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I. INTRODUCTION

The basic characteristics of a balun-fed, open-sleeve dipole mounted

in front of a metallic reflector have been described previously (Ref. 1). A

crossed dipole with a single Greek-cross shaped sleeve has been used as the

basic element in two array configurations (Refs. 2, 3). One of the interesting

features of this antenna is that by simple addition of parasitic elements

(sleeves) to a conventional cylindrical dipole, the VSWR bandwidth can be

broadened significantly with negligible change in the radiation patterns. A

comparison of the VSWR response of an open-sleeve dipole with that of a con-

ventional cylindrical dipole of the same dimension is given in Fig. 1. It is

seen that an open-sleeve dipole can be operated over a bandwidth of t. 8:1 as

compared with an operating bandwidth

6 of 1.25:1 for a conventional cylindri-

cal dipole.

_ CThis report provides a more
CONLINDIICAL DPL(WCITouT SNCELDIOL detailed study of the open-sleeve dipole.

Additional VSWR and pattern measure-

ments are described for a variety of

dipole-sleeve arrangements. Multiple

cylindrical-rod sleeves and flat sleeves

of disc and Greek-cross shapes were

OPEN-SUEv( experimentally evaluated. It is shown
S1 that a multiple-sleeve arrangement can

provide considerable improvement in

VSWR response over that of a single-

200 230 So0 30 400 sleeve case. Gain measurements were
FRC(QuC. uN. Made on a crossed dipole with a tick-

Fig. 1. VSWR response of tack-toe sleeve configuration.
open-sleeve dipole and

conventional dipole.
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Ii. DESCRIPTION OF OPEN-SLEEVE DIPOLES

In the initial study, cylindrical rods were used for the construction

of the dipole and sleeves. The length of the sleeves were approximately

one-half that of the dipole. Experimental studies indicated that a wide variety

of sleeve configurations (shapes) can be used with no significant change in

VSWR and pattern characteristics. For simplicity of construction, multiple

flat-sleeve arrangements were se'ected for the major portion of this study.

In addition, multiple cylindrical rod-sle(:ve dipoles were evaluated.

The construction details for the crossed flat-sleeve dipoles and balun

are given in Figs. 2 to 4. Most of the measurements were made in the UHF

frequency band. The dipole length was selected to have the antenna's lowest

resonant frequency at approximately 500 MHz. Double and triple sleeve

arrangements of a Greek-cross and a disc configuration are shown. Figure

5 depicts the multiple cylindrical-rod sleeve dipole.

The feed line for the dipole is a copper-clad 0. 141-in.-diam semirigid

coa.%ial cable. Thi balanced line of the balun is a length of 0.141-in. -diam

rod. The short circuit of this line is coincident with the reflector surface.

The dipoles are screwed into the feed terminals, and the sleeves are sup-

ported by teflon or styrofoam spacers (not shown in sketches).

Preceding tpag Mik-



FEED POINT DETAILS

DIMENSIONS ARE 0.141-in. SEMIRIGIDIN INCHES COAXIAL CABLE

0.141 DIAM.

0.875 0.362
0.50 OD -0.250

-'t i !- 2.5
.•1 Ix I OPENING

VIEW WITHOUT
TOP SLEEVE

= -- - .. . .. 10 .1

FLAT SLEEVE S,
DýR

REFLECTOR SURFACE

Fig. 2. Dual flat-alvve dipole model
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DIMENSIONS
IN INCHES

4.5
5.25

10.]

0.75

SFLAT SLEEVES (3) DR

____.________ REFLECTOR SURFACE

Fig. 4. Triple flat-disc-sleeve dipole model
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10.1

DIMENSIONS IN INCHES

L2

144_.__ _4_,,0

t3 0 0.5 DIAM (TYP0

S1 0-,,i DIAM RING
SURROUNDING

Li 4.31 AU

Fig. 5. Multiple cylindrical- rod- sleeve dipole model
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Ill. VSWR

Swept-frequency VSWR measurements were made with the dipole

mounted in front of a 52-in. square reflector. The measurements were made

on one dipole with the orthogonal dipole terminated in a 50-2 load. Figure 6(a)

shows the VSWR response of a dipole with dual Greek-cross shaped sleeves

located at the same distance from the dipole. The VSWR response for a

dipole with only a single sleeve (top sleeve removed) is also shown for com-

parison. It is seen that addition of the second sleeve changes the VSWR

response considerably. The overall bandwidth is reduced, but the midband

performance is significantly improved with a VSWR of less than 1.29g: over

a 100-MHz band. For wideband operations, the spacing between the top sleeve

and the dipole can be increased. For example, the maximum VSWR can be

kept under 2.Z:I over a 1.9:1 frequency ratio when S1 and S2 are equal to

0.75 and 2.25 in., respectively [see Fig. 6(b)] . Figure 7 shows the VSWR

characteristics as a function of dipole-to-reflector spacing. As expected,

the miriband VSWR performance is improved as the dipole-to-reflector spacing

is increased with some narrowing of the overall bandwidth (less than 5%). For

systems applications, the choice of a proper dipole-to-reflector spacing also

depends on pattern and gain requirements.

In the sweep-frequency VSWR curves of Figs. 6 and 7 and all subse-

quent figures with various sleeve configurations, the VSWR response at the

low end remains essentially unchanged. Thus, it may be concluded that the

low-end response is controlled primarily by the dipole length and not the

sleeve parameters. All the VSWR curves demonstrate how the overall band-

width and midband peak VSWR can be controlled by the sleeve dimensions,

sleeve-to-dipole spacing, number of sleeves, and dipole-to-reflector spacing.

It should be pointed out that the dipole diameter has been fixed in these experi-

ments and that the diameter can also be changed if further optimization is

desired (Ref. 1).

Preceding page blank -9-
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A dipole with dual disc sleeves (Fig. 3) also resulted in a favorable

VSWR response as illustrated in Fig. 8. Figure 8(a) shows the VSWR when

both sleeves are spaced equidistant from the dipole; Fig. 8(b) shows the VSWR

when the bottom sleeve is held at a fixed distance of 0.75-in. from the dipole,

while the sleeve-to-dipole spacing for the top sleeve is varied. The 5. 2 5-in.-

diam sleeve dimension was experimentally determined as it yielded good

VSWR characteristics. The circular sleeve results are very similar to those

of the Greek-cross sleeves. The VSWR characteristics for various dipole-

to-reflector spacings were not measured, but it is anticipated that the results

should be similar to the curves of Fig. 7. Combinations of the Greek-cross

and the disc sleeves gave similar results to those found for the identical

cross or circular sleeves.
A triple circular sleeve arrangement (Fig. 4) can provide a consider-

able improvement in VSWR performance over that of a single or double sleeve

configuration. The addition of a third sleeve has resuilted in a bandwidth of

over an octave with a VSWR of less than 2:1 as shown in Fig. 9(a). The VSWR

response as a function of dipole-to-reflector spacing is depicted in Fig. 9(b).

It can be seen that the midband VSWR response is improved with a slight

decrease in the overall bandwidth.

In the original measurements (Ref. 1), the open sleeves (cylindrical

rods) and dipole were coplanar in the plane parallel to the reflector. As

indicated in Ref. i, the VSWR response is relatively insensitive to the location

of the sleeves, provided that the sleeve-to-dipole spacing is maintained.

Figure W0 shows an arrangement with the plane of the sleeves and dipole per-

pendicular to the reflector. Figure 10(a) shows the VSWR characteristics

with the bottom sleeve-to-dipole spacing fixed at 0.75-in. and the top-sleeve

spacing varied; Fig. 10(b) shows the VSWR curves with both cylindrical-rod

sleeves equidistant from the dipole and the length of the top sleeve varied.

The 5.69-in. sleeve length was previously selected as near optimum. Never-

theless, with variable sleeve spacings, length, and diameter, there are still

more parameters that can be varied to achieve the best VSWR response for

a particular use.

-12 -



//525D SLEEVES

0. S102- RUN
GRAPH S

5.81 =S
REFLECTOR SURFACE 5.1

(a)~~~o EQUA SLEV -T2PL SPACING

5.:1

1450 500 600 700 800 900 1000

FREQUENCY, MHz

(a) UEQUAL SLEEVE -TO- DIPOLE SPACING

Fig.1 8.t 0.WR res0ns of RUlNic-lv diol

GRAPH3-5-57



10.118102 - RUN 38

GRAPH 9, ti

5851
0.50 ~J~j 4j 5

-I- *-jIJI~3 0.b 75±R r WITH 5.8:1
(IS 5.25 DIAM SLEEVE

* (a) OMPARION OF UAL AN TRIPL DISC SLEEVE DPL

1.671-4090 21:

1.29A 1.3:1

450 500 600 700 800 900 1Q000
FREQUENCY, MHz

(a) VOMARIAOB FDALADTLE DISOLE-OLRELECTRDSPCING

Fig.9. SWR espnse f d~U-dsc-leevdi Ole

-14--RU 3



0.~ 802 -RUN 40

4 4Si O75

RELETR SURFACE

S2 -- 075 5.8MH1

S. - 1 1'.2 5 -•

581.0

3:1

,21.1.

1.67:1 1.67:

1.29-1 .9

:1l
450 500 600 700 800 900

FREQUENCY, MHz

(o) UNEQUAL OPEN-SLEEVE SPACtING

i10.1"----
I'; • o*-0.5D, TYP

t'5•O -10 RUN 40

,•REFLECTOR SURFACE

,L 5.58.

• y- = .5
-7 .0

129--- ti

450 500 600 "tOO Boo 900

FRf'OUENCY, MHz

(b) EQUAL OPEN-SLF.EVE SPA,(CINý WItH VARIABLE LENGTH OF TOP SLEE'4L

Fig. t0. VSWI ¢.lk r',,:,[,ns''• (two' c'ylilldrl".;l



A multiple-sleeve arrangement that employs four cylindrical-rod

sleeves (Fig. 5) was tested and found to provide improved VSWR performance

over that of a dual rod-sleeve configuration. The measured VSWR charac-

teristics as a function of dipole-to-reflector spacing are shown in Fig. ti.

This configuration provides a multitude of parameters that can be varied to

derive the optimum VSWR response.

Flat metal strips may be used for the construction of the dipole and

sleeves. On the basis of the equivalent radius concept, the width of the strip

is equal to twice the diameter of a cylindrical rod. Figure 12 shows the

VSWR characteristics of an open-sleeve dipole with both the dipole and sleeves

constructed of flat metal strips. The strips may be oriented either parallel with

or perpendicular to the reflector. The VSWR response of a cylindrical-rod

configuration is also shown for comparison, and only a small difference is

observed. A flat-strip construction may be useful when a low cross-section

configuration is desired.

Another variation of the open-sleeve dipole is the curved sleeve

configuration as shown in Fig. 13. The sleeve is in the form of a circular

arc spaced at a distance S from the dipole. Figure 13 shows the VSWR res-

ponse for various sleeve-to-dipole spacings. The purpose of this experiment

was to investigate the feasibility of this configuration, and no attempt was

made to optimize the VSWR performance.

°16-
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IV. PATTERNS

Radiation patterns of various sleeve-dipole configurations were

measured at 450, 600, and 800 MHz and for dipole-to-reflector spacings of

4.31, 5.25, and 6.25 in. Linear polarization was used in these measurements.

Patterns were measured for the sleeve-dipole arrangements that yielded good

VSWR characteristics over the band. The patterns are shown in Figs. 14 to

19, and the corresponding sleeve configurations are shown in Table 1. The

-3 and -10 dB beamwidths with respect to the on-axis field strength are

indicated on each of the patterns.

Cross polarization is generally less than -20 dB. and it is attributed

primarily to the coupling to the orthogonal dipole. Removal of the orthogonal

dipole reduced the cross-polarization level to below -25 d8 ort axis.

Table 1. Sleeve Configurations for Measured Patterns

FIGURE SLEEVE CONFIGURATION

14 SIN&E BOTTOM CROSS SLEEVE

1D OUAL SLEEVE, S1 • S2 075

16 DUALt I SLEEVE. $1 0•5, Sz 1 Z25

17 DUAL DISC 0 SLEEVE. $I S2 - 0-88

18 TRIPIE ( SLEEVE

19 MUULIPL( CYUL1NOWCAIL-RO0 SLEEVES
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A composite summary of the patLern characteristics of various

sleeve-dipole configurations may be viewed from the product of the E- and

H-plane half-power beamwidths as shown in Fig. 20. The beamwidth product

for each configuration is compared to that of a dipole with a single Greek-

cross sleeve. For the dual-sleeve configurations (both the Greek-cross and

disc shapes) where the sleeve-to-dipole spacing is less than 0.88-in., the

beam-width products are essentially the same as shown in Figs. 20(a) and

20(b). When the outboard sleeve is spaced farther from the dipole, some

narrowing of the half-power beamwidth is noted at 800 MHz as indicated in

Figs. 20(c) and 20(d). This beamwidth narrowing tends to suggest that some

enhancement in directivity is possible. However, this is not necessarily true

for all cases, since the measured patterns indicate that the pattern skirts are

also widened, and a multilobe structure exists in some cases. The beamwidth

product of the four-element rod-sleeve dipole is plotted in Fig. Z0(e). This

configuration resembles a Yagi antenna. Measurements showed that at 800

MHz considerable pattern sharpening occurred near the beam axis, indicating

the possible coexistence of a traveling-wave mode.

The patterns of Figs. 14, 15, and 17 were compared with the com-

puted patterns of a thin dipole in front of an infinite reflector. Generally,

the measured patterns resemble the theoretical patterns for a fixed dipole-

to-reflector spacing over the 450- to 800-MHz frequency band. Figure 21

depicts the measured patterns for a dual Greek-cross sleeve dipole as com-

pared with the theoretical dipole-reflector patterns. Conventional array

pattern computational techniques were used to determine the theoretical

patterns with the dipole field represented by

E - cos[(PL/2) sin 1- cos (pL/2)
cos 0

where L is the total length of the dipole. The measured patterns for the

single-sleeve and dual-disc sleeve dipole* are sihilar to those found in

Fig. 21.
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V. GAIN

The gain of a crossed dipole with a tick-tack-toe sleeve configuration

mounted in front of a 42-in. -diam reflector was measured for dipole-to-

reflector spacings of 3.31, 4.31, 5.31, and 6.31 in. A detailed description

of this dipole-sleeve arrangement can be found in Ref. 1. For each dipole-

to-reilector spacing, the gain was measured at five test frequencies: 450,

500, 600, 700, and 800 MHz. The dipole and sleeve dimensions were fixed

for all these measurements (see Fig. 22). Linear polarization was used, and

a caliLrated corner reflector was used as the reference gain standard at each

test frequency. The gain was measured at the balun input port of each of the

orthogon.aI dipoles, with both a horizontally or vertically polarized transmitter,

and the mtz7urements were performed at various range distances outdoors as

well as inside an anechoic chamber. A large number of data points were

recorded as shv"',n in Fig. 22. The measured gain values were corrected for

the mismatch Io~ses; i.e., the antenna was assumed to be matched to 50 12

at the input. The Cin of a thin ,\/Z dipole in front of an infinite reflector is

also shown for comparhson (Ref. 4).
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VI. SUMMARY AND CONCLUSIONS

A detailed study has been made of the VSWR, pattern, and gain

characteristics of the open-sleeve dipole. Experiments were performed with

various sleeve configurations. Sufficient information is provided for one to

select a sleeve antenna with wide VSWR bandwidth and with the knowledge of

its patterns. There is a multitude of parameters that can be varied to derive

the desired VSWR and pattern characteristics for a given application. Varia-

tions of the sleeve shape. sleeve-to-dipole spacing, and number of sleeves

affect the bandwidth and the midband peak VSWR. Generally, the niidband

VSWR can be improved as the operating bandwidth is decreased. The low-

frequency VSWR response is determined primarily by the dipole length and

is not affected by the sleeve paramneters.

Comparison of the measured patterns with the theoretical patterns

of a thin-dipole in front of an infinite reflector revealed some interesting

features. For relatively small sleeve-to-dipole spacings. the measured

patterns conform fairly well to the computed patterns. However, the mea-

sured patterns show less variations over a . 8:1 frequency band when the

dipole-to-reflector spacing is fixed. Gain measurements on a tick-tack-toe

sleeve dipole mounted on a 4Z-in.-diazn reflector reveal tha the gain versus

dipole-to- reflector spacing in terms of wavelength has the same general

trend as that of a theoretical \Iz diwple in front of a renector.
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