- Best
Available
Copy o

AD-758 651

AXIOMS AND THEOREMS FOR INTEGERS, LISTS
AND FINITE SETS IN LOGIC FOR COMPUTABLE
FUNCTIONS (LCF)

Malcolm Newey

Stanford University

Prepared for:

Office of the Secretary of Defense
Advanced Research Projects Agency
National Aeronautics and Space Administration

January 1973

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY -
MEMO AIM-184

STAN-CS-73-330

_AD 758651

AX10MS AND THEOREMS
FOR INTEGERS, LISTS AND FINITE SETS

IN LCF
'._'.":".' {pil2mm nfa"m
MALCOLM NEWEY e mm)
| U "‘.A.J.:'::‘r: i s/,'z
C

SUPPORTED BY
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

AND j _
ADVANCED RESEARCH PROJECTS AGENCY) |
ARPA ORDER NO. 457 g |
JANUARY 1973 !]
;G'X’;TWOC‘;JYAL TECHNICAL
INFORMATION SERVICE

U S Department of Commerce v
Springfield VA 22151 i

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

N STATEMENT A
Approved for public release; ((\
Diatribution Unlimited D

Unclassified
Securnity Classification

DOCUMENT CONTROL DATA-R& D

(Security clessilication ol titie, body of abstrect and indexing annotation nust be entered when the overall report Is ciassilied)
OHIGINATING ACTIVITY (Cotporate euthor) 28. REFORT SECURITY CLASSIFICATION
Stanford University, Computer Science Department Unclassified
Stanford California 94305 2b. GROUP

REPORY TITLE

Axioms and Theorems for Integers, Lists and Finite Sets in LCF

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

technical, January 1973

5 AUTHORIS) (First name, middle initial, iast neme)

Malcolm Newey

REPORT OATE 74. TOTAL NO. OF PAGES 7b. NO. OF REFS

January 1973 : -55’1f777 L
88, CONTRACT OR GRANT NO. 9a, OHIGINATOﬁS REPORT NUMBE R(S)
SD-183 STAN-CS-73=-330
b. PROJECT NO. ATM184
ARPA Order No. 457

c 9b. OTHER REPORT NOI(S) (Any other numbers that may be assigned

this report)

d.

10. DISTRIBUTION STATEMENT

Distribution Unlimited

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

13. ABSTRACT

LCF (Logic for Computable Functions) is being promoted as a formal language suitable
for the discussion of various problems in the Mathematical Theory c¢f Computation {/)
(IC). To this end, several examples of MIC problems have been formaiised and proofs
have been exhibited using the LCF proof-checker. However, in these examples, there
has been a certain amount of ad-hoc-ery in the proofs: namely, many mathematical
theorems have been assumed without proof and no axiomatisation of the mathematical
domains involved was given. This paper describes a suitable mathematical environ-
ment for future LOF experiments and its axiomatic basis. The environment developed,
deemed appropriate for such experiments, consists of a large body of theorems from
the areas of integer arithmetic, list manipulation and finite set theory.

.
DD |F~°on\res1 4 73 (PAGE 1) Unclassified

é§ ¢ f
S/N 0101.807-6801 JZZ Security Classification

Q

STANFORD ARTIFICIAL INTELLIGENCE LABURATCRY JAl d
MENO AINM-184 5

COMPUTER SCIENCE DEPARTMENT
REPORT CS-330

Axioms and Theorens
for Integers, Lists and Finite Sets
in LCF.

by

lalcolm Newey

ABSTRACT: -

LCF (Logic ‘or Computable Functicns) is being promoted as a
formal language ctuitable for the discussion of various problens in
the Mathematical Theory of Computation (MTC). To this end, several
exanples of MIC problems have heen formalised and proofs have Leen
exhibited using the LCF prooi-checker. Houever, in these examples,
there has been & certain amount of ad-hoc-ery in the proofs: namely,
many mathematical theorems have been assuned nithout preoef and no
axiomatisation of the mathematical domains involved was given. This
paper describes a suitable mathewatical environment for future LCF
experiments and its axiomitic basis. The environnent developed,
deemed appropriate for such experin:nts, consiste of a large body of
theorems from the areas of integer arithmetic, list manipulation and
finite set theory.

This research was suppcrted in part by the Advanced Research Projects
hgency of the Dffice of the Secretary of Ozfence undar Contrzct SC-183 and in
part Ly the MNational Aeronautics and Space Administration under Contract
NSR 85-328-588.

The vieuws and conclusicns contaimed in this document are those ' of the
author cond should not be interpreted as nscessarily representing the official
policies, either expressed or implied, of the Advanced Research Projects Agency,
the National Aeronautics and Space Aduinistration, or the U.S. Government.

Reproduced in the USA. Available from the National Technical
Infarmation Service, Springfield, Virginia 22151, Price: full size copy
$3.28;: microfiche copy $8.85.

r

Z

Axioms and Thzorems
for Integers, Lists and Finite Sets
in LCF.

by

Malcolm Newey

CONTENTS

Introduction

Theorems from NJ Axioms and a
Propositional Logic

Individual Equality and Definedness

Natura! Numbers

Integers and Arithmetic

Lists and S-Expressions

. Finite Sets
Conclusions,
References

. Appendices.

1. INTRODUCTION

BE FEISESSSSSIES

By LCF, I mean the Milner version of a logic proposed by Dana Scott in
1969, mechanized by Milner in 1971, and described by Milner in [1,2)., [1] is
actually the user’s manual for the LCF proof-checker uhich has been the vehicle
for generating formal proofs in the logic.

Since the development of the proof-chacker, LCF has been successful ly
applied to various traditional prcblen zreas of the HMathematical Theory of
Computation. The principal experiments have involved program semantics,
correctness of programs, termination c¢f programs and compiler correctness

A5 &B) ¢

In each of the examples reported a machire checked proof uas generated
uhich increased the reliability of the solution enormously. Honever, each procf
aleco made a large number of assumptions in the forms of unproved theorems and
recdundant axioms. Although it can bhe demonstrated that the particuler
assumptions involved do not invalidate those experiments, it is clear that tha
proofs would be considerabiy more reliable if a solid axiomatic theory uas
.iready available to give all the reguired hackground results.

The three particular areas of nathematical knowledge which are developed
in this paper, nauwely integer arithretic, iist wmanipulation and a theory of
finite sets, are very important in computation. Moreover, in proving

ascerticns about programs, these thecries provide most of the mathematical

material wuhich would be classified as background resul ts.

The current project has besen to develop a very large theorem bank wihich
uill act as an appropriate mathematical envircnment for future applications of
LCF., So far over 888 theorems nave bheen proved (with the @id of the LCF
proof-checker, of course) from the axicms given in this paper,

Although there is no distinction possible (in the LCF system) bhetuesen
axioms and definitions (both are declared as AXIGMs), effort was made in the
axiomatisation to introduce neu functions as terms of the logic. This strategy
makes it easier to demonstrate consistency for the sets of axioms presented.
Similarly, in the presentation of AXIOlls a contrast is effected by labelling
them either axioms (AX) or definitions (DEF).

The large body of theorems, alludea fo above, Is organissd as a sequence
of appendices. All the theorems of any appendix depend on the same group of
axioms or definitions and cpnear in en order wnich is appropriate for efficient
prcoof of the whole group (bu making use of the theorem-using facility af LCF).
Note that the indentation of theorems is only to make the page layout & little
prettier.

|
;

N

2. THEOREIS FROM NO AXIOMS AND A PROPCS!TIONAL LOGIC

z = EESELEER ESET 28 ESSESE SIS = SSESSES==STSES=RER oS=ZsEsS

Appendix 1 gives a number of thecrems that require no axiocans (sirictly -
no nontogical axioms) for thzir proof in LCF. All can be proved in a feu |ines
but it shortens and so helps to clarify later proofs if they are available.

- The theorems
b4 Yp.p~TT,FF=p
¥p. p-UU, Ud=UU
[, UUS =00
are important as permanent members of the simpli‘ication set of the LCF proof
- checker. It is also worth menticning that the block of results exemplified by

p-TT,UU=FF |} TT=FF
are designed to make use of the proof by contradiction facility in LCF which
‘kinows” that TTsFF (and a few similar wffs) is a contradiction.

A function from and to the doaain of truth values which represents the
togical NOT operation is readily defined in LCF as

»x0EF 2,1 = = [Ax,x=FF,TT] 0
’ Appendix 2 shows that it behaves according t- the truth table
x | -x
_____ [S
o,
AT (I
A |
[[T
7 |
us | Wl

Unfortunately there 1is no csuch definition possible to give @ suitable
i meaning to the logical AND or the logical OR operators. The truth table we would
ftke for OR, say, is given as

sy | TT FF W

______ e s 1

7 i T

* x FF = T FF W
w } TOW w

LJ

We therefore axiomatize the relation as below and note that each axiom
is trivially faithful to the above truth table. Moreover the theorems of
Appendix 2 show the whcle truth table is derivable,

wanAX 2,2 YP. PuTT=TT
SedeAX 2.3 YP. PvFF=P
JdeBX 2.4 YP. PvUU= (P-TT,UU)

An appropriate definition for logical AND is now possible (see belou)
in terms of the OR operation. Ue &lso give an explicit definition of
equivalence. The results of appendix 2 give the truth tables for these
operators shoun belou.

s%0EF 2.5 As Dx gom({=x)vi-y))]
wxDEF 2.6 a 5 [Ax y.xay, (y-FF, TT}]

i

57,
¥

~y

.
LR

3. INDIVIDUAL EQUALITY AND DEFINECKESS

'n the domain of individuile of the logic, we want (very often in
practice) to utter santences which contain terms such as “x is the same as y’.
For example we could require a function

f = [\, (is-the-same-as(x,al-b,g(x}}]
or we might want a sentence such as

~(is-the-same-as(x,y))i: glx,yulzhix,y) g

The =% connective of LCF is the most obvious candidate but it cannot be
represented by an LCF term since it is not monotonic. What we want is a tuo
place predicate =" uhich

i) is undefined exzctly when one (or hoth)
of its arguments is undefined,
and otheruise
i1) has the value TT if and only if the two
arguments are the came eleinent (not UU).

Such a predicate, obviously monotonic, is possible w:th appropriate domains of
individuals (sez below) tut as witn the logical operators AND and OR, this
‘camputable’ equal ity cannot be defined Lut must be axiomatised. The following
capture the desired predicare:

xtAX 3.1 Vx. ((x=x)—~>-.UU)Ex

dehAX 3.2 ¥x '8 (x=g):: X=Y

seksAX 3.3 Vx . (xax)=((y=y)=TT,001,U0= (x=y)-TT,TT
SksAX 304 (UU=UU) =UU

First note that this equality predicate for the domain of individuals
ant the logical equivalerce predicate defined in the last secticn are of
different types (in the technical sensez) and are only given the same nane
because of shortage of symbols, As wuwith the symbol UU (uhich denctes an
individual, a truth vslue and an intinite nutber of functions of different
tupes) the particular predicate intences by ‘=" can be determined by context.

The role that the first tnree axioms play is quite straightforuard: -
.1 cays that the =" relation is reflexive on all individuals

except UU;s It eaus notining about U=UU;

says that the relation is cniy true in the reflexive case;
interpreted in the light of 2.4, this axiem gives us that

if neither x,y are LU ther x=y is either TT or FF; It

also yives that if =y is 17 or FF then neither x or y is

the uncefirsd elenent.

(28]

W w
[£5 2N)

The axiom 3.4 is not really necessary in that if there is any element
in the domain of individuals { distinguishable from UU) then 3.4 follous from
3.1-3.3 . For, supposing X to be distinguishable from UU , A=l is a
contradiction and so we argue by cases on UU=UU : if UU=UU=TT then X=UUsTT by
monatonicity and X=UU by axiom 3.2 ; 1f UU=UU=FF then X=X=FF by monotonicity

and XeUU by axiom 3.1 ; Since the TT and FF cases lead to contradictions we
have UU=UU=UU.

Al though we are indeed only interested in nontrivial domains we want to
be able to prove a body of useful theorcms about equality without mentioning
any particular elements. 3.4 is necded to prove several of the theorems of
appendix 3 and this forces us to add it. For example, the theorenm

YX. X=UU = WU

can not follow from the first three axicus since in the trivial domain of just
UL, ue can have UU=UU=TT and the axioms are satisfied.

XzY can always be deduced frci X=Y=TT as prescribed by the axioms, hut
We also easily get theorems for going the other vay

K=Y, X=X=TT } X=V=TT

X=Y, YaY=TT f X=YsTT
and 2 versions of the commutative lau for ‘=" .

YX Y, X=¥ = Y=\

X=Y=TV |} Y=X=TV

The fact that every element except UU is equal (=) to itself, gives us
the definedness predicate for inaividuals by definition,

#xDEF 3.5. d s [Ax., x=x)
where d will be TT on all individuals excopt U and JUU) will be UL,

Appendix 3 also gives useful thzorzas ahout the d predicate. Note
especially the follouing theorems wubhich are extremely important when arguing
by cases on the definedness of some individual;-

d(X)=FF | TT=FF diky=UU F X=UU .

It was inferred above, that the axicms for =/ dictate some structure
for the domain of individuals. This structure is simply flatness or
discreteness (uhich means that for any element X, if YeX then Y is either UU or
X itself). The follouing theorens show that this is so and it is acserted that
flatness isn’t a high price to pau for the nations of equality and definedness.
In fact, Scott, in his original proposal sugyested that this was a reascnable
assumption,

X=Y=FF, XeY } T7zFF
a(X)=TT, XcY } raY

5

EREERTRIe s v g NI

e -

e e iw

] . ¢
|
:
E L 5 4. NATURAL NUMBERS
h =5 =EESEsRsc EE=S=EamE
[The natural numbers can be axiowatized by the folloning four axicms and
i four definitions:
1
%nDEF 4.1 Z = [Dix.x=0)
L wnnAX 6.2 28) =TT 3
wxCEF 4.3 isnat = [oF. Ax. Z(x)-TT,F (predix))]]
wxnAX 4.4 VX, isnat (X)::Z(X) -8, succ (pred(X)) & X
s AX 4.5 VX, isnat (X)::Z(succ(X)) = FF
skt AX 4,6 ¥X.ienat (X)::pred(succ(X)) = X
wnDEF 4.7 1 = succi@)
4 %%DEF 4.8 2 = succ(l)
where the axiomatised quantities are the individual ‘8", the function ‘succ’
and the function “pred’.
4 A glance at appendix &4 shous that many ususa! properties of the natural

nunbers are provable. In particular, the folloning ones:-

isnat(@) = TT
isnat(X)sTT |} Z(succix))=FF
isnat(X)=TT | isnat(succ(x))=TT
2 isnat(X)=TT, isnat (Y)&77,succ(X)=succlY) | XsY
g(@) =TT, V¥x.isnat{x)s:g(x)iiglsuccix))sTT F Vx.isnati{x):ig(x)eTT

which approximate PEANO Axicms for natural numbers. [use the wuord
“approximate’ since the free variable ‘g in the induction theorem can only be
instantiated to a continuous function., However, because domain of individuals

I] we use is discrete, if F is any function on just the natural numbers, it can be
! extended to & contimJous function by defining F(UU) to be UU., Hence theorems
i which follow from the Peano postulates in usual logice uill be valid (perhaps

With relativisation) in this LCF environment,

See also appendix 5 uhere a proof of the induction theorem is given as
$ an example of a technique of wusing Scott induction to prove relativised
assertions. It should also be noted that this induction theorem can be applied

to prove assertions of the form

V¥x, iznat(x)::h{x)=k{x)

o T gt sty

¥ by instantiating g with the term [Ax.hix)=k{x}] and proving

i

hiB)=k(8)=TT, VYx. isnatix):: nix)=k(x):: hlsuccl¥))=k(succ(x))=TT ,

Note that this doesn’t mean that the following sentence is a theoren:

- h(B)=k(B), ¥Yx.isnat{x)::hi{x)=k(x):ih{succ(x))=k{succix))
i1 F V¥x.isnati{x)::hix)zk(x)
] for consider the functions h = [Ax.UU] and k= [Ax.Z(x)-UU,8],

6

Similarly, the instantiation ge(x.h(x}-FF,TT} means that the theorem can be
» applied to attack goals of the form

Vx. isnatix}:: hix)sFF

He woutd now like to argue linfornally) that there are no non-standard
o models satisfying the axioms. e already have that succ™(8) hehaves as the
integer n so ue need only prove that the set {succ"(B)) exhausts tne set of
things for which “isnat’ is true.
Reasoning outside LCF we can say
pred(x)=y, isnat(y)eTT, isnat(x) =TT } x=zsuccly) is provable:
Hence, for any integer n,
& pred?(X) =8, isnat(X)sTT |} Xzeucch(B) is provable:
But we know from the recursive definition of isnat
if isnat(X)eTT then pred™(X)zd for some n:
So isnat(X) implies Xassucc™(2} for some n.

£ It is clear from the various preceding comments that the set of axioms
given is consistent and a faithful representation of the natural nunhers. We
now consider redundancy in the axioms and note

4,2 is terse and basic; Without it is is not possible to derive

isnat (B)aTT or even that there exist any natural numbers;

4.4 may not be condensed to Yx. Z(x)-8, succ(pred(x))ax as

O there may be elements in the cdomain of individuals on which

*pred” is undefined and so (noting that succ(UU)sUU will be
derivable) ue get a condradiction.
4.4 cannot he weakened to either of the sentences
Vx. succlpred(x))ex : Vx. isnat(x)i: succ(predix))sx
Hithout making a commitrent to the existence of an element
t given by pred(8). It the axioms are to b2 used as a base for
the integers this is OK but if the only numhers are to be the
natural numbers then we would want pred(@)sUU to be true.
4.5 isr aded to get tre distinctrness of suce™(B) and succn(8);
Without the axiom at all, it is not possible to show that 2
and 1 are not the same element. With only Z(1)eFF in its
place, it cannot even be reasoned tnat @ and succlsucc(8})
are distincts
is a basic property wuhich carnot be cerived from the other
axioms,

I~
()

It should be noted that the functions ‘succ’ and “pred” are only
P partially specified in the natural number axioms since wWe wWant them to be
defined appropriately when 1e axiomatize the set of integers (both positive .nd
negative).

Care has been taken in assembling the appendix of theorems to exhibit
the role that equality plays in the axiomatisation. The first group of f
theorems depends only on axioms 4.2 to 4.8 which do not mention equality or
definedness, The later theorems require the equality axioms and 4.1 as wel|
for their demonstration.

4y

S. INTEGERS AND ARITHMETIC

} < L ey S e
} ankAX 6.1 V¥x. isnat(x)::])OS(X)EZ(X)-‘FF.TT
wkAX 5.2 Vx. posix)i: tsnat(x)ell
weAX 5.3 Vx. posimns(x)}) = posix)-FF,Z(x)-FF,TT
X wteAX 6.4 ¥x. posi{x)-TT,TT = ieint(x)-TT,UU
AR #3AX 5.5 ¥x. isint{x)=uns{mns(x)),nnsix}zisint(x)-x,UU
E | w8kAX 5.6 ¥x. succ(x)zmns(pred(nns(x)))
i feweAX 6.7 ¥x. pred(x)zmnslsucc(mns({x}}}
shAX 5.8 (Ax. isint(x)=TT,TT} = d
The interpretation intended here is that a positive integer n’ , say,
is repressnted by succ?(@) and that a negative integer ‘-n’, say, is
- representec by pred™(3). Obviousiy ‘nns’” is the unary minus operator and ‘pos’
' is the greater-than-zero predicate. Appendix six gives a large collection of
! basic, but useful, theorems provavle trom the axioms of sections 3,4,5. Note
;! that the functions “isnat’, ‘pos’ . ‘mns’, ‘succ” and “pred” are all undefined
1 where ‘isint” isn’t true.
B Just about all that will be claimed about the above axioms for integers
in LCF is that they are consistent (since each is true in the standard
| intepretation of the integers) and the usual theorems can be proved using then.
Because they are just a bunch of suitable properties which together do the job,
| no individual deserves comment.

It is readily demonstrated that { succ™@) } U { pred™(@) 1} is the
came set as { x | isint(x)eTT } as follous:
Suppose isint{(X) =TT ;
From AX5.4 we get that pos(X) must be TT or FF:
. 1f pos(X)=TT then ienat(X)=1T and co Xssucc™(3) for some n>8;
d 1f pos(X)=F- then isnat{nns(Xi}=TT and so nns (X)=succ™(B) for
some n2B giving Xenns(succ™(Bi):
But [Ax.mns(succ(x))]= i« predinns(x))] so wz get Xspred™(3);
Hence isint(X)=TT implies Y=succ"(8) v Xzpred™(B) for some n>0.
Also we see that isint(succ™(B))=TT for atl m28 from the theoremn
isint(X)sTT b isint(succiX))=TT
and isint(pred™(8)) =TT for all mzd from the corresponding theoren
isint(X)=TT F isint(predX)i=TT .

Although none of the theorems of appendix B are deep, one can see how
many important simple relations there are between the objects axiomatised in
this section.

The main induction theoren for integers is simply stated thus:-

g(B)=TT,Vx.isint(x)i:glsuccixii=alx) b Vx.isintx)iig(x)=TT .

To prevent confusion arising from thz siuilarity between this theorem and
the induction principte for natural nusners, note the following NON-theorem: -

g(@)=TT, Vx.isint{x)iigix)tigisuccixii=TT F Yxiisint(x)::gix)=TT

3

TP Tl LT L T

"“‘"‘““""F_'s__J

5

P —

The discussion of the corresponding induction principle for natural
numbers introduced a technique which is appropriate, in this secticn also, for
attacking goals of the form Vx.h(x)=zk(x) using such a rule., That wmas to
instantiate the ‘9’ of the theorem with the term ixoh(x)=k(x)]. Practice
shonus, however, that it is economical to restate the theorem so as to
incorporate the idea :-

h{B)=k{0),

Vx.isint(x)::3(h{x))=TT,

Yx.isint(x)s:d(k(x))=TT, i

Vx.isint(x)::(h(x)=k(x))::h(succ(x))sk(succ(x)).

Vx.isint(x)::(h(x)=k(x))::h(pred(x))sk(pred(x)).
FVx, isintix)e: hix)sk(x);

Aithough this is considerably more cumbersome, each notion expressed by the
antecedents must be proved any either case and so the econoniy lies in not
having to prove by nested cases argunents
Vx.isint(x)::(h(x):k(x})s(h(succ(x))=k(succ(x)))
With the integers axiomatised satisfactorily, we proceed to definition
of the basic arithmetic functions and predicates: -

Functions:

wxDEF 5.9 +

m

(G, [Ax y, Zly)=isint (x)-x,UU,
pos(g)aG(succ(xJ.pred(g)).G(pred(x).succ(g))]]
Ax Y. x+mns (y)]
G, Dix y, Z(y)-isint(x)-8,UU,
Pos (Y -G (x, prediy))+x, Glx,suce(y))-x]]
= (oG, [Ax y. Z(y) sl Z (x)~(isint (y) -8, UU),
pos (x)-pos ()=~ Pos (y=x) -8, succ (Glx-yu,y)),
mne (G (x, uns(y))), mns (G (mns (x),y)i))

ywxDEF 5,18 =
#*nDEF E.11 ®

%%x(EF 5,12

~
{]

#%0EF 5,13 « = [A\x Y. x-((x/g)wu)]
W [EF 5.14 Fac = [«G. [Ax., Z(x}=l W 130 () oG (x=1) ,Uull
#%DEF 5,18 Look = [aBG. IAx f p, P =%, Glf(x), f,p)]]

Predicates:

#+DEF 5,18 > = Dx y. posix-y)]

vxlcF 5,17 2 s [Ax y. Zix-y)=TT, pos (x-y))

wDEF 5,18 < & [Ax y. y>x]

%*%0EF 5.19 <= [Ax Y. yzx)

wx0EF 5.2 even = [Ax., Zi(xe2])

xxDEF 6,21 odd = [Ax. Z(xe2)-FF,TT)

*lEF 5,22 bug = [«G. [Ax y p. (x>y) =TT, p(x) =G (x+1,y,p) ,FF]]
#%30EF 5,23 beq = [xG. [Ax y p. (x>u) =FF 3 (x)-TT,Gx+1,y,p))

wx0EF 5.24 Pro= Do [y, (yslis buGiZ,y-1, Az, (yoz) =B-FF, TT)),
FF1 (x23 -x,nnsix))]

[#]
)

L
R P Sy o,

Most of these definitions are self explanatory and the others become
& okvious With a feu points of explanation:-

i) Y7 is integer division, of course, and ‘e’ ic the ‘mod’
] operator uwhich gives remainder on divicion. These are
8 defined in the normal manner for positive integers and
k are extended (to operations involving negative integers)
E 15 in such a way that the sign of x/y is always appropriate
algebraically and the sign of xey is the sane as the
sign of x, This choice cnanles the reconstruction of a
number from its quotient and remainder (With respect to
a given divisor).

R < ii) “Fac’ is the factorial function and is only defined for
non-negative integer argunents.

iii) Look(x,f,p) yields the first integer y (if any) in the
sequence {x, fx, ffx, fffx,} uhich satisfies the
predicate p (provided no previous member of the sequence

(% caused p to yield UU).
: iv) ‘bug” stands for Bounded Universal Quantifer and ‘“beg”
I denotes Bounded Existential Quantifier ard are meant to
take the place of regular quantifiers in numeric proofs.
The importance of bug comes from the pair of theorems:
w
‘ bug (X,Y,p)eTT b VYz.zeXe:Y2zisp(z) =TT
Vz.22XKs:Y2zeip(2)eTT b bug(X,Y,p)sTT
A similar result for ‘beg” is expressable as the neota-
. theorem that (Provided p is tota! on the range <X,Y>)
Cl beq(X,Y,p)=TT IFF 3 integer in <X,Y> that satisfies p.

The totality proviso in this result is essential, for if
p(n)=llU and p(n+1) =TT then beq(n,n+l,pi=UU even though
there does exist an integer in the range which satisfies
the given predicate.

C Although the predicate uhich gives TT exactly uhen there
is an appropriate elzment in the range is definable as

[aG. (A% y poxsy=TT, 5 (x)VG(x+1,y,p)1],

DEF 5.23 is preferred becausze of the useful relationship
betueen that version of beq and the Look function.

¢ vl Prix) is TT if either x or mns(x) is a natural number
which is prim~ in the usua! sense (not 1). Pr is a total
predicate over the integers.

vi) Note that all the functions and predicates take at least

one argument which is of type ‘individual”. All these

© functions (except Look) tecome undefined when applied to
[individugls which are not integers.

e

13

2 e el

| T L L s

Appendix 7 contains & rather large colleclion of results that fol lou
from the results on integers and the ¢otinitions listed above. There are hasic
theorems about all of the functicns anu predicates except < and € . If a
problem contairs these predicates then tre definitions 5.18 and 5.19 should be
applied to transform the goals to unazs containing > and 2

a0

We have already introduced 2 mathewatical induction thecrems wuhich
require, for their application, steps of the forms;-

gi{x) b glsuccix)) g{x) b glpred(x))
Suclh statements are often as inconvenient to prepare as the result ue wuwish to
esteblish. Actually, we want to model, in LCF, that form of mathematical

induction given (in predicate calculus) by:-

{¥x. { Vy. [y<x a y28) 2 ply)) 2 plx) } > [¥x. x28 > pix)]

The obvious problem about what o do iiith this in LCF, is uwhat to cdo with the
nested quantifiers. Fortunately, the nested quantifier is bounded and so we get
the LCF version of the theorem as:-

Vx. x28:: buq{B,x-1,P)::P(x)=TT | V¥x, x28:: P(x)=TT

Actually a more primitive form of the fihcorem was needed to prove certain
results about division uhich preceded the uork on relations and e

Tuo more functions uwhich will be sinmilarly trsated are the sum and
product of a finite sequence - the big SIGiHA and big Pl notation of analysis.

wtDEF 5,2 Sum = [oG. Dy f. y<x = 8, fixi+G(x+l,y, f}])
#20EF 5.26 Prod = [af. My fo ysx » 1, f{x)aGx+l,y, £)])

6. LISTS and S-EXPRESSIONS

=5 EESENE EER SIS REERESERISR

Since lists are a special cass of S-expressions, uwe proceed nith an
axiomatisatior of the more general object.

i fasAY, 8.1 issexp(LU) = UU
wnAX 6.2 issexp (NIL) = TT
wnDEF 6.3 nultl = [, x=NIL]
nwnlEF 6.4 atom = [Ax. issexp{x)-null{x),TT]
snnAX 6.5 VX, atom(X):: head(X)=UU
wxnAX 6.6 YR, atom{X):: tai!ix)=lU
{ senhX 6.7 YX Y. head(cons(X,Y})=d(v)=x, LU
JeteiAX B8 VX Y. tail{cons(X,¥))=ainl=Y, LU
RnAX 6.9 YX. consthead(¥), tail (xisatom (X)-UU, X
wveAX B.18 d = [ab. [, atonix)=T7,Glheadix))-G{tail{x)),Ull]

Note first that AX &.1 is valid for all domains which have defined
individuals other than S-expressions - the wmost common circumsiance, In
situations wuhere all individuais are S-expressions it would be consistent to
say that issexp(UU)=TT but it nould be unlikely to give any advantage over
postulating issexp(UU)=UU. Hence, fcr the sake of proving some handy thzorems
alzuut S-expressions (khich must be true whenever NIL is not the only atom) we
assert 6.1 instead of leaving issexpi(dl) unspecified,

The purpose of axicm €.18 is to eliminate (from models) any

structures which are infinite. This aiso means that circularity (which is
possible in LISP, for example) is ruled out., As an illustration of the
\ implications of this axion, & theoren is proved in appendix 8 which gives that

i f head(X)=X then X=UU., A mcre conlete result apout circularity is discussed
below using the notion of subexpression.

There is one other debatable point about these axioms. It is that ue
have, as you may have anticipated frem the earlier discussion of equality
hetween individuals, adopted tihe «octrine of discreteness for the donain of
S-expressions. The opposing point of vieu is that a term such as cons(UU,X)
(uhicn clearly nust he ‘under’ Loth trez terms conslAX) and cons(B,X) for any
individuals A & B8) is not the sams as LU and, moreover, tail({cons{UJ,X))=X. As
tar as tne relative pouers of the onpesing sustems are concerned, it seehs that
most theorems are identical, but there are & come notions expressable rore
sipply in one systewm than the otnar. The tig argument in favor of the above
set of axioms is tnat with discreterzs: cones the notion of equality as
expounded earlier, The onlu tricky part about amending the esbove axiome to
allow for the case where cons(LU,K)=2U0 is the problem of excluding the infinite
S-expressions,

Appendix 8 contains theorens abcut the functions issexp, nead, tail,
cons, atom and null, We wention nere only an induction theorem for
S-expressions: -

¥x y. gix)es gly)e: glconsix,u))=TT,
Vx y. atom(x)s: g(x)aTT F Vx. di{x):: gx)aTT

Following LISP, a list is & special case of an S-expression, namely one
uhich transforms to NIL after some number of applications of the tail operator.
As such, lists are easily defined.

x:DEF 6.11 islist = [&G. [Ax. null{x)=TT,atom(x)-FF,G{tail {x}}}]

As usual, a number of thecrems form an appendix (3) but we give an
induction theorem locally.

¥x u., dixdes islistly):: glu):: alcons(x,y))=TT,
g(NIL) =TT k ¥x. islistixis: g(x)=TT

A number of usual operations cn !ists and S-expressions are given with
some others that foreshadcu the treatment of sets in the next section of this
report.

(WX, reve (X, NiL)]
(G, Dix y. null {x)=y,G(tail (x),cons({head(x),y)}1]
(G, (Ax y. nutl{x)=y,cons(head(x),G(tail(x),y))]1]
(aG. [Ax p. islist{x)=
inuLl1{x)=TT,plhead(x))-G(tail{x),p) ,FF),UUI]
(aG. [Ax p. ististixt-
(nul 1 {x)=FF,plhead(x})-TT,G(tail(x},p)),UUT]
[aG. [Mx f,
{(nul 1 () =M1l consif{head(x)) . Gltail(x),f)))1]
(«Gs Dix ponull {x)=NlL,pingad(x) <G (tail (x},p),
cons{nead(xi G{tail(x),p))l1]
Dk Yo 3(x)=0Rmaply, [Az.,x=2]),UU]
Dx oy, islistiy)=Allnap(x, \z.meniz,y})},ul]
(ax yo menb (x,y)amanl (yoxd FF]
Dy, PRUNE (x, [Az.y=z1)]
(M y. PRUNZ (x, [Az merizoyll)]
(G, Iy, (x=y) =TT, atoml{y)-FF, Gix,head(y))-TT,
Gix,tailly))]]
(G, Dix y. dixd= isiist{u)- null{y)aNIL,
x=head (head (y)) -rezd(y),Gx, tail (y)), UU, UUI]
laGs AL FNIL, nult (LD=1NIL,
f(head (L),G(tail (L), f, fNIL))]))
%00EF 6.27 nodes & [oG. [AX, aton ()-8, sticc(G(head (X)) +G(tail (X)))1]
#%DEF 6.28 lengths (&G, D\X.nul | (X158, suec(G(tail (X)))1]

w0EF B.12 rev
%nDEF 6.13 rev?
wlEF 6014 &
#%0EF 6.15 ANDmap

o ouw om m

m

~x0EF B6.16 ORmap

%%DEF B8.17 FNmap

wx0EF B.18 PRUME

+x0EF 6,19 men
#x0EF 8,28 menl
wxlEF 6,21 mnengd
«+:lEF 6,22 mens
wk0SF 6,23 nemSL
#x0EF 6.24 subexp

wxDcF 8,25 assoc

w%DEF 6,26 forl

1]}

13

e

[—

A a2

Y i T PT— e SR

The function ‘rev’ is the functicn wuhich produces a list uhich is the
reverse of the argument list and is defined in the traditional wau <(using an
auxiliary function ‘rev2’), ‘&, the append function is defined as the fixpoint
of the appropriate computation. [t is proved (see appendix 18) that & could
have been defined by :

§ = Dix yo rev2irevix),yll,

Various basic properties of these tio important func:ions are to be found in
appendix 18, Note that the sacond argument of ‘&’ need not be a list for the
function to be defined. Houever, the follouwing result is readily proved (and
a similar remark applies to ‘rev2’ }:

YX.islist{X):: islist(X&Y)=islist(Y)

The predicate ANDmap is used to describe situations in which all the
elements of a list satisfy some predicate. The computation is performad by
applying the predicate to each list @lenent in turn until the end of the list
ie reached (and the result is TT) or unti! an element is encountered which coes
not satisfy the predicate. This method of computation means that, for example,
ANDmap (X.p) wmay be undefined becausz plyl=dU for come object y. Because of
this fact, many of the basic theorems about AlDwap are basad on the assumption
that the predicate is total. The predicate ORmap is the disjunctive analogue of
ANDmap. The motivation for developing these predicates was to aid in the
development of some of the later list opesrations. There are many theoreng
proved (see appendix 198) which describz the the interaction between these tuc

maps and ‘rev’ (or).

FNmap is simply a function on lists uhich applies a function to each
menber cf the argument list. PRUNE is & function, also just defined for |ists,
which removes from the arutent list those eleiients uwhich satisfy some
predicate. As examples, Fimap(d, [(Ay.y=2]l) would double every element of a
(numeric) tist X and PRUNE(Y, [Ax.x<8)) uould renove every negative element
from a (numeric) tist Y,

The group of cperations G6.19 to ©.23 are concerned uith nembership in
licts and are crucial to the theory of sets given in the next section.
mem{x,L) will be true whenever x ic on= of the elenents of list L., It is shoun
in the theorems that the following is an alternate definition of “men’:-

mem = [ab. [Ax y. islist(y)> nuli(yl= &(x)-FF,UU
(x=head(y))-TT,G(x, tail (y)), UUI).

menL (X,Y) will be TT whenever ALL the ¢liements of list X are members of list Y
also. The follouwing is an alternate definition for “memL’:-

meml & [oG. [Dx y. islist{u)s islist(x)-
nul | {x)=TT,mem(head (x),y)-G(tail{x),y),FF, UU, LUIJ.

mexEQ(X,Y) simply indicates uhether tuc lists, X and Y, have the same elements
(independent of the order or multiplicity of those elements). memS(L,X) deletes
all elements of list L which are occurrences of the object X while memSL(L,M)

14

e I U s = N sy s ot o e

Ll

[l
1

Ty :

&

deletes all elements of list L which are also elenents of list M.

The function ‘eubexp” is principally used to indicate the imbedding of
one S-expression in another., subexp(h. Y} is TT exactly when some s=quence
{possibly null) of head anu tail operations take object Y into ohject ¥. Thus
if Y is an S-expression then subexp(X,¥) indicates that X is inbedded in Y
(at least once) but if Y is an aten then subexp(X,Y) indicates that X is the
same atom. MWe are now able, wusing this naw notion, to prove in LCF the non-
existence of certain infinite S-expressions, -

’

subexp (X,Y):: subexp{Y,X):: XsY

The infinite lists forbidden by this trecren are the ones which in LISP could
be represented using circularity.

The function ‘assoc” is purely L!
some association technique is eppropriate
defining ‘assoc’ would be asi-

SP-inspired and could be useful where
to & proof., An alternate way of

(Ax Y. loori (iy, (AzZ. head (2} =x])]

assoc
there
lookk = [aG. [AL p. islist{L)=nuli{L)-NIL,

plhead(L]}~head (L} ,G{ta: I (L},p), UU))

is, in general, a more useful function., However, such & functiocn which |ooked
for the ftirst element of a list to satisfy a given predicate could be more
suitably defined since with this cefinition lookL{X,p)=NIL could wean E[THER
p(NIL)=TT and NIL is a member of X OR that no element of X satisfied P.

The function “forl’ is a device for simplifying definitions of other

functions which take a list as their only argunent and uhich coapute from the
tail of the list to the head. As an exanpic, tha sua of the elements of =
numeric list X is given by forl(X,+,8) while the product is given by
forlL {X,w%,1). One could also give slightly more compact definitions of ‘PRUINE’
and ‘FNmap” (znd predicates which are similar to “ANDmap’ and “OFmap’) using
Maorl”.
The function “nodes” counts the eunexpressions of an S-exprn. which are
not atomic or the number of nodes in & tree representation of the S-exprn.
“length’ is simply the number of zlemente in a 1ist and could have heen dafined
(to further illustrate “forlL?):-

length = [Ax.forl(x, [My z.z+1],8)].

These last tuo functions (uwihich are the only ones te refer to the notions
developed for arithnetic) are nct expounded in * e appendix but the usual
properties clearly follow from the definitions and the arithmetic environment
already constructed and described,

15

7. FINITE SETS

Sets turn out to be quite hard to categorise in LCF, even finite ones.
The difficulty arises from the lack of existential quantifiers or the lack of
nested quantification, depending how you 100k at it. The problem occurs even as
soon as you try to define tie empty set and give its properties. We can easily
express that nothing is in this set (call it NS) by the uff Vx. d(x):: xeNS=FF
but when we come to say that the null set is the ONLY set in uhich there is
nothing, ue find no simple way to express the sentence

Yx.xcAzFF | A=NS as a uell-formed formula of LCF,
Recall that the form of an axiom in LCF is a WFF - not & sentence.

The solutions ue discovered to the above problem all involved
axiomatising a choice function for sets which would pick some element from any
set it was applied to. However, using thic notion, several developments of the
theory are possible. Because of the encrmous economy involved, ue have based
our set theory on transformations betueen sets and lists. The choice function
involved ies the taking of the head of the list that a given set maps into (cee
the function ‘select’ defined below).

The transformation functions are ‘listof” and ‘setof’” and are
axiomatised as follows; note that finiteness is automatic since |lists were
axiomatised to be finite.

wexAX 7.1 (Ax.isset(x)=TT,TT] = 3

SedeeAX 7.2 ¥x. isset(setofix))=(islist(x)-TT,UU)
whtAX 7.3 ¥x.islist{listof(x)l=(isseti{x)-TT,UU)
WA 7.6 Yx.setof(listof(x))=(isset (»)-x,Ul)
xxkAX 7.5 Yx y. menEQix,y) = setof (x)=setof(y)

Note that these axioms co nat inply that sets are disjoint from lists,
S-expressions or any other data type that may be part of individuals. In fact
it is not inconceivable to identity sets uith the lists to uhich they ma3p by
“Mistof’. However, all that is needed to ensure disjointness is an axiom |ike

¥x. isset(x):: issexp(x):zFF

With these notions, we easily DEFINE all the usual operations on sets
in terms of the list memtership functions and predicates defined in the last
section. We start with some basic ones:-

NS = setof(NIL)

¢ = [Ax y. men(x,listof(y))]

subset ® [Ax y. menmc(listof(x),listofly))]

U & [x y.setof(listof(x)&listof(ul)]

\ = [Ax y.setofimenSL(listofix),listof(y)))]
n = [Ax y.setofinemSL(listof(x),listof(x\y))]
select s [Ax. head(listof(x))]

singtn ® [Dx. setof(cons(x,NIL))}]

%%DEF
%vDEF
JexDEF
wexUIEF
v.DEF
JexDEF
wnDEF
yerlDEF

~
= = (000 O

NN NN

i6

With regard to these definitions, it will suffice to note :-

i) NS is to be taken to be the null (or empty) set;

i1) Y’ is the set membership predicate;

i1i) XUY denotes the union of the sets X and V;

ivl] XnY denotes the intersection of the sets X and V;

v) ** is the set subtraction operation;

vi} ‘select’ is the choice function for picking elements
from non-empty sets; il

vii) singtn(X) denotes the set with X as it’s only element.

The definitions just given are the basic set operations for which
theorems have been proved in LCF (for this project). Appendix tuelve contains
theorems relevent (o these operations.

There are many theorems displayed in appendix 12 but consider hou
similar the following short collection of provable results is to the usual
predicate calculus axioms for set theory. In fact, it is possible to prove all
the other results of appendix 12 (except those that mention the functions
“listof” or ‘setof’) just from these theorems. Can, therefore, these seatences
be taken as an alternate basis for a =et theory in LCF? No! Tuo of these
theorems have universal quantifiers in the assumptions and as noted earlier,
only sentences wnith no assumptions are admissable as axioms. Note another
disadvantage: none of the set operations are introduced by explicit
definition,

[Ax. isset(x)-TT,TT} = 3

YX Y. XeY-TT,TT & 3(X)=(isset(Y)=TT,UU),UU

isset(Y)=TT, Y, WeX = WY b X = ¥

a(X) = TT } XcNS = FF

VX Y. subset(X,Y})-TT,TT = isset(X)=(isset(Y)TT,UU),UU
isset(X)=TT, isset(Y)sTT, VW, WeXs: WeYeTT b subset(X,Y)=TT
subset (X,Y)=TT |} WW. WeXis WeYsTT

YU X Y. WelXuy) = (MeX)» isset(Y)-TT,UU, (WeY)-TT,FF

YW X Yo WelX\Y) & (WeX)= (WeY)oFF,TT, isset(Y)-FF,UU
YW X Y. UelXnY) & (WeX)+ (WeY)STT,FF, issetiY)-FF,UU

YU X. Wesingtn(X) =2 dlld)=(isset(X)~(W=X),UJ), LU

¥

e e st e a5 S AR i e e e e e

There are some other very important set operations which have been
L defined appropriately (see belowi but (mainly because of lack of time) no
rigorous development of their properties has been done.

& 0EF 7,14 forSz [ab. XS f fNS. (x=iS)-fhS, f(select(x),
. | Gix\singtn(select(x)},f, iNS)) 1]
- wxDEF 7,15 Un = [, forSix, [y z.yuz],NS)I
' %0EF 7.16 In = Dx. forSix, \y z.ynzl,x)}
3 wxDEF 7.17 reducez [Ax p. forSix, \y z. plylasingtnlyluz,z],NS}]
v0EF 7.18 seq = [A\x p. (reduce (x,p) =NS)-FF, TT]
x%DEF 7,19 sugq = [dx p. reduce (x,p)=x]
w%DEF 7,20 PS = [aB. [x. forSix, \y z.6(x\yluzl,singtnix}}l]
(s%DEF 7,21 Cards [Ax. forS(x, [A\y z.z+13,8)]

where, in wWords,
i) forS is just an important auxiliary function;
1) Un(X) is the n-way union of all the sets that are in X;
iii) In(X) is the n-way intersection of the elements of X;

{ iv) reduce(X,p) is used to denote the set which in normal
notation is written {z] zeXapla) ds

v) ‘seq’ denotes Set Existential Quantifier & seq(X,p)elT
N\ 7

when there is a member of X which satifies predicate “p
and ‘p” is defined on the rest of the set;

vi) “suq’ denotes Set Universal Quantifier and saq(X,p) =TT
iff predicate p’ is TT on all elements of set X3

vii) PS is the power set function;

iix) Card is the cardinality function for sets.

G i i = —

18

L e s i i aan B

Spm———— T

- e

e —— o — =

L g g

&

r

=
sy

ar
ar

8. CONCLUSION

AXTOMATISATION TECHNITQUES.

In this work certain techniques were used in axiohatising various
matihematical notions. To illustrate tihese we take an abstract example:
"Axiomatise boops using the previously axiomatised notion ot beeps "

We start working with the assunption that there will be things in the
domain of individuais that are not boops , not beeps (uhich may overlap with
the set of boops) and are not anything that is mentioned in the axioms that
the “hoop axioms’ will depend on, This assumption means that many theorems
about boops will have to be relativised but it also guarantees that we Wil
be able combine such groups of axioms wnithout fear of inconsistencu.
Relativisation is only possible if there is a predicate “isboop” wuhich will
be true only on boops. MWe will probably want

d = [Dx. isboop(x)-TT,TT]

to be true and if this is not provable from the other ‘boop axioms’ then
thought should be given to making it an axiom. In the Lreceding sections this
result was provable for issexp,isiist, introduced as an axiom for isint,isset
but not even true for isnat.

Then the various functions and predicates which are peculiar to boops
are axiomatised paying special care to do so by means of explicit definitions
wherever possible.

DISJOINTNESS OF DOMAINS

In the development of the environment so far, nothing has been said
about disjointness of lists and integers, say. Before the theories here
developed as modules can be used usefully as & unified whole, another axion
must be supplied to insure that any appropriate disjointness is provable.

As an example of uhat is required in general, we give nou an axiom
that guarantees the disjointness of integers, S-expressions, sets and beeps:-

Vx. isint(x)~ issexpix)-UU, isset(x)-UU, isbeep{x)-UU,x
issexp(x)= isset(x)-UU, isbeep(x)-UU,x

isset{x)= isheepix)-UU,x

isheep (x)ax,UU

X

13

, VI 4 s v - e i ~ L wrase ¢ DRSPS p—

.

.\I

~,

po

PETEE ST E————

FROJECT STATISTICS.

A g
The total line count for the procts of the 1883 (approx.) thoorens

given in the appendices stands at abaut 20,038 using only those featurss of
‘version 1/ LCF (that is the procof checker that is decribed in the 1372 i
manual [1). The total cpu time used was zbout 58 hours and the human effort 1 3
involved was about 8 man-nonths (all of which wuas spent at a 13
time-sharing-system console). The figures for man and computer effort should
be interpreted in light of the fact that much of the proving had to be
re-cdone because of a revision of the axions (After about 15,833 lines of !
proof some improvements in the axions were ceemed essential and so about 6 |
man weeks of effort was expenced to alter the proofs). |

o e okt o brh e el B i, ERciS Sl M e e 0

LS S it o e 4

3 These statistics provide, 1| helieve, a valuable benchmark against !
R | uhich to measure the effectiveness of logics and aids for proof generation.
1 It is proposed in the near future to use at least somz of these proufs to |
| gauge some proposed amendments to the input language of the proof checker. |
*

INCOMPLETENESS.

Inspection of the theorems concerning the concept of Integer
Primeness immediately reveals thai the the ones given are only the trivial
properties of “Prf. 1t uas also noted in sections 6 and 7 that no properties
are given for some of the quite important operations that are defined on
lists and cets. There are also, undoubtably, many pouerful and useful
theorems for the other areas wuhich remain unstated. Although this]
incompleteness dictates that & user may in certain circumstances be ob!iged
to prove further results,’uwork on expanding the theorem base (for its oun l
sake) has been stopped Dbecauss the point of diminishing returns has heen
reached. The future development of this mnathematical environment will be
accomplished by individuals enunciating thesorems as required and supplying I
the proofs.

{ Another important reason for only adding (proved) thecrems as they !
are needed is that a naw version of the LCF chacker will appear (sooner or |
later) and will incorporate features which will make the task of generating & \
proof more aursmatic and so much shorter. There is also the possinility that
the typed logic will be replaced by the type free theory proposed by Scott
and so the uhole treatment would have to be redone (aside: this would take
much less than the 8 man- months quoted here because the proof outlines are
all done and the proof checker would be better - 3 months is an upper linit).

e e v i St NS swe e .

W

L

O

TO USE THE ENVIRONMENT.

Inevitably some readers vill want to mnake use of theorems from the
appendices of this report i- the Stanford Al project POP1B system, The axioms
are located in a {ile called AXIA on [TH,MAL] and the theorems appear in a
forn which LCF can read in the file TERIS on (TH,MAL. Note that a large
proportion of theorems withcut assumptions are suitable for inmediate
inclusion in the SIMPSET i for example Y4, X+UU = UU) although sone (such

as the various commutative rules) wuwill cause non-termination of the
simplification process. There are actuzily more theorems in this file than
Wwill fit, with LCF, in the 98K of core currently available to jobs in the

POP1® system at Stanford, so the user may have to prune a copy of THRMS to
meet his needs. There will shortluy be available a core image nith a large
selection of the most important theoreus already read in (and moved to binary

program space to reduce garbage collection time),

THEGREM NAMES.

LCF requires a name for every thecrem (arbitrary alphanumeric
identifier) but provides only one hanule for access to a result - its name.
Experience immediately suggests to the user that mnemonics will be an
important ingredient in the organization of the environment and this is so as
exanples indicate:-

POS8 - pos(B)sFF

PLUSUX - ¥X. UU+X=UU

TIMESOX - isint(X)&TT | [BuxX=8
ELTXNS - J(X)eTT | KXcNS=FF

Houever, for the nany objects we have, mnemnonic tags help onlu for a small
fraction of the cases. Most thecrens are not results which have words alreacy
associated with them (like associativity)l and most have a good nunber of
tokens in the assunptions and conclusion (conbined). The author relied on a
fairly complex system of mnemonic notions but names tended tc he lony and
absolutely unintelligible to anyone else. What can one do about thecrems such
as i-

isint()=TT | (WeX)2(U+Y) = K2Y
XeY=zB, isint(W) =TT F (Xald)eYel
islist(X8Y)sTT | islist(Y)=TT
isset (X) =TT, VW, WeXsbeY P XaY

to provide mnemonic significance uithout beiny so long that typing errors are
encouraged unduly? It is apparent that proof generation should be written
uith more facilities to address theorens by their content and to have
appropriate goal-directed procedures to search for the right theorem to

app ly.

o
L

TS S ——

S L NS T e ————————

ALGEBRAIC MANIPULATICH.

Another situation uhere proof generation seemed unreasonably tedious
Has uhere an expression involving operataors uwhich had special properties -
commutativity and associativity in particular. A good example of this sort
of painful proof ocurred in trying to prove the theoren

{X+Y) % (X=Y) = (XaX) - (YY1,
Ignore the problem of what happzns when X or Y are either undefined or sinply

not integers and suppose isint(XjeTT, isint(Y)=TT . The steps in the proof
are; -

1) isint (XaX)sTT

) {XaX) +B=XxX

3) isint(Y&X)=TT

4) {Y#X) - (YoX) =8

5) YX Y 2, (RK+Y)=ZeX+(Y-Z)

B) VX Y 2. (X+Y)wZ=(dnZ)+ ()

7) VX Y Zo X~ (Y+Zi={A-Y)+2

8) YX Y Z. X+(Y+Z) = ({+Y) +Z

9) (XY) 2eX) = COXY) Y) = (KX = (YY) (BY 2.4,5:8)
18) VX Y Z, Xwe(Y=Z) = (XxY) = (M)

1) (X+Y) 2% (X=Y) = (K#eX) = (YY) (BY 9,10)

FUTURE WORK

This research has given birth to a lot of suggestions about possible
improvements to LCF. Before this nathematical environment is expanded,
therefore, a new, more-automatic proof gsnerator should be developed. When a
new one is produced, the body of theorems should be reviewed and expandead.

The same sort of experiment is planned to give the same sort of a
rigorous theory for a prograuning language. A cuitable language (such as
LISP, ALGOL) or @ subset of & language will be taken and the semantice
axiomatised using LCF. Then important theorems will be formulated and proved
as time and imagination permit.

ACKNOWLEDGEMENTS

This wnork was born out of Richard Weyhrauch’s experiments on progran
correctness and credit is due Robin Milner for getting the LCF project going.
I am extremely grateful for the conversations that | had with both of these
people throughout the work.

“

3. REFERENCES

MILNER, R., "Logic for Computaile Functions - Description of a
Machine Implementation", Artificial Intelligence Memo #1689,
Computer Science fent., Stanford University, May 1972.

MILNER, R., “lmplementation and Applications of Scott”s Logic
for Computable Functions", Proc. ACHM Conference on Proving
Assertions about Programs, Neau Mexico State University, Las
Cruces, New Mexico, Jan B-7, 1972.

MILNER, R. & WEYHRAUCH, R., "Proving Compiler Correctness in a
Mechanised Logic", [lachine Intelligence 7, ed. D. Michie,
Edinburgh University Press, 13872,

WEYHRAUCH, R.. & MILNER, R.,, "Program Semantics and Correctness
in a Mechanised Logic", Proc. USA-Japan Computer Conference
Tokyo, Oct 1972.

APPENDIX 1

Foox .un

FoovP,
Foovp .
AcX, BeX

P-TT,UU=TT
P-TT,FF=TT
PFF, UU=FF
P-FF, TT=FF
P-UU, TT=FF
P=FF,TT=TT
P-UIU, FF=FF
P-TT,FF=FF
P-TT, TT=UU
P-FF,FF=UU
P-TT,FF=UU
P-FF, TT=UU

P-FF,FF=TT
P-FF,UU=TT
P-UU,FF=TT
P-TT,TT=FF
P-TT,UU=FF
P-UU, TT=FF

PUU)=T
P (L) =FF

T T -tT TTrTrrrrTrrrrrTrT T

uu

WUUUVUBUUTTUDTO

- —
— —

m m wom mowowom omomom om

Theorems

cEE=m====

(P-TT.FF)
(P}, LU
VP,

{

Bm m om

mom

depending on NO axioms.

BSESES3ISCSD = =2 EEEEEZD

i
uu
PsA,B) < X

7
T
1
TT
FF
FF
FF
FF
W
by
w
w

FF
FF
FF
FF
FF
FF

APPENDIX 2 - Theorems that follou from the propositional axioms.
F =TT = FF
F -UU = LU
F -FF = 77
B TTVIT = TT
P oTTWU = 7T
F TTWFF = 17 .
F UUVTT = TT
FUUWU = WU
F UUVFF = UU
F FEVIT = TT
F FFWU = UU
} FFVFF = FF
F VP, TTWP = 17
F VP. FFWP = P
SRRy RAS RG] T ERTIT
A F VP. PWFF = P
F VP, UUWP ¢ TT
F VP, PWU ¢ TT
F TTATT = 77
o F TTAUU = WU
I F TTAFF = FF
P UUATT = WU
F UUAUU = UU
F UUAFF = FF
F FFATT = FF
‘ F FFAFF = FF
F VP, TTAP = P
F VP. FFAP = FF
F YP. PATT = P
C F VP. PAFF = FF
i F VYP. UUAP < FF
F VP. PAUU ¢ FF
FOTT=TT = 77
F T7=LU = WU
. [TT7=FF = FF
¢ F UU=TT = WU
P oUU=UU = WU
F UU=FF = W
F FF=TT = FF
F FF=UU = WU
F FF=FF & TT

APPENDIX 2 tzontinued).

YP. UUsP w UlJ
VP, FPeUU w W

YP. ={-P) 2 P

PvQ = QvP

YP Q R. (PvQ)vR = Pv(QvR)
PAQ = QAP

YP Q R, (PAQ)AR s Pa(QAR)
P«Q = Q=P

YP Q R, (P=0)=R & P=(Q=R)

PAQ=FF PaX, (Q4Y,2) = O-Y, (P=X,Z)
PvQsFF P =FF
P./QsFF Q= FF
PAQsTT E= T
PAQeTT QeTT

APPENDIX 3 - Theorems that foilow from the equality axioms aione,

U SESRIERESEREER = - ESEEEEZENE ESES CHE2IASE SEEE EEN ENNEEENRE AREREE EREEER

P dfll) = WU
F VX, UU=sX = WU
P VX, X«UU = W

C a)slU b X = WU
d(X)eFF b TT = FF
; Fo¥X . 30X4X,X s X ,

(K=Y)=TT b &(X) = 17
. (X=Y)=FF PoOlX) 2 17
R J(X) =TT b XeX = TT
VX . XaX & 3(X) ‘

(Xa¥) =TT P Xey
3(X)eTT, X &Y | Ka¥ s TT
X=YsTT, YuZ&TT | X2 & 7T
1 J(X)eTT, Xe¥YsUU F Y e W
(X=Y) aTV FoYaX & TV
P XaY & YeX
P 1T & FF
F X=Y

(X=Y)=FF, XeY
J(X)&TT, XcY

27

APPENDIX &4 - Theorems about Natura! Numbers (see section 4).

IJIDEII=Z B = ES=ICERE EEEXS EESZSSS SS=SISS0

a) Theorems which follow from axioms 4.2 to 4.8 alone:

2(8) = 17
isnat(B) s TT
succ (8)

isnat(l) = TT
pred(2) = 1
Z2(2) = FF
isnat(2) a TT
Z(UU) = WU
isnat(Ul) = W

T T T T T T rTTTTT T

Z(X)eTT F X=8

isnat (X) =TT F Z(succ(X)) = FF
ienat (X) =TT + isnat(succ(X)) = TT
isnat(X)sFF |} TT = FF

isnat (X)&TT, Z(X)sFF | isnat(nred(X)) & TT
isnat (X)eTT b pred(succ(X)) = X
isnat (X)=T7, Z(X)sFF | succlpred(X)) s X

isnat (X) =TT, isnat(Y)aTT, succ(X)=suce(Y) |} X s ¥

g(B)sTT, V¥X. isnat(X}:: g(X):: glsucc(X))wTT }
YX. isnat(X):: g(X) =TT

Theorems that use 4.1 to 4.8 and the equality axioms,

isnat (X)eTT | d(X) & TT
Z (X)sFF F o(X) & TT
Z (X)=UU F X a WU

a(8)
g(l) a T7
3(2) s 1T
succ (UU) = WU
pred(UU) = UU
(1=3) = FF
(2=8) FF
(2=1) = FF

17

APPENDIX S - Proof of an Induction Theorem for Natural Numbers.

{ The proof is as supplied TQ the proof checker.)
[material in square brackets is coumentary. !

[theorem TH! is
theorem TH2 is
theorem TH3 is
theorem TH4 is

2(x)aTT } Xa@
b 2(0)sTT

LABEL L1:
ASSUME g(8)=TT;
ASSUME VYX. isnat(X):: g(X):: gl(succ(X))=TT;
GOAL ¥X. isnat(X):: isnat(X):: g(X)=TT;
TRY INDUCT {step no. of DEF 4.3} 0CC 1,3;
TRY 1 SIMPL;
LABEL L2
TRY 2 ABSTR:
TRY 1 CASES Z(X):
TRY 1 SIMPL;
USE THIL, -3 USE THZ2:
TRY SIMPL BY -,--,.L1;
RCRZRG 1R85
LABEL L3;
TRY 3 CASES F(pred(X));
TRY 2 SINPL;
TRY 3 SIMPL;
TRY 1 CASES isnat(X);
TRY 1 SIMPL;

{ Step .L2 is

USERT HERENIIR3: (

APPL .L2,pred(X); SIMPL - BY --3
USE TH4, ----,.L3:

APPL .L1+1,pred(X); SIMPL - BY -=,--=,---

TRY SIMPL BY -;
R 2SIl g
TRY 3 SIMPL;

GOAL ¥X. isnati{X):: g(X)eTT;
TRY ABSTR;:
TRY 1 CASES isnat(X);
TRY 1 SINPL;
APPL --,X; SIMPL =3
TRY 1 SIMPL BY -3
TRY 2 SIMPL;
TRY 3 SIMPL;
THEOREM MATHIND: -:

[The theorem MATHIND is
g(B)aTT, Vx, isnat(x)::

29

isnat(x)aTT,Z(x)eFF |} isnat({pred(x))eTT
isnat(x)eTT,2(x)aFF | succ(pred(x))sx

YX. F(X)s: isnat(X):s g(X)&iT

(Z{X)=TT
(Z2Xe=W
(Z{X)sFF

[Flpred(X))alU
[Flpred(X))oFF
{ Flpred(X!)eTT

[isnat(X)sTT
isnat (pred (X)) =TT
[glpred(X))sTT

-—-t [gX)eTT

[isnat(XieUU

[isnat(X)=FF

[isnat{X)=TT

[isnat(X)eUU
{ isnat (X)sFF

gix):: glsucc(x))eTT
F V¥x. isnatix)::

g(x) =TT]

]

TR

SISO SR RN

APPENDIX 6 - Theorems that follow from axioms 5,1 to 5.8

6 ssE=aELse & = FRESSXZIERE SXIZE EXZESE S8 SEEEEZERZ B ESEE mERE
n

(together with axioms of sections 3 and 4).

l pos(B) a FF
F pos(l) u TT i
F pos(2) &« TT
& I pos(UU) = LU
r B F isint{UU) =2 W
i isint(X) sl P X e WU
isint(X)=TT F alX) = 7T
pos(X)&TT F isint(X) s 17
R pos (X) =FF P oisint(X) = TT
l isnat (X)eTT . F isint(X) s TT
5 isint(mns(X))sTT | isint(X) =TT
i isint(X)sTT F isint(nns(X)) = TT
F isint(@) = 77
‘ F isint(l) & TT
i & P isint(2) =TT
F mns(B) € B
isint(X)eTT F mnsi{mns(X)) a X
if F mns(UU) = WU
i isint(X)sFF } mns(X) = UU
%
isint (X)=FF F ZKX) s FF
pos (X)sFF, pos(mns(X))eFF |} X = 8
pos (X)&TT F Z(X) s FF
| pos (mns (X)) =TT F Z(X) a FF
‘ isnat (X)&TT, pos(X)eFF F X=0
b ¢ F Vi, Zimns(X))uwisint (X)=Z (X),UU
: isnat(X)sTT, Z(X)s&FF F pos(Xi = TT
‘ isnat(mns(X))sTT F pos(A) = FF
' pos (nns (X)) aTT F pos(X) s FF
: posi{mns (X)) =FF, Z(X)=FF b pos(¥) = TT
L pos(Xi=TT F pos(nnsiX)) = FF
! pos(X)=FF, Z(X)sFF F peslne(X)) = TT
! isint(X)=zFF P pos(X) = WU
: Zimns(X))aTT |} X =8
i pos (X)aTT F isnat(X) & TT
Ee pos (X) aFF F isnat(mns(X)) s TT

APPENDIX B8 (continued).

isint (X)sFF succ(X) = UU

isint (X)=FF pred(X) = UU

isint(X)eTT pred(succ(X)) = X
isint(X)=TT succlpred{X)) & X
pos (X) =TT pos{succ(X)) = TT

isint(X)=TT isint{succ{X)) & TT

isint{(X)=TT isint{pred(X)) = TT

isint(X) = TT

isint(X) « TT

YX . succlnns(X)) = mns(pred(X))
A P VX . pred(nns(X)) & mns(suce(X))

isint{succ(X))=TT

I..
I..
I..
I..
l.
pos (X) =FF F pos(pred(X)) = FF
I.
|-
| !
£ isint(pred(X))aTT }

pos(X)eUU, isint(X)sTT |} TT

P mns{X)sUU, isint(X)eTT |} TT
¢ pred(X)sUU, isint(X)sTT | TT
succ(X)eUU, isint(X)aTT |} TT

FF
FF
FF
FF

womom W

g(B)=TT, Vx.isint(x)s:gix)sglsucc(x)) | VX, isint(X):s g(X) = TT

g(8)eh(3), VX.isint(X)::a(g(X))=TT, V¥YX.isint(X)::d(h(X))eTT,
8 ¥X. isint(X):: (g(X)=sh(X)):: glsucc(X)) =& heucc(X)),
VX. isint(X)ss ({g(X)=h(X)):: glprad(X)) = hipred(X)) |
YX. isint(X)s: g(X) =& h(X)

gl

¥ | APPENDIX 7 - Theorems about the operations of arithmetic.

EEEEEZEE =] EEEEESEEE EEEEIS EZS CSOEZEZEEEE EE EEAEDEESEER

(uses the axioms of sections 3, & and S).
a) Consider first the arithnetic of + and -.

¥X. X+UU = UU
¥X., UU+X s LU
VX, X-UU = UU
VYX. UU-X = UU

T TrTT

= isint(X)eFF
isint (Y)&FF
isint (X)sFF
isint(Y)=sFF

vy,
YX.
vY.
YX.

T+

]
~< < < <

XX XX X
+
mowowmom
(= (= (= (=
EEEw

isint(X)sTT
| isint{X)=TT

X+8 = X

X-8 & X

YX. X+1 = succ(N)
YX. X-1 = pred(R)
X+nns(X) = B
nns(X)+X = €

X-X =8

isint(X)=TT
isint(X)=TT
isint(X) =TT

TrTrTrTrTrTT TTrTT

YX Y. succ(A)+prediY) = X+Y
YX Y. pred(X)+succ(Y) & K+Y
VX Y. succ(X)+Y s H+succlY)
YX Y. pred(X)+Y & X+prediy)
VX Y. succiX+Y) =3 A+succiy)
VX Y. succiX+Y) a succ(r)+Y
VX Y. pred{(X+Y) s A+pred(Y)
VK Y. pred(X+Y) s pred{X)+Y

n

ey et gt et i el ey g

isint(X)aTT, isint(Y)aTT |} isint(X+Y) =TT
isint(X+Y)eTT Foisint(X) =TT
a TT

i (J isint (X+Y)sTT Fooisint(Y)
FoVX Y 2. (X+Y)+Z & X+(Y+Z)

isint(X+W)aTT, X+H=Y+d | X =Y

i isint(X)&TT p B+X & X

£ F VX, B-X = mns(X)

F VX, 14X = succiX) <

VA . 1-X = nns(pred(X)) |

FoOX+Y = Y4X

"

F oYX Y. ans(X+Y) & mns(X)+mns(Y)

APPENDIX 7 (continued).

VX Y, succ(X)-Y s X-pred(Y)
YX Y. pred(X)-Y s X-succlY)
VX Y. succ(X)-succlY) a A-Y
YX Y. pred(X)-pred(Y) & X-Y
VX Y. nns(X-Y} & Y-X

VX Y 2. X=(Y-7) = (X-Y)+Z
VX Y Z. X-(Y+Z) & (X-Y)-Z
VXY Z. X+(Y-Z) & (X+Y)-Z
¥X Y, succ(X-Y) a X-pred(Y)

E

! g™,

&

VX Y. succ(X-Y) = succiX)-Y
VX Y, pred(X-Y) & X-succ(Y)
VX Y . pred(X-Y) = pred(X)-Y

pe
o

- TrTrTTTT T TTTTT T T

isint(X)aTT, isint(Y)&TT | isint(¥-Y) « TT
isint (X-Y)sTT F o oisint(X) & TT
isint(X-Y)eTT Foisintly) & TT

X-YeB F X =Y

b) Nou theorems from the defn., of multiplication.

VX, X«UU = UU
VX, UUX uu
VY. XxY = UU
VX, XuY = WU

wou

isint (X)=FF
isint(Y)sFF

L. isint (X)=TT
isint(X)aTT

T T T T T T

isint(X)aTT, isint(Y)aTT |} isint(X«xY) & TT
isint (XeY)uTT Foisint(X) TT
isint (X«Y)sTT Foisint(Y) & TT

FooOoVX Y. XxY = (Xwpred(Y))+X

F VX Y. Xusucc(Y) a (KaY)+A

P VX V. Xxpred(Y) = (XuY)-X
isint{X)sTT |} BuX = B

FOYX Y. XeY = (pred(X)xY)+Y

F WX Y. succ(X)xY = (AuY)+Y

F VX Y. pred(X)%Y s (X&Y)-Y
F

XxY = YaeX
isint(X)eTT F 1uX = X
WX Y. mns(X)%Y = mns (')
FoovX Y, Xamns(Y) s mns(XaY)
F VX Y. nns(X}emns{Y) = XaY

mow

== &

(€8]
(2]
oid

}- YK Y 2, Xx(Y+Z) & (XxY)+(Xn2)
l- YK Y Z, Xa(Y-Z) s (X«Y)-(¥aZ)

~ VXY 2, (X+Y)nZ & (XZ)+ ((22)

i FoWX Y 2o (X-YInZ & (X«xZ)-(YsZ)

4 oYX Y Z, (XaY)eZ = Xw(Yal)
FooVX Y. (X+Y)%(X-Y) = (X&X)-(YxY)

isnat(X) =TT, isnat(Y)=TT F o oisnat(X+Y) = TT
pos(X) =TT, pos(Y)=TT F pos(X+Y) = TT
pos{X)=FF, posiY)=FF F pos(X+Y) = FF
pos(X)=TT, pos(Y)sFF F pos(X-Y) & TT

b |~ pos (X)=FF, pos(Y)aTT F pos(X-Y) = FF

i isnat(X)&TT, isnat(Y)aTT b isnat(XeY) s TT

; pos(X)=TT, pos(Y)=TT F pos(XxkY) = TT
pos{X) =TT, pos(Y)=&FF [pos(XxY) = FF
pos(mns(X))sTT, pos(mns(Y))aTT | pos(XxY) = TT
pos (1-X) =TT, isnat(X)aTT F Xs@

c) Now add the division aoperator.

FoOoWX, X/WU = W

F oYX . X/8 = W

F VX, UU/X s WU
isint(X)=sFF |} VY. X/Y = W
isint(Y)sFF |} VX. X/Y = W
isint(X)=TT, Z(X)=FF F 8/X =20
isint(X)eTT, Z(X)=FF F XX =1l
pos(Y-X)wTT, isnat(X)=sTT } X/Y =8

Yy. ienatlyl:s [oh, . Z (W) =TT, glpred(u))snh(pred(w)), UUI] (y)s: gly)=TT
Yz, isnat{2):: g(z) & TT
pos (X)eTT, [ah, M. Z (W) =TT, f (pred(u)) =h(pred(w)) U011 (X) =TT .
F VY. isnatiY):: pos(X-Y):: £(Y) & TT !

(
isnat(X)sTT, pos(Y)=TT P ienat(X/Y) & TT |
isint(X)=TT, isint(Y)=TT, Z(Y)sFF | isint(X/Y) & TT

ik s

FoVX Y. mns(X)/Y = mns(X/Y)
oYX Y., X/mnslY) & mns(X/Y)

¢ FooVX Y. mns(X)/mns(Y) = X/Y

isint(X/Y)aTT J isint(X) = TT
isint(X/Y)=TT |} 2Z(Y) s FF
isint(X/Y)sTT } isint(Y) & TT

¢ ienat(X) =TT, pos(Y)=TT, isnat(l)=TT | ((XxY)+W)/Y = X+ (W/Y)
isint(X)aTT, isint{Y)=TT, Z(Y)sFF P (XaY)/Y & X

34 1

d)

e)

The mod operator () is remainder on division,

F VX XelU & WU

F VX, XeB & UU

F VX, UUeX = WU

isintO0sFF b VY. XoY = UU
isint(Y)sFF |} ¥X. XoY = UU

isint(X)=1T, Z(X)=FF o BoX
isint(X)=TT, Z(X)sFF P XeX
isnat (X)sTT, pos(Y=) aTT } XoY

mowom

VX Y. mns(X)eY s mns(XaY)
F VX Y. Xomns(Y) a XoY
F oYX Y. nns(X)emns(Y) & mns(XoY)

isint(X)eTT, isint(Y)uTT, Z(Y)&FF F o oisint(XeY) = TT
isint(XsoY)aTT P isint(X) & TT
isint (XeY)aTT o Z2(Y) 3 FF
isint (XeY)aTT o oisint(Y) = TT

i.

isint(X)=TT, isint(Y)aTT, Z(Y)=FF (XxY)oY = B
isnat (X)eTT, pos(Y)eTT, isnat(l)aTT f ((XxY)+l)oY = UoY

VX Y. XoY w Z(Y)aUU, Z(X)~(isint(Y)48,UU), (pos(X)» (pos(Y)-
(pos(Y-X) X, (X-Y}eY), Xeuns(Y)), mns(mns(X}eY))
VX Y. (XoY)eY = XeY
FooYX Y. (X/Y)xY = X-(KeY)

isnat (XeY) & TT
{((X/Y)%Y)+(XsY) w X

isnat (X) =TT, isint(Y)eTT, Z(Y)=FF }

isint(X)=TT, isint(Y)aTT, Z(Y)=FF ¢

isnat(X)aTT, isnat(Y)eTT PVl (X+Y)eW & ((XeW)+(Yel)) ol
i.

F
F
(%/W) - (Y/U) uB, (Xel)-(Yeli) =0 XeY

isint (W) aTT, isint(Y)aTT, Z(Y)=FF, WoYa(U+X)loY | XeY = 8
XeYeB, isint)sTT f (XaWleY = 8

XoYeB, isint(M)sTT } (HaX)eY 2 8

Relational operators (> , 2).

FooVX . XelU e WY
FovX . UU2X = W
WX . XsWU = W
FovX . UUsX = WU

@

APPENDIA 7 (continued).

(e R s -
‘ isint(X)eFF b VY . XoY = W
isint(Y)sFF b WX . X2Y = WU
isint(X)sFF VY . X>Y = W
isint(Y)aFF b VX . X>Y = W
< X2Y u TT F isint(X) =TT
X2 & TT P isint(Y) & TT
| X>Y =& FF F o isint(X) = 17
| XsY & FF b isintlY) = 7T
XsY & TT FoXzY a TT
X2Y & FF L XY = FF
o XsX & TT F 1T =FF
| ' X2X = FF F 1T = FF
- XsYeTT, Y>X=TT |} TT = FF
X2YeFF, YaXeFF |} TT = Fr
isint(X) = TT, isint(Y) s TT, X»>Y & LU F TT s FF
o] isint(X) = TT, isint(Y) = 7T, X2Y s WU } TT = FF
X2YsTT, Y2XeTT } X e Y
Y>X = FF FoXeY = 7T
Y2X = FF FoXoY a 1T
Y>X & 1T P X2Y = FF
Y2X & TT F XsY = FF
WsXaTT, XsYsTT |} W>Y & TT
WeX=TT, XsY=iT |} WY = 11
WsXeTT, XzYeTT b WY = TT
i WeXeTT, X2Y=TT P W2Y = TT
isint(X) =TT b XX = TT
E | isint(X) = TT F X>X = FF
. F WYX . pos(X) = X>8
| pos(X) = TT P X8 =TT
- X0 = TT F pos(X) = TT
FovX Y. (X-Y)28 = X2Y
b | isnat(X=Y) s TT b XeY = TT
R | ¢ isnat(X) « TT b X280 = 77T
| isnat{mns (X)) =TT X>8 = FF
%2Y = T7T b ienat(X-Y) = 1T
X208 & TT F isnat(X) = TT
F WX . pos(X) = B>nns(X)
82X a TT F pos(X) = FF
F WX . X>B = B>mns(X)
! F VX . X28 = B2tins(X)
F VX Y . uns(X)>mns(Y) & Y>X
F oYX Y . mns(X)2nns(Y) = Y2X
FovX Y . XzsucclY) a A>Y
FovX Y . Xopred(Y) = X2Y
Fo¥X Y . pred(X)2Y = X>¥ :
FOWX ¥ . succ(X)>Y a X2Y E

36

APPENDIX 7 {continued}.

f) The relational operators and arithmetic.

isint(X) = TT F VY . (X+Y)2X = Y20
isint(Y) o TT |} VX . (X+Y)2Y & X2B
isint(X) & TT |} VY . (X+Y)>N = Y50
isint(Y) & TT F WX . (X4Y)>Y = X>0
isint(X) « TT ¥y, (X-Y)z2X = B2Y
isint(X) ® 7T F VY . (X-Y}>X = 3>Y
X>8 = TT FoovY o (KxYizX = Y2l
Y>8 & 1T FoooVX o (XeYizy = X2l
Xs8 = TT BoovY o (XeY)sX = Y5l
Y>0 = TT FoovxX o (XaY)sY = Xol
X>B=TT, Yz21=TT } Ra(X/Y) e 717
X>0=TT, Y>1=TT } X>(X/Y) = 77
Y20=TT, X>8=TT } X>{YoX) = TT

A i isint(l) = TT F YX Y . (X+W)>(Y+d) = X>Y
isint) & TT b VXY . (H+Ad)> (U4Y) 3 X>Y
isint(l) = TT F WX Y . (X&) 2(Y4) = X2Y
isint() 8 TT WYX Y . (HeX)2(W+Y) = X2Y
isint) s TT kYR Y . X-H>(Y-W) s X>Y
isint{l)) =TT F ¥YX Y . W-X)>(H-Y) = Y>K
isintl) & TT WA Y . (X-l)2(y-W) = X2V
isint) =TT WX Y . (W-X12(d-Y) = Y2X
W>B = TT FoowxX Y o (Kad)>(Yald) 3 X>¥
W>p s 1T FowX Y o (WX (WaY) s XY
W>B = TT Foovxdy o (Xadb2(ysld) = X2V
W@ = TT Foovk Yy o (Rek)z(ay) s X2Y
X2Y=TT, W>0=TT [(X/UJ’(Y/N) = IT
(X/W)>(¥/W) & TT, W>B = } Y = TT

W>8 = TT, X-B &.TT, Y2X = TT FooWxXizW/zy) = 17
(WX > (U/Y) =TT, W2B=TT, Y28:TT F Y>X & TT

X2@=TT, Y28=TT } (X4Y)28 = 7T

XoB=TT, Y>B=TT F (X+Y)>2 £ 7T

A>0=TT, ZBETT Fooo(KeYisB = 1T

X28=TT, Y>B=TT b (X+Y)>B & TT

X20=TT, v20=TT } (XxY)28 = 17

X>B=FF, Y>@=FF b (Ax¥)28 = 1T

Ys@ = 1T FooovX .o (XxYiz2 = X28

Y>8 = TT FOVX . (AxY1>B = X8 ;
B5X=TT, 3Y=TT } (XxY)>B = 1T]
X20sTT, Y>B=TT } (X/Y)28 = TT

Y>@ = TT FovX . (X/Y)>B = XaY :
X28aTT, isint(Y)aTT, Z(YisFF F o (XeY}28 & TT i

(XeY)>@ = TT } XsB = TT

37

| Q

g) The factorial operator.

b Fac(UU) s UU
isint(X)sFF F Fac(X) = W
X20 = FF B Fac(X) = W

b Fac(@ =1

b Fac(l) =1

b Fac(2) = 2
X28 = TT b FacX)>B = TT
J(Fac(X))aTT F X8 =TT
X280 = TT b FaciX+l) = (#+1) «Fac(X)
X>8 = 1T b Fac(X)leX = 8
Y>B=TT, X2Y=TT } Fac(X)oY = 2
Y>@=TT, X2Y=TT f Fac(X)cFac(Y) = @
v>BaTT, X>YaTT | Fac(X)>Fac(Y) =& TT

h) The oddness and evenness predicates.

even(WJ) = LU
odd (UU) = UU
even(X) s LU
odd(X) = W

b
|..
isint(X) »« FF |
|..
b even = [Xx . (odd (x)<FF,TT)]
|..
|..
|..
F

isint(X) a FF

odd = [. (even(x)=FF,TT)}]

even(X) = TT isint(X) = 1T
even(X) s FF isint(X) = TT
odd(X) & TT isint(X) = TT
odd (X) = FF P oisint(X) = 1T
even(X) = UU, isint(X) = TT | TT = FF
odd(X) & UU , isintX) =TT } TT = FF
isint(X) a TT F even(X«2) =TT
isint(X) w TT F even(2x¥) = TT

b VX . evenlins(X)) = even (X)

F WX . odd(mnsiX)) = odd(X)

|..
=T

even(X) = TT even(X+l) = FF

1

even(B)
odd(8) = FF
even({l) = FF
odd(l) = TT
even(2) s TT
odd(2) = FF

b s mis s st iy 2

&

APPENDIX 7 (continued).

i} The “Look” operation.

k)

P(ULI=WU
P(X)eFF |
’.

P(X)eTT
VK. P(X)cFF

YF .

Look (UU,F.P) & W

Look (X,UU,P) = UU
YX F . Look(X.,F,UU) a UU

Y

P(X)eFF, F(X)aX

The bounded quantifiers

o YY P . buglUL,Y,P)
F YX P . bug(X,UU,P)

X>Y & FF

isint(X) a FF
isint(Y) a FF
X>Y = 17

isint{X}) =TT
buq (X, Y,P}=TT
bug (X,Y,P)=sTT
bug(X,Y.P)=FF
buy(X,Y,P)sFF

T T T TT T T

Look (X,F,P) = X

VX F . Look(X,F,P} = UU

Look(X,F,P) w UU

‘bug” and ‘heq”.

uJ
ud
bug(X,Y,UU) = U

YP . buglX,Y,P) = WU
YP . bugl¥.Y,P) & W
YP . buglX,7,P) = TT
YP . bug(X,X,P} = P(X)
isint(X) = 77

isint{Y) = T7

isint(X) = TT

isint(X} s 1T

F YYP . beqlUU,Y,P) = UU
F ¥YXP . beq(X,UU,P) = UU

X>Y = FF

isint(X) = FF
isint(Y) a FF
A>Y = TT

isint(¥) a TT
beg (X,Y,P)eTT
beqgiX,Y,P)eTT
beq(X,Y,P)=FF
beq (X, Y,P)=FF

The primeness

isint(X) = FF
PriX) =TT
Pr(X) = FF

k

F
F
F
F
F
F
F
F

beq(X,Y,lU) = W

VP . heglX,Y,P) = UU
VP . Leq(¥,Y,P) & UU
YP . beyl#,Y,P) & FF
VP . beqls,X.P) & P(X)

isint{x) & TT
isint(Y) = TT
isint(X) = TT
isint(X) = TT

predicate for integers.

F

TrTrTTTTY T T T

Pr(UU) = UU
Pr(X) = Lt
Pr(B) = FF
Pr(l) = FF
Pr(2) = 1T
isint(X) = TT
isint(X) = 17

VX . Prinns(X)) = Pr(X)

APPENDIX 8 - Basic Theorems about S-expressions,

SEssas== = = EBEISE SITSWELSE ZESSEB RSESEFESZSSSEEBEE

{ depends on the equality axicms plus 6.1 - 6,18).

Fooissexp(UU) & WU
F o atom(L)) & LU
Foonuli(tU) = LU
F head(UU) e UU
Fotait(LU) = WU

atom(X) & TT F head(X) = W
aton(X) & 1T F o otail(X) = W
issexp(X) = LU F X =W
atom(X) = LU F X=W
nul I (X) s UU F X=UWU

F issexp(NIL) = T7

Foo(NIL) = TT

F nuil(NIL) = TT

F atom(NIL) = TT

F head(NIL) = UU

F tail(NIL) & WU

issexp(X) = TT } 304 = 17
issexp(X) = FF } a(X) & TT
atom(x) « TT F (X)) s 17
atom(X) & FF FogiX) a 1T
nul [(X) = TT F X s NIL
issexp(X) = FF } nuli(X) = FF
atom(X) = TT , issexp(X) =TT } null(X) s TT
atom(X) s FF F null(X) = FF
issexp(X) = FF } atom(X) = TT
issexp(X) & TT , null(¥) = FF } atom(X) s FF

atom(X) = FF

d(head (X))

|.

1T F

issexp (V) = TT

aton(X) = 1T , null(X) = FF F issexp(X) = FF
atom(X) = FF
atom(X) = FF

d(tail (X))

1T}

F VX . cons(X,UU) = W
F YX . cons(UU,X) = WU

alyY) = TT
axX) =TT

atom(X) a FF
atom(X) = FF

k
k
k
k

YX . head{cons(X,Y))
VY . tail (cons(X,Y))

< x

dlhead(X)) = TT
d(tail(xX)) = TT

43

e

R N

G
APPENDIX 8 {(continued).

L -
head (X} « UU } atom(X) ¢ 7T
tail(X) a UU F atomiX) ¢ TT

fie Xy =TT, a(Y) = TT } issexplcons(X,Y})) & TT
d(X) =TT, 1Y) = TT F nullicons(X,Y)) = FF
o(X) = TT, 3(Y) = IT } atomlcons(X,Y)) = FF
dlcons(X,Y)) & TT FoeX) = 77
dlcons(X,Y)) & TT Fooaty) = 17

= F Vi, dlhead(X)) = d(tail (X))
head(X) = X b X = W
tail(X) s X b X wUU
nul | (cons(X,Y)) « TT | TT a FF

Q

b}

41

APPENDIX 3 - Basic Theorens tor Lists,

SEsT2Ta=E © = TEREEE SEEEREL-E FES =23

{ axioms used were o el ity ascoms with Gob - GolE).

FooodctistNIL) o IT
Fooislist()) s LU

FF b nulli} = FF

FF b islist(x) = FF

T b aX) & 17
}.
I.

islist(X)
issexp ()
islist(X)
islist(X)
islist(X)

Fr a(Xy = T7

7T issexpin) = 7T

islist(X) = TT , nuli{®X) = FF } aton(X) = FF

aX) =TT F oYY . islist{consik,Y)) = islistiY)
islist(N) = WU } X = W
islist(tail (X)) e TT } isiict(X) & TT

islistX) &« TT , null(X) & FF } islist(tail(X)) s TT

Womomom omoas

g(NIL) = TT .
YX Y o alX) s: dslistiy) :: glY) it gleons(X,Y)) = TT
Foovs L islist(h) 33 g(X) & TT

VX . atom(X) s gix) & 1T,

VXY o og(X) te gY) s gleone(K,Y)) w TT
FoovX o aiK) s gl) 2 TT

APPENDIX 18 - Theorems about the |ist operations of section B.

(rely on the axioms of section 3 (equality) also).

a) Concerning ‘rev’ and the auxiliary function ‘rev2’.

YX . rev2{UU,X) = W
rev(UU) = UU
L WX L orev2(X,UU) = LU

YX . rev2(NIL,X) = X

VX . rev2(X,NIL) s rev(X)

rev(NIL) = NIL
islist(X) = FF F vy . rev2(X,Y) = W
islist(X) m FF o oreviX) = LU
istist(X) = TT, a{Y) &« TT } d(rev2(X,Y)) = TT
islist(¥) & TT F dlreviX)) & TT
drev2(X,Y)) s TT b islist(¥) & TT
dlrev2(X,Y)) & TT } alY) = TT
direviX)) = TT Fooislict(¥) o TT
islist(X) o TT, islist(Y) &« 7T F revirevZ(X,Y)) = rev2(Y ,X)
islist(X) u TT F revirev(¥)) n X
islist(X) w TT FoVY . islistirev2(X,Y)) & islist(Y)
islist(X) = TT o islist{rev(X)) u TT

¥X . revicons(X,NIL)) = cons(X,NIL)

VX Y . revicons(X,cons(Y,NIL))) = cons(Y,cons(X,NIL))
islist(X) u TT F o onull{reviX)) s null(X)

b) Concerning the &’ (append) function,

¥X . UUSX = UU
¥X . X6UU = UU
VY . X8Y = WU
¥X . NIL8X =
KENIL = X
VXY . X&Y = rev2ireviX),Y)
(Y)2TT F I(4&Y) » 7T
YY . islistlZsY) & islist(Y)
YX Y . cons(X,NIL)8Y & cons(X,Y)
YK Y . revirdYl s revi(Y)érev(X)
YX Y ., revirécons(Y,NIL)) & cons(Y,rev(X))
(Y)eTT } head(X8Y) a null(X)~head(Y), head (X)
tail (X&Y) = null(X)+taillY), (tail (X)&Y)
islist(X) = T7 E
giy) = 1T
ul L (X)=FF, 8(Y)=TT } null(X&Y) = FF
ul 1{Y)=FF F null(X8Y) = FF
X = NIL
Y & NIL
VXY Z . (X&Y)EZ = X&(Y&Z)

islist(X)=FF
X

islist(X)sTT

islist(X)alT,
islist(X)sTT

islist{X)sTT,
islist(X)=TT
Jd(X&Y) = TT
d(X8Y) = TT
islist(X)=TT,
islist{X)=sTT,
X8Y = NIL
X&Y = NIL

Tr-roTI JTrTroT OTTTTTTT T T T

43

APPENDIX 18 (continued).

c) Froperties of “ANDuap’ anid “0Rwap’,

F o Yp o ANDmap (UL) = UU
islist(X)aFF | Vp . ANDmap (4, pp) w UU
F Yp . ORmap(UU.p) a WU
ishist(X)=FF | Vp . ORnap(¥.p) = W
p{X}) = W F VY . AlDwap(cons(X,Y),p) = LU
p(X) = UU F VY . ORmaplcons(X,Y),p) = WU
F Vo . AlDmap(NIL,p) = TT
F Yp . ORmapiNIL,p) = FF
3{X) =TT F ¥Yp . ANDmap(cons(X,NIL),p) = p(X)
diX) = 1T F Vp . ORuaplcons (X,NIL),p) = p(X)
AMDnap (X, p)=T7,TT = TT } islist(X) = TT
ORmap (X, p)-TT,TT = TT + izlist(X) = TT
| ANDmap (X,p) = FF null{¥) = FF
1 ORmapiX,p) = TT b nulliX) = FF
ANOmap (K, p) = TT, p(X) & TT, &{(X) a TT ANDmap (cons (X, Y), p) eTT

|.
p(X) = FF, islist(cons(X,Y)) « 7T P ANDnap (cons (X, Y), p) =FF
AHOmap (Y,p) = FF, p(X)+a(X),etx) a TT nMOmap (cons (X, Y) , p) =FF
ORmap(Y,p) & FF, p(X) & FF, 4(x) = 1T } GRmap (cons (X, Y), p) =FF
p(X) & TT, istist{consiX.¥)) = IT F ORmaplcons(X,Y),p) =TT
ORmap(Y,p) = TT, p(X)=d(X),a(X) & TT F ORmap(cons(X,Y),p)=TT
}.

YX. (X eep(X)aTT, TT=TT, islict(Y)=TT ANDmap (Y, p) =TT, TT=TT
VXK A (R 2 ip(X) =TT, TT=TT, islicti{y¥)=TT F CRmaplY,p)-TT,TTsTT
ANOmap (Y p)=TT,TT = TT, p(X)=3(2).3(X) = TT

F ANDmap(cons(X,Y),p)=TT,77 = 77
ORmap (Y, p)aTT.TT = TT, p(=d(%),3(X) = TT

ORmap (cons (X, Y),p)=TT,TT7 = TT
ANDnap (X, p) = TT, null (X)==F plnead(X)) = TT
Alap (X, p) = TT, null {X)=FF ADmap (tait (X),p) = TT
CRmap (X, p) = FF, null (X)=FF plhead (X)) = FF

‘ ORmap (X, p) = FF, null (X)=FE
' ANDRap (X, p) 77, TT=TT, nut | (X) =FF
ORmap (¥, p) =TT, TT=TT, nutl(X)=FF

CRmapttail (X),p) = FF
n{head (X)) =TT, 7T = T7
n{head (X))-TT,TT = TT

Aldnap (R, p)eTT, ANDmap (Y, p)=TT
CRmap (X, p)=FF, ORmap (Y, p)==F
AMDmap (4, p) =TT, ANDmap (Y, p)=TT
ORmap (X, p) =FF, ORmapn (Y, p)=FF

AROmap (rev2 (X, Y) ,p) = TT
QRwap (rev2(X,Y),p) = FF
AlOmap (X8Y,p) = TT
ORmap (XsY,p) = FF

TTTY T YT T Ty T T

Alnap G, Y = TT b Alllnzp(rev(X),p) s TT
ORmap (X.p) = FF F ORmaplreviX),p) = FF
ANDmap (X8Y,pl =TT b AlDnan(x, ;0 = TT
{ ANDnap (£8Y,p) =TT b AlDmap(v,p) = TT 3
ORmap (X&Y,p)=FF F ORmap(X.p: = FF
ORmap (X&Y,p)=FF } ORmaplY,p} = FF]
1
YA ;

APPENDIX 18 (continued}.

ADmap (rev(Xt,p) = TT b Al (A, p) o T
ORmap (rev(X),p} s FF F ORwap (X, p) = FF

ANOmap (X,p}=FF, islist(Y)eTT, YX. 3(X)e: p(X)aTT, 7T & TT
b ANDuwcp (X8Y,p) = FF
ANDmap (Y, p) sFF, islist(X}=TT, ¥X, da(X}st p(X}-TT,TT = T7
ANDinap (R&Y,p) = FF
ORmap (X, p) =TT, islist(Y}=TT, V. a(X):: p(X)-TT,TT = T7T
o ORmen(X&Y,p) = 1T
ORmap (Y,p)=TT, islist(X)=TT, V4. d(X}bs: p(X)-TT,T7 = TT
oo CRman (K&Y,p) = TT
ANDmap (X, p)=FF, ¥X. a(X}:: p(n}-TT,TT = 1T
o ANDmap(rev(X),p) s FF
ORmap (X,p)eTT, VX, 3(X}:: p(R}-TT,TT = 1T
F CRwap(reviX),p) s TT

d) Theorems concerning the “FNmap’ function.

POV . FNmap(UU,f) = WU
islist(X)sFF P ¥Yf . Flmap(¥,f} = W
o Yf . Fhmap(NIL, f) = NIL

alXy = 1T F FNmap(constX,MIL), f)
d (FNmap (X, f)) =TT Fooislist(X} =TT
nul | (FNmap X, f)}=FF b nul!(¥) = FF
nul | (FNmap (X, f))=TT b null(X) = TT
YX. d(Xysr 3(f(X)}=TT, islist(x}=TT F O(FNmap(X,f)) = 1T

cons(f (X),NIL)

P VX f. islist(FNmapiX, f)) =2 {FNmap (X, f))
P OYX Y f . FNmep(X&Y, f} = Fhnap (X, f)&FNnap(Y, ¢
F VX f . FNmap(rev(X},f) = rev(FNmap(X,{))

e) Properties of the ‘PRUNE’ function,

F ¥p . FRUNEWU,) & LU
islist(X}aFF |} ¥p . FRUEC, p) s WU
F o Vp . PRUNEMIL,) = NIL
p X eTT, 9(X1eTT | PRUNE (cons (£, HILY,p) & NIL
p(X)=FF, 3(X}=TT } PRUNE(cans(X,NIL),p} = cons(X,NIL)
APRUNE(X,p)=TT F islist(¥) = 1T
nul | (PRUNE(X,p}} = FF | null(¥) = FF
YXo d(X)es p(X}-TT,TT = TT, islist(A}=TT | S(FRUNE(X,p))=TT

F YX p. islist(PRUNE(X,pi)} = &(PRUNE(X,p})
F YX Y p . PRUNE(X&Y,p) = PRUNE (X, p) 8PRUNE (Y, p)
F YX p . PRUNE(rev(X),p) = rev(PRUNE(X,p))

iﬁﬂmmnu-n—mm'-r-~-e-—‘ ——

APPENDIX 18 (continued).

f) The ‘mem’ predicate.

F oYX . mem(UU,X) = UU
I & FoovX . mem(X,U) = WU
- istist(Y)=FF }F ¥YX . nem(X,Y) = UU
islist(Y)aTT, men(x,V)sUU } X & UU
men(X,Y) =TT F 9gi{X) = 17

mem(X,Y)=FF kb 9(¥) = TT

men (X, Y =TTk islist{Y) = 77T
& men(X,Y)eFF |k islist(Y) = TT

mem(X,Y)2TT }F null(Y) = FF

d(X) = 17T F o omem{X,NIL) = FF

d(X)=TT, islist(Y)sTT } men(X,cons(X,Y)) = TT
men (X,cons(Y,NIL)}=TT |} X =¥
G (X=head(Y)) = FF FoomealX, tail(Y)) = mem(X,Y)
VX, a(K):: mem(X.Y)sFF b ¥ = HIL
mem (X, ¥ =TT, (W) =TT | nem(¥,cons(W,Y)) = TT
islist{tail(X)) = TT } nemiheadiX),X) = TT
L (X=head(Y)) = FF
F o omem(X,tail(Y)) s FF
l.

mem (X, Y)=FF,nul | (Y)=FF
mem (X, Y} =FF, nul | (Y)sFF

G YX Y . nem(X,revi(Y)) = nem(X,Y)
men (X, Y1) =TT, islist(Y2)=TT } nem(X, (Y1&Y2)) = TT
mem (X, Y2)&aTT, islist(Y1)=TT | mem(X, (Y18Y2)) = TT
mem(X, (YI&Y2)) = FF r men(X,Yl) = FF
mem (X, (Y18Y2)) & FF F nem(X,Y2) & FF
mem (X, Y1) &FF, mem(X,Y2)=FF F mem(X, (Yi&Y2)) = FF

Fomem e [ab. Dy . (islist(y)-
(null(g)~(8(x)~FF.UU).((x-head(g))~TT.G(x.tail(g)))).UU)]]
g) The ‘menml’ predicate.

‘ F VX . menl (UUX) s LU
. FooovX . menL(X,UU) = LU

istist(X) = FF }F VY . menL(X,Y) = UU

islist(Y) = FF F ¥X . menlL{X.Y) = UU

menl (X,Y) = TT } islist(X) = TT

menl (X,Y) = FF |} istist(X) = TT

memL (X,Y) = TT |} islist(Y) = TT

menL (X, Y} = FF | ististlY) = TT

islist(X) & TT F memL (NIL,X) & TT

islist{X) = TT , islist{Y) = 7T, memL(X,Y) s UU F 7T = FF

Fv¥X Y . menml(cons(X,NIL),Y) = mem(X,Y)

46

APPENDIX 18 (continued).

menL (tail (X),Y) u TT P omenl (X, Y) = mem(head(X),Y) {
meml (X, Y)&TT, null (X)aFF + mem(head (A),Y) & TT

menl (X, Y)aTT, null (X)eFF b menl(tail(X).Y) = TT ‘
meml. (tail (X),Y) a FF F mewl(X,Y) = FF

meml (X, Y)&TT, mem(A,X)&TT b men(h.Y) = TT

F meml = [aG. [x y . (islist(ylatlislist(x)=
{nul 1 (x)TT, (mem(head(x),y)=G(tail (x),y),FF}),UU),UU)]]

memL (£, tail (Y})) & TT FomerlL(X,Y) & TT
nul t(Y)=FF, memL(X,Y)aFF |} mewL(X,tail(Y)) & FF
islist(X) = TT F menl(X,X) = TT i
islist(X)aTT, islist(Y)sTT, YA. mem(A,X):: mem(A,Y) = T7
P omenl(X,Y) = TT 1
VX, islist(X)s: menl(X,Y)=nuli(X) | Y & NIL
memL (X,NIL) = TT Fonuli(X) = 7T
menl (W, X} aTT,meml (X, Y)eTT b meal (W,Y) = TT
Fo7X Y . memL(rev(X),Y) = menl(X,Y) |
YX Y . menl (X,rev(Y)) & menlL(X,Y)
menl (X,L1) =TT, islist(L2) nenl (X,L18L2) = TT |

|.

sT17
meml (X,L2)=TT, islist(L1)=TT menl (X,L18L2) = TT
meml (X1,YY=TT, memL (X2,Y)sTT nmeml (X18X2,Y) & TT
memL (X1&x2,Y) & T7 weml (X1,Y) s T7

|.
|.
I.
|.
maml (X18X2,Y) = TT o omeal (X2,Y)
I.
I.
I.
|.

= TT
menL (X,Y18Y2) = FF neml (X,Y1l) = FF
memL (X, Y18Y2) s FF memL (X,Y2) = FF

memL (X1,Y)eFF, islist(X2)sTT
memL (X2,Y)sF , islist(X1)aTT

ment (X18X2,Y) & FF
nenml (X18X2,Y) s FF

h) “mergll” - Equality with respect to (list) membership.

e A T MR A eemA e

oYX . memEQUU,X) = WU
F VX . memEQ(X,UU) s WU

islist(X) s FF | VY . nmemEG(X,Y) = UU !
islist(Y) = FF F V¥YX . menEQ(X,Y) = WU !
menEQ(X,Y)a TT | islist(X) = TT
memEQ(X,Y)= FF |} islist(X) & TT L
menEQ(X,Y)= TT F islist(Y) = TT
menEQ(X,Y)= FF F islist(Y) = TT

islist(X)aTT, islist(Y)sTT, menEQiX,Y)cUU } TT s FF

B3>

menEQ(X,Y)s TT |} memL(X,Y) = TT
memEQ(X,Y)= TT | memL(Y,X) & TT

meml (X,Y) = FF | memEQ(X,Y) = FF

memL (Y, X) = FF | menEQ(X,Y) = FF
islist(X) = TT |} memEQ(X,X) = TT
islist(X) = TT |} menEQ(X,rev(X)) = TT

' . APPENDIX 18 (continued).

VX Y . memEQ(X,Y) = nemEQ(Y,X)
menEQ (W, X) aTT, memEQX,Y)eTT F nencQ(W,Y) & TT
memEQ (W, X) =TT, memEQ(X,Y)sFF |} mnmeaEQ(N,Y) s FF
- menEQ(X,Y) = TT b memEQ(X8Y,X) s TT
memEQ(X,Y) & TT P omemEQUX&Y,Y) = T7
memEQ(X,Y) = TT F VYo, nen(z,X) = mem(z,Y)
islist(X)aTT, Vz. mem(z,Xizmen(z,Y) F memEQ(X,Y) = TT

s i) The ‘memnS” operation fdeleting an element from a list).

FooovX . menS(UUX) = LU
oYX . nemS(X,LU) = LU
islist(X) «s FF |} VY, menS(X,Y) & W
JimemS(X,Y))aTT | islist(X) = TT
dimemS(¥,Y)) =TT | d(Y) & TT
islist(X)eTT, J(Y)aTT J islist{menS(X,Y)) & TT
g(X) & TT F nemSINIL,X) = NIL
VX Y . menS{cons(Y,X),Y) & memS(X,Y)
istist(X)eTT, 3(Y)nTT |} mem(Y,nenS(X,Y)) = FF
istist(X)=TT, J(Y)aTT |} menl(memS(X,¥),X) = TT
mem(Y,X) s FF F memS({X,Y) = X
FoVX Y . (menS(A,Y)=X) & (mem(Y,X)-FF,TT)
FoVX Y . menl(X,menS(X,Y)) & (mem(Y,X)-FF,TT)
F oYX Y . memEQ(nenS(X,Y),X) = (mem(Y,X)-FF,TT)

i) The ‘memSL’ operation.

WX, memSLILU,X) & UU

| oYX L memSLIX,UU) & UU

islist(X) w FF | YY ., memSL(X,Y) = UU

islist(Y) e FF } VX . menSL(X,Y) a UU

b ¢ dlmemSL (X, Y))&TT b islist(X) s TT

dimemSL(X,Y)) =TT | islist(Y) = TT

iclist(X)=TT, islist(Y)aTT } izlist(memSL(X,Y})) = TT
islist(X) = TT |} memSL(NIL,X) = NIL

islist(X) 8 TT |} memSL(X,NIL) = X

¢ islist(X) = TT YW Y. mem(d, memSL (X, Y))= (mam (W, Y)=FF,nem (W, X))
mem{W,Y)sTT, islist(X)=TT } nem(l,memSL(X,Y)) = FF
mem (W, X)=FF, is!list(Y)sTT mem (W, men3L(X,Y)) = FF
mem (W, X) =TT, mem(W,Y)=FF men (W, memSLIX,Y)) & TT

mem (W, memSL (X,Y)) & T7 mea(l,Y) = FF

b
F
mem (W, memSL (X, Y)) = TT Foomenild,X) & TT
k| F

{ islist(X) = TT FoomenSLIX,X) = NIL

43

APPENDIX 18 (continued).

PR | T R
| k) Properties of ‘subexp’.
F¥YX . subexp(X,UU) & UU
F o ¥X . subexp(UU,X) = UU
.iv subexp(X,Y) = TT FoalX) = 1T
subexp (X,Y) = TT Foay) s 77
subexp(X,Y) = FF P aX) =TT
subexp (X,Y) = FF Fodly) & 77
3(X)&TT, d(Y)=TT, subexp(X,Y)=sUU F TT s FF
| dix) = 1T F subexpiX,X) = TT
(atom(X) = FF b subexplhead(X),X) = TT

atom(X) = FF F subexp(tail(X)},X) = TT
atom(y} = TT B OYX . subexp(X,Y) a (XsY)
I(X) = 1T F VY . subexp(X,cons(X,Y)) = 8(Y)
g(X) = 1T F VY . suibexp(Y,cons(X,Y)) a 3(Y)
subexp (X, head(Y))aTT b subexp(X,Y) & TT
¢ subexp (X, tail (Y})&TT b subexp(X,Y) s TT
subexp (W, X)sTT, subexp(X,Y)sTT o subexp(W,Y) = TT
subexp(head(X),Y)=FF | subexp(X,Y) = FF
subexp(tait (X),Y)eFF b subexp(x,Y) s FF
subexp (X,Y)sFF, atom(Y)sFF F subexpiX,head(Y)) & FF
: subexp (X, Y)sFF, atom(Y)sFF F subexpiX,tail(Y)) = FF
AR subexp (X,Y)sTT, subexp(Y,X)sTT F Xay
| atom(X) a FF F subexp(X,head(X)) = FF
' aom(X) = FF P subexp(X,tail (X)) = FF

1) Properties of ‘assoc’.

| P VX . assoc(X,UU) s WU
. VX . assoc(UU,X) a UU

islist(Y) = TT

|.
islist(Y) « FF P VX, assoc(X.v} & UU
atom(X) = TT P YUY . associl,cons(X,Y)) a UU
dlassoc(X,Y))eTT b d(X) & TT
dlassoc(X,Y))=sTT b 3(Y) = TT
dgi(X) = 17 b assoc(X,NIL) = NIL
F

YW X.assoc (W, cons(cong (W, X}, Y))ucons (W, X)

E | m) The ‘forl’ function.

‘fl Ve fNIL . forL(UU, ¢, $NIL) = WU
j VX, (X, UU)sUU, islistiX)eFF |} VNIL . forlL (X, f, ¢NIL) s UU
| d(forL (X, f, fNIL)) =TT o(X) = TT
P Vf iNIL. forL(NIL,f, fNIL) = ¢NIL
diX) =TT P Vf fNIL. forl (cons(X,NIL), f, fNIL)Y =f (X, fNIL)
Jd(X)aTT, a(Y)=TT
F Vf fNIL., forL(cons(X,cons(Y,NIL)}), f, fNIL)=f (X, f(Y, fNIL))

43

2]

@

G

€

TR - —

e S ————te-

APPENDIX 11 - Basic Theorems for Finite Sets

(uses the axioms of sections 3,6 and 7.1 to 7.5)

jeset(UU) = UU

isset (X)sUU

X = UU

l.
I.

isset(X)aTT b 3(X) & T7
F

isset (X)sFF

U

islist(X)sFF
isset (%) =FF
islist(X)=TT
isset(X)=TT
isset (X)sTT
dlsetof(X))sTT
d{listof (X))=TT

memEQ(X,Y)sTT

islist(X)&TT

- T rTrTTT T - TrTTTrT T T T

3(X) = TT

cetof(UU) = W

listof (UU) = UU
cetofi(X) = UU
listof (X) = UU
issetlsetof({)) = 1T
istist(listof(X)) = TT
setof(listof (X)) s X
islist(X) = TT
isget(¥) = TT

setof(X) = setoflY)

VX . setof(listof(setof(X))) = setof(X)
VX . listofisetof(listof(X))) & listof(X)
memEN (X, listof (setof(X))) = TT

VX L . mem(X,listof(setof(L))) a mem(X,L)

APPENDIX 12 - Theorems About the Basic Set Operations.

{relies on the axioms of sections 2,8,7).

a) Theorems involving the null set. -

F isset(NS) = TT

F OWINS) = TT

F 1istof(NS) = NIL
setof (X) s NS F X = NIL

listof (X) = NIL F X =NS

isset (X)&TT, (XasNS)&FF b null(listof(X)) & FF

b) Properties of the membership relation.

P ovX . XU = U

FovX . WX = U
isset(Y)sFF FoWX . XeY = WU
isset (Y)uTT,XeYsUUp X = UU
XeYeTT d(X) & 1T
XcYeFF 3(X) = TT
XeY=TT isset(Y) = TT
Xc¢YsFF isset(Y) = TT
alX) = 1T X¢NS = FF
YX. d(X)s: XcYsFF b Y =2 NS
isset(Y)uTT, VX. XeY2uXcY P Y2 = Y

U
U

c) Introducing the ‘subset’ relation.

F VX . subset(X,UU) = UU
P VX . subset(UU,X) s WU
isset(X) s FF P VY, subset(X,Y) = U
isset(Y) # FF | V¥X . subset(X,Y) & W
subset (X,Y)=TT | isset(X) =TT
subset (X,Y)=TT b isset(Y) = T7
subset (X,Y)=FF b isset(X} = TT
subset (X,Y)sFF f isset(Y) = T7
isset(X)sTT, isset(Y)eTT, subszt(X,Y)sUU
isset (X)uTT I subsetiNS,¥) = TT
subset (X,NS)=TTp X & NS
subset (X,Y) =TT, WeXeTT | Wey = TT
subset (X,Y) =TT, WeYzFF F Kck = FF
iscet(X) & TT | subs=2t(X,X) = TT
isset (X)=TT, isset (Y)eTT, VW. WcX::leY=TT | subset(X,Y)=TT
subset (X,Y)=TT b VYW, WeX ¢1 WY = TT
subset (X,NS)=TTp X & NS
subset (W, X) =TT, subset(X,Y)=TT F subseti{ld,Y) = TT

wowm o owow

o1l

APPENDIX 12 (continued).

d) The usual union operation - ‘U ,
VX . XulU = W

F VX . UUUX = W
isset(X) m FF | VY . Xuy = U
isset(Y) a FF | VX . Xuy &« UU
J(Xuy) = TT F isset(X) s TT
d(Xuy) = TT P oiesetly) =TT

isset(X) » TT, isset(Y) e TT [isset(XuY) =& TT
isset(X) s TT, isset(Y) = 7T, AuY = UU | TT & FF
WeX = TT, issat(Y) & TT | Wc(XuY) = TT

WeY & TT, isset(X) = TT f UWc(XuY) = TT

WeX & FF, WeY s FF P Hc(XuY) = FF

We(XuY) = FF WX = F

Wc(XuY) a FF b WeY s F

isset(X) = TT, isset(Y)

e TT | subset(X,XuY) & TT
TT, isset(Y) = TT

>>xX =T

isset(X) = b subset(Y,XuY) = TT
ieset(X) s TT | XuNS =
isset(X) = TT | NSUX = X
isset(X) & TT f XuX = X
subset (X,Y)=TT b XuY = Y
P XuY = YUX
FoYX Y Z . (XuY)uZ s Xu(YuZ)

8) The set subtraction (\) operation.

F VX . X\UW = W

F VX . UUNX = WU
isset(X) = FF Yy . X\Y = U
isset(Y) s FF | ¥X . X\Y = W
d(X\Y) = TT F isset(X) = TT
3(X\Y) & TT F isset(Y) = TT

isset (X\Y} & 1T
1T = FF

We (X\Y) = FF

We (X\Y) = FF

We (X\Y) & TT

isset(X) & TT, isset(Y) = TT
ieset(X)wTT, isset(Y)wTT, X\YaUU
WeX = FF, issetl(Y) = TT

WeY =2 TT, iesati(X) = TT

WeX = TT, WeY = FF

We(X\Y) = TT F HeX = TT
We(X\Y) o TT | UWeY = FF
isset(X) = TT, isset(Y) = TT F subset(X\Y,X) = T7T
isset(X) = TT X\X = NS

by ki iy ey 1

|.
isset(X) = TT f X\WNS = X
isset(X) = TT }

NS\X = NS

gy =, e -]

APPENDIX 12 (continued).

FYX . XnUU = WU

f) Properties of usual intersection operation - n’ .

Fo¥X . UUnX = LU
isset(X) w FF VY. XnY a UU
isset(Y) w FF | VX, XnY = UU
d(XnY) =2 TT P oisset(X) = TT
3{XnY) e TT b oisset(Y) & TT
isset(X) m TT, isset(Y) & TT F isset(XnY) & TT
isset(X)aTT, isset(Y)aTT, XnYsUU } TT = FF
WeX = FF , isset(Y) = TT F WelXnY) = FF
WeY & FF , isset(X) & TT F WelXnY) = FF
WeX & TT , WeY & TT P WeXnY) = TT

WeXnY) = 7T b HWeX = TT
We(XnY) & TT F WeY = TT
isset(X) & TT, isset{Y) =TT I subseti{XnY,X) = TT
isset(X) m TT, isset(Y) = TT b subsetiXnY,Y) & TT
isset(X) a TT | XnNS = NS
isset(X) & TT F NSnX = NS
isset(X) a TT | XnX = X
F XaY = YnX
FowX Y Z . (XnYinZ s Xn(YnZ)

g) The ‘select” function.

P select{lU) = W

F select{NS) = W
isset(X) s FF p select(X) = U
diselect(X))=TTF isset(X) = TT
d(select(X))sTTF (X=NS) = FF
iseet(X) u TT, (X=NS) ® FF } d(select(X)) = TT
isset(X) w TT, (X=NS) = FF } select(X)eX a TT

nm W

h) The ‘singtn” function.

P singtnlUU) = WU

a(xX) = TT F issetl{singtn(X)) s TT
Alsingtn(X))=TTF a(X) = TT

a(x) = 17 XesingtniX) = TT
Xesingtn(Y) =TT XzY

(singtn(X)=NS) = FF

!.
l.
a(x) = 1T k
b select{singtn(X)) = X

IX) = TT

