula for allowable load, P,, becomes

(FS)P, Feot o (2-4)
A T(FSP,

'
!

1+ 25 gsec L v
02 20 AE

The secant formula may also be used for short columns by finding F_ , dif-
ferently as will be shown in the material on short columns.

All physical columns have some accidental initial curvature due to
imperfections and some eccentricity of loading. In these cases, an equivalent
eccentricity may be used to approximate the effects of the imperfections. Data
may also be found for the equivalent eccentric ratio which is the ec/c2 term in
the secant formula. Values for these may be found in Section 2. 3. 1. 8.

The secant formula applies when the eccentricity is in the plane of .
the bending.

Unfortunately, the secant formula is difficult to solve and must be
solved by either trial and error or charts.

2.3.1.8 Equivalent Eccentricity for Imperfect Columns

As was mentioned previously, no column is perfectly straight and
concentrically loaded. 1In order to allow for these initial imperfections in a
column whose loads are concentrically applied, an equivalent eccentricity of
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loading may be asssumed. The column may then be treated by methods used
for an eccentrically loaded column.

Opinion is divided as to whether the equivalent eccentricity assumed
for imperfections is dependent upon or independent of the length of a column.
If we assume that it is independent of column length, an equivalent eccentric
ratio ec/p2 ranging from 0.1 to 0.25 may be used. The mean value of such
an eccentric ratio is approximately equal to 0.2. We may also assume that
the equivalent eccentricity, e, is proportional to the effective length of the
column. If this procedure is used, e may be taken to be equal to KL where K
is a constant. Values of K ranging from 0. 001 to 0.0025 may be used with the
latter yielding conservative results.

2.3.1.9 Sample Problem - Long Eccentrically Loaded Columns and
Equivalent Eccentricity

Given: The round column shown in Figure 2-47 with nominally
concentric loading.

/‘L‘: )
50004 __——*;'.T ~-4—— 5000#
. 7 [ S

Steel - E = 30 x 10° psi

Figure 2-47. Column Loading for Study of Eccentricity

Find: The column diameter, D, for a factor of safety of 1.5, con>
sidering the initial imperfections of the column.

Solution: For a round section, I = 1TD4/64 and A = ﬂD2/4. Thus,
o =VI/A = D/4. Since the column is pin ended, L = LL” = 50 in.
Try D = 1.215.

L= _ 50 - 64.5 -~
o 1.215
4

According to Section 2.3.1.11.7, steel columns for which L /o
is greater than 120 may be treated as long columns. Thus F
in the secant formula may be found by the Euler formula:

el i -’
n- E < . 10Y)
F,, = ——— = P__E_Q}__é_(l_’ = 10, 930 ps.
;L' a2 (164.5)%
\ 5 )
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The secant formula, Equation (2-4), may now be written as

(FS)P«! _ Fcol
A . FS) P
1+ 2 sec [LL [ P
02 L 2p \ AE 4
i} 10, 950
. [(FS) P
1455 sec l— L N (F'S) s ]
0 Y20 ¥ AE

According to Section 2. 3. 1.8, equivalent eccentric ratio due to
initial imperfections is between 0.1 and 0.25. To be on the con-
servative side, use an equivalent eccentric ratio of 0.25. Sub-
stituting this and column parameters into the secant formula, the
expression below is obtained.

(1. 5) (5000) _ 10,950
m(l.215)2 I 50 (1. 5) (5000)
4 2(1.215) 1.215)2
L+ .25 sec |2k 1 \ IL('—Z_L* (30 % 10%)

or 6450 = 6450

Thus, the original guess of D = 1. 215 was correct. If this were
not true, different values of D would have to be chosen until one
was found that would make both sides of the secant formula equal.

2.3.1.10 Bending Failure of Short Columns

In the previous discussion of long columns, it was assumed that the
column material was in the elastic range at the time of buckling. This assump-
tion, however, is not true for columns having an effective slenderness ratio
of less than a certain critical value for a given material. This value of the
critical effective slenderness ratio, L /o, is discussed in Section 2.3.1.11.7.
Since the Euler formula no longer applies for short columns, one of the for-
mulas used to fit short column data must be used to treat them.

2.3.1.11 Bending Failure of Concentrically Loaded Short Columns

Several formulas are available to treat short columns. These have
no theoretical justification as did the Euler formula, but fit column data to a
degree of accuracy depending upon the material and column parameters. The
equations most commonly used for short columns are the tangent modulus,
Johnson Parabolic, and straight-line equations.
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2.3.1.11.1 Tangent Modulus Equation

If the slenderness ratio of a column is low enough that some of
its fibers are no longer in the elastic range at the time of failure, the Euler
formula no longer holds. However, this case may be treated by defining a
tangent modulus of elasticity, E,, to be the slope of the stress-~strain curve
at a given point. This tangent modulus of elasticity may then be substituted for
the modulus of elasticity in the Euler equation to obtain the tangent modulus
equation {modified Euler equation).

M2 E,)

i = i (2-5)
(L \2 .
\—p‘/’

Since E; is equal to E in the elastic range, the tangent modulus equation reduces
to the Euler equation for long columns and is thus valid for both long and short
columns. '

The value of stress at which E; is found is the maximum stress
in the column. In the case of a concentrically loaded column, this is equal
to P/A. Since E; is a function of loading, the tangent modulus equation must
be solved by trial and error if E; is found from stress-strain diagrams or tables.

The tangent modulus equation has been solved for a number of
different materials and these solutions are shown in Section 2.3.1.1.

The main disadvantage of the previously described procedure
for solving the tangent modulus equation is the trial and error method required.
This disadvantage may be eliminated if an equation for the stress-strain curve
is available. Such an equation is the Ramberg-Osgood equation,

- 3 4n
e =0+ —7—- [9)
Here, € = Ee/fl and o = fc/f1 where e is the strain, f, is the compressive stress,
and f} is the stress at which the slope of a line from the origin to a point on the
stress-strain curve is 0.7. E and n are constants determined experimentally
for a given material. The Ramberg-Osgood equation may be used to obtain the
following expression for the tangent modulus of elasticity.

E, = E (2-6)

1 +3/7 ncrn"1

‘ This expression may in turn be substituted into the tangent modulus equation
with f, equal to F_, to obtain
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2

_nE 1 (2-7)
Fcol- .2 (\ n—l>

(L \ 1+3/7nc

\o /

In the case of a column under concentric loading, F,,, is equal to P/A, A
nondimensional plot of this ¢quation is shown in Figure 2-48, Values of n,
fl, and F. that are needed for the Ramberg-Osgood equation are shown in
Table 2-2.

v

/
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i || =H
0 0.4 0.8 1.2 1.6 2.9 2.4 2.8 3.2 3.6

L'/:
T E/M

Figure 2-148. Nondimensional Plot of Tangent Modulus Equation with
E, Obtained from the Ramberg-Osgood Equation
. . #




TABLE 2.2

Properties of Various Materials for Ramberg-Osgood Equation

Material E, Ksi n £, Ksi

Aluminum Alloys

24 S-T Sheet 10, 700 10 41
24 S-T Extrusion 10, 700 10 37
758-T Extrusion 10, 500 20 71
Clad 2024-T3 Longitudinal 10, 000 10 38.1
Clad 2924-T4 Longitudinal 10. 000 15 36.5
Steel
Normalized 29, 000 20 75
Fy, = 100, 000 29, 000 25 80
F,,= 125000 29,000 35 100
tu = 150, 000 29, 000 40 135
Ftu = 180, 000 29, 000 50 165

Titanium 6Al-4V Bur Stock,
Longitudinal Fy,.= 145 Ksi
at room temp., 1/2 hr.
exposure to temperature

at room tempc rature 17, 500 ‘10 164

at 500°F 16, 000 17 108
at 700° F 15, 000 10 93.4

at G00°F 13, 800 9 85.7

One great advantage of using the Ramberg-Osgood relation
is that the necessary constants may be obtained for new materials without
extensive testing. :

In general, the tangent modulus theory will yield conservative
results. However, this theory yields values for the critical load that are too
high for very short columns for which E, may be less than 0.2 at failure,

2,3.1.11.2 Sample Problem - Use of Tangent Modulus Equation for
Concentrically Lo2ded Short Columns

Given: The l-in, square concentrically loaded column
shown in Figure 2-49,

Find: The maximum value of P by using the tangent modulus
equation, with E, obtained from the Ramberg-Osgood relation.




4
e
1 y
L~

r/ 24 S-T Extrusion

- P

Figure 2-49. Column Loading Used for Illustration of Tangent-

Modulus Equation

Solution: Ultimately, Equation (2-7) must be solved. This
equation is shown graphically in Figure 2-48. From Table 2-2,
find E = 10.7x 10° psi, n =10, and f; = 37,000 psi for the
given material. Consulting Section 2.3.1.4, find that C = 2.05
for the given end constraints. Solving Equation (2-2), find that
L° = LNMNC. 1In this case,

15
J/2.05

L’ = = 10. 55 in.

For a square, I = b4/12 and A = bz,

A ‘le

0

In this case,

/1
\/—1-2— = .289

Thus,

b

L'/o _ 10.55/0. 289

w/E/f,  n/10.7x10%/3.7x 10

4

From Figure 2-48,

F N~
ol = 0.88 - ,
£
Thus,
Pcr
Foor = —— = 0.88 1

P, = 0.88 A f; = 0.88(1) (37, 000)

P,, = 32,600 lb.
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2.3.1.11.3 Reduced Modulus Equation

An equation that is theoretically more correct than the tangent
modulus equation is the reduced modulus equation. In this case, a reduced
modulus of elasticity, E., is used to replace E in the Euler equation. This
reduced modulus is a value between E and E,, one suggested value being

£, - 4E E, (2-8)

VE +/E)°

It can be seen from this equation that E, approaches E as E, approaches E
so that the reduced modulus equation reduces to the Euler equation for long
columns as does the tangent modulus equation.

The reduced modulus equation is accurate for specimens in
which extreme care in manufacturing and testing is used but yields high values
of critical load for other columns. The more conservative tangent modulus
equation is preferred to the reduced modulus equation for this reason as well
as for its greater simplicity.

2.3.1.11.4 Johnson-Euler Equation

For many materials a parabola may be used to fit column test
data in the short column range. The equation of such a parabola may be
written as .

N2
FcOI:Fco_K(tl; ) (2-9)

where F,, and K are constants chosen to fit the parabola to test data for a
particular material. The Johnson-Euler column curve consists of the Euler

curve for high L /o ratios combined with a parabola that is tangent to this
curve and covers short column ranges. If Equation (2-9)is adjusted so that
it is tangent to the Euler curve, we obtain the Johnson equation

.2
ro (=) | .
=

F ¥ 1 -

eol ~ co

(2-10)

4 7lE

Here, F,,, is the maximum column stress which is given as P/A for concen-
trically loaded long columns and by more complicated formulas for eccen-
trically loaded columns. The single experimentally determined constant, F__,
is called the column yield stress but has little physical significance for col-
umns with stable cross sections since very short columns for which L%/pis
less than approximately 12 fail by block compression. In cases where local
crippling and primary bending failure interact, F  may be taken to be equal
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to the section crippling allowable. This case will be discussed more «x-
tensively in Section 2.3.2. A typical Johnson-Euler curve is shown i:
ure 2-50. The coordinates that are marked show the point of tangency :
the Johnson parabola and the Euler curve. Thus, the critical effect!v¢ slunder-
ness ratio separating long columns from short columns is Ve v E/F;c {or the
Johnson-Euler curve.

Feol Johnson Parabola

FC(.)

Feo Euler Curve

T

¢l
Jrn [-E
Feo

Figure 2-50. Typical Johnson-Euler Curve

The main advantages of the Johnson-Euler curve are its
ability to fit data when there is an interaction between crippling and prins
bending failure and simplicity of computation. For columns having staale
cross sections, one of the other short column curves is normally perfcrred,

'y

2.3.1.11.5 Straight Line Equation

Short column curves for most aluminum alloys and sevoral
other rmaterials are best represented by straight lines. A typical straight
line is shown in Figure 2-51.

Feol

Euler Curve

Figure 2-51. Typical Straight Line for Short Columns
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As can be seen from Figure 2-51, the straight line is not neceséarily tan-
gent to the Euler curve as is the case for the Johnson parabola but this is
often the case. The straight line shown may be given by the equation

L)
F“l:N-M(—p—-—) (2-11)

where N and M are constants chosen to best fit column data for a given mate-
rial. As in the case of the Johnson parabola, this straight line does not
always hold for very short columns that fail by block compression so it is

cut off at F , as shown in the figure. '

The critical effective slenderness ratio may be found by
equating F, , as found by the Euler formula to that value as found by Equa-
tion (2-11). This procedure involves solving a cubic equation and will not
be presented here since values of the critical slenderness ratio are tabulated
in Table 2-3.

Values of the constants N, M and the corresponding critical

slenderness ratio (L'/p)c, are available for a large number of aluminum
alloys and manufacturing processes. These values are shown in Table 2-3.
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Constants for Straight Line Equation

TABLE 2-3

Extrudéd Rod,

Bar and Shapes

Alloy and Temper Thickness, In. Nksi}) Mtksi} %)

cr
2014-0 All 9.9 0.037 160
2014-T4 All 35.2 0.251 89
2014-T6 Up thru 0.499 61.4 0.410 50
2014-T6 0.500-0.749 67.3 0.471 48

2014-Té6 0.750 and over
Area 25 sq in. max. 69.7 0.496 47
Area 25 to 32 sq in. 67.3 0.471 48
2024-0 All 9.9 0.037 160
2024-T4 Up thru 0.249 43.6 0.300 65
2024-T4 0.250-0.749 44.8 0.313 64
2024-T4 0.750-1.499 50.9 0.379 60

2024-T4 1.500-2.999

Area 25 sq in. max. 58.4 0.466 56

2024-T4 3.000 and over
’ Area 25 sq in. max. 58. 4 0.466 56

2024-T4 1.500 and over
Area 25 thru 32 sq in. 53.4 0.407 59
3003-0 All . 5.4 0.015 222
3003-Hl112 All 5.4 0.015 . 222
5454-0 Up to 5.000 13.3 0.058 142
5454-H112 Up to 5.000 13.3 0.058 142
5454-H311 Up to 5.000 20.4 0.111 121
5456-0 Up to S.OOO@ 21.6 0.120 111
5456-H112 Up to 5.000@ 21.6 0.120 111
5456-H311 Up to 5.000® 25.3 0.153 106
6061-0 All 5.4 0.015 222
6061-T4 All 15.7 0.074 128
6061-T6 All 38.3 0.202 63
6061-T62 All 28.1 0.127 14
6062-0 All 5.4 0.015 222
6062-T4 All 15.7 0.074 128
6062-Tb6 All 38.3 0.202 63
6062-T62 All 28.1 0.127 4
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TABLE 2-3

Constants for Straight Line Equation (Cont'd.)

Extruded Rod,

Bar and Shapes (Cont'd.)

Alloy and Temper Thickness, In. N(ksi) M(ksi) -a—)
cr

Lo .
6063-T42 Up thru 0.500 11.0 0.043 149
6063-T5 Up thru 0.500 17.5 0.076 103
6063-T6 Up thru 0.124 28.0 0.155 81
6063-T6 0.125-0.500 28.0 0.155 81
7075-0 All 13.3 0.058 142
7075-T6 Up thru 0.249 79.3 0.602 44
7075-T6 0.250-0.499 87.8 0.859 46
7075-T6 0.500-1.499 87.8 0.859 46
7075-T6 1.500-2. 999 81.7 0.629 43
7075-T6 3.000-4.499C 85.2 0.821 47
7075-T6 3.000-4.499 79.3 0.602 44
7075-T6 4.500-5.0009 76.9 0.575 45
7178-T6 Up thru 0.249, 86.5 0.686 42
7178-T6 0.250-2.9990@ 88.9 0.714 42

Rolled and Cold-Finisued Rod and Bar

Diameter

Alloy and Temper or N(ksi) Miksi) (.E_)

Thickness, In. p ‘cr
EC-O All 3.2 0.006 241
EC-HI2 Up to 1 in. 8.7 0.030 165
EC-HI13 Up to 1 in. 13.3 0.058 142
EC-H!7 Up to 1/2 in. 16.8 0.082 124
1100-0O All 4.3 0.010 221
1100-F 0.375 and over 7.6 0.025 186
2011-T3 0.125-1.500 45. 4 0.368 79
2011-T3 1.501-2.000 40.3 0.308 85
2011-T3 2.001-3.000 35.2 S 0.251 89
2011-T8 0.125-3.250 48.0 0.400 i
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TABLE 2-3

Constants for Straight Line Equation (Cont'd.)

Rolled and Cold-Finished Rod and Bar (Cont'd.)

Diameter L
Alloy and Temper or Niksi) Miksi) ?)cr
Thickness, In. )
f— e -
2014-0 Up thru 8.000 9.9 0.037 160
2014-T4 Up thru 6.750 37.7 0.278 86
2014-T6 Up thru 6.750 64.7 0.543 54
2017-0 Up thru 8.000 9.9 0.037 160
2017-T4 Up thru 8.000 37.7 0.278 86
2024-0 Up thru 8.000 9.9 0.037 160
2024-T4 Up thru 6.500 48.0 0.400 77
3003-0 All 5.4 0.015 222
3003-H12 Up thru 0.374 12.2 0.051 148
in03-H14 Up thru 0.313 16.8 0.082 124
3003-H16 Up thru 0.250 22.8 0.131 112
3003-H18 Up thru 0.204 26.5 0.164 103
5052-0 All 11.0 0.043 149
5052-F 0.375 and over 12.2 0.051 148
6061-0 Up thru 8.000 5.4 0.015 222
6061-T4 Up thru 8.000 18.0 0.092 128
6061-T6 Up thru 8.000 38.3 0.202 63
7075-0 Up thru 8.000 12.2 0.051 148
7075-T6 Up thru 4.000 78.17 0.729 49
Standard Structural Shapes (Rolled or Extruded)
. L'
Alloy and Temper Thickness, In. N{ksi) Miksi) (‘;‘)
cr
2014-0 Al 9.9 0.037 160
2014-T4 All 35.2 0.251 89
2014-T6 All 64.7 0.543 54
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TABLE 2-3

Constants for Straight Line Equation (Cont'd.)

Standard Structural Shapes (Rolled or Extrl'lded)

Alloy and Temper

Thickness, In.

N{ksi)

Miksi)

Par

5456-O0 All 21.6 0.120 111
5456-H112 All 21.6 0.120 111
5456-H311 All 25.3 0.153 ' 106
6061-0 All 5.4 0.015 222
6061-T4 All 15.7 ° 0.074 128
6061-Té6 All 38.3 0.202 63
6061-T62 All 28.1 0.127 74
6062-0 All 5.4 0.015 222
6062-T4 All 15.7 0.074 128
6062-T6 All 38.3 0.202 63

Die Forgings
LI

Alloy and Temper Thickness, In. Niksi} M(ksi) (-——)
' P er

1100-F Up to 4 in. 4.3 0.010 221
2014-T4 Up to 4 in. 35.2 0.251 89
2014-Té6 Up to 4 in. 61.4 0.410 50
2018-T61 Up to 4 in. 48.0 0.400 77
2218-T61 Up to 4 in. 48.0 0.400 77
2218-T72 Up to 4 in. 33.9 0.237 91
3003-O All 5.4 0.015 222
3003-F All 5.4 0.015 222
4032-Té6 Up to 4 in. 50.6 0.433 5
6061-Tb6 Up to 4 in. 38.3 0.202 63
6151-Tb6 Up to 4 in. 40.6 0.220 61
7075-T6 Up to 3 in. 73.3 0.535 46
7079-Té6 Up to 6 in. 72.1 0.522 46
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TABLE 2-3

Constants for Straight Line Equation (Cont'd.)

Drawn Tube

Wall

. Lt
1 N{ksi) 3 =

Alloy and Temper Thickness, In. ( Mi(ksi) 5 )cr
2024-0O All 8.7 0.030 165
2024-T3 0.018-0.500 50.6 0.433 15
3003-0 All 5.4 0.015 222
,3003-'H12 All 12.2 0.051 148
3003-HIi4 All 16.8 0.082 124
3003-Hl16 All 22.8 0.131 112
3003-H18 All 26.5 0.164 103
Alclad 3003-0 0.014-0.500 5.4 0.015 222
Alclad 3003-H12 0.014-0.500 12.2 0.051 148
Alclad 3003-H14 0.014-0.500 16.8 0.082 124.
Alclad 3003-H16 0.014-0.500 22.8 0.131 112
Alclad 3003-H18 0.014-0.500 26.5 0.164 103
5050-0 All 6.5 0.019 185
5050-H34 All 20.4 0.111 121
5050-H38 All 25.3 0.153 106
5052-0 All 11.0 0.043 149
5052-H34 All 26.5 0.164 103
5052-H38 All 33.9 0.237 91
6061-0 All 5.4 0.015 222
6061-T4 0.025-0.500 18.0 0.092 128
6061-T6 0.025-0.500 38.3 0.202 63
6062-0 All 5.4 0.015 222
6062-T4 0.025-0.500 18.0 0.092 128
6062-T6 0.025-0.500 38.3 0.202 63
6063-T83 All 32.6 0.159 69
6063-T831 All 27.0 0.120 75
6063-T832 All 38.3 0.202 63
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TABLE 2-3

Constants for Straight Line Equation (Cont'd.)

Extruded Tube

Wall

Alloy and Temper i i L'

y P Thickness, In. Niksi) Mfksi) (p )cr
2014-0 All 9.9 0.037 160
2014-T4 0.125-0.499 30.2 0.200 100
2014-T4 0.500 and over 35.2 0.251 89
2014-Té6 0.125-0.49¢9 61.4 0.410 50
2014-T6 0.500-0.749 67.3 0.471 48
2014-T6 0.750 and over —

Area 25 sq in. max. 69.7 0.496 47

Area 25 to 32 sq in. 67.3 0.471 48
2024-0 All 9.9 0.037 160
2024-T4 0.499 and less 41.1 0.275 67
2024-T4 0.500-1.499 50.9 0.379 60
2024-T4 1.500 and over —

Area 25 sq in. max. 53.4 0.407 59

Area 25 to 32 sq in. 50.9 0.379 60
3003-0 All 5.4 0.015 222
3003-F All 5.4 0.015 222
5154-0 All 12.2 0.051 148
6061-0 All 5.4 0.015 222
6061-T4 All 15.7 0.074 128
6061-Té6 All 38.3 . 0.202 63
6062-0 All 5.4 0.015 222
6062-T4 All 15.7 0.074 128
6062-T6 All 38.3 0.202 63
6063-T42 Up to 0.500 11.0 0.043 149
6063-T5 Up to 0.500 17.5 0.076 103
6063-T6 Up to 0.500 28.0 0.155 81
7075-0 All 13.3 0.058 142
7075-T6 Up to 0.249 79.3 0.602 44
7075-Té6 0.250-2.999 81.7 0.629 43
7178-T6 Up to 0.249 86.5 0.686 42
7178-T6 0.250-2.999 88.9 0.714 42
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TABLE 2-3

Constants for Straight Line Equation (Cont'd.)

Pipe
Alloy and Teniper Size ar N(ksi) M(ksi) (_l;‘)
Thickness, In. 1 P -
3003-0 All 5.4 0.015 222
3003-H112 1 in. and over 6.5 0.019 185
3003-H18 Under 1 in. size 26.5 n. 164 103
3003-F 1 in. and over 5.4 0.015 222
6051-T6 Under | in. size 318.3 0.202 fH3
6061-T6 1 in. and over 8.3 0.202 63
6063-T5 All 17.5 0.076 103
6063-T6 All 28.0 0.15% 81
6063-T832 Al 38.3 n.202 63
Sand Castings
A . L'
Alloy and Temper Thickness, In. N(ksi) M(ksi) (-s—-)
(s}
43-F 7.6 0.025 186
122-T61 35.2 0.251 89
142-T21 15.7 0.074 128
142-T571 35.2 0.251 89
142-T77 18.0 0.092 128
; The values to the right
195-T4 : 15.7 0.074 128
o are based on tests of
195-T6 - . 24.0 0,141 107
. standard specimens in-
195-T62 L 33.9 0.237 91
dividually cast.
195-T7 19.2 0.101 120
214-F 11.0 0.043 149
B214-F 12.2 0.051 148
¥F214-F 11.0 0.043 149
220-T4 15.9 0.076 131
319-F 11.5 0.047 163
319-T6 14. 4 0.065 134
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TABLE 2-3

Constants for Straight Line Equation (Cont'd.)

Sand Castings (Cont'd.)

Alloy and Temper Thickness, In. N(ksi) M(ksi) (‘!‘;—')
cr
355-T51 12.2 0.051 148
355-T6 14.4 0.065 134
355-T61 : 23.4 0.136. 109
355-T7 24.2 0.143 107
355-T71 15.9 0.076 131
The values to the right
356-T51 are based on tests of 11.5 0.047 163
356-T6 standard specimens in- 13.7 0.061 144
356-T7 dividually cast. 18.8 0.098 123
356-T71 13.0 0.056 i 143
Ab612-F 14.4 0.065 134
Permanent Mold Castings
Alloy and Temper Thickness, In. N(ksi) Miksi) (._LL'_
P&r
43-¥ 7.6 0.025 186
Cl13-F 24.0 0.141 107
122-T551 37.7 0.278 86
122-T65 : 35.2 0.251 89
F132-T5 --- - ---
The values to the right
are based on tests of
142-T571 standard cimens in- 33.9 0.237 91
142-T61 randarc specimens in 44.1 0.352 80
dividually cast.
B195-T4 16.8 0.082 124
B195-T6 25.3 0.153 106
B195-T7 18.0 0.092 128
A214-F 14.5 0.066 135
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TABLE 2-3

Constants for Straight Line Equation (Cont'd.)

Permanent Mold Castings (Cont'd.)

&),

Alloy and Temper Thickness, In, N{ksi) M(ksi)
333-F 18.0 0.092 128
333-T5 25.3 0.153 106
333-T6 29.0 0.188 100
333-T7 26.5 0.164 103
355-T51 The values to the right 25.3 0.153 106
355-T6 are based on tests of 26.5 0.164 103
355-T62 standard specimens in- 44.1 0.352 80
355-T7 dividually cast. 31.4 0.212 98
355-T71 31.4 0.212 98
C355-T61@ 35.2 0.251 89
356-T6 25.3 0.153 106
356-T7 24.0 0.141 107
A356-T61@ 31.4 0.212, 98
C612-F 15.7 0.074 128
750-T5 8.7 0.030 165
B750-T5 - - ---

®Area up thru 20 sq in.

®Area 20 thru 32 sq in.

®Area up thru 30 sq in.

@The values shown for this alloy are valid for
any location in the casting. :
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2.3.1.11.6 Sample Problem - Use of Straight Line Equation for
Concentrically Loaded Short Columns .

Given: The concentrically loaded rectangular bar shown
in Figure 2-52.

- 12
At
1 L.

6061-T4 Aluminum Alloy Extruded
Rar, Width = 1.0 in.

P —

\\\\\i

Figure 2-52. Concentrically Loaded Short Column

Find: The critical load, P,

Solution: Since the column is made of aluminum alloy, a
straight-line equation should be accurate if the column is
short. From Section 2.3.1.4, C = 4 for columns having
both ends fixed. Since C = (L/L')[, L°=1L/2. The radius
of gyration,

1 /bh3
= —_— = —— / bh
e \/; = 12/
o= /B2 L5 4,
12 12 - |

Thus,

|t
i
‘0\
"
o
o

-~ N

From Table 2-3, we find that (L."/p),, = 128 for this material.
Since L“/p is less than this critical value, a straight line
equation may be applied. Substituting the values of N and M,
given for 6061-T4 extruded bars in Table 2-3, into Equation
(2-11), we obtain

Foo [ 15.7 - .074 (..‘I)::)]Ksi
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Thus,

P
A“ = Fypy = [15.7 - .074(41.6)] Ksi

or

P = 12.55A = 12.55(.5) = 6.27 kip

er

P, = 6,270 lb.

[

2.. 3.1.11.7 Critical Effective Slenderness Ratio

So far, long columns and concentrically loaded short columns
have been discussed. It has been mentioned that a long column is one for
which the Euler equation holds in the concentrically loaded case. This equa-
tion holds for columns having an effective slenderness ratio greater than a
value called the critical effective slenderness ratio of the column. In some
cases, this critical effective slenderness ratio need not be determined. For
example, the tangent modulus equation, reduced modulus equation, or plotted
data may be applied to either long or short columns. In other cases, this
ratio must be known in order to decide which of two equations is to be applied
to a column. A critical effective slenderness ratio must be found if the
Johnson-Euler or a straight line equation is to be used.

The critical effective slenderness ratio is, in general, a func-
tion of the column material. If the Johnson-Euler formula is to be used, we
obtain

(—I:—> - | 2E | (2-12)

as our critical effective slenderness ratio. If a straight line formula is to [
be used, the critical slenderness ratio is the slenderness ratio for which ‘
" the Euler curve and the straight line either intersect or are tangent. A gen-
eral formula is not given here since the critical effective slenderness ratio

for each straight-line equation whose parameters are given in Table 2-3 is .

also given there.

In general, a steel column having a critical effective slender-
ness ratio of greater than 120 or an aluminum column having one of greater
than 220 may be immediately treated as a long column. Columns having
lower effective slenderness ratios must be checked by Equation (2-12) or
Table 2-3 or treated by a method applicable to both long and short columns.
If Equation (2-12) is used, F_, may be assumed to be approximately equal
to F,, for a rough estimate of L."/o.
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5

2.3.1.11.8 Bending Failure of Eccentrically Loaded Short Columns

The column formulas in the previous section do not apply if
a column is eccentrically loaded or if initial imperfections are large enough
to have the effect of an appreciable initial eccentricity. In such cases, either
another formula must be used or adjustments must be made to existing equations.

The secant formula that was given in Section 2. 3.1.7 may also
be applied to short columns if its parameters are chosen correctly. This
equation is given again below for convenient reference.

(FS)P, Feot
o p— (2-13)
1+ &€ sec L’ !‘(FS)P‘ :‘
02 20 \/ AE

F,,, is the maximum fiber stress at failure as before. Different references
suggest various ways of choosing F_,,. Reasonable results may be obtained
for very short columns if F_,, is assumed to be equal to the compressive yield
point for steel or the compressive yield stress for light alloys. In the case of
intermediate length columns, F_,, should be taken to be the stress obtained
from one of the formulas for a concentrically loaded short column. If the for-
mula used for this purpose is the tangent modulus equation, E should be re-
placed by E, in the secant equation. The secant equation must either be
solved by trial and error or through use of a chart such as that shown in
Figure 2-53. ‘

Unfortunately, the secant formula is inconvenient for computa-
tion.” A simpler approach may be used if the column deflection is small com-
pared to the eccentricity of loading. This assumption is true for very short
columns and to a lesser extent for intermediate length columns.

Using the previously mentioned assumption, the basic design
equation for an eccentrically loaded short column becomes

Fer . P,
S A

1 (2-34) .

Here F_,, is the maximum column stress as computed from one of the equa-
tions for a short concentrically loaded column.

A more refined design equation based on the assumption of a
small column deflection relative to the eccentricity of loading is

. b P,
1 = + (2-15)
AF IF,

acol

2 - 170




where F,_, is the working concentrically loaded column stress and F, is the
working compressive stress in bending.

In conclusion, the secant formula is theoretically more correct
and yields better results for eccentrically loaded short columns. However,
due to the difficulty of applying this formula, Equation (2-14) or (2-15) may at
times be applied, especially for shorter columns.

- (FS)Pa (& .
Feol = - A \ T T osec S ",l
1.00 - —
€2 - 0.1 z°°
90f-o2
o
== 0.2 N\
- |~ \
.70F==0.4 \\ \
~.= . L Y
o _. .60 h:g-}:\\;N\\\ \
NE RS il \Y
Ei - -:O.ﬁm\\\\ \
SA IR M A
_:; NSARNW W\
Py == j\%\&‘ ‘\\\‘
o = DN
<Y :=11 %\\ NN
oln =2 o:bx k N
j_‘_( ~—
.20
10
0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 2-53. Graphical Presentation of the Secant Column Formula
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2,.3.1.11.9 Sample Problem - Eccentrically Loaded Short Column
in Bending

Given: The eccentrically loaded round column shown in

Figure 2-54.

(A .
—F L a

1 in. diameter
6061-T4 Aluminum Alley Extrusion
Eccentricity of Loading , ¢ = 0.1 in.
Figure 2-54. Column Loading Used for Illustration of Secant-
Modulus Equations

Find: The allowable load, P,, if a factor of safety of 1.3
is used. Use (a) the secant modulus equation, and (b)
Equation (2-14).

Solution: (a) The secant modulus equation may be written as

(FS)P._ Fcol
A - JiFs) P
l+—e-§-seér_1:__ \;'(___)___3_]
02 “2p Y AE

Since the column is made of aluminum alloy, the straight-line
column Equation (2-11) may be used to find F_,, if it is short.
From Table 2-3, find that B, D, and (L'/o)cr for this material
are 15,700 1b, 15 1b, and 128 respectively. Thus,

F_, = 15,700 - 15 (0 )

Since the column is pin ended, L" = L = 12 in. For a circular
section, 0o = D/4 = 0.25. Inserting these values into the above
equation gives I, = 14, 980 psi. Since L‘/p is equal to 48
and (L'/o)cr is equal to 128, the assumption of a short column
is valid. All of the parameters for the secant formula are now
known except P,. Inserting these values in the secant modulus

- -

equation gives

L3P, 14, 980
_"_Ll)_z__ . 1(.5) T 12 I 1.3 P,

l+————2- sec[

2(.2 / 2 Ql
(.25) L (.25) \ ﬂ(41) (10x106)J
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Simplifying this gives

9, 090
1+ .8 sec [0.00975/F,]

P, =

Try P, = 5,000 lb. Substitut'ing this value, we find that it

solves this equation. Thus, P, = 5,000. If our original guess
was incorrect, other values of P, would have to be tried until
a value was found that solved the equation.

(b) Inserting the equation for F
‘Equation {2~14) gives

co1 from part (a) into

P

ec

1

15,700 - 15 (L "/p)
FS

:g_ +
A

or

15,700 - 15 (12/0.25) :. P + P(0. 1)(0. 5)
1.3 /4 /64

Solving this for P gives P,, = 6, 540 1b. Notice that
although this procedure eliminates the trial and error
methods used with the secant equation, it yields less con-
servative results.

2.3.1.12 Torsional Failure of Simple Columns

The previous sections discussed the failure of long and short col-
umns by bending. It was assumed throughout this treatment that the sections
of the column are transiated but not rotated as it fails. However, primary
failure may occur at loads lower than those predicted in the section on bend-
ing failure if the sections should rotate as well as translate as shown in Fig-
ure 2-55. -

o
\\\\
L
\\\\¢ R

Figure 2-55. Section Subject to Translation and Rotation
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In general, columns whose cross sections have a low torsional
rigidity, GJ, must be examined for torsional instability. Columns having
closed sections or solid ones, such as round or square sections, have such
a high torsional rigidity that there is little possibility of them failing by tor-
sional instability. However, torsional instability must be considered in the
case of columns composed of thin sections. Failure by twisting is unlikely
for flanged columns whose cross sections are symmetrical about a point such
as I, H, and Z sections. Twisting-type failures are most apt to occur in the
case of torsionally weak sections that are unsymmetrical or have only one
axis symmetry such as angles, tees, and thin-walled channels.

The basic equation for a column that fails by a combination of bend-
ing and twisting gives the critical stress as

2
C,,nm“E
Fcol = GJ + al -2 (Z—-l())
L I, (L")

In this case, Cg, is a sectional property defined below and the parameters
are defined as usual.

The torsion bending constant is dependent upon the axis of rotation
and defined as

Cor = wZaa - -L [[ waai® (2-17)
A A A
where
Pu
w=[ =14 (2-18)
o

The parameters used above are shown on an arbitrary cross sec-
tion in Figure 2-56. Values of the torsional bending constant are given in
graphical form for various cross sections in Figures 2-57 through 2-60.
The torsion constant, J, may be obtained in Figures 2-61 for bulb angles or
from the following equation for formed sections:

J = st3/3 (2-19)

Here, s is the developed length of the median line.
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Figure 2-56. Parameters Used to Define the Torsion Bending Constant

If 2 column is not attached to a sheet, the twisting failure is by
rotation of sections about shear center of cross section. In this case, I,
and Cy, are taken about this shear center. If the column is attached to a
sheet, sections may be assumed to rotate about a point in the plane of the
sheet. This procedure gives rough results but unfortunately little specific
information is available on this subject. In general, columns are strongef
when they are used as stiffeners than when they stand free. However, a
column having an unsymmetrical cross section may be weaker when it is
attached to a sheet.
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2.3.1.13 Sample Problem - Torsional Failure of Simple Columuns

Given: A column with cross section and material properties
as shown in Figure 2-62.

y

!

G=3.85x 106
E:= 10 x 10° psi
L'= 100

= —— X

f——1. 5————1

Figure 2-62. Cross Section of Column Used for Illustration of
Torsional Failure

Find: F_,, for failure by a combination of bending and
twisting.

Solution: Since t is small, the shear center may be assumed
to be at the.corner of the angle.

The polar moment of inertia about the shear center is given by

=1 +1,

or

he {[RSh ] [Ler OO S

From Equation (2-19)

From Figure 2-57,

£ (3 +b3)  (0.1)°@27 + 3.48)

36 36

=8.46x 1074

Cyy =
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Inserting these values into Equation (2-16) gives

. (3.85x 10%)(1. 5% 107°) , (8.46x10" ) (10x 108
oot 0.9 (0.9)(10%)
Thus, F,,, = 6,419 psi.
2.3.2 Introduction to Crippling Féilure of Columns

In the previous sections, the primary failure of simple columns
" was considered. However, if a column has thin sections, it may fail at a

load well below the critical load predicted for primary failure. Thus, a
column must, in general, be checked for both primary failure and crippling.
Primary failure may be assumed to be independent of crippling effects, in
which case, a failure curve such as that shown in Figure 2-63 may be used.
The right-hand portion of the curve describes the stress required for primary
failure of the column at various effective slenderness ratios. This curve is
cut off at the crippling stress level by the flat portion to the left.

Figure 2-63. Failure Curve Based on the As sumption of No
Interaction Between Primary Failure and Crippling

If the interaction between crippling and primary failure is to be
taken into account, the constant F__ in the Johnson-Euler equation may be set
equal to the crippling stress F__. Although this procedure is more correct,
it also introduces added complications, and only works for columns having a
crippling stress less than the primary failure stress as L."/p approaches zero.
Figures 2-64 and 2-65 show sets of Johnson-Euler curves for various materials.
The curve used in a given case is the one that intercepts the ordlnate at the
value of F__ for that column.
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. Allowable Column Stress - Ksi

Fcol

ALUMINUM ALLOYS

\ Johnson Formula

. Johnson-Euler Formulas
\ For Aluminum Columns
N

) L .2
Fcc\pfff)
4n2E

\ \ Where:
_\\\ restraint ()coefficient
\

10.3 x 10° psi

="
MO
o

50
\ |
\ \ Euler Formula
40 \ \ 2 p /€ - 2
\\\ Feor® M E AL )
— . ’
20 \‘\
io

20 40 69 89 107

L'/o = Lip/C

Figure 2-64a. Johnson-Euler Column Curve
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Fcol - Allowable Column Stress - Ksi
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L'/p = L/z/C

100 120

Figure 2-64b. Johnson-Euler Column Curve
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Allowable Column Stress - Ksi
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Figure 2-65a. Johnson-Euler Column Curve
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" Where:
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L'/e = L/c /C

Figure 2-65b. Johnson-Euler Column Curve

2.3.2.1 Crippling Stress of Round Tubes

Steel tubes for which the diameter-to-wall thickness ratio is less .
than 50 need not be checked for crippling. This gives us some general idea
of the thinness required if a tube is to fail by crippling rather than by primary
instability. A theoretically correct formula for the crippling stress of a
tube is

- F = .___.___1_._____. .E_:_t_

/3(1 _uz) . r (2-20) ‘

where r is the mean radius and |y = Poisson's ratio. Ify is taken to be 0.3, as
is the case for steel and aluminum alloys, we obtain
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F_=.605 £
T

<

This equation, however, 18 extremely unconservative for small values of
t/r and should only be used for approximations in the early stages of design.

More conservative and accurate empirical metho

for the treatment of tubular columns. 1f L/r is less than J.75, use the

equation

P _ 2Kﬂ2r :

A e LZt

where the critical stress coefficient, K, is givenin Figure 2-66.

4
10 y r/t v
Recom-
, 500 mended
for
p 1000 desiegn
/ 2000 esig
103 7 A3 ooj .
Theoretical —w
2
K 10
10 7, ‘
00 | - = Simply Supported Edges
/% Clamped Edges
L L
2
1 10 10 10° 10* 10°

2
z = —rLT' J1-ul

Figure 2-66. Critical Stress Coefficients for Thin-Walled Short Circular
: Cylinders Subjected to Axial Compression

1f L/r is greater than 0. 75, use the equation

where C is given in Figure 2-67.

2 - 87

-

(2-21)

ds are available

(2-22)

-

(2-23)




.24

.20

.16

c .12 \

.04

0 400 800 1200 1600 2000 2400 2800 3200

r/t

Figure 2-67. Coefficient for Computing Critical Axial Compressive
Stresses of Indeterminate Length and Long Cylinders

2.3.2.2 Sample Problem - Crippling Stress of Round Tubes

Given: The tubular aluminum column shown in Figure 2-68.

Figure 2-68. Cross Section of Column Used for Illustration of
Crippling Failure of Round Tube

Find: The crippling stress if

(2) L = 5 in.
(b) L = 60 in.
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] L* 5)° ~
z = = /J1.u2 = B /i (32 - 19,5
rt H 10(.02) '~ (-3) 0
T
L. 10 50
t 02

From Figure 2-66, K = 11. Substituting this value into Equation
(2-22), we find that

2 2 (11)% (3
Fcc = _Z;ISE—.I:. = —_L—-_é).__(___) = 4) 350 pSL
L%t (5)7(.02)

(b) If LL = 60 in., L/r > 0.75 so that Equation (2-23) may
be used

X - 500
t

From Figure 2-67, C = 0.22. Substituting this value into
Equation (2-23), we obtain )

_0.22 (10x10%)(0. 02)
10

F., =0.22 Ert = 4,400 psi

If‘the theoretically correct formula, Equation (2-20), is used for
either of these two columns,

F,. = 0.605 25 = 12,100 psi

This value may be seen to be much greater than those obtained
frem the more accurate empirical formulas.

2.3.2.3 Crippling Stress of Qutstanding Flanges

Two idealized cases of edge restraint of long flanges are shown
in Figure 2-69. In case (a), the flange is fixed along its edge and the equa-
tion for its crippling stress is

; 2
F_o=1:-09E /¢ (2-24)
ec 2 \b
1-y ’
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The flange shown in (b) is hinged along its edge and the equatiion for its crip-
pling stress is :

.416E 2

Foq = - (_L\ (2-25)
1-u b

A column flange is neither rigidly fixed nor hinged along it= edge so its crip-

pling stress lies between those given by Equations (2-24) aud (2-25), the latter
giving more conservative results.

(2)

(b)
Figure 2-69. Idealized Edge Constraints of Long Flanges

2.3.2.4 Crippling Stress of Angle Elements and Complex Shapes

The basic design equations for the crippling stress and load of the
angle section shown in Figure 2-70 are

£g, = C, (2-26)
Y FcyE ( b’>0.75
. S
and -
f IFE
Poe = | C, = LA (2-27)
' <b')o.75 .I
L t -

Here b “is equal to (h+b)/2 as seen in Figure 2-69 and C, is a constant dependent
upon the fixity of the edges, as shown to the right of Figurc 2-70.
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b o=~

Cp, = -316 {two cdges free)
Ce.= .342 (one cdge free)
Ceo = -366 (no edge free)
*
Figure 2-70. Angle Section
The area of this angle is given by
-~/ b ‘ N -
T L R S URTE S W P
L\ ) 0.214 { . )_j 2t (2-28)

Nondimensional plots of Equations (2-26) and (2-27) are shown in Figures
2-71 and 2-72, respectively. These plots may be used to facilitate the
solution of angle problems. It must be noted that Equations (2-26) and
(2-27) have no significance when F_, is greater than F ;. These cutoffs
are shown for two alloys in the following figures.
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\/FCYE 0.04 . .- No Edge Free

755-T6 Clad

|_—~One Edge Free

///
i ’.r\ \

_/_Two Edges Free

3 3
0.0 "\<\
0.02 i\\
\§
\%
0.01
0
0 10 20 30 40 50 60 70
b . bth
t 2t

Figure 2-71. Dimensionless Crippling Stress éf Angles vs. b’/t
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S} Fee = Foy (155-T6)

{
0.8 80
0.6 60
0.4 10
0.2 20

0
0 10 20 30 10 50 60 70 80
bt bhth
2t

Figure 2-72. Dimensionless Crippling Load of Angle vs. b/t

Many complex sections, such as those shown in Figure 2-73, may
be treated by considering them to be composed of a number of angles,
crippling stress of these sections may be found by the following procedure:
First, break the section up into a number of angles. Secondly, find the

crippling load and area of each of the angles.

section from the following equation:

2 -93
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Finally, find F_, for the entire
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e

F,, - % Crippling Load of Angles (2-29)
Z Area of Angles

N\
L ‘

Figure 2-73. Examples of Complex Sections

This procedure is illustrated in the following éxample.

2.3.2.5 Sample Problem - Crippling Stress of a Complex Shape

Given: Column with the cross sectional shape shown in Figure
2-74. It is composed of an aluminum alloy for which E = 107 psi
and F_, = 50 kips.

. 863—w]

——-}.431*—

.425

2.457

.0255

o

Figure 2-74. Cross Section of Column Used for Illustration of
Crippling Failure of Complex Shape
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2.3.2.6

Find: The crippling stress F..

Solution: This section may be broken into three angle sections
as shown by the broken lines above. The calculation of the
crippling load and area of each angle section is summarized
in the table below:

15 VF B (2 J
1 0.42510.431 | One Edge Free|16.8 1.33 1.3312\/5? 32.5 ‘;32.312
2 0.431{1.228 | No Edge Free |32.6 172 | 1728 FUE | 640 Foa.0(2
3 0.936 | 1.228 | One Edge Freel42.3 172§ 723 JEE 830 83917
i

The values of b and h in this table are as shown in Figure 2-70.
The values of P,, and A may either be found from Equations
(2-27) and (2-28) or from Figure 2-72 which shows these equa-
tions in graphical form. The crippling stress may now be found
from Equation (2-29) to be

(1.33 + 1.72 + 1. 721t /T, &

F,, = = 0.0264/F,, E
(32.5 + 64.0 + 83.9)t2

Substituting the material properties into the above equation gives

F,. = 0.0265V(5x10%)(30x 10%) = 32, 400 psi

Crippling Stress of I Beams

Figure 2-75 shows an I section.

Lo
|
L

tg

Figure 2-75. 1 Section

2 -~ 95




The crippling stress of a column of this shape is given by

k,m2E t,%
F, = — (2-30)
12(1-y™)h
where k, is given in Figure 2-76.
7+ Web Buckles First
: \
- /\
61— Flange Buckles First

3
wlt
.5
2
.6
.7 »
.8
1= .9
» (2)
o 614
- M S
L .0
0 1
0 1.2
by
h

Figure 2-76. k, for Equation (2-30)
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2.4 Complex Columns

The material in previous sections treated columns that have uniform
cross sections and may be considered to be one piece. This section treats
of stepped and tapered columns whose cross section varies as well as of
latticed columns whose action varies from that of one-piece columns.

2.4.1 Stepped and Tapered Columns

Columns.of variable cross section can be solved by numerical pro-
cedures. However, charts are available that vastly simplify the solution of
stepped and tapered columns.

These charts are shown in Figures 2-78 through 2-81. The use of
these charts in finding a critical load is self-explanatory except for the fact
that the tangent modulus of elasticity, E,, must be used in place of E if the
section is stressed beyond the proportional limit. Also, the coefficients of
constraint that were discussed in Section 2. 3. 1.4 no longer hold for stepped
or tapered columns. The columns shown in the charts have pinned ends.

2.4.2 Sample Problem - Stepped Column

Given: The concentrically loaded pin ended, stepped column
shown in Figure 2-77. )

| -, .40 ol
8 —‘ © 24 ——"] vl
P - ={ — P
AI: 4 AZ: _5
Il = 25 12 = .5

Figure 2-77. Column Loading Used for Illustration of Effect of
Stepped Columns

Find: The critical load P_..

ot | and Fca12 are

equal to 11,600/0.4 psi and 11, 600/0.5 psi, respectively.
Equation (2-6) gives E, as

Solution: Assume P__= 11,600 1b, Thus, F




Since © :-fc/fl where { is the compressive stress which, in this

case, is Fcol,

E, = E
F n-1
1+ 3/7 n(___c.zi_)
\ f
1
Inserting values of f1 and n from Figure 2-46 into this equation
gives
10. 7 x 106

42 (Fcol >9
L +42.9 37500

Inserting the values of Fcoll and Fcolz into this equation gives
E, = 1.86x 10 psi
and
E, = 6.55x 10° psi
L2
Thus
E, I

t17] 6
171 1.86%10°(0.25) _ o 14

12 6,55 x 10° (0. 50)

E

From Figure 2-78, P_ /P, = 0.57 where

2
TCE, I
tr 2

oL

Thus,

. -p, - 0:5717 (6. 55x10%)(0. 5)
(40)2

or P, = 11,600 psi. The original guess is thus correct. Ifit
were not, other values would have to be tried until the correct
value was found.

2 - 98




suunjod paddeajg 1edIdjo WwAG 10] Speor] Jed[TlD 'gL-27 24nd1y

I1ig 2129
[S¢4c _ Ilyg

/ 1113 > 21¢3 1113 < 2123 \ \

A\
N
/ /,//Zu, \
N\
N

2 -99

A /1 /
N N ¢” 0
ENNN A
20 ///// // \\\\ 9
///// \\W\\ A .
o ea/e ——— A | l\..w\o_‘
| 01 =
(U123 < 1'a) A - = °q (113 < 212a) — qu =
. o H.E.N ¥ . e am q Hu
ila i_ ~ 12y
¢ — Iy . . I .

'fa I\‘_f! «.‘0_ Emr\ lll.mIO_




Cr

P —— L—_ ]4__—13
a/L= 1.0 L:._: I ”-zfzzlz
NRzara=sZ
.8 '8 // |
7 // // //7//
6 /// //6 ////
, V1A
AL AL
MM
1 /////
odVl 2 3 ST - L W

Figure 2-79. Critical Loads for Unsymmetrical Stepped Columns
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2.4.3 Latticed Columns

Although it is customary to assume that a latticed column acts as
a single unit and develops the full strength of the section, a column is actually
less stiff if the buckling occurs in a plane normal to that of the lacing. This
fact is unimportant if a column is designed so that buckling occurs in a plane
normal to that of the lacing, but it must be taken into account for columns
that are laced on all sides.

In order to take the effect of lacing into account, a reduced modulus
of elasticity, KE, may be used in place of E in the equations for simple columns.
Equations giving K as a function of column parameters are given in Figure 2-82
for various lattice configurations.

In designing latticed columns, care must also be taken to insure
that buckling of the individual members does not occur between points of attach-
ment. In general, the slenderness ratio of a longitudinal member between
points of attachment should be less than 40 or two-thirds of the slenderness
ratio of the column as a whole, whichever is lower.
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Column Configuration K

N

K = L

4,931

2 2 .
AL cos"9sin8

5 S K =
/ i . - 4.931 . 4,9231
7/ 8 L AlLZCOSZQSine A, L%tan®
] #
a
y 1
| ‘- :
(K X o?o R 1+ nel ( ab . a >
) | o L2 1212 241l
x
== 3 : 0lo)

= moment of inertia of entire column with respect to axis
of bending

-
"

leng_th of entire column

moment of inertia of a channel section about 3 central axis
parallel to the y axis

I, = moment of inertia of a vertical batten plate section about a
central axis parallel to the x axis

Figure 2-82. Values of K for Various Lattice Configurations
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3. BAR ANALYSIS

3.1 Introduction to Bar Analysis

Bars are thin structural members. This chapter gives procedures for
determining the resistance to yielding of bars under static loads as well as
~ their resistance to fatigue failure under varying loads. Tensile loading of
bars is considered in detail, and information applicable to the compressive,
bending, and torsional loading of bars appearing in other chapters is ref-
erenced in this chapter.

3.2 Nomenclature for Bar Analysis

A = cross-sectional area, in.

f, = tensile stress, psi

fya = alternating stress, psi

fym mean stress, psi

Fiy yield stress in tension, psi

fs¢ = endurance limit in torsion

K = stress concentration factor

K, = effective stress concentration factor
K, = theoretical stress concentration factor
n = factor of safety

P = load, lbs

P, = alternating load, lbs

P, = mean load, lbs

g = notch sensitivity factor

3.3 Static Tensile Loading of Bars

The basic formula for stress in a member of cross-sectional area A
under a static tensile load P is

fo= —2 (3-1)
A .

This equation, however, is somewhat limited. In order for it to be valid,
the member must be centrally loaded, the section at which 0 occurs must
be well removed from the point of application of the load, and no stress
raisers may be present near the section where 0 occurs.

Bars are normally designed so that tensile loads are applied cen-
trally. If this is not the case, they may be considered to be beams under
combined tensile and bending loads and treated with the material in
Chapter 1. Although the end portions of a bar are as critical as the cen-
tral ones, they are not considered here since information about them more
properly belongs in a treatment of connections, for example, the chapter on
lug analysis in this work. According to St. Venant's principle, stress
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patterns become regular at a distance from the point of application of a load.
In this case, the stresses become uniform at a distance from the point of
application of an axially applied tensile load. Stress raisers will be con-
sidered here and when they are present, Equation (3-1) no longer applies.

If a stress raiser is present in'a bar loaded in tension,

f-x(2-) (3-2)

where K is a stress concentration factor. Equation (3-2) indicates that the

. stress at the discontinuity is K times the stress that would occur if no stress
raiser were present. The stress concentration factor may be determined
theoretically by the theory of elasticity, the photoelasticity method, etc.,
where it is designated as K,. These values are not normally accurate, how-
ever, and are not in general used directly as will be discussed later. The
following figures give values of the theoretical stress concentration factor
for various cross-section and discontinuity shapes.

The theoretical stress concentration factor may be quite high as can
be seen in the following pages; however, this value is usually in agreement
with experiment. To account for this discrepancy, an effective stress con-
centration factor K, is defined to be the one that holds in the actual situa-
tion encountered. The notch sensitivity factor, g, is used to relate the two
and is defined by Equation (3-3):

q=—2 " (3-3)

The value of the notch sensitivity factor is a function of the material and the
size and shape of the discontinuity.

For ductile materials that are statically loaded to near their limit, the
yielding in the vicinity of the discontinuity may nearly eliminate stress con-
centration there, so that K, is approximately equal to one and q is quite low.

Brittle homogeneous materials are not as capable of localized yielding,
so that K, is approximately equal to K, and consequently q is approximateéty -
equal to one according to Equation (3-3). Cast iron of less than 45, with its
flakes of graphite, however, is effectively saturated with stress raisers, so
that the addition of another discontinuity seems to have little effect on its
fatigue strength. Thus q is approximately equal to zero for cast iron.

The design equation for a bar under a static tensile load P that is not
to be subjected to large-scale yielding is thus

Fty' = Ke ({_ ) (3-4)




For a ductile or cast iron bar, K, may be assumed to be equal to unity and
A is the reduced area at the section where the discontinuity occurs. For a
bar of brittle homogeneous material, K, may be assumed to be equal to K,
and A is either the cross-sectional area of the bar without the discontinuity
or the reduced area at the cross section where the discontinuity occurs.
Which of these areas is to be used is shown in a formula under each chart
of K, in Figures 3-1 through 3-12.

A:“iz
I v
D p w—un — P I
[ |
-
L\
LTSN
’ N

-~

\
\
\

N
—L

Figure 3-1. Stepped Round Bar with Radial Fillet
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Figure 3-2. Round Bar with U Notch
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2
A=DdE
4
7
6 {
5
D/d= 2.0
4 ]
D/d=1.4
3 \ —+
D/d=1.2
2 |
Di/dz 1.1
) 0.1 0.2
r/d

The values of K, may be used as a close approximation for any
type of V notch with a small fillet or radius r at the root of the notch

Figure 3-3. Round Bar with Hyperbolic Notch
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Figure 3-5.

Stepped Rectangular Bar with Radial Fillet
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Figure 3-7. Rectangular Bar with U Notch (Both Sides)
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Figure 3-8. Rectangular Bar with Multiple Semicircular Notches on One Side
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o e

Wb = 1-1\

0 0.2 0.4 0.6 0.8 -
r/b

Note: The values of K, may be used as a close approximation for any
type of V notch with a small fillet or radius r at the root of the notch.

Figure 3-9. Rectangular Bar with Hyperbolic Notch (One Side)

3 .11




Notch Depth > 4r

A = bt
10
8
6

Ky
4
2 \\
0 - -
0 0.2 0.4 0.6 0.8 1.0
r/b

Note: The values of K, may be used as a close approximation for any
type of V notch with a small fillet or radius r at the root of the notch.

) Figure 3-10. Rectangular Bar with Hyperbolic Notch (Each Side)
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Figure 3-11. Rectangular Plate with Various Thru Sections
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Figure 3-12. Rectangular Bar with Protrusion on One Side
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The previously described procedure yields conservative results for
brittle homogeneous materials and the opposite for cast iron and ductile
materials. If a low margin of safety is desired for ductile materials and
cast iron, a value of q equal to 0.2 is usually sufficient to account for the
effects of stress raisers,

The previously discussed material on bars in static tensile loading
is summarized in Table 3-1.

TABLE 3-1

Design of Bars Under Static Tensile Load

Design Equation Fyy = K, (%)

Material Type Ke ‘ A

ductile 1.0 reduced area of cross section
at the discontinuity

homogeneous K, as found in Fig- either reduced or total area of
brittle ures 3-1 thru 3-12 cross section as indicated by
formulas in Figures 3-1 thru 3-12.

cast iron 1.0 reduced area of cross section
at the discontinuity

3.4 Sample Problem—Bar Under Static Tensile Loads

Given: A circular bar is to be made of a homogeneous brittle material
for which F,, = 45,000 psi. Itis to support a static tensile load of

50, 000 lbs with a factor of safety of 1.5. 'It is to have a U-notch of
the section shown in Figure 3-13.

r=. 1" -

P = 50, 000 lbs 2

J‘ .
“—7% l
‘ l

Figure 3-13. Bar with U-Notch under Static Tensile Load
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Find: The diameter

Solution: Inserting the safety factor into Equation (3-4) gives

Fy
y . 45000 _ K, P _ 30, 000
1.5 1.5 A
From Section 3.3, K, = K,. Thus,

30,000 = K; &

K,
A

From Figure 3-2, h= .2, r = .1 thus, h oo 2.
r
and furthermore,

Since P = 50,000, .6 =

2
A= m (D-.4)
4
Thus,
4 K
0.6 = t
T (D-. 4)2
Assume D = 1.05. Thus,
D 1.05

From Figure 3-2, K, = 2.0. Substituting these values gives

4K, _ 4 (2.) 0.6

m (D-. 4)% ™ (1.05 - .4)%

Thus, D is equal to 1.05 in. If the assumed value of D does not
satisfy the equation, other values must be tried until a value of
D satisfying this equation is found.

Cyclic Tensile Loading of Bars

The case to be considered now is that for which an alternating axial

load is applied to the bar. A diagram of this loading is shown in Figure 3-14. ,
The mean load is designated as P,, and the alternating component is des-
ignated as P, .
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time

Figure 3-.14. Cyclic Loading of Bar

For a brittle homogeneous material, a stress concentration factor
must be applied to both the alternating and the mean stress in equations
for failure under alternating loads since a static load is affected by stress
concentration. Thus, the Soderberg relation becomes

1. Kb g o (3-5)
n Sy S

n

where S, and S, are equal to P,/A and P,/A, respectively, and n is the
factor of safety. In this case, K, may be taken to be equal to K;, so that
the basic design equation becomes

1 K, Py K, P,
e + (3-6)
AFty Af‘-m
where the A is either the reduced area at the discontinuity or the full area
of the bar as given in Figures 3-1 through 3-12.
For a ductile material, a stress concentration factor need only be
applied to the alternating stress in equations for failure since ductile
materials under static loading have an effective stress concentration
factor of one. In view of this, the Soderberg relation becomes
f K. f
S, Dot (37)-

1
n Fey f..
where f,, and f,, are equal to P,/A, and P,/A,, respectively, and n is the
factor of safety. Here, A, is the reduced area of the bar, and A, may be
either the reduced or the full area of the bar as given in Figures 3-1 through
3-12. Thus, the basic design equation for ductile rods under alternating
tensile loads is

P Ko P
1. . + . (3-8)
n A, Fy, Ag fge
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where K, is equal toq (K - 1) + 1. Here, K, is the theoretical stress con-
centration factor as obtained from Figures 3-1 through 3-12, and q may be
obtained from Figure 3-15 for steel. For aluminum, magnesium and titanium
alloys, fatigue data is scattered to the extent that a value of one is suggested

for q.
h
r@
r T
h
N
)
1.0
v L .Quenched and Tempered Steels
o 0.8
; [
@ 0.7
B /V\/'* Annealed or Normalized Steels
2 0.6
P
';; 0.5 /
i3
0 0.4
: |
Y
e} 0.3 - .
Zz
0.2
0.1

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18
Notch Radius r, Inches »

Figure 3-15. Average Notch Sensitivity Curves. Applicable Particularly
to Normal Stresses; Used Also for Shear Stresses
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Since cast iron is insensitive to stress raisers, stress concentration
factors need not be applied in any formula governing alternating stresses.
Thus, the Soderberg equation may be used in its basic form

f fia -
1 te + t {3-9)
n Fiy f

e

where f,;, and f,, are equal to P,/A and P, /A, respectively, and A is the
reduced area of the rod. Thus, the design equation for cast iron bars
under an alternating tensile load becomes

P. , _ B (3-10)
AF,, Af,

1 -
n

The previous discussion of bars under alternating tensile loads is
summarized in Table 3-2.

TABLE 3-2

Design of Bars Under Cyclic Tensile Load

Material Type Design Equation Explanation of Terms

P K, P
ductile 1 . il

= + A, = reduced area of section
n A- FtV A¢ fle

K. = q (Ky - 1)+ 1 where qis
obtained from Figure 3-15 for
steel or set equal to 1 for
aluminum, magnesium, and
titanium alloys, and where K,
is obtained from Figures 3-1
through 3-12. A, = reduced
or full area of section as given
in Figures 3-1 through 3-12. -~

] K, Ps K P, .
homogeneous — = + K; = theoretical stress concen-

brittle n A F‘? Aflo tration factor as obtained from
Figures 3-1 through 3-12. A =
reduced or full area of section as
given by Figures 3-1 through 3-12.
cast iron R P + . A = reduced area of section,
n AF'LY ' AFu
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3.

Sample Problem—Bar Under Cyclic Tensile Load

Given: A stepped circular bar with a fillet of . 02 in. radius is to
support a cyclic tensile load that is given as P = 20, 000 1bs +

10, 000 sin wt. lbs. This bar, as shown in Figure 3-16, is made

of an annealed steel for which F,, = 45,000 psi and f,, = 35, 000 psi.
Use a factor of safety of 1. 5.

P = 20,000 lbs +

10, 000 sin wt. lbs
r = .08"

—=P g

i {
L.

Bar Under Cyclic Tensile Load

ha——— O ——
‘0

P = 20, 000 lbs +
10, 000 sin wt. lbs

Figure 3-16.

Find: The diameter d.

Solution: From Section 3.5, the basic design equation for a ductile
material is

K, P,

3-11
A, fee ( )

1
—_— = +
n Am Ft y

P, Pa, and n are equal to 20,000 lbs, 10,000 lbs. and 1.5,
respectively. By checking the explanation of terms in Section 3.5
and checking the figure referred to there, we find that both A,
and A, are the reduced area md2/4. This explanation of terms
also tells us that K, = q (K, -~ 1) + 1, where q is given by Figure
3-15. Consulting this figure, q = .89 and thus K, = .89 (K; - 1)+1.

The above values may now be substituted into the basic equation
to obtain

1 20000 [.89 (K, - 1)+1] 10000

1.5 42 )
md”  (45000) nd
Z 4

(35000)

Simplifying this equation gives

.605 + .323 K
0.66 = *

d2 ]




Try d = 1.33. Since d/D and r/d are equal to . 870 and'. 0601,
respectively, K, = 1.75 according to Figure 3-1. Substituting
this in the above equation gives 0.6 = 0.6. Thus the guess for
diameter is correct. If it were not, other diameters would
have to be chosen to see if one satisfies the equation.

3.7 Compressive Loading of Bars

Bars that are subjected to compressive loads may be considered to
be columns. The behavior of columns may be obtained by referring to
Chapter 2.

3.8 Bending Loads on Bars

Bars that are subjected to bending loads may be considered to be
beams and treated with the material on beams in bending appearing in
Chapter 1.

3.9 Torsional Loading of Bars

Bars that sustain a torsional load may be studied by using the infor-
mation on beams in torsion in Chapter 1 or that on shafts in torsion in
Chapter 10.

3.10 Lacing Bars in Columns

The function of lacing bars in a column composed of channels or other
structural shapes connected by them is to resist transverse shear due to
bending. Although these lacing bars resist shear as a group, each indi-
vidual bar is loaded in either tension or compression if its ends may be
considered to be pinned. For example, the type of loading on each of the
lacing bars in Figure 3-17 is indicated by a "T'" on that bar if it is - in tension
or by a "C'" if it is in compression.

]

Figure 3-17. Example of Lacing Bars

SOUNNS NN NN
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These lacing bars may be studied by the information given early in this
chapter if they are in tension, or they may be considered as individual
columns and studied by the information given in Chapter 2 if they are in
compression. In addition to the strength of lacing bars as individual mem-

bers, their effect on overall column behavior must be considered. This
effect is treated in Chapter 2.
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4. TRUSSES

4.1 Introduction to Trusses

A truss is a structure composed entirely of two-force members; that is,
the members that have two equal and opposite forces applied at two points.
Thus, since the members do not exert any torque on each other at the joints,
they are considered to be pin connected. However, welded and riveted joints
may be considered to be pinned joints if the member is so long compared with
its lateral dimensions that the connection can exert little restrdint against
rotation. .

Section 4. 3 discusses statically determinate trusses, and Section 4.4
treats statically indeterminate trusses.

4.2 Nomenclature for Trusses

= cross-sectional area of truss member

= modulus of elasticity

= length of truss member

force in truss member

= reaction force

= force in truss member due to a unit load
= force in redundant member of a truss

= deflection

CxXEWOEEP
n

4.3 Statically Deterrhinate Trusses

4.3, 1 Introduction to Statically Determinate Trusses

The forces carried by the members of a statically determinate truss
may be determined by passing sections through certain members and applying
the equations of statics. The method of joints (Section 4. 3. 2) consists of
choosing these sections so that they completely surround a single joint. If the
sections that are chosen do not surround a single joint, the procedure used is
referred to as the method of sections (Section 4. 3.4). This method is espe-
cially useful if it is desired to determine the load in only certain members.

In many cases, a combination of the method of joints and the method of sec-
tions may be advantageous in the analysis of a given truss.

Before either of these methods may be applied, the reaction forces
on the truss should be determined by the equations of statics.

Deflections in statically determinate trusses are treated in Sec-
tion 4.3.6.




4.3.2 Application of the Method of Joints to Statically Determinate
Trusses '

If a truss as a whole is in equilibrium, each joint in the truss must
likewise be in equilibrium. The method of joints consists of isolating a joint
as a free body and applying the equilibrium equations to the resulting force
system. Since the forces in the members at a truss joint intersect at a com-
mon point, only two equations of equilibrium may be written for each joint in
a planar truss. Thus, only two unknowns may exist at a joint and the pro-
cedure is to start at a joint where only two unknowns exist and continue pro-
gressively throughout the truss joint by joint. This procedure is illustrated
"in Section 4. 3. 3.

4.3.3 Sample Problem - Application of the Method of Joints to Statically
Determinate Trusses

Given: The truss shown in Figure 4-1.

B C D

R) 2000 1b. J R,
e 30 -} 30 e 30———1
Figure 4~1. Planar Truss

Find: The forces in all of the members.

Solution: Applying the equations of statics to the entire truss gives
Rj = 1667 1b. and Ry = 1333 1b. Free body diagrams may be drawn
for the joints in the order shown in Figure 4-2 and solved for the
forces in the members. Summarizing, if tensile forces are taken
as positive, the forces in the members are

P,, = -1925 1b, P, = -3821b.
P = 962 1b. P, = 3821b.
Py = <1925 1b. Ppe = -15411b.
Py = 1925 1b. P,, = 1541 1b.
Py = -1541 1b. P; = 770 Ib.
P = 1734 1b.
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R, = 1667

Prc
60°
Ppp = - 1925 1b. 60 Ppg = 1925 1b.
(1) Pag = 962 1b. (2) Ppc = -1925 Ib.
60° .
A
AG Pap = -1925  Pgg
Ry = 1333
PpE
Peg = 382 1b ‘ PhE = -1541 Ib.
Ppg = 1734 Ib. (4) Ppp = 770 lb.
60°
PEF E
D
Pep 60°
5 60° Ppr = 1541 1b.
{3) Pep = -1541 1. (©) Pcp = -382 Ib.
Ppr Php = -1541

Figure 4-2. Free-Body Diagrams of the Joints in the Truss Shown in Figure 4-1

4.3.4 Application of the Method of Sections to Statically Determinate
Trusses

The method of sections consists of breaking a truss up by a section
and applying the equilibrium equations to the resulting portions of the truss.
This method is preferable to the method of joints if the force on some interior
member is desired, since the necessity of calculating the forces on other
members may be eliminated. This advantage of the method of sections is
illustrated in Section 4. 3. 5. '

-

4.3.5 Sample Problem - Statically Determinate Trusses by the
Method of Sections

Given: The truss shown in Figure 4-1.

Find: The force in member FG.

Solution: From statics, Ry = 1667 1b. and Ry = 1333 1b. By draw-
ing a section through members BC, CG, and FG, the free body

shown in Figure 4-3 is obtained. Summing momeénts about point C
gives P, (30 sin 60°) -1667(45) + 2000(15). Solving gives P, = 1734 lb.

4 -3




> Prg

30 —

Figure 4-3. Free-Body Diagram of Part of the Truss Shown in Figure 4-1

4.3.6 Deflections in Statically Determinate Trusses

The basic equation for the deflection of statically determinate

trusses is

Pul (4-1)
AE '

In this equation, L, A, and E are the length, cross-sectional area, and
modulus of elasticity of each of the members of the truss. P is the force
due to applied loads of a member of the truss, 'and u is the force in a mem-
ber of the truss due to a unit load applied in the direction of the desired
deflection at the point whose deflection is desired. The application of this
equation is illustrated in Section 4.3.7.

4.3.7 Sample Problem - Deflections in Statically Determinate Trusses

Given: The truss shown in Figure 4-4.
500 1b. . 1000 1b.

- 7 osi
E = 10x10" psi for all A 3500 . 15 1000
members ¢

Area of members
.2
Apc=App  Acp=lin.

. . . - 2in.2%
AAB- AP:E A!)E- 2 in.

f 20 , 19 — o

Figure 4-4, Cantilever Truss
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Find: The vertical deflection of joint D.

Solution: The forces in the members may be found to be:

P, = 3500 1b., Py, = 1000 1b., Py = 1414 1b., Py = -2121 1b.,
Pe = -14141b., and P, = -2000 lb. The truss may be redrawn
with a unit load in the direction of the desired deflection at joint
D as shown in Figure 4-5. The forces in the members are again
calculated with the results shown in Figure 4-5. Egquation (4-1)
may now be solved as shown in Table 4-1.

21\ uAB’:Zlb/le uBC=01b/1b c
e

2 upp = 1.414 1b/1b

e

e

] UpE = -1.414 1b/lb Uep = 0 1b/1b
e

; uDE= 1 lb/lb 4

e

:j l11b

&

Figure 4-5. Cantilever Truss with Unit Load Applied at the
Point Whose Deflection is Desired

TABLE 4-1

Solution of Equation (4-1) for the Truss Shown in Figure 4-4

Mem-| P 1b. | u,lb./lb. L in. /. Pul, .
ber AE AE
' , 6 -6 -3
AB | 3500 2 10/(2)(10x108) = .5x 10 3.50 x 10
BC | 1000 0 20/(1)(10x10%) = 2 x 1076 0
BD 1414 1.4.4 14.14/(1)(10x 108) = 1.414x 1076 2.82 x 103
6 . -6 -3
BE | -2121 | -1.414 14.14/(2)(10x 10%) = .707x 10 2.12 x 10
cD | -1414 0 14.14/(1)(10%108) = 1.414x107® 0
6 -6 -3
DE | -2000 -1 20/(2)(10x108) = 1 x 10 2.00 x 10

Pul . -3
& =z = .44 in.
AE 9 x 10 in
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4.4 Statically Indeterminate Trusses

4.4.1 Introduction to Statically Indeterminate Trusses

If a truss is statically indeterminate, deflection equations must be
applied in addition to equilibrium equations to determine the forces in all of
the members. Section 4.4.2 treats trusses with a single redundancy, and
trusses with multiple redundancies are treated in Section 4. 4. 4.

4.4.2 Statically Indeterminate Trusses with a Single Redundancy

Trusses with a single redundancy may be treated by removing one
member so that a statically determinate truss is obtained. This member is
replaced by the unknown force exerted by this member, X,. One equation
may be written for the deflection of the statically determinate truss due to
the applied loads including X, and another equation may be written for the
deflection of the removed member due to the unknown force, X. These two
equations may then be solved simultaneously to find X. Once X has been
found, the forces in the other members of the truss may be obtained by the
equations of statics. This procedure is illustrated in Section 4. 4. 3.

4.4.3 Sample Problem - Statically Indeterminate Trusses with a
Single Redundancy

Given: The truss shown in Figure 4-6.

30000 1b.

E = 10x100 psi

g}

1 ABD = 2 in.
10

.2
AAD: 1.51in. |ADC = 1.51in.

posth———r
»>

AAC = 1.5in.

25 -—! 25

Figure 4-6. Statically Indeterminate Truss With a Single Redundancy
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Find: The force on member AC,

Solution: The truss may be redrawn with member AC replaced
by the force resisted by this member, X, as shown in Figure 4-7.
The force in any member of the truss, P, may be obtained by the
superposition of the force due to the vertical loads alone, P,, and
that due to the horizontal loads alone. This latter force may be
given as X, where u is the force in a member of the truss due to
a unit horizontal load applied at points A and C. Thus,

P=P, +X,

By‘substituting this expression for P into Equation (4-1), the hori-
zontal deflection between points A and C is

P ul ZL
5 =§ = yxy-u (4-2)
. 1 AE AFE :

P uL 2 ' ‘
The termsz o andzI WL are computed in Table 4-2. Thus,
AE AE

5 = -0.5645 + 47.63 x 10-0 X
From the deflection equation for bar AC,

-XL
& = e L =X(50) |3 3341075 %

ACE  1.5(10x10%)

Solving the last two equations simultaneously gives

X = 12730 1b.

30000 1b.

B

C

15000 1b. 15000 ib

Figure 4~7. Truss From Figure 4-6 Redrawn With Member
AC Removed
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TABLE 4-2

Computation of Summations in Equation (4-2)

P.ul, 2

Man- L i /. ° u 'L o /b,
ner Py, 1b. |ulb/Ib. AP in./ e in. in./
AB |-32000 | 1.785( 1.600x10"% -0.0915 5.11 x 10-®
AD | 26900 | .3.0 1.795%x 10-8 -0. 1450 16.15 x 10-6
BC | -32000 | 1.785] 1.600x10-% -0.0915 5.11 x 10~
BD | 20000 | -2.23 | 0.67x10-® -0.0292 3.32x 10°°
cb | 26900 | -3.0 | 1.795x10-® -0.1450 16.15 x 10-®

Poul 2 §

2 o™ _ _0.5150 L _ 47.63 x10°® in/1b]
AE E '
4.4.4 Statically Indeterminate Trusses with Multiple Redundancies

The analysis of trusses with more than one redundant is similar

to that for a truss with one redundant.
members or reactions in order to obtain a statically determinate base struc-

ture.

The first step is to remove redundant

The deflections of the statically determinate base structure in the

directions of the redundants may then be calculated in terms of the redundant

forces, and equated to the known deflections.
truss in Figure 4-8.
determinate base structure.

For example, consider the
Members a and b may be removed to obtain a statically
The final force, P, in any member may be

obtained by superpos1ng the forces due to the applied loads and redundant

forces.

Thus,

P=P, + X,u, + X, u,

(4-3)

where P_ is the force in a member of the statically determinate base structyre
due to the external load and u, and u, are the forces in a member of the stat-
ically determinate base structure due to unit loads applied in members a and b,
respectively, gives

respectively. Applying this equation to members a and b,

and

Pu.L
6‘ :z_____
AE
PubL
5, =Z
AE
4 -8
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where L, A, and E are properties of the members of the statically determinate
base structure and P is the force in a member of the base structure. Substi-

tuting Equation (4-3) into Equations (4-’4) and (4-5) gives

2
P u L u, L u u, I,
6;1 .__Z___"___i__ +XB$‘________ +Xb z_“_.__b__
AE = AE AE

2
I SR
b L, AE a A b

E AE

Figure 4-8. Statically Indeterminate Truss With Two Redundancies

In addition,
-X, L

b, = ———
* AE

and
- Xy Ly

% " TA E

Equations (4-6) through (4-9) may be solved simultaneously to obtain the
forces in the redundant members. Once this has been done, Equation (4-3)
may be applied to obtain the forces in the other members.

Pu Ll 2y, —u u L u u_ L
5 :}:——-———-"‘ +qu‘ +XBZ“b +...+Xny—i—-“-——
: . : & AE

. AE AE AE
2
LY Tk e TABE e TR L i T
by . b n g,
AE AE 4 AE AE
and
P u L u u L u u, L 1121-'
5n=7_2__*1__ +X=Z—LL'— +xbz__1_b___+...+x52_.ﬂ_____
~ _ AE AE AE

AE

4-9

(4-6)

(4-7)

(4-8)

(4-9)




Also,

-X L

a A E

a
-X, L
5, = _vTy (4-11)
AL E
and
_Xn Ln
" ALE
These equations may be solved simultaneously to obtain the forces in the
redundant members.
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5. FRAMES AND RINGS

5.1 Introduction to Frames and Rings

Frames and rings are statically indeterminate structures. A frame is
such a structure composed of prismatic elements joined rigidly at points of
intersection while the element or elements of a ring are curved.

Section 5.3 treats the method of moment distribution for solving frame
problems. Section 5.5 treats symmetrical rectangular frames under vertical
loading. Section 5.7 gives formulas for simple rectangular, trapezoidal, aad
triangular frames under various simple loadings. Circular rings and arches
are treated in Section 5. 9.

5.2 Nomenclature for Frames and Rings

= cross-sectional area

= area under the moment diagram of a simply supported beam
= linear dimension

= linear dimension

= linear dimension

diameter

distribution factor

= linear dimension

= distance to centroid of load
= modulus of elasticity

fixed end moment

= horizontal reaction

= height

= moment of inertia

= stiffness factor = I/L

= length

= moment

applied concentrated load

= radius

= length of upright of a trapezoidal frame
= tensile force

'TJHQQ»EUO o >
i

1
<.
"

= vertical reaction

= applied concentrated load

= applied distributed load

rectangular coordinates

= angular distance from the bottom of a circular ring
increment or difference

= angle

= rotation of the tangent to the elastic curve of a moment
at its end

§E<<HomYZOR"ED
1

=
N
i

D WD> K M
i

= shear force ~



o) = angle

] = rotation of the chord joining the ends of the elastic curve
of a member

moment of the M, portion of the moment diagram of a
member (Figure 5-1) about point A.

i

Q4

5.3 Solution of Frames by the Method of Moment Distribution

This section treats frames composed of prismatic members whose joints
do not translate. All members of such frames are assumed to be elastic.

The five basic factors involved in the method of moment-distribution are:
fixed-end moments, stiffness factors, ‘distribution factors, distributed moments,

and carry-over moments.

The fixed-end moments are obtained by the use of the following equations:

My = S5 284+ 8 - 3h) + —5 [ - 2@,),] (5-1)
and
M, = _":%.I_ (205 + 6 - 3Uae) + —5 [20,), - (2, )] (5-2)
L .
where:
M, = the moment acting on the end of member AB labeled as A
M, = the moment acting on the end of member AB labeled as B
E = the modulus of elasticity of member AB
1 = the moment of inertia of member AB
L = length of member AB
) = rotation of the tangent to the elastic curve at the end of
the member '
b = rotation of the chord joining the ends of the elastic curve
referred to the original direction of the member
Q, = static moment about a vertical axis through A of the area
under the M, portion of the bending moment diagram
€, )s = static moment about an axis through B

This terminology is illustrated in Figure 5-1.

If both ends of the member are completely fixed against rotation and
translation, the member is called a fixed-end beam and §,, By, and ¥, are
all equal to zero. Thus, the last terms of Equations (5-1) and (5-2) are

equal to the so-called '"fixed-end moments." Denoting the fixed-end moments
~as FEM,
2 .
FEM,, = —5— [@, ) - 2@, )] (5-3)
L
5«2




and

FEM, = —57'[2(06);\ - Q)] (5-4)

Fixed-end moments for various simple types of loading were calculated and
are given in Table 5-1.

Equations (5-1) and (5-2) may be represented by one general equation
by calling the near end of a member "N" and the far end "F." The stiffness
factor of member NF is given by’

I
Ky = —0 (5-5)
Lige

Thus, the fundamental slope deflection equation becomes
My = 2EKy, (28y + 0, - 3 §,,) + FEM,, (5-6)

Any Loading

MAB( ! )MBA
A B
Lo
L .
M
Mag M,
Mgpa |
Original Position e
Al B'
A ¥
YAB
—
B
L g
/:é L Elastic B
Curve

Figure 5-1. Illustration of Terminology for Method of Moment Distribution
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TABLE 5-1

Fixed-End Moments for Beams

1. 2.
4 tP 7 A P -
Aa ;B A : ; B
'. L _ I
2 2
PL _ PL _ Pab _Pa‘b
FEMAB = —== FEMpp= - |FEMyp= 3 FEMp, = y:
3. . 4. . ‘
P w lb. /in. _ w 1b. /in. 3
ZIR11RI5 R0 AEREED A 7 -
L -+ §~————Z— —-{-‘—%——-—5
2 2 2 2
wlL L l1lwL 5wl
FEMaAR= —— FEMp p = —2— 22V
AB= 717 BA® T | FEM 19, FEMBA=Tq;
5. w lb. fin. 6 w lb. /in
A
A Z B| A ~ B
/ Ll
F——a —— [ I L L 5
L Z = =
2 2
waz 2 2
FEMyp = 5 (6L° - 8aL + 3a%)
waZ > FEMAB— 56 FEMBA—* S—'é—
FEM = (4aL-3a%)
BA "2
A Z CB A S — 1 B
a
A L . z L — #
2
FEM,n = <22 (10L% - 10aL +329
AB >
FEM wL? FEM wL2 60L |
AB ™ o BA™ 3p _ wa
< FEM = (5L-3a)
BA ™ Y012
9. 10.
y M in-lb. 2 2‘\‘:
A ; 7 : ‘;B A T T ;E'T
A [~ A £ ) -~
s a .}.K-—T b —————1/ ft——— 2————] > —L
Mb a
FEM = —2 (3=-1) >
aB= 7 (3¢ wL2 . wL*
Ma b FEMAB’—' —'3—5-— FEMBA-':- 37
FEMBA_—-I:-(Z,—E—I) >
5.4




TABLE 5-1

Fixed-End Moments for Beams (continued)

L. 12. P P P
L ’ Ly LYV L L,
I N 13 4 4 17
A B A 7 B
y L }——— L
a
FEMpp = Pa(l -1 ) 15PL ]
F = FEM =M
FEMpa=-FEMap |* CMAB® "4 BA=Ma
| 13'1 . 14. 4 a o wlb. /in. o @ —eg
A EB | A B
EQ—-a -_—c-l '_.,___a ___.: A L
\
wa w 3 .2 3 -
= -2a)= =-MpalMpa =——{(L°-2¢L+4a”} Mg = -M
FEMpag L (3L-2a)=Mp Al MA lZL( ) MB A
15. a -} 16, e L }
J w y z T iw ’
A T B A [ B
A T L p L
A L L
wal a al
= - -1 +6 — -
Mp = 55 H0-15T*o77) w2 _ 3wL?
2 Ma = 500 MB = - %0
wa a 30
MB-'—""ZO (5—41—)
T " T e,
4 4 b
y . L E E X —.\L——- L-x —--aE
3 L
1k
Ma = =5 | x(L-x)2f(x)dx
Ma = wL?Z Mo = WL2 L o
AT 13,52 B~ 15.86 - 1oL,
Mp = —Z—I x“(L-x)f{x)dx
TR R

The conditions to be met at a joint of a frame are: (1) the angle of
rotation be the same for the ends of all members that are rigidly connected

at a joint, and (2) the algebraic sum of all moments be zero.

The method

of moment distribution renders to zero by iteration any unbalance in moment
at a joint to satisfy the second condition.

A distribution factor which represents the relative portion of the un-
balanced moment which is reacted by a member is used to distribute the

unbnrlanced moment.

This distribution factor i

5-5

s given for any member bm by




- (5-6)

where the summation includes all members meeting at joint b.
The distributed moment in any bar bm is then
M,, = - DF,,M (5-7)

This equation may be interpreted as follows:

The distributed moment developed at the "b" end of member bm as
joint b is unlocked and allowed to rotate under an unbalanced moment, M,
is equal to the distribution factor DF, times the unbalanced moment, M,
with the sign reversed.

The '""carry-over' moment is obtained by applying Equation (5-6) and

considering 6, = {¢,, = 0 as in Figure 5-2. The '"carry-over' moment is
- equal to half of its corresponding distributed moment and has the same sign.

M

1t

= 4 EK, 8, (5-8)

and

M

it

a = 2 EK, 8, (5-9)
Thus,

M,, = &M, (5-10

a ) Mbm
Figure 5-2. Illustration of Carry-Over Moment

— -

The sign convention for moments in the method of moment distribution
is to consider moments acting clockwise on the ends of a member as positive.
This convention is illustrated in Figure 5-3.

Z . ¢ v 2
ZIDCl?‘C!Z

~/
M

- Figure 5-3. Positive Sense for Bending Moments
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The following procedure is for the process of moment distribution
analysis:

(1) Compute the stiffness factor, K, for each member and record.

(2) Compute the distribution factor, DF, of each member at each
joint and record.

(3) Compute the fixed-end moments, FEM, for each loaded span
and record.

(4) Balance the moments at a joint by multiplying the unbalanced
moment by the distribution factor, changing sign, and recording
the balancing moment below the fixed-end moment. The un-
balanced moment is the sum of the fixed-end moments of a joint.

{(5) Draw a horizontal line below the balancing moment. The
algebraic sum of all moments at any joint above the horizontal
line must be zero.

(6) Record the carry-over moment at the opposite ends of the
member. Carry-over moments have the same sign as the
corresponding balancing moments and are half their magnitude.

(7). Move to a new joint and repeat the process for the balance and
carry-over of moments for as many cycles as desired to meet
the required accuracy of the problem. The unbalanced moment
for each cycle will be the algebraic sum of the moments at the
joint recorded below the last horizontal line.

(8) Obtain the final moment at the end of each member as the alge-
braic sum of all moments tabulated at this point. The total of
the final moments for all members at any joint must be zero.

(9) Reactions, vertical shear, and bending moments of the member
may be found through statics by utilizing the above mentioned
final moments. - .

The use of this procedure is illustrated in Section 5.4. It should be
noted that simpler methods may be found for the solution of rectangular,
trapezoidal, and triangular frames in Sections 5.5 and 5. 7.

5.4 Sample Problem - Solution of Frames by the Method of Moment
Distribution

Given: The frame shown in Figure 5-4.
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LLLL .
D
1:27 10000 1b.
5000 1b. 251
ﬂ 2000 1b/ft. 1*15'“' l
A 1= Y2 1=3.5 C 1-5 E
:l 25! 1‘ 38! - 40! ~J.
Figure 5-4, Frame

Find: The end moments and draw the moment diagrams for this frame.

Solution:

(1) From Equation (5-5),
Kau
KBC
Kee
Kep

t

the stiffness factors of the members are:

0.125

.08

These are recorded in line 1 of Table 5-2.

TABLE 5-2

Solution of Frame Shown in Figure 5-4

AB BA BC DC] CB CE CD EC| o«
11 K 0.0810.1 0.1 0.125] 0.08
2l DF 0.44]0.56 0.33]10.41 0.26
3] FEM| -104 +1041-18 0 |+25 | -50 0 +50
4 -38 | -48 +8 +190 +7
5 -19 +4 +3]~-24 +5
6 -2 -2 +8 +10 +6
7 -1 +4 +3 + 5
8 -2 -2
9 Z -124 +62 1-62 +€6+17 1-30 +13 60
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(2) From Equation (5-6), the distribution factors of the members ére:

K

B 0.08
DFBA = A = 8 = 0.44
KBA + Kec 0.08 + 0.1
K
8C 0.1
DFBc = = = 0.56
KBA + Kec 0.08 + 0.1
K
[M:]
DFca = = 0.1 = 0.33
KCB-I-KCD+K,:E 0.1+0.08+0.125
K
DFcE - ) et _ 0.1 = 0.41
KCB+KCD +K_cz 0.14+0.08+0.125
K
DF - cD - 0.1 - 0.26

Ke +Kep tKee  0.1+40.08+0. 125

These distribution factors are recorded in line 2 of Table 5-2.

(3) From Table 5-1, case 3,

2 2
FEM,, = WL - 2200025 - 104 000 ft. 1b.
12 12
and
2 2
, —wl 2
FEM,, = le - 2000:25) = 104, 000 ft. 1b.

From Table 5-1, case 2,

2 2
-Pab -
FEM, =_.iz~ - 5000(20)2“5) = -18,000 ft.1b.
L (35)
and
-Pa’b _ 5000(20)%(15)
FEM,, = ==5= = . = 25,000 ft. 1b.
L (35)




From Table 5-1, case 1,

FEM.. - 2L - -10000(40) = 50,000 ft.1b.
CE 8 8 ?
and
FEM,, = —0o& - 10000(20) - 50, 000 ft. 1b.

8 8

Since member CD is unloaded,
FEM, = FEM,, =0
These results are summarized in line 3 of Table 5-2.

(4) The unbalanced moment at joint B is
YFEM = 104 - 18 = 86

The moments at joint B may be balanced by multiplying this unbalanced
moment by the distribution factor and changing sign. The result is
recorded in line 4 of Table 5-2.

(5) A horizontal line may be drawn below. the balancing moments in
line 4 of Table 5-2. The algebraic sum of all the moments at
this joint above this line is zero; that is,

-104 + 18 + 38 + 48 =0

(6) The carry-over moments at the opposite ends of the members
are recorded as shown in line 5 of Table 5-2. These carry-over
moments have the same sign as the corresponding balancing mo-
ments and are half their magnitude.

(7) Steps 4, 5, and 6 may be repeated for joint C to obtain the rest
of the values shown in rows 4 and 5 of Table 5-2. The process
for the balance and carry-over of moments may be repeated for~ -
as many cycles as desired to meet the required accuracy of the
problem. The unbalanced moment for each cycle will be the alge-
braic sum of the moments at the joint recorded below the last
horizontal line. This process is shown on lines 6, 7, and 8 of
Table 5-2.

(8) The final moment at the end of each member may be obtained
as the algebraic sum of all moments tabulated in the first
seven lines of Table 5-2. This summation is shown in line 9
of Table 5-2.
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Now that the moments in each of the members at the joints are known,
the moment diagrams may be drawn for the members with the aid of the
equations of static equilibrium. These moment diagrams are shown in
Figure 5-5,

M(ft.1b.)
100, 0004

E 65000 55000
50, 000
b 7000

A B C E
30000

-50, 0001
. -62000 -17000 -60000

-100, 0001
-124, 0004

M(ft.1b.)

13, 000

c -6000

Figure 5-5. Moment Diagram for Frame Shown in Figure 5.4

5.5 Rectangular Frames

This section considers symmetrical rectangular frames that are either
pinned or fixed at the ends of both of their uprights.

Figure 5-6 shows a symmetrical rectangular frame both of whose up-
rights are pinned under some arbitrary vertical loading. Sucha frame is
statically indeterminate and an equation, in addition to those of statics, must
be applied to determine the moments in its members.

-

Figure 5-6. Symmetrical Rectangular Frame Under Arbitrary Vertical
Loading With Both Uprights Pinned
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The free-body diagram of this frame may be drawn as shown in Fig-

ure 5-7.

The horizontal reaction is given by
3A, \
H=— (5-11)
hL.(2K + 3)
where

L, h
2 (5-12)
I, L

K =

‘and A, is the area under the moment diagram for a simply supported beam
under the same loading as the horizontal member of the given frame. Once
the horizontal reactions have been found by Equation (5-11), the moment
diagrams of the frame members may be found by the equations of statics.

I}

|
' \—11 2 | \‘11

Figure 5-7. Free-Body Diagram of the Frame in Figure 5-6

Figure 5-8 shows a symmetrical rectangular frame both of whose
uprights are fixed under some arbitrary symmetrical vertical loading. Such
. a frame is statically indeterminate with two indeterminates, and two equa-
tions, in addition to.those of statics, must be applied to determine the mo-

ments in its members.

J—‘/77#*7-7 /77777

L

Figure 5-8. Symmetrical Rectangular Frame Under Arbitrary Symmetrical
Vertical Loading With Both Uprights Fixed
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The free-body diagram of this frame may be drawn as shown in Fig-
ure 5-9. The horizontal reaction is given by

3 A,
Hs—uv- (5-13)
hL(K+2)
where
I>h
K = (5-14)
I, L
and'A is the area under the moment diagram for a simply supported beam
under the same loading as the horizontal member of the given frame. The
" reaction moment on the ends of the uprights is given by
A
M= —3% (5-15)
L(K+2)

where K and Am are defined as before. Once the horizontal reactions and
reaction moments have been found by Equations (5-11) and (5-13), the
moment diagrams of the frame members may be found by the equations of
statics. This procedure is illustrated in Section 5. 6.

h .
J_Pi.__.. | H
! N
MY !
e - .

Figure 5-9. Free-Body Diagram of the Frame in Figure 5-8

It should be noted that solutions for rectangular frames under various
simple loadings are given in tabular form in Section 5.7. The use of this

material, when applicable, is much simpler than using the material in this
section.
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Sample Problem - Rectangular Frames

Given: The symmetrically loaded frame shown in Figure 5-10.

-5 10 5 —
\\ w=1001b.in.

4
Ny,

L BN - T

Lz 20—

Figure 5-10. Rectangular Frame

Find: The bending moment diagram.

Solution:

1> h
K=_2" -_5010) _ 4 g34

I, L 3(20)

To find A, consider the simply supported beam shown in Figure 5-11
and draw its moment diagram. The area under this moment diagram
may be found to be

A_ = 45800 in. %1b.

Substituting this and K into Equations (5-13) and (5-15) gives

3 A :
H = LI 3(45800) - 242 1b.

hL(K+2) 10(20)(0. 834+2)

and

A
M = = _ _-%5800 = 795 in. lb.

L(K+2) 20(0.834+2)

A free-body diagram may now be drawn for the frame and the vertical
reactions computed as shown in Figure 5-12. The equations of statics
may now be applied to sections of this frame to obtain the moment
diagram shown in Figure 5-13.

5~ 14



e 5 10 5
/—w= 100 1b. ind
AA? 3750 M = 500x - 50(x-5)
2500 === T | M = 2500 - 500(x-15)
! l
‘ |
LM = 500x \
5 15 20 x

Figure 5-~11. Determination of A

et 5 e ) ———ate- 5

\—w: 100 1b.in.

41‘—-——> bt
H= 242 \-TJMZ _795 M=“795 H=242
V=500 V=500

Figure 5-12. Free~Body Diagram of Frame in Figure 5-10

5 ¢ 10 5 -
1625 1625

- ~ <
/ L(f N
1625} , 1625

-875 u\]\ /

~2125

A :

-195 -795

Figure 5-13. Moment Diagram for Frame in Figure 5-10
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5.7 Formulas for Simple Frames

This section presents formulas for determining the reaction forces and
moments acting on simple frames under various simple loadings. The re-
action forces and moments acting on frames under more complicated loadings
may often be obtained by the superposition of these simple loadings.

Cases 1 through 9 of Table 5-3 give reaction forces and moments on
rectangular frames, both of whose uprights are pinned; and such frames with
both uprights fixed are treated by cases 9 through 18 of this table. Table 5-4
gives reaction forces and moments on trapezoidal frames. The first four
cases treat such frames with both uprights pinned at the ends, and cases 5
and 6 treat trapezoidal frames with fixed-ended uprights. Table 5-5 gives
reaction forces and moments on triangular frames.

5.8 Sample Problem - Formulas for Simple Frames'

Given: The trapezoidal frame shown in Figure 5-14.

7.5 7.5—
. 1000
1
/ )
& Ip=1.5in.
é \‘ 10
4 I = 1in.%
1=1in.% 1
5 —» 15 5
‘Figure 5-14. Trapezoidal Frame
Find: The reaction forces and bending moments.
Solution: From the diagram at the top of Table 5-4,
2 (s 1.5 ( 5/5
F:T{"\T>=T (._1_5__>- 1.12
G=3+2F =3+ 2(1.12) =5.24
I. = 1i 4 B . _ .
1 = in. a = 5in. = 10 in.
I, = 1.5in. % b = 15 in. s = 5/5in.
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TABLE 5-3

Reaction Forces and Moments on Rectangular Frames *

!
|
:

e
-

\—Il \11 d = distance to centroid of load
unless otherwise used

Ha HB

Mpa = Mp = 0 if uprights are pinned

(1) P -
F-—a——-——b—j VAZ —‘I‘:- VB:p—VA
3IPL

Hy = Hp = ————
A B " 8h(2K+3)

11

For Spe.ial Case: a = b Ls2

P

VszB:Z

3PL
Ha = Hp = G 2K+3)

(2)
-ﬁarb—-]‘c—-‘ VA=Y_§.2(_?J1§_E_) VB:Wb'VA,

23!
bibac +b (3L - 2b)]
Hy = Hp = ——
A B 4hL (2K +3) - .

For Special Case: a = c =

2.
w L

’ Hp = Hp = —————
A B = Th(ZK+3)

% Griffel, William, Handbook of Formulas for Stress and Strain
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TABLE 5-3

Reaction Forces and Moments on Rectangular Frames (continued)

(3)

4arb—-1

H. = . _3wb
AT B T 4Lh(2K+3)

For Special Case: a= 0,

. wk . Wb
VA= % VB = >
2
_ w L
Hpa = Hp - 8h (2K +3)
(4) .
-‘a;K—b —]
-M
= -V = e—
C /M Va L L
} 3(b-L/2)M
Ha = Hp Lh(2K +3)
-Pa
(5) Va=-Vp= -
$
p B
_‘f‘—*' Hp = Pa [ bK(a+h) 1]
a 2h h2(2K+3)

5-18
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TABLE 5-3

Reaction Forces and Moments on Rectangular Frames (continued)

6)
wb2~-a2
w VA: _VB = __(_Z—I:__)-
! {._ . w(al-b?) Klw(a?-b2)(2h%-a2-b2)]
Lr—f : B 4h 8h3 (2K+3)

H, = Hg + w (b-a)

(

For Special Case: b=0, a=h

~wh*

VA= “VB =

wh K
Hp = 22 [1 -————-———]
B~y T 22K +3)

= HB - wh

w

iL (2a2+b) (b-a)

(7) Vp = -Vg =

-VaL KXIO

f Hp = ¢ " R@K+3)

a .
bi ) Where:

5 w

Xyq s ——am—
10" 12002 (a-b)

(-30h%b(a2-b2)

+20h2(a2-b2) + 15b(a-b4) - 12(a5-b5)]

Hpa = Hp + w(b-a)
A B 2

-wh?
Va=-VB = 3T
- wh +K+5
10 N\2K+3
1{A='HB— .WZ—.E
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TABLE 5.3

Reaction Forces and Moments on Rectangular Frames (continued)

Vp=-Vg= %‘—NE (a%+ac - 2¢?)
(8) T }
~ % “Val KX7
: ‘ d Hg = +
f 2h (2K+3)h
a
7L_
9 )7» Wherec:
w
Xq o bt [3(4d® +c5) - 15n(3a% « cd)

120h%(d-c)

+ 2002(2d3+c3) - 15ca2(2h-d)2]
For Special Case: b=c¢c=0, a=d=h

. -wh? : g l
VA:-\,B:._\Z_IJ_.

-M
Ya= Ve =

3[K(2ab+a®) +hZ M
2h3 (2K +3)
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TABLE 5-3

Reaction Forces and Moments on Rectangular Frames (continued)

(10)

e 2 fa— b —f

Ph
VvV - 22
A L[

L2(6K+1)

.+ -alb-a) ] Vg =P-Vy

3Pab

HA=

Mg - Pab [
i mu

Pab [

2{K+2)

For Special Case: a = b

Va = Vg = P/2

3PL
Ha =Hp = gniges

PlL

Ma = Mp = 2505

BB % Sih®a2)

_(b-a) =
JL(6K+1) J

(b-a)

* LK +1)

/2

{11)

a o (& oy

e b ——o

wcd_ . X]_-)\')

"!’B = Wwe - ‘v'A

v
A L L6K+1)
3(X, +X3)
H = H = b A
A B 2h(K+2)-
M cSLTX2 X -X%p
A T JK+2) 2(6K+1)
Mo = X1 +X; X]-X;
B = 2K+ 2(6K+1)
Where:
e 3 2
X, = wc[24d _6bc £ 3¢ g2 7‘4d2]
1 24L L L
24d3 _6bc2 33 2 2 'J
= 2c? - 48d% 4+ 24dL
X2 24L L + L +2¢C +
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TABLE 5-3

Reaction Forces and Moments on Rectangular Frames (continued)

For Special Case: a=0, c=b=1L, d= L/2

Va = Vp = \‘.;L JL
2
_ wL
Ha=HB = fuikea) oy Jvr
2
. wL
Ma=Mp = 12(K+2)
X2 - X
wcd 3 4 wCe
= = — -V
VA= L * LeR+D) VB= 73 A
12
(12) - o e o 3(X34Xa)
I’d"' AZEB T ZH(K+2)
/ﬂ’ﬂ Ma = X3+X, X3 - X4
L_ _J AT ZK+2) T 2(6K+1)
a C
X3+X4 = X3-Xa
Mp ~ Zik+2) 2(6K+1)
besad Where:
3 2 3 2
-wc [ d c 51c c%b 2]
2 owefdl c”, Ble? -d
3 2L[L+9+810L+6L
C2 C3

3 2
we ['d 1 cb 2 ' .
Moo= =] -_— e o —— o 2d% 4+ dL,
4 ZL[ L " 18 T8OL T 6L

o fu;n

For Special Case: 2a=0, ¢=b =1L, d=1/3

"

va= [ o ]

Vg = —] 1
B~ ¥ 20(6K+1)

wl, 1 J
_ _ w2

Hp=Hp = 8h(K+2)

wL? / 5 ,
120 \ K+2 = 6K+l )

Mo < WE2 (58 1 )
B 120 \ K+2  6K+1
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TABLE 5-3

Reaction Forces and Moments on Rectangular Frames (continued)

(13)

}-a b —ed 2
_ _ =6{ab+L°K)M
Vpos=-Vg = zb{ab+L7K)M
L3(6K+1)
AN |
Hp = Hp = 3(b-a)M
: 2Lh (K+2)
M, = M {ﬁab(K+2)2—L[&{7K+3)—b(5K-1)] N
7T mr 2LE(K+2)(6K+1)
Mp =M+ Mpg + VpL
-3Pa’K
Vpa=-Vp = 2220
(14) _ A B " Lh(6K+1)
_Palh h+b+E(b-a) ]
Hp = D2 [ B hebek(bea)
b B™ 2n lb h{K+2)
13.{,__..
Pal -b(h+b+bK) 3aK
M, = B2l -bh+b+bK) =an
a AT 2Rl b(R+2) B KD
S E,

My = f_g._[ -b(h+bsbK) _, _ _3aK
2h h(K+2) 6(K+1)

Hp = Hp - P
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TABLE 5-3

Reaction Forces and Moments on Rectangular Frames (continued)

Mo . M w(a?-c?)

Va=-Vp = 7 L 2L

(15)

Hp =
2h 2h 2h(K+2)

o & ~tnfg— T

Hy = Hp - w(a-c)

RO e

-—nr‘_—‘ 0, ——e

mrr

-x]
51 2‘.9[__1.+ 3K
2 K+2

M -
A 2(6K+1) bK+14 "5
2_.2
(3K+1)[ﬂ§_c_l - x5]
MB = 2 - E_b_r l + 3K
2(6K+1) 2 LK+2 6K+l
Where:

‘X = I_‘Z”Lh_z_ [d3(4h-3d) - b3(4h-3b)]

t

Xg = — [a3(4h-3a) - c3(4h-3¢)]
12h

For Special Case: ¢ =0, b=0, a=d=h

2
-.Wh K .
Va = -VB = T6K+1) ,l,
[4 '.‘ )
Hea = wh(2K +3)
B 7 Tg(K+2)
HA = HB - wh
~wh? 30K+7 1
M, = ¥ ]
, A 24 L6K+1 T Kaez
5. 24




TABLE 5.3

Reaction Forces and Moments on Rectangular Frames (continued)

Vp = -Vg= Ma + Mg _ w(a2+ac-2c2)
L L 6L
' He = g(az-l-ac - 2¢?) _ _X_S . Xog(K-1)
(16) } B~ 12h 2h 2h(K+2)
b .
__.'_ Hp = Hp - w(a-c)
© 2

_}_ . N -<3K+1".[w(a2+zc-2c2)_X8]

2{6K+1)

’_‘_9_[_1_,,3K -x
2 LK+2 " 6K+1d 78

(3K+1 )[ﬂaz t2es ZCZ’]— Xg

M -
B 2(6K+1)
_ X8 [_l_ . 3K
2 K+2 6K+l
Where:

st—J__—__

4 4\ 1515 15
60h2(d-b) [15(h+b)(d' b*)-12(d°-b?)

-20bh(d>-b3))

X9'

= —=5—— [10d%h?(2d-3b)+10bh(4d3+b%h-13)
60h“(d-b)

-a*(30n+15b) + 1245 + 3b5]
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TABLE 5-3

Reaction Forces and Moments on Rectangular Frames (continued)

For Special Case: bzc =0, a

_ oy . _-whiK
VA= "VB = 76K+ é% l

Ha = wh(3K+4)
B " 40(K+2)

wh
Ha = HB - =&

M, = WhE [ 27K+7 . 3K47
AT 50 L2(6K+1) T K2

M =wh2 27K+7 1 —_\
B~ 6o 206K+1) K+2

L

- . - + _ w(2a+c)(a-c)
Va VB = L L 6L

2 __c.cl X X1,(K-1)
Hp = w(2a” -ac-c’) 11 " 12

12h 2h  2h(K+2)

Hp = Hp -

() ]

M =
A 2(6K+1)
X12 1 3K
- + - X
2 K+2 6K +1 11
. !Qaz-ac —cz)
k3x+1)[ > - x“]
Ma = , .
B 2(6K+1)
X12 [ 1 _3K
2 K+2 6K+1
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Reaction Forces 2

TABLE 5-3

nd Moments on Rectangular Frames (continued)

Where:

w 4 5 3 4
X., = —2 __ ([5hd" -3d°-~20hdb - 12b*(d+h})]
117 4on2(d-b)

05¢hec)(at-c? - 12(a®-c®)
60h%(a-c)

=20 eh(a2-c3)]

a=d=h

For Special Case: b=c=0,

V. = -V _ -3Kwh®
A B © 2L(6K+1) % !

- wh(7K+1 1)
B 40(K+2)

n
o

w

~|

Ha

Pt

_ -wh® r87Ks22 3 ]
120 6K+1 K+2

4
>
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TABLE 5-3

Reaction Forces and Moments on Rectangular Frames {concluded)

(18) s _y. = BBKM
4 . Va = -VB = RL(6R+1)
a M
bl z'/ H, = Hp = 3bM2a(K+1)+b]
3
| 2h (K + 2)
77J77 i
-M 2 2
M, = 4a“ + 2ab + b+ K(26a2 - 5b2
AT 2nZ(K+2)(6K+1) 4a” + 2ab + b7+ K(262° - 5b7)

+ 6aK2(2_a-b)]

MB-_' "VAL-M"MA
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TABLE 5-4

Rectangular Forces and Moments on Trapezoidal Frames *

(2)

I 5\
t I N
1, 11/ G = 3+2f
A Mp, J
it
H H '
A Va Vg B Mp = Mp = 0 if uprights
a je—b —et a are pinned
L
() w
wb
=V = —
Va=Ve= 3
' wh b
Ha=Hp= 5 (** 16)
B
d

P/ 3ed
Hp = Hp = (a——‘——)

(3)

HAz HB - wh

* Griffel, William, Handbook of Formulas for Stress and Strain
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TABLE 5-4

Rectangular Forces and Moments on Trapezoidal Frames (concluded)

(4) - -vp = ZEe
; Va VB L
d
P
T 5[5 0-2)]
HB_2h1+G}_-l;E)
C
Hp = Hp - P
(5) - gl L wb
Va=Ve =75

2
M - Wb
A B " 12(2+F)
(6) -
P, Va = -Vp= 2B (1-2)
-P
Ha = -HB = =
_ -Phz
Mg = -Mp = =5 -
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TABLE 5-5

Reaction Forces and Moments on Triangular Frames

Izh
L L

Ma = Mp =0 if uprights

are pinned

L d
(1) ¢ -
Pc
= =< Vp = P-V
Vg L A B
Pct b d!a.+c) ]
= B ol B
Hp = Hp L[L 2a°(K+1)
W
(2)

2 :4b 1
wa
Ho = Hp = 5 (T * o )

(3) TN ' -
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(4)

(5)

TABLE 5-5

Reaction Forces and Moments on Triangular Frames (continued)

-Pc
Va=- Ve = Tp
| 7 . Pl dfuo) T
.;._P He = LT ZnZ(k+1)
[od
l HA—HD-P
w 2
wh
Va = -VB = o

(6)

Pc[1 da+d)] VazP-V
= = - B
VB I >a A

Pcb Pcd

= _ {{-b(3K+4) -2L]
HB Lh  §La’h(K+1) (

[a+d]+ 2(2L+b)(a+c) +3ac])

Mp = —‘—25’-5‘1—— [(a+d)(3K+4) - 2(a+c)]
6a“(K+1)
2
Mp = ch d
2a(K+1)

5« 32




{7)

TABLE 5.5

Reaction Forces and Moments on Triangular Frames {continued)

Ha = Hp

VA:Wa(l-é_a_) VB=

3wa2

8L 8L

2
s —¥3 ___ (b(1049K) + 2L + a]

24Lh(K+1)

2
M, = Swa‘(3K+2)

24 (K+1)

2

wa

M =
B 7 24k+1)

(8)

HA: HB =

A~ VBT 2L

3M(a - bK)
ZhL(K+1)

-KM
M ——
AT (K1)

M
Mp = 2(K+1)

(9)

My =

5« 33

b +
Lh hZ(K+l)

h+d) ]

- -Pc [

[(h+d)( -3bK-4b-2L)

+2{2L+b)(h+c) + 3ac]}

—Qcd _ riy4d)(3K+4) - 2 (h+c) ]

6h2(K +1)

Qcd
B = -—T————6h K1) {h+2c +d)




TABLE 5.5

Reaction Forces and Moments on Triangular Frames (concluded)

2
-3wh

\'4 = -V =

{10) A B 8L
/-w
h
Hr = —h
B BL(KIT) [(b(3K+4) +a]

HA = HB - wh

T M, = —whi(3K+2)
24(K+1)
2
h
Mg = —>Oot
B = 24x+1)
From Table 5-4, case 2,
v, - P(atd) _ 1000(5+7.5) _ g4 qp.
L 25
V, =P -V, = 1000 - 500 = 500 lb.
p_( 3cd 1000 3(7. 5)(7. 5)
H =H = + = 5 4 = 357 1b.
A T e TR \* T 3G 2(10) [ 15(5. 24) T

A free-body diagram may be constructed for a section of the frame leg,
as shown in Figure 5-15. Equating the sum of the moment to zero gives

M= -500X1 + 357(2}(1) = 214){1

Py -

Hp = 357

vvxl

Vg = 500

Figure 5-15. Section of Frame Leg
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—r

At the left frame joint,
M= 214x% = 214(5) = 1070 in.1b.

A free-body diagram may now be drawn for a section of the horizontal
portion of the frame to the left of the load as in Figure 5-16. Equating
the sum of the moments to zero gives

M = 1070 - 500x,

By considering symmetry, the moment diagram of the given frame
may be drawn as shown in Figure 5-17.

357 Mg = 1070 i}
—‘{ }"—’ 2
M .
500

Figure 5-16. Section of Horizontal Portion of Frame

1070

-

M= 214x

-2680
M=1070 - 500x

Figure 5-17. Moment Diagram for Trapezoidal Frame

5.9 Circular Rings and Arches

Table 5-6 gives formulas for the bending moments, tensions, shears,
and deflections of closed circular rings and circular arches of uniform cross
section loaded in various ways. Cases 1 through 21 treat closed rings, and
cases 21 through 24 treat arches. By superposition, the formulas given by
Table 5-6 can be combined to cover a wide variety of loading conditions.

These ring formulas are based on the following assumptions: (1) The
ring is of such large radius in comparison with its radial thickness that the
deflection theory for straight beams is applicable. (2) Its deflections are due
solely to bending, the effect of direct axial tension or compression and that
of shear being negligible. (3) It is nowhere stressed beyond the elastic limit.
(4) It is not so severely deformed as to lose its essentially circular shape.

Since many of the formulas in Table 5-6 consist of a large number of
terms, each of which may be large in comparison with the end result, calcu-
lations should be made with extreme care in order to ensure accurate results.
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TABLE 5.6

Formulas for Closed Circular Rings of Uniform Cross Section

[o})
1

My = Mat x=0, y = -R

Ty= Tatx=0, y= -R
Voz Vat x =0, y = -R
I = moment of inertia of ring

cross section

cos X e = c<')s¢
sin x f = sin@
cos B
sin g

= increase in horizontal diameter
= increase in vertical diameter

= angular distance from bottom of

ring

(1)
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M = PR(0.3183 -b—z )

Max+M=0.3182PRatx=0

Max-M=-o.1817pRatx=%- -
T = ‘pb
2
~Pa
V =
2
PR’
D, = 0.137-ER-
4Pp El
PRY
D = 0.14
4Dy 9 EI




TABLE 5-6

- i Formulas for Closed Circular Rings of Uniform Cross Section (continued)

(2)

B < 90°

if (0< x <B;
M= PrR[0.3183(d-cB+ a - adc) - a+c]

T = P[0.3183 a(B- dc)-2]

v = P[0.3183b(dc-8)+b]
if @<x <)

M

PR{0.3183(d - cB + aB - adc)]
T = P[O..3183u 8 - sc)]

v = p[0.3183b (dc-B)]

3
AD, = %%— [0.6366 (d - cB) + & (dc -B) ]

3 2
PR d
ADV = -—E—I—[O.6366(d-CB) +C +—-é— -1]

(3)

M ,(0.6366a - ) if (0<x <m/2)

M ,(0.6366a +%)if (/2 <x<m)
Max+M = Mp/2 just above Mp

Max - M = -Mj,/2 just below M p

T = 0.6366 MAa/R

V = -0.6366 Mpa/R

ADh=ADv= 0
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TABLE 5-6

Formulas for Closed Circular Rings of Uniform Cross Section (continued)

if (0<x <B)
() M= M,[0.3183(2
= M, (0. (2ad+8)-1]
T.= 0.6366 M, ad/R
V = 0.6366 M bd/R

if 0<x <)

8< 90° M = 0.3183 Mp(2ad+B)
T = 0.6366 My ad/R
V = -0.6366 Mp bd/R
MARZ ’
ADy = (0.63668 - d)
. MaR% o os66 1
AD, = £ {(0.6366B + ¢ ~ 1)

if (0< x < 1/2)

(5) M

1}

PR(0.3183a+b - 0.8183)

P(0.3183 a+b)

\"U
\4—
o}
R
S < o+
1] i

 Pfa-0.3183b)

< x <)

2P M = PR (0.1817+0.3183 a)
T = 0.3183 Pa
V = -0.3183 Pb
3
PR
ADy = -0.1366 g
3
- PR
AD, = 0.1488 El
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TABLE 5.6

Formulas for Closed Circular Rings of Uniform Cross Section (continued)

if (0< x <B)
(6) M = PR(0.3183(ac®-d8-c)+d- %]
T = 0.3183 Pac?
V = -0.3183 Pbc?
if (B x < 1/2)
P P M = PR[0.3183(ac%-dg-c)+b -%]
9 < 90° T = P(0.3183ac? +b)
V = P(a-0.3183bc?)
i (M/2< x <m
M = PRI[0.3183(ac’ - dg-c) + & ]
T = P(0.3183 ac?)
V = -0.3183 Pbc?
AD = %‘3; [(d2+1)- 0.6366(dg + c)]
ADy = 3%1 [d- % (dc+B)-0.6366(dB+c)+0.7854]
if (0< x <g)
(@) M = PR[0.3183(da+C'+ad2-1)_a+b] -
T = P(0.3183 ad? + b)
V = P(a-0.3183bd%)
{
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TABLE 5-6

Formulas for Closed Circular Rings of Uniform Cross Section (continued)

if @< x<m)
M = 0.3183 PR(dB+cC +as® - )
2
T = 0.3183 Pas

V = -0.3183 Pbs?

3 g2
apy = ERC [LF‘_E*Q . o.6366(d3+c-1)-2é]ifs>90°

El
PR3 2727 |

ADy = ——~ [0.6366 (dg+c - 1) - d2/2]ifp < 90°
PR®

AD, = I [(dc'+B)/2+0.6366(d8*C'” -d ]

if (0< x<8)

2
M = PRI0.3183(f §+e-dg-c-ad’+ af’) - £+d]
T = 0.3183 Pa (f2-d%)

V = 0.3183 Pb(d2-f?)

if B<x<9)
M = PR[D.3183 (f §+e-dB-c-ad’+ af?)- £4b ]
T = P[0.3183a (f >-d?)+b)

Vv = Pl0.3183b (d®-f%)4a]

if (§<x<m

M = 0.3183 PRf{+e-dB-c-ad2+af?)
T = 0.3183 Pa(f2-d%)

V = 0.3183 Pb (d%-f?)
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TABLE 5-6

Formulas for Closed Circular Rings of Uniform Cross Section (continued)

PR’
ADy, = o [(d2+f2)/2+0.6366(f¢)+e—df—c)+l-2f]

3
AD, = —pé—ll-)-‘—— [(fe+4)-dc-3)/2+0.6366(£¢J+e-dg—c)+d-f]

. PR ja . 1

f < < R S 0 —_ - A

if (0<x <0) M > Kd B)
max-i»M:-———2 (d-l--el)atx=0, 28,48....

/
- PR \él_ - cotp ) at each load

max T = % atx =0, 28, 48....

T = -E— cotf at loads

Radial dispiacement at each point load =

2
PR [ @rdd _ l] outward
2E1 2a4 B

Ra&ial displacement at x = 0, 28, 48....
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TABLE 5-6

Formulas for Closed Circular Rings of Uniform Cross Section (continued)

(10)

| 2wR sinB

2 a2 d3 2dc g
_ 21 1,4% _ Bd~ _a” _ :-dc | !
MO_WR [4+2 +0.3183 \d > 3 % 4}

TO = -0.1061 wRd3

if (0<x <8)

g

M, - wR? [db - 0.1061d3(1-2)]

-wR (0.1061d3a + db)

+
I

WR (0.1061d°b - da)

<
1t

i (< x <m)

M. +wRZ[0.1061d3(1-a)-(a%+b%)/2]

M = M,
T = -wR(0.1061d>a+b?)
V = wR(0.1061 d°b -ba)

2
ap, - 2%R L_d af & o 583(R, 3de +B-‘-i-—-d)]
h = TEp 2272712 \2" 72 T2

ap, - 2RAT
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TABLE 5-6

T

J Formulas for Closed Circular Rings of Uniform Cross Section {continued)

(11) o2 B ,nql 4, 3dc _.<_i_'_]
w Mg = wR 0.3183k2+8d 2) 5
T, = 0
if (0< x <8\
8 {8 )
M = M, - wR?bZ/2
A T = -wRb?2
|
| V = -wRba

if (< x<1mm-g)

2

= M RZ (@b - 2
M = 0~ V¥ {db 2)

T = -wRdb

V = -w Rda

. 4 3
-wR d . 2
= I d - 0.31838 +3dc + 2 d)]
ADy = Ld + 53 e B

4
-wR* [ -0.3183 (282 4+ 3dc+p) +d% -gd +
El

3
+2 -]
3

i

aD,

- .

+
wr’
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TABLE 5-6

Formulas for Closed Circular Rings of Uniform Cross Section (continued)

(12)

Mg = 0.305 wR2

Ty = -wR({0.02653)

if (0< x <m/2)

M = M,
T = Toa—‘wa/Z
V = -Tgb - wRa/2

if (M/2 <x <)

M, - T,R(l-a) - wRZ b/2

(13)

wR
M= M- T R (1-2) - wR2b/2 - wRZ(1-b)3/6
T = Tya - wRb/2 + wRb (1-b%)/2
vV = -Tob-wRa/2+wRa(l-a2)/2
AD, = 0.1228 wR*/(EI)
AD = -0.1220 wR4/(ET)
2 2 | 34
2 2d dc ge - 3dc 8
Mosz[O.3183(3 Tt oty
2
1 ) _c___]
z € 2
2d . dc l
- £ - -1
TO_wR[0.3183\3+ = -Bc) *c )

if (0< x <g)

M = Mg - TgR(1-a) - wR(1-22)/2

T

v

Toa + wRa (1-a)

Tob - wRb (1-a!
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TABLE 5-6

Formulas for Closed Circular Rings of Uniform Cross Section {continued)

if(B< x <m)
M= M,

T = Tga+wRa(l-c)

- -ronu-a\-wnzu-c)é'hc-Za\/z

Vv = -‘rob - wRb{1l-c)

(14)

N

Y

wR(l-cos¥y) =

. 2
3 {8 .4 _Bec_13dc lldc
M. = .3 [ Gl - e A
o= wR _[0 183\31»9 2 Y 36
2 3
Be™ _ae” Be’y_ vy o) 3
* 3 1 6 ) ‘\l c)e]
To = wR [0.3183 (d-82) + c-1]

;if(0<x<B)

M= Mg - ToR (1-alewR(1-203/6 - (1-c)1-2)2/2]
T= Ty +wRZa(i-2c-a)1-a)/2

V= -Tgb-wR?b(1-2c+al(1-2)/2

if B< x <m)

M= Mg - ToR(1-a) - wR3(1-c)2 (§+ % -a )/z

T = Tgu + wR2a(1-c)%/2

V= -Tgb < wRZbil-c)2/2



TABLE 5.6

Formuias for Closed Circular Rings of Uniform Cross Section (continued)

(15)

2wR sinB

wR®[c-0.3183(8c-8)-1]

S
)

wR[0.3183(d-crec = 1]

-
o
]

i (0<x<B)

M

Mg - TgR(1-a) - wRZ (1-a~ db)

T=Tia+wR (db+a-1)

0
V= -Tgh+ wR{db-b)

if (g~ x- "}
M= Mg~ TgR(1-a) - wR¥(casa)
T-= Tba' + wR (a-ca)
V= -Tgh+ wR{cb-b)

. ,
aDy, ;l“%‘l_ (2.45. +0.31838 < 0. ssssd)if 8 < .'.;..

I

. .
ap, = Z¥R_ (.E_C. +0.31833 + S . o.nssa-;)
EI 4 - 2 :




TABLE 5-6

Formulas for Closed Circular Rings of Uniform Cross Section (continued)

(16) uniform shear
-—-Z if (0 <x<B)

Y

\ M = PR {0.15915 [dp+c-f-eta(d?-£2)-b(dctp+fet])

) -x(d+f)] - (d-f)/2+b}

if B<x<2n - §)

P M = PR {0. 15915 [db+c-£0-3+a(d?-£2)-b(dc+s +fe+d)
-x(d+0)] + (d+f)/é}

if (2m - § < x < 2m)

M = PR {0.15915 [dg+c-f}-e+a(d?-12)-b(dc+B+fe+d)

-x(d+£)] + (d+3£/24b}

if (0 <x<B)or (2m - § < x < 2m)

T = P[0. 15915 (ad? - af?-bdc-bg -bfe-b§)+b]

v

1}

P[0.15915(-d-f-bd%+bfl-adc-ag -afe-ad)+a
ag

if (B <x<2nm-{)

T = 0.15915 P(ad?-af®-bdc-bg -bfe-b)
V = 0.15915 P(-d-f-bd?+bf’-adc-ag-afe-af)
€
.
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TABLE 5-6

Formulas for Closed Circular Rings of Uniform Cross Section (continued)

if (0< x <B)
(17) it | B
o
/ \ M = MA[o.3183(ad-bc+312_x/2)-%]
{ \ T = -0.318 M, (bc -ad)/R
5 V= -0.3183M(bd +ac+%)/R
MA
Z\MA 1b if B< x < 2m)
M = Mp[0.3183(bd-bc+B/2 - x/2) + %]
T = -0.3i8., Mp(bc-ad)/R
¥V = -0.3183 MA(bd+ac+§)-/R
(18) M = wR%(1+2/2 -mb +%b)
Max +M=M _= 3wR%/2
—— 0
Max - M = -0.642wR% at x = 74.6°
T = wR{xb-a/2-mb)
2TTRw V = wR(xa+b/2-na)
4
w lb. per unitlengthof ADy = 0.4292 _\_%E_{I_ he
circumference
wR4
AD, = -0.18765 X%
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TABLE 5-6

Formulas for Closed Circular Rings of Uniform Cross Section (continued)

WRZ(% +c +Bd-nd+d2)

g

(19) w1b. per unitlength
of circumference T, = wR (d2- %)

if (0 < x <B)

X

My - ToR(l-a)+wR%(xbsa- 1)

T = Toa + wRxb

V = -Tgb + wRxa
mTwR mwR if B<x <iar)

M= M- TR(1-a)wwR¥(xbsa-1-mb +nd)

T = Toa twR (xb -:b}

Vo= -Tob + wR (xa - 1a)

4
ADy, = 2";{.[c+gd_i4'- (1+d2)]
1 2
_ wR r o/ I
AD, = Y- | -2.4674 + G (desB-2d) 4 2(pd kc)]

- -
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TABLE 5-6

Formulas for Closed Circular Rings of Uniform Cross Section (continued)

My -0.01132 PR

!

(20)
-~ T -0.07958 P

. 0
P P
E’ > max+M = 0.01456 PR at x = 66.8°
\ ] max-M = -0.01456 PR at x = 113.2°
i (0< x <7/2)

2;5111}( M PR(O- 23868a + 0. 15915Xb - 1/4)
1b. per unit

TR
length of circumference P(0.15915xb - 0.07958a)

]
1t

<
"

P(0.15915%a - 0.07958b)
if (/2 < x<m)
M = PR(0.23868a + 0.15915xb - b/2 + 1/4)
T = P(0.15915xb - 0.07958a - b/2)
V = P(0.15915xa - 0.07958b - a/2)

ADyp = AD, = 0

if (0< x <B)
M = PR[0.23868a - d/2+0..15915(xb+5d+c-ac2)
T = P[0.15915(xb-ac?) - 0.07958a]
V = 0.15915 P(xa-b/Z-fch)

if (B< x <) -~ .
M = PR[0.23868a-b/2+0.15915(xb+pd+c~ad)]

T = P[0.15915(xb-2c%)-0.07958a ~ b/2]

v = P[0.15915 (xa-b/2+bc?)-a/2]

PR3

S (0.3183 (dB+c)-(d2+1)/4]

ADh

AD, = ‘;PI“ [0.3183 (dg+c)+(dc+B)/4 - d/Z w/8]
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TABLE 5-6

Formulas for Closed Circular Rings of Uniform Cross Section {continued)

(22) Ends Pinned
Pra2 2 p@d-{fc-e)-a(d?-£?)
Hp = Hp = 2 .2
B-3dc+zBc” + a B+dc)
where o = 12 and A = cross sectional area
P - d4f
Vp = = (25
AT (Tq )
VB = P - VA
(23) Ends Pinned 2
4 B dc
w y . wR :3-d—+8c -stzc-dc2+20\sc2-z"“2“)
! ]
2 28 c2+B-3dc+a\3+dc\
(o as for case (22}))
VA = WRd ~
VB = ZWR-VA
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TABLE 5-6

Formulas for Closed Circular Rings of Uniform Cross Section {concluded)

(24) Ends Fixed

Hp = Hp =

Ma =

2 de+_Ran-dc) - &2

Z—Q(dz-f")]

2T
2

2
g+ dc- Eéd—- + a {g+dc)

(a as for case (22))

P
va= 5

B-cd

szp-VA

/

=R\

B LQ—cch—ef-ch )

ej)fsf>

Bc d

Mp = My - 2VaRd + PR(d+f)

(25) Ends Fixed

5«52

{(a as for case (22))

2 ,
Rz(d 1+_g:_

s

)~ (3 e)

2 42

w Rd
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5.10 Sample Problem - Circular Rings and Arches

Given: The circular ring shown in Figure 5-18.

70 1b.

800 in.lb. — C pi -1\ \ / — 800 in.lb.

{0

70 1b.

Figure 5-18. Circular Ring

Find: The bending moments in the ring.

Solution: The bending moment in the ring may be obtained by super-
posing that due to the concentrated loads (M, ) and that due to the applied
bending moments (M;). From Table 5-6, case 1, the bending moment
due to the concentrated loads is

M, = PR(0.3183 - b/2) = 70(10)(0. 3183 - sinx/2) = 223 - 350 sinx

From Table 5-6, case 3, the bending moment due to the applied
moment is :

M, = M, (0.6366 a - §) = 800(0. 6366 cosx - &) = 510 cos x - 400
if (0O<x<n/2)
or -
M, = M, (0.6366 a + ) = 800(0. 6366 cosx +3) = 510 cosx + 400

if (/2 < x <)

The bending moment due to the combined loading is

M=M, + M,
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Thus,
M = (223 - 350 sinx) + (510 cosx - 400)
= 177 - 350 sinx + 510 cosx
if (0<x</2)
or
M= (223 - 350 sinx) - (510 cosx + 400)

733 - 350 sinx + 510 cosx
if (m/2 < x <)

1

In the above expressions, x is the angular distance from the bottom
of the ring.
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6.

6.1

and missile structures.
deflections are small in comparison with the plate thickness.
are subjected to compression, bending, and shear-producing loads.
values of these loads produce a wrinkling or buckling of the plate,

ANALYSIS OF PLATES

Introduction to Analysis of Plates

This chapter covers the analysis of plates as commonly used in aircraft

In general, such plates are classified as thin; that is,

These plates
Critical

Such buck-

ling produces unwanted aerodynamic effects on the surface of the airplane. It
also may result in the redistribution of loads to other structural members,
causing critical stresses to develop. Thus, it is essential that the initial

buckling stress of the plate be known.

In addition, if the buckling stress is

above the proportional limit, the panel will experience ultimate failure very
soon after buckling.

with and without stiffeners,

The critical buckling of a plate depends upon the type of loading, the
plate dimensions, the material, the temperature, and the conditions of edge
. support.

This chapter considers the various loadings of both flat and curved plates,

Single loadings are considered first followed by a

discussion of combined loadings. Examples are given to show the use of the
analysis methods presented. ‘

6.2

Nomenclature for Analysis of Plates

oo
L)
L

o
-~

- ¢ =

HrhEHEHEEe Q0

plate length

stiffener area

plate width

effective panel width

core thickness, signifies clamped edge
compressive buckling coefficient for curved plates
strain

modulus of elasticity

secant modulus

tangent modulus

~secant and tangent moduli for clad plates -

ratio of cladding thickness to total plate thickness
stress '
secant yield stress at 0. 7E and 0. 85E

critical normal stress

critical shear stress

stress at proportional limit

compressive yield stress

crippling stress

free (refers to edge fixity)



|

number of cuts plus number of flanges (Section 6. 3, 3)
buckling coefficient

compressive buckling coefficient

shear buckling coefficient

equivalent compressive buckling coefficient
sandwich panel form factor

effective column length

shape parameter, number of half waves in buckled plate
rivet pitch

total concentrated load

radius of curvature

stress ratio

sandwich panel parameter

simply supported

thickness

skin thickness

web thickness

total cladding thickness

unit load

total load, potential energy

deflection 1

length range parameter bz(l-\)e 2)—é/rt

ratio of cladding yield stress to core stress
crippling coefficient

ratio of rotational rigidity of plate edge stiffeners
plasticity reduction factor

cladding reduction factor

buckle half wavelength

inelastic Poisson's ratio

elastic Poisson's ratio

‘plastic Poisson's ratio

radius of gyration

a
>
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6.3 Axial Compression of Flat Plates

The compressive buckling stress of a rectangular flat plate is given by
Equation (6-1).

— 2 + \2
F,, = 1M __I_E_TL_E_T (_1_ \ 4 (6-1)
12(1-v, % P

The relation is applicable to various types of loadings in both the elastic
and the inelastic ranges and for various conditions of edge fixity.

The case of unstiffened plates is treated first and then stiffened plates
are discussed.
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The edge constraints which are considered vary from simply supported
to fixed. A simply supported edge is constrained to remain straight at all
loads up to and including the buckling load, but is free to rotate about the
center line of the edge. A fixed edge is constrained to remain straight and
to resist all rotation. These two conditions define the limits of torsional
restraint and are represented by € = o for simply supported edges and g =»
for fixed edges, '

Plates are frequently loaded so that the stresses are beyond the pro-
portional limit of the material. If such is the case, the critical buckling stress
is reduced by the factor 7N, which accounts for changes in k, E, and v, This
allows the values of k, E, and V to always be the elastic values.

The second reduction factor in Equation (6-1) is the cladding factor 7.
In order to obtain desirable corrosion resistance, the surface of some aluminum
alloys are coated or clad with a material of lower strength, but of better cor-
rosion resistance. The resultant panel may have lower mechanical properties
than the basic core material and allowance must be made. Values for the
factor | are given in the appropriate sections.

6.3.1 Buckling of Unstiffened Flat Plates in Axial Compression

The buckling coefficients and reduction factors of Equation (6-1)
applicable to flat rectangular plates in compression are presented in this section,

Figures 6-1, 6-2, and 6-3 show the buckling coefficient k, as a func-
tion of the ratio a/b and the type of edge restraint; and, in the case of Figure
6-2, the buckle wave length and number of half waves. Figure 6-4 shows k,
for infinitely long flanges and plates as a function of the edge restraint only.
The edge restraint ratio ¢ is the ratio of the rotational rigidity of plate edge
support to the rotational rigidity of the plate.

The condition of unequal rotational support can be treated by
Equation (6-2). ‘ ‘
Kk = (k.. k)% | (6-2)

The coefficients k. ard k, are obtained by using each value of ¢ independently.
1 %2 <

Figures 6-5, 6-6, and -7 present k, for flanges. A flange is con-
sidered to be a long rectangular plate with one edge free.

The plasticity reduction factor n for a long plate with simply sup-
ported edges is given by Equation (6-3).

3

2 1
n = f( E' )( 1-:):2 >:|{0. 500 + 0.250 [1 + ( E:E‘ ﬂf (6-3)

L N 1-
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Figure 6-1,

Compressive-Buckling Coefficients for Flat Rectangular Plates
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Figure 6-2. Compressive-Buckling-Stress Coefficient of Plates as & Tt
of 1 /b for Various Amounts of Edge Rotational Restraint
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I T 4

For a long plate with clamped edges, the factor is given by Equation (6-4).

n = [(%\( 11'_\:)’2 V] {o-352+0.324 1+ ( ?;:E* )]};’ (6-4)

The value of the in€lastic Poisson ratio V is given by Equation (6-5).

v:vp_(vp-va)<i') (6-5)

The tangent and secant moduli can be determined from the Ramberg-
Osgood relation as shown in Equations (6-6) and (6-7).

(; =1 () () (6-6)

0.7
(2) 1+ (2 ()

Values of E, FO 75 and n must.be known for the material under consideration.

Figure 6-8 shows the characteristics of stress-strain curves used to deter-
mine the shape factor n. :

The cladding reduction factor is given by Equation (6-8).

ﬁ: _1.*__3_@_{__ (6-8)
1 +3f

This relation is valid for the range F, < F | < F,,. For the plastic range
when F > F_, Equation (6-9).

_3=

D () D+ (@ (22w

H ) ET

The potential energy factor W is given b)} Equation (6-10).

v (PO () 4 () (B

(69) .

31
i

ml of
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Figures 6-9 and 6-10 present values of k, for plates restrained by stiffeners.

This data is included here instead of in the section on stiffened plates because
the stiffeners are not a part of the plate. To be noted is the effect of torsional
rigidity of the stiffener on the buckling coefficient of the plate.

a
— “Stiffener — 1
| Fx—“? e Rib Rlb\ F, b/2
s - Long. Center Line i ]
e !
Fy
e Fr By A
F,  at
4 0
.2
ke .5
1.0
2.0
3 5.0
2 ! 1 i
0 1 2 3 4

a/b

Figure 6-9. Compressive-Buckling Coefficient of Flat Plates Restrained -~ .
Against Lateral Expansion. Poisson's Ratio Equals 0. 3;

(VA:->
Fy _ at

Fx (l+ﬁ
at
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‘Figure 6-10. Compressive-Bucklitig Coefficient for Long Rectangular Stiffered
Panels as a Function of b/t and Stiffener Torsional Rigidity
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6.3.2 Buckling of Stiffened Flat Plates in Axial Compression

The treatment of stiffened flat plates is the same as that of un-
stiffened plates except that the buckling coefficient, k, is now also a function
of the stiffener geometry. Equation (6-1) is the basic analysis tool for the
critical buckling stress,.

As the stiffener design is a part of the total design, Figures 6-11
and 6-12 present buckling coefficients for various types of stiffeners.

The applicable critical buckling equation is indicated on each figure.
A plasticity reduction factor 1 is applicable to channel and Z-

section stiffeners as given by Equation (6-11).

(6-11)

3
1
TN
[
o
N’
-~
e
t
<
[.]
~——

E NENY-

Figures 6-13 and 6-14 present values of the buckling coefficient
for longitudinally stiffened plates. The curves of Figure 6-13 are in terms
of the plate geometry and the parameter EI/bD for the plate. The curves of
Figure 6-13 were based on the assumption that the stiffener section centroid
was located at the midsurface of the plate. If the stiffener is located on one
side of the plate, as is usually the case, an effective value of (EI/bD) must
be determined. Figure 6-15 presents a plot of the function 1/Z, vs A /b for
one, two, or an infinite number of stiffeners to be used in Equation (6-12).

(&), ,, (=

__;IP_-; -1+ ZIA (6-12)
(‘—“, 1+( 2t )
bD v bt

The value of (\/b) used for Figure 6-15 must be the same as that used in

Figure 6-13. This may require an iterative approach as (EI/bD), may occur

at a different value of g in Figure 6-13 than does (EI/bD) at the a/b of the n - -
originally used to enter Figure 6-13. '

Figure 6-16 presents curves for finding a value for k for plates .
with transverse stiffeners. It is noted that the stiffeners are allowed to have
torsional stiffness in these plots, whereas in Figure 6-13 for axial stiffeners,
GT = 0 for the stiffeners. See Figure 6-10 in Section 6.3.1 for an indication
of the effect of stiffener rigidity on the plate buckling coefficient.
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Figure 6-11. Buckling Coefficients for Stiffeners
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Compressive-Buckling Coefficients for Sirnl:;ly Supported Flat
Plates with Longitudinal Stiffeners

k neE
Fer 12(1-v, ( )

Figure 6-13,
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{(d) Two stiffeners A/bt = 0

Compressive-Buckling Coefficients for Simply Supported Flat
Plates with Longitudinal Stiffeners {(continued)
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6.3.3 Crippling Faijlure of Flat Stiffened Plates in Compression

For stiffened plates having slenderness ratios L."/p = 20, con-
sidered to be short plates, the failure mode is crippling rather than buckling
when loaded in compression. The crippling strength 6f individual stiffening
elements is considered in Chapter 2, Column Analysis. The crippling strength
of panels stiffened by angle-type elements is given by Equation (6-13).

— 1_0.85
‘”-Bg!-gt"t‘(nE )2] (6-13)

ey : A T Yoy ¢

F,
F

For more complex stiffeners such as Y sections, the relation of Equation (6-14)
is used to find a weighted value of t,.

t, = —— (6-14)

where a, and t, are the length and thickness of the cross-sectional elements of
the stiffener. Figure 6-17 shows the method of determining the value of g used
in Equation (6-13) based on the number of cuts and flanges of the stiffened panels.
Figure 6-18 gives the coefficient B, for various stiffening elements.

If the skin material is different from the stiffener material, a
weighted value of F,, given by Equation (6-15) should be used.

Fcys + chw [(?/ts) - 1]
(6—15)

7 (t/t,)

Here, t is the effective thickness of the stiffened panel.

The above relations assume the stiffener -skin unit to be formed
monolithically; that is, the stiffener is an integral part of the skin. For
riveted construction, the failure between the rivets must be considered. The
interrivet buckling stress is determined as to plate buckling stress, and is
given by Equation (6-16).

- -

ZnnE 2
emonanE b > (6-16)

F, = \
12 (1-v%) P

Values of €, the edge fixity, are given in Table 6-1.
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Figure 6-17. Method of Cutting Stiffened Panels to Determine g
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Figure 6-18. Crippling Coefficients for Angle-Type Elements

TABLE 6-1

End-Fixity Coefficients for Interrivet Buckling

Fastener Type

{Fixity-Coefficient)

€
Flathead rivet 4
Spotwelds 3.5
Brazier-head rivet 3

Countersunk rivet
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After the interrivet buckling occurs, the resultant failure stress
of the panel is given by Equation (6-17).

- Fi (Zbe! ts)+ Fflt Alt

Ffl'z

(2b,, t, )+ A’t

(6-17)

Here the value b,, is the effective width of skin corresponding to the inter-

rivet buckling stress F,.

wrinkling can be determined. The following quantities are used:

Ff!t

crippling strength of stringer alone (see Chapter 2,

Column Analysis)

wrinkling strength of the skin

crippling strength of a similar monolithic panel

strength of the riveted panel

The failure stress of short riveted panels by

The wrinkling strength of the skin cah be determined from
Here, f is the effective rivet offset dis-

Equation (6

tance given in Figure 6-20.

~-18) and Figure 6-19.

a diameter greater than 90% of the skin thickness.

12(1-v2)

x, menn E [t

b

-)2

This was obtained for aluminum rivets having

(6-18)

Now, based on the stringer stability, the strength of the panel can be calcu-
lated. Table 6-2 shows the various possibilities and solutions.

TABLE

6-2

Riveted Panel Strength Determination

Stringer Stability

Panel Strength

>

Ffst Fw — stable F¢p = Fw

_ _ . Fy bsts + F¢ t Ast

F[st < F — unstable Feo = ,
bStS + ASt
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Figure 6-19.
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Figure 6-20.

Experimentally Determined Values of Effective Rivet Offset
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It is noted that in no case should —f‘" > f‘,. Thus, the lower of
these two values should be used.

The use of the coefficient k, is based upon aluminum alloy data
for other materials. The procedure is to use Equation (6-19) for the panel
crippling strength.

F

fr

t, \4/3/ t, \1/6T t, 1/2
:17.9(£> (b \/‘_E‘(;Eﬂ (6-19)

cy

F

3 4

6.4 Bending of Flat Plates

The bending of flat plates xlln aircraft structures can be caused by both
in-plane forces or by normal forces. The quantities of interest in the anal-
ysis and design of such plates are the magnitude and location of the maximum
stress and the maximum deflection.

The following sections pr‘esent plots and tables allowing the calculation
of these quantities. '

6.4.1 Unstiffened Flat Plates in Bending

The gene'ra.l buckling relation for plates subjected to in-plane bend-
ing is given by Equation (6-20).

2
_ k nw*E
Fb =nn s 5 [
12(1-v, ")

(6-20)

c*‘rr
~, o

Values of bending coefficient, k,, are given in Figure 6-21 for
various edge restraints and the number of buckles versus A /b, the buckle
wave length ratio, and in Figure 6-22 for various edge restraints versus
the ratio a/b.

For plates loaded with uniformly distributed normal force, the
maximum stress and maximum deflection can be represented by simple
relations by the use of a series of constants which depend upon the plate
geometry and loading. Tables 6-3 through 6-8 present loading coefficients
for use with Equations (6-21) through (6-25).
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TABLE 6-4

Loading Coefficients for Corner and Edge Forces for Flat Simply
Supported Rectangular Plates Under Various Loadings *

(a) Uniform Loading

K K
b/a |Vy(max.) Vy(max.) R
1 0.420 0.420 0.065
1.1 0.440 0.440 0.070
1.2 | 0.455 0.453 0.074
1.3 0.468 0.464 0.079
1.4 | 0.478 0.471 0.083
a
= ecjeng —
1.5 | 0.486 0.480 0.085 R\\ 2 2"’(R.
1.6 0.491 0.485 0.086 2 \
3 Vy Vy(max)
1.7 0.496 0.488 0.088 (max)
l / - X
1.8 | 0.499 0.491 | 0.090 a A\
7 | Vx R
1. 0.502 0.494 0.091 (max
2.0 | 0.503 | 0.496 0.092 ’/’
R ' Vy(max)
3.0 0.505 0.498 0.093 Y
4.0 | 0.502 0.500 0.094
5.0 | 0.501 0.500 0.095
© 0.500 0.500 0.095
Remarks
L = a for Vy and Vy

*Griffel, William, Handbook of Formulas for Stress and Strain
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TABLE 6-4

Loading Coefficients for Corner and Edge Forces for Flat Simply
Supported Rectangular Plates Under Various Loadings (continued) *

(b) Distributed Loadings

K K,

b/a Vi V2 Vy R R Remarks

1.0 0.126 10.294 10.210 |0.026 |0.039 Use L = a for vxl’

1.1 0.136 10.304 |0.199 |0.026 [0.038 Va2

1.2 0.144 10,312 }0.189 [0.026 j0.037 Use L = b for Vy

1.3 0.150 [0.318 §0.178 {0.026 }0.036 Because the load is not
symmetrical, the reactions

1.4 0.155]0.323{0.169}0.025 |0.035 R) are different from the
reactions Rz, also Vy

1.5 0.159 [0.327 [0.160 |D.024 |0.033 is different than Vx2- The
same applies to case V-3,

1.6 0.16210.330 |0.151 }0.023 }0.032

1.7 0.164 |0.332 0. 144 .0,0ZZ 0.030

1.8 0.166 ]0.33310.136 [0.021 {0.029

1.9 0.167 |0.334 |0.130 }0.021 |0.028

2.0 0.168 {0.335{0.124 [0.020 |0.026

3.0 0.169 |0.336 10.083 {0.014 |0.018

4.0 0.168 |0.334 |0.063 [0.010 [0.014

5.0 0.167 ]0.334 [0.050 |0.008 {0.011

@ 0.167 |0.333 - - -

(b} Distributed Loadings (Cont'd.)
K K,
alb | Vi, V2 Vy R, R, Remarks
© - - 0.250 .- - Use L = a for Vxl'
\Y

5.0 | 0.008 {0.092] 0.250 [ 0.002 | 0.017 x2

4.0 10.013]0.112( 0.251|0.004{0.020 Use L = b for Vy

3.0 [0.02310.143| 0.252]0.006|0.025

2.0 |0.050)|0.197| 0.251]0.013]0.033

1.9 10.05510.205f 0.251]0.014]0.034

1.8 [ 0.060 |0.213] 0.249}0.016}0.035

1.7 '0.066 0.221] 0.2481}10.017}0.036

1.6 {0.073{0.230} 0.245|0.018}0.037

1.5 | 0.080]0.240] 0.243]0.020]0.037

1.4 10.088{0.250{ 0.239]0.021]0.038

1.3 10.097 {0.260{ 0.234{0.023|0.039

1.2 | 0.106 |0.271| 0.227 | 0.024 | 0.039

1.1 {0.116 {0.282| 0.220]0.025]0.039

1.0 | 0.126 }0.294] 0.210}0.026 | 0.039

a<b
mﬂ[{m- 1
w
R, Zi
}\5 a—Rp
b/2 vy Vi
2
e
b/2 vx] v
f y /Rz
Ry Zot=3
Y
Notes:

1. In this case only, the formula (V) for the corner force
R can be used when substituting a for b
2. Vylmax.)and Vy(max.) are at the middle of sides
b and a respectively as shown in the figure for this table

a>b

b/2 Vy

Rl/l—— af2 —wlu—a/2 _,J\

*Griffel, William, Handbook of Formulas for Stress and Strain
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TABLE 6-4

Loading Coefficients for Corner and Edge Forces for Flat Simply
Supported Rectangular Plates Under Various Loadings (concluded) x

{b) Distributed Loadings (Cont'd.)

K K,

b/a {V {(max.) Vy(max.} R Remarks
a<b

1.0 0.147 0.250 0.038 Use L= a for V_ _‘a/z’i

1.1 0.161 0.232 0.038

N ¥

1.2 0.173 0.216 0.037 Use L = b for Vy w
z}
\ Vy,(max)R

1.3 0.184 0.202 0.036

1.4 0.193 0.189 0.035

1.5 0.202 0.178 0.034 b/2 Vx

1.6 0.208 0.108 0.033 %

j (max) Vy{max)
t

1.7 0.214 0.158 0.031
b/2 {max)

1.8 | o0.220 | o.150 | 0.030
1.91 o0.224 | o0.142 | 0.029 R/ AN

2.0 0.228 0.135 0.028

3.0 | 0.245 0.090 0.019 v

@ 0.250 -- --

{b) Distributed Loadings (Cont'd.}
K Ky

a/b |V, (max.) Vylmax.) R Remarks a>b

® ~- 0.50 - Use L = a for Vx

3.0 0.027 0.410 0.010
- Use L = b for Vy

2.0 0.057 0.365 0.023 ‘w\ ’

1.9 | 0.062 0.358 0.024 i

1.8] 0.098 | 0.350 | 0.026 R\:_-_a/z adu - a/2 —=d R

1.7 0.074 0.342 0.028

V_(max)
b/2 x
1.6 o.081 | 0.332 | 0.029 ‘ yd Vy{max}

1:5 0.090 0.322 0.031 b/2

1.4 0.099 0.311 0.033

1.3 0.109 0.298 0.035 R { Vy(max) R

1.2 0.120 0.284 0.036

1.1 0.133 0.268 0.037

1.0 0.147 0.250 0.038

#Griffel, William, Handbook of Formulas for Stress and Strain
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TABLE 6-6

Loading Coefficients for Flat Elliptical Plates Under Uniform Load *

Edge Supported Edge Fixed
Uniform Load Over | Uniform Load Over
Entire Surface Entire Surface
Manner of K K K
Loading K 1 1
1.0 0.70 1.24 0.171 | 0.75
1.1 0.84 1.42 0.20 0.90
1.2 0.95 1.57 0.25 1.04
b pong--
1.3 1.06 1.69 0.28 1.14
1.4 _ 1.17 1.82 0.30 1.25 [
1.5 1.26 1.92 0.30 1.34
1.6 1.34 2.04 0.33 1.41 l
a/b 1.7 1.41 2.09 0.35 1.49
1.8 1.47 2.16 0.36 1.54
1.9 1.53 2.22 0.370 1.59
2.0 . 1.58 2.26 0.379 1.63
2.5 1.75 2.45 0.40 1.75
3.0 1.88 2.60 0.42 1.84
3.5 1.96 2.70 0.43 1.89
4.0 2.02 2.78 0.43 1.9
L b b
Locations of F max. at center F max. at end of
stress and Y max. at center shorter principal
deflection axis. Y max. at
center

#*Griffel, William, Handbook of Formulas for Stress and Strain
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Equation (6-21)(a), (b) pertains to rectangular, square, triangu-
lar, and elliptical plates.

4
y=-Swl ()
Et (6-21)
F=_ - (b)
2
Equation (6-22)(a), (b) pertains to corner and edge forces for
simply supported rectangular plates.
R = K;wab . (a)
(6-22)
V=KwL (b) -
Equation (6-23)(a), (b) pertains to partially loaded rectangular
plates with supported edges.
3
y = B (a)
Et
(6-23)
K, w
F = . (b)
£2
Equation (6-24)(a), (b), (c) pertains to circular plates.
KW a?
y == (2)
Et
K,w
F=ze (b) (6-24)
£2 - .
K,Wa -
9= —2- (c)
Et

Equation (6-25)(a), (b), (c), (d), (e) pertains to circular plates
with end moments.

K M a2

— (a)

Y:
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F= (b)
+2
KzMa
6 = —v {c) (6-25)
Et3
KM
F = (d)
atz
o= —M (e)
K, Et3

Equation (6-25) (d) and (e) applies to trunnion-loaded plates only.
(See Table 6-8).

These equations have been developed with a value of 0.3 for Poisson's
ratio; however, they may be applied to materials with other values without
significant error.

6.4.2 Beam-Supported Flat Plates in Bending

The treatment of unstiffened flat plates in Section 6.4. 1 included
considerations of the edge restraints. These were considered to be rigid in
most instances. This section presents methods of analysis which consider
the bending of the support beams. Figure 6-23 shows an idealized view of a
beam-supported plate. The loading may be either concentrated at the center
of the plate or distributed uniformly. '

|P

L [— —

. . ‘Elastic
Rigid Support

Support

Figure 6-23. Beam-Supported Plate

*QGriffel, William, Handbook of Formulas for Stress and Strain
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Table 6-9 is used in conjunction with Figure 6-24 to find the maxi-
mum of either the plate or supporting beam. The rigidity ratio, H, is given
by Equation (6-26).

(1-v2) E, I, a3
Hz———— , wherel = T2 (6-26)
Eplp

Table 6-10 is used with Figures 6-25 and 6-26 to find the maxi-
mum stress in the plate and the beam.

6.5 Shear Buckling of Flat Plates

The critical shear-buckling stress of flat plates may be found from
Equation (6-27).

35
TR (L\Z (6-27)
‘12(1"\%)2 b /.

Figure 6-27 presents the shear coefficient k, as a function of the size
ratio a/b for clamped and hinged edges. For infinitely long plates, Figure
6-28 presents k, as a function of A/b. Figure 6-29(a) presents k, for long
plates as a function of edge restraint, and Figure 6-29(b) gives k, /km as a
function of b/a, thus allowing the determination of k,.

The nondimensional chart in Figure 6:30 allows the calculation of in-
elastic shear buckling stresses if the secant yield stress, F, =, and n the
shape parameter is known (Table 6-11).

The plasticity-reduction factor n and the clodding factor n can be
obtained from Equations (6-28), (6-29), and (6-30).

2
s ’/ l—Ve \ 6 2
- \ - 8
" 1-v2 7 ( )
n = 1438 for F, <F_,, <Fyu | (6-29)
1+3f
E E 1
& [ _1_ 3 z
) [1+3f< E, )]+{[1+3f (‘E—, )][ i + _4_(
n = T (6-30)
1+3f 1+[_1__+3(Et>]§
T T\
s
for F, ., > Fp,
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Figure 6-24. Nomogram for Determining Plate Deflections y, and y, .
(Actual deflections are about 91 per cent of those indicated

by nomogram.) *
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Figure 6-25, Nofnogram for Determining Plate Stress F, *

*Griffel, William, Handbook of Formulas for Stress and Strain
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Figure 6-27. Shear-Buckling-Stress Coefficient of Plates as a Function of
a/b for Clamped and Hinged Edges
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Figure 6-28. Shear -Buckling-Stress Coefficient for Plates Obtained From
Analysis of Infinitely Long Plates as a Function of A /b for
Various Amounts of Edge Rotational Restraint
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Figure 6-29. Curves for Estimation of Shear-Buckling Coefficient of Plates
with Various Amounts of Edge Rotational Restraint
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Figure 6-30. Chart of Nondimensional Shear Buckling Stree= {or Panels
with Edge Rotational Restraint

TABLE 6-11

Values of Shape Parameter n for Several Engineering Mutcerials

n Material

One-fourth hard to full hard 18-8 stainless steel, with .=
One-fourth hard 18-8 stainless steel, cross grain

One-half hard and three-fourths hard 18-8 stainless si- .1,
cross grain :

Full hard 18-8 stainless steel, cross grain
10 2024-T and 7075-T aluminum-alloy sheet and extrusion
2024R-T aluminum-alloy sheet

2024 -T80, 2024-T81, and 2024-T86 aluminum-alloy sheet
20 to 25 2024-T aluminum-alloy extrusion
SAE 4130 steel heat-treated up to 100, 000 psi ultimate stress

2014-T aluminum-alloy extrusions

350 50 SAE 4130 steel heat-treated above 125, 000 psi ultimate stress

@ SAE 1025 {mild) steel
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6.6 Axial Compression of Curved Plates

The radius of curvature of curved plates determines the method to be
used to analyze their buckling stress. For large curvature (bz/rt < 1}, they
may be analyzed as flat plates by using the relations in Section 6.3. For
elastic stresses in the transition length and width ranges, Figure 6-31 may
be used to find the buckling coefficient for use in Equation (6-31).

kcrr2 E 2
. (L
i (3 ) (6-31)
1-
12( v,
1, 000 1, 000
r/t = 300 r/t = 500
100 100}
kc kC
10- 1o
1 I 1 1 1 1
1 10 100 1000 1 10 100 1000
Zyp 1, 000 Z,
xr/t= 1,000
100}
ke
10}
1 L 1
1 10 100 1000
Zy

Figure 6-31. Buckling Coefficient Grouped According
to r/t Values for Curved Plates
For sharply curved plates, (b%/rt > 100), Equations (6-32) and (6-33)
can be used. '

F.. =nCE (-‘é—) (6-32)

E E

n=— —_— (6-33)
‘E E, (1-v%)

Figure 6-32 gives values of C in terms of r/t. Figure 6-33 gives 7
in a nondimensional form. Here the quantity ¢, = Ct/r.
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Figure 6-32.

r/t

Modified Classical Buckling Coefficient as a Function
of r/t for Axially Compressed Cylindrical Plates

cr
Faoor .6

T

T 11

50
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Figure 6-33,

Eecr
Fo.7

py
n = (E,/E) [(E,/E)(1-v, 2)/(1-Vv®)]?
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6.7 Shear Loading of Curved Plates

Large radius curved plates (bZ/rt < 1) loaded in shear may be analyzed
as flaté plates by the methods of Section 6. 5. For transition length plates
(1 <b%/rt < 30), Figure 6-34 can be used to find k, for use in Equation (6-34).

2
k, m°E 2
Foe =——— (£) (6-34)
12(1-v, %) ‘

For (bz/rt > 30), Equation (6-35) may be used.

F._. =0.37 (zb)% (F...) (6-35)

ars CT5 f1at plate

Curved plates under shear loading with stiffeners can be analyzed by
using Figure 6-35 for the value of the buckling coefficient k,. Both axial
stiffeners and circumferential stiffeners are treated. :

6.8 Plates Under Combined Loadings

In general, the loadings on aircraft elements are a combination of two
or more simple loadings. Design of such elements must consider the inter-
action of such loadings and a possible reduction of the allowable values of the
simple stresses when combined loads are present. The method using stress
ratios, R, has been used extensively in aircraft structural design. The ratio
R is the ratio of the stress in the panel at buckling under combined loading to
the buckling stress under the simple loading. In general, failure occurs
when Equation (6-36) is satisfied. The exponents x and y must be determined
experimentally and depend upon the structural element and

R1*+RpY =1 T6-36)

the loading condition.

6.8.1 Flat Plates Under Combined Loadings

Table 6-12 gives the combined loading condition for flat plates. Fig-
ures 6-36 and 6-37 give interaction curves for several loading and support
conditions. It is noted that the curves present conditions of triple combinations.
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(a) Long simply supported plates

Figure 6-34. Shear Buckling Coefficients for Various Curved Plates
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(b) Long clamped plates

Figure 6-~34. Shear Buckling Coefficients for Various Curved Plates (continued)
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Figure 6-34. Shear Buckling Coefficients for Various Curved Plates (continued)
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Figure 6-34. Shear Buckling Coefficients for Various Curved Plates (concluded)
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(2) Center axial stiffener; axial length greater than cir-
cumferential width

Figure 6-35, Shear-Buckling Coefficients for Simply Supported
Curved Plates with Center Stiffener
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axial length. )

Figure 6-35.

Shear-Buckling Coefficients for Simply Supported
Curved Plates with Center Stiffener (continued)
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Shear -Buckling Coefficients for Simply Supported
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Figure 6-35. Shear-Buckling Coefficients for Simply Supported
Curved Plates with Center Stiffener (concluded)
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Figure 6-36. Interaction Curves for Long Flat Plates Under Various
Combinations of Compression, Bending, and Shear
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TABLE 6-12

Combined lL.oading Conditions for Which Interaction Curves Exist

Theory Loading Combination Interaction Equation Figure
Biaxial compression For plates that buckle in 6.37
square waves, Rx+ Ry =1
Longitudinal compres- For long plates, R_+ R52= 1| 6.36
sion and shear
Longitudinal compres-~ None 6.37
sion and bending
Elastic Z 5
Bending and shear Ry“+R;"=1 6.36
Bending, shear, and None 6.36

transverse compression

Longitudinal compression None 6.37
and bending and trans-
verse compression

Inelastic| Longitudinal compression R."+R_ "=1
and shear

Figure 6-38 presents buckling coefficients for right angle isosceles
triangular plates loaded under shear and compression. Equation (6-37) is the
interaction equation for shear and normal stress on this type of plate.

2F 2 ‘
( : +u > P (1-u?) =1 (6-37)
F +F F

erst+ crs ~ er

The + and - subscripts refer to either tension or compression
along the altitude upon the hypotenuse of the triangle caused by pure shear
loading. Table 6-13 contains values of k_, k,, and k,_ for various edge

supports.
TABLE 6-13

Buckling Coefficients for Right-Angle Isosceles Triangular Plates Loaded
Independently in Uniform Compression, Positive Shear, and Negative Shear_

Edge Supports

(a) ke ke, kg
All edges simply supported 10.0 62.0 23.2
Sides simply supported, 15.6 70.8 34.0

hypotenuse clamped

Sides clamped, hypot-
enuse simply supported

aHypotcnuse = b in Figure 6.38
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6.8.2 Curved Plates Under Combined Loadings

For curved plates under combined axial loading and shear with
10 < Z, <100 and 1 < a/b < 3, the interaction relation of Equation (6-39)
may be used.
R,2+R_=1 (6-39)

(] x

This may be used for either compression or tension with tension being
denoted by a negative sign.

6.9 Buckling of Oblique Plates

In many instances, the use of rectangular panels is not possible.
Figures 6-39 and 6-40 give buckling coefficients for panels which are oriented
oblique to the loading. Figure 6-39 covers flat plates divided into oblique
parallelogram panels by nondeflecting supports. Figure 6-40 covers single
oblique panels.

6.10 Sample Problem - Plate Analysis

Find: The buckling stress of a flat plate under uniform longitudinal
compression, simply supported on all four sides.

Given: a = 12 in., b = 4 in, t = 0.100 in.
Material: Bare 2024-T3 Sheet Material Properties: E = 10, "('xlO6 psi
v = 0.33
¥ = 34, 000 psi

oy
2
Solution:  p =g et 32
———e er nn 2
12(1-v4) “b /
From Figure 6-1 for a/b = 3, k, = 4.00.

n = 1.0 for no cladding

n = 1.0 for elastic buckling

_ (4.0)@2)(10, 7)10° (100)2
[-34 - 2 \ 2
12[1 - (.33)2]

F. = 24,600 psi

er

As this is below the compression yield strength, no allowance for
elasticity need be made.
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Figure 6-39. Compressive-Buckling Coefficients for Flat Sheet on
% Nondeflecting Supports Divided into Parallelogram-
Shaped Panels. All panel sides are equal.
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Figure 6-40. Buckling Coefficient of Clamped Oblique Flat Plates

6.11 Buckling of Sandwich Panels

separated by a core which is usually some form of honeycomb or expanded

culated from Equation (6-40).

F,, = CKF,,

er

K=1+3 (1 + {L->

is given in Equation (6-42).

G

aors

K Fcrf

R =

6 - 83

The use of sandwich construction for skin panels of aircraft has become
commonplace. Panel construction consists of primary and secondary skins

foam material. The critical buckling stress of such a composite can be cal-

(6-40)

The quantity F__ . is the buckling stress of the two faces if they were not con-
nected by the core. Use the total thickness of the faces. The coefficient C
is obtained from Figure 6-41 and K is a form factor given in Equation (6-41).

- -

(6-41)

The data in Figure 6-41 is given as a family of curves of parameter R which

(6-42)
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1. MEMBRANES

7.1 Introduction to Membranes

A membrane may be defined to be a plate that is so thin that it may be
considered to have no bending rigidity. The only stresses present are in the
plane of the surface and are uniform throughout the thickness of the membrane.

Section 7.3 of this chapter treats of circular membranes, and Section7.5
deals with square and rectangular membranes.

7.2 Nomenclature for Membranes

a = longitudinal dimension of membrane
D = diameter
E = modulus of élasticity
f = calculated stress
= calculated maximum stress

nj-n7y = coefficients given in Figure 7-9

P = pressure

R = outside radius of circular membrane

r = cylindrical coordinate

t = thickness of membrane

X,y = rectangular coordinates

) = deflection

& = center deflection of circular membrane
vl = Poisson's ratio

7.3 Circular Membranes

Figure 7-1 shows two views of a circular membrane with the clamped
edge under a uniform pressure, p.

The maximum deflection of this membrane is at the center and is given by

3
8 = 0.662 R ‘/JEER (7-1)
t
The deflection of the membrane at a distance, r, from the center is
2 5
6=acr1-.o9(r_>-o.1(r )] (7-2)
L R R
7-1



Figure 7-1. Circular Membrane with Clamped Edge

The stress at the center of this membrane is

2

2 2.2 '
Ep
f = 0.423 ZR (7-3)
t
while that at the edge is
3 Ep2R?
f = 0.328 3 (7-4)

t

7.4 "Sample Problem - Circular Membranes

Given: The circular membrane shown in Figure 7-2

Find: The center deflection and the stresses at the center and at the
edge of the membrane.

Solution:
D 4 10 4
2 (%) - c (53) =
10x10 0.1
7«2




7.

N\

t = 0.! inch
p = 10 psi
E = 10x10°

Figure 7-2. Circular Membrane with Clamped Edge

From Section 7.5.3.2, a square plate, for which p/E (b/t)4 is greater
than 250, may be considered to be a membrane. Assuming thit to be
approximately true for a circular plate with D used in the relation
instead of b, the given plate may be treated as a membrane.

From Equation (7-1), the center deflection of the given membrane is

3 3
5 = o.eezR\/-PEf-t‘- = 0.662 (7.5) [L0U7-5)  _ g 3 in.

107 (0. 1)

From Equation (7-3), the stress at the center of the membrane is

> [£ o2 R2 > 107 (102)(7.5%) |
£ = 0.423 J=FP5— = 0.423 . 1)2' = 7,500 psi
t .

From Equation (7-4), the stress at the edge of the membrane is

3 3
2 2 7 (1021(7 22
£ = 0.328 JERRT _ 5 35 107 (LOENT-5%) _ 5 440 pei
t2 (0.1)2 P

Rectangular Membranes

For purposes of analysis, rectangular membranes may be divided into

two classes: long rectangular membranes where the ratio of length to width

(a/b) is greater than five, and short rectangular membranes where this ratio

is less than five.

7-3




7.5.1 Long Rectangular Membranes

Figure 7-3 shows a long rectangular membrane (a/b >5) clamped
along all four sides.

%ﬁii?>

thickness = t
Figure 7-3. Long Rectangular Membrane Clamped on Four Sides

The deflection and stress at the center of such a plate are approxi-
mately the same as those in a long membrane clamped along the two long sides.
Such a membrane is shown in its deflected position in Figure 7-4.

>,
N

thickness =.t

Figure 7-4. Long Rectangular Membrane Clamped on Two Sides

The maximum stress and center deflection of the membrane in
Figure 7-4 under uniform pressure p are given by Equations (7-5) and (7-6). .

1/3

2
funx = [ Eb ] (7-5)
24 (1- )L
> 1/3
s _ 1 [ 24 (1 -y )Eb] (7-6)
b 8 Et

These equations are presented graphically in Figures 7-5 and 7-6 for u = 0. 3.
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A long rectangular plate may be considered to be a membrane if
p/E (b/t)% is greater than 100.

7.5.2 ' Sample Problem - Long Rectangular Membrane

Given: The membrane shown in Figure 7-7.

>1}<\
100 t = 0.1 inch
\/ = 15 psi

= 10x10° psi
0.316

r oo
[}

"

Figure 7-7. Long Rectangular Membrane

Find: The maximum stress and center deflection

Solution:
4

4
P (_tg) - 15 (10) _
= , = 150
Eot 10x10% NO0-1

Since this quantity is greater than 100, the given plate may indeed
be considered to be a membrane.

From Equation (7-5),

1/3 1/3
(- [ p E b2 . :[ 152(107)2(102) ]
24 (1-0) ¢ 24 (1-0.316 )(0.12)
= 10130
From Equation (7-6),
, » 1/3 5 1/3
5 1 [24(1-u )Eb] _ 1 [ 24(1-0.316 )(15)(10)]
b 8 Et 8 107 (0. 1)

0.0185




Thus,

6=0.0185b = 0.0185 (10) = 0.185 in.
For quick calculations, the graphs in Figures 7.5 and 7-6 could
have been used. However, this procedure would give answers
that are not theoretically exact since these graphs are based on

a Poisson's ratio of 0.3 rather than 0. 316.

7.5.3 Short Rectangular Membranes

 7.5.3.1 Theoretical Results for Short Rectangular Membranes

Figure 7-8 shows a short rectangular membrane (a/b < 5) clamped
on four sides under a uniform pressure p.

Yy

-— b —e
LLLLEL

thickness =t

)

RRRRERAEN
ITTTTTTTETT

T

Figure 7-8. Short Rectangular Membrane Clamped on Four sides
The deflection at the center of such a membrane is
& = nja 22 (7-7)

where nj is given in Figure 7-9,
The stresses at various locations on short rectangular membranes

are given by the following equations for which the values of the coefficients
n2 through n7 are given in Figure 7-9.

7-8




Coefficient, n

.40

.32

.24

.16

.08

nz

AN
~
\
=
T

L/

Figure 7-9,

[\Y]

3

ab

o»
wn

Coefficients for Equations (7-7) Through (7-13)
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Center of plate (x = b/2, y = a/2)

(7-8)

\’P E \ "
V (7-9)

Center of short side (x = b/2, v = 0)
ny VP E \—t‘ (7-10)
3 .
f = n E ! i 7-11
5 V P \t ) { )
Center of long side (x = 0, y = a/2)

/ (7-12)
/ /3 7-13
\t ( )

It should be noted that the maximum membranes stress occurs at the center

of the long side of the plate,

7.5.3.2 Applicability of Theoretical Results for Short Rectangular
Membranes

Figures 7-10 and 7-11 give the deflections of plates with various-
length-to-width ratios obtained from the equations in Section 7.5. 3.1 and
compare these deflections with experimental values for 10-inch-wide alumi-
num plates.

For square plates (a/b = 1.0), the thick plate theory should be used
for values of (p/E)(b/t)4 from 0 to 100. If 100 <(p/E)(b/t)4 <250, no theo-
retical method compares closely with test although the membrane theory should
be used for conservative results. If (p/E)(b/t)4 is greater than 250, the mem-
brane theory produces results that compare closely with experiments for square
plates.
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A rectangular plate (a/b >1.0) may be considered as 2 membrane if
(p/E)b/t)% >100, with results becoming more conservative as a/b decreases.

7.5.3.3 Sample Problem - Short Rectangular Membranes

Given: The membrane shown in Figure 7-12

peg— 1 O ~—gond

L

p= 15 psi
t=0.1 in.
24 _ E=10x10% psi

NN

RRERRRRRRRRRA

; T

Y

Figure 7-12. Short Rectangular Membranes

Find: The center deflection and stresses

Solution:
4 4

@) - (&) .

Since this value is greater than 100, the given plate may be treated
by membrane equations, according to Section 7. 5. 3. 2. -~

2 _ 24 2.4
b 1

From Figure 7-9:

n; = 0.130 ng = 0.077
ny = 0.230 ng = 0.311
n3 = 0.080 n7 = 0.090
ng = 0.026

7-15




From Equation (7-7), the deflection of the center of the membrane is

3 3
5= nya B2 = 0.130(24) 2028) - g 222 in.
Et 109¢0. 1)

From Equation (7-8) through (7-13), the stresses in the membrane
are as follows:

Center of plate (x = 5, y = 12)
3 2 v 2
- o, o2E () - 2, 7, 724N\ _ _
£ = n, \p?E (T) = 0.230 \(15)%(10 ){6".'1_) = 11, 650 psi
2

- 3
3 2 2
_ 2 _7a\"_ \/ 2, 7. /24" ,
£, = ny \[p°E KT> = 0.080 \f(15)°(10") () = 4,050 psi

Center of short side (x = 5, y=0)

2

N
»
]
=}
1N
W
O
[y V]
o]
N
r-r}p
S— "’
oo
1

1,315 psi

3
0.026 \/\15)2(107)<%)

3 2 3 2 g
’ 2 7 .
g \fo 0.077 \(15)°(10 )<'o§'4T) = 3,900 psi

F
“
it

o

t
—~
e
~

1]

Center of long side (x = 0, y = 12)

- -

3 3
2 2
2 (2 2 24\ = 15,750 psi
f,= ng VpE(2) =031 \/(15) (") () psl
3 2 3 2
2 . (aY_ [ .2, 724 .
fy: no p E(T) = 0.090 (15)7(10 )ka——l) = 4, 550 psi

The greatest stress is 15, 750 psi at the center of the long side.
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8.

8.1

classes, thick and thin.

PRESSURE VESSELS

Introduction to Pressure Vessels

For purposes of analysis, pressure vessels may be divided into two

Thin pressure vessels are those for which the ratio

of the least radius of curvature of the wall to its thickness is greater than ten,
These thin pressure vessels are further subdivided into simple ones which
are discussed in Section 8. 3.1 and stiffened ones which are discussed in Sec-

tion 8. 3.2,

Thick pressure vessels are discussed in Section 8. 4.

Section 8.5

gives a brief discussion of anisotropic pressure vessels and in particular
glass filament vessels.

8.2

Nomenclature for Pressure Vessels

A
A

cross-~sectional area

o a/2 for stiffened cylinder

2
T

b v

minimum cross-sectional area of ring
cross section of stringer
one-half the major diameter of semi-

elliptical head

2

T

»

he

distance between rings

inside radius of thick sphere or cylinder
Ba/2 for stiffened cylinder
one-half the minor diameter of semi-

elliptical head
stringer spacing

outside radius of thick sphere or cylinder

subscript, bending

distance between adjacent edge of stringers

constant

subscript, compressive

distance from neutral axis of skin-stringer
combination to outer fiber of skin

distance from neutral axis of skin-stringer
combination to outer fiber of stringer

subscript, crippling

subscript, critical
EI: st
mean diameter

A, /bt for stiffened cylinder

inside diameter
outside diameter.

for stiffened cylinder




ring

o @&

0o O o 0 v o o o
s d G O < wu 6 g
-] L o

-

Q
-

.1 %4

a
o
As ]

mermnax

mmer

8
o

-

IR e i e R B B R B B R R S R N R

scep
smax
smer
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modulus of elasticity

modulus of elasticity of ring

secant modulus of elasticity

tangent modulus of elasticity
eccentricity of ring attachment to skin
meridional bending stress

bending stress in skin

bending stress in stringer
circumferential bending stress
crippling stress of unpressurized cylinder
crippling stress of pressurized cylinder
proportional limit in compression
critical stress

compressive yield stress

maximum stress

meridional or axial stress

maximum meridional stress

meridional membrane stress
circumferential membrane stress
radial stress

maximum radial stress

crippling shear stress of unpressurized
cylinder .
crippling shear stress of pressurized cylinder
maximum shear stress

meridional shear stress

meridional stress in stringer

tangential or circumferential stress
maximum circumferential stress
calculated shear stress

moment of inertia

F

ne roax
pd/2t

polar moment of inertia

stress ratio =

soax

pd/2t

stress ratio =
moment of inertia of sheet-stringer combina-
tion per inch of circumference

I?tmtx

stress ratio = ————
pd/2t

subscript, inside

Vt E/D for stiffened cylinder

2r
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st

buckling coefficient for sphere

buckling coefficient for cylinder

cylinder length

bending moment

critical bending moment

discontinuity moment

bending moment of skin-stringer combina-
tion per inch of circumference

bending moment of skin-stringer combina-
tion per inch of circumference at midspan
between rings

bending moment of skin-stringer combination
per inch of circumference at ring
subscript, membrane

subscript, midspan

subscript, meridional

meridional membrane stress times wall
thickness (F ., t)

tangential membrane stress times wall
thickness (F,t)

distance from midplane of flat head to joint
head thickness

subscript, outside

axial load

reaction force

prf oy _ut’
t'E 2(t+t,)
pressure difference (p; - p,)

subscript, polar

subscript, pressurized

internal pressure

external pressure

A E,, a> . _

— = for stiffened cylinder

32 Dr? ‘ -
discontinuity force

radius curvature

radius to centroid of minimum area of ring

applied bending moment/critical bending moment

applied compressive load/critical compressive load
meridional radius of curvature

] for stiffened cylinders

ring

applied transverse shear load

critical transverse shear load

applied torsional moment
critical torsional moment
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tangential or circumferential radius of curvature
mean radius

radius to the inside of the skin of stiffened
cylinder '

cylindrical or polar coordinate

subscript, radial

subscript, ring

inside radius of dished head

knuckle radius in dished head

subscript, shear

subscript, skin

subscript, stringer

head thickness

torque

pr/2 for stiffened cylinder

wall thickness

subscript, tangential or circumferential

t +ts

for stiffened cylinder

1+ (1-pS)ts/t

thickness of flange attachment to skin
A,, /b for stiffened cylinder

radial deflection of head due to Q, and M,
radial deflection of cylinder due to Q, and M, .
radial deflection of head due to internal
pressure

radial deflection of cylinder due to internal
pressure

subscript, yield

rectangular coordinates

half the apex angle of a cone

‘/K + L for stiffened cylinder
4D

angle of contact of saddle support

K - —T—.' for stiffened cylinder
4D

increment or difference

parameter in Figures 8-45 through 8-49

radial deflection of shell

radial deflection of shell midway between rings
radial deflection of shell at ring

plasticity reduction factor

angular rotation of head due to Q, and M,
angular rotation of cylinder due to Q, and M,

4
V3(1u2)/ 2212

8 -4




4
Ao = \/g (1—‘.12)/r2tZ
61 = Poisson's ratio

: : . r E, E
Mo = elastic Poisson's ratio Lup -1+ =
E E,
Mp = plastic Poisson's ratio (generally 0. 5)
On = parameter in Figures 8-41 through 8-44
0, = angle between cylinder axis and normal to

head at head-cylinder junction

8.3 Thin Pressure Vessels

This section deals with pressure vessels for which the ratio of minimum
radius of curvature of the wall to its thickness is greater than ten. These thin
pressure vessels are further subdivided for purposes of discussion into simple
and stiffened pressure vessels. A simple pressure vessel is defined here as
one that does not have stiffeners while a stiffened one may have rings and/or
stringers stiffening its walls. '

8.3.1 Simple Thin Pressure Vessels

This class of pressure vessel includes unstiffened vessels for which
the ratio of the minimum radius of curvature of the wall to its thickness is
greater than ten,

Membrane stresses in simple thin pressure vessels are considered
first here and then the problem of discontinuity stresses at the junction of a
cylinder and its head is considered. The material in these first sections is
based on the assumption that failure by buckling under external pressures does
not occur. The possibility of buckling is treated in Section 8.3.1.3. The
previously mentioned sections cover stresses due to pressure loads alone.
Section 8. 3. 1.4 deals with stresses due to external loads from support, and
Section 8.3. 1.5 treats of the effect of internal pressure upon the crippling
stress of thin cylinders under various loads.

8.3.1.1 Membrane Stresses in Simple Thin Shells of Revolution

In a thin pressure vessel, no stresses other than those tangential
to the surface are present at points sufficiently removed from discontinuities
in the curvature, slope, or thickness of the wall. These tangential or mem-
brane stresses are constant throughout the thickness of the shell. At points
near discontinuities, such as the junction of a cylinder and its head discontin-
uity, stresses must be superposed upon the membrane stresses in order to
obtain the total stress. These discontinuity stresses are discussed in Sec-
tion 8.3.1.2.2.

In the following discussion, the difference between internal and
external pressure (p; - p,) is assumed to be uniform over the surface.

8 -5




Figure 8-1 shows a general thin shell of revolution. The meridian
lines of this shell are defined by the intersection of the shell and a plane pass-
ing through the axis of rotation of the surface. The circles of rotation are the
intersection of the shell with planes perpendicular to the axis of rotation.

meridian line

axis of

/ rotation

circle of
rotation

Figure 8-1. General Shell of Revolution

The two basic ‘equations for a thin shell of revolution are

N N
mmer m (Pr - Po) (8-1)
Rm” R,
and R
Nmmer = (pi - po) Zt (8-2)

In these equafions, R .. is the radius of curvature of a meridian line and R,
is the distance from the shell to its axis of rotation along a normal to the
shell. Both of these radii are taken to a surface located midway between
the inside and outside surfaces of the shell. N,_per 15 the stress in the direc-
‘tion of the meridian line times the shell thickness and N,, is the stress

in the direction of a circle of rotation times the shell thickness.

8.3.1.1.1 Membrane Stresses in Thin Cylinders -

Figure 8-2 shows a thin cylindrical shell (R/t >10).

meridiah line
r/
——— _——— R oo =°
j n

Figure 8-2. Thin Cylindrical Shell
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Since the meridian lines are straight, R,, which is their radius of curvature,
is equal to infinity. Similarly, R, may be found to be equal to r by applying

its definition. Inserting these values into Equations (8-1) and (8-2) and
solving gives

N, = (py - polT (8-3)
and
Nmmer = (pi - po) 1‘/2 (8_4)
Since Nmt = Fmtt and Nnmer = meert’
N Ps; - Po)T
Fo=—t = — (8-51
n t t
and
Nﬂm (p1 - pa)r
F, = = 8-6
mgoer t Zt ( )

From these equations, it can be seen that the ratio of the longitudinal to the
circumferential stress, FM"/FM, is equal to 0.5. Thus, the strength of a
girth joint may be as low as one-half that of a longitudinal joint as is illus-

trated in Figure 8-3.
Girth Joint 7

1
)

00009
(-4
9o00?9°
o0
Oooo
00
Ooo.o
[o 2+

oo0©°

U
°°O

L" Longitudinal Joint

Figure 8-3. Joints on a Cylindrical Pressure Vessel

8.3.1.1.2 Membrane Stresses in Thin Spheres

Figure 8-4 shows a thin spherical shell (r/t >10). Applying
Equations (8-1) and (8-2) to the shape in Figure 8-4 gives

(Py - Po)T
N_ =N T — (8-7)

ot !B.!Ol‘ 2
Thus,

F - F - (p! - po)r (8_8)

ut [ LR 2t



8.3.1.1.3

meridian line

Rmer = Ry =71

circle of rotation

Figure 8-4. Thin Spherical Shell

Sample Problem - Membrane Stresses in Thin Cylinders

and Spheres

Given: The cylindrical pressure vessel shown in Figure 8-5.

t = .25 in.

r=6in.

P; - Po = 500 psi

T=.151in

Figure 8-5. Thin Cylindrical Pressure Vessel with
Hemispherical Heads

Find: The membrane stresses in the cylinder and the heads.

Solution: Applying Equations (8-5) and (8-6) to the cylindri-
cal portion gives ,

500 (6 .
F,, = _.__2_(?)._ = 12,000 psi
and
amer = _ML_ = 6’ 000 psi
2 (.25)

Applying Equation (8-8) to the hemispherical heads gives

= _ 500 (6) _ .
F-t = an’r = ~—2—-—(-:—2—-ET = 10, 000 pPs1
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It should be noted that the discontinuity stresses at the
head-cylinder junction may be much greater than these
membrane stresses. ;

8.3.1.2 Heads of Thin Cylindrical Pressure Vessels

In the previous discussion, membrane stresses in thin pressure
vessels, the slope, curvature, and direction of the meridian lines as well
as wall thickness were assumed to be continuous. However, one or more
of these assumptions do not hold true at the connection between a cylindrical
pressure vessel and any of the types of heads used in practice.

The tendency of the head of a cylindrical pressure vessel to deform
radially and angularly at a different rate than the cylindrical portion, com-
bined with the requirement of geometric compatibility, necessitates certain
discontinuity stresses near the head joint. Thus, unconservative designs will
be obtained if the membrane stresses are the only ones considered. These
discontinuity stresses are discussed more fully in Section 8.3.1.2.2.

By.proper design of a pressure vessel, the discontinuity stresses
may be greatly reduced so that localized yielding will level out any stress
peaks and these stresses need not be considered for static strength analysis.
In the A.S. M. E. code for unfired pressure vessels, formulas for the thick-
ness of shells and heads {except in the case of flat heads) consider membrane
stresses only. But the proper design to prevent excessive discontinuity
stresses is specified. For example, proper design of a dished head requires
that the inequalities shown in Figure 8-6 be satisfied.

ri < do

T > .06 d;

Note:

Knuckle must be o curved along
the meridian to avoid sudden =~
changes of slope '

Figure 8-6. Proper Design of Dished Head

Formulas for membrane stresses in several types of thin heads are given in
Section 8.3.1.2.1.

If a pressure vessel is subjected to repeated loadings where fatigue

is considered likely, stress peaks due to discontinuity stresses are of great
importance since localized yielding is no longer beneficial.

8-9
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8.3.1.2.1 Membrane Stresses in Heads of Thin Cylindrical Pressure
Vessels

Formulas may be found for membrane stresses in several
common types of heads by the use of Equations(8-1) and (8-2). These are
listed in Table 8-1.

TABLE 8-1

Equations for Membrane Stresses in Thin Heads

Type of Head Membrane Stresses

. . r
hemispherical - - . . g = Pizpolr
or dished mmer -~ T mt 2T
T

(pi - Po)(a4y2 + b4x2)l/2

mmer = 2THe

F

(pi - po) (aty? + b'*xz)”z ] X

Froo © |
.ot e T

—] 5
1 _ atp? )l
a [ ! 2(a4y2+b4N2) J
semielliptical ! .

T at cylinder-head joint, y = 0 and x = a.
Thus,

‘ (P - Pola

Frmer = 5T

= B2
F T \!

" 2 )
2 b2

T ~ (pi - Pold
mmer 4Tcos e

i d _ {pi-pold
conical Famt © Z2Tcosa

It can be seen from the equation for F,, at x = a for an elliptical head that this
hoop stress is compressive if a is greater than/2b. Thus, the displacement

of the edge would actually be inward in this case. This is an undesirable sit-
uation because of a possibility of high discontinuity stresses.
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Wherever discontinuity stresses cannot be ignored, they may
be superposed upon the membrane stresses. Discontinuity stresses are dis-
cussed in the following section.

8.3.1.2.2 Discontinuity Stresses at the Junction of a Thin Cylindrical
Pressure Vessel and Its Head

8.3.1.2.2.1 Introduction to Discontinuity Stresses

If there is an abrupt change in the thickness or in the meridional
slope or curvature at any circumference of a thin vessel, bending stresses
occur in addition to the membrane stresses. These '"discontinuity stresses"
are of four types: *

(1) a meridional bending stress, F which varies linearly through-
out the thickness of the wall,

bmer?

(2) a circumferential or hoop bending stress, F,;, which varies
linearly throughout the thickness of the wall,

(3) an additional hoop stress, F,, uniform throughout the thickness
of the wall, and

(4) a meridional shear stress, F assumed uniform throughout

the thickness of the wall,

smer’

In order to determine the state of stress of a pressure vessel,
it is necessary to find membrane stresses and discontinuity stresses. The
total stresses may be obtained from the superposition of these two states
of stress.

8.3.1.2.2.2 Discontinuity Stresses at Junction of Thin Cylindrical
Pressure Vessel and Head

If a cylindrical pressure vessel is subjected to pressure, the
cyhndncal part and its head will tend to expand at different rates as shown
in Figure 8-7. The head alone would displace radially a distance Wy because _
of internal pressure, and the cylindrical portion would displace w,, if it were
not attached to the head. However, geometric compatibility requires the head
and cylinder to displace equal amounts. Thus, the force Q, and the moment M|
must exist between the head and the cylinder to hold them together. These, in
turn, cause discontinuity stresses near the junction between the cylinder and
its head.

The following procedure may be used to solve for discontinuity
stresses. First, the difference in radial displacements due to Q, and M, must
cancel the difference in radial displacements due to internal pressure. That is,

% Griffel, William, Handbook of Formulas for Stress and Strain
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W, =W, =W, -W (8-9)

Figure 8-7. Illustration of the Necessity of Discontinuity
Stresses * '

The values of Wm1 and W”Z as functions of pressure may be obtained in Table 8-2

for various head shapes, and values for W) and w, as functions of Q, and M, may
be obtained from.Table 8-3. The angles of rotation of the cylinder and head
edges due to Q, and M, must be equal. That is,

Values of these angles are given as functions of Q, and M, in Table 8-3.

By substituting the values of displacements and angles obtained
from Tables 8-2 and 8-3 into Equations (8-9) and (8-10) and solving these~Q,.
and M, may be obtained as functions of pressure and the geometry and material
of the pressure vessel. The discontinuity stresses are given as functions of Q,,
M,, and position in Figure 8-4. The curves given in Figure 8-8 are useful in
the evaluation of the stresses given by the equations in Table 8-4.

The previously described method of obtaining discontinuity
stresses is time-consuming, although it provides insight into the nature of
these stresses. More rapid solutions for the discontinuity stresses in thin
cylindrical pressure vessels with flat or conical heads may be obtained
through the curves given in Sections 8.3.1.2.2.3 and 8.3.1.2.2.4,

* Griffel, William, Handbook of Formulas for Stress and Strain
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TABLE 8-2

Displacement of Heads and Cylinders Due to Internal Pressure*

Form of Vessel

Radial Displacement, w

m
T 2
N _ r l _ L_J-__
Wml = ———L—- 2
ET cos a
-
i Conical Head
i
|
;
|
.
i ) l ]
i Hemispherical Head
i
|
1
!
5 T
| 2
| w. = XS, _x
: m
1 2 ET mer
" l-‘—r—-—l
[}
% Any Figure of Revolution
)
i
|
i
i [~ T
| ! | 2
! ! m, Et 2 )
! ]
| Cylinder

% Griffel, William, Handbook of Formulas for Stress and Strain
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TABLE §-3

Radial and Angular Displacements Due to Edge Loading *

Form of Vessel : Radial Displacement Angle of Rotatior.
semielliptical, coni- 2
Q 2 M 2 Q M
. . .o d2(ia) - o sin” §_ - -0 gin § = 12 (1-4%) 2] i "] i
ca.l, dished or hemi- |*1 - ( 21, ° ot 3 ET3 ( 2,2 sin do X, )
spherical bead
' T
2 M
. . lzg-uh) Qo in? bo - o in ¢ 2 Q M
/—"‘“r\\ w2 £ ( 2)\23 ® ° 2)\22_ sin Yo ) 62 . 12(139 ) ( 02 sin 4)0 . Tg )
Et 2, 2

l

l |

: - q)o /

! 4

t - ;‘_ Note: Ay = V 3(1-;,12)/1'2'1'2
| N 72,2

1.0
0.9 N\
0.8 Ht =
0.7 ‘ v_e Ax cosAx + sinkx)
o6 AN\ | 1
’ \ ) . -Ax X
0.5 € COSA X
SEv -
0.3 %
0.2 e sin\x
VAN
0.1 ~ -
AR +< =
0
-0.1 e - —
-0.2 e {cosAx - sinAx
-0.3
0 1.00 2.00 3.00 4.00
Ax
Figure 8-8. Curves for the Evaluation of the Equations in
Table 8-4*

% Griffel, William, Handbook of Formulas for Stress and Strain
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TABLE 8-4

Equations for Discontinuity Stresses *

Expressions for Discontinuity Stresses of Distance x Measured
Along Meridian from Discontinuity Circle AA (see Figure 8-7)

(1) = Hoop Normal Stress:

F, - 2 r ([ r )e-)\x [Q, cos Ax - AM, (cos Ax - sin Ax)]

(2) Meridional Shear Stress:

Foner = th / Ri e M¥ [Q, (cos Ax - sin Ax) + 20 M, sin Ax]

(3) Maximum Meridional Bending Stress:

bmer 261- (—i— ) e-kx [-Qo sin Ax + AM, (cos Ax + sin Ax)]

(4) Maximum Hoop Bending Stress:

t 2 .
Et (co Po V[ 6(-u") Te-2* [0, (cos Ax + sin Ax)

Fbt = “Fbuer +
2 R, Et3 22

- 2AM, cos \x]

Note: For stress in cylinder, A = X,. For stress in head, letA=X) and t = T.

% Griffel, William, Handbook of Formulas for Stress and Strain_

8 - 15




F————-f

8.3.1.2.2.2.1 Sample Problem - Discontinuity Forces in Cylindrical
Pressure Vessel with Dished Head

Given: The pressure vessel shown in Figure 8-9.

T=0.5 (1-u2) = 0.91
== E - 10x10°
'l
’d
H '
| ‘ N\ :
{ aco L
1 1’0’45 - A ]
o I
|
| '/\ I
{ l
|
w
LI‘:lO -—’{‘——-—t:o,S

Figure 8-9. Cylindrical Pressure Vessel with Dished Head

Find: The discoatinuity force and moment at the junction
of the cylinder and its head.

Solution: From Tables 8-3 and 8-4,

2
W :_.p_r___<2-u_ r )
L 2ET R,
2
S L (1 - _u_>
=2 Et 2
and
2 -M
wl:_l_z_.(.“;i_)( -9 sincho 2 ’sincpo)
ET3 2)\13 2)\12

2 y
12 <1-u)(Qa sin g, - —2 sin, )

W2:

From Table 8-3,

4
A, = V30142 /:21?

. and

4
Ay =/ 3(12) /22 T2
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In this case,

4
A=Ay = \/;.91)/(102)(.52) = .575

Substituting this and other parameters into the above
equations gives

w. =4.97 x 1073
"1
w,, =2.12x 107
-6 -6
wy =-15.2x107°Q, - 9.36 x 107° M,
-6 -6
w, =15.2x 10 Q, - 9.36 x 10 ~ M,

Substituting these into Equation (8-9) and solving for Q, gives

Substituting the pressure vessel parameters into the
equations for 8, and 6, in Table 8-3 gives

66 - 15.2x10°% M,

60, +15.2x10° M

91 =9.38x 10"

6, = 9.38 x 10

o

Applying Equation (8-10) gives

Thus,

The values obtained for Q, and M, may be substituted into
the equations in Table 8-4 to obtain the discontinuity
stresses. Superposing these discontinuity stresses on the
membrane stresses then gives the total stresses at the
head-cylinder junction.

8 ~-17




8.3.1.2.2.3 Discontinuity Stresses in Thin Cylindrical Pressure Vessels
with Flat Heads

For flat-headed pressure vessels, the only significant discon-
tinuity stresses are in the meridional direction. Thus, such a vessel will
have as its maximum stress either the membrane stress in the tangential
direction (pd/2t), or the stress in the axial direction if the discontinuity stress
is great enough.

In treating axial discontinuity stresses, a stress ratio, Im", may
‘be defined to be the ratio of the maximum stress in the meridional direction to
the tangential membrane stress (Fmerm“/pd/Z‘t). The advantage of this stress
ratio is that it tells immediately whether the tangential membrane stress or
the total axial stress is the maximum stress.

The following equation was derived for the stress ratio I..ina

flat headed cylinder as a function of head thickness T and cylinder thickness t: *

C1 T/ - 2C,n(T/t) + C3(d/t)>/2 + 2C,n(T/)@/t) + Cs (/N(T/Y)

8-11
/2 4C10n2(T/t)2 C”(T/t)z ( )

3 Cg 1
Cg (T/t)” + 2Cqn(T/t) + ot Cold/t) yRTE + YL
Here, nT is the distance from the midplane of the head thickness to the joint

as shown in Figure 8-10. The coefficients C) through C;| are given below:

C, = 2.94317 Cy = 1.90702
C, = 3.74071 C7 = 4.84761
C3 = 1.00000 Cg = 1.02862
Cy = 0.908912 Cq = 2.66667
C = 0.385077 Cyp= 4.40610

Ci1 -+ 1.46869

T/2 __i 1 rT

PSSO
- ____T— S g - .
LA 1
d 1
N ¥ P r
g !
- — M

f-———-——— d
Figure 8-10. Junction of Cylinder and Flat Head

% Qriffel, William, Handbook of Formulas for Stress and Strain
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The first term in Equation (8-11) represents the axial mem-
brane stress in the cylinder, and the second term accounts for discontinuity
stresses.

Equation (8-11) is presented graphically in Figure 8-11 for

n=0.5 (.junction at inner surface of head) and in Figure 8-12 for n = 0 (head
fitted inside the shell).

: Kl

T +
T

P p
d ———a d
16004— T/t=1
35— 1400}~ 1.5
T/t=1
30— 1200
: 2
1.5
2.5
ot 2
gza 20 800
E"U
(o o}
15
H]
¥
[ ]
E oo
5
N NN VR SO TR SR W N | 0 S T I |
10 20 30 40 50 60 70 80 90 100 10 20 30 40 S50 60 70 80 90 100
d 4
T t

Figure 8-11. Graphical Presentation of Equation (8-11) for n = . 5%

% Griffel, William, Handbook of Formulas for Stress and Strain
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Figure 8-12. Graphical Presentation of Equation (8~11) for n = 0

* Griffel, William, Handbook of Formulas for Stress and Strain
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8.3.1.2.2.3.1

Sample Problem - Discontinuity Stresses in

Pressure Vessels with Flat Heads

rO.S

Given: The pressure vessel

shown in Figure 8-13.

]

. WIS G G S

L

p = 500 psi

(8-5) gives

¥

trax

= I?nt = I%E. =

e

stresses in the cylinder.

The distance from the center o
is equal fo zero. Thus, n=0 and the grap
may be used. Here, d/t =40 and T/t = 2. From Figure

EESS

LI

500 (10)

et e ettt

0.5

r = 10 ~o

- ¥

et -

Find: The maximum circumferential

T

0.5

Figure 8-13. Thin Cylindﬁcal Pressure Vessel with
Flat Head

and meridional

8-12,
I?mermax
per = ——=— = 8.6
pd/2t
. Since this stress ratio is greater than one, I

BOTMAX

2t

8 - 21

2(.5)

= 10, 000 psi

>F

mergax

I : F _g. 6P =g 6 20029 - 86,000 psi

Solution: Since the only significant discontinuity stresses
‘o o flat-headed cylinder are in th
maximum circumferential stress may
membrane stress in that direction.

e axial direction, the
be taken to be the
Thus, using Equation

f the head to the joint (nT)
hs in Figure 8-12

mt

Rearranging and substituting the correct values into the
above relation gives

-




8.3.1.2.2.4 Discontinuity Stresses in Thin Cylindrical Pressure Vessels
with Conical Heads

For conical headed pressure vessels, there may exist appre-
ciable discontinuity stresses in the circumferential and axial directions as
well as an axial shear stress. Stress ratios are defined here in the same
way as for flat-headed vessels. I, 'is the ratio of the maximum axial stress
to the tangential stress (F,,..../pd/2t) as before, and I, = F,,, /pd/2t and I, =
F,pa,/Pd/2t where F and F are the maximum circumferential and shear

tmax smax
stresses, respectively.

Pertinent geometric parameters for a cylindrical pressure
vessel with a conical head are shown in Figure 8-14.

a / \ T
7 /\

T: 1

L3
.

Figure 8-14. Cylindrical Pressure Vessel with Conical Head

Figures 8-15 through 8-18 give the stress ratios, I, andI_,
for various cone apex angles. The maximum axial and shear stresses at the
junction may in turn be calculated from these. Figures 8-19 through 8-22
show the stress ratio I, from which the maximum circumferential stresses in
a cylinder may be calculated. For the maximum axial stress, a solid line is
used if the stress is located in the cylinder, and a dashed line is used in
Figures 8-15 through 8-19 if it is located in the conical head. - -
It is important to note that when an internal pressure is applied
to a conical headed vessel, the cylinder always deflects outward and the conical
head inward. Thus, it is impossible to design a conical head to eliminate
moment and shear at the junction. It may be seen from Figures 8-15 through
8-18 that the greatest stress is the axial stress at the junction and that it is
desirable to make the cone and cylinder equally thick if @ is less than 45 degrees
in order to minimize this axial stress. If this is not possible, the cone should
have a greater thickness than the cylinder. Vertex angles of greater than 45
degrees require a thicker head.
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Figure 8-15, Stress Ratios for Pressure Vessels with Conical Head Closures *

* Griffel, William, Handbook of Formulas for Stress and Strain
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Figure 8-16. Stress Ratios for Pressure Vessels with Conical Head Closures *

* Griffel, William, Handbook of Formulas for Stress and Strain
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Figure 8-17. Stress Ratios for Pressure Vessels with Conical Head Closures *
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Figure 8-18. Stress Ratios for Pressure Vessels with Conical Head Closures *
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Figure 8-19. Stress Ratios for Pressure Vessels with Conical Head Closures *
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Figure 8-20. Stress Ratios for Pressure Vessels with Conical Head Closures *
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Stress Ratios for Pressure Vessels with Conical Head Closures

Figure 8-21.
* Griffel, William, Handbook of Formulas for Stress and Strain
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Figure 8-22. Stress Ratios for Pressure Vessels with Conical Head Closures *

*# Griffel, William, Handbook of Formulas for Stress and Strain
8 - 30

100

10



8.3.1.2.2.4.1

Sample Problem - Discontinuity Stresses in Pressure
Vessels with Conical Heads

Given: The pressure vessel shown in Figure 8-23.

‘r——t= 0.5
r-——r:lO—Q-l '

Figure 8-23. Thin Cylindrical Pressure Vessel with
Conical Head

Find: The maximum mefidional, tangential, and shear
stresses at the head-cylinder junction.

Solution: For this pressure vessel, d/T = 40 and T/t = 1.
Figures 8-16 and 8-20 give stress ratios for conical heads
with an angle of 30°. From these figures,

]

1.8
= 1.055
0. 205

pt bt bt
L
It

The circumferential membrane stress is

.Ld - M)— - 10’ 000 psi

2t 2(.5)
Applying the definitions of the stress ratio gives
Flermnx = Iaer (_Pi_) = 1. 8(10, 000) = 18,000 psi

2t
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oy
i

= 1, (_P_é_>= 1.055(10, 000) = 10, 500 psi
2t

tmax

Froew =1, (_Iz?i)z 0.205(10, 000) = 2, 050 psi
t

Since the appropriate graphs in Figure 8-16 are solid lines,

Foormee @nd F . occur in the cone at the junction. From

the dashed line in Figure 8-20, the location of ) 2 x/dis

0.22. Thus, F,, occurs at x = 0.22 d = 4. 4 inches from

the junction of the cylinder and its head in the cylinder.

8.3.1.3 Buckling of Thin Simple Pressure Vessels Under External Pressure

In previous sections, it was assumed that the pressure is either
internal or external, but of small enough magnitude not to cause buckling.
However, thin pressure vessels must be checked for buckling if they are ex-
ternally loaded.

8.3.1.3.1 Buckling of Thin Simple Cylinders Under External Pressure

The formula for the critical stress in short cylinders
(Lz/rt <100) which buckle elastically under radial pressure is

2
k, m¢E 2

F,=— " ( t ) (8-12)
12 (1p,%) VL

where k, is obtained from Figure 8-24. If the membrane stress in the cyl-
inder is greater than this, the cylinder will buckle.

The critical stress for long cylinders, {100 t/r < (L/r)2 <
5 r/t], under external radial pressure is

F, =0.93 E (_tr_;)3/2 ( x ) | (8-13)

For very long cylinders, [(L/r)2 >5 r/t], the buckling stress~ -
is given by

2
0.25 E t
F,=m—FF | — ) (8-14)
(l_uez) ( r >

where nis the plasticity-reduction factor given in this case by

E (14,5 E
n=_° °2 (__L + 3 ) (8-15)
E oauhH 4 4 B
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Fep = _.El’_f___f:__ (_E_)
12(1-ug%) . \L

Figure 8-24. Buckling of Short Cylinders Under External Radial Pressure .

8.3.1.3.1.1 Sample Problem - Buckling of Thin Simple Cylinders Under
External Pressure

Given: The cylinder shown in Figure 8-25,

e —— L = 20 ————sn t=0.5
:""'""'-—’_‘-—": r_—T ’ Aluminum
! : r=10
] | | o= 0.31
b _ i | M. = 0.5

r p 6
: | 1 E = 10x10
! pi= 14.7 psi : Po = 300 Fep = 20,000
i

1
o . I}

Figure 8-25. Cylinder Under External Pressure
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Find: The critical buckling stress, F,., and determine
whether the cylinder will buckle.

Solution:

L"—— = __2__9.2.._ = 80
rt 10 (.5)

Since this ratio is less than 100, Equation (8-12) for short
cylinders may be used. Before proceeding further, the
elastic Poisson's ratio must be found. From the nomen-
clature section,

E
o= (22 - 1)+u] B

Assume the critical stress is less than the proportional
limit of the material. If this is true, E = E, and thus,
U, = . Compute
1/2
20211-(.31)%) - sy
10 (.25)

L2 (1—u,2)l/2/rt )

From Figure 8-24, k, = 12.2. Substituting this into
Fquation (8-12) gives

12.2(m2)(10)(10%) .25 )
1201-(.31)2] \ 20

= 17,300 psi

cr

Since this is less than the proportional limit of the material,
the original assumption is correct. If it were not correct,

a value of F,. would have to be assumed and a value of E,
corresponding to this value found. This value would, in turn,
be used to calculate 4, which would be used in the Equation _
(8-12) to calculate F,.. This trial and error process would
have to be repeated until the assumed and calculated values
of F,, were in agreement.

From Equation (8-5), the stress in the cylinder is

(P - PolT
Foo=ob o o (14.7-3000000) _ 3y 4000 psi

- t .25

Since this is less than F the cylinder does not fail.

er?
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8.3.1.3.2

Buckling of Thin Simple Spheres Under External Pressure

For computation of elastic-buckling stresses of thin spherical

plates under external pressure, Equation (8-16) applies for all diameter ranges.

ke 17 E

2

e ()

cr 2 d /‘
12 (l—ue )

where k, is given in Figure 8-26.

3
10
Linear
Theory
lOZF—
r/t = 200
kP
r/t = 2,000
10
m 4
r—-
B
IR TENENEN

10 102

—

a2 (1-p2) 12 /xe

cr ~ ( )

12(1-ue) M4

Figure 8-26.
Under External Pressure
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8.3.1.4 Stresses in Simple Cyliﬁdrical Pressure Vessels Due to Supports

Figuvre 8-27 shows a cylindrical pressure vessel resting on

saddle supports.

Figure 8-27. Cylindrical Pressure Vessel on Saddle Supports

There are high local longitudinal and circumferential stresses adjacent to the
tips of the saddles. Although these stresses are difficult to predict exactly,
their maximum value will probably not exceed that given by Equation (8-17)
if the cylinder fits the saddle well.

Faa = [0.02 - 0.00012 (8- 90)] _1%_ log, ( :‘ ) (8-17)

t

In this equation, P is the reaction at each saddle and R, t, and B are as shown
in Figure 8-27 where Bis in degrees. Equation (8-17) contains no term for
the thickness of the saddle since stresses are practically independent of this
for the ordinary range of dimensions.

The maximum reaction, P, that the vessel can sustain is about
twice the value that will produce a maximum stress equal to the yield point
of the material according to Equation (8-17).

If a pipe is supported in flexible slings instead of in rigid saddles,
the maximum stresses occur at the points of tangency between the sling and
pipe section. These stresses are usually less than the corresponding stresses
in a saddle supported pipe, but are of the same order of magnitude. - -

8.3.1.5 Crippling Stress of Pressurized and Unpressurized Thin Simple
Cylinders

The crippling stress of thin simple cylinders is increased if internal
pressure is applied. The following sections present curves to determine the
crippling stress in pressurized and unpressurized cylinders subjected to com-
pression, bending, torsion, or any combination of these. The parameters for
such a cylinder are shown in Figure 8-28. Only buckling in the elastic range
is considered in this section.
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Figure 8-28. Pressurized Cylinder

8.3.1.5.1 Crippling Stress of Simple Thin Cylinders in Compression

8.3.1.5.1.1 Crippling Stress of Unpressurized Simple Thin Cylinders in
. Compression

Equation (8-18) is an empirical relationship for the crippling
stress of short cylinders (L/r = 1).

Fo= E| 11.28 (ir)l'é+o.109(LL>l'3J. (8-18)

For long cylinders (L/r >1), the best fitting relationship for the crippling
stress is

F., E[II.ZS (%)1-61».109({-)1.3 -1.418 (—%)LéLog (%)J (8-19)

For 99% probability values of F Figure 8-29 should be used.

cc?

-~ -

Crippling occurs when the average compressive stress in the
cylinder exceeds F,_.

8.3.1.5.1.2 Crippling Stress of Pressurized Simple Thin Cylinders in
Compression

Figure 8-30 gives in graphical form the incremental increase
in the crippling stress (AF,.) of a cylinder due to internal pressure. These
curves are for 99% probability values. Because of limited testing of pres-
surized cylinders, the value obtained for AF,, can be considered reliable
only in the ranges 1 <L/r <6, 600 <r/t <2800 and pr/t <.625 Fey-
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Figure 8-29. Unpressurized, Simple Circular Cylinders
in Compression with Clamped Ends

8 - 38




IR

AFCCr
Et

= 0.221 (constant)

/ Notes:

. For use only in conjunction with —
/ the 99% probability values for
unpressurized cylinders
/ (Figure 8.29) N
/ . 2. Applies only if pr/t & 625 Fey

AFce = Feep - Fec

1.0 2.0

2
£ ()
E t
Figure 8-30. 99% Probability Value of AF , for Pressurized
Circular Cylinder in Compression
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8.3.1.5.2 Crippling Stress of Simple Thin Cylinders in Bending

8.3.1.5.2.1 Crippling Stress of Unpressurized Simple Thin Cylinders
in Bending

Figure 8-31 gives 99% probability curves for the crippling stress
of unpressurized cylinders in bending. These curves parallel those for un-
pressurized cylinders in compression but yield crippling stresses about 12%

greater.
R

10 0 x10°3 99% probability value of
B = Fcc/E vs r/t for constant
— h values of L/r
- Q (confidence = 0. 95)
A\ \

l
rRr.ary.l
Z

\
" Range of \\\ \
Elastic Buckling \\

.10 \|

oo
7%

- —CY ~ 0050 m——oio= \

E N N—L/r -
— .0025 -——I—-—.- \\Q\\Q‘\\\ Lo

|
L~

NN W 7]
0015 —— O g \\\\\\§ 25
010 N NN 5 ]
’ — NOANAYEE - .
— DAY
[ A\ 4
8 e
- Dashed lines are extrapolated \16
into untested regions.
001 RN L 1 tifll RN
10 100 1000 10000

r/t

Figure 8-31. Unpressurized, Simple Circular Cylinders
in Pure Bending with Clamped Ends
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Crippling failure occurs when the maximum bending stress in

the cylinder (Mzr/I) exceeds'Fcc.

8.3.1.5.2.2 Crippling Stress of Pressurized Simple Thin Cylinders in

Bending

Figure 8-32 gives the incremental increase in the crippling

stress (AF,.) of a cylinder in bending due to internal pressure. This curve
is based on cxperiments on pressurized cylinders that were preloaded axially

8.3.1.5,3.1 Crippling Stress of Unpressurized Simple Thin Cylinders

in Torsion

Torsional buckling of thin, unpressurized cylinders does not

to balance the longitudinal stress, pr/2t, due to internal pressure. It should
be noted that this curve is based on very limited data.
— T T | ——
Notes: ! ! ! I r
|. For use only in conjunction with the 99% probability
values for unpressurized cylinders in bending.
0.8 '
2. Based on 32 tests of pretension balanced specimens,
pI‘/l < .6 F(y
//
/L'/
0.6 e
//
. L
AF::r /
Et /
0.4 >
0.2
AFc = Fccp = Fcc
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
2
T ()
E \t
Figure 8-32. 99% Probability Value of AF,, for Pressurized
Circular Cylinders in Bending
8.3.1.5.3 Crippling Stress of Simple Thin Cylinders in Torsion

exhibit the sudden snap-through behavior observed in the case of compression
and bending. Instead, the buckling process under torsion is more gradual and
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a slight difference is observed between initial and ultimate buckling. However,
this difference is too small to be of any value so that the critical buckling stress
is taken to be the failure stress.

Figure 8-33 gives the 99% probability values for the crippling
shear stress of cylinders in torsion. These curves are applicable if

o< /7 (F) <5 (2) 5-20

2tr

10. 0 }x 1073 N

- \\ 99% Probability Value of
[ Fgeo/E vs r/t for constant
— \\‘\\\ N values of L/r
- N AN

QQ@ \

NN

. NN
AN NN N

— NN\

Fuc AN

N \\
N

AL
’//

1
L~
A AN A

ANAN
- ANV VN
- NN Y
L/r
i :\\\\\ .
. 010}— \\\}\\\\\25“ - .
= OV |
~ VAL
| AIRARE!
L/l"321684'2 1
] Ll mERa
'00110 LU l100 1000 10000

r/t

Figure 8-33. Torsional Buckling of Unpressurized Circular Cylinders
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However, analysis indicates that the range of use of these curves may be
extended to :

2
s 52
6 <,/1_u2 K__.L ) < 10 (£> (8-21)

2tr t '
Failure occurs if the shear stress in a cylinder under torsion '1"r/Ip is greater
than the crippling shear stress, F,_.
8.3.1.5.3.2 Crippling Stress of Pressurized Simple Thin Cylinders in

Torsion

Figure 8-34 gives the incremental increase in the crippling shear
stress of a cylinder in torsion (AF_..) due to internal pressure. Since few tests
are available on buckling of circular cylinders under torsion and these tests are
for very low pressure ranges, design curves may not be established on a statis-
tical basis.

.20

.18

| Note: /
.16 — For use in conjunction with Figure 8.33 /
.14 /

: %

.12 /

=
SFere E) 10
E t

— /
.08 -

.06 /
-04 AF e ® Fseep - Fsee ‘
-/

.02

| | | | | a| l |

0 .02 .04 .06 .08 .10 .12 .14 .16
2
£ (§)
E t

Figure 8-34. AF,  for Pressurized Circular Cylinders in Torsion
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8.3.1.5.3.2.1 . Sample Problem - Cripppling Stress of Pressurized
Simple Thin Cylinders in Torsion

Given: The pressurized cylinder shown in Figure 8-35.

t=0.1
E=10x10® [r=10 {

‘ !
et - S ——
' = 100 psi J
7 T = 80, 000 in.lb.

T = 80, 000 in.lb.

L = 80

Figure 8-35. Pressurized Cylinder in Torsion

Find: The crippling shear stress,  F, .., and examine
for failure by crippling.

Solution: L/r = 8 and r/t = 100. From Figure 8-33,

F -
kb =8x104

E

for unpressurized cylinders. Thus, F, = 8,000 psi.

From Figure 8-34,

Proee <-r_ ) = 0. 125
E t 7/
Thus,
| 6
10 1
AF,, = .125 = = .125 ( Xlloo 1) - 0, 000 psi

The crippling stress in a cylinder under pressure (F.ccp)
is equal to that of an unpressurized cylinder plus AF, . ~ .

Faccp = Fscc + AFsce = 8’ 000 + 10: 000 = 18, 000 psi

It can be seen that internal pressure more than doubles the
resistance of the cylinder to crippling. The shear stress in
the cylinder is

‘ f = ITr _ (80, 000)(10) = 20, 300 psi
e TT T 4 4 ’ P
P m(10.05 - 9.957)
32
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Since this stress is greater than F the cylinder will

fail by crippling.

scep?

8.3.1.5.4 Interaction Formulas for the Crippling of Pressurized and
and Unpressurized Cylinders

Table 8-5 gives interaction relationships for various combi-
nations of loads. The combined load interactions apply to the initial buckling
of both pressurized and unpressurized thin-walled circular cylinders. The
terms used for pressurized cylinders are defined as follows:

applied bending moment

R =
® critical bending moment
R - 2pplied compressive load
¢ critical compressive load
R = 2pplied transverse shear load
: critical transverse shear load
R. = applied torsional moment
st 7

critical torsional moment

The terms for unpressurized cylinders are defined in the same way except

that stress ratios are used rather than load ratios.

8.3.1.5.4.1 Sample Problem - Crippling Interaction of Simple Thin
Cylinders in Compression and Bending

Given: The cylinder shown in Figure 8-36.

E=10x10°

t=0.025

M= ? {- M '
P = 6000 —f—m= - — P = 6000
\/K P = 50 pet

e - 80

Figure 8-36. Pressurized Cylinder in Compression and Bending

Find: The maximum bending moment, M.
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Solution: From Figure 8-29, F;C/E =1.6 x 10"% for com-
pressive loading. Thus,

it

F., = (1.6 x 10°%)(10 x 108) = 1, 6000 psi

From Figure 8-30, AF_ r/Et = .235. Thus,

] .
AF,, = .235 Eb - 235 (10 x 107)(. 025) _ 5 g9 pej
r 10
TABLE 8-5

Combined Load Interactions for the Buckling of
Pressurized and Unpressurized Circular Cylinders

Combined Loading Interaction Equation
Condition . (99% Probability Values)
Axial Comp. + Pure Bending R +Rp=1.0
Axial Comp. + Pure Bending 3 3 3
+ Transverse Shear Re v/ Rg™ + Ry™ = 1.0

Pure Bending + Transverse

Shear
. . 2
Axial Comp. + Torsion Re. + Rgym =1.0
Axial Tens. + Torsion Rsl3 -Ry=1.0 R = 0.8
o o 1.5 2 _
Purc Bending ¢+ Torsion R + R = 1.0
: b st
p
R," + (Rg + Rgy)¥ = 1.0
Pure Bending 4+ Torsion . .
A where: 1.5 >~ 3.0
+ Transverse Shear )
2.0 2 g = 3.0
1 C P Bend y
Axial Comp. + Purc Bending 2 3 3
+ Transverse Shear + Torsion Re 1 Rge v Rg™ + Ry =
Axial Load (Ten. or Comp.) R, + Ry + Rstz - 1.0

+ Pure Bending + Torsion

-
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For compressive loading,

Fop = Foo + AF,, = 1,600 + 5,870 = 7, 470 psi

cep

The critical compressive load is thus,

7470A = 7470 [ (20)(.025)] = 11, 700 psi

Since the applied compressive load is 6, 000 1b.,

R - 2pplied compressive load _ _ 6,000

critical compressive load 11, 700

From Table 8-5,
R, +R,=1.0
Thus,

Ry=1.0-R,=1.0-.513 = 0.487

513

Now, the allowable bending load may be found once the
critical bending load is found. From Figure 8-31 and

8-32, F,_ =2,200 and AF__ = 9,000. Thus,

F,, = Fo. +AF,, = 2,200 + 9,000 = 11,200 psi

ccp

The formula for the critical bending moment is

IF, —&f (10.0125% _ 9. 9875%)(11, 200)
c
M, = =
r 10
Since,
R, = applied bending moment = 0, 487,

critical bending moment

M= R M, = 0.487(5,500) = 2,430 in-1b.

Stiffened Thin Pressure Vessels

8 ~ 47

= 5,500 in-1b.

This section treats of thin pressure vessels that are reinforced with
stringers and/or rings.



8.3.2.1 Thin Cylindrical Pressure Vessels with Stringers Under Internal
Pressure

Figure 8-37 shows a cross section of a thin cylindrical pressure
vessel reinforced with stringers.

stringer cross-
sectional area = As‘
L

Figure 8-37. Cross Section of Shell with Stringers

The axial stress in the shell is

(8-22)

F,.,.= £ (bt+ZpA”)
T 21 bt + Ay,

and that in the stringer is

_pr_[bt (1-2y)
Fltmar 2t bt 1 A :’ (8-23)
: 8t

The circumferential stress is the same as that in a simple thin cylinder

F = PT | (8-24)

14 t

8.3.2.1.1 Sample Problem - Thin Cylindrical Pressure Vessels with
Stringers Under Internal Pressure

Given: The cylindrical pressure vessel shown in Figure 3-38.

Find: The stresses in the shell and stringers.
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p = 0.31

( p = 100 psi

Figure 8-38. Thin Cylindrical Pressure Vessel with Stringers

r = 20

8 stringers
(Asy = 0. 5)

-,

t=20.1

Solution: The distance between stringers is one-eighth the
circumference of the cylinder.

b = 2m/8=ﬂé§9_’ = 15. 72 in.

From Egquation (8-22), the meridional stress in the shell is

P o T ( bt + 24 Asz): 100(20) I‘ 15.72(0. 1)+2(0. 31)(. 5))
2t bt + A, 2(0.1) ~  15.72(0.1)+0.5 i
= 9,100 psi

From Equation (8-24), the tangential stress in the shell is

F - pr - 100(20) :20,000 pSl

»t t 0.1

The only stress in the stringer is a meridional stress given by
Equation (8-23). -

- _ pr [ bt (1-2u) ]: 100(20) [ 15.72(0. 1)(1-0.62) ]
2t Lypggoag, 2(0.1) -15.72(0.1)+ 0.5

2,890 psi

8.3.2.2 Thin Cylindrical Pressure Vessels with Rings Under Internal
Pressure (Stringers Optional)

Figure 8-39 shows two views of a thin shell with rings and stringers
and appropriate geometric parameters. An enlarged view of the section of the
ring is shown in Figure 8-40.
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Figure 8-39. Shell with Rings and Stringers

A ﬁﬂ,‘\bﬁ
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Figure 8-40.

/———-@ of attachment
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- -

T——-—— centroid of A,'
R

Cross Hatched Area is Ay’

Section of Stiffening Ring
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_ The definition of the following parameters facilitates the description
of pressure vessel behavior.

- Alt
d=
bt
T= BX
2
- Alt
ET
) t+t,
t’=
t
1+ (1-u2) —_
’ t
D = EI,,, of sheet stringer combination
per inch of circumference '
K = Vi 'E/D
2r
a = K + X
4D
- T
= K- ——
= Ix-—-5|
Az 2=
2
B = Ba
2 -
- 2
P= -R—— [1 - __E__———
t'E 2(t +t,)
‘ 2
Az T
x ( Lo -
b’ ( u )+ -
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A, E, a3

0
32 Drl

The deflections and moments on the shell at the ring and at midspan
between rings are dependent on the relationship between K and T/4D. Two
conditions are possible — Kz T/4D and K <T/4D.

If K2 T/4D, the radial deflections of the shell at the ring (5,) and
midway between the rings (6,) are given by Equations (8-25) and (8-26). In
this case, the bending moments of the skin stringer combination per inch of
circumference at the ring (M,,,,) and midway between rings M are given

by Equations (8-27) and (8-28).:

sstn

§= P (8-25)
Q
1+ =
€
6= -p [1- 2 » (8-26)
1 21 |
.+ Q
4PDQ
M. .. = 4 in 1b/in (8-27)

astr

a2 (1 +Q——Ql->

-M,,» Q3 -

M"tm = T— in 1b/in (8-28)

In the above equations, ), values may be obtained from Figures
8-41 through 8-44.

If K <T/4D, the equations for deflections and moments on the shell
are the same as Equations (8-25) through (8-28) except that the {}, terms are
replaced by A, terms. These A, terms are given as functions of A and B in
Figures 8-45 through 8-49.
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The skin of a thin cylindrical pressure vgssél with ridgs 'and
stringers has stresses that are uniform throughout their thickness and that
are given by

T - pEt, (_5;)
Foper = > (8-29)
t+ (1-u%) t,

and

MT-E(t +t,) ( 2)

Fp =- - (8-30)
t+ (1-47) ¢,

In addition, the skin has a maximum axial bending stress of

Mc.

Fy, = - : (8-31
set

where c, is the distance from the neutral axis of the skin-stringer combina-
tion to the outer fiber of the skin.

The stringers have a uniform axial stress given by

T (1-4%) +u e (L)

F = (8-32)
stwer t 4 (1-U.2) t,
in addition to 2 maximum bending stress of
Me,,
Foge = 3 (8-33)

- -

where c,, is the distance from the neutral axis of the skin-stringer combina-
tion to the outer fiber of the stringer.

The rings have a circumferential stress given by

Ering 61' )
Fy=—p— (8-34)
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8.3.2.2.1

Sample Problem - Stiffened Thin Cylindrical Pressure
Vessel with Internal Pressure -

Given: A shell reinforced with rings and stringers under

an internal pressure of 15 psi. The vessel parameters
as shown in Figures 8-39 and 8-40 are as follows:

r=66in., a=11.34in., t=10.0301in., b = 2.7 in.,

A, =0.10481in.2, I, = 0.00493 in. %, R = 63.2 in.,

22
1

. =0.040in., e=0.35in., b"=2.2in., A, "= 0.276 in.,

0
§]

¢ = 0.208 in. to skin, ¢

=
i

0.316, therefore 1--L12 = 0.9.

Find: The stresses in the skin, stringers, and rings.

Solution: From the definitions of parameters in

Section 8.2.2.2,

o =0.572in., E=E,, = 17 x 10% psi,

A
dz st _ 0.1048 = 1.29
bt 2.7(.030)
T = BX _ 15(66) _ g5
2 2
A
- et 0.1048 _
t, i =~ =0. 0.388
t+t 0.030 + 0.0388
g - = = 0.0318
1+ (1-u%) ¢s/t 1+ 0.9 (0.0388/0.030)
- 6 _ 4
D= EI,, = 17 x 10° (0.00493) = 8.38 x 10 - .
/T E/5 . /0.0318 (17x10%)(8.38x 10% _
K= Yt E/D _ = 0.01925
2r 2(66)
T . 495 = 0.001477
4D 4(8.38x10%)
@z [K+ Z% - /001925 + 0.001477 = 0.144
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: - |
B = \/I K- o5 | = flo.01925 - 0.001477 | =0.1333
- @2  0.144(11.34) _
Az == - 5 = 0.817
pc B2 _ 0:1333(11.34) _ ..
2 2
_ opl . . 2
p = B [1 __ut ]= 15(66)
t'E 2(t +t,) - 0.0318(17 x 106)
[1 _ 0.316(0.318) ]: 0.1122
: 2(0.030 + 0.038)
A= r _ (66)°
r_b e \3 2 i 2.7 70.35\ (632)z
— (= 2 - L 18:22 AD2-a)
b'(t, ) (1+u ”;, 2.2 \0.40) 0-9) 5 276
T
= 0.286
A E,, al 6 3
- v Tring _ 0.286(17x10°)(11.34)
Q: 2 = 4 ] = 0.607
32 D, 32(8.38x10%)(66)

Since K >T /4D, Equations (8-25) through (8-28)
may be used to obtain deflections and moments.
From Figures 8-41 through 8-44 with A = 0, 817
and B = 0. 756, \

Ql = 0. 76, Qz = 0.94, Q3 = 0.24, andQ4 = 0.49

These values may now be substituted into Equations
(8-25) through (8-28) to obtain the following:

v,
2lo|d

- 1122
1+ 0.607
0.76

Deflection at ring = §, =

= 0.0624 in. (outward)
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7

Q1
+ ——

' Q
Deflection at midspan = 8, = -P (1 - 2
1
Q

0.76
0.607

=-0.1122 (1 + —M‘l——-) =-0.0654 in. (outward)

-'-lPDQ4

aZ (1+%)

Moment at ring = M, =

4x0.1122(8.38x10%)(0.49) _ 63.7 in. -1b/in

2 0.76
11.34 (1 4 o—
( ) 0.607
hdl!?(23
Moment at midspan = M, 4, = ———
Q4
- 263.7(0.24) _ _31.2 in-Ib. /in.
(0. 49)

Stresses in Skin

The stresses in the skin consist of

(1). a meridional membrane stress, F ..
(2) an axial bending stress Iy, and

(3) a tangential membrane stress F,.

These must be computed at both the midspan and
the ring. From Equation (8-29),

e - T -u Et,(8/1) _ 495-0.316(17x109)(.0388)8/66
pmer '+ (l-U.Z) £, 0.030 + 0.9(0.0388)

= 7,630 - 48,6608
At the midspan, .

F

ey

7,630 - 48,6606 = 7,630 + 48, 660 (0. 0654)
10, 810 psi
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At the ring,

F,, =7,630 - 48,6606, = 7,630 + 48,660 (0.0624)

anor

10, 670 psi

From Equation (8‘31)’, ’

Mec
Fy, = = MU0:208) 45 gy

S | 0. 00493

sat
At the midspan,

Fy, = 42. 1M =42.1 (31.2) = 1, 320 psi

sste
At the ring,

F,, = 42.1 M = 42.1 (-63.7) = -2, 680 psi

"8ty

From Equation (8-30),

- MHT - E(t+t,)8/r (0.316)(495)
wt = =

t+ (1-u?)t, . 030 + (0. 9)(0.0388)

(17x109)(0.030 +0.0388)5 /66
.030 + {0.9)(0.0388) .

= 2,410 - 273, 0006

. At the midspan,

Fp = 2,410 - 273,000 (0. 0654) = 20,260 psi

At the ring,

Fp = 2,410 - 273,000 (0. 0624) = 19, 440 psi

The maximum meridional stress in the skin at the
midspan is given by
F

= Flur+F‘b.= 10,810+ 1,320 12, 130 psi

re TRAX

and that at the ring is

F = Fp, + Fyy = 10,670 - 2, 680

O ruAx

7,990 psi
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The critical stress occurs in the skin at the midspan
where both the meridional and circumferential
stresses are greatest.

Stresses in Stringer

The stresses in the stringers consist of
(1) a uniform axial stress, ) and

'(2) an axial bending stress, F,,.
From Equation (8-32),

_ T () +uEHG/r) 495 (0.9)
e s aawd) e, (0.3) + (0. 9)(0. 388)

(0.316)(17x 106)(0.3)(6.,66) _ .
(0.3) + (0.9)(0.388) 6,860 + 37,6205

At the midspan

F

stmar

= 6,860 + 37,6206= 6,860 ~ 37, 620(0. 0654) = 4, 400 psi
At the ring,

F = 6,860 + 37,6208 = 6,860 - 37, 620(0.0624)

4,510 psi

stuer

Fronﬁ Equation (8-33),

Mee _ M(0.572
Foo = = M(0.572) - 116M

I, 0.00493

At the midspan,

Fy = 116 M

sstw

= 116(-31.2) = -3, 730 psi
At the ring,

Fy,, = 116 M,,,, = 116(63.7) = 7, 410 psi

astr
The maximum stress in the stringers is given by

F

normax F + Fblt

stwer
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This occurs at the ring where

F = 4,510 + 7,410 = 11,910 psi

Beraax

Stresses in Ring

The rings have a circumferential stress F,." From
Equation (8-34),

E,q,q 6
, - mos v (17 % 10°)(0.0624) _ 1 779 pei
R 63.2

8.4 Thick Pressure Vessels

If the ratio of the minimum radius of curvature of a wall to its thickness
is less than ten, stresses may no longer be considered constant throughout the
wall thickness and radial stresses may not be ignored. Thus, the equations
for thin-walled pressure vessels that were developed with these assumptions
are no longer valid. This section presents solutions for the stresses in thick-
walled cylinders and spheres. '

Thick vessels, other than cylindrical and spherical ones, have bending
stresses even if there are no discontinuities present. The analysis of these
stresses is difficult and is not established on a satisfactory basis as yet.

*Thus, it is best to determine the intensity of the maximum stresses that exist
in unconventional designs by strain gauge measurements or other experi-
mental means.

8.4.1 Thick Cylindrical Pressure Vessels

Figure 8-50 shows a cross section of a thick cylindrical pressure
vessel of internal radius a and external radius b.

Po

Figure 8-50. Thick Cylindrical Pressure Vessel
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The radial, tangential, and axial stresses, F,, F,, and F,,,, in such
a cylinder are given by Equations (8-35),‘ (8-36), and (8-37), respectively.

S i i 0 Y (6-35)
L= -
bl . a2 (b2 - az) r®
, |
2
F, =P ( . b___) . (8-36)
b2 - az r2
2 .
P;a” - p,b
Fagr = = (8-37)
b“ - a

In order for Equation (8-37) to apply, the point considered must be far
enough removed from the ends for St. Venant's principle to apply.

8.4.1.1 Thick Cylindrical Pressure Vessels Under Internal Pressure Only

1f p, = 0, Equations (8-35) and (8-36) reduce to

2
a“p 2
Fr =———'—1—-£— (1 - b ) (8-38)
bz- a :t:2
and
2
a“p, - 2 .
Fy=——— (14 2 . (8-39)
t 2.2 2
b“- a r

Both of these stresses have maximum magnitudes at r = a. If the maximum
shear stress theory of failure is to be used, the design equation becomes

thtx - Fruax bz
Fwax = > = Py . (8-40)

8.4.1.2 Thick Cylindrical Pressure Vessels Under External Pressure
Only

1f p, = 0, Equations (8-35) and (8-36) reduce to

2
-p, b a2
F, = —_— (1 - i_) (8-41)
b - az r2

and

8 - 69




2

-p, b 2

L (1 . _a.__) (8-42)
b2 - a r2

In this case, both the tangential and radial stresses are always compressive,
with the former always the larger of the two. The maximum compressive
stress occurs at the inner surface of the cylinder where the radial stress
is equal to zero. This maximum compressive stress is given by
2
. (8-43)
tmax bz _ aZ

8.4.1.3 Sample Problems - Thick Cylindrical Pressure Vessel

Given: The pressure vessel shown in Figure 8-51.

Figuré 8-51. Thick Cylindrical Pressure Vessel
Find: The maximum shear stress in the vessel.

Solution: Assume the external pressure is negligible and apply
Equation (8-40). Thus,

2 2
b 1 10, 000 .
Fonex = (_‘.z_?)p, = 4 5)2( 2) = 22,500 psi - .
-a [(15)" -(10)"]
8.4.2 Thick Spherical Pressure Vessels

The radial and tangential stresses at a distance r from the center
of a spherical pressure vessel of inner radius a and outer radius b are given
by Equations (8-44) and (8-45).

r

3,3 _3 3 3

Pb” (x> - b~ -
F = Pe (3 a)_LPz(3 r’) (8-44)
r3 (a -b3) r3 (a ..b'3)
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pb3 23+ a3)  paderd + b

F, - (8-45)

2r3 @3 - b3)  2¢3 (23 - b3
The terminology here is the same as that shown in Figure 8-50 for cylindri-
cal pressure vessels,

iIfp,=0,

p, 2> 23+ b3)

F, = (8-46)
2_r2 b3 - a3

and the greatest tangential tension is at the inner surface at which
: 3
Py 2234+ b

Feax =5~ ~ 3 3 (8-47)

8.5 Anisotropic Pressure Vessels

Thz use of glass filaments in the construction of pressure vessels offers
several advantages. Glass has an ultimate strength of approximately 300, 000
1b/in. 2 in the direction of the fiber when it is drawn into fine filaments. In
order to fully utilize this high unidirectional strength, however, it is necessary
to run the fiber in the direction of the maximum principal stress. This is done
Y. -+i=ding the fibers on a mandrel. During the winding process, the filaments
are impregnated with resin which, after curing, will develop sufficient shear
strength to realize the high tensile strength of the fibers. In analyzing these
structures, it is assumed that the fibers sustain the primary loads with only
the secondary loads being resisted by the resin binder.

Since the principal stresses will vary in an actual vessel, the fibers may
actually be wrapped at more than a single wrap angle as may be seen in Fig-
ure 8-52.

Figure 8-52. Filament-Wound Pressure Vessel




_}

For a thin cylin&rical pressure vessel, all stresses other than membrane
stresses are negligible. The optimum wrap angle is 55 degrees as shown in

)

Figure 8~53. Optimum Wrap Angle for Thin Cylindrical Pressure Vessel

In addition to providing a structure of high strength-to-weight ratio, the
glass pressure vessels offer other advantages. Connections can be eliminated
and end closures, skirts, etc., fabricated as a single unit. In addition, pres-
sure vessels may be made in any proportions and sizes over wide ranges.
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9. LUG ANALYSIS

9.1 Introduction to Lug Analysis

Lugs are connector-type elements widely used as structural supports
for pin connections. In the past, the lug strength was overdesigned since
weight and size requirements were for the most part unrestricted. How-
ever, the refinement of these requirements have necessitated conservative
methods of design.

This section presents static strength analysis procedures for uniformly
loaded lugs and bushings, for double shear joints, and for single shear joints,
subjected to axial, transverse, or oblique loading. Also listed is a section
which applies to lugs made from materials having ultimate elongations of at
least 5% in any direction in the plane of the lug. Modifications for lugs with
iess than 5% elongation are also presented. In addition, a short section on
the stresses due to press fit bushings is presented.

9.2 Lug Analysis Nomenclature

FbwL = Lug ultimate bearing stress

Fb,yL = Lug yield bearing stress

Fiwx = Cross grain tensile ultimate stress of lug material
Fivx = Cross grain tensile yield stress of lug material
For = Allowable ultimate bearing stress, MHB5

Fy.y = Allowable yield bearing stress, MHB5

Fo = Ultimate tensile stress

Foy, = Allowable lug net-section tensile ultimate stress
F“V:_ = Allowable lug net-section tensile yield stress
Fb”'a = Allowable bearing yield stress for bushings

F""e = Bushing compressive yield stress

F‘“‘“a = Allowable bearing ultimate stress for bushings
F,up = Ultimate shear stress of the pin material

F‘“p = Pin ultimate tensile stress

FWT = Allowable ultimate tang stress

F]m.mx = Maximum lug bearing stress -
Fbrux: = Maximum bushing bearing stress

Fsm“ = Maximum pin shear stress

Fbu: = Maximum pin bending stress

Pory, ' = Allowable lug ultimate bearing load

P"“«. = Allowable lug net-section ultimate load

P"a = Allowable bushing ultimate load

P“L Allowable design ultimate load

P“Ls = Allowable lug-bushing ultimate load

Py, = Pin ultimate shear load

Pubp = Pin ultimate bending load
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' Pubp =z '"'"Balanced design' pin ultimate bending load

P,1*** = Allowable joint ultimate load

Py = Lug tang strength

Pm,'_ = Allowable lug transverse ultimate load
trug = Allowable bushing transverse ultimate load
n = Net-tension stress coefficient

Kb, = Plastic bending coefficient for pin

K, . = Plastic bending coefficient for tang

Ky, = Plastic bearing coefficient for lug

KbLL : = Plastic bending coefficient for lug

K, = Transverse ultimate load coefficient

Kyry = Transverse yield load coefficient

M Maximum pin bending moment

M Ultimate pin failing moment

A Area, in. 2

a = Distance from edge of hole to edge of lug, inches

B = Ductility factor for lugs with less than 5% elongation
b = Effective bearing width, inches
D Hole diameter of pin diameter, inches
E Modulus of elasticity, psi
e = Edge distance, inches
f = Stress, psi

f, = Cyclic stress amphtude on net section of given lug,
lbs/in. 2

f = Mean cyclic stress on net section of given lug, lbs/in. 2

frax = Maximum cyclic stress on net section of given lug,

_ lbs /in. z

foin = Minimum cyclic stress on net section of given lug,
1bs /in. & .

g = Gap between lugs, inches

hj..hg = Edge distances in transversely loaded lug, inches

h,, = Effective edge distance in transversely loaded lug

K = Allowable stress (or load) coefficient

kj,kp, k3= Fatigue parameters

M = Bending moment, in. -lbs.

N = Fatigue life, number of cycles

P Load, lbs.

R = Stress ratio, f,,/f,,,

ts = Bushing wall thickness, inches

t ) Lug thickness, inches

w = Lug width, inches

a = Angle of load to axial direction, degrees

€ Strain, inches/inch

p = Density, lbs/in. 3



L

v

Subscripts

all = Allowable opt = Optimum

ax = Axial P = Pin

8 = Bushing . = Shear

b = Bending T = Tang .
br = Bearing % = Tensile

e = Compression tr = Transverse

L = Lug s = Ultimate

nax " = Maximum x = Cross grain

n = Net tensile y = Yield

o = Oblique 1, 2 = Female and male lugs

9.3 Lug and Bushing Strength Under Uniform Axial Load

Axially loaded lugs in tension must be checked for bearing strength and

for net-section strength. The bearing strength of a lug loaded in tension, as
shown in Figure 9-1, depends largely on the interaction between bearing,
shear-out, and hoop-tension stresses in the part of the lug ahead of the pin.
The net-section of the lug through the pih must be checked against net-tension
failure. In addition, the lug and bushing must be checked to ensure that the
deformations at design yield load are not excessive.

[0) nu B cj

HIEAN |y e

Figure 9-1. Schematics of Lugs Loaded in Tension

9.3.1 Lug Bearing Strength Under Uniform Axial Load

The bearing stresses and loads for lug failure involving bearing,
shear-tearout, or hoop tension in the region forward of the net-section
in Figure 9-1 are determined from the equations below, with an allowable
load coefficient (K) determined from Figures 9-2 and 9-3. For values of
e/D less than 1. 5, lug failures are likely to involve shear-out or hoop-
tension; and for values of ¢/D greater than 1.5, the bearing is likely to be
critical. Actual lug failures may involve more than one failure mode, but

9.3



such interaction effects are accounted for in the values of K. The lug ultimate

bearing stress (F,  )is
L
Fom = K—2 Fyy, (e/D<1.5) (9-1a)
L D
Foru =KFtux: (e/Dz 1.5) (9-1b)
L

The graph in Figure 9-2 applies only to cases where D/t is 5 or less, which
covers most of the cases. If D/t is greater than 5, there is a reduction in
"strength which can be approximated by the curves in Figure 9-3. The lug

yvield bearing stress (F‘,"L) is’

Fb':.vvu = K% Foyyeo (e/D<1.5) (9-2a)
FbrYL = K Fiye, (e/DZ1.5) (9-2b)
2.0 \
. 1.8 J/
) \
g \
o
?
o
&)
T 1.6
@
3 /V
o
= 1.4 \
‘3 N\
3
2
2 -
;: -} ——Prrl, = Kat Frux —t}-emdast— Py, = KDt Fyyy
1.2 hay
1.0

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
e/D

Figure 9-2. Allowable Uniform Axial Load Coefficient
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The allowable lug ultimate bearing load (Pb,.“ ) for lug fa.11ure in bearing,
shear-out, or hoop tension is

n

Pbru,_ FmL Dt, (if F,,, £ 1.304 F,,,) ' (9-3a)

Py, = 1.304 Fury, Dt, (if F,y, > 1. 30.4 Fiyy) . (9-3b)

Pb,u /Dt should not exceed either Fbm or 1.304 F,,, where F, , and Fy,,
are 'the allowable ultimate and yvield bearing stresses for the lug material
for e/D = 2.0, as given in MIL-HDBK-5 or other applicable specification.

Equations (9-3a)and (9-3b) apply only if the load is uniformly dis-
tributed across the lug thickness. If the pin is too flexible and bends
excessively, the load on the lug will tend to peak up near the shear faces
and possibly cause premature failure of the lug.

A procedure to check the pin bending strength in order to pre-
vent premature lug failure is given in Section 9.4 entltled "Double Shear

Joint Strength Under Uniform Axial Load."

9.3.2 Lupg Net-Section Strength .Und.er Uniform Axia.l Load

The allowable lug net-section tensile ultimate stress (Fn“ )
on Section 1-1 in Figure 9-4a is affected by the ability of the lug material
to yield and thereby relieve the stress concentration at the edge of the hole.

Fao = KaFoy (9-4)

K., the net-tension stress coefficient, is obtained from the graphs shown

in Figure 9-4 as a function of the ultimate and yield stress and strains of
the lug material in the direction of the applied load. The ultimate strain(g,)
can be obtained from MIL-HDBK-5.

0
b—e

%D + (a)

Figure 9-4. Net Tension Stress Coefficient
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The allowable lug net-section tensiie yield stress (F"VL) is

FnyL = K Fyy (9-5)

The allowable lug net-section ultimate load (P,, ) is
ll\lL

P,mL = F,,,_1L (w-D)t, (if F,, = 1.304 F,,) (9-6a)
Py, = 1.304 Fy,, (w-D)t, (if Fy, >1.304 F,) (9-6b)
9.3.3 Lug Design Strength Under Uniform Axial Load

The allowable design ultimate load for the lug (P, ) is the
lower of the values obtained from Equations (9-3) and (9- 6)

Pm bm (Equations (9-3a) and (9-3b), or (9-7)
P,, (Equations (9-6a) and (9-6b))
L .
9.3.4 Bushing Bearing Strength Under Uniform Axial lLoad

The allowable bearing yield stress for bushings (Fb,ys)' is re-
stricted to the compressive yield stress (Fcy ) of the bushing material,
unless higher values are substantiated by tests

The allowable bearing ultimate stress for bushings (Fbms) is

Foe, = 1.304 Foy_ (9-8)

The allowable bushing ultimate load (P“e) is

P“ =1.304 Fcya D,t (9-9)
This assumes that the bushing extends through the full thickness
of the lug. :
9.3.5 Combined Lug-Bushing Design St'rength Under Uniform Axial Load

- -

The allowable lug-bushing ultimate load (P“L ) is the lower of the
loads obtained from ‘Equations (9-7) and (9-9). &

P

Y

=P, (Equation (9-7), or P, (Equation (9-9)) (9-10)
8 -

9.4 Double Shear Joint Strength Under Uniform Axial Load

The strength of a joint such as the one shown in Figure 9-5 depends
on the lug-bushing ultimate strength (P ) and on the pin shear and pin
bending strengths.
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/ fbr?_

/
A €] ol L €1
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| .p/2 b2 p/2
' ' | b,

wi

Figure 9~5. Double Shear Lug Joint

9.4.1 Lﬁg—Bushing Design Strength for Double Shear Joints Under
Uniform Axial Load

The allowable lug-bushing ultimate load (P"L ) for the joint is
' 8

-

computed, using Equation (9-10). For the symmetrical joint shown in
the figure, Equation (9-10) is used to calculate the ultimate load for the
outer lugs and bushings (ZPnL ) and the ultimate load for the inner lug
8
1 .
and bushing (P“L ). The allowable value of P“L for the joint is the lower
o2 . . . te

of these two ﬁlues.

P, = ZP“\. (Equation (9-10)), or Py (Equation (9-10)) (9-11)

Lg 8




9.4.2 Pin Shear Strength for Double Shear Joints Under Uniform
Axial Load

The pin ultimate shear load (P, us,, ) for the symmetrical joint
shown in Figure 9-5 is the double shear strength of the pin:

P, =1.571 D,, Fy, (9-12)

“lP
where }.7‘,,“P is the ultimate shear stress of the pin material.

9.4.3 _Pin Bending Strength for Double Shear Joints Under Uniform
~Axial Load

-Although actual pin bending failures are infrequent, excessive
pin deflections can cause the load in the lugs to peak up near the shear
planes instead of being uniformly distributed across the lug thickness,
thereby leading to premature lug or bushing failures at loads less than
those predicted by Equation (9-11). At the same time, however, the con-
centration of load near the lug shear planes reduces the bending arm and,
therefore, the bending moment in the pin, making the pin less critical in
bending. The following procedure is used in determining the pin ultimate
bending load.

Assume that the load in each lug is uniformly distributed across
the lug thickness (b; = t), and 2by =t;). For the symmetrical joint shown
in Figure 9-5, the resulting maximum pin bending moment is

t) ts
M =5~ (5—+ % + 6 (9-13)

naxP —

The ultimate failing moment for the pin is
3
M,, = 0.0982 ky, D, Fyy, » o (9-14)
where k, is the plastic bending coefficient for the pin. The value of kb

varies from 1.0 for a perfectly elastic pin to 1. 7 for a perfectly p1a.st1c -
pin, with a value of 1. 56 for pins made from reasonably ductile materials

(more than 5% elongation).

The pin ultimate bending load (P“b ) is, therefore,

0.1963 k,_ p,> F,

T )

(9-15)
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If Pubp is equal to or greater than either P“Le (Equation (9-11) or P“,P

(Equation (9-12)), then the pin is a relatively strong pin that is not critical
in bending, and no further pin bending calculations are required. The
allowable load for the joint (P,;,) can be determined by going dlrectly to
Equation (9-19a).

1f Py,, (Equation (9-15)) is less than both P, (Equation (9-11))
8

and P, , (Equation (9-12)), the pin is considered a relatively weak pin,
cr1t1ca1 in bending. However, such a pin may deflect sufficiently under

load to shift the c. g. of the bearing loads toward the shear faces of the lugs,
résulting in a decreased pin bending moment and an increased value of P“b
These shifted loads are assumed to be uniformly distributed over widths b1
and 2b;, which are less than t; and ty, respectively, as shown in Figure 9-5.
The portions of the lugs and bushings not included in b) and 2b, are con-
sidered ineffective. The new increased value of pin ultimate bending load is

0.1963 k, D, 3 Fy.
P

z 2 ¥ g)

The maximum allowable value of P, ub, is reached when b; and bZ are suf-
ficiently reduced so that Pub (Equation (9-15a)) is equal to P (Equation

(9-11)), provided that b and 2b are substituted for t| and tz, respectively,
At this point we have a balanced design where the joint is equally critical
in pin-bending failure or lug-bushing failure.

The following equations give the '"balanced design' pin ultimate
bending load (P‘“,P u ) and effective bearing widths (b, and 2b, ,,):
X

' ! 1
= e (L, 2 2. -
'P“"pmx ZC\] C (2 + 7 +g)+g” -2Cg (9-16)
where
' P
“LBI P“‘-az
C= R -~
P t, + P, ¢
“LBl 2" u,_32 1

The value of P,, on the right hand side of Equation (9-16) and the values of

P . and P“L in the expres sion for C are based on the assumption that the
81 B2 '
full thicknesses of the lugs are effective and have already been calculated.

(Equations (9-10) and (9-15)).

u
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If the inner lug strength is equal to the total stréngth of the two
outer lugs (P, =2P, ), and if g = 0, then
tep tey

Pub = Pub P (9"17)

P max 3 uL82

The '"balanced design'' effective bearing widths are

P“bP nax tl
b = -
lnl.n ZP“ . (9 183.)
ts)
Pub tz
P max
zuin Pu ( )
. LBZ
where P, is obtained from Equation (9-16) and P, and P, are
P max ) e 1 LBZ
the previously calculated values based on the full thicknesses of the lugs.
Since any lug thicknesses greater than b, or by are not considered

1
effective, an efficient static strength de simgxg would"Have t] = by gn and
tz = Zmeln’

The allowable joint ultimate load (P,;;) for the double-shear joint
is obtained as follows: :

If P,, (Equation (9-15) is greater than either P, (Equation (9-11)
: . P .

or P‘“’p (Equation (9-12)), then P,;, is the lower of the valuds of P“L or

P, . 8

\llP

Py = PuLB (Equation (9-11) or P, (Equation (9-12)) (9-19a)

If Pyy, (Equation (9-15)) is less than both P“L and P“,P, then
8

P,;; is the lower of the values of P“’p and P“bp .
nax

) S éPMP (Equation (9-12) or'P""an (Equation (9-16)) (9-19b)

9.4.4 Lug Tang Strength for Double Shear Joints Under Uniform Axial Load-

If Equation (9-19a) has been used to determine the joint allowable
load, then we have a condition where the load in the lugs and tangs is assumed
uniformly distributed. The allowable stress in the tangs is F,,,. The lug tang
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strength (P,) is the lower of the following values.

"

Py = 2Fy, Wy t) (9-20a)

Pr=F, Wt (9-20b)

2

'If Equation (9-19b) was used to determine the joint allowable load,
the tangs of the outer lugs should be checked for the combined axial and bend-
ing stresses resulting from the eccentric application of the béaring loads.
Assuming that the lug thickness remains constant beyond the pin, a load (P/2)
applied over the width b1 in each outer lug will produce the following bending

moment in the tangs:
P ( ty - b]. )

A simple, but generally conservative, approximation to the maximum com-
bined stress in the outer lug tangs is
6M
Fi o + o L (9-21)
T . W
1 Wfl 1 bT '('1 tl

where k, , the plastic bending coefficient for a lug tang of rectangular cross-
T

section, varies from 1.0 for a perfectly elastic tang to 1.5 far a perfectly
plastic tang, with a value of 1.4 representative of rectangular cross sections
with materials of reasonable ductility (more than 5% elongation). The allow-
able value of F, -is er . The lug tang strength is the lower of the fol-

lowing values: ! 1
ZFtufl W'rl tl
PT = 5 (9-22a)
1+ -3 ( . L )
P; = Fw'l’z W, t, (9-22b)

where b, _,, is given by Equation (9-18a)

9.5 Single-Shear Joint Strength Under Uniform Axial Load

In single-shear joints, lug and pin bending are more critical than in
double-shear joints. The amount of bending can be significantly affected by
bolt clamping. In the cases considered in Figure 9-6, no bolt clamping is
assumed, and the bending moment in the pin is resisted by socket action in
the lugs.
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Fbr rnax-l

Fbr max

Figure 9-6. Single Shear Lug Joint

In Figure 9-6 a representative single-shear joint is shown, with centrally
applied loads (P) in each lug, and bending moments (M and M) that keep

the system in equilibrium. (Assuming that there is no gap between the lugs,
M+ M; = P(t +t3)/2). The individual values of M and M are determined
from the loading of the lugs as modified by the deflection, if any, of the lugs,
according to the principles of mechamcs

The strength analysis procedure outlined below applies to either lug.
The joint strength is determined by the lowest of the margins of safety cal-
culated for the different failure modes defined by Equations (9-23) through (9-27).

9.5.1 Lug Bearing Strength for Single Shear Joints Under Uniform
Axial Loads

The bearing stress distribution between lug and bushing is assumed. .
to be similar to the stress distribution that would be obtained in a rectangular
cross section of width (D) and depth (t), subjected to a load (P) and moment (M).
At ultimate load the maximum lug bearing stress (F,, .., () is approximated by

_ P 6M
Fbl‘ max L — Dt + , (9'23)

where k,, is a plastic bearing coefficient for the lug material, and is assumed
to be the same as the plastic bending coefficient (k"L) for a rectangular section.
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The allowable ultimate value of F,, wex,
(9-1a) (9-1b)) or 1. 304 Fb,y'_ (Equations (9-2a) (9-2b)), whichever is lower.

is either Fb,uL {Equations

9.5.2 Lug Net-Section Strength for Single Shear Joints Under Uniform
Axial Load .

At ultimate load the nominal value of the outer fiber tensile stress
in the lug net-section is approximated by

F

| P 6M
< = + - (9-24)
F™ WDt i, (weD)2
L

where k, is the piastic bending coefficient for the lug net-section.
L

The allowable ultimate value of Fy ,,.

is F,, (Equation (9-4)) or
1.304 F (Equation (9-5)), whichever is lower. t
nyt

9.5.3 Bushing Strength for Single Shear Joints Under Uniform Axial Load -

The bearing stress distribution between bushing and pin is assumed
to be similar to that between'the lug and bushing. At ultimate bushing load the
maximum bushing bearing stress is approximated by

' oM
For vax 8 = DPt + > (9-25)
P k, Dt~

it

where kb’«.' the plastic bearing coefficient, is assumed the same as the plastic
bending coefficient (k, ) for a rectangular section.
L .

The allowable ultimate value of Fy, ,,, g is 1.304 F°"a’ where Foy

is the bushing material compressive yield strength.

9.5.4 Pin Shear Strength for Single Shear Joints Under Uniform Axial Load

The maximum value of pin shear can occur either within the lug or
at the common shear face of the two lugs, depending upon the value of M/Pt_
At the lug ultimate load the maximum pin shear stress (F, ,., ¢) is approxi-
mated by

- 1.273 .
Fy pax 8 = ———?_2"];3! (if —l‘DM— =2/3) (9-26a)
D» t
’ 2 1
- 2M
O (——— +1-1 M
F _ 1,273 P Pt . (if == >2/3) (9-26b)
s max P T 2 - o Pt
Pt Pt




Equation (9-26a) defines the case where the maximum pPin shear is obtained
at the common shear face of the lugs, and Equation (9-26b) defines the case
where the maximum pin shear occurs away from the shear face.

The allowable ultimate value of F ,,.p is F,, , the ultimate shear
stress of the pin material. F

9.5.5 Pin Bending Strength for Single Shear Joints Under Uniform
Axial Load

The maximum pin bending moment can occur within the lug or at
the common shear faces of the two lugs, depending on the value of M/Pt. At
the lug ultimate load the maximum pin bending stress (Fy ,,, ¢) is approxi-
mated by

10. 19M .
Fypr =20t (L g ) e M 23/) (9-273)
kyo Dp
2 ! .
(N(BE) 410
F _ 10.19M \ Pt/ +1-1/ -
b max P T 3 > ’
ky» D, _I.)I:é (9-27b)
Gaf M >3/8)
Pt

where ky, is the plastic bending coefficient for the pin.

Equation (9~27a) defines the case where the maximum pin bending
moment is obtained at the common shear face of the lugs, and Equation (9-27b)
defines the case where the maximum pin bending moment occurs away from
the shear face, where the pin shear is .zero. - .

The allowable ultimate value of F gax p 15 Ftu,,' the ultimate tensile
stress of the pin material.

9.6 Example.of Uniform Axially Loaded Lug Analysis

Determine the static strength of an axially loaded, double shear joint,
such as shown in Section 9. 4, with dimensions and material properties given
in Table 9.1, ‘
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Table 9-1. Dimensions and Properties

Ferhale Lugs, 1 Male Lug, 2 Bushings, Pin
"1 and 2
Material | 2024-T351 Plate 7075-T65]1 Plate] Al. Bronze 4130 Steel
Fyy 64000 psi 77000 psi 1110, 000 psi 125,000 psi
(X-grain) (X-grain)
F,, 40000 psi 66000 psi 60, 000 psi 103, 000 psi
(X;giain) (X-ﬁgrain)
Foy v 60, 000 psi
Fou 82, 000 psi
E 10. 5 x 10® psi 10.3 x 10° 29 x 100 psi
€, 0.12 0.06
Dor D, D= 1.00 in. D=1.00in. D, = 0.75 in., D, = 0.75 in.
D=1.00in :
e 1.25 in. 1.50 in.
a 0.75in, 1.00 in.
w =W, 2.50 in. 3.00 in.
t 0.50 in. 0.75 in. 0.50 and
0. 75 in.
g 0.10 in.

(1) Female Lugs and Bushings

F,,. = 64,000 psi; 1.304 F,,, = 1.304 x 40000 = 52160 psi.

a) Lug Bearing Strength (Equations (9-2a) and (9-3b))

°1 _1.25 . 25; therefore K; = 1.46 (from Figure 9-2)
D 1.00

PbNL = 1.304 x 1.46 x 0.75 x 40000 x 1.00 x 0. 50 = 28600 1bs.
1

b) Lug Net-Section Tension Strength (Equations (9-5) and (9-6b))

F

. D _ 100 _g 40, = 40000 _ 4 25
wy  2.50 F., 64000
Feu 64000

3 = 0.051; therefore, k,ll =0.74
Ee, 10.5x10 x0.12 ,

(by interpolation from Figure 9-4y

P, =2x1.304x .74 x 4000 x (2.5 - 1.0) x .5 = 57,898 lbs.

]
L
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(2)

c) Lug Design Strength (Equation 9-7))

P =

v

© = 28600 lbs.
L bruLl -8 h 8

d) Bushing Bearing Strength (Equation (9-9))

P, = 1.304x 60000 x 0.75 x 0.50 = 29300 Ibs.
81 : .

e) Combined Lug-Bushing Design Strength (Equation (9-10))
P, =P, = 28600 1bs.

L ) Ly

81

Male Lug and Bushing

F,,, = 77000 psi; 1.304 Fyy, = 1.304 x 66000 = 86100 psi.

a) Lug Bearing Strength (Equations (9-1b) and (9-3a))

[o

o ‘
;' = l—g% = 1.50; therefore, Ky = 1.33 (from Figure 9-7)

P,, =-1.33x 77000 x 1.00 x 0.75 = 77000 Ibs.
L2 .

b) Lug Net-Section Tension Strength (Equations (9-4) and (9-6a))

D __1.00 - g, 333; F”'. = 66000 _ 0.857;

W, 3.00 F,, 77000

Feo 77000

E¢,  10.3x 10° x 0. 06
(by interpolation from Figure 9-4)

= 0.125; therefore K"Z = 0. 87

P, =1.304x87x66000x(3.0-10)x.75=112,313 lbs.

h\lL

¢) Lug Design Strength (Equation (9-7))

=P

bru

P = 77000 lbs.
Y] L2

d) Bushing Bearing Strength (Equation (9-9))

'P"a' = 1.304 x 60000 x 0. 75 x 0.75 = 44000 lbs.
2 :
e) Combined Lug-Bushing Design Strength (Equation (9-10))

P =P

4

uy . = 44000 1bs.
8
2 2
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{(3) Joint Analysis

a) Lug-Bushing Strength (Equation (9-11))

P, =P, = 44000 lbs.
Ly tap

b) Pin Shear Strength (Equation (9-12))

Py, = 1.571 x (0.75)° x 82000 = 72400 lbs.

¢) Pin Bending Strength (Equation (9-15))

The pin ultimate bending load, as su‘ming uniform bearing across
the lugs, is

0.1963 x 1.56 x (0. 75)3 x 125000
0.25+ 0.1875 4+ 0. 10

Since Pub is less than both P, and P“P, the pin is a relatively

Py, = = 30100 1bs.

“Lg
weak pin wh1ch deflects suff1c1ent1y under load to shift the bear-
ing loads toward the shear faces of the lugs. The new value of
pin bending strength is, then, '

Py oux = 2C % (_\l;p_égg x (0.25 + 0.1875 + 0.10) + (0.10)% - 0.10),

28600 x 44000
. 286 x 0.75 + 44000 x 0. 050

29000 1lbs/in.
=2 x 29000 x (0. 754 - 0.10) = 37900 1bs.

i

(from Equatioﬁ (9-16)) where C

Therefore, Py,

The "balanced design" effective bearing widths are

37900 x 0. 50

e = = 0.331 in. (from Equation (9-18a))
e 2 x 28600

2, ~ =27900x 0.75 _ 9.646 in. (from Equation (9-18b)) . = -
2 ein 44000
Therefore, the same value of P would be obtained if the

P mex

thickness of each female lug was reduced to 0. 331 inches and
the th1ckness of the male lug reduced to 0. 646 inches.

d) Joint Strength (Equation (9-19b))

The final allowable load for the joint, exclusive of the lug tangs, is
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P = Py = 37900 1bs.

P max

(4) Lug Tang Analysis

p, = 2% 64000x2.50x 0-50 - 92700 1bs. (from Equation (9-22a))

0.331

1+-§-—x(.1 . 0.331
1. 4 0.500

or

P, = 77000 z 3.00 x 0. 75 = 173300 lbs. (from Equation (9-22b))

Therefore, the lug tangs are not critical and the allowable joint
load remains at 37900 pounds.

9.7 Lug and Bushing Strength Under Transverse Load

Transversely loaded lugs and bushings are checked in the same general
manner as axially loaded lugs. The transversely loaded lug, however, is a

more redundant structure than an axially loaded lug, and it has a more com-
plicated failure mode. Figure 9-7 illustrates the different lug dimensions

that are critical in determining the lug strength.

fett——— & —2ond

45

}n
% 45‘D\>{
_i\l— : hz/>

1
B
__‘ ‘

T
% (b)

Ptr Ptr

Figure 9-.7. Schematic of Lugs Under Transverse Loads

9.7.1 Lug Strength Under Transverse Load

The lug ultimate bearing stress (F‘”“L) is

= Fypy F (9-28)

bruL tru tux

F

where K,,,, the transverse ultimate load coefficient, is obtained from
Figure 9-8 as a function of the "effective'' edge distance (h,.):
- 6 |
b, =
3/hy + 1/hy + 1/h3 + 1 h/4
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] .av
iigure 9-8

The effective edge distance can be found by using the nomograph in
Figure 9-9. The nomograph is used by first connecting the hy and hy lines at
the appropriate value of h] and hp. The intersection with line A is noted. Next
connect the h3 and hy lines similarly, and note the B line intersection. Con-
necting the A and B line intersection gives the value of h , to be read at the
intersection with the h, line. The different edge distances (h}, hj, h3, hyg)
indicate different critical regions in the lug, hj being the most critical. The
distance hj is the smallest distance from the hole to the edge of the lug. Iif
the lug is a concentric lug with parallel sides, h_ /D can be obtained directly
from Figure 9-10 for any value of ¢/D. In concentric lugs, h; = hgandhp =h3.

The lug yield bearing stress (F‘"y«.)

‘brv Ktry tyx (9'2% .

where Ky the transverse yield load coefficient, is obtained from Figure 9-9.
The allowable lug transverse ultimate load (Pypy ) is
L

Py = Fyp Dt (if F, =1.304 F,, ) ‘ (9-30a)

¢ ruL T

P

truL

= 1.304 Fy,y Dt (if Fy, >1.304 Fyy,) (9-30b)

where FbruL and F, , are obtained from Equations (9-28) and (9-29)).
L :
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Figure 9-10. Effective Edge Distance

If the lug is not of constant thickness, then A, /A, is substituted
for h,,/D on the horizontal scale of the graph in Figure 9 8, where A, is the
lug bearing area, and

A = 6
b 3/A; + /Ay + 1/A3 + 1/A,

Ay, Ay, A3z, and Ay are the areas of the sections defined by hl’ hz, h3, and
hy, respectively. v : .=

The values of K,,., and K, corresponding to A,,/A,, are then obtained
from the graph in Figure 9-8 and the allowable bearing stresses are obtained

as before from Equations (9-28).and (9-29)).

9.7.2 Busﬁing Strength Under Transverse Load

The, allowable bearing stresé on the bushing is the same as _'éha_t for
the bushing in an axially loaded lug and is given by Equation (9-8).. The allow-
able bushing ultimate load (P,,, ) is equal to P“a (Equation (9-9)).

try
8
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9.8 Double Shear Joints Under Transverse Load
The strength calculations needed for double shear joint strength analysis

are basically the same as those needed for axially loaded. Equations (9-11)

through (9-19) can be used; however, the maximum lug bearmg stresses at

ultimate and yield loads must not exceed those given by Equatmns (9-28)

and (9-29).

9.9 Single Shear Joints Under Transverse Load

The previous discussion on double shear joint applies to single shear
joint strength analysis except the equations to be used are now Equations (9-23)
through (9-27).

9.10 Lug and Bushing Strength Under Oblique Load

The analysis procedures used to check the strength of axially loaded
lugs and of transversely loaded lugs are combined to analyze obliquely
loaded lugs such as the one shown in Flgure 9-11. These procedures apply
only if a does not exceed 90°.

M
B

P

tr

" Figure 9-11. Obliquely Loaded Lug

9.10.1 Lug Strength Under Oblique Load

The obliquely applied load (Pgy) is resolved into an axial component
(P = P_cosq) and a transverse component (Py, = Py sin ). The allowable
ultimate value of Py is P, and its axial and transverse components satisfy
the following equation: t

&) ) |

ﬁ!‘u

where P is the strength of an axially loaded lug (Equatmn (9-7)) and Pt“L is

the strength of a transversely loaded lug (Equations (9- 30a), (9- 30b)) The
allowable load curve defined by Equation (9-31) is plotted on the graph in
Figure 9-12.
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For any given value of g the allowable load (Pa ) for a lu2 can be

Figure 9-12.

Allowable Load Curve

0

determined from the graph shown in Figure 9-12 by draw1ng a line from the

origin with a slope equal to (P, /Py,, ).

The intersection of this line with the

allowable load curve (point 1 o:"i the éraph) indicates the allowable values of

P/P,

and P"/P"“ , from which the axial and transverse components, P

and P, ., of the alléwable load can be readily obtained.

9.10.2

Bushing Strength Under Oblique Load

The bushing strength calculations are identical to those for axial

loading (Equations (9-8) and (9-9)).

9.11 Double Shear Joints Under Oblique Load

The strength calculations are basically the same as those for an axially
loaded joint except that the maximum lug bearing stress at ultimate load must
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not exceed Py :/Dt, where Paiis defined by Eqﬁation (9~31). Use Equations
(9-11) through (9-19)).

9.12 Single Shear Joints Under ObliqueLoad

The previous discussion on double shear joints apphes to single shear
joint strength analysis except the equations to be used are now Equations
(9-23) through (9-27).

9.13 Mult:iple Shear and Single Shear Connections

Lug-pin. comb1nat10ns having the geometry indicated in F1gure 9-.13
should be analyzed accord1ng to the following criteria:

(1) The load carried by each lug should be determined by distributing
' the total applied load P among the lugs as indicated in Figure 9- 13,
b being obtained in Table 9-2. This distribution is based on the
. agsumption of plastic behavior (at ultimate load) of the lugs and
- elastic bending of the pin, and gives approximately zero bending
' deflection of the pin. ' :

(2) { The maximum shear load on the pin is given in Table 9-2.
(3) Thé maxirmum bending r'nom‘ent ‘in the pin is given'by the formulae

P;b
= --i-— Where b is given in Table 9.2,

These lugs of .Two outer lugs of equal thickness
equal thickness t' :not less than Ct' (See Table 9-2)

[ ‘
CP |~ 7775 S ]
P, - 7/ . '

p=—m—a - W DNONNWN—=p, =P ~
Py =
=P,

Cp;™— —

..

These lugs of equal '
thickness t'"

Figure 9-13. Schematic of Multiple Shear Joint in Tension




L Total number

of lugs includ-} | pjn Shear b
ing both sides |- :

£ 4t
5 .35 .50 Pl .28*—!"2--—'-
£t
2
t 4t
. - ,2
. 1 "
11 .44 .54 P .392..;:}_
® .50 | .50 P, .50 At
. 2

7 .20 | .s3P, .33

9 .43 | .54P; .37

9.14 Axially Loaded ILug Design

This section presents procedures for the optimized design of lugs,
bushings and pin in'a symmetrical, double-shear joint, such as shown in
Figure 9-5, subjected to a static axial load (P). One design procedure applies
to the case where the pin is critical in shear, the other to the case where the
pin is critical in bending. A method is given to help determine which mode of
pin failure is more likely, so that the appropriate design procedure will be used.

Portions of the design procedures may be useful in obtaining efficient
designs for joints other than symmetrical, double-shear joints.

9.14.1 Axial Lug Design for Pin Failure

An indication of whether the pin in an optimized joint design is more
likely to fail in shear or in bending can be obtained from the value of R (Equa-
tion (9-32)). If R is less than 1.0, the pin is likely to fail in shear and the
design procedure for Jo1nts with pins critical in shear should be used to get
an optimized design. If R is greater than 1.0, the pin is likely to be critical
in bending and the design procedures for joints with pins critical in bending
should be used.

: TF ¥ F.
. R= e . R (9-32)
r . O ’ .k‘bE Fﬁ“p L Fbr all g F’Sr all 2

where F and Fi, are the ultimate shear: and ultimate tension stresses for
~ the pin matenal kt is the plastic bending coefficient for the pin, and Fypaty 1

. ¢ L
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and Fy, a1 2Tre allowable bearing stresses in the fernale and male lugs. The
value of Fy, a11; Can be approximated by the lowest of the following three values:

D D .
K Fosey g7 1304 K Fyp -3 1304 F .
) |

where qu and F”xl are the cross-grain tens11e u1t1mate and tensile yield
stress for female lugs, Fe, is the compressive y1e1d stress of the bushings
. 51

in the female lugs, and K is obtained from Figure 9-14. Assume D= D, if

a better estimate cannot be made. F,, a1, is approximated in a similar manner.

1.1 - ’-
1.0

0.9 , e

os | &L

0.7
o 1 2 3 4
’p ~ _Pin Material Density
Py, Lug Material Density

Figure 9"-1‘4.' ‘Allowable Bearing Coefficient

9.14.1.1 Axial Lug Design for Pin Failure in the Shearing Mode

Pin and Bushing Diameter

The minimum allowable diameter for a pin in double shear is

D, = 0. 798 P_ o (9233)
Fi, - |

‘The outside diameter of the bushlng is D = D + Zts, where tg is the bush1ng

wall thickness.

Edge Distance Ratio (e/D)

The value of e/D that will minimize the combined lug and pin weight
is obtained from Figure (9-15)(a) for the case where lug bearing failure and
pin shear failure occur simultaneously. The lug is.assumed not cr1t1ca1 {n
net tension, and the bushing is assumed not critical in bearing.
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' The curves in 'Figure 9-15 apply specifically to concentric lugs
(a=e-D/2, and w = 2e), but they can be used for reasonably similar lugs.

Allowable I,oads

The allowable loads for the different failure modes (lug bearing
failure, lug net-tension failure, and bushing failure) are determined from
Equations (9-3), (9-6), and (9-9) in terms of the (unknown) lug thickness.
The lowest of these loads is critical.

Lug Thicknesses

The required male and fé:’hale lug thicknesses are determined by
equating the applied load in each lug to the critical failure load for the lug.

Pin Bending

To prevent bending failure of the pin before lug or bushing failure
occurs in a uniformly loaded symmetncal double-shear joint, the required
pin diameter is v :

afl t :
. 2.55 P 2 (9-34)
D, - \]_..____ (642 4zg)
SR k‘bp Ft\lp 1 L2 .

where ka is the plastic bending coefficient for the [Sin,. If the value of D,
from Equation (9-34) is greater than that from Equation (9-33), the joint
must be redesigned because the pin is critical in bending. '

Reduced Edge Di s“’ta'nc e

If the allowable bush1ng load (Equatlon (9-9)) is less than the allow-
able lug load (Equat1on (9-3)), a reduced value of e, obtained by using the curve
shown in F1gure 9-16 for optimum e/D, will give a lighter joint in which lug
bearing failure and bushing bearing failure will.occur simultaneously. The
previously calculate‘_d pin diaineter and lug thicknesses are unchanged.

Reduced Lug W1dth - ] ‘ ‘ A -

If the lug net-tension strength (Equat1on (9-6)) exceeds the bearing
strength (Equation (9-3)), the net-section width can be reduced by the ratio of
the bearing strength to the net-tension strength.

9.14.1.2 Axial .Lug Design for Pin Failure in the Bending Mode

Pin and Bushing Diar'n‘eters‘ (Fii;sf Approximation)

A first approximation to the optimum pin diameter is shown in
Equation (9-35).
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L 3 T

41
D, =

- where F, .nl"is either F

2 s F, F
1.273 P ) o, tu, ) (9-35)

kbp . Ftup -Ft 1111 Ft~c112 . ;

“’"i or 1.304 Ftrxi' whichever is s_rnaLller; and

Fy .1, is either FthZ or 1.304 Fiyep» Whichever is smaller. This approxi-
mation becomes more accurate when there are no bushings and when there
is no gap between lugs.

The first approximation to the outside diameter of the bushing is

D =D, + 2t,.

Forn © Allowable bushing ultimate
B bearing stress
F = Lug material cross~grain
tux : .
ultimate tensile _tress
2.5 :
2.0 A
/,

1.5 /

1.0° /
6.5 /
o -
0 6.5 1.0 1.5 2.0 2.5

DP I'-‘bruB/D Frux

JFigure 9-16. Edge Distance Ratio
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Edge Distance Ratio (e/D)

The value of e/D that will minimize the combined lug and pin weight
is obtained from Figure (9-15)(b) for the case of symmetrical double-shear
joints in which lug bearing failure and pin bending failure occur simultaneously.
The lug is assumed not critical in tension and the bushing is assumed not
critical in bearing.

The curves apply specifically to concentric lugs (a = e - D/2, and
w = 2e), but can be used for reasonably similar lugs.

Allowable Loads (First Approximation)

The allowable loads for the different failure modes (lug bearing
failure, lug net-tension failure, and bushing failure) are determined from
Equations (9-3), (9-6), and (9-9), in terms of the (unknown) lug thickness.
The lowest of these loads is critical. .

Lug Thicknesses (First Approximation)

The fiz_'st'appro_gcimatinn to the required male dnd female lug thick-
nesses are determined by equating the applied load in each lug to the lowest
allowable load for the lug. o :

Pin Diameter (Second Approximation)

The second approximation to the pin diameter is obtained by sub-
stituting the first approximation lug thicknesses into Equation (9-34).

Final Pin and.Bushing Diameters and Lug Thicknesses

The final optimum pin diameter is very closely approximated by

D oot = 1/3 D, (Equation (9-35)) + 2/3 D, (Equation (9-34)) (9-36)
An average value, however, is generally sufficient. If tne"final optimum ]
value is not a standard pin diameter, choose the next larger standard pin
and bushing.

The final lug thicknesses corresponding to the standard pin and
bushing are then determined. et

Pin Shear

The pin is checked for shear strength (Equation (9-33)).
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Reduced Edge Distance

If the bushing bearing strength (Equation (9-9)) is less than the lug
bearing strength (Equation (9-3)), a reduced value of ¢/D, obtained from the
curve in Figure 9-16, will give a lighter joint. The pin diameter and lug
thicknesses are unchanged. :

Reduced Lug Width
If the lug net-tension strength (Equation (9-6)) exceeds the lug bear-

ing strength (Equation (9-3)), the net-section width can be reduced by the ratio
of the bearing strength to the net-tension strength.

9.14.1.3 Example of Axially Loaded Lug Design

Using the same materials for the lug, bushing and pin as mentioned
in Section 9. 6, and assuming the same allowable static load of 37900 pournds,
a symmetrical double-shear joint will be designed to carry this load. A 0.10-
inch gap is again assumed between the lugs. The bushing wall thickness is
assumed to be 1/8 inch.

" The lug will first be assumed to be concentric (a = e - D/2, and
w = 2¢) but the final minimum weight design will not necessarily be concentric.

Pin Failure Mode (Equation (9-32))

The pin is first checked to determine whether it will be critical in
shear or bending, using Equation (9-32). Assuming D = D, as a first approxi-
mation, determine F,, and F , using the graph in Figure 9-14 to

all 1
determine K.

br 1112_

KF

1.02 x 64000 = 65300 psi; 1. 304 KF

tux] th]_

i

1.304 x 1.02 x 40000 = 53100 psi;

1.304 Fcysl = 1.304 x 60000 = 78200 psi; therefore, F,, ar] = 53100 psi

KFyq,, = 1.02 x 77000 = 78500 psi; 1.304 KFy,,

n

1.304 x 1.02 x 66000 = 87900 psi

1.304 F°’32 = 1.304 x 60000 = 78200 psi; therefore F,, a1y = 78200 psi

Therefore,
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R = X 82000 x ( 82000 , 82000 )= 3.4 (Equation (9-32))
1. 56 x 125000 53100 178200 o

Therefore, the design procedure for pins critical in bending applies.

Pin and Bushing Diameters - First Approximation (Equation (9-35))

af ~2Z .
_ 1.273 37900 ) (125000 125000 Y _ .
D, = \l———-—-l 5o * (zfo00 ) = F52180— * 000 )=0.741 in.

D=0.741 + 2 x 0.125 = 0,991 in.

Edge Distance Ration (e/D)

. The optimum value of e/D for both male and female lugs_ié 1.24
(Figure 9-15 (b)). Therefore a/D is 0.74 and w/D is 2.48 for a concentric

lug (therefore, w = 2.46 in. ).

Allowable Loads - Female Lugs and Bushings (First Approximation):

(a)" Lug Bearing Strength (Equations (9-2a) and (9-36))

P

bruL

=1.304 x 1.46 x 0. 74 x 40000 x O. 991 tl = 55900 1:1 lbs.

where K = 1.46 is obtained from Figure 9-2 for e/D = 1.24

(b) Lug Net-Section Tension Strength (Equations (9-5) and (9-6b))

Knl = 0. 74 (obtained by interpolation from the graphs shown in
Figure 9-9-4) for

I?ty I?tu

= 0.625; = 0.051

tu o Ry -

= 0.403;

¢|o

P““L = 1. 304 x 40000 x (2.46 - 0.991) t; = 56600 t; lbs.
1 . :
{c) Bushing Bearihg Strength (Equation (9-9))

P

U

. = 1,304 x 60000 x 0. 741 tl = 58000 ty 1bs.
I
Allowable Loads - Male Lug and Bushing (Fir.vst Approximation)

(a) Lug Bearing Strength (Equations (9-1a) and (9-3a))
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A

Pb’“l.z = 1.46 x 0.74 x 77000 x 0.991 t, = 82500 ty Ibs.

(b) Lug Net-Section Tension Strength (Equé.tions (9-4) and (9-6a))

K,, = 0.88 (obtained by interpolation from graphs shown in
Figure 9-4) for
D F Ftu

D 9.403 -2 -0.857
WZ tu €u

= 0.125

Pn,,LZ = 0.88 x 77000 x (2.46 - 0.991) t, = 99500 t, lbs.

(c) Bushing Bearing Strength (Equation (9-9))

P, = 1.304 x 60000 x 0. 741 t, = 58000 t, lbs.
g, 2 2

Lug Thicknesses (First Approximation)

3
= =000 g 339 5n,; tp = 200
2 x 55900 58000

= 0.654 in.

Pin Diameter - Second Approximation (Equation (9-34))

(0.339 4+ 0.327 + 0.200) = 0. 755 in.

D, = i 2.55 x 37900
1.56 x 125000

D=0.7555+2 x 0.125 = 1.0005 in.

Final Pin and Bushing Diameter (Equation (9-36))

Dpopy = 0. ;41 + & ZSS = 0.748 in. (Use 0. 750 inch pin)

D=0.750 4 2 x 0.125 = 1. 000 in.
Pin Shear (Equation (9-33)) ‘
D, = 0.798 \I 37900 . 5. 541 in.
82000
: Thgréfore, the pin is not critical in shear.

'Final Lug Thicknesses

t;=0.339x 2991 - 0,336 in.
: 71,000 -
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t, = 0.654 x 0.741 _ . 646 in.
0. 750

Reduced Edge Distance

The lug tension strength (Equation (9-3)) exceeds the bushing
strength (Equation (9-9)) for the male lug. Therefore, a reduced
e/D can be obtained for the male lug shown in Figure 9-16.

F
D “brey 9,750 _ 1.304 x 60000

D T 1,000 * 77000 =0.762

tux

Therefore, e/D = 0.97 (male lug)

Reduced Lug Width

The lug net-section tension strength (Equation (9-6)) exceeds the
bearing strength (Equation (9-3)) for both the male and female lugs.
Therefore, the widths can be reduced as follows:

) / 55900 t, ,
1.00 + (2.48 - 1.00) \ ):2.461:1.

56600 t;

€
u

82500 t,
99500 t,

Wy 1.00 + (2.48 - 1.00) ( ): 2.23 in.

Final Dimensions

D, = 0.750 in.; D = 1.000 in.
t; =0.336in.; e; =1.24in.; w, = 2.46 in.
0.97 in.; wp = 2.23in.

]

t) = 0.646in.; e,

Since w; is larger than 2e,, the final male lug is not concentric.

9.15 Analysis of Lugs with Less Than 5 PCT Elongation

The procedures given through Section 9-14 for determining the static
strength of lugs apply to lugs made from materials which have ultimate
elongations, €,, of at least 5% in all directions in the plane of the lug. This
section describes procedures for calculating reductions in strength for lugs
made from materials which do not meet the elongation requirement. In
addition to using these procedures, special'conside‘ration must be given to
possible further loss in strength resulting from material defects when the
short transverse gain direction of the lug material is in the plane of the lug.
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The analysis procre“.d'ufés for lugs made from materials without defects
but with less than 5% elongation are as follows:

9.15. 1 Bearing Strength of Axially Loaded Lugs with Less Than §
Elongation : :
(1) Determine F,,/F,, and €,/€,, using values of F,,, F,y, ¢,. and

€, that correspond to the minimum value of €, in the ple«: of
the lug.

(2) Determine the value of B, the ductility factor, frofn the zraph
" shown in Figure 9-17.

(3) Determine a second value of B (denoted by B o5) for the same
values of F,,, F,,, and €, as before, but with ¢, = 0.0%.

(4) Multiply the bearing stress and bearing load allowables riven
" by Equations (9-1a) through (9-3b) by B/B. o5 to obtain the
corrected allowables,

1.0
-\
e B e A 8
’\‘_‘ »e .
0. 9 e ~— 1.0
“io.g \\\\0.8 '\\\‘
% \\07\\\\\
& 0.7 _ : \06\\ U \\ ’
. :
0'60 0.1 0.2 0.3 5.4 0.5 5.6 0.7 5.8 0.9 1.9

ey/eu

Figure 9-17. Ductility Factor

9.15.2 Net-Section Strength of Axially Loaded Lugs with Less Than
5 PCT Elongation

The procedure for determining net-section allowables is {Ii¢ same
for all values of €,. The graphs in Figure 9-4 are used to obtain a value of
K, which is susbstituted in Equations (9-4) and (9-5). If the grain dircction of
the material is known, the values of F,,, F,,, and €, used in entering the graphs
should correspond to the grain direction parallel to the load. Otherwise, use
values corresponding to the minimum value of €, in the plane of the lug.
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9.15.3 Strength of Lug Tangs in Ax1a11y Loaded Lugs with Less Than
5 PCT Elongatmn : . . . :

The p1ast1c bending coefficient for a rectangular cross section can
be approximated by k, = 1.5B, where B is obtained from Figure 9-17, in
which y and u are the yield and ultimate strains of the lug tang material in
the direction of loading. The maximum allowable value of kt;L for a rec-
tangle is 1. 4. : o

9.15.4 Lug-Bushing Strength in Axially-Loaded S1ngle Shear Joint
' with Less Than 5 PCT Elongation :

The values of k.o and k, for rectangular cross sections are
approximated by 1. 5B, where B is'determined from the graph as described
in Figure 9-17. The maximum allowable values of k‘“‘L and ky, are 1. 4.

9.15.5 Bearing Strength of Transversely Loaded Lugs with Less Than 5%
. Elongation (Equations (9-28) through (9-30b) in Section 9.7.1

The same procedure as that for the bearlng strength of axially
loaded lugs is used.

(1) Determine B and B (g as descnbed for ax1a11y loaded lugs,
where B corresponds to the m1n1mum value of €, in the
plane of the lug

(2) Multiply the bearing stress and bearin‘g‘ load allowables

given by Equations (9-28) through (9-30b) by B/Bg. 5 to
obtam the corrected allowables

9, 16 Stresses Due to Press Fit Bushings

- Pressure between a lug and bushing assembly having negative clearance
can be determined from consideration of the radial displacements. After
assembly, the increase in inner radius of the ring (lug) plus the decrease in
outer radius of the bushing equals the difference between the radii of the buth--
ing and ring before assembly:

(9-36)

6= Uring - Ypushing
where

8 = Difference between. outer rad1us of bush1ng and 1nner rad1us
: of the nng e

u = Radial displacement, positive away from the axis of ring or bushing.
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Radial d1splacement at the inner surface of a r1ng subjected to internal
pressurep1s o :

) . - 2 . . . .
us E_. [ <t +_—"'D2 +|'lring] (9-37)
ring c2 . D » -

Ra.‘d‘ial‘ d..isplac‘en:ie'nt at théi outer surface of a bushing.s'ﬁbjected to
external pressure p is o
'Bp

S B A o bpian ] - (9-38)
Epush. B2 . A2 , .
where : . ‘ o . '
A = Inner radius of bushing D = Inner radius of ring (lug)
B = Outer radius of bushing E = Modulus of elasticity
C = =

Outer radius of ring (lug) u = Poisson's ratio
Substitute Equations (9-37) and (9-38) into Equation (9-36) and solve for p;

)

P =
- D c®i p*-

Eripg c? - DZ. 4

(B + A | )
'ubush.

Maximum radial and tangential stresses for a'r'ing' subjected to internal
pressure occur at the inner surface of the ring (lug).

o o 2 2
Foeop Fo=p| 2202 ]
T 2 _p

o )
. mng Ebush

Positive s1gn 1nd1cates tension. The maximum shear stress at this
point is

- -

The maximum radial stress for a bush1ng subJected to external pressure
occurs. at the outer surface of the bush1ng is

Fp=-P .

‘The maximum tangential ‘'stress for a bushing subjected to external pres-
sure occurs at the inner surface of the bushing is

2

— ZPB'"

Fesrres
B2 = A
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The allowable press fit stress may be based on:

(1) Stress Corrosion. The maximum allowable press fit stress in
magnesium alloys should not exceed 8000 psi. For all aluminum
alloys the maximum press fit stress should not exceed 0.50 F,,.

(2) Static Fatigue. Static fatigue is the brittle fracture of metals
under sustained loading, and in steel may result from several
different phenomena, the most familiar of which is hydrogen
embrittlement. Steel parts heat treated above 200 ksi, which
by nature of their function or other considerations are exposed
to hydrogen embrittlement, should be designed to an allowable
press fit stress of 25% F,,. '

(3) Ultimate Strength. Ultimate strength cannot be exceeded, but is
-not usually critical in a press fit application.

(4) Fatigue Life. The hoop tension stresses resulting from the press

fit of a bushing in a lug will reduce the stress range for oscillating

loads, thereby improving fatigue life.

The presence of hard brittle coatings in holes that contain a press fit
bushing or bearing can cause premature failure by cracking of the coating
or by high press fit stresses caused by build-up of coating. Therefore,
Hardcoat or HAE coatings should not be used in holes that will subsequently
contain a press fit bushing or bearing.

Figures 9-18 and 9-19 permit determining the tangential stress, Fy,
for bushings pressed into aluminum rings. Figure 9-18 presents data for
general steel bushings, and Figure 9-19 presents data for the NAS 75 class
bushings. Figure 9-20 gives limits for maximum interference fits for steel
bushings in magnesium alloy rings.

9.17 Lug Fatigue Analysis

A method for determining the fatigue strength of 2024-T3 and 7075-T6
aluminum alloy lugs under axial loading is presented. '

Figures 9-21 and 9-22 show the lug and the range of lug geometries
covered by the fatigue strength prediction method. Fatigue lives for lugs

having dimensional ratios falling outside the region shown should be corrobo-

rated by tests,

In this method the important fatigue parameters are k), kZ. and k3
(see Figure 9-23). N A |
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Figure 9-18. Tangential Stresses for Pressed Steel Bushings
in Aluminum Rings
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Bushing O. D, «=Diam. of Hole in Ring % 103

Bushing O. D.
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/ et )
Vi / g .
”
1
7 0
.50 .60 . 80 1.00 1.20 1.40 .60
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O.D. of the bushing is the after-plating diameter of the bushing.

The curves are based upon a maximum allowable interference tangential

stress of 8000 psi.

Figure 9-20. Maximum Interference Fits of Steel Bushings in
Magnesium Alloy Rings
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k| is plotted vs a/C
k; is plotted vs D/C
k3 is plotted vs D
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Figure 9-23. Parameters To Be Used in Figure 9-24 for Lug Fatigue Analysis
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To find the allowable life knowing the applied stresses and lug dimen-
sions, or to find the allowable stresses knowing the life, R value (R=f
and, lug dimensions, use the following procedure:

(1)

(2)

(3)

(4)

(5)

(6)

(8)

u!n/fvux)

Enter Figure 9-22 to check that the lug dimensional ratios fall
within the region covered by the method. Enter Figure 9-23
and read ky, ky, and k3; calculate the product kikoks.

Calculate the allowable net-tension static stress for the lug, F"“L’
according to the method described in Section 9. 3. 2.

Determine the value 0. 4 Fnut_. This is the alternating stress

corresponding to a maximum stress value of 0.8 F,, when
fun=0. 0.8 F““L was chosen as an average yield stress value

for 2024 and 7075 aluminum alloy lugs.

Using the value 0.4 F,, as an alternating stress, draw a straight
line between the intersection of this value and the appropriate
kjk2k3 curve on Figures 9-24 or 9-25, and the point 0.5 F““L at 1
cycle. This extends the kikpks curve to cover the entire life range
to static failure. :

Enter Figure 9-24 or 9-25 (lug fatigue curves for the case where

R = 0) with kjkpk3. For values of life, N = 103, 3 x 103, 104,

etc., or any other convenient values, determine the corresponding
values of f,, the stress amplitude causing fatigue failure when R =0.

Plot the values of f, found in Step 5 along the R = 0 line in a Goodman
diagram such as shown in Figure 9-26 (f, = f, when R = 0). The
Goodman diagram shown in Figure 9-27 applies to a particular
7075-T6 lug for which kjkpks = 1. 32 (see example problem 1),

but is typical of all such diagrams.

Plot the allowable net-tension static stress found in Step 2 as

f, at the point (f,, 0) of the Goodman diagram (f, = f,,, when f,=0).
For the case considered in Figure 9-26, this point is plotted as
(f, = 70,000 psi, f = 0).

-

Connect the point plotted in Step 7 with each of the points plotted
in Step 6 by straight lines. These are the constant life lines for
the particular lug being analyzed. The Goodman diagram is now
complete and may be used to determine a life for any given applied
stresses, or to determine allowable stresses knowing the life and
R value.
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9.18 Example.Problem of Lug Fatigue Analysis

Given a concentric 7075-T6 aluminum lug as shown in Figure 9-21, with
the following dimensions: a = 0.344 in, ¢ = 0.3444 in, and D = 0.437 in. 1If the
lug is subjected to a cycle axial load such that the maximum net-section stress
is 27,000 psi and the minimum net section stress is 18,470 psi, find the fatigue

life.

From the lug dimensions,

(1)

(2)

a/c=1.0 <¢/D=0.787 (D/c = 1.27)

Figure 9-22 indicates that the lug may be analyzed using this method.
From Figure 9-23,

k; = 1.0; kp = 1.33; k3 = 0.99; kjkpks = 1,32

Calculate the allowable net-section tensile ultimate stress, Foo s
t
for Equation (9-4) in Section 9. 3.2. For the given lug, F,, =
. . L
70,000 psi.

(3) 0.4 FnuL = 0.4 x 70,000 = 28, 000 psi..
(4) Draw a light pencil line on Figure 9-24 from the point. (f, = 28, 000
psi on kjkyks = 1.32) to the point (f, = 35,000, N = 1 cycle) (This
is illustrated, for clarity, on Figure 9-27).
(5) Enter Figure 9-24 and read values of f, for various numbers of
life cycles, using the line kjkpk3 = 1.32. These numbers are as
follows: ’
N l 10% l 103 ‘ 3% 103 l 104 J 3x104l 10° l 10° ' 107
f, l 30KSI 24.5 18.8 ‘ 13,5 | 8. 88 l 5.70 2.34‘ 1.30
(6) Plot the values of f, 2long the R = 0 line of the Goodman diagram. =
(Refer to Figure 9-26.)
(7) Plot FnL = 70,000 psi, as f, at the point (f,, 0) of the Goodman diagram.

(8)

(Refer to Figure 9-26.)

Connect the points plotted in Step 6 with the point plotted in Step 7
by straight lines. The Goodman diagram is now complete.
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27,700 - 18,470 _
2
= 23,085 psi, and read the

(9) Enter the Goodman diagram with values of f, =
27,700 + 18,470
2

fatigue life, N = 8 x 104 cycles, by interpolation (test results show
N = 8.6 x 104 cycles).

4,615 psi and f, =

If the known quantities are life and R value, e.g., N = 104 cycles and
R = 0, the allowable stresses can be obtained by using the same Goodman
diagram. Enter the completed Goodman diagram at R = 0 and N = 104 cycles
-and read the amplitude and mean stresses (in this case f, = f, = 13, 500 psi).

Only if the lug dimensions are changed, must a new Goodman diagram
be drawn.
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10. TRANSMISSION SHAFTING ANALYSIS

10.1 Introduction to Transmission Shaft Analysis

This section presents design methods for mechanical shafting. In this
discussion, a shaft is defined as a rotating member, usually circular, which
is used to transmit power. Although normal and shear stresses due to tor-
sion and bending are the usual design case, axial loading may also be present
and contribute to both normal and shear stresses. The design case must
consider combined stresses.

The general design of shafts will be discussed with emphasis on cir-
cular sections, either solid or hollow.

10.2 Nomenclature Used in Transmission Shafting Analysis

The symbols used in this section are shown in Table 10-1.
TABLE 10-1

List of Symbols Used in Shaft Analysis

C numerical constants n revolutions per minute

D,d diameter r radius

E modulus of elasticity rpm revolutions per minute

fpm feet per minute f normal stress

F force £, endurance limit stress,

G modulus of elasticity in shear ' reversed bending

hp horsepower f, shearing stress ‘

I moment of inertia fyp yield point stress, tension

J polar moment of inertia SAE Society of Automotive Engineers

k radius of gyration T torque

K stress concentration factor, \' velocity, feet per minute
normal stress y deflection ~

K, stress concentration factor, o column factor
shear stress 0] (phi) angular deformation

1 length W (omega) angular velocity, -

M  bending moment radians per second

10.3 Loadings on Circular Transmission Shafting

Transmission shafting is loaded by belts, chains, and gears which both
receive power from prime movers and distribute it to accomplish dé‘sired
results. Differences in the amount of power either added or subtracted at
various points on the shaft result in torsion of the shaft. The driving forces
and the driven resistances result in bending of the shaft and, for helical
gearing, an axial loading is also produced. These loadings generate both
normal and shear stresses in the shaft.
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The torsion loading produces a maximum shear stress at the shaft
surface calculated from

£, = IE (10-1)
s -
T

where the torque transmitted through the section is determined from the
horsepower relation:

T = _hp (63,000 (10-2)

n

The development of these relations can be found in standard texts.

The bending force produced by gears or chains is equal to the net
driving force given by

F=-L (10-3)
r
where the radius of the gear or sprocket is used. Bending forces from
belts must be obtained from the sum of the forces exerted on each side of
the pulley. The usual method is to use the following relation:

F, +F, = C(F] - Fp) (10-4)

where F; is the tension side force and F; is the slack side force. The
quantity (F; - F) is the net obtained from the horsepower equation. For
flat belts, the value of C is between 2 and 3, depending upon conditions of
installation. For V-belts, use C = 1. 5.

The axial load produced from gearing must be obtained from consid-
erations of the type of gear-tooth design used. It is beyond the scope of
this section to elaborate on gear loadings. Suffice it to say that they must
be considered.

The bending forces create normal stresses in the shaft given by

f - Mr - .
- 1 (10-5)

The axial forces create a normal stress

f=a 2 (10-6)

where ¢ is the factor changing F/A into an equivalent column stress where
F is compression and there is an appreciable length of unsupported shaft.
The recommended values of a are given in the following relation:
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1

for £/k < 115 =
(fox 4/ ) * =100, 0044 (¢/X) (10-7)
£, (L/k)?
for 4/k > 115) o= —r (10-8)
cnlE

C =1.01is used for hinged ends and C = 2. 25 is used for fixed ends. For
tensile axial loads and for short lengths in compression, o = 1.0 is used.

10.4 Analysis of Combined Stresses in Transmission Shafting

The recommended method for design of ductile materials subjected
to combined normal and shear stresses is that employing the maximum
shear stress theory. This theory states that inelastic action begins when
the shear stress equals the shearing limit of the material. The maximum
shear stress at any section is given as follows:

b tL220 (5)

where f; and f are obtained from the relations given in Section 10.3. The

value to be used for the design maximum shear stress, f, , is discussed
hax

? ] z (10-9)

in the next section.

10.5 Design Stresses and Load Variations for Transmission Shafting

The design stress is obtained from the yield strength of the material
to be used. However, it must be modified to account for various loading
anomalies. The ""Code of Design of Transmission Shafting,!" which has
been published by the ASME as code Bl7¢c, 1927, gives the basic factors
to be used in determining the design stresses, either normal or shear.
According to this code, the basic design stress shall be:

r

f, = 0.3 (tensile yiéld strength)
Shear Design Stress . or
| f, = 0. 18 (tensile ultimate strength)
(f=0.6 (tensile yield strength)
Normal Design Stress 1 or
L £ = 0.36 (tensile ultimate strength)
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The smaller of the two computed stresses is to be used. For combined
stresses, as discussed in Section 10. 4, the shear design stress is used. The
code also applies a factor of 0. 75 to the calculated design stress if the section
being considered includes a keyway. It is noted that this is equivalent to a
stress concentration factor of 1.33. Table 10-2 should also be consulted prior
to making allowance for keyways. Although the code does not mention stress
concentration factors further, they must be considered in any design.

Figures 10-1 through 10-5 give stress concentration factors to be applied
to the design stress for various types of section discontinuities.

2.6 A\

BN =

\\\\ Bending, f, = 32M/md>
0

D/d =1.5

!
!

—
/
hag— 1) ]

Theoretical SCK, K,
o
A /]
//

oo

1.6
1.4 D/d =1.1
\
\
1.2
o 1
0.2 0.3 - -

0.1 r/d

Figure 10-1. Stress Concentration Factor for Solid Shaft with Fillet
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Figure 10-2. Stress Conceﬁtration Factor for Solid Shaft with Radial Hole
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Figure 10-3. Stress Concentration Factor for Solid Shaft with Groove
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The maximum stress occurs in the fillet close to the

junction of the fillet with the small diameter.

Figure 10-4. Stress Concentration Factor for Hollow Shaft with Fillet
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Figure 10-5. Stress Concentration Factor for Hollow Shaft with Radial Hole (concluded)

Tables 10-2 and 10-3 give stress concentration factors to be applied to
keyways and several screw thread types. These are applied only if the section
being analyzed includes either threads or a keyway.

TABLE 10-2

Values of Stress Concentration Factor for Keyways, K

Annealed Hardened
Type of Keyway Bending Torsion Bending Torsion
Profile 1.6 1.3 2.0 1.6
Sled-Runner 1.3 1.3 1.6 1.6 -

TABLE 10-3

Values of Stress Concentration Factor for Screw Threads, K

Annealed Hardened
Type of Thread Rolled Cut Rolled Cut
American National (square) 2.2 2.8 3.0 3.8
Whitworth, Unified St'd. 1.4 1.8 2.6 3.3 .
Dordelet 1.8 2.3 2.6 3.3
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The code also recommends the application of a shock and fatigue factor
to the computed torsional moment or bending moment. This factor accounts
for the severity of the loading during stress rever sals caused by the revo-
fution of the shaft. Table 10-4 gives these factors for rotating shafts.

TABLE 10-4

Values of Shock and Fatigue Factors for Rotating Shafts
(from ASME Code)

Km KS
Nature of Loading (bending) (torsion)
Gradually Applied or Steady 1.5 1.0
Suddenly Applied, minor 1.5t0 2.0 1.0to 1.5
Suddenly Applied, heavy 2.0to0 3.0 1.5to0 3.0

10.6 Design Procedure for Circular Transmission Shafting

The recommended design procedure for circular shafts is as follows:

1)  Define all loads on the shaft.

2) Determine the maximum torque and its location.

3} Determine the maximum bending moment and its location.
4) Determine the design stress.

5) Determine the shaft diameter at the critical diameter.

6) Check for shaft deflections.

A sample problem will illustrate the application of the above principles
and the previous relations.

10.6.1 Sample Analysis of Circular Transmission Shafting - .

The loaded shaft illustrated in Figure 10-6 receives 20 hp at 300 rpm
on pully B at a 45° angle from below. Gear C delivers 8 hp horizontally to
the right, and gear E delivers 12 hp downward to the left at 30°. The shafting
is to be cold-drawn C1035 with minimum values of tensile yield strength,

f, = 72,000 psi, and of tensile ultimate strength, £, = 90, 000 psi.
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60% of Torque
24" Pulley Delivered
B 18" Gear
Total C 12" Gear
Torque E
A \ D
— I3 —
v 4

r‘-—lZ"-ﬁ‘——-—lS”-—-’-ﬂ—l Q' dweteg—] (' —we
50!!-————————————-—

Figure 10-6. Drawing Illustrating a Loaded Shaft

The forces shown are those which are placed upon the shaft. The
gearing loads do not consider the normal component. This is reasonable
for 14-3° tooth design, but for higher pressure angles the side force should
be included.

1) Define the loads.

The torques transmitted by the shaft are

. 63,000 hp _ (63,000) (20) _ 4200 in. -lbs
= > =

Tg 300 (10-10)
on shaft between B and C.
T, = (63, 000) (8) _ 1680 in. -1bs (10-11)

300
taken off at C.
_ (63,000) (12) _ S L
T, = 360 = 2520 in. -lbs ] (10-12)
on shaft between C and E.

The bending forces from the pulley is given by

2(4200
Fo = 2(F) - Fp) = —— = 2200) - 200 155 (10-13)

The bending force from gear C is

e 1680
Fc = T, = 3 = 187 lbs (10-14)
and from gear E, it is '
T
Fe =5 = 2220 = 420 1bs (10-15)




These applied loads are resolved into their vertical and hori-
zontal components and the bearing reactions calculated. These reactions
are found by summing moments and forces in the two planes. From these
computations, the shear diagram shown in Figure 10-7 were constructed.

A =484 E,= 364
’ Ay=419 E, =285

g o S f
" 18" " n A B D E
| 12 10"yl 0 L..lz..+_28,,___,w_10”4

B,= 495 C, =187 D,=166

By = 495 Dy= 210

| 7
B C D E % B

Shear Diagram

A\

Shear Diagram

Horizontal Plane Vertical Plane

Figure 10-7. Drawing Illustrating Construction of Shear Diagrams

The maximum bending moment is located where the shear diagram
crosses the axis. More complex loadings have several crossing points.
Each should be investigated to find the maximum. For the present case,
the maximum bending moment in the horizontal plane is

M, = (12) (484) = 5810 in. -lbs (10-16)

and in the vertical plane it is

Mg = (12) (419) = 5030 in. -lbs (10-17)
Y

Since hoth of these maximums are at the same place, at pulley B,
this is the point of maximum moment for the shaft. It is given by s

i
2

M, = [(Msx)z + (May)ZJ (10-18)
1

My = \:(5810)2 + (5030)2] {10-19)

Mg = 7685 in. -lbs (10-20)
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It is observed that if the location of the maximum moments is-
not the same in each plane, both locations must be checked to find the
maximum. It is also observed that for this example the maximum torque
is also located at the same section.

The design stress is now determined. Based on the tensile yield
strength, the shearing stress is

f, = (0.3) (72,000) = 21, 600 psi (10-21)

and based on tensile ultimate strength, it is

L st = (0.18) (90,000) = 16, 200 psi. | (10-22)

Our design will be based on the smaller. An allowance for the
keyway is now made. According to the code, 75% of the above stress is used.
Thus, )

Sdestgn - (0.75) (16,200) = 12,150 psi (10-23)

The shock and vibration factors to be applied to the torque and
moments for a gradually applied loading are K; = 1.0 and K; = 1.5; these
are obtained from Table 10-4.

It is noted that if the section includes any other type of stress
raiser such as a step in the shaft, a radial hole, or a groove, the appropriate
stress concentration factors are to be applied to the design stress.

As this is a case of combined stress, the principle of maximum
shear stress will be used for the design:

w-

-

e esten =[f=2 + ( ”fz'“> ] ' (10-24)

v

The shear stress f; is due to the forque of 4200 in. -lbs and the
normal stress f is due to the bending moment of 7685 in. -lbs.

Thus, based on the use of a solid circular shaft, - .
K, T 16 K, T (16) (1.0) (4200
f = s T ; - ) { { ) (10-25)
J D nD3
Ko M 32K M (32) (1.5) (7685)
£, = = 3 = 3 (10-26)
I D nD

Substituting into Equation (10-24) the above quantities gives
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' 2 2. %
_{T (16) (1.0) (4200) (32) (1.5) (7685) 3
12,150 = + 10-27

=1 nD3 ] [ 2nD3 J } ( )

Solving for D3 gives

16

S (427 +[(1.5) (7.685)]%}% (10-28)

D3 =
and

D = 1.726 in. (10-29)

The closest size commercial shafting is 1-15/16 in. It is noted
that commercial power transmission shafting is available in the following
sizes: '

5,3, 2, 1 115 5,3 27 215 37 315 47
16 16 167 16 1 16~ 16" 16 16 16" 16
415, 51,515 1 7 71 3

16 16 16 2 2

The use of standard sizes facilitates the selection of bearings,
collars, couplings, and other hardware.

Machinery shafting, those used integrally in a machine, is avail-
able in the following sizes:

1/2 to 1 in., tolerance of -0. 002 in.
1-1/6 to 2 in., tolerance of -0.003 in.
2-1/6to 2-1/2 in., tolerance of -0.004 in.

By 1/16 in. increments
in this range

By 1/8 in. increments 2-5/8 to 4 in., tolerance of -0.004 in.
By 1/4 in. increments 4-1/4 to 6 in., tolerance of -0.005 in.
By 1/4 in. increments 6-1/4 to 8 in., tolerance of -0.006 in. -~ .

Returning to our example, the diameter of the shaft determined is
based on strength considerations alone. As deflections are also a prime
consideration, both angular and transverse deflections should be checked.

The torsional deflection of a shaft is given by

_TL :
®=G7 (10-~30)
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where £ is the length of shaft between the point of application of the torque
and the section being considered.

Although the example given was statically determinate, many situa-
tions encountered in practice are indeterminate. For these, the location of
the maximum stress must be determined by methods of analysis for contin-
uous beams: the area-moment method, the three-moment method, the method
of superposition, and the moment-distribution method. The exposition of
these methods is covered in the section of this manual devoted to beam analysis.

10.6.2 General Design Equation for Circular Transmission Shafting

A general design equation for circular shafts, both solid and hollow,
can be developed on the basis of the recommended procedures. It is
1
16 2,2 %
D= ——— {K, 21?4+ [gM+SERLOEBIT Y (10-31)
£, (1-B% 8 y

where B = D, /D and D, is the inside diameter of the hollow shaft. This equa-
tion requires several trials for solution because of the inclusion of the axial
load F.

It is also pointed out that in the design of large-size shafting, the

.weight of the shaft and all pulleys and gears should be included in the design
calculations.
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11. BEARING STRESSES

11.1 Introduction to Bearing Stresses

The stresses developed when two elastic bodies are forced together are
termed bearing stresses. They are localized on the surface of the material
and may be very high due to the small areas in contact. The design informa-
tion given in this section assumes either static loading or low velocity loading.
The application to ball and roller antifriction bearings is not covered.

A brief discussion of bearing stresses in riveted joints is followed by a
presentation of theoretically derived equations for the bearing stresses between
various shapes in contact. An empirical treatment for the determination of
allowable loads is also presented.

It is noted here that the design of ball and roller bearings is a very
specialized area; however, their selections for various applications can be

made based on data published by the various manufacturers.

11.2 Nomenclature for Bearing Stresses

a = 1/2 the major diameter of an ellipse
c = 1/2 the minor diameter of an ellipse
D = diameter
E = modulus of elasticity
.. = allowable bearing load
Fe, = proportional limit in compression
F., = compressive yield stress
= calculated bearing stress
£y e = calculated compressive bearing stress
fore calculated shear bearing stress
foes = calculated tensile bearing stress
8 E E;
K = = for general case of two
3 By (14u12) + E] (1-u22)
bodies in contact
Ky,Kz, K3 = coefficients in Table 11-1
p axial load
P, = allowable axial load
R = minimum radius of curvature
R” = maximum radius of curvature
T = radius
T = cylindrical coordinate
t = thickness
t = width of rectangular area
w = load per length (lb/in)
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w, = allowable load per length (1b/in)
X,y = rectangular coordinates
4 :
Y = for general case of two bodies
_1.-+ 1 + 1, + 1, in contact
R; Rz R RY
5 = deflection
2
1
o v [(E-) )
R; R 2 R2

L

v2 (2oL (- - L )cosZcp]
for general case of two bodies in contact

= cylindrical coordinate

o = Poisson's ratio
o = angle shown in diagram for general case of two bodies in
contact in Table 11-1

11.3 Bearing Stresses in Riveted Connections

Figure 11-1 shows a riveted connection between two plates.

g
o]

Figure 11-1. Riveted Connection

Excessive bearing stresses result in yielding of the plate, the rivet, or both.
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The intensity of the bearing stress between the rivet and the hole is not
constant but varies from zero at the edges to 2 maximum value directly in
back of the rivet. The difficulty caused by considering a variable stress
distribution may be avoided by the common practice of assuming the bearing
stress to be uniformly distributed over the projected area of the rivet hole.
The bearing stress is thus,

P

£, = — 11-1
br Dt ( )

The allowable load is
P, = F, Dt (11-2)

where F,, is the allowable bearing stress..

11.4 Sample Problem - Bearing StAresses in Riveted Connections

Given: The riveted plate in Figure 112
Find: The bearing stress between the rivets and the plate.

Solution: The load per rivet is 20,000/4 = 5,000 lb. From Equation(11-1),

£, == —2000 . 445 000 psi
Dt (0.5)(0.25)
b |
} o
.
1
20000 1b. ! 30 20000 1b.
L
|
1 ®
b
| o
—
p=— 0.5 h
0.25
g . 1 i
T ! 1
T

'

Figure 11-2. Riveted Plate

11.5 Elastic Stresses and Deformation of Various Shapes in Contact

Table 11-1 treats the elastic stress and deformations‘produ;ed by pres-
sure between bodies of various forms. The first column of this table gives
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the form of the bodies and the dimensions that describe them. . The second
column indicates the shape and size of the surface of contact between the two
‘bodies as well as the combined deformation of the bodies, 6. The maximum
compressive, tensile, and shear bending stresses (f,,., f,,, and £, ) are given
in the third column of Table 11-1. The maximum compressive and tensile
bearing stresses occur at the center of the surface of contact and at the edge
of the surface of contact, respectively, and the maximum shear bearing stress
occurs in the interiors of the compressed parts. The equations in Table 11-1
are based on the assumption that the length of the cylinder and the dimensions
of the plate are infinite. For a very short cylinder or for a plate having a
width of less than five or six times that of the contact area or a thickness of
less than five or six times the depth to the point of maximum shear stress,
the actual stresses may vary considerably from those given by the equation
in Table 11-1.

Because of the very small area involved in what initially approximates
a point or line contact, the stresses obtained from the equations in Table 11-1
are high even for light loads. However, since the stress is highly localized
and triaxial, the stress intensity may be very high (above the yield point) with-
out producing apparent damage. Since this is the case and the formulas in
Table 11-1 hold only in the elastic range, the empirical formulas for allowable
loads given in Section 11.7 are most useful for practical design. However, the
formulas in Table 11-1 are useful as a guide to design, especially when empiri-
cal formulas are not available for a given case.

11.6 Sample‘ Problem - Elastic Stress and Deformation of Cylinder on
a Cylinder

Given: The cylinders shown in Figure 11-3.

Find: The contact surface, total deflection, and maximum compressive
stress. ’

w = 30 1b/in.

Steel, A151 4130 -~

¢ E;=E, = E = 30x10® psi

1 T My =uz=0.3

+ 1.0 .
l l Fcy = 70, 000 psi

Figure 11-%. Cylinders in Contact
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Solution: From Table 11-1, the surface of contact between two cylinders
with their axes parallel is a rectangular strip of width, b, given by

2 2
w DDy 1-u 1-u

b = 1.6\[ . Lo, =2
D, + Dy E, E,

2

2

: 1-0.3 1-0.3

b= 1.6 '\le(l)(g ‘;’) [ 22y v————é]= 0.00125 in.
+ - 30x 10 30x10

In this case,

The combined deflection of the cylinders is given by

. 2 2D 2D
6=M (_E_ + log, 1 + log, _.___2'..>
nkE 3 b b

if Ey=Ez=Eandu; =up = 0. 3, which is true for the given cylinders.
Thus, in this case,

2 4l0g, 2 L, _3-(9;-5-)—-)=9.87 % 10°% in.

3 ° 0.00125 ® 0.00125

5 - 2(1-0.3%)(30) (
7 (30x 109)

From the third column of Table 11-1, the maximum compressive bearing stress’
between two parallel cylinders is

w(Dy +D3)
Dy Dz
Max f,,. = 0.798

2 2
l—pl . I-UZ
B, E?

In this case,

30(1+0.5)

Max f,,, = 0.798 ‘2”‘0-5 — = 30, 800 psi
1-0.3%  1-0.

30 x106 30 x 100

Thus, the cylinders will not yield and since Max f

bre <F
in Table 11-1 are valid.

.y» the equations
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11.7 Empirical Treatment of Allowable Bearing Loads

Many tests have been made to determine the bearing strength of spheres
and cylinders. However, it is difficult to interpret the results due to the lack
of any satisfactory criterion for failure. Some permanent deformation is shown
to be produced even for very small loads. This deformation increases progres-
sively with increasing load, but there is no sharp break in the load-set curve.
Thus, it is necessary to select some arbitrary criterion for the amount of
plastic yielding that may be considered to represent failure. The circumstances
of use determine the degree of permanent deflection necessary to make a part
unfit for service.

The following sections present empirical formulas for the maximum
allowable bearing loads for various shapes in contact.

11.7.1 Empirical Formulas for Allowable Bearing Loads of a Cylinder
on a Flat Plate

Figure 11-4 shows a cylinder on a flat plate under a loading of w 1b.
per linear inch.

/7777777777777

Figure 11-4. Cylinder on Flat Plate

Table 11-2 gives empirical formulas for the allowable load (w,) for various
diameters of steel cylinders on flat steel plates. It should be noted that there
is little difference between failure under static conditions and that under slow
rolling conditions if slipping does not occur. If slipping occurs, tests are
necessary to obtain reliable information.

Although the allowable load (w,) is dependent upon length for short
cylinders, it is independent of length if the cylinders are longer than 6 inches.
The last equation in Table 11-2 is based upon an elongation of 0.001 in. /in. in
the bearing plate.
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- ______ TABLE 11.2 )
Empirical Formulas for a Steel Cylinder
on a Flat Steel Plate

Diameter Loading Condition Allowable Load (lb/in)
. Fcy - 13000
D< 25 in. ; - (____.... )
in static wg 20000 600D
25< D < 125 (FC - 13000) Ve
in. tatic = —-Y——————-) 3000/ D
s Va 20000
116 <D < 47 in. slow rolling w. = (18000 + 12.0 D) (FCI‘ 13000 )
: a . 23000

11.7.2 Empirical Formula for Allowable Bearing Load.-of-Steel-Spheres
in Contact

Figure 11-5 shows two similar spheres in contact.
P

Figure 11-5, Similar Spheres in Contact
The crushing load P is given by
P = 1960 (8D)1* 73

The test sphere used to derive this formula was steel of hardness 64 to 66
Rockwell C. ’

= . [Reproduced from
- begt available copy.
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