
ESD-TR-72-330

ESDACCE LIST
DRi C?M No. ~}o 3&0

Copy No. j ot J^ cys.

MTR-2429

A GENERAL BASIS FOR COMPARATIVE EVALUATION

OF AED, COBOL, JOVIAL, AND PL/1

by

J.C. Des Roches

FEBRUARY 1973

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

ED* j\o*
0\MV ks\o^

Approved for public release;
distribution unlimited.

Project 572B

Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract No. F19628-71-C-0002

/{Dittos-

When U.S. Government drawings, specifications,

or other data »TB used for any purpose other than

a definitely related government procurement

operation, the government thereby Incurs no re-

sponsibility nor any obligation whatsoever; and

the fact that the government may have formu-

lated, furnished, or in any way supplied the said

drawings, specifications, or other data is not to be

regarded by implication or otherwise, as in any

manner licensing the holder or any other person

or corporation, or conveying any rights or per-

mission to manufacture, use, or sell any patented

invention that may in any way be related thereto.

Do not return this copy. Retain or destroy.

•■

ESD-TR-72-330 MTR-2429

A GENERAL BASIS FOR COMPARATIVE EVALUATION

OF AED, COBOL, JOVIAL, AND PL/1

by

J. C. Des Roches

FEBRUARY 1973

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS

ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Approved for public release;
distribution unlimited.

Project 572B

Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract No. F19628-71-C-0002

FOREWORD

The work described in this report was carried out under the sponsorship of
the Deputy for Command and Management Systems, Project 572B, by The
MITRE Corporation, Bedford, Massachusetts, under Contract No.
F19628-71-C-0002.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved.

'^«--*-TC-

MELVIN B. EMMONS, Colonel, USAF
Director, Information Systems Technology
Deputy for Command & Management Systems

ABSTRACT

This report provides an analysis of the technical features and

pertinent characteristics of the programming languages AED, COBOL,

JOVIAL, and PL/I, which were chosen for evaluation because of general

applicability to programming problems within the scope of Air Force

interest. The methodology derives from the development of a Language

Feature Outline and a Language Evaluation Questionnaire for which

programmer/analysts supplied detailed technical information and sub-

jective evaluations. The intent of this report is to provide material

in support of evaluations of the relative suitability of the four

languages for specific applications.

iii

ACKNOWLEDGEMENT

The author acknowledges, with sincerity, that the contributions

of the participants in the study group constitute, by far, the major

content of the report and provide the substantive basis to which

evaluation criteria may be applied by potential users of the subject

languages. The staff members who comprised the study group and the

assigned language responsibilities were as follows:

Mr. William Amory JOVIAL

Mr. W. Reid Gerhart PL/I

Mrs. Verniece Hensey COBOL

Mr. Joseph E. Sullivan AED

Others have contributed to lesser degrees and cannot all be thanked

individually; Mr. John Glore, however, deserves mention for his contri-

bution to JOVIAL material.

iv

TABLE OF CONTENTS
Page

LIST OF EXHIBITS
LIST OF TABLES

vi
vi

SECTION I PURPOSE AND SCOPE

SECTION II METHODOLOGY

SECTION III LANGUAGE EVALUATION STRUCTURE

SECTION IV AN OVERVIEW OF THE LANGUAGES 9
AED 9
COBOL 11
JOVIAL 16
PL/I 18

SECTION V RESPONSES TO LANGUAGE EVALUATION QUESTIONNAIRE 21
APPLICABILITY 21
AED 21
COBOL 22
JOVIAL 22
PL/I 24

DESCRIPTIVENESS 25
AED 25
COBOL 26
JOVIAL 26
PL/I 27

EASE OF USE 28
AED 28
COBOL 29
JOVIAL 30
PL/I 31

TRANSFERABILITY/MACHINE-INDEPENDENCE 32
AED 32
COBOL 33
JOVIAL 33
PL/1 34

IMPLEMENTATION 35
AED 35
COBOL 36
JOVIAL 36
PL/I 37

TABLE OF CONTENTS (CONC.)

MANAGERIAL ASPECTS
AED
COBOL
JOVIAL
PL/I

APPENDIX I TECHNICAL CHARACTERISTICS

BIBLIOGRAPHY

Page

37
37
38
38
39

41

181

Exhibit Number

1

2

LIST OF EXHIBITS

Language Feature Outline

Language Evaluation Questionnaire

Page

6

2

Table Number

I

II

III

LIST OF TABLES

COBOL Functional Processing Modules

Special Characters

Summarization of Relational Operators

Page

14

43

62

vi

SECTION I

PURPOSE AND SCOPE

The purpose of this language comparison study is to provide an

in-depth analysis of the technical features and pertinent character-

istics of the programming languages AED, COBOL, JOVIAL, and PL/I.

This analysis may then be used to aid in the evaluation of the ap-

plicability of each of the subject languages to different classes

of programming problems within the scope of the Air Force interest,

which is predominantly in the areas of data management, systems pro-

gramming, and business applications.

Since most current procedure-oriented programming languages were de-

signed to provide capabilities specific to a particular application area,

large installations usually require a comprehensive set of languages

in order to fulfill their diverse programming responsibilities in a

timely and efficient manner. Recent history indicates that software

cost has become the dominant factor in the total cost of automation,

increasing substantially faster than hardware costs. As a result,

it becomes mandatory that languages be effectively evaluated in terms

of capabilities and limitations, so that the optimum match of pro-

gramming language and application may be effected.

The subject languages, i.e., AED, COBOL, JOVIAL, and PL/I, were

chosen because they provide advanced programming capabilities and

versatility in their range of applicability. All have been in exis-

tence sufficiently long to have been subjected to the 'test of time'.

AED (Automated Engineering Design), developed at MIT's Elec-

tronic Systems Laboratory during the period 1959-1969 under Air Force

sponsorship and made public in 1969 by SofTech, Inc., was included

since it supports a software engineering discipline and is particu-

larly well suited to systems programming.

The development of COBOL (Common Business Oriented Language)

traces back to 1959 when it was defined by an inter-company committee

(CODASYL) under Department of Defense sponsorship. Its purpose was

to provide a natural, English-like language suitable for business

data processing with emphasis on machine independence. It has gained

wide acceptance and become a USASI standard.

JOVIAL was developed about 1960 by the System Development Corpo-

ration under an Air Force contract. Its purpose was to combine

numerical scientific facilities with a strong data management capa-

bility and thereby provide the features necessary for large scale in-

formation processing systems. The J-3 version of JOVIAL has become

the Air Force standard programming language for Command and Control

Systems.

PL/I, developed in 1963 by IBM and SHARE, represents a synthesis

of features from FORTRAN, ALGOL, and COBOL and was specifically de-

signed to support the functions of third-generation computer systems.

It is a very powerful language, capable of scientific, business, and

systems programming and, as such, offers perhaps the best potential

for a 'one-language? installation.

This report is addressed to readers with a knowledge of higher-

level programming languages and concepts. Its purpose is to delineate

information relative to the salient features of the subject languages,

rather than to provide a complete, rigorous language specification.

To this end, emphasis has been placed on what is included in each

language rather than how it is implemented.

SECTION II

METHODOLOGY

Language descriptions and evaluations may take many forms, pri-

marily dictated by the purpose of the exposition; for example, lan-

guage designers and implementors require formal and rigorous language

specifications which are usually written in a metalanguage designed

to define the syntax of the language, while potential users often

base a language evaluation on the benchmark approach, which involves

programming representative test programs in the candidate languages

and measuring such quantities as programming time, memory require-

ments , and execution speeds.

In contrast to the formal linguistic approach to language com-

parison and the experimental benchmark approach, a generalized structure

of basic language constructs has been developed,within which each of the

subject languages is described. In this manner, the language features

are delineated within a consistent and cohesive framework and may be

compared on an 'item-by-item' basis.

Since no one person within The MITRE Corporation was found to be

conversant: in all of the languages, a pro grammer/analyst, experienced

in theory and practice, was chosen to provide the descriptive tech-

nical information for each of the languages under consideration.

No attempt has been made to assess the languages in a quanti-

tative way and it remains for each potential user to either formally

or intuitatively derive the criteria for evaluation, which must be

based not only on the language capabilities and the domain of the

applications, but on such considerations as compiler availability and

efficiency, programmer training, and the software support provided by

the vendor.

SECTION III

LANGUAGE EVALUATION STRUCTURE

As previously stated, the methodology for the language evaluation

consisted of the development of a Language Evaluation Structure with

two major components, namely, a Language Feature Outline and a Language

Evaluation Questionnaire. The Language Feature Outline is presented

as Exhibit 1 and the detailed technical descriptions of the subject

languages relative to the outline are presented in Appendix I« The

Language Evaluation Questionnaire is presented as Exhibit 2 and the

responses to the questionnaire are presented in Section V.

Exhibit 1

Language Feature Outline

A. BASIC ELEMENTS

B.

1. CHARACTER SET

2. IDENTIFIERS
Variables
Labels

3. LITERALS/CONSTANTS

4. OPERATORS
Computational
Relational
Logical
Data Movement
String
Editing

5. KEY WORDS/RESERVED WORDS

6. PUNCTUATION

DATA TYPES AND ORGANIZATION

1. DATA TYPES

a. Problem Data

Numeric
Logical (Boolean)
String
Status

b. Program Control Data

Label Data/Switches
Procedures
Pointers/Offsets
Multitasking Data

2. LOGICAL DATA ORGANIZATION

Arrays
Structures/Tables
List Structures

3. PHYSICAL DATA ORGANIZATION

Packing
Alignment
Overlays
Records

Exhibit 1 (concluded)

C. PROGRAM STRUCTURE

1. UNITS

a. Non-executable Units

(1) Comments/Remarks
(2) Declaration/Specification Statements

data declarations
file declarations
format descriptions
procedures, subroutine, and function definitions

(3) Storage Allocation/Segmentation
(4) Environment/Operating System Descriptions

b. Executable Units

(1) Expressions
subscripts/arguments
formation rules

(2) Statements
(a) data manipulation
(b) program sequence control
(c) input/output

stream-oriented transmission
record-oriented transmission

(d) debugging statements
(e) operating system interface

multitasking/asynchronous processing
dynamic storage allocation
interrupts/error control
interactive processing

(3) Compound statements
(4) Loops
(5) Blocks/Paragraphs
(6) Functions
(7) Procedures/Subroutines

c. Compile-Time Features

source text manipulation
language rule modification
initialization
inclusion of other languages

2. ORGANIZATION

a. Program Format

b. Scope of Names

Exhibit 2

Language Evaluation Questionnaire

A. Applicability

Discuss the suitability of the language to the following appli-
cation areas with reference to specific language strengths and
weaknesses:

a. scientific
b. data management
c. business applications
d. artificial intelligence
e. real-time systems
f. systems programming

B. Descriptiveness

Discuss the form of the subject language in terms of:

a. conciseness vs. naturalness
b. ease of writing vs. self-documentation

C. Ease of Use

Discuss the language in terms of ease of learning and use:

a. professional vs. non-professional programmer training
b. natural language subsets (modularity)
c. consistency and strictness of rules
d. ease of coding, debugging, maintaining, and updating

programs

D. Transferability/Machine Independence

Discuss the language in terms of:

a. transferability
b. access to machine-specific features

E. Implementation

Discussion the available compilers for the language in terms of:

a. computer systems
b. language of compiler
c. efficiency
d. diagnostic aids
e. optimizing techniques

F. Managerial Aspects

Discuss the subject language, in terms of:

a. maintenance/level of support
b. standardization/extendability
c. available documentation

8

SECTION IV

AN OVERVIEW OF THE LANGUAGES

AED (Automated Engineering Design)

AED, developed at MIT under the direction of D. T. Ross, with

industry participation and Air Force sponsorship, was designed to

support a software engineering discipline; that is, the construction

of modular, reusable, machine-independent software components which

can be integrated to fabricate software systems over a wide range of

application areas. As such, it has evolved as a 'system of systems

for making systems'. However, in its present state of development,

the primary orientation is toward systems programming; i.e., the de-

velopment of compilers , interpreters, and operating systems.

The AED system consists of three basic components:

(1) The AED-0 language, a derivative of ALGOL-60, is a

high-level, general-purpose programming language

based on Ross' Algorithmic Theory of Language.

(2) The AED library consists of integrated packages of

routines which perform generalized functions relative

to system programming^ such as memory management,

data structuring, and device-independent I/O control.

In keeping with the philosophy of software engineering,

a package is constituted of various subatomic, atomic,

and molecular functions which share common global vari-

ables and data structures and may be integrated to ac-

complish logically complex operations.

(3) Finally, AED consists of two systems to automate the con-

struction of language processors, each of which has an older

(public AED) and a newer (SofTech-proprietary) form. The

Finite State Machine (FSM), formerly Read-A-Word (RWORD),

accepts as input descriptions of the items or words allow-

able in a language and generates a lexical processor (an

AED-0 program) which reads a string of characters and com-

bines them into parsing items according to the user-defined

regular expressions. The Syntax Definition Facility (SDF),

formerly AED Junior (AEDJR), accepts a BNF-like grammar

specification and constructs tables for parsing input

strings.

The system-building aspect of AED is well beyond the scope of

this paper, but was included in the interest of completeness. In the

context of the language comparison, the discussion of AED will be

limited to the AED-0 language, with reference to the packages only

to the extent that they provide the semantics of language features

not included in basic AED-0.

A concept central to AED is that of the 'modeling plex* , which

provides the mechanism within which the relationships between the

data, structure, and algorithm which define a process may be expressed.

The data structure of a plex, which is defined as an interconnected

set of n-component elements, is a list structure of arbitrary com-

plexity in which pointers to other data structures are stored. The AED

referencing scheme allows the components, data, structure, and algo-

rithm to be used interchangeably at various stages in the program;

for example, an algrorithm may appear as data at some higher level

and may be structurally tied to some data source, which in turn may,

at a lower level, be either an ordinary datum or a plex itself.

10

The Algorithmic Theory of Language includes the principles of

type transformation and phrase substitution. Specifically, operations

on data types result in the formation of larger units, with an associated

data type, which can be substituted wherever a more primitive form of

the data type is allowed.

Part of the AED syntax is based upon a concept called funiversal

reference notation1. In this notation, all qualified references are

of the form:

component (element)

where component and element may be mapped into the following imple-

mentations :

component element

function name function argument list

bead component pointer

array name subscript

macro name macro argument list

Thus, the formal reference may be coded before the mechanization

is known, or the mechanization may be changed by merely altering the

declaration.

COBOL (COmmon Business Oriented Language)

The Conference on Data Systems Language (CODASYL) was established

in May 1959 at a Pentagon meeting consisting of representatives of

user groups, government installations, industry, and computer manu-

facturers, and was charged with the responsibility to investigate the feasi-

bility of developing a common business-oriented language. As a result

11

of this activity, the initial specifications for COBOL-60 were de-

veloped. The language was designed to have a narrative, English-

like syntax, to be machine-independent, and to provide constructs and

data structures particular to business and commercial data processing,

which, in contrast to scientific data processing, is characterized by

the manipulation of large files of similar data records, requiring

relatively simple computational and logical operations, and by the gen-

eration of rigidly-formatted reports.

It was the intent of CODASYL that the specification and mainten-

ance of COBOL be a continuing effort in order to ensure that the

language be refined as necessary for the resolution of inconsistencies,

and updated to reflect advances in computer hardware and software

technology.

The first revision to COBOL, known as C0B0L-61, involves or-

ganizational changes to the language rather than the addition of

any major functions.

C0B0L-61 EXTENDED introduced the SORT feature and the REPORT

WRITER option; COBOL, EDITION 1965, the most widely implemented ver-

sion of the language, provided facilities for the processing of mass

storage files and a TABLE HANDLING feature with indexing and search

options.

COBOL, 1968, is especially significant because of the inclusion

of inter-program communication (via the CALL verb and the LINKAGE

Section of the DATA Division) and the concept of a run-unit, consist-

ing of previously-compiled program modules linked together at object

time.

12

The description of COBOL in this report is based on COBOL, 1968;

however, recent COBOL enhancements include the addition of a Commu-

nications Facility, whereby a COBOL program can communicate with

message-handling devices, a Debugging Facility which allows for the

enabling or disabling of 'debug code1 at both compile time and object

time, and a Merge Facility which provides a corollary for the Sort

Facility provided in earlier versions.

The responsibility for future language extensions resides with

the Programming Language Committee (PLC) of CODASYL and will be re-

ported via the Journal of Development. The primary orientation of

future language extensions is reflected by the existence of the Data

Base Task Group, the Asynchronous Task Group, and the Mass Storage

Task Group within the PLC.

The definition of the current United States COBOL standard was

accomplished in 1968 by the United States of America Standard In-

stitute (USASI). Named the American National Standard COBOL (ANS

or ANSI COBOL) and published as USA Standard X3.23-1968, it is based

primarily on COBOL, EDITION 1965, plus language enchancements approved

through 1966. The Journal of Development 1970 contains the current

state-of-the-art COBOL specifications, a modularized subset of which

will form the basis for a revision of the current standard.

ANSI COBOL is organized into a set of eight Functional Proces-

sing Modules (FPM); each module is divided into two or three levels

of decreasing power. These modules and the associated levels are

presented in Table I.

13

Table I

COBOL Functional Processing Modules

MODULE LEVELS

1. Nucleus HIGH, LOW

2. Table Handling HIGH, MID, LOW

3. Sequential Access HIGH, LOW

4. Random Access HIGH, LOW, NULL

5. Sort HIGH, LOW, NULL

6. Report Writer HIGH, LOW, NULL

7. Segmentation HIGH, LOW, NULL

8. Library HIGH, LOW, NULL

Currently, Minimum Standard COBOL is defined as consisting of

the lowest level of each module. Excluding the null cases, the stan-

dard becomes the minimum levels of Nucleus, Table Handling, and Se-

quential Access. A full ANSI COBOL must contain the maximum (HIGH)

level of implementation of all eight FPMs.

This categorization by function and levels within functions

provides a consistent mechanism whereby specific implementations may

be accomplished.

In accordance with the objective to maximize compatability across

many machine configurations, COBOL specifies a program structure which

isolates computer-dependent information, data descriptions, and the

processing procedures. In particular, a complete program has four

major units called DIVISIONS which may be further partitioned into

SECTIONS.

The major functions of the divisions are outlined briefly:

IDENTIFICATION DIVISION — identifies the source program and

the resultant compilation output. The program name is required;

14

optional entries may include programmer name, date, security

level, etc.

ENVIRONMENT DIVISION — contains all the machine-specific in-

formation relative to the configuration of the compiling and

object computers; provides for the cross-referencing of hard-

ware units with program mnemonics; establishes the correspond-

ence between data files and the external media; specifies file

control information and the input-output techniques.

DATA DIVISION — identifies and describes each item of data to

be processed. The DATA DIVISION consists of the following

SECTIONS: FILE, WORKING-STORAGE, CONSTANT, LINKAGE, and REPORT.

The FILE SECTION describes the content and organization (phy-

sical and logical) of all files; the CONSTANT and WORKING-

STORAGE SECTIONS provide for the specification of user-defined

constants and internally-generated data; the LINKAGE SECTION

describes external data, references to which must be resolved

at object time; and the REPORT SECTION specifies the content

and format of the output reports.

PROCEDURE DIVISION — contains all the executable operations

necessary to accomplish the problem solution. The division

consists of declaratives and procedures. The English-like

nature of COBOL is most obvious in this division where verbs

specify actions and are combined with operands to form state-

ments , which are categorized as imperative, conditional, or

compiler-directing. Higher-level executable units consist

of sentences, paragraphs, and sections.

In summary, the divisions ranked in order of increasing machine

dependency are: IDENTIFICATION, PROCEDURE, DATA, and ENVIRONMENT.

15

JOVIAL (Jules Own Version of the Lnternational Algebraic Language)

JOVIAL, a general-purpose, procedure-oriented programming lan-

guage derived from ALGOL-58, was designed and implemented by the

System Development Corporation in 1959-1960 for the programming of

the Strategic Air Command Control System. It has since become an

SDC corporate language standard, the Air Force standard for Command

and Control Systems, and the Navy standard for Strategic Command Sys-

tems .

JOVIAL combines numerical scientific facilities with capabilities

for data handling and the manipulation of logical entities , and, most

importantly, supports the C0MP00L (COHnunications POOl) concept,

whereby descriptions of system elements (data and storage allocation

parameters for the data and for the system programs as well as pro-

cedure definitions) may be standardized and centralized for common

reference. The COMPOOL concept provides the mechanism to separate

the system-wide set of declarations describing the system data to be

processed from the set of statements defining the processing algo-

rithms. The magnitude of large-scale, computer-based information

processing systems predicates such a common source of data descrip-

tion in the interest of both data design coordination and program

transferability.

To provide for the efficient transfer of programs and to mini-

mize conversion costs, JOVIAL compilers have a two-phase structure

consisting of a Generator and a Translator, each of which is written

in JOVIAL and performs a distinct transformation. In particular,

the Generator accepts as input JOVIAL declarations, source statements,

machine-language code, and the COMPOOL declarations; codifies the data

description declarations and determines appropriate sequences of

16

elementary operations; and, finally, produces as output a machine-

independent Intermediate Language (IL) consisting of a dictionary and

an operation list. It is the function of the second-pass Translator

to convert the Intermediate Language to machine-specific code; trans-

lators ordinarily incorporate a complete symbolic assembly phase.

The efficiency of this method derives from the fact that all

compilers use the same Generator and the writing of a new compiler

reduces to the less complicated task of writing the Translator. Also,

a common Generator provides for the centralized control of the grammar

of the language.

JOVIAL has gone through a series of revisions and currently ex-

ists in several dialetical forms. The original JOVIAL-1 was replaced

by JOVIAL-2 which was in turn superceded by JOVIAL-3 (J-3), the

latest official version of the language. J-3 forms the basis for the

current Air Force standard as specified in Air Force Manual 100-24.

However, this standard is being revised and the specification for a

new standard is due for publication in the fall of 1972.

Current SDC policy specifies that JOVIAL compilers must imple-

ment a 'core subset* of J-3, called Basic JOVIAL or JS; all implemen-

tations of J-3 specifications must be in accordance with the corporate

standard; and the addition of advanced language features must be com-

patible with the standard.

J-4, J-5, J-5.2 and J-5.3 represent supersets of J-3, while JTS

is a time-sharing version of Basic JOVIAL.

17

PL/I

In October 1963, the Advanced Language Development Committee of

the SHARE FORTRAN Project was formed under the sponsorship of SHARE

and IBM for the purpose of defining a new high-level programming lan-

guage applicable to a wide spectrum of applications, i.e., scientific,

commercial, real-time, and systems programming. The design criteria

further specified that the language should provide full access to

machine and operating system facilities while maintaining relative

machine independence; it should be modular in nature allowing natural

subsets of the language for particular applications and differing

levels of programmer expertise; and, finally, it should be 'forgiving1

by providing a default interpretation for each of the many options.

Originally envisioned as a compatible extension to FORTRAN, the

language, as it evolved, synthesized features from FORTRAN, COBOL,

and ALGOL and, additionally, incorporated new constructs in support

of the architecture of third-generation computer systems.

Reflecting this advance in the state-of-the-art, the original

version of the language was designated NPL, The New Programming Lan-

guage. However, this acronym was abandoned in 1965 in favor of 'PL/I'

which, although the official name of the language, is derived from

Programming Language/One.

Historically, the first language specification was defined in

March 1964 and the first compiler for System/360 was released in

August 1966. Subjected to major revisions, additions, and deletions

through its development, the language is presently in the process of

formal standardization. The American National Standards Insti tute

(ANSI X3J1), in cooperation with the European Computer Manufacturers

18

Association (ECMA TC10) and with the technical cognizance of the In-

ternational Federation of Information Processing (IFIP Technical Com-

mittee 2), is working toward the definition of an international stand-

ard for PL/I to be completed by December 1972.

PL/I is a language of great power and flexibility; its more ad-

vanced language features include provisions for:

1. interrupt handling,

2« asynchronous processing,

3. dynamic control of storage allocation,

A. list processing, and

5. compile-time macro facility.

Error control and program checkout are greatly facilitated by the

interrupt-handling features of the language which allow f or the

specification of programmer-defined corrective action to be taken

when dynamic, unscheduled conditions such as overflow, end-of-file,

subscript range, and conversion errors occur. The asynchronous fea-

tures provide for program operation in a multi-programming environment;

routines may execute in parallel and operations may be suspended to

await the occurrence of a specified event. Storage management is ex-

plicitly provided for by the use of attributes which define the manner

in which variables will be assigned memory space; options include

permanent, block-dependent, and programmer-controlled. The utility

of PL/I as a list processing language is enhanced by the provision

for complex data structures, the definition of pointers, offsets and

based variables, and facilities for the dynamic control of storage.

The preprocessor phase of a PL/I compilation provides the mecha-

nism to manipulate a source program prior to the actual generation of

19

object code; included are facilities for macro definition, common

text insertion, and a limited syntax (e.g., assignment, GOTO, IF, DO).

Of current interest in the development of PL/I is the announce-

ment by IBM of both a Checkout and an Optimizing Compiler. The Check-

out Compiler, useful during program development, generates interpre-

tive code and provides diagnostic error messages in source language

terms. In addition to checking for such deviations as the use of un-

initialized variables, illegal pointer references, and illegal branches,

the Checkout Compiler includes methods for program monitoring, a spel-

ling correction algorithm for key words, and a formatting program

which generates source program listings in a structured schematic

form. The Optimizing Compiler, designed specifically for the genera-

tion of efficient object code, performs program flow analysis to

accomplish such ends as the removal of constant expressions from

within interactive code, the consolidation of common subexpressions,

and the local optimization of register allocation and use. The com-

patability of the Checkout and Optimizing Compilers in both source

language and object code supports the concept of efficient modular

program development.

20

SECTION V

RESPONSES TO LANGUAGE EVALUATION QUESTIONNAIRE

APPLICABILITY

Language capabilities must be evaluated in relation to specific

applications areas. No one language can be considered best for all

applications. In fact, this is contrary to the design objectives of

most current procedure-oriented languages, which, although designed

to provide a wide range of programming capabilities, are usually

oriented to a specific application area. Clever programming tech-

niques can often compensate for language deficiencies, but they

usually do so at the expense of efficiency.

AED

Since AED provides easy access to machine-specific features, it

is quite adequate for its declared purpose, viz. 'system programming'

in the sense of constructing operating systems, utilities and such.

It has been applied successfully to compilers, despite relatively

poor string-handling facilities. Heuristic programs, including

'artificial intelligence' and other applications requiring complex

data structures, would also seem to be appropriate.

Lack of matrices, complex or double-precision data types would

seem to limit scientific applications, while poor string-handling

and I/O would tend to discourage data management or business applica-

tions. Real-time systems would require machine language support for

interrupt processing.

21

COBOL

As stated in the history and as is obvious from the name of the

language, COBOL is a business-oriented programming language. The

basic language features of COBOL, in the DATA Division, provide a

natural way to manipulate, update, change, and add data to a variety

of record formats and file descriptions. Built-in Sort, and Table

Handling facilities, asynchronous processing, and report writing are

effective tools of the language for data management and business ap-

plications.

As the language has been modified, new features have allowed

COBOL to be used in other applications areas with a reasonable amount

of success.

COBOL is not recommended for applications that are heavily scien-

tific involving such operations as matrix manipulation, inversions,

iterations, and transformations. These applications may be program-

med; however, much of the computation would best be performed by a

call to a more appropriate language via the ENTER or CALL verbs.

COBOL, however, is suitable for simple statistical and probability

problems.

The language itself is not prohibitive to real-time systems and

systems programming applications, but the excessive number of re-

quirements outside the scope of the language would make it imprac-

tical.

JOVIAL

JOVIAL is probably best suited to Data Management problems and,

in particular, Command and Control applications, where JOVIAL*s em-

phasis on logical processing (especially status data) would be useful,

22

The COMPOOL was specifically designed for multi-programmer implementa-

tions, which is characteristic of most Data Management problems. Al-

though data can be packed for efficiency, JOVIAL is weak on data

structuring; hierarchical structures and dynamically based data can-

not be handled explicitly in the language.

JOVIAL is only moderately suited to scientific problems. Arith-

metic operations are limited to individual items (in contrast with

PL/I, for example, with matrix operations) and the built-in functions

are directed almost entirely either at bit manipulations or at table

size definitions — the only arithmetic function is ABS. Multidimen-

sioned data is only available when the ARRAY statement is implemented

and double-precision values are unknown.

The biggest deficiency of JOVIAL for business applications is

the lack of a formatted I/O capability for report generation; repeat-

ing groups are available with the STRING primitive. JOVIAL1s arith-

metic processing capabilities would be entirely adequate in most

cases, and its logical processing capabilities would be useful also.

The COMPOOL would be useful in centralizing and standardizing file and

item declarations for a full system.

Since JOVIAL does not provide for tree structures for data,

dynamic control of data allocation, recursion and stacks for programs,

and automatic garbage collection, it would be inadequate for Artifi-

cial Intelligence problems.

While JOVIAL applications frequently operate, in a real-time en-

vironment, time is involved only as another piece of data. JOVIAL

as a language has no provision for processing interrupts or other-

wise responding in an asynchronous fashion — this is normally done

23

by the supporting monitor. In other words, JOVIAL is designed for

programs which operate in a real-time environment, but not for pro-

grams that deal with a real-time environment. The difficulties in

going from one type of operation to another could be dealt with by

breaking into DIRECT code (working at the machine-language level),

but JOVIAL1s DIRECT code capability seems more a way of overcoming

mismatches between language and application than a part of the lan-

guage itself.

Systems Programming involves dynamic management of hardware re-

sources, and JOVIAL tends to stay above hardware-specific problems

(except for data packing). Queues, stacks, and dynamic arrangement

of storage are not supported by the JOVIAL language, and the objec-

tions to JOVIAL for Real-Time Systems apply as well as to its use for

monitors and operating systems. However, JOVIAL has been used suc-

cessfully to write its own compiler.

PL/I

PL/I, unlike most languages which were created for a specific ap-

plication, was designed to provide generality and flexibility in order

to handle many applications well. The ability to chain variables

and structures together with pointers and to dynamically allocate

and free storage, allows PL/I to act as a good list processing lan-

guage. The use of PL/I for systems programming is enhanced by the

modularity of object code, ON-conditions, recursive procedures, dy-

namic storage allocation, varying length strings, and the ability to

access data at the bit level of the machine. Complex and double-

precision operations, plus matrix-handling capabilities, and a large

library of routines make PL/I useful for scientific applications.

The ON-conditions provide for some interrupt handling necessary for

24

real-time applications. Slow I/O limits the capabilities of PL/I

for business use, although the speed of I/O has been doubled by IBM's

Optimizing Compiler. Some language deficiencies include graphics,

formula manipulation, and complicated pattern matching.

DESCRIPTIVENESS

The form of programming languages can vary widely. At one end

of the spectrum are the very cryptic symbolic assembly languages and

at the other, the very natural English-like languages. Conciseness

is an advantage in that code may be generated with a minimum of

physical writing, but the operations being performed are often ob-

scured and difficult to follow. The English-like languages are apt

to be cumbersome to write but have the advantage of producing pro-

grams which are self-documenting and therefore easier to maintain

and update .

AED

From the point of view of pure syntax, AED strikes a reasonable

and conventional balance between conciseness and naturalness and may

thus claim both. The underlying syntax is simple and regular and

therefore concise; standard infix arithmetic and Boolean expressions

are used rather than 'English1. On the other hand, English function

names rather than new operators tend to be used for non-elementary

operations. Unfortunately, when principle is reduced to practice,

the use of the language and its standard library requires much ob-

vious artificiality to overcome semantic shortcomings. The sequence

of coding PACK statements, performing the required setup for a sub-

routine package, and referencing acronym-named procedures in these

packages, produces results that are usually neither concise nor

25

natural. The main difficulty in reading or writing AED is in knowing

the nature and order of parameters to be passed to standard package

routines. AED is definitely not self-documenting.

COBOL

COBOL was designed to follow closely the syntax of the English

language. By virtue of this design specification, the language

evolved as more natural than concise. Because of the restrictions

on format and reserved words, COBOL presents difficulties in writing.

It is a very wordy language, yet this very wordiness (somewhat dimin-

ished by the ability to abbreviate certain reserved words) does much

to achieve a reasonable level of self-documentation. Perhaps COBOL's

greatest assest is its structured organization — enabling distinction

for documentation of program identification, environment, data, and

procedures.

JOVIAL

JOVIAL is a concise rather than a natural language. All state-

ments except assignment statements start with reserved key words,

and statements are generally evaluated independently of neighboring

statements; (IF, IFEITH, ORIF are exceptions). The introduction of

compound statements (BEGIN...END) and free format source language

statements are important contributions to naturalness, as is the use

of name-type labels. On the other hand, the limitation of identi-

fiers (8 characters in some implementations) contributes to con-

ciseness rather than naturalness. The major language feature which

supports both conciseness and naturalness is the DEFINE statement.

Conciseness is helped by the use of a single identifier to represent

any arbitrary string of text; for example, PRINT could be used in

26

place of PRNT (LINE, 15). Naturalness is helped by replacing ex-

pressions with mnemonically useful identifiers; for example, SCANIN

could be used to represent FOR 1=0, 1, ALL(IN) $ BEGIN in processing

an item called IN. Finally, naturalness is helped considerably by

the use of status values (e.g., V(OFF)), where text is used to

represent number values.

JOVIAL is an easy language to learn, only a little more dif-

ficult than FORTRAN (primarily because of more complex data struc-

turing) . Once learned, it is relatively easy to code, in part,

because many of the data declarations can be put in a COMPOOL and,

in part, because of features like the CLOSEd procedure which are con-

sistent with structured programming techniques.

JOVIAL is a relatively poor self-documenting language, comparable

to FORTRAN in this regard, except that comments may appear wherever

blanks are legal.

PL/I

PL/I has tried to achieve a balance between conciseness and nat-

uralness but appears to lean toward conciseness. With no knowledge

of programming one would find it difficult to understand a PL/I pro-

gram, but with only a basic knowledge of almost any higher-level pro-

gramming language most PL/I statements could be understood. Varying

degrees of conciseness or naturalness may be attained through the use

of macro statements; for example, arithmetic operators may be replaced

by their English equivalant — PLUS-» + . The language is relatively

easy to learn, only slightly more difficult than FORTRAN. Although

PL/I is not a self-documenting language, documentation is enhanced by

the ability to insert comments anywhere that a blank is allowed.

27

28

EASE OF USE

Of further consideration in the evaluation of programming lan-

guages is the ease of learning and use. A distinction must be made

between the professional and the non-professional programmer. The

former is usually associated with large-scale systems and is inter-

ested in sophisticated programming techniques and the generation of

'elegant and efficient' code; while the latter is more apt to want

answers to fone-shot1 problems and to be satisfied with a 'quick and

dirty1 solution. The general utility of a programming language is

enhanced if it can be modularized to provide working subsets of the

language to satisfy the requirements of a wide spectrum of users.

Indeed, the novice programmer does not even have to be aware of the

full power of the language.

AED

A one-week training course, provided by SofTech, Inc. , is con-

sidered sufficient for a general introduction to the AED language. A

working knowledge of the language and some of the more important

tools would require a two-week training course. Additional training

and/or consultation with SofTech would be indicated for a large sys-

tem application.

AED does not lend itself to subsetting at the language level,

being somewhat skeletal as it is. With regard to the standard pack-

ages, use of any package is optional and individual applications

typically use some relevant subset of these.

As noted previously, AED systax is consistent at the most basic

level, less so as one approaches the surface, and often quite incon-

sistent when the interface requirements of the various packages are

considered.

Aside from the language deficiencies previously discussed, AED

presents no particular coding difficulties. Debugging may be under-

taken in conventional ways, including dumps, with no particular dif-

ficulty. A TRACE package permits elaborate instrumentation at the

point of procedure CALL/RETURN. An important feature of this package

is that it may be applied to a running system without recompilation;

it simply replaces a standard procedure linkage routine.

Maintenance and updating (functional enhancement or tuning) of

programs is generally facilitated to the extent that the AED philoso-

phy of separating algorithm, data, and structure is possible and im-

plemented. The universal reference notation is one aspect of this.

COBOL

The original concept of COBOL was to make it easy to learn by

non-professionally trained programmers. As the language has evolved,

the need for professional programmer training has increased in order

to adequately provide for the use of such features as the high-level

interactive capabilities, random access input/output, and the new

data manipulation facilities.

COBOL is very strict and very consistent in its rules. The re-

quirement of data definition and description prior to use in the PRO-

CEDURE Division results in the generation of consistent code. As a

standardized language, the rules must be strict or the standardization

29

has no meaning. Most rule violations (e.g., format, specifications)

are detected at compile time.

Coding in COBOL is not necessarily easy; it is time-consuming

because of its verboseness. Coding does become easier once the re-

served words and format restrictions are completely understood. COBOL

does not provide the facility for direct debugging statements. Struc-

turing violations and data incompatibilities detected at compile time

frequently serve to reduce the amount of debugging necessary at ex-

ecution time. Major logic problems usually require coding of inter-

mediate output or flags to determine a trace of the program during

execution.

COBOL programs are relatively easy to maintain and update — the

rules, format, organization, and labeling process facilitate this as-

pect of programming.

JOVIAL

Once familiar with basic programming concepts, which are repre-

sented in varying ways in most higher-level languages, JOVIAL pro-

grammers are easy to train; this in part accounts for the extensive

use of JOVIAL both in the Air Force and in the Navy.

Many subsets of JOVIAL have been and are still being developed.

J-5.2 is the superset which nobody implements; J-3 is the AFM 100-24

subset; J-S is SDC's own 'core1 subset. Each compiler seems to be

implemented with minor language differences. File I/O (which is the

only I/O JOVIAL recognizes), for example, seems to be one of the first

features dropped.

30

There are some inconsistencies regarding what constitutes a

'statement1. For example, the BEGIN and END symbols are thought of

as delimeters in their own right and so do not require the $ termina-

tor. Another inconsistency is the GOTO, which may go to a SWITCH,

may go unconditionally to a label and not return, or may go to a

CLOSEd procedure and return when the procedure finishes. The major

inconsistency therefore is that a GOTO does not always effect an ab-

solute transfer of control; all cases, however, are coded as:

GOTO < ident > $

and cannot be distinguished in local context except by comment.

The most useful debugging tool is the set/used listing provided

with suppcrt software. The COMPOOL and the associated support soft-

ware are important maintenance features. JOVIALfs disregard for I/O,

especially formatted I/O, will increase debugging problems. Data

dumps and tracing, for example, would have to be coded in-line or pro-

vided by test drivers.

PL/I

The basic PL/I capabilities (i.e., those comparable to FORTRAN)

can be learned by most programmers in a fairly short period of time,

but because of the complexity of PL/I, the real power of the language

(structures, pointers, based and controlled variables, etc.) will take

a longer time to master.

PL/I is not a very consistent language in the sense that many

exceptions exist. Many statements, especially I/O statements, have

strict rules governing their content, but declaration statements,

format statements, and internal procedures may be placed anywhere in

31

a block. Almost all types of data conversions are made by the com-

piler when assigning one data type to another.

Debugging tests include the CHECK and SUBSCRIPTRANGE prefixes

which print the value of a variable each time that value changes and

checks for subscripts outside the allowable ranges in arrays. Coding

and updating are relatively simple because of the balance between

conciseness and naturalness.

TRANSFERABILITY/MACHINE-INDEPENDENCE

Machine-independence is a major goal of most high-level program-

ming languages. To the extent that a language is free of machine-

specific constructs, it is considered to be transferable; i.e., pro-

grams written in the language may be executed on any computer system

for which a compiler exists. Since the cost of programming has been

the dominant factor in the utilization of computer systems, portability

of computer programs becomes a prime economic concern.

AED

Explicit machine dependencies in AED are generally due to the

fact that the concept of a machine 'word1, although not a data type,

nonetheless permeates the language. This is evidenced in type decla-

rations (for example, the range of an INTEGER will depend on word

size), allocation of bead components to words or packed portions of

words, operations on groups of bits, and the I/O routines. Implicit

machine dependencies occur when the program relies on overlaying —

setting pointers or otherwise arranging to have a single datum in the

machine treated as two or more items of different type in the program.

One method of doing this — a method actually recommended and referred

32

to as 'legal pornography1 — is to take advantage of the lack of

type checking when arguments are passed and to pass arguments un-

like the corresponding parameter in type.

Except for packing the machine word, AED does not allow access

to special machine features. A call to the assembly language would

be required.

With careful use of the language, the problems of transfer-

ability can be reduced to changing declarations, macros, or

function mechanizations in a few central INSERT files (see Appendix

I, Section C.l.c). This is the technique used in bootstrapping the

AED compiler itself.

COBOL

Source programs in COBOL, conforming to the COBOL standard

specifications, are readily transferable with minor changes in the

ENVIRONMENT Division. Caution must be exercised, however, since

COBOL has several versions and some elective features may be un-

available on different machine implementations. If the standard

COBOL is assumed, then the minimum requirements will be available

on all machines supporting standard ANS COBOL. Manufacturers

usually stipulate what version of COBOL is supported and at what

level — FULL or LOW ANS COBOL.

COBOL presents standard specifications and allows the implemen-

tator to augment or eliminate certain specifications based on the

capabilities of the machine. Through the ENVIRONMENT Division, all

necessary input/output control can be made machine specific. Other

machine-specific features may be incorporated.

JOVIAL

The transferability of JOVIAL programs was enhanced with the

33

publication of AFM 100-24 and JOVIALfs selection as the standard

AF Command and Control Language. In programs in which data are

structured or packed, transfer to computers with different word

sizes or memory organizations presents problems. These can be an-

ticipated and solved in part, particularly for large program systems,

by judicious use of C0MP00LS and DEFINE statements. In general,

JOVIAL is a reasonably transferable language with the obvious except-

ion of DIRECT code. JOVIALfs limited I/O capability at the source

level eliminates some problems associated with transferability;

however, machine-specific I/O subroutines must be provided.

JOVIAL has good access to certain machine-specific features.

Here too, the most obvious feature is DIRECT code which permits

assembler-level coding of programs (a practice to be avoided in most

cases). JOVIAL's data-packing capability is another feature emphasiz-

ing machine specificity. On the other hand, JOVIAL's general lack

of language-level I/O is extremely non-specific.

PL/I

While PL/I is fairly machine-independent, it does have some

machine-dependent features. The UNSPEC command which gives the bit

configuration of a variable is obviously machine — as well as pos-

sibly compiler — dependent. Overlaying of variables, whether

accomplished by the user with pointers, or by the compiler with the

DEFINED statement, may be machine-dependent, contingent upon the

internal data organization. The size of a variable is also machine-

dependent (e.g., the declaration BIN FIXED (17) on the IBM 370 would

actually result in the allocation BIN FIXED (31)). Implementations

to date guarantee only that the number of bits requested will be

treated as the minimum for allocation.

34

IMPLEMENTATION

Given that languages are not completely standardized and exist

in many versions and dialects, the problem of language evaluation is

further complicated by the many variations due to compiler depend-

encies.

The evaluation of compilers is beyond the scope of this paper

and is indeed a subject unto itself. This section is included, how-

ever, to place the subject languages in context and to give some

general indications regarding the availability of compilers and

their relative efficiency.

AED

AED compilers exist for the IBM 7094, the UNIVAC 1108, the CDC

6000 series, and the IBM 360/370 series (360/40 or larger) under OS,

DOS, TSO, and the CP/67 derivative time-sharing virtual machine sys-

tems. An interactive version is offered by National CSS. Cross-

compilers exist from the 360 to the IBM 1130, Honeywell series 16,

Raytheon series 700, and the DEC PDP-10. The various implementations

of AED exhibit an unusual degree of compatibility, because of the

transfer method used (bootstrapping) and also because the same

implementation team (SofTech) generally performs the transfer.

The AED compiler is said to be 93% coded in AED, with 83% of

the system machine-independent. A cross-compiler costs about $30K,

and a full one about $150K.

The 360 AED compiler seems to be roughly comparable to the PL/I

(F) compiler in speed of object code produced, though much worse in

space requirements because of the heavy reliance on libraries. Of

course, efficiency will vary with programs and programmers: SofTech's

figures show PL/I (F) uniformly worse in space and varying from

somewhat better to four times worse in speed.

35

The literature does not discuss optimizing techniques within

the compiler. However, they appear to be conventional and do not

provide for such features as code rearrangement.

COBOL

COBOL is at this time available on almost all second and third-

generation equipment. The versions of COBOL, however, range from

C0B0L-61 to COBOL-68 EXTENDED. Manufacturers have implemented ver-

sions of COBOL based on need and availability of core storage. The

core requirements for a COBOL compiler range from 8K to 32K.

The language used to write the compiler as well as the compiler

efficiency are factors associated with each specific implementation.

Several implementors have special COBOL translators as well as com-

pilers.

JOVIAL

Computer systems for which a version of JOVIAL is available in-

clude IBM 360/50, UNIVAC 1108, CDC 3600, CDC 3800, CDC 6600, H4400,

HIS 6000 (WWMCCS), PDP-10, and various militarized computer systems.

With a number of exceptions, JOVIAL compilers are written in

JOVIAL so as to be self-compileable. Of course, significant portions

(limited by AFM 100-24 to 5% of the object program) may be in DIRECT

(machine language) code.

Efficiency requirements are stated separately from AFM 100-24

for each compiler procurement.

36

Diagnostic aids include source program listing, library program

listing, object program listing, and environment listing (these four

are mandatory), and set/used item listing, runtime program error

monitoring, alter mode, alter-update mode, and grammar-checking mode

(these five are optional).

Optimizing techniques are not standardized and will, if supplied,

vary with individual implementations.

PL/1

PL/I compilers exist on IBM 360/70 series machines, Multics

GE645, and Burroughs 5500/5600 series. CDC is currently working on

an interpretive PL/I compiler for the future. The IBM compiler is

written in assembly language and the Multics compiler is in PL/I.

An interactive PL/I subset is also supported by IBM. IBM has recently

released an optimizing PL/I compiler which reduces core allocation and

increases execution speed at the expense of compile time.

MANAGERIAL ASPECTS

Beyond the purely technical characteristics of a programming

language, of importance also are the associated managerial aspects.

Such considerations as the maintenance of the language and the level

of support, the degree of standardization or (conversely) the poten-

tial for extensions , and the availability and quality of the docu-

mentation must be evaluated before the impact of any long-term com-

mitment to a programming language can be assessed by an installation.

AED

The maintenance, extension, and documentation of AED resides

37

with SofTech, Inc., in cooperation with a user group. Existing docu-

mentation, especially on the all-important packages, is poor, neces-

sitating extensive consultation with SofTech at least for the initial

implementations. No 'official1 standards are set up or projected;

the latest implemented compiler may be considered a de facto standard.

COBOL

As COBOL grows in use through commercial applications , the level

of support and maintenance is increasing. Most implementors routinely

provide compilers for their new product lines and, in particular, COBOL

is gaining wide acceptance on the mini-computers.

COBOL is constantly being evaluated and improved. The standard

version serves as a basis for most implementations. The overall

structure of COBOL is not changing; however, proposed changes in-

clude enhancements in the area of data manipulation and the increased

use of abbreviations for reserved words.

Implementors provide machine-specific documentation. Reports

have been published by CODASYL defining the language from version

60 through version 68. New publications produced by the same group

describe the data handling extension capabilities.

JOVIAL

The JOVIAL language, as opposed to compilers implementing the

language, is chiefly supported by System Development Corporation.

The Air Force maintains the J-3 version of the language with A FM

100-24, which is soon to be revised. The SDC language, J-5.2, is a

38

superset of characteristics which has never been implemented in its

entirety, but which serves as a starting point for actual implementa-

tions .

Standardization is reasonably good in that there are documented

descriptions of official versions.

As far as extendability goes, the tendency is to subset the

J-5.2 version for implementation rather than to extend the language.

Contractors working from AFM 100-24 generally provide compilers which

depart to greater or lesser degrees from those specifications, which

therefore tend to serve as a starting point.

Standardization has been a problem with JOVIAL in that each com-

piler tends to have minor deviations from the others. AFM 100-24 was

published to combat this, but complete uniformity will probably never

be achieved.

Documentation for JOVIAL is extensive, with each compiler docu-

mented separately. SDC's official document for J-3 is SDC TM-555; the

Air Force official version is AFM 100-24.

PL/I

IBM, as one of the developers of PL/I, is giving the language

full support. Documentation is readily available from IBM. Cur-

rently a joint effort by ANS and ECMA is underway to produce a stan-

dard PL/I. This effort is yet to be completed and it is speculated

that the standard may be an extension of PL/I as it now exists on

IBMfs Optimizing Compiler.

39

APPENDIX I

TECHNICAL CHARACTERISTICS

Appendix I delineates the technical characteristics of the sub-

ject languages, organized in accordance with the Language Feature

Outline which was presented as Exhibit 1 in Section III. Each topical

section is headed by a numeric identifier and a title which establish

the correspondence between the text and the outline. Additionally,

an introduction is provided for each topic in order to define the

terminology and context. This prefatory material is then followed

by the language-specific discussions, as provided by the programmer/

analysts, for the subject languages — AED, COBOL, JOVIAL, and PL/I.

A.l Basic Elements - Character Set

The hardware representation of a programming language consists

of a unique character set from which selections are made to denote

and reference data, and to specify the processing logic. As dis-

tinguished from the reference and publications languages , the hard-

ware language, by definition, consists of a character set which is

directly compatible with the computer system. The extent to which

special characters exist in a language and may be used will, to some

degree, limit the necessity for defining key words to specify basic

operators.

AED AED source text utilizes the 26 alphabetic characters,

the digits 0-9, plus the following special characters:

.+-*/,$()= f blank

Other implementation-defined characters may appear in com-

ments , character literals, or be handled in I/O.

41

COBOL The basic character set of COBOL consists of 51 char-

acters :

A-Z, 0-9, + - . ;*=/()<>",$ and space.

Other characters, machine-acceptable, may be used in com-

ments and character strings. The double quote is repre-

sented as a single quote on some configurations.

JOVIAL The JOVIAL character set consists of the 26 uppercase

letters (A, B,...Z), the 10 digits (0, 1,...9), the space,

and the following 11 special characters:

+ -*/,. = '$()

PL/I Either a 60 or a 48-character set may be used to write

a source program. The 60-character set is composed of 29

alphabetic characters ($, #, @ and 26 letters of the English

alphabet), ten digits, and 21 special characters:

+ -*/=,.() < > % ? blank.

The 48-character set is composed of the letters A-Z, the

digits 0-9, and the following special characters:

+ -*/=,.()'$ blank

In all but four cases, the characters of the reduced set can

be combined to form the missing characters of the larger set.

The four 'missing' characters are: @ # ?. Only when the

48-character set is being used are there any 'reserved words'

in PL/I (e.g., LT represents <).

Table I presents a summarization of the special characters pro-

vided by the subject languages.

42

Table II

Special Characters

r\ Character
Language

^
+ -

M
C
to

*/=$,.() 5 '><;"%:->& | _ ? @ #

AED

COBOL

JOVIAL

PL/1 (60)

(48)

A.2 Basic Elements - Identifiers

An identifier is a programmer-constructed mnemonic consisting of

a combination of alphanumeric and special characters assembled accord-

ing to the language specifications and used in the source program to

reference data elements (i.e., items, arrays, structures, strings, and

files) and program units (i.e., statement labels and procedures names).

The readability of a program may be considerably enhanced by non-

restrictive formation rules.

AED Labels and variables of all types are named by a string

of alphabetics and/or (single) periods.

COBOL Variables are defined as any data item referred to by

name whose value may be changed. Variable names must con-

form to the rules for a COBOL word. A word may be 30

characters maximum, and may contain the characters A-Z, 0-9,

43

and hyphen/minus. The hyphen may not be the first or last

character. A space is not an allowable character. All

variables must be defined in the DATA Division and must be

uniquely identifiable — name unique or qualifiably unique;

variable names must contain at least one alphabetic char-

acter. There are eight variable types: numeric, numeric

edited, alphabetic, alphanumeric, alphanumeric edited, con-

ditional, control, and index. Variables are considered to

be contiguous or non-contiguous. The placement and coding

in the DATA Division determines their grouping.

Labels must conform to the rules for a word and be

terminated by a period. Special labels such as division

headers and section names must be terminated with a space

and followed by the word DIVISION or SECTION and then

terminated by a period. Paragraph labels must be unique

within a section. Paragraph names may be all numeric.

JOVIAL Names and labels in JOVIAL are formed identically.

Single-letter names are reserved for iteration vaiables.

All others (both names and labels) are formed from 2 or

more (implementation-limited) characters. The initial

character must be alphabetic, the remaining characters may

be numeric, alphabetic, or prime ('), except that consecutive

or final primes are illegal. No name or label can match any

reserved word (see A.5). Default attributes are assigned to

names depending on the first character; different defaults

can be assigned with MODE.

PL/I Both variables and labels consist of a single alpha-

betic character or a string of alphanumeric and break char-

acters , and are preceded and followed by a blank or some

44

other delimiter. The initial character must be alphabetic.

On the 360/370 computer, the length of the string must not

exceed 31 characters and when the identifier is fexternalf,

the compiler truncates it to 7 characters by concatenating

the first 4 and last 3 characters.

A.3 Basic Elements - Literals/Constants

Constants, as differentiated from symbolic data, are program

data that have values which are not subject to change. A literal, a

special type of constant, is a string of characters which represents

itself, thereby allowing the use of its value as its name.

AED Constants which may be represented in AED are:

1. numeric constants

integer

real

octal

2. Boolean constants

In general, literals/constants are defined for any

data type except pointers and may appear wherever a non-

storing reference to a variable of that type could appear.

Integer constants have the form:

<digits> <decimal no.>

where the digits represent the characteristic in octal (C) or

decimal (nil, D or E) and the decimal number is the exponent

of a scale factor whose base is 2 (C or D) or 10 (E). Real

constants have the form:

45

<digits with decimal pt.> E [<sign>] <decimal no.>

with a similar meaning. Boolean constants are the reserved

words TRUE and FALSE.

Although there is no character data type at present,

character literals may be expressed in the alternate forms:

.C. q string q

.BCD. q string q

1 single - letter1

where fqf represents an arbitrary quoting character not in

the string. The type of such ä constant is either POINTER

(.C.) — the address of an area containing the string, or

INTEGER (.BCD. and 'letter1) — a FORTRAN-like string sur-

rogate. Minor variants of .C. and .BCD., having to do with

allowed codes and manner of storage, are also defined.

Similarly, the addresses of procedures or labels, referenced

LOC (procname) or LOC (label), are in effect constants of

type POINTER.

COBOL COBOL defines the following types of constants:

1. literal

numeric

integer

fixed-point

floating-point (optional)

non-numeric

2. figurative

46

Some versions of COBOL, still utilizing the CONSTANT

Section of the DATA Division, have named constants. These

constants are named as variables but may not be changed in

the program.

Constants are divided into two types, literal and fig-

urative. Literals may be numeric or non-numeric. A numeric

constant may be fixed-point, integer, or floating-point: a

fixed-point constant is composed of 1-18 digits, an optional

sign, and a decimal point in any position except the right-

most; an integer constant is composed of 1-18 digits, an op-

tional sign, and no decimal point; a floating-point constant

(optional on some configurations) is composed of an optional

sign, a mantissa of 1-16 digits, and an exponent. A non-

numeric literal is composed of a string of characters en-

closed in quotation marks; the maximum length varies with

each configuration but is generally 120 characters.

Figurative constants are COBOL reserved words which

cause the insertion of constants. Some figurative con-

stants are: ZERO/ZEROS/ZEROES which insert 0 in the receiv-

ing field; SPACE/SPACES which insert spaces in non-numeric

data items ; BLANK WHEN ZERO which inserts spaces in a nu-

meric field (this is specified in the data description

definition in the DATA Division); ALL in combination with

a character which will repeat a character or a character

string when storing in the receiving field; LOW-VALUE/LOW-

VALUES which inserts the lowest numeric value.

JOVIAL There are five major categories of constants defined

in JOVIAL; these are:

47

1. numeric constant

integer

floating

fixed

octal

2. dual

3. literal constant

hollerith

transmission code

octal

4. status constant

5. Boolean constant

The symbol <digits> is used in the following defini-

tions to mean the decimal digits 0-9, and brackets |_ J in-

dicate an optional choice.

Integer constants have the form:

[±] <digits> [E <digits>]

where E <digits> defines a power of 10 by which the first

<digits> are multiplied.

Floating constants have the form:

M
<digits> • [<digits>]

•<digits> E [±] <digits>J

where E [±] <digits> defines an optionally-signed power of

10.

48

Fixed constants have the form:

Floating constant A[±]<digits>

where A [±] <digits> represents a binary scaling factor de-

fining the number of binary places to the right of the binary

decimal point which are available for fractional values.

Octal constants have the form:

0 (<octalnumber>)

where <octalnumber> is a string of digits which may assume

the values 0 through 7.

Dual constants, which represent naturally-paired values,

such as X and Y coordinates, have the form:

D (<constantvalue>, <constantvalue>)

where <constantvalue> can be an integer constant, fixed con-

stant, or an octal constant — but both <constantvalue> numbers

must be the same type. Further, if the <constantvalue> pair

is fixed, both values must have identical A [±] <digits>

components.

Literal constants may be represented by two encoding

schemes; Hollerith is the machine language representation

* and transmission is the alphanumeric representation.

Transmission constants have the form:

<digits> T (<characters>)

49

Hollerith constants have the form:

<digits>H (<characters>)

where in both cases <characters> is a string of any legal

JOVIAL characters as well as any additional implementation-

defined characters, and <digits> gives the number of char-

acters (including spaces) between the parentheses.

Status constants which have values that are, in essence,

mnemonic labels are of the form:

V (<identifier)

where <identified is any legal JOVIAL identifier (see A.2)

and represents a non-negative integer value.

Boolean constants have the form:

where 0 means false, 1 means true, and differentiation from

integer constants is by context.

PL/I PL/I constants may be categorized as:

1. arithmetic constants

decimal fixed-point

binary fixed-point

sterling fixed-point

decimal floating-point

binary floating-point

imaginary

50

2. string constants

character string

bit string

3. label constants

A decimal fixed-point constant consists of one or more

decimal digits with an optional decimal point and optional

sign. If the decimal point is absent, it is assumed to be

immediately to the right of the right-most digit. The form

is:

[±] [<digits>J [.] [<digits>]

Binary fixed-point constants consist of one or more

binary digits, immediately followed by the letter B, with

an optional binary point and preceding sign:

[±] [<binary digits> [.] <binary digits>JB

Sterling fixed-point data is written as pound, shil-

ling, and pence fields, separated by periods and followed

by an L (e.g. , 0.4.6L).

Decimal floating-point constants contain decimal digits

followed by the letter E, followed by an optionally signed

decimal integer exponent. The constant may be signed and

contain a decimal point. The form is:

[±] [<digits>J [.] [<digits>J E[±] [<digits>J

The binary floating-point constant is similar to the

decimal floating-point constant except that it consists of

51

binary digits and the entire constant is terminated by a B.

The form is:

[±J Ubinary digits>| [.] |<binary digits> E [±] <digits> | B

An imaginary constant is written as a real constant of

any type, except sterling fixed-point, immediately followed

by the letter I (e.g., 271, 2.46E-2I, 101.1BI). There are

no complex constants in PL/I. The effect is obtained by

writing a real constant and an imaginary constant.

A character string constant includes any digit, letter,

or special character allowed by the machine implementation

enclosed in single quotation marks. A bit string constant

is a series of binary digits enclosed in single quotation

marks and followed by a B (e.g., 'lOHO'B). The use of a

bit string of length 1 achieves the effect of a Boolean

constant.

Statement-label constants are prefixed to statements

and constitute that set of values which statement-label

variables may be assigned.

A.4 Basic Elements - Operators

The nature of programming involves the manipulation of data and

implies a set of operators to accomplish specific transformations.

Operators may be classified as computational, relational, logical,

data moving, string, and editing.

Programming languages usually have provisions for the basic

arithmetic operators: 4-, -, *, / and **. Operators which require

52

two operands are referred to a dyadic, binary, or infix operators;

operators requiring only one operand are referred to as monadic,

unary, or prefix operators. Plus (+) and minus (-) are operators

which have both a monadic and dyadic form. The rules of the program-

ming language will specify the hierarchy of execution for expressions

involving multiple operators.

The relational operators compare the specified operands to de-

termine the validity of the indicated relations; such tests include

=> ^» >» <9 >, <, fi y» Languages differ to the extent that these

operators have unique symbols or are specified via the use of reserved

words.

The logical operators, AND, OR, and NOT (logical conjunction

logical disjunction, and logical negation) provide the capability to

perform logical operations on Boolean variables, and may be combined

in one statement to generate logic tests of great complexity.

The primary data movement operator is the ■ (i.e., assignment)

and is basic to all languages. However, programming languages

oriented toward data processing applications and report generation

usually include more sophisticated data handling operators.

A string is defined as a connected sequence of symbols, either

characters or bits. String operators provide the capabilities for

manipulating this data type; representative of such operations are

concatenation, decomposition or substringing, and pattern searching.

Editing operators allow for the validity checking of source data

prior to being processed, and for the modification of the form and

format of data prior to being output.

53

AED The usual arithmetic operators (+, -, *, /, **) are

permitted in REAL, INTEGER or mixed expressions, with type

POINTER also allowed in certain cases where only + or -

are used.

Relational operators apply between numbers (INTEGER,

REAL or mixed) or between pointers, but not between a pointer

and a number. These are: GRT, GEQ, EQL, NEQ, LEQ, and LES

(greater than, greater than or equal, etc.).

The Boolean operators are AND, OR, NOT, and IMP (A im-

lies B; i.e., (NOT A) OR B).

The primary data movement operator is = (assignment).

A number of stack operators are also defined, but these

have been little used and are not being implemented in

newer compilers.

COBOL In COBOL, operators may be expressed by a character(s)

symbol or a reserved word verb.

Computational operators are:

+ addition ADD

subtraction SUBTRACT

* multiplication MULTIPLY

/ division DIVIDE

** exponentiation

unary +

unary -

54

The hierarchy of execution is unary plus and/or minus,

exponentiation, multiplication and/or division, addition

and/or subtraction. COBOL has a special verb COMPUTE, which

allows the combination of computational operators in an

equation type format.

Relational operators are expressed in the following

manner:

IS [NOT] GREATER THAN or IS [NOT] >

IS [NOT] LESS THAN or IS [NOT] <

IS [NOT] EQUAL TO or IS [NOT] =

EQUALS

EXCEEDS

Logical operators are OR, AND, OR NOT, and AND NOT.

Data movement is accomplished in COBOL through use of

the = and reserved words. Special data movement is achieved

through use of the REPORT Section definitions when data is

being transferred for report writing; this movement will be

discussed under report-writing procedures. The reserved

words associated with data movement are:

MOVE - moves data from one item to

another.

MOVE CORR/CORRESPONDING - moves data named similarly.

EQUALS (or =) - moves manipulated expressions.

TO or GIVING - specifies the receiving field

of a computational result.

55

Character strings in COBOL may be operated on directly

by the EXAMINE verb, whereby a string is examined TALLYING

the number of occurrences of a specified character or char-

acter string and/or REPLACING a specified string with an-

other string (which may be indicated by a constant or a

named variable). Other options for this verb are: UNTIL

FIRST occurrence of a string, ALL occurrences, and LEADING

occurrence. Other character string operations may be

achieved by overlaying a character string with a redefining

structure, where different parts of the character string

may be referenced directly by an elementary item name.

COBOL uses single characters or character combinations,

specified through a data item picture clause, to edit data

as it is input, output, or moved internally. The editing

controls are:

B blank or space

0 zero

+ plus

- minus

CR credit

DR debit

Z zero suppression

* check protection

$ currency

, comma (decimal point option)

period (decimal point)

L variable length data item

Other editing controls are specified in the Report Section.

These are described as special features of COBOL.

56

Standard picture specification characters are:

9 for numeric data representation

A for alphabetic data representation

X for alphanumeric data representation

V for an assumed decimal point (in a numeric

item only)

The 9, A, and X may not appear in the same picture clause

defintion.

JOVIAL Computational operators consist (in order of descending

priority) of unary plus and minus , exponentiation (**),

multiplication (*) and division (/), addition (+) and sub-

traction (-). There is also an absolute value operator con-

sisting of the bracketing symbols (/ and /) and an ABS func-

tion.

Relational operators consist of EQ, GQ, GR, LQ, LS,

and NQ.

Logical operators consist of AND, NOT, and OR.

There is a Boolean function, ODD (see C.l.b.6).

Data movement operators consist of value assignment

(=) and value exchange (==).

There are four string operators provided as functions:

BIT, BYTE, CHAR, MANT. Each of these substrings a portion

of a value and returns the numeric equivalent (see C.l.b.6).

57

t

There are five table operators provided as table func-

tions based on various table aspects: ALL, ENT, ENTRY,

NENT, NWDSEN. The returned values of ALL, NENT, and NWDSEN

are integer; ENT and ENTRY return an entire table entry

value.

There is a file operator, the function POS, which re-

turns an integer value representing a file's position, and

which can also be used on the left of an assignment state-

ment to change the position.

PL/I In PL/I the computational operators are:

/

**

addition or prefix plus

subtraction or prefix minus

multiplication

division

exponentation

Relational, logical, or data movement operators can

be applied to numeric, character string or bit string data,

The relational operators are:

60 Character Set 48 Character Set

> greater than GT

—1 > not greater than NG

>= greater than or equal to GE

= equal to ■

-T = not equal to NE

< = less than or equal to LE

< less than LT

—T< not less than NL

58

Logical operators are:

60 Character Set

NOT

AND

OR

48 Character Set

NOT

AND

OR

The assignment operator, =, constitutes the only data

movement operator.

The string operator, which can be applied to either

two bit strings or two character strings, is:

60 Character Set

concatenation

48 Character Set

CAT

PL/I also contains 13 built-in string handling functions.

They are:

BIT converts value to bit string

BOOL result of Boolean operation on two bit

strings

CHAR converts value to a character string

HIGH forms string from highest character in

collating sequence

INDEX starting location of specified substring

LENGTH length of string

59

LOW forms string from lowest character in

collating sequence

REPEAT forms new string by concatenation with

itself

STRING concatenates all elements into single

string

SUBSTR extracts substring of original string

TRANSLATE converts substring of original string

into new substrings

VERIFY compares two strings

UNSPEC returns bit string of given value

Editing is accomplished in PL/I via the Picture Speci-

fication Characters , which are used in a manner similar to

COBOLfs data item picture clause. The picture characters

edit data both for edit-directed input and output, and in

assignment statements. The editing specification characters

are:

Character String Specification:

X any character

A alphabetic character or blank

9 decimal digit or blank

60

Numeric Specification:

9 decimal digit

V assumed decimal point

Z decimal digits with leading zeros replaced

by blanks

* decimal digits with leading zeros replaced

by *

Y decimal digits with all zeros replaced by

blanks

Insertion Characters:

, possible comma insertion

possible point insertion

/ possible slash insertion

B blank

$ currency

S sign (+ or -)

+ plus sign or blank (if < 0)

More specialized editing characters are found in

Picture Specification Characters of IBM PL/I Reference

Manual.

Table II represents a summarization of the relational operators

provided by the subject languages.

61

Table III

Summarization of Relational Operators

NJ^anguage

Algebraic
Symbol V

AED COBOL JOVIAL PL/I

Reserved
Word Symbol 60 Char 48 Char

■ EQL EQUALS = EQ = =

¥ NEQ UNEQUAL TO NOT = NQ n = NE

> GRT GREATER THAN > GR > GT

< LES LESS THAN < LS < LT

> GEQ GQ >= GE

< LEQ LQ <= LE

f NOT GREATER THAN NOT > i> NG

* NOT LESS THAN NOT < i< NL

A.5 Basic Elements - Key Words/Reserved Words

Key words are character strings which, when used in proper con-

text, convey a specific meaning to the compiler. Reserved words

exist in some languages and may not be used as identifiers (i.e.,

variables and labels). The use of reserved words may make programs

more readable but at the expense of programmer convenience and lan-

guage extendability. The addition of new key words into a language

may cause conflicts with existing programs.

AED AED employs some 117 reserved words. These, together

with 15 operators and special punctuation items (e.g., $=$),

62

V

are recognized at the lexical level in the compiler, and

cannot be used as general variable names. All but 56 of

these begin or end with a f.', and future reserved words

will follow this convention, so that avoiding the use of

such words for variable names will preclude the possibility

of future conflicts.

COBOL There are a total of 231 reserved words in COBOL,

which are categorized as:

1. Key words

2. Optional words

3. Connectives

Key words are required in a COBOL entry. There are

three types: verbs (e.g., ADD, READ, ENTER, CALL), re-

quired words (e.g., TO, IS), and functional words with

special meanings (e.g., ZERO, NEGATIVE, SECTION).

Optional words are included in an entry for read-

ability. No penalty is involved if they are omitted, but a

compilation error occurs if they are misspelled or replaced.

Connectives are of three types:

Qualifier - OF, IN

Series - a comma is used to connect
a series of operands

Logical Connectives - AND, OR, AND NOT, OR NOT

63

JOVIAL Key words and reserved words in JOVIAL consist of the

following:

ABS ALL AND ARRAY ASSIGN BEGIN

BIT BYTE CHAR CLOSE DEFINE DIRECT

END ENT ENTRY EQ FILE FOR

GOTO GQ GR IF IFEITH INPUT

ITEM JOVIAL *LOC LQ LS MANT

MODE NENT NOT NQ NWDSEN ODD

OPEN OR ORIF OUTPUT OVERLAY POS

PROC »PROGRAM RETURN SHUT START STOP

STRING SWITCH TABLE TERM TEST

Any future additions to the list must begin with a

prime (f) to prevent possible confusion with names or labels

in existing programs. This provides downward compatability

for future extensions to the JOVIAL language.

PL/I Key words are identifiers (see A.2). A key word, which

has special meaning to the compiler only when used in pro-

per context, can specify such things as action to be taken,

the nature of data, and the purpose of the name. Some key

words can be abbreviated.

Key words are not reserved words in PL/I. Only when

the 48-character set is being used are there any reserved

words; they are the relational operators (GT, NG, GE, NE,

LE, LT, and NL), the logical operators (AND, OR, NOT), and

the string operator, CAT.

64

A.6 Punctuation

Punctuators serve as delimiters within a program and may take

the form of either graphic symbols or key words. Some of the more

common functions performed by such punctuators are to terminate state-

ments, to separate items in a list, to delimit comments, and to de-

lineate subexpressions within statements.

AED AED punctuation includes:

$ - used as a separator (as the ; in

ALGOL) and after a label

(and) - used for conventional grouping

, - used to separate elements of a list

... - used to initiate a comment and

// - used to terminate a comment

$=$ and $/$ - used in synonym defining

At least one blank may be required to separate adjoining

alphanumeric items, such as variable names, key words , and

constants, but blanks are otherwise significant only in

character string literals.

COBOL COBOL punctuation characters consist of the following:

Period Every header, label, sentence , record

description, and elementary data item

description must end with a period.

65

Comma A comma may be used to separate clauses

and as a series connector.

Semicolon May be used to separate statements in a

data description entry or a sentence.

Space/Blank May be used as a series connector. A

space must be used between words and

operators, and between words and words.

Some implementations have special re-

quirements concerning the presence of a

space on either or both sides of the

following special characters: + - ()

< > = ; and period. Spaces may not be

imbedded in a name or numeric constant.

Spaces may be used to separate clauses

and statements in a sentence.

Quote Quotation marks are used to enclose a

literal character string constant.

Parentheses Left and right parentheses are used to

delineate groupings, indices, and sub-

scripts. They must always appear in a

balanced set.

Asterisk This symbol denotes a remark line, if it

appears in the continuation column of

the input 'card'.

66

JOVIAL JOVIAL punctuation, in addition to key words and

operators, consists of the following list:

blank

(and)

($ and $)

BEGIN and END

- a basic language element

separator

- statement terminator

label terminator

- special separator for input

lists

- member separator for lists (e.g.,

subscript and argument lists)

- symbol for assignment or iden-

tification of output in argu-

ment lists

symbol for assignment-like ex-

change of values

- argument list and subexpression

delimiters

- subscript delimiters

- statement group or constant

initialization list delimiters

JOVIAL and DIRECT - assembly language group de-

limiters

START and TERM - program delimiters

67

PL/I Each PL/I statement must be terminated by a semicolon.

A label or condition prefix is connected to statements by

colons. Commas are used to separate items in arrays.

Periods are used to qualify variables (e.g., A.B implies

variable B in structure A). The character pair /* indicates

the beginning of a comment and the same character pair

reversed, */, indicates its end. Comments are permitted

wherever blanks are allowed, except within data items (e.g.,

within a character string). Comments can be treated as

blanks and therefore replace blanks.

Blanks may be used freely in a PL/I program. They may

or may not surround operators and most other delimiters.

One or more blanks must be used to separate identifiers

and constants that are not separated by other delimiters.

However, identifiers, constants (except character string),

and composite operators (e.g.,"-"* =) cannot contain blanks.

In general, any number of blanks may appear wherever one

is allowed.

68

B.l.a Data Types and Organization - Problem Data Types

The power and versatility of a programming language is directly

related to the scope of data types which may be defined and operated

on. Problem data is that data which is to be processed by a program,

in contrast to program control data which is used to control the ex-

ecution of the program. The problem data types defined by a language

reflect the primary application areas for which the language was

designed. Languages oriented toward scientific processing might pro-

vide for complex, double-precision, and formal data, in addition to

numeric data types of more general utility, such as integer and

floating-point. The requirement to manipulate logical entities would

predicate the definition of Boolean and status data variables, while

business data processing would require alphanumeric character data.

AED Numeric Data. AED INTEGER data has an implementation-

defined range (whatever fits in a computer word); fixed-

point fractions or mixed numbers are not represented.

REAL data has an implementation-defined range and preci-

sion (whatever is supported by the hardware). There is

no way to declare double-precision or complex mode for

either INTEGER or REAL type. For problems involving much

complex or double-precision computation, a call to FORTRAN

would be recommended.

Logical/Boolean Data. Logical, or Boolean, data items have

one of the values TRUE or FALSE. Such variables can be set

equal to Boolean or relational expressions, and tested by

IF or WHILE. Unless packing is explicitly called for, each

Boolean item occupies a whole word.

69

String Data. Character string data is handled 'beneath the

surface' in AED — i.e., through one of the data types

INTEGER or POINTER (cf. A.3). This is similar in spirit

to FORTRAN IV, where INTEGER type data may contain char-

acters. Operations are generally handled by subroutine

packages, the only concession made by the language itself

being the ability to define character-string constants.

There are two basic internal forms: one-character-

per-word right-justified (the SPRAYed form) and packed

(or GLUEd). The first is convenient for handling as an

INTEGER array (i.e., as individual characters). The

second is the preferred form for handling the string as

such. A POINTER acts as a handle; it points to an area

comprising the string plus a standard header containing

the length, a forward chain pointer, and other incidentals.

Such a string may be extended by chaining another onto it.

The collating sequence is implementation-defined.

Truncation, justification, and filler conventions are

generally not defined in the language, as not being ap-

plicable to the storage method. The same is true of the

concept of 'varying' string.

Bit strings are limited to strings one computer word

in length, and are formally declared as INTEGERS. Such

strings may be shifted or combined in parallel Boolean

operations (AND, OR, and exclusive-OR). Again, this is

close to the facility available in some FORTRAN IVs.

70

Status Data. Status data in the sense of variables having

designatory (non-quantitative) numeric values (e.g., 1

denotes 'passenger auto1, 2 denotes 'bus1, 3 'trailer1,

etc.) are handled as type INTEGER in AED, using the SYNONYM

(or possibly the MACRO) capability to define the number-

meaning correspondence. It would be possible to write:

CLASS = BUS

or

IF CLASS NEQ PASS.AUTO . . .

COBOL Numeric Data. Problem data is described by the use of a

PICTURE/PIC clause with optional USAGE (i.e., COMPUTATIONAL,

DISPLAY, INDEX, or COMPUTATIONAL-n), SYNCHRONIZED, and JUSTI-

FIED clauses. Synchronization of numeric data may be either

to the left or to the right, thereby causing word alignment

(where word alignment is a function of the implementation

restrictions) and the introduction of slack positions be-

tween the data elements.

Valid characters for numeric data definition in edit-

ing clauses are 9, V, P, and S, where 9 indicates a number,

V an assumed decimal point location, P the scale factor, and

S the optional sign. Floating-point pictures will include

E to denote the exponent.

Fixed-point data is composed of 1-18 digits, an assumed

decimal point, and an optional sign. This data type may be

defined with USAGE COMPUTATIONAL or USAGE DISPLAY. Integer

data is similar to fixed point with no assumed decimal

point imbedded (i.e., rightmost position is the assumed

decimal point). Complex data is not directly available as

71

part of the COBOL language. Floating-point is indicated,

when this option is available, by COMPUTATIONAL-n, where n

is a configuration/implementation-defined number (e.g.,

IBM 360/370 version uses COMPUTATIONAL-1 for binary single-

precision floating-point and C0MPUTATI0NAL-2 for binary

double-precision floating-point).

It should be noted that COMPUTATIONAL generally in-

dicates 'internal binary1 format and DISPLAY indicates

'external decimal1 format. There is a third option avail-

able on some configurations (expressed as a computational

variation) which indicates 'internal decimal', which is

comparable to a packed internal decimal format.

Implementation of COMPUTATIONAL (COMP) -n and DISPLAY-n

allows different problem data types on different computers.

The -n portion of the USAGE descriptor is sequentially

assigned to meet the manufacturer's data availability speci-

fications. It would be through this USAGE clause that bit

manipulation might be achieved, and any other data specifica-

tions a manufacturer might wish to include as part of a

compiler.

Logical/Boolean Data. In COBOL, the logical (Boolean) data

type is not directly part of the language. This may be

implemented on some machines by use of a form of USAGE

COMPUTATIONAL-n or USAGE DISPLAY-n for single bit expres-

sions. Generally, the program would have to either CALL

another routine or ENTER an assembly language routine to

manipulate or set up logical data of the one-bit type.

72

Status switches, defined in the ENVIRONMENT Division,

and conditional variables, defined in the DATA Division,

may be used as a type of logical data in that they can be

coded to assume only two values ON or OFF, or zero (0) or

one (1), respectively.

String Data. A character string may be composed of from

1 to a machine-specified upper limit of alphanumeric char-

acters. By use of the OCCURS DEPENDING option, a character

string may be varying in length. In the definition of an

elementary item character string, a JUSTIFIED clause may

be used. If this option is used on a receiving field,

truncation will take place on the left of a sending field

if the field is too large, otherwise normal truncation is

on the right. Unused character positions, under all options,

are filled with blanks/spaces. Justification overrides

normal character string positioning and right-justifies.

The data character string constants must be enclosed in

quotes. Character strings may be used as values for

conditional variables.

Bit strings are not a basic part of the COBOL language.

Some implementations may provide for this type of data by

use of the DISPLAY or COMPUTATIONAL verb number options.

Status Data. Status data may be defined in two program

divisions, ENVIRONMENT and DATA. Those data items described

in the former are classified as SPECIAL-NAMES and serve as

a program interface with the implemented system. Some of

the items usually have an ON or OFF status; others may have

time of day, date, next job name, next task name, etc.

73

Status data described in the DATA Division are the condition

names associated with conditional variables. These names

must immediately follow the condition variables for which

they represent either a single value, a set of values, or a

range of values. There are no restrictions on the data

type of condition name values, except that the value speci-

fied must conform to the picture clause specified for the

conditional value.

Example: 01 MARITAL-STATUS PICTURE (A)

88 SINGLE

88 MARRIED

88 WIDOWED

VALUE IS fS'

VALUE IS 'M1

VALUE IS fWf

JOVIAL Numeric Data. JOVIAL provides for five categories of

numeric data: integer, floating, fixed, octal, and dual.

Integer data can include constants, variables, and results

of functions. Functions providing integer values consist

of BIT, CHAR, fL0C, POS, and NENT. Floating data can in-

clude constants and variables. There are two functions,

CHAR and MANT, which operate on floating data. Fixed data

can include constants, variables, and the MANT function.

Octal data is provided only as constants. Dual data is

provided as an ordered pair of integer or fixed (but not

floating) constants or variables. JOVIAL defines dual data

as a type distinct from numeric, literal, etc. Complex

data is not available as such.

Logical/Boolean Data. JOVIAL provides for Boolean problem

data as constants, variables, and the result of the ODD

function and relational operators.

74

String Data. JOVIAL provides for two types of string pro-

blem data: transmission code and hollerith. Transmission

code is language-dependent and hollerith is implementation-

dependent; both types may be used as constants or variables.

The BYTE function provides substring values of both data

types.

The equivalent of bit substring functions are the BIT

and CHAR functions which return integer values, and the

MANT function which returns a fixed value.

Strings are fixed-length only, and are padded with

leading blanks to adjust lengths (e.g., in relational ex-

pressions) .

Status Data. JOVIAL provides a type of data known as status,

which is used in logical processing and represented as

constants or variables. Status data represents logical

states and identifiers as a dense set of non-negative

integer values, so that, for aircraft, the status con-

stant V(MAINT) might correspond to an aircraft being in

maintenance and might be represented by the value 0. Other

aircraft statuses might be V(AIRBRN), V(LOADING) , and V(TAXI)

and might be represented by the values 1, 2 and 3, respec-

tively. Since the programmer has complete control of the

mnemonics, readability of code can be improved considerably

without the sacrifice of storage space, which would occur

if status values were stored as literal rather than integer

values.

75

PL/I Numeric Data. There are three types of fixed-point data:

decimal, sterling, and binary. The maximum number of

decimal digits allowed for IBM System/370 or 360 implementa-

tions is 15. (Although PL/I compilers now exist on other

machines, the majority of PL/I users run on IBM systems.)

The default precision for decimal fixed data is five decimal

digits, all to the left of the decimal point. The internal

coded arithmetic form of decimal fixed-point data is packed

decimal.

Sterling fixed-point data consists of three digits

separated by periods, followed directly by the letter L (e.g.,

3.10.8L). All three fields (pounds, shillings, and pence)

are required. Sterling fixed data is maintained internally

as a decimal fixed-point number representing the equivalence

in pence. The maximum number of digits allowed in the pounds

field is 13. The pence field may contain an optional decimal

point (e.g., 3.10.8.5L). The integer part must be less than

12 and the fractional part less than or equal to 13 minus

the number of digits in the pounds field. Sterling fixed-

point data may be deleted from PL/I in the near future.

The maximum number of binary digits in binary fixed-

point data is one full computer word, the first bit of which

is the sign bit. An identifier with no declaration is

assumed to be a binary fixed-point variable, if its first

letter is I through N.

There are two types of floating-point data: decimal

and binary. The maximum precision on IBM 360/370 systems

is 16 digits and the exponent cannot exceed two digits.

76

—78 75
Values may range from approximately 10 to 10 . The

default precision is six decimal digits. If an item is

assigned to a variable with a smaller declared precision,

then truncation may occur on the right (i.e., least signifi-

cant bits are truncated).

The internal code is normalized hexadecimal floating-

point, with the decimal point to the left of the first digit.

An identifier with no declaration is assumed to be decimal

floating-point, if its first letter is A-H, 0-Z, $, #, @.

The maximum precision allowed for binary floating-

point data on an IBM machine is 53 binary bits and the

range is approximately 2 to 2 . The internal code

is normalized hexadecimal floating-point. The default

precision is 21 binary bits. The exponent cannot exceed

three decimal digits.

In PL/I, integer data is expressed by declaring the

variable to be fixed-point, with no precision to the right

of the decimal point (e.g., FIXED (6,0) or simply, FIXED (6)).

An imaginary constant is written as a real constant

immediately followed by the letter I (e.g., 3.961). A

complex constant is written as a real constant combined

with an imaginary constant and is of the form:

real constant ± imaginary constant

(e.g., 27-381).

77

Logical/Boolean Data. In PL/I, logical data is a bit

string of length one.

String Data. A PL/I character string can include any digit,

letter, or special character recognized as a character by

the particular machine configuration. A character-string

constant must be enclosed in single quotation marks. A

null string constant is written as two quotation marks with

no intervening blanks. If a string is longer than the

length declared for the variable, it is truncated on the

right; if shorter, it is padded on the right with blanks.

Character strings may be declared to be of varying lengths.

The length attribute of the variable is t hen the length of

the data item most recently assigned to it.

Internally, each character of the string occupies one

byte of storage. The maximum length for character string

variables is 32,767 bytes. The maximum length for char-

acter-string constants varies according to the compiler,

but it never will be less than 1,007. The minimum length

of a character string is zero.

The minimum length for a bit-string variable is 32,767

on the IBM F compiler, but the length varies with other com-

pilers. The maximum length for a bit-string constant de-

pends upon the amount of storage available to the compiler,

but never will be less than 8,056. Bit strings, like

character strings, may be declared to be of varying length.

A null bit string consists of two single quotation marks

followed by the letter B (i.e., ffB). If a string is longer

78

than the length declared for the variable, the rightmost

digits are truncated; if shorter, padding is on the right

with zeros.

Status Data. PL/I does not contain status data. The same

effect can be achieved by the use of pre-processor macros.

B.l.b Data Types and Organization - Program Control Data

In addition to the problem data on which the program algorithms

operate, some higher-level programming languages provide for program

control data, whereby such quantities as labels, procedure names,

pointers, and event data may be manipulated to affect the execution

of the program. While operations on such data types are generally

limited, they do provide the mechanisms to access machine addresses

and to dynamically control the processing sequence.

All but the most elementary programming languages provide for the

naming of program units via statement labels and procedure names; how-

ever, the power of the language is greatly enchanced if, in addition

to providing a simple branching capability, these program-unit labels

may themselves be treated as data (e.g., as operands in assignment

statements or as arguments in parameter lists.)

Access to storage addresses is provided via pointer and offset

data types; a pointer is a locator variable which defines an absolute

core location, while an offset defines a core location relative to a

specified area.

Languages in support of multiprogramming computer systems pro-

vide for asynchronous program operation by the definition of such

79

data types as task (a named function module capable of parallel execu-

tion with a given priority) and event (a communication/synchronization

variable which indicates the completion status of an identifiable

point within a task).

AED Label/Switch Control Data. Statements may be labeled and

thus be the target of GOTO statements. In addition, the value

of LOC (<label>) is a pointer to the program point — in

effect, a label variable. An indirect branch may be made

to the statement, even from a descendant procedure several

generations removed, via the DOIT function.

A switch is, in effect, an array of labels. An

element of the array is selected by the GOTO (e.g., GOTO

SW(I), where I is of type INTEGER, will cause a branch to

the Ith label associated with SW) .

Procedure Control Data. Procedures are named items whose

'values1, so to speak, are fixed at compile time. That is,

the procedure cannot be modified dynamically in the sense

of an interpreted LISP procedure. However, the name, or

more properly the location, can be handled by the POINTER

data type. As with labels,

<procedure-ptr> = LOC (<procedure-name>)

yields a pointer that may be used as a handle for the pro-

gram point; the function reference

DOIT (<procedure-ptr> [,<argl> , <arg2>...])

effects an indirect call.

Pointer/Offset Control Data. Pointer data is a basic ele-

ment of AED. Using pointers as links, data structures of

80

any complexity can be built. Offsets as such are not pro-

vided, although arithmetic manipulation of pointers may be

used to achieve the same purpose.

Multitasking Control Data. Event data, in the PL/I sense

of a synchronization mechanism between separate tasks, is

not present in AED because multitasking is not supported.

COBOL Label/Switch Control Data. Labels are specified for a

statement only if the statement is to constitute a para-

graph. In COBOL, labels are used for divisions, sections,

and paragraphs. There are some reserved words used for sec-

tion and paragraph labels; these are usually in the IDENTI-

FICATION, ENVIRONMENT, and DATA Divisions. Paragraphs in the

PROCEDURE Division must be uniquely named and conform to

the rules of a word. Paragraph names may be numeric.

Sections must be uniquely named (since there is no method

of qualification available at a higher level of reference)

and followed by a space, the reserved word SECTION, and a

period.

Labels are treated as data in the sense of being able

to change the address of a label via the ALTER verb. If a

paragraph is composed of a single GO TO statement, this may

be changed by:

ALTER [<para-label-1>] TO [< para-label-2>]

There is a conditional clause available for the ALTER verb:

ALTER () DEPENDING ON () .

81

Switches as a type of control data are not available

in Standard COBOL. Paragraph labels are used for all trans-

fer destinations based on calculations and conditional and

unconditional testing statements.

Procedure Control Data. Procedure names conform to word

restrictions for paragraph, section, and program identifica-

tion. Internal procedures may be sections, a group of para-

graphs, or a single paragraph. External procedures are full

COBOL programs or programs coded in any other language with

the proper COBOL interface set up for data transfer. Refer-

ence is made to an internal procedure by use of the PERFORM

verb; reference is made to an external procedure by use of

the CALL verb.

An internal procedure may be performed as a procedure

when called out of sequence or as a paragraph when entered

in a normal sequential statement execution process.

Pointer/Offset Control Data. Pointer and offset data are not

part of the COBOL language. The language does provide a capa-

bility for Table Handling by using subscripts or indices.

An index, declared in the DATA Division, may be modified

only by a SET, SEARCH, or PERFORM statement. The index is

defined by a USAGE IS INDEX clause. Relative indexing may

be achieved by following the index name with + or - and a

numeric literal. Subscripting and indexing may not be used

together in a single reference. Index values are not de-

fined in the program since the format and allocation are

dependent on the system. The value represents a displace-

ment from the beginning of a table and is coded in binary.

82

Multitasking Control Data. Event data is not presently part

of the COBOL language.

JOVIAL Label/Switch/Control Data. JOVIAL does not recognize labels

as data types. Statements may be labeled, however, by pre-

fixing the statement with a unique identifier followed by

a period; multiple labels (each an identifier followed by

a period) may be associated with the same statement.

Procedure Control Data. JOVIAL does not recognize procedures

as data types. Names of CLOSEd procedures, however, can be

passed as members of an input parameter list (see C.l.b.7).

Locations of external procedures (fPROGRAMS) are available

as integer data with the fLOC function.

Pointer/Offset Control Data. JOVIAL does not recognize

pointers as data types. Locations of variables and external

procedures ('PROGRAM) are available as integer data with the

*LOC function. These values represent absolute core loca-

tions ; JOVIAL is not oriented towards dynamically-relocatable

environments.

Multitasking Control Data. JOVIAL makes no provision for

multitasking data.

PL/I Label/Switch Control Data. A label data item is either a

label constant or the value of a label variable. A label

constant is an identifier written as a prefix to a statement

and connected to the statement by a colon (e.g., A: B=C).

The statement can be executed either by normal sequential

execution or by transfer of control to this statement by

means of a GO TO statement. Label variables are variables

83

that take on the value of label constants, so that any

reference to the variable would be the same as a reference

to the label constant.

Switches do not exist in PL/I but the same effect can

be achieved by using label arrays.

Procedure Control Data. Every procedure statement must have

a label which is the procedure name. It is the primary

point of entry through which control can be transferred to

the procedure, but not the only one. The name of a pro-

cedure can be passed as data in a PL/I program. There-

fore, one procedure can call an entry variable where the

name of the entry point is passed as data.

Pointer/Offset Control Data. The value of a pointer vari-

able is effectively an address of a location in storage,

and so it can be used to qualify a reference to a variable

that may have been allocated storage simultaneously in

several different locations, all of which exist concurrently.

Offset variables specify a location relative to the

start of a reserved area of storage and remain valid when

the address of the area itself changes. This reserved

area is another type of PL/I data and it can be assigned

or transmitted complete with its contained allocations.

Multitasking Control Data. Event variables are used to

coordinate the concurrent execution of a number of pro-

cedures , or to allow a degree of overlap between a record-

oriented input/output operation and the execution of other

84

Statements in the procedure that initiated the operation.

Task data is used to control relative priorities of differ-

ent tasks when multitasking.

B.2 Data Types and Organization - Logical Data Organization

The nature of data processing is such that the restriction of

data variables to scalar quantities would be totally inadequate; con-

structs are necessary to deal with organized aggregates of data, con-

sisting of both homogeneous and non-homogeneous elements. To this

end, higher-level programming languages usually provide for the defini-

tion of arrays and structures.

An array, consistent with mathematical notation, consists of an

aggregate of data with the same attributes. In its simplest form, an

array is a linear sequence of data items (i.e., a vector), but may

take the form of a rectangular collection of elements (i.e., a matrix)

and, ultimately, an n-dimensional matrix. The extent of the matrix

dimensions allowed by a programming language will be a limiting factor

governing the organization of problem data. References to elements

within an array are via subscripts, which may be limited to constants

or may be expressed as variables or expressions. Additional conven-

ience results when negative subscripts are allowed, and when a suc-

cinct notation is provided whereby all the elements in a specified

dimension may be accessed.

A structure, in contrast to an array, is a data aggregate com-

prised of data elements with differing attributes. This type of

mechanism allows the intrinsic relationships between elements of

data to be retained within the computer, thereby facilitating the

information processing and retrieval. The data may be organized in

a hierarchical manner and names may be associated with both major

85

units and ancillary subunits. Each language specifies rules for

qualification of names, whereby ambiguities, resulting from the same

data name existing in multiple hierarchies, may be resolved.

Arrays and structures may be combined to provide for logically-

complex organizations of data. In particular, it is possible to

have an array of structures, in which each element of the array is

an entire structure; or conversely, a structure whose elements con-

sist of arrays.

Lists are data structures which provide the facility for pro-

cessing quantities of unstructured data whose storage requirements

and logical relationships are transitory. As a result, lists need

not be restricted to the data items themselves but, more typically,

consist of locator variables which point to core locations and are

used to chain data together in linked lists. Lists may be one-way

(each element points to its successor), two-way (each element points

to its successor and predecessor), and ring (the terminal element

points to the head of the list).

Special types of lists consist of stacks (a push-down store or

LIFO list) , queues (FIFO lists) , and trees (data elements with multi-

ple successor elements).

AED Arrays. One-dimensional arrays can be declared for any

elementary data type in AED and referenced in the usual

way. One unfortunate aspect of the AED notation is that

such arrays cannot be components of beads. (A bead is a

cell, or contiguous block of data accessed by pointer,

corresponding to a BASED array in PL/I.)

86

Arrays of two of more dimensions cannot be declared in

AED. As with double-precision or complex data, a call to

FORTRAN is recommended. Also, the effect of multi-dimension

arrays can be achieved through the macro preprocessor at

the cost of considerable labor and compilation time.

Structures/Tables. Data may be collected into contiguous

blocks, called 'beads1, of mutually related items. Such

beads may be linked together by pointers to form trees,

lists, stacks, rings, or any arbitrary data structure.

List Structures. AED has a STACK data type, with seventeen

associated operators for controlling data movement in and

out. However, this type has fallen into disuse (no doubt

partly because of the poor notation for operators) , and

will probably be omitted in future implementations. In

general, data structures of any type or complexity may be

devised on a 'do-it-yourself* basis using pointers.

COBOL Arrays. Arrays in COBOL may be 1, 2 or 3-dimensional. They

are indicated by the OCCURS clause in the data entry des-

cription given in the DATA Division. A variable-length

array is indicated by the DEPENDING ON clause, which may be

appended to the OCCURS clause. If the array is to be in-

dexed, a KEY and sequence of the key (ASCENDING/DESCENDING)

may also be specified, in addition to the INDEXED BY clause

which specifies the index names to be associated with the

array(s).

Any data type may be specified for an array. Variable

length items may not be specified as arrays. VALUE clauses

87

may not be used with an OCCURS clause and care must be taken

when using the REDEFINES clause, for implementations differ

on the action taken if the storage size of the data descrip-

tions do not match exactly.

Arrays are referenced in the PROCEDURE Division by

using subscripts or index names. Subscripts must be either

a non-subscripted data name or a numeric literal. Sub-

scripts must not be zero or negative.

Structures/Tables. The majority of the data in COBOL is

described in a record/table/structure form. All data items,

except for items in arrays, are described with a level number,

a name, and optional description clauses. There are two

level numbers for non-continguous data: 01 and 77. The

latter is used for a single data item and may o nly be used

in the non-file sections of the DATA Division. Level

number 01 indicates the beginning of a 'record* , either

actual I/O or internal data in a pseudo-record format (con-

tiguous data). Level numbers determine hierarchy of data

items within a table. Level number 01 is the highest level

number and level number 49 is the lowest level. Elementary

items in structures/tables may have similar names as long

as each item may be uniquely qualified; that is, some higher-

level name is different. Reserved words used for qualifica-

tion are OF and IN.

88

An example of a structure in COBOL:

01 EXAMPLE-1.

02 FIELD-2 OCCURS 3 TIMES.

04 F-l PICTURE A(8).

04 F-2 PICTURE 999V99.

02 FIELD-3 PICTURE 99 VALUE IS 0.

03 FIELD-4 OCCURS 10 TIMES DEPENDING

ON FIELD-3.

05 F-l PICTURE A(8).

05 F-2 PICTURE 9V99.

As the example indicates, all level numbers do not have

to be sequential; they must, however, be ascending to in-

dicate a lower level of subdivision. In the procedure ref-

erencing F-l, items would require qualification as: F-l IN

FIELD-4 [OF EXAMPLE-l], where the last part is optional

unless there is another structure in FIELD-4 as an entry

name with an F-l subelement.

List Structures. Stacks, queues, lists, and trees are not

specific language data types. This type of data organization

could be achieved through arrays and structuring, as previously

indicated.

JOVIAL Arrays. There are two basic ways of defining arrays in

JOVIAL. The TABLE statement provides for single-dimensioned

arrays (vectors) of the table1s elements — in effect, an

89

array of structures. The length of the TABLE array may be

rigid (fixed-length) or variable (varying-length). Storage

allocation depends on whether the table is serial or parallel

(see Structures/Tables).

The ARRAY statement provides for multi-dimensional arrays

of a single element. ARRAY arrays are fixed-length only,

and the maximum number of dimensions is implementation-

defined. Storage is allocated starting with the leftmost

dimension.

A third form of array is provided by the STRING state-

ment, which defines, within TABLEs, multi-valued items;

single-valued items use the ITEM statement instead. A

dimensioned table which includes STRING elements in effect

provides for two-dimensioned elements of structures; the

leftmost dimension corresponds to the STRING and the right-

most to the TABLE.

Any data type may be arrayed as d escribed above. Dimen-

sion values start at 0 (probably a holdover from assembler

experience) and increase positively in steps of 1. Any ex-

pression may be used as a subscript.

Struetures/Tables. Structures are provided by TABLE as

any collection of data types. Repeating groups (defined by

STRING) may be elements of a structure, and any one table

may be further set up as a single-dimensioned array pro-

viding repetitions of the basic structure. Structured

data may be packed and data names are not qualified by the

structure name.

90

Two basic structure types are provided: serial and

parallel. In serial tables, storage for all elements of an

item are assigned sequentially in core until the table's

dimension is satisfied, before storage for the next item

begins. In parallel table, storage for each item of an

entry (i.e., a single value of the table's dimension) is

assigned sequentially in core until all items of the entry

are allocated, before storage for the next entry begins.

If a table is variable length, only serial structure is

allowed.

List Structures. Stacks, queues, lists, and trees could

be provided by the judicious application of structures/arrays

and the appropriate data types, but none is explicitly

available in the language.

PL/I Arrays. All PL/I arrays are n-dimensional so that vectors

and matrices can be represented by appropriately-dimensioned

arrays. PL/I also supplies library functions to manipulate

these vectors and matrices.

A PL/I array is a collection of elements all of which

have identical attributes. If the lower bound for an array

is not specified, it is assumed to be 1. If the lower

bound of an array is not 1, both upper and lower bounds must

be stated explicitly, with the two numbers connected by a

colon (e.g., DECLARE A (-4:11);). Data is assigned to

arrays and stored internally in row major order (i.e.,

rightmost subscript varying most rapidly). The IBM F

compiler allows as many as 32 dimensions for an array

(machine-dependent). PL/I allows arrays of arithmetic

data, strings, and labels. Any expression that yields an

91

arithmetic value can be used as a subscript. Cross-sections

of arrays may be referred to by substituting an asterisk

for a subscript (e.g., A(*,l) implies A((lower bound),1),

A(lower bound)+l,l)..,A((upper bound),1)).

Structures/Tables. In PL/I, a structure is a hierarchical

collection of names. At the bottom of the hierarchy is a

collection of elements; at the top is the structure name,

which represents the entire collection of element variables

(e.g., DECLARE 1 A

2 B

3 C

3 D

2 E

3 C

3 D

4 C).

Elements of the structure need not have identical character-

istics. Each element can be referred to separately by the

use of qualified names. In a qualified name, high levels are

used to qualify lower levels and each 1 evel name is separated

by a period (e.g., A.B.C. or A.E.D.C). The maximum level

number permitted is 255, but the true level number is 63

(since level numbers may be skipped) on IBM machines. Any

level of a structure may be an array.

List Structures. Stacks may be built in PL/I by use of data

with the attribute CONTROLLED. Stacking occurs when this

variable is specified in an ALLOCATE statement. Any ref-

erence to the variable always refers to the most recent

allocation. A FREE statement will cause the top of the

92

Stack to be ffreedf and the stack 'pops-up1. The most recent

previous allocation is once again available and its value

becomes the value of the variable.

By using structures containing pointers, the user can

construct any type of list, ring, stack, or tree. Pointers

provide one of the most powerful capabilities of the PL/I

language.

B.3 Data Types and Organization - Physical Data Organization

In addition to the logical data organizations described in the

previous section, the physical organization of data within memory is

often a consideration of concern to programmers. When the total

storage requirements for a program exceed the available memory, com-

paction techniques must be employed. These include having multiple

data items stored with a single computer word (i.e., packing) or

having multiple data items share the same storage location at dif-

ferent times during program execution (i.e., overlaying).

To allow programmers to effect a trade-off between economy of

storage and speed of access, which are both functions of the posi-

tioning of data elements within core, some programming languages allow

for the specification of data storage relative to the physical char-

acteristics of the media (e.g., justification within a word, or align-

ment on byte, word, or double-word boundaries).

A record is defined as a collection of related items of data,

treated as a unit; records are comprised of fields and collections of

records form files. Files constitute a basic data aggregate for large-

93

scale business and data management applications. A programming lan-

guage may be considered adequate for these application areas to the

extent that it provides the mechanisms to do file manipulations and

to maintain the logical correspondence between the data as it exists

on the external media and within the computer proper.

AED Packing. Packing is specified in AED by an explicit PACK

declaration, setting up the position and number of bits an

item is to occupy within the machine word. The implied

shifting and masking operations are compiled in for every

reference to the item.

Alignment. Alignment is generally forced on word boundaries,

with no choice except as provided by the PACK instruction.

Overlays. AED has no explicit provision for overlays. How-

ever, in the declaration of items making up a bead, giving

the same offset (from the base pointer) to two or more items

will have the effect of overlaying them. Dynamic overlaying

may be achieved by setting pointers, as in PL/I.

Records. AED, having no I/O, does not distinguish records

from any other data aggregate at the language level.

COBOL Packing. Data packing is accomplished in COBOL in dif-

ferent ways. Generally, data storage is considered to be

either contiguous or non-contiguous. The language does not

require word alignment for data items; however, the user may

force word positioning and data positioning by the attributes

specified. Actual numeric data values may be stored in an

'internal decimal1 form by using the COMPUTATIONAL-n option.

This would, for example, strip zone bits from the numeric

94

data and pack two digits to a byte as on the IBM 360/370

series computers. Alphanumeric and alphabetic data may-

be positioned to the left or to the right in a data entry

by using the JUSTIFIED clause. Normal character position-

ing is to the left. All truncation rules will be reversed

when JUSTIFIED RIGHT is specified for the receiving data ele-

ment. Justification will not cause any changes in physical

data storage but COMPUTATIONAL-n will, if the data elements

30 described are in an array or a table/structure. Justi-

fication may only be specified for elementary items and may

not be specified for level 66 (RENAMES) or 88 (condition

names).

Alignment. Proper boundary alignment is not a requirement

of the COBOL language. Implementation may cause some align-

ment at compile time; this usually consists of forcing level

01 data entries to begin on a 'computer word1 boundary. The

language provides a method of data alignment through the

SYNCHRONIZED/SYNC [RIGHT/LEFT] clause. This clause is

specified for elementary data items, usually numeric.

Proper boundary alignment is also a function of the

type of data usage. COMPUTATIONAL and COMPUTATIONAL-n

implementation determines the boundary alignment, whether

half-word, full-word, or double-word. Therefore, the re-

definition capability should be approached with care when

redefining data whose boundary alignments may be affected

by the presence of realigned data elements.

The appearance of either of these clauses (SYNC or COMP)

may effect the storage and alignment of the remainder of the

structure or record.

95

Overlays. Overlaying of data is achieved in three ways in

COBOL: by the SAME AREA clause in the ENVIRONMENT Division

I-0-CONTROL Section; by the multiple-record description

(level number 01 being repeated) in the FILE Section of the

DATA Division; and by the REDEFINES clause in all other non-

file sections of the DATA Division.

The SAME AREA clause indicates the names of the files

that are to occupy the same storage space during execution;

only one file may be opened at a time. The multiple-record

descriptions allow for the defining of several record for-

mats for a file described with a FD, SD (sort), RD (report),

or SA (saved area) descriptor; record lengths must be iden-

tical for each record in a file. The REDEFINES clause

must immediately follow the data being redefined. The scope

of the redefinition is governed by level numbers. It starts

with the data name and ends when a level number less than or

equal to that of the data name being redefined is encountered.

The format is:

<level-number> <data-name-l> REDEFINES <data-name-2>.

Another overlay capability does not affect storage but

provides the capability to rename, thereby allowing alter-

nate groupings and possible overlapping of groups. More than

one RENAMES clause may be specified for a record/structure.

Level number 66 is reserved for this entry. All RENAMES must

immediately follow the last data description entry for the

record/structure associated with the entry. The format is:

66 <data-name-1>/RENAMES <data-name-2> [THRU <data-name-3>] .

96

Records. The basic format of data in the COBOL language

is the record in a 'file*. All record data is contiguous

data and may be referenced by the 01 level number data name

(comparable to a record name) or the subentry names. It is

within the internal 'record1 structure that all contiguous

data is described for input and output files, report files,

and sort files, as well as working-storage data descriptions.

Data that are described only in an output-file description

do not exist in user-available memory after the record has

been written out. The REPORT Section allows for control

information to be incorporated as part of the record descrip-

tion. More than one record format may be described immedi-

ately after the file description. All files must be des-

cribed in the FILE Section; however, the detailed descrip-

tion of the file may be given in the WORKING-STORAGE Section

and a single entry given in the FILE Section with the record

name. This setup would allow for record concatenation during

execution, if several records are required in memory at the

same time.

All records for a file must have the same length. The

maximum number of record descriptions is an implementation

restriction.

JOVIAL Packing. Packing applies only to items organized into tables

or arrays and is provided at three levels: none, medium, and

dense. No packing means that each item is allocated the

least number of adjacent computer words which will hold it;

medium packing means that each item is allocated the least

number of adjacent bytes; and dense packing operates at the

bit level. Only floating type data may not be packed at

all, and literal items may be packed only to the byte level.

97

Alignment. JOVIAL does not provide explicit control of data

alignment.

Overlays. Programs and data can both be overlayed so as to

map either into identical storage locations or else into

adjacent storage locations.

Records. Provisions for the physical arrangement of data in

records are identical to those of single variables, arrays ,

tables, and entries.

PL/I Packing. Control over the internal packing of variables

can be accomplished in PL/I by the declaration of the vari-

able. If a variable is declared to be binary-fixed, it is

stored in a binary format with the first bit used as the sign

bit. If the variable is declared to be decimal-fixed, it

is stored in packed decimal format and if declared with a

picture attribute, the variable is stored internally in a

zoned decimal format.

Alignment. Most variables in PL/I can be declared to be

either ALIGNED or UNALIGNED. ALIGNED data is aligned on

storage boundaries corresponding to its data type require-

ments (i.e., full- and double-word items on word boundaries,

half-word items on half-word boundaries, and character and

bit strings on byte boundaries). UNALIGNED data is stored

contiguously with the data element preceding it, and a word

or double word is mapped into the next available byte bound-

ary. Pointer, offset, label, event, and area data cannot

be unaligned. The default for bit-string, character-string,

and numeric data is UNALIGNED; all other data tvpes default

to ALIGNED.

98

Overlays. PL/I allows the user to overlay storage in either

of two methods. The first is by using the DEFINED attri-

bute when declaring a variable. This allows the user to

specify that the variable is to represent part or all of

the same storage as that assigned to other data. This

attribute can be used for element, array, or structure

variables.

The second method is to declare the variable BASED and

position the pointer so that the variable shares the same

position in core with part or all of another variable.

Records. PL/I records are comprised of single units; i.e.,

variables, arrays, structures, etc. Sections of data aggre-

gates can be used as records only by overlaying a single

unit over them.

99

C.l.a.l Program Structure - Non-executable Units -
Comments

Comments are in the nature of explanatory text, inserted by the

programmer to clarify the processing being done and to supply the

first level of program documentation. Since comments are merely

passed by the compiler, they must be delimited from statements which

require compiler action. Each language has its unique delimiters

and rules regarding the allowable symbols and the placement of

comments.

AED Comments may be written virtually anywhere in the

source program, bracketed by ... and // delimiters. In

addition, there is an ALGOL COMMENT statement.

COBOL The language has two methods of expressing comments

and remarks. The first to be described is in ANS COBOL,

but is not in CODASYL COBOL. It is anticipated that the

asterisk notation will be the official standard for comments.

The first method uses two different reserved words.

REMARKS is a paragraph label in the IDENTIFICATION Division

only. Any sentence or statement is allowable as long as

the physical format complies with the rules of COBOL with

respect to indentation and punctuation. NOTE is a paragraph

label in the PROCEDURE Division that also allows any sentence,

statement, or combination of same, as long as all formatting

rules of COBOL are obeyed.

The newest method specifies line comments which may

be used any place in a COBOL program. A line comment is

indicated by an asterisk (*) in the continuation position

100

of an input card. Each line of comment must have the *. A

special variation is the stroke (/) in the continuation

position. This character will cause the logical printer to

eject to the top of the page prior to printing the line

comment.

JOVIAL Comments are introduced with a double prime (,f) and

terminated identically. In general, a comment may appear

wherever a space is legal outside of literals.

PL/l Comments are permitted wherever blanks are allowed,

except within data items (i.e., in a character string),

and are treated as blanks. The character pair /* indicates

the beginning of a comment, the same pair reversed */

indicates the end of the comment (e.g., /* character string */)

C.l.a.2 Program Structure - Non-executable Units -
Declaration/Specification Statements

Declarations, unlike statements, do not result in the direct

generation of machine code, but rather supply the compiler with in-

formation relative to the structure of the program, the attributes

of the data to be processed, and the interaction with the environment.

Such information is necessary in order that proper and efficient code

may be generated, sufficient space allocated for the storage of data

structures, and the appropriate program linkages established. The

format of such declarations is language-dependent, but a more

fundamental difference derives from the extent to which these declara-

tions must be explicated and are invariant. In particular, some

languages require that all declarations be explicit, while others

provide for implied declarations via default options and contextual

101

definitions. The binding of attributes to data is usually static

and accomplished at compile time; however, some languages provide

declaratives for the dynamic creation and deletion of data and delay

such binding until execution time.

The multiplicity of data types requires that each data element

be unambiguously defined in terms of attributes, which include such

specifics as type (e.g., integer, floating-point, character-string,

pointer), precision or length, dimensions and bounds of arrays, and

storage class attributes. Files must be described in terms of the

constituent records, the logical and physical organization, and the

appropriate method of access. The requirement for formatted input/

output predicates the specification of the external form in which

the data exists (for input) and/or is to be edited (for output).

Problem control data, such as label and event data, must be

declared. In addition, all subprogram units (procedures, subroutines,

and functions) must be declared in terms of the statements to be

executed at the time of invocation, the arguments, associated attributes,

and entry points.

AED Data Declarations. Data declarations are ALGOL-like, in

the sense that grouping is generally by property—e.g.,

property variable, variable, . . . $. Thus, a variable

may appear in several such lists. Properties include data

types, packing instructions for partial-word data, the fact

of being a procedure, label, bead component (with offset

from base), array (with associated bounds), EXTERNAL/COMMON,

and PRESET instructions (initialization code to be executed

interpretively by the compiler).

102

File Declarations. File definitions are not present in

AED. The language, as such, does not contain any concept

of I/O—in the best ALGOL tradition. File characteristics

are described by settings of items in file-associated beads,

which are passed to I/O subroutine packages.

Format Descriptions. AED has no format descriptions.

Procedure/Subroutine/Function Definitions. In AED, a

function is a typed procedure. All procedures are defined

by the construct:

DEFINE <procname> (<arglist>) WHERE <argdeclarations> TOBE--).

Within a procedure, procedures to be called are declared as

data items (PROCEDURE GLITCH, KLUDGE, SQRT$,).

Such definitions and declarations include the procedure

type, if any, and RECURSIVE, if applicable, but declarations

in the calling procedure do not mention the number or type

of parameters; arguments, when passed, are assumed to match

properly (see C.l.b.7).

COBOL Data Declarations. All data except unnamed constants must

be described in the DATA Division in either the FILE,

WORKING-STORAGE, CONSTANT, LINKAGE, or REPORT Section. Data

entry items are specified by a level number, data name or

FILLER, PICTURE clause, and optional JUSTIFIED, OCCURS,

SYNCHRONIZED, USAGE, REDEFINES, and VALUE clauses. The

assignment of level numbers is as follows:

01-49 regular levels

66 for RENAMES clause

77 for noncontiguous data items

103

88 for condition names (follows the conditional
variable)

FILLER is a reserved word used to specify a data field to

be unnamed in record descriptions. The descriptive clauses

are used to specify repetition, data justification (posi-

tion changes), data form in the machine, and the redefining/

redescribing of data entry items. Redefining data may not

have VALUE clauses and must not exceed the total length of

the data entry being redefined. Data editing is indicated

by the description given and all operations on the data are

governed by the description clauses.

File Declarations. File descriptions are first stated in

the ENVIRONMENT Division, where the internal file name is

associated with the external device name or code number and

the attributes of the hardware device. The full description

of the file in the DATA Division begins with a description

indicator: FD fcr file description, SD for a sort file

description (sort files are considered as internal data

files), and RD for a report file description. The informa-

tion that may be specified with this descriptor are the

file name, labeling specs, record length, block size,

recording mode, data record names, and character count of

the record. Record structure format is used to describe the

data format for the file, where level number 01 indicates

the start of a new record description. All files must be

identified in the ENVIRONMENT Division by using a SELECT

clause with optional OPTIONAL, RESERVE, FILE-LIMIT, ACCESS

MODE, PROCESSING MODE, and ACTUAL KEY clauses. These clauses

respectively indicate that the input file (accessed

sequentially) may not necessarily be used; specify the

number of buffer areas to be reserved; specify the logical

104

beginning and end of a file on a mass storage device; specify

the accessing and processing modes; and provide the key for

records processed on a randomly-accessed file. Other options

specified in the 1-0 CONTROL Section are: RERUN which pro-

duces a checkpoint record; SAME AREA which indicates two

or more files use the same core storage area; and MULTIPLE

FILE TAPE which indicates that more than one file is on a

reel of tape.

Format Descriptions. Format descriptions are specified in

the DATA Division in any or all of the allowable sections.

Input formats specified in the FILE Section or the WORKING-

STORAGE Section are described by use of level numbers, data

names, fillers, and picture clauses which specify data by

9, A or Xs—the filler pictures being restricted to X. The

record structure is used. Output formats may be specified

as are the input formats, with an additional capability

provided in the REPORT Section. The RD entry of this section

describes the physical report format, and the record group

entries describe the data items. Specifications include

the maximum number of lines per page, the position of the

report group on a page, and the data items to be used for

control of HEADING, FOOTING, FIRST DETAIL, and LAST DETAIL.

The programmer may also indicate the number of lines to be

skipped before output formatting is to continue. The

REPORT Section provides output formatting as the FILE

Section provides for input and output formatting in a record

structure, but with the additional format control of output

report positioning controls.

Procedure/Subroutine/Function Definitions. COBOL does not

require an explicit declaration of a procedure, subroutine,

105

or function definition. The only functions considered to

be declared are those specified in the ENVIRONMENT Division

as SPECIAL-NAMES. These serve to interact with the system

and return information to the program, such as time of day,

date, and input/output status. There is one form of a

PROCEDURE Division statement that indicates a COBOL program

is a subprogram; this is the USING clause. The USING clause,

which may appear in a CALL, ENTRY, or PROCEDURE Division

statement, makes data defined in the calling program available

to the called program.

JOVIAL Data Declarations. Data definitions are initiated by one

of the key words ITEM, STRING, ARRAY, and TABLE, which is

followed by a name and a list of attributes.

ITEM and STRING data may be declared floating, integer,

fixed, dual (F, I, A, D), or Hollerith, Transmission (H, T),

or status (S), or Boolean (B). Sizes may be specified in

bits or bytes, as appropriate. Specifications for numeric

data may include ranges, rounding, and signed/unsigned

formats. Specifications for each status data include the

status constants which are legal for the data.

ARRAY data declarations include the number and size of

each subscript and the data type (F, I, A, D, H, T, S, or

B); ARRAY-defined arrays are limited to a single data type.

Elements of the array may be initialized with a BEGIN...END

constant list.

TABLE data declarations may include the type (rigid or

variable), number of entries in the table, the organization

106

(parallel or serial), the packing (none, medium, or dense),

and the elements of the structure with optional lists of

initializing constants. The element list is bracketed by

BEGIN and END.

Items may be defined for local use by simple reference

to a name which has no corresponding declaration; such items

are integer type, unless otherwise specified with MODE. This

is the only provision for default attributes of data.

Tables can be declared 'like1 already-declared tables

In general, this provides for duplicating structures without

having to write out the structure's elements. Different

size, organization, and packing specifications may be pro-

vided; if not, the original specifications are used. The

name of the like table is the original table name with a

single letter or numeral suffix; all data names of the

like structure are then similarly suffixed.

Tables can be overlayed to occupy specific storage

addresses, to occupy the same storage as another table, or

tc occupy storage adjacent to another table.

Data (except simple items) must be declared prior to

their first use in a program. Once declared, the name is

known to all levels of the containing procedure.

File Declarations. File descriptions begin with FILE, fol-

lowed by the filename and the file attributes. These in-

clude data type (Hollerith or binary), the estimated maximum

number of records in the file, rigid or variable record size,

107

the estimated maximum number of bytes (Hollerith) or

bits (binary) in a record, a list of all possible file

states as status constants, and the device name.

Format Descriptions. Format descriptions are not provided.

Procedure/Subroutine/Function/Definitions. Procedure-type

(functions, subroutines, procedures, etc.) definitions are

introduced by one of three key words: 'PROGRAM, CLOSE, and

PROC.

'PROGRAM, the only one of the three for which code

does not form part of the definition, is used to identify

external procedures. This definition takes the form:

'PROGRAM <procname> [<numericorigin>] $

where <procname> is the procedure identifier and <numericori-

gin> is an optional decimal or octal absolute core location

(a feature which does not lend itself to relocatable en-

vironments) . <procname> is invoked by statements of the form:

GOTO <procname> $

with control normally returning automatically to the statement

following the GOTO.

CLOSE procedures are similar to 'PROGRAM procedures

except that CLOSE procedures include executable code as part

of the definition, which takes the form:

CLOSE <procname> $

BEGIN

<statementlist>

END

where <procname> is the procedure identifier and <statement-

108

list> is a series of statements. <procname> is invoked by

statements of the form:

GOTO <procname> $

with control normally returning automatically to the statement

following the GOTO.

PROC procedures are the most complex of the procedure

definitions and are used both for functions and for pro-

cedures. They may include data declarations as well as

executable code in the form:

PROC <procname>
<inputparameterlist>

(=<outputparameterlist> [) $
<inputparameterlist> = outputparameterlist

[<declarationlist>]

BEGIN

<statementlist>

END

The <inputparameterlist> consists of a series of simple item

names, names of arrays, names of tables, or names of CLOSE

procedures (CLOSE names are followed by one or more spaces

and a period). The <outputparameterlist> consists of a

series of names of simple items, names of tables, names of

arrays, or statement labels. Data used in the procedure

may be defined three ways: globally, by its definition in

a procedure containing the using procedure; locally, by its

definition in the using procedure; and by default (for

simple items only) by its use in the procedure without an

explicit definition, either local or global. The <state-

mentlist> must not itself contain procedure definitions. A

procedure is identified as a function-type procedure by the

absence of an <outputparameterlist> and by the presence, in

the <declarationlist>, of a simple item declaration with the

109

same name as the <procname>. Procedures are invoked by

statements of the form:

<procname"
<inputparameterlist>

= <outputparameterlist>
<inputparameterlist>=<outputparameter!ist>

$

Functions are invoked by the appearance of the <function-

name> as part of an expression in the following form:

. . . <functionname> (kinputparameterlist^). . .

Note that the parameter parentheses are optional in the

procedure invocation, but mandatory for function invocations.

There are two built-in procedures whose definition

is implied: REM, a remainder function, and REMQUO, a re-

mainder and quotient procedure. These are not reserved

words and may be redefined for other uses.

Other built-in procedure-like features include ABS,

ALL, BIT, BYTE, CHAR, ENT, ENTRY, fLOC, MANT, MENT, NWDSEN,

OFF, and POS. All these names are reserved words; the

operation of these features is discussed in detail in other

sections (see A.4 and C.l.b.6).

PL/I Data Declarations. All explicit declarations in PL/I begin

with the key word DECLARE, followed by the name of the item

and the attributes of the item. For data declarations, the

attributes include type descriptors and precision descriptors.

Some of the key word type descriptors are: FIXED, FLOAT,

BINARY, DECIMAL, CHARACTER, POINTER, LABEL, etc.

For arrays, the upper and lower bound (lower bound is

1, if not included) follow the array name directly (e.g.,

DECLARE A (-2:4,3) BINARY FLOAT (12);) with the two numbers

110

connected by a colon. As many as 32 dimensions may be

declared for an array. Arrays default to the same char-

acteristics as simple variables of the same name.

File Declarations. For file declarations, the filename is

followed by the key word FILE and the attributes of the file.

These attributes include: STREAM, RECORD, PRINT, SEQUENTIAL,

DIRECT, KEYED, UNBUFFERED, etc. The default attributes for

files are established when the file is first used and depend

upon the use made of the file (i.e., a READ statement causes

the file to default to an INPUT file).

Format Descriptions. PL/l provides both local and remote

format description statements for use with edit-directed

I/O. Format items may either be remote or part of the edit-

directed I/O statements (e.g., PUT EDIT ('A')(A(l));). For

non-edit directed I/O, format items are not used in PL/I.

Declarations may appear anywhere in the program, but labeled

format statements must be in the same block with all its

references.

Procedure/Subroutine/Function Definitions. External sub-

routines and functions are declared by following the function

name with the key word ENTRY, followed by the data types of

parameters passed, if any. Subroutines and functions begin

with a PROCEDURE statement and are completed by an END

statement. Control passes back to the calling program when-

ever the final END statement or a RETURN statement is

encountered.

Ill

Cwl.a.3 Program Structure - Non-executable Units -

Storage Allocation/Segmentation

Storage allocation declaratives provide the capability to reserve

storage for static variables and also, in more advanced languages, to

specify the span of program execution over which dynamic variables

are to be in existence.

In addition, the efficent use of restricted memory is greatly

enhanced if the language provides the capability for program seg-

mentation (i.e., the partitioning of a program into chronologically

independent modules which can be loaded into main memory when and as

needed). Storage allocation declaratives in the source program

provide the means whereby information necessary for the segmentation/

overlaying process is supplied to the compiler.

For the multiprogrammed environment of most present-day systems,

the ability to control storage allocation dynamically permits more

jobs to be run simultaneously with a corresponding increase in system

throughput, but at increased costs in system overhead. Dynamic con-

trol of storage, however, is critical for some features of modern

systems, notably recursion and data structure building.

AED Except for dynamically-allocated beads (see C.l.b.2.e),

variables declared in an AED program are normally allocated

at load time; i.e., FORTRAN-like or STATIC in PL/I. In a

recursive procedure, local variables declared OWN are stack-

ed with each invocation; i.e., AUTOMATIC in PL/I. Note

that OWN thus has precisely opposite meanings in AED and

ALGOL.

COBOL COBOL has no real dynamic storage allocation except for

the OCCURS DEPENDING ON clause which may be used for data

specification; in which case, the actual storage used depends

on another defined data item value. The SELECT OPTIONAL file

option will also change the allocation of storage at execution,

112

depending on the presence of the selected file. Another

means of controlling storage allocation is by using the SAME

AREA clause for files; only one file may be open at a time,

but all files specified with this clause will occupy the same

storage locations. Data entries described with REDEFINES pro-

vide the user with a technique for describing the same data

area with different attributes. Procedure coding will be

governed according to the data name used to reference the

storage cells.

COBOL provides an internal method for controlling seg-

mentation by communication with the computer. Segmentation

deals only with procedures. If this option is used, the

entire PROCEDURE Division must be written in sections, with

each section classified as fixed or independent segments of

the program. A fixed section is composed of permanent segments

and overlayable segments. Independent sections can overlay and

be overlayed. Priority numbers, 00-99, are assigned with the

section name; 00-49 are for the fixed segments and 50-99 are

for the independent segments. Segmentation limitations are

established in the ENVIRONMENT Division.

JOVIAL Data storage allocation is done at compile time with

statements of the form:
<datalist>

OVERLAY $
<numericorigin>=<datalist>

where <datalist> is a list of simple item names, table names,

or array names; members of the list are separated by an

equals sign to indicate common use of storage and by a

comma to indicate adjacent use of storage. <numericorogin>

is a decimal or octal absolute core location, a feature

which does not lend itself to relocatable environments.

113

Program storage allocation is only available for external

procedures (see C.l.a.2) with statements of the form:

'PROGRAM <procname> [<numericorigin>] $

PL/I Storage is allocated for all static variables before the

program begins execution. For automatic variables, storage

is allocated upon entering the block in which the variable

is declared, except for those variables declared to be either

BASED or CONTROLLED. For these variables, the user must

allocate storage within the program by use of the ALLOCATE

statement. Therefore, the user has the capability of creating

push-down stacks, allocating arrays whose size varies with

each run, or creating various trees and rings. User-allocated

storage may be released via the FREE statement.

C.l.a.4 Program Structure - Non-executable Units -
Environment/Operating System Descriptions

A program may be conceptualized as executing in an environment con-

stituted of the hardware components which make up the total computer sys-

tem, and under the control and management of the operating system. The

environment of a computer program consists of both hardware and software

elements. Hardware elements may include instruction sets, memory

storage, I/O channels, I/O devices, and data codes. Software elements

may include task initiation and monitoring facilities, resource manage-

ment, data management, sort/merge capabilities, and procedures for re-

covery from hardware or software failures. Consequently, more sophis-

ticated programming can be accomplished when languages provide for

declarations and specifications whereby the hardware may be described

and/or interfaces with the operating system established.

In varying degrees, features exist in languages which allow for the

specification of the hardware configuration (both compilation and

114

execution), the specification of corrective action to be taken when hard-

ware interrupts occur, and the ability to obtain status information when

operating in a multiprogramming/multiprocessing environment. The

ability to define such aspects of a program's environment can have

significant effect on the efficiency of object code produced by a

compiler.

AED AED does not provide any facilities for describing

either the environment or the interaction with the operating

system.

COBOL Environment and operating system descriptions are

specified in the second division; i.e., ENVIRONMENT Division.

This division is coded to specify the necessary external-

internal relationships. In this division, the computer is

specified both compiling and executing; the input units are

named and described, as well as access methods to be used.

The reserved sections associated with this division

are CONFIGURATION and INPUT-OUTPUT. In the CONFIGURATION

Section the SOURCE-COMPUTER, OBJECT-COMPUTER, MEMORY SIZE

SEGMENT-LIMIT, SPECIAL NAMES, and COPY options are

specified. Hardware specifications are also described

with any implementation names. The INPUT-OUTPUT Section

allows for the specification of file names, file COPY, file

renaming, buffer allocations, optional file presence,

tape file positioning, random access file limits, pro-

cessing mode, and multiple files.

115

JOVIAL JOVIAL makes no provision for explicit descriptions

of operating system interfaces.

PL/I Environment descriptions in PL/I are found in the

environment attribute of a file declaration and the

options parameter of a procedure statement. The

options of the environment attribute of a file declara-

tion include record format, buffer allocation, data

set organization, etc. The options parameter must

be MAIN for a main procedure on an IBM machine.

C.l.b.l Program Structure - Executable Units -
Expressions

Section A of this appendix presents the basic atomic elements

of the subject languages; the manner in which these elements may be

combined to form larger executable units, which range from

expressions through comprehensive procedures, will be the subject

of Section C.l.b.

An expression constitutes the lowest level executable aggre-

gate and may be defined, in general terms, as a series of operands

connected by operators in accordance with a language-specific

set of rules. Expressions may have subexpressions nested to any

arbitrary depth. Conventions are established to specify the

precedence of operators and the order of evaluation of paren-

thetical subexpressions. Languages differ in the extent to

which expressions may involve variables of mixed mode (e.g., floating-

point, integer, and logical) and the complexity of the constructs

allowed for subexpressions.

116

AED Basically, conventional arithmetic and Boolean

expressions, with a defined operator precedence and

parenthetical nesting, are permitted. Beyond this,

the structure of AED is largely built upon the concept

of ftype transformation* and 'phrase substitution1.

What this means is that a phrase (expression) whose

type is, say, 'integer* by the type transformation

rules may be substituted wherever an integer may

appear. Typed values are defined not only for the

usual kinds of phrase (e.g., function references and

expressions) but also for constructs not usually

thought of as having a value (e.g., whole assignment

statements, IF-THEN-ELSE constructions, BEGIN-END

groups). Thus AED is characterized as an 'expression

language'; a whole program is simply the pinnacle in

a hierarchy of expressions; for example:

X = A = IF P AND Q THEN B

ELSE INTEGER BEGIN C = D $, E = F END

which will set X and A equal to F (the value of the

BEGIN-END group) if either P or Q is FALSE, and to

B otherwise.

This approach leaves very little that cannot

be written and have some valid interpretation. In

particular, mixed mode arithmetic is allowed (an

INTEGER may be written wherever a REAL may be in

an expression) and subscripts and arguments may be

arbitrarily complex—whole programs, even.

117

COBOL Expression rules all have one thing in common; that

is, all data items referenced must be uniquely iden-

tified by a unique name or a qualified name. No name

may be both a data name and a procedure name. A

data name used as a qualifier for another data name may

not be subscripted.

Subscripts may be a numeric literal, an integer,

TALLY, or an identifier (unique data name). The value

of a subscript must be a positive integer and the

subscript itself enclosed in parenthesis. The format

is:

[<data-name-l>] [iN <data-name-2>] [iN <data-name-3>] (<subscript>)

Index names are initialized by a SET verb and may

be used for direct indexing, when the index name

serves as a subscript, or may be used for relative

indexing, where the index name is followed by a plus

or minus and an integer numeric literal. Index names

must be enclosed in parentheses when being used for

table referencing. The format is similar to that

shown for subscripting.

Arithmetic expressions may be composed of identifiers

of numeric elementary items, numeric literals, arithmetic

operators, and arithmetic verbs. Parentheses may be used

for clarification and to specify the hierarchy of operation.

Any arithmetic expression may be preceded by a unary

operator. The language allows for combining arithmetic

118

operators, receiving data fields, and operands, without

restrictions. If parentheses are not used, evaluation

proceeds from left to right for operators of equal value,

where operator hierarchy is unary plus/minus, exponentiation,

multiply/divide, and add/subtract.

When parentheses are used, the evaluation proceeds

from the least inclusive enclosed set to the most inclusive

set, applying the same operator hierarchy rules.

Conditionals have two mode rules: (1) Relational

conditionals may have mixed mode operands regardless of

declared USAGE; (2) All other conditionals must have the

same declared USAGE. For numeric data, the test is made

on the algebraic value of the operands, with zero being

unique regardless of the presence of a sign. Nonnumeric

operands are processed according to an implementation-defined

collating sequence.

Combined conditionals allow, except for the first

operand and operator, for the omission of the subject and

the relational operator of the relational condition. This

caus€ts the omitted subject to be replaced by the last

preceding subject stated or omitted; the omitted operator

is replaced by the last preceding stated relative operator.

There is some possible ambiguity with NOT; the expression

a>b AND NOT>c OR d is evaluated as a>b AND (NOT a>c) OR a>d.

The hierarchy for conditional expressions is arithmetic

expressions, all relational operators, NOT, AND, OR.

119

JOVIAL Expressions (known as formulas in JOVIAL) may be one

of six types: literal, status, entry, numeric, dual, or

boolean. Literal formulas are limited to an octal con-

stant, or a constant, variable or function which is either

Hollerith or transmission code. Status formulas are limited

to a status constant, variable, or function. Entry formulas

are limited to the value 0 or an entry variable. Numeric

and dual formulas may consist of numeric and dual (respectively)

constants, variables, or functions, and these may be combined

in standard ways with arithmetic operations and parentheses.

Both types of formulas may involve + or - prefixes, as well

as absolute and exponentiation operations. Only numeric

formulas may include the NWDSEN, NENT, and fLOC functions.

Boolean formulas consist of formulas of the other five types

bound to each other by relational and logical operations, as

well as boolean constants, variables, and functions.

Evaluation order applies only to numeric, dual, and

boolean formula types. In all these formulas, values of

constants, variables, or functions are determined left

to right before any other evaluation is done, with para-

meters evaluated before their functions, and indices before

their indexed items. Parentheses then have the standard

grouping effect, with inner formulas evaluated before outer

ones. Arithmetic operators have the following priority:

first negation, then exponentiation, then multiplication

and division, last addition and subtraction. Boolean opera-

tors have a lower priority than arithmetic operators.

Evaluation of numeric formulas can involve mixes of

data types (integer, fixed, floating, or octal). In

120

general, arithmetic operations involving at least one

floating value are done in floating form.

Evaluation of boolean formulas is carried out only

as far as necessary to establish the truth of the result.

In general, relational operators can relate operands

of tie same type, either numeric, dual, literal (only EQ

or NQ for hollerith), status or entry (only EQ or NQ). As

a special case, file names may be related to status

formulas.

PL/I In PL/I, an expression is either an element expression,

an array expression, or a structure expression, depending^

on whether it represents an element, array, or structure

value. Array variables and structure variables cannot

appear in the same expression, but element variables and

constants may appear in any expression.

Single constants or variable expressions may appear

anywhere in a program, and PL/I allows expressions anywhere,

if their evaluation yields a valid value.

There are four classes of operations acceptable for

use in expressions: arithmetic, bit-string, comparison,

and concatenation. An arithmetic operation combines operands

with one of the following operators: + , -, *, /, **. The

result of the operation is dependent on the operands. A

bit-string operation employs one of the following operators,

"V, & and| . The operands are converted to bit strings and

the shorter string is padded on the right with zeroes,if

necessary. The result is equal in length to the longest

121

Operand. The comparison operators include: <,""•<, <-, m$t

1«, =>, >,-»>. There are three types of comparisons,

depending on the operands: algebraic, character, and bit.

The concatenation operation combines operands with the

concatenation symbol | . The result is a string whose

length is the sum of the length of the two operands.

C.l.b.2.a Program Structure - Executable Units -
Statements - Data Manipulation

A programming statement constitutes the most elementary complete

specification of an action or process to be executed by the computer.

In general, statements take the form of imperatives for data manipu-

lation, of decision-making conditional tests to be performed, and of

commands for program sequence control. Statements may be labeled, and

thus serve as an identifiable program location to which control may

be transferred.

Data manipulation statements may be categorized as:

1. assignment

2. data movement

3. list processing

4. string editing

5. sort/merge

Assignment statements are used for formula evaluation and assign the

resultant value(s) to a named variable. Some programming languages

limit such operations to simple scalar quantities, while others allow

operations on more complex data aggregates such as matrices, structures,

and files.

Data movement statements, as the name implies, constitute that

class of statements which allow for the mass transfer of data from

122

one data structure to another; a convenience, per se, but a necessity

for those programming languages designed for data processing applications

involving large; quantities of data.

List processing statements are basically operations with pointers

and offsets> and provide the mechanisms to access and manipulate those

data items whose transitory characteristics make inefficient normal

methods of storage deriving from the linear nature of computer memory.

String editing statements encompass that class of statements

which provide for operations on alphanumeric data. Representative of

such operations; are concatenation, decomposition, and pattern search-

ing.

Sort/merge statements, such as those that exist in COBOL, repre-

sent a special form of daca manipulation, that is more conventionally

accomplished with utility packages.

AED Assignment Statements. AED is an 'expression language,'

which means that all complete expressions—function refer-

ences, arithmetic expressions, whole statements, IF-THEN-

ELSE constructions, etc.—have a value (see C.l.b.l). At

any point, such a value may be assigned as soon as computed,

by substituting for the expression <exp> the expression

<var> = <exp>. Thus, one can have conventional assignment

statements and much more complex forms as well.

Data Movement Statements. At the explicit language level,

internal data movement is strictly by assignment of

elementary data items. Movement of aggregates may be

effected by function call—e.g., the standard procedures

123

SPRAY and GLUE are used to move and transform the format

(packed or unpacked) of character strings.

List Processing Statements, List processing, at the

language level, is a Mo-it-yourselfproposition using the

elementary pointer operations. However, a standard data

structure package, a prime example of the AED system-

building philosophy, permits defining very general mecha-

nisms for processing of lists or other structures.

String Editing Statements. As noted previously (B.l.a.3),

AED has no string handling facilities at the language level.

A standard function package does exist, however, for moving,

substring extracting and replacing, scanning, comparing

(etc.) strings 'conceptually* implemented underneath the

POINTER and INTEGER types. Unfortunately for clarity or

conciseness, this package requires rather too much explicit

attention by the programmer to the mechanization itself.

Sort/Merge Statements. AED, as such, has no language

facilities or major language-related packages for sorting

or merging.

COBOL Assignment Statements. Assignments in COBOL may result

from using the equal symbol or from the storage of the

results of arithmetic verbs (ADD, SUBTRACT, MULTIPLY,

DIVIDE), with the GIVING option or the cumulative TO

option; for example: ADD 1 TO B or MULTIPLY A BY B GIVING C.

There are other options which will allow the results

to be ROUNDED and/or tested for SIZE ERROR. The COMPUTE

verb also serves as a method of assignment. This verb

allows for computation of more complex arithmetic statements,

124

These arithmetic assignment statements may be used with a

CORR/CORRESPONDING option, which provides a method of

assignment and use based on identical data names in different

structures.

Date. Movement Statements. Data movement is accomplished by

the MOVE verb and the MOVE CORR/CORRESPONDING verb. Move-

ment may be at the elementary level or at any point between

and including the elementary and record (01) level. Special

data, movement is accomplished with the INITIATE and

GENERATE statements used for report writing. These state-

ments cause data items described in report groups to be

moved, without specifying the entire data list by name.

In the DECLARATIVES Section of the PROCEDURE Division, some

data movement may take place (refer to I/O descriptions).

List Processing Statements. Lists of data are processed

by the PERFORM verb and the special table-handling verb,

SEARCH.

String Editing Statements. The EXAMINE verb provides a

means of direct string editing, while REDEFINES provides

a means of string redefining for subsequent manipulation.

The examination process allows for character tallying and

replacing with options of ALL, UNTIL FIRST, LEADING, and

FIRST. Other editing of string data may be accomplished

by moving one string to another structure,described with

different edit control characters in the picture clause.

Sort/Merge Statements. COBOL provides a SORT feature which

allows for sorting and handling of data before and/or after

125

the sort. The operation requires specifications in the

ENVIRONMENT Division for the input and output files, in

the DATA Division for the sort-file description (SD), and

in the PROCEDURE Division for the SORT statement and the

ascending or descending sequence. A program may have more

than one SORT statement. Special care should be given to

the collating sequence of sort keys, since this sequence

is not a COBOL specification. Sort keys may not have an

OCCURS clause nor be subordinate to an OCCURS clause entry;

keys must be at a fixed displacement from the beginning of

the record. The two procedures, INPUT Procedure and OUTPUT

Procedure, associated with SORT may not contain any SORT

statements and may not transfer control outside of the pro-

cedure (USE declaratives are not considered transfers of

control); the other parts of the main program must not trans-

fer control to points inside of these procedures. The

INPUT Procedure must have at least one RELEASE statement

to release the sorted record. The USING and GIVING

options provide for transferring of data files to and from

the sort files for sorting.

JOVIAL Assignment Statements. Assignment statements have the form:

<variable> = <expression> $

where <variable> and <expression> must both be numeric, dual,

literal, boolean, status, or table entry. JOVIAL also has

a special form of assignment statement, the exchange state-

ment, with the form:

<variable> == <variable> $

where both <variable>s must be one of the types listed above.

126

Other Data Manipulation Statements. JOVIAL has no state-

ments for data movement, list processing, string editing,

or sort/merge.

PL/I Assignment Statements. The assignment statement assigns

the value of the expression on the right side of an equal

sign l:o the variable on the left of the equal sign (e.g.,

A=B; assigns the value of B to the variable A). More than

one variable may be assigned the same value at once, but

each variable must be separated by commas (e.g., A, B,

C ■ D;). Entire arrays may be assigned values in one

statenent (e.g., DCL A(5), B(5) BIN FIXED; A = B;) or one

1 slice* of an array can be assigned by using a * in that

parameter (e.g., DCL A(5,2), B(5) BIN FIXED; A(*,1)=B;).

Structures can be assigned values from other structures or

they can be assigned with the option, BY NAME, which trans-

fers data from one structure to the other wherever the names

of lower levels agree.

Data Movement Statements. There are no other data move-

ment statements in PL/I.

List Processing Statements. There are no explicit list

processing operations in PL/I^ but the user can create his

own by use of pointer data manipulation.

String; Editing Statements. There are two string-editing

operations in PL/1. The first is the concatenation opera-

tion, which concatenates two strings together (i.e.,

'O'lI'llOl1 yields f01101f). The second is the SUBSTR

function, which yields a continuous substring of the original

127

string. The first parameter of SUBSTR is the original

string, the second is the number of the first character of

the resultant string, and the third parameter is the length

of the resultant string (e.g., SUBSTR ('ABCD',2,2) yields
fBCf).

C.l.b.2.b Program Structure - Executable Units -
Statements - Program Sequence Control

A natural dichotomy exists in programming languages between tnose

statements that actually accomplish the processing of data and those

that maintain the proper logical sequence of program execution.

Branching instructions of the form fG0 TO <label>' provide the

simplest means of effecting an unconditional transfer of control and

thereby provide the most common mechanism by which normal sequential

execution of programs may be altered.

Additionally, most programming language instruction sets include

conditional statements which provide the capability to select certain

parts of the program to be executed to the exclusion of others, based

on the outcome of specified execution-time tests. Languages differ

in the degree of complexity allowed in these tests, but in the most

generalized form alternative paths are specified for execution,

according as the stated condition evaluates to true or false; for

example, 'IF <condition> THEN <label-l> ELSE <label-2>f is

representative.

The ability to execute iteratively a sequence of computer

instructions is a prime requisite for programming languages, due to

the repetitive nature of data processing operations. Such a sequence

of instructions is defined as a loop, and is executed repeatedly

128

under the control of a loop control statement with address modifica-

tion changing the operands for each iteration. Loop control statements

specify the range of the loop and also the parameters for the

initialization, modification, and testing of the loop index. The

number of times the loop body is to be executed may be stated in

various forms: explicitly, as a range of values which the loop index

is to assume, cr implicitly, until a terminating condition is

satisifed.

A final class of program sequence control statements are statements

such as STOP, END,and HALT which provide overall program execution

control.

AED Unconditional Branches. AED has a fGOTO <label-or-switch>f

and also the standard function fDOIT (<pointer>,...)', where

<pointer> may be to a label as well as procedure. In either

case, branching may be to any point in the current block

or in any currently active block.

Conditional Branches. Conditional branches are handled by

making the GOTO or DOIT one of the consequent clauses of

an IF-THEN-ELSE compound statement.

Iteration Control. Iteration is controlled by FOR...STEP...

UNTIL...DO, FOR...STEP...WHILE...DO, or FOR...WHILE...DO

clauses. The STEP [...UNTIL]Construction controls incre-

menting an integer variable up to some maximum. WHILE

takes a Boolean expression; when the expression evaluates

as FALSE, the iteration terminates. Testing for the

termination condition is done at the beginning of each

iteration; i.e., it is natural to iterate zero times.

129

Execution Control. Procedure call is by mention of the

procedure name followed by a parenthesized (though possibly

empty) argument list. Return is by encountering the end of

a procedure or GOTO RETURN. RETURN acts as a reserved

label. It is also possible to return through several call

levels at once.

COBOL Unconditional Branches. Program sequence control in COBOL

is controlled by key words and optional key word clauses.

Unconditional branching is accomplished by the GO TO verb

followed by the paragraph label.

Conditional Branches. Conditional branching occurs as the

result of computational verbs with the SIZE ERROR clause,

a GO TO verb with the DEPENDING ON some specified condition

option, and the IF statement. The following verbs have

both a conditional and an unconditional mode depending on

the associated options: the READ with END option; the

RETURN with END option; the SEARCH verb associated with

table handling methods; the CALL external procedures verb;

the ALTER paragraph labels verb; the PERFORM internal

sections or paragraphs verb; and the EXIT statement. The

DEPENDING ON clauses allow the value of a single identifier

to determine to which procedure/paragraph control will be

transferred. The ALTER statements allow the destination of

a GO TO to be changed; the paragraph with the destinator

being changed must contain only one sentence, the GOTO

sentence. Statements altered must not be in segments

categorized as independent (overlayable or overlays).

130

Iteration Control. Iteration is accomplished by the

PERFORM verb with the options of executing a specified

serieis of procedures/paragraphs; executing a series of

procedures a specified number of TIMES; executing UNTIL a

condition is satisfied; executing a series of procedures

VARYING a variable or index name FROM a starting value BY

an increment value UNTIL a condition is met (three such

levels of iteration are allowed).

Execution Control. Execution control of the COBOL language

is comparable to the English language in that all sentences

are executed from the start of the PROCEDURE Division to

the end in a sequential manner, unless unconditional branch-

ing cccurs. Even if a paragraph serves as a procedure,

unless explicit transfer of control takes place, this

paragraph will be executed as it is entered.

Generally sentences are evaluated from left to right.

JOVIAL Unconditional Branches. In general, sequence control in a

program is left to right, top to bottom. Conditional and

unconditional branches and loops provide for exceptions to

this order.

Unconditional branches in JOVIAL are handled by

statements of the form:

GOTO <label> $

where <label> may be a statement label or the name of a

CLOSE or 'PROGRAM procedure. If transfer is to a procedure,

normal termination of the procedure (by RETURN) will cause

control to resume with the statement following the GOTO.

131

Conditional Branches. Conditional branch statements fall

into one of two categories: conditional and alternative

statements, and switch statements.

Conditional statements have the form:

IF<relationalexpression>$

where <relationalexpression> involves expressions,

relational operators, and logical operators. If the

<relationalexpression> is true, the next statement is

executed; otherwise it is skipped. Evaluation of the

<relationalexpression> stops as soon as its truth or

falseness can be established.

Alternative statements have the form:

IFEITH<relationalexpression>$

<statement>

ORIF<relationalexpression>$

<statement>

...ORIF<relationalexpression>$

<statement>

END

where <relationalexpression> is as described above and

each is tested until one is found true, whereupon the

associated statement is executed, or until all are found

false, whereupon control passes to whatever follows the END.

Testing may start within an alternative statement by con-

trol being passed directly to a labeled ORIF.

Switch statements involve GOTOs and either item switches

or index switches.

132

Item switches are set up by:

S WIT CH< s wi t chname>
(
<filename>
<itemname>

) = (<valuel>=<labell>

[,[<value2>= <labe!2>] I.. .)$

and used by:

G0"0 <switchname>$

where, i:: a specified <itemvalue> or <filename> status

value are not available, control passes to the next state-

ment in order. SWITCH statements should be located where

control cannot reach them by normal sequencing.

Index switches are set up by:

SWITCH<:switchname> (<labell>l [<label2>] .. . I)$

and used by:

GOTO <switchname>($ <expression> $) $

where, if the <expression> value does not have a corresponding

label (e:.ther because of adjacent commas or too short a

label list), control passes to the next statement in order.

Iteration Control. Iteration is provided by FOR statements

of the form:

ALL (<name>)
FOR<loopvariable> =

<expressionl>| ,<expression2>r<expression3>|J $

<statement>

where <loopvariable>s are single-letter names (e.g., I),

<expressionl> gives an initial value, <expression2> an

increment: value, and <expression3> a terminal value.

Incrementing and testing is done at the end of the

<statement>?s execution (the <statement> can be a BEGIN-END

compound statement). Manipulation of the <loopvariable> can

be done by assignment statements within the <statement>.

Control can be taken out of the loop to the increment

133

and test portion at any time with a statement of the form:

TEST[<loopvariable>] $

Execution Control. Subprogram linkage is provided by:

RETURN $

for return to calling procedures, and by:

STOP $

for return to the system. There is no provision in JOVIAL

for event-based linkage.

PL/l Unconditional Branches. The GO TO statement unconditionally

transfers the flow of the program to the label designated

(e.g., GO TO LABEL1;).

Conditional Branches. The IF statement tests the value of

an expression and controls the flow of execution according

to the result. The expression is converted to a bit string

and if any bit in the string is 1,then the THEN unit is

executed, otherwise the ELSE unit is executed (e.g., IF

<expression> THEN <unitl>; ELSE <unit2>;), where a unit is

defined as a single statement or a statement group. If no

ELSE unit is specified and the bit string is all zeros,

control passes to the next statement.

Iteration Control. There are two types of iteration

statements. The first is of the form:

DO WHILE (<expression>);

<unit>

END;

All statements between the DO and the END are executed

repetitively as long as the expression reduces to a bit

string where at least one bit is 1.

134

The: second form of an iterative statement is :

DO <variable> = <expression-l> TO <expression-2> BY Expression-3>;

<unit>

END;

In this case, the <variable> is assigned <expression-l>.

When control reaches the END statement, <expression-3> is

added to the <variable>. If [[<expression-3> > o] and

L<variable> > <expression-2>J] or [[<expression-3> < o]

and |<variable> < <expression-2>] J , then transfer to the

statement after the END statement, otherwise continue.

If <expression-3> is missing, it is assumed to be 1.

The iteration statements can be combined as follows:

DO <V> = <el> TO <e2> BY <e3> WHILE (<e4>);

Execution Control. There are a number of statements in

PL/I that could be characterized as execution control

statements. These include STOP, EXIT, RETURN, WAIT, CALL,

and ON statements. The STOP statement causes immediate

termination of all tasks. The EXIT statement causes

termination of the current task and all subtasks. The

RETURN statement returns control to the calling procedure

and it may also return a value, if the called procedure is

a function (e.g., RETURN (<expression>) ;). A block may

retain control until certain events are met by use of a

WAIT statement. CALL statements cause transfer of control

to a specified entry point of a procedure. Finally, ON

statements specify action to be taken when a specific

interrupt occurs.

135

C.l.b.2.c Program Structure - Executable Units -
Statements - Input/Output

Input-output statements provide the facilities whereby the

transfer of data between an external storage medium and the internal

storage of the computer may be accomplished. These I/O statements
»

are the communication mechanism between the computer proper and the

'outside world1, and effect the translation of the data into the

form required by the direction of the data transfer (i.e., internal-*

external, or vice versa). The essential components of an input/

output statement consist of a command (e.g., READ, WRITE, GET, PUT)

and a list of variables for transfer. Some languages require the

specification of the physical media (e.g., tape, cards, disk), but

program transferability is enhanced to the extent that the I/O

statements are device-independent. Most programming languages

provide for two modes of input/output, namely, formatted and unfor-

matted. Unformatted I/O operations generate no editing; the external

and internal representation of the data elements are essentially the

same. In contrast, formatted I/O allows the user to describe, via

format specifications, the form of the data as it exists on the ex-

ternal media (input), or as it is to be edited for external presenta-

tion (output), where the external media is frequently card images or

printed reports.

Input/output operations have also been categorized as stream-

oriented and record-oriented. Stream-oriented input/output is based

on the concept of data existing as a continuous stream of characters.

Each data item undergoes the appropriate conversion during processing

of the stream. Stream-oriented transmission is required when the

input to be processed has been prepared on an external device (e.g.,

symbolic punched cards) and, conversely, stream-oriented transmission

must be specified if the output data is intended for report generation

136

and human interpretation.

Record-oriented transmission is based on the concept of data

existing in aggregates, called records. Transmission is accomplished

on a record-by-record basis, with no data conversion operations. The

internal and the external representation of the data are exact

duplicates. Record-oriented transmission allows for the rapid transfer

of data between :he hardware elements of a computer system and for

the communication between programs.

Stream-oriented I/O has the advantage of machine-independence;

while record-oriented I/O, which is machine-dependent, derives its

advantage from the efficiency and speed of operation. However, the

primary consideration affecting the choice of method is whether the

communication path is human < > machine, or machine < > machine.

AED Stream-oriented I/O Transmission. A standard function

package, called GIN and GOUT, provides a form of list-

direct ad I/O. Data-directed I/O is not supported by AED.

A form of edit-directed output is provided by the

ASEMBL and EXPAND subroutine packages. The RWORD package,

or the newer FSM package, provides generalized finite-state

scanning logic for processing input—but these are far too

complex in simple cases. As a practical matter, there is

no edit-directed input as commonly understood.

Record-oriented I/O Transmission. Record-oriented, or

fbulk-I/Of, is handled by the IOBCP package. It is both

general and low-level, requiring considerable work to use.

IOBCP is presently restricted to sequential files. On the

137

IBM 360 or 370 under OS, a low-level interface package to

basic (including nonsequential) I/O macros is provided;

this package is expected to be compatible with IOBCP.

In summary, I/O is difficult in AED.

COBOL All files must be opened prior to reading or writing.

This opening does not access the first record; the read

statement initiates the actual input process. All data

items and records are edited for format spacing and may be

edited for content (numeric, alphabetic, alphanumeric, edited

numeric, edited alphanumeric).

Stream-oriented I/O Transmission. Stream-oriented input-

output data transmission does not exist as such in the

COBOL language. A report-writing feature is available

which allows the programmer to structure and format pages

of the output report. Each report is divided into groups

and sequences of items. The structuring allows for referral

to an entire report by name, major or minor groups, and

elementary items within groups. Report groups may be

headings, footings, control, or detail print groups. Report

groups may be extended over several lines on a page. The

GENERATE statement is used to initiate the report writing,

producing a series of report lines or pages with a single

statement. This feature may only be used with data described

in the REPORT Section of the DATA Division, where control

attributes are provided for each report group or item. The

report files must be opened (OPEN) prior to any use and

closed (CLOSE) before the end of the program.

138

Record-oriented I/O Transmission. The COBOL language

is organized around record-oriented data transmission. All

data, except non-contiguous working-storage data, is

described as a record or record entry. The language pro-

vides the capability to input and/or output a continuous

charact€'.r string as a record; to edit all data types on

both input and output; and to redefine a file record format,

by multiple record descriptions in the file description

section. COBOL requires an OPEN statement for all files to

be read (not SORT files). This statement must stipulate

the typtt of file (INPUT, OUTPUT, 1-0) and the file names;

tape files may be specified with the characteristics

REVERSED or NO REWIND. If a file has been described as

OPTIONAL, a check is made with the first READ statement,

and the AT END condition is forced when the file is not

present. An OPEN statement must precede the first READ,

SEEK, SUSPEND, or WRITE statements.

Declaratives are used with file processing. These are

coded in a special section immediately following the

PROCEDURE Division header. In this section, special

statements are coded for before and after label processing,

error procedures for file processing, and procedures for

use before the opening or closing of an input/output unit.

SORT fi:.es may not be referenced in the USE declaratives

section,,

JOVIAL Stream-oriented I/O Transmission. JOVIALfs I/O is basically

record-oriented.

139

Record-oriented I/O Transmission. I/O data in JOVIAL is

organized as records in files. Files may be binary or

Hollerith type, with records which are collections of bits

(binary) or bytes (Hollerith). Files are either rigid

(fixed-length records) or varying (varying-length records).

Input records may consist of a variable, an array, a table,

a table entry, or a contiguous subset of a table's entries;

output records may additionally consist of a constant.

Records are numbered consecutively beginning with 0 for the

first, 1 for the second, and the last record is followed

by an endfile element.

Files are activated by statements of the form:

r INPUT |

OPEN j | <filename> [<record>J $

I OUTPUT I

where the file will be positioned at 0 if <record> is

omitted and, if <record> is included, positioned at 1

after reading the first record. Files must be OPENed before

they may be input.

Files are deactivated by statements of the form:

f INPUT]

SHUT j | <filename> [<record>] $

I OUTPUT J

where the <record> will be input or output prior to

deactivation, and (for OUTPUT only) an endfile element will

be written.

Data is input and output by statements of the form:

INPUT

OUTPUT
<filename> <record> $

140

where input and output are normally sequential. The file

may be repositioned either forward or backward (if

appropriate to the device) by assignment statements of

the form:

POS (<filename>) = <n> $

where <n> is a nonnegative integer; a value of 0, for

example, repositions the file at the start of the data.

POS (<filename>) is also used in expressions to obtain the

current position of a file.

PL/I Stream-oriented I/O Transmission. List-directed stream-

oriented transmission is specified by the key word GET

(input) or PUT (output), followed by the key word LIST.

List-directed data can be any constant allowable in a PL/I

program, except sterling constants. Each item in the

stream must be separated by one or more blanks or a comma

surrounded by any number of blanks. A null field is

specified by two commas separated by any number of blanks

and causes the value of the associated item to remain

unchanged.

Data-directed transmission is specified by the key word

DATA (e.g., DATA (<data list>)). Items that cannot be

included in data-directed transmission include: parameters,

defined variables, based variables, and on input, subscripted

variables. On input, if the stream contains an unknown

name in the data list, the NAME condition is raised. If

the data list is omitted, it is assumed to contain all

names known to the block.

Edit-directed transmission is specified by the key word

EDIT and is followed by a format list.

141

EDIT (<data list>) (<format list>)

On input, the data is considered a continuous string and

is converted according to the format list. This differs

from list-directed I/O where the data is not considered a

continuous stream but rather, items separated by blanks

or commas with no editing to take place. On output, each

item is converted according to the associated format item

and placed in the output stream. Format items include:

fixed point (F), floating point (E), complex (C), picture

(P), character string (A), bit string (B), column position

(COLUMN), line position (LINE), new page (PAGE), line

skip (SKIP), remote format list (R), and spacing (X).

Record-oriented I/O Transmission. There are four statements

in PL/I that cause record-oriented transmission. They are

READ (input), WRITE (output), LOCATE (allocates storage in

the input buffer for a based variable and sets a pointer to the

location), and REWRITE (causes records to be replaced in an

update file). A fifth statement, DELETE, is used to

delete records in an update file. Records are stored and

retrieved either sequentially (CONSECUTIVE data set organi-

zation) , on the basis of physical position (REGIONAL), or

by use of keys (INDEXED).

C.l.b.2.d Program Structure - Executable Units -
Statements - Debugging Statements

Program debugging, the process of verifying the correctness of a

program, may constitute a significant percentage of the total time

for program development, especially in large systems. Most compilers

provide for extensive checking for syntactical errors in the source

code. However, the debugging process is greatly facilitated when

142

debugging statements are defined as an integral part of the language

to be executed at object time. Representative of techniques which

may be provided for are tracing, loop monitoring, snapshots of

memory, and instruction timing. In addition, responses may be spe-

cified for such execution time events as underflow, overflow, end-

of-file, etc. The implementation process is further facilitated if

these options can be selectively eliminated from the operational

version of the program without disturbing the program proper.

AED There are no debugging statements as such in AED.

COBOL Standard COBOL does not have debugging statements.

The DISPLAY verb allows for logical console output and

the ACCEPT verb allows for logical console input. Progress

is being made toward the addition of the TRACE and EXHIBIT

verbs, as well as DEBUG which would provide debugging

features, (some of these are presently included in some

implementations and standard language extensions).

JOVIAL All debugging statements must be inserted by the pro-

grammer using the standard language; no special provision

is made.

However, a number of debugging aids are called for in

the JOVIAL compiler specification and are categorized as

standard or optional aids. Standard aids include: a

source program listing (including compiler-generated

error messages); a library source program listing for all

code loaded from a library; an object program listing

(including all machine locations corresponding to compiler-

detected messages); and an environment listing (including

143

all DIRECT code names and statement, procedure, and

variable names). Optional aids include: a set-used

listing (including all data references by statement

number); a run-time error monitor, which provides an

identification of each error and the associated statement

number; an alter mode of operation for source deck updating;

an alter-update mode; and a grammar-eheeking mode of opera-

tion. Standard aids will be provided at compile time unless

suppressed, and optional aids will be suppressed unless

requested.

PL/I In PL/I, debugging statements overlap with error

control (C.l.b.2.e). There is currently a debugging PL/I

compiler provided by IBM which includes a number of de-

bugging aids and statements. In addition to the conditions

discussed in the error control section, some are used as

debugging statements. The CHECK condition when raised

has no effect on the statement being executed, but displays

on file SYSPRINT the name of the variable and its new

value. PL/I also has a SNAP option of ON statements which,

when executing, displays a list of all active procedures on

file SYSPRINT.

C.l.b.2.e Program Structure - Executable Units -
Statements - Operating System Interface

Programming languages in support of third-generation computer

systems (e.g., multiprogramming, multiprocessing, and time-sharing

systems) generally provide the capability to interact with the

operating system to request services and/or to specify corrective

actions to be taken in the event of an error condition. Such

operating system interfaces, for run-time application, are primarily

144

concerned with spacifying the handling of interrupts (i.e., events

which cannot be predicted or dealt with in a serial fashion). These

include resource nanagement exceptions (e.g., 'out of memory1),

the initiation and control of parallel processes (asynchronous tasks),

and hardware-associated events, such as endfile conditions, overflow,

underflow, and data conversion errors. Additionally, an interface

with the operating system occurs when a request is made for service;

included in this category are dynamic storage allocation, I/O, and

status information. The ability to deal naturally with such events

is particularly important for system programming and generally useful

in all programming.

AED Multitasking/Asynchronous Processing. There are no

facilities for asynchronous processing in AED.

Dynamic Storage Allocation. A standard feature of AED

implementations is a sophisticated 'free storage' package

for dynamic storage allocation. This package—not, syn-

tactically, part of the language—permits allocation and

freeing; of arbitrary size blocks (beads) from hierarchially

organized 'zones' or storage pools. The management algorithm

may be specified differently for different zones, and may

be 'tuned' for improved performance after the initial system

build.

Garbage collection, as in PL/I, is not automatic—the

user must explicitly FREE beads or zones no longer in use.

The free storage package is not implemented as an

interface to the operating system, but as a general facility

which might, in some instances, call upon operating-system

storage management facilities.

145

Interrupt Processing/Error Control. No specific facilities for

interrupt handling or error control are provided in the language.

By convention, packages and individual subroutines are

passed the LOC of a procedure (or label) to be invoked in

case of error. As with the free storage package, this may

or may not imply an interface to the operating system.

Interactive Processing. There are no data communication

facilities in the AED language.

COBOL Multitasking/Asynchronous Processing. Operating system

interface is accomplished in standard COBOL via the

Asynchronous Processing feature. The reserved words

associated with this feature are PROCESS, HOLD, SA (saved

area), and USE FOR RANDOM PROCESSING. To specify use, the

USE section must contain the procedure; when processing

is to be initiated, the PROCESS statement is used. All data

modified with this processing must be in a current record

area. Data modification works in conjunction with the

saved area (SA) file description entries. Each PROCESS

execution is called a cycle, which may be completed in

random order.

Dynamic Storage Allocation. Dynamic storage allocation as

an operating system interface is not available as part of

the language. Refer to data descriptions and segmentation

processes for similar storage handling.

Interrupt Processing/Error Control. Interrupt processing

and error control are features of the language, explicitly

and implicitly. File errors and interrupts may be handled

146

in the DECLARATIVES Section, where procedures are specified for

label processing and error processing. The AT END clause

also provides an interrupt branch capability. The RERUN

feature provides a checkpoint restart capability. The user

must designate the medium to receive the data and the method

of determining the frequency of checkpoints.

Error control may be accomplished by using and testing

status switches, specified as SPECIAL-NAMEs in the environ-

ment: a::ea; by testing for SIZE ERROR in computations; and

by class testing for numerically-defined and alphabetically-

defined data items. The INVALID-KEY clause may be used for

input-output to provide for user procedures, when the

controlling key is erroneous.

Interactive Processing. At this time, the standard language

does not specify any data communication features.

JOVIAL Operating System Interface. There is no provision in

JOVIAL for direct communication with the operating system except

for the STOP statement, which only provides for return of

control to the operating system. The JOVIAL program operates

as if nothing else could go on in the system at the same

time, either multiprogrammed or multiprocessed. Any

support or activity of the operating system of these types

is transparent in the JOVIAL program.

PL/I Multitasking/Asynchronous Processing. PL/I can execute a

number of operations concurrently. Each operation or pro-

cedure is known as a task. Without multitasking, the plan

of control is synchronous; the calling procedure suspends

operation until the called procedure returns control to it.

147

Under multitasking, an additional plan of control is

established and both procedures can be executed (in effect)

concurrently. The process is known as attaching a task.

Any task can attach a number of subtasks (machine-dependent).

Each subtask can be given a priority and the major task

can question whether a subtask is complete and/or abnormally

ended by use of an EVENT option. A WAIT statement can be

used to retain activation control until a specified event

has been completed.

Dynamic Storage Allocation. Automatic storage is allocated

at entry to a block and freed upon exit from the block;

static storage persists while the program is loaded.

Storage can be allocated and freed for BASED and

CONTROLLED variables (by the user only) through use of the

ALLOCATE and FREE statements, respectively. All other

storage is allocated and freed without user control.

Interrupt Processing/Error Control. Interrupt processing

and error control are accomplished in PL/I by the ON

statement, which could also be considered a debug state-

ment (see C.l.b.2.d). The ON statement specifies what

action is to be taken when an interrupt results from the

occurrence of a specified condition. These conditions

include CONVERSION, ENDFILE, SIZE, ZERODIVIDE, UNDEFINED

FILE, etc. If SNAP is specified in an ON statement, a

calling trace is listed. A REVERT command cancels the

effect of the ON statement.

In addition to the ON command discussed above, enabled

condition prefixes can be considered a form of error control,

148

The condition is enclosed in parentheses and prefixed to a

statement before the label (i.e., (<Condition>): LABEL:

<statement>;) . If the statement is not a PROCEDURE state-

ment or a BEGIN, it is active only for that statement;

before a PROCEDURE statement implies it is active for the

entire procedure, and before a BEGIN block statement causes

it to be active for the entire BEGIN block. Prefixes are

used to specify whether or not interrupts are to be

recognized. If the condition appears alone, the interrupts

are to occur (e.g., (SIZE):). If the word NO precedes the

condition, the interrupt is not to occur (e.g., (NOSIZE):).

Interactive Processing. The TRANSIENT attribute for a file

indicates that the contents of a data set are re-established

each time the data set is accessed. This means that records

can be added to the file by one program, at the same time

another program removes records from the file. Therefore,

the data set can be considered to be a continuous queue

through which records pass in transit between a control

program and a processing program.

C.l.b.3 Program Structure - Executable Units -
Compound Statements

In the previous section (C.l.b.2) a delineation of executable

programming statement types was presented. These included data

manipulation statements, program sequence control statements, input/

output statements, debugging statements, and operating system

interface statements. With minor exceptions, these statements can

be classified as simple statements consisting of a single command to

accomplish a specific operation.

149

However, it becomes a programming convenience if such statements

can be combined into more complex units which can be named, referenced,

and treated logically as single, independent, executable units. Re-

presentative of such units are compound statements, loops, blocks,

functions, and procedures.

A compound statement, defined as a statement that contains other

statements, represents the most elementary combinatorial form. The

conditional statement previously discussed is illustrative:

IF relational expression> THEN <statement-l> ELSE <statement-2>

AED Compound constructs are provided by:

IF...THEN...ELSE and FOR...DO

where, '...' represents a simple statement. Moreover, a

BEGIN...END block may appear wherever a simple statement

can, so that nesting to any depth is permitted.

COBOL Compound statements in COBOL are of three types: file

processing, arithmetic, and conditional. Arithmetic

compound statements may be written as an imperative state-

ment with a SIZE ERROR condition, followed by an imperative

statement.

Compound file processing statements are input/output

verbs and clauses followed by an AT END, INVALID-KEY, or

END-OF-PAGE, followed by an imperative statement.

150

Compound conditional statements are written as:

IF < relational expression>

< imperative statement>

conditional statement>

I<compiler-directive statement>J

SEXT SENTENCE

;ELSE <statement>

;ELSE NEXT SENTENCE

IF-ELSE statements are paired proceeding from left to

right. Control passes to the next sentence as written, or

to a RETURN statement, or the mechanism of a PERFORM or USE.

JOVIAL There are four types of compound statements in

JOVIAL:

IF <booleanexpression> $ <statement>

IFEITH <booleanexpression> $ <statement>

ORIF <booleanexpression> $ <statement>

FOR <loopexpression> $ <statement>

where the <statement> is necessary to the syntax of the IF,

IFEITH, ORIF, or FOR statements. The concluding statement

in all of these can also be a BEGIN/END block statement.

For irore details on these statements, see C.l.b.2.b and

C.l.b.4.

PL/I The only compound statement in PL/I is:

IF (<expression-that-evaluates-to-bit-string>)

THEN <action-if-true>; ELSE <action-if-false>;

The THEN clause is executed if any of the bits in the

bit string are 1, and the ELSE clause is executed if all

bits are zero.

151

C.l.b.4 Program Structure - Executable Units -
Loops

A loop is a set of statements organized so as to provide for the

execution of repetitive operations with varying parameters. It has

two essential components, namely, a loop control statement and the

loop body proper. Loop control statements, as previously noted (see

C.l.b.2.b), typically specify the range of execution, an indexing

variable, and the termination criteria. The loop body consists of

the statements to be executed iteratively.

Programming languages have specific rules governing the degree to which

loops may be nested, the mechanism for incrementing and testing the index-

ing variable, and the allowable transfers into and out of loops.

AED The unit controlled by a FOR...DO may be a simple state-

ment or a BEGIN...END group. Branching into and out of loops

or other BEGIN...END groups is freely allowed, although

branching into the middle of an inactive procedure block is

not permissible. Testing for end-of-loop conditions is done

at the beginning of each iteration.

COBOL Internal loops are supported by use of the PERFORM verb

with any or all options. These loops may involve one or

more paragraphs, but cannot cross sections. The beginning

paragraph and the last paragraph to be executed must be

specified. The EXIT verb is optional after the last para-

graph and must be the only statement in a paragraph.

Another method of looping may be provided by using the

ALTER and GO TO DEPENDING ON verbs and options.

Special table looping may be achieved by using the

SEARCH verb with indexed table data.

152

JOVIAL Loops in JOVIAL are initiated with FOR statements of

tne ::orm:

FO* <loopvariablea =

ALL (<name>)

<expressionl>[,<expression2>[,<expression3>]] $

The FOR statement is followed either by a simple statement

or by a BEGIN/END block statement. Any legal executable

statement is permitted in conjunction with a FOR statement,

<loopvariable>s are single letter names; either posi-

tive or negative incrementation is permitted. Iteration

may be terminated at any time from within a loop by state-

ments of the form:

TEST [<loopvariable>] $

where including the <loopvariable> causes control to go

directly to the iteration mechanism of that <loopvariable>?s

loop (any inner-nested loops are therefore totally

terminated), and omitting the <loopvariable> simply causes

control to go directly to the iteration mechanism of the

nearest loop.

PL/I

Control must not go from outside a loop to a statement

inside a loop without first going through the loop's FOR

statement. Control can be passed to PROC procedures outside

the loop, if control is returned by normal subroutine

termination (i.e., RETURN or parameter exit to a label

within the loop); but outside CLOSE procedures may be

invoked only if control does not return to the loop.

Control may transfer out of a DO loop at any place

but control may enter only at the first statement.

153

C.l.b.5 Program Structure - Executable Units -
Blocks/Paragraphs

A block (or paragraph) constitutes a logical processing entity

in the hierarchy of executable programming units. Not uniformly

defined in all programming languages, such constructs provide the

capability to group a set of statements so that they may be treated

as the syntactical equivalent of a single statement. A block

structure is usually delimited by key words (e.g., BEGIN, END) or a

header label, and may contain declaratives to delimit the scope of

names. Blocks are not typically called out-of-line; activation is

by normal sequential statement flow.

AED Fundamental statement groupings in AED are the

procedure and the BEGIN...END block. The latter may, in

general, appear wherever a simple statement might appear.

Furthermore, a block may have a value (that of the last

assignment within it), if a type name precedes the BEGIN.

COBOL Paragraphs, the lowest level of labeling, may be

executed as procedures with a PERFORM verb and optional

clauses. Sections, the next level of labeling, constitute

a block of code; these also may be executed as procedures

with a PERFORM statement. A special block is the DECLARA-

TIVES which is used for input/output procedures only.

The SORT paragraphs (input and output) are closed procedures;

i.e., transfers to or from any other main procedure are

not allowed.

All paragraphs and sections, except for the DECLARATIVES

and the SORT input and output procedures, may be executed

in a direct sequential manner or by a procedure-branching

PERFORM statement.

154

JOVIAL There are two kinds of blocks in JOVIAL: START/TERM,

and IlEGIN/END.

START/TERM blocks define main programs or external

CLOSE routines (i.e., subroutines). Main programs are

defined as follows:

START [<numericorigin>] $

<statementlist>

TERM [<statementname>] $

where <numericorigin> establishes the starting point of

the program and <statementname> establishes the first

statement to be executed on entry. CLOSE routines are

defined in the same way as main programs except that START

is preceded by:

CLOSE<programname>$

BEGIN/END blocks serve two purposes. The first is to

permzlt the grouping of more than one statement so that a

group of statements may take the place of a single state-

ment (in this case, the BEGIN/END block is a sort of

superstatement). The second purpose is for internal

procedure definitions, both PROC and CLOSE, where the

statements representing the procedure are enclosed by

BEGIN/END brackets. The scope of data defined in

BEGIN/END blocks is not limited to the block unless the

block is part of a PROC or CLOSE definition.

PL/l Sequences of statement are grouped in three ways in

PL/I: procedures, groups, and blocks. A group is headed

by a DO statement and terminated by a corresponding END

statement. A group permits multiple statements to be

substituted for a single statement. A block defines an area

155

of a program. A program may consist of one or more blocks.

There are two kinds of blocks: BEGIN and PROCEDURE. Both

are terminated by END statements. Every BEGIN block must

be contained within a PROCEDURE block. Execution passes

sequentially into and out of BEGIN blocks, but procedures

must be invoked explicitly. The first (MAIN) procedure is

automatically invoked by the operating system. Blocks

establish the scope of identifiers.

C.l.b.6 Program Structure - Executable Units -
Functions/Built-in Functions

A function is a unique type of subprogram which returns a single

computational value whenever it is invoked. Functions must be

defined, according to language-specific rules, in terms of the input

parameters and the processing logic. Within the subprogram definition,

the function name is assigned a value; the subsequent appearance of

the function name in an expression generates a call to the subprogram

which evaluates the function and returns the computed value and

control to the calling program.

Most programming languages provide for the inclusion of a com-

prehensive set of built-in functions, oriented toward basic operations

relevant to the application areas for which the language was designed.

The versatility of a language may be greatly enhanced by the existence

of such built-in functions, which sometimes provide the semantics of

language features not included in the basic language definition.

AED Functions are simply procedures with an associated

type, and consequently an additional implied argument (the

returned value). Function references may appear on the

left of an assignment in AED, e.g.,

156

F(X,Y) = Z

which is interpreted as equivalent to the simple reference

F(X,Y,Z).

Since the called procedure F, using ISARG, can determine

the number of arguments passed, it can distinguish this

fsto::ingf reference from the 'loading' reference

W = F(X,Y).

This useful feature is a practical aspect of the 'universal

reference notation', which allows the actual mechanization

of a logical entity (function, array, macro, or bead) to be

postponed or changed without affecting the formal

references.

A vast number of functions come built into the language

or lii the standard library. These are generally grouped

into packages, the principal packages being a free storage

(dynamic allocation) package, a 'string' (data-structure)

package, a character-string handling package, and several

I/O packages.

COBOL The language specifications allow for implementation-

defined arithmetic functions to be used in conjunction with

the COMPUTE verb. This verb provides for arithmetic

expressions. Generally SQRT, EXP, and LOG are the only

mathematical functions provided. Some implementations

have made use of the SPECIAL-NAMES feature to incorporate

system functions as name-addressable functions. Special

registers are features of the language which provide for

automatic counting of line numbers, page numbers, counters,

and occurrences of values (TALLY) in an examined character

string.

157

JOVIAL Most built-in functions ((* and *), (/ and /), ABS,

ALL, BIT, BYTE, CHAR, ENT, ENTRY, *LOC, MANT, NENT, NWDSEN,

ODD, POS, REM, REMQUO) in JOVIAL have reserved-word names;

the two exceptions are REM and REMQUO. This section gives

alphabetically ordered descriptions of each function or

function-like element of JOVIAL, beginning with punctuation-

defined forms. A discussion of how functions are defined

may be found under C.l.a.2.

(* and *) provide for exponentiation of numeric

expressions exactly as provided by the operator **; for

example, 2 (*3*) gives the value 8.

(/ and /) provide for absolute values of numeric

expressions exactly as provided by the ABS function; for

example, (/ -2 /) gives the value 2.

ABS provides absolute values of numeric expressions.

The result is the same data type as the evaluated expression.

The general form is:

ABS (<numericexpression>).

ALL is used only in FOR statements to indicate that

the <loopvariable> will begin with the number of table

entries minus 1 and be decremented by 1 to 0. The general

form is:

(<tablename>

ALL (

i<tableitemname>

).

BIT is used to substring bit strings from simple or

indexed numeric variables (BIT must not be applied to

158

floating items, however). The result is an unsigned

integer, and the general form is:

BIT ($<startbit>[,<numberbits>] $) (<variable>)

where bits are numbered from 0 for the leftmost bit.

EYTE is used to substring byte strings from simple

or indexed literal variables. The result is Hollerith or

transmission code depending on the variable, and the general

form is:

BYTE ($<startbyte>[,<numberbytes>] $) (<variable>)

where bytes are numbered from 0 for the leftmost byte.

CHAR is used to access the characteristic of a floating

simple or indexed variable. The result is a negative,

positive, or zero integer value; negative values are

signecl-magnitude form. The general form is:

CHAR (<variablename>).

ENT and ENTRY are used identically to access the full

set of values in a table entry. The result has the value

0, if all bits of the entry are 0; otherwise, there is no

JOVIAL constant equivalent to the result. The general

form is:

ENT

ENTRY
(<tablename> ($<index>$)).

1LOC is used to make the numeric origin of an item,

table,, statement, or 'PROGRAM procedure available as an

unsigned integer. The general form is:

fL0C (<name>)

where <name> must be followed by a period for statements

159

and 'PROGRAM names, otherwise not.

MANT is used to access the mantissa of a floating

variable (either simple or indexed). The result is a fixed

value. The general form is:

MANT (<floatingvariable>)

NENT is used to obtain the number of entries in a

table as an integer value. The general form is:

NENT (<tablename>)

NWDSEN is used to obtain the number of machine words

per entry of a table. The result is an integer value and

the general form is:

NWDSEN (<tablename>)

ODD is used to obtain a Boolean value, which is true

(1) if the least significant bit of the parameter is one,

and false (0) if the bit is zero. The general form is:

ODD (<variablename>)

where <variablename> may be a simple or indexed numeric

variable or a loopvariable.

POS is used to obtain the position value of a file,

so that a 0 is returned if the file is positioned at the

start of the first data record, and (n-1) if at the nth

record. The result is an integer and the general form is:

POS (<filename>)

REM is used to access the remainder of the division of

two integers. The result is an integer and the general

160

form is:

REM (<numerator>, denominator>)

REyfQUO is a procedure rather than a function, but is

included here for completeness. REMQUO is used to access

both the remainder and quotient of the division of two integers,

Both results are integers and the general form is:

REMQUO (<numerator>, <denominator>=<quotient>, <remainder>) $

PL/I A procedure is considered a function if a specific result

is obtained when invoked. The result is included as part of

the RETURN statement (e.g., RETURN (expression)) and is

returned as the value of the function to the calling location.

In PL/I, some functions can be used on the left side of an

assignment statement (i.e., as pseudo-variables), in addition

to being used as operands in expressions.

PL/I also contains 90 built-in functions and pseudo-

variables, (the greatest number of any of the languages

considered). The five classes of functions in PL/I are:

computational, condition, based storage, multitasking, and

miscellaneous. Most of the computational functions can be

used wi.th arguments of more than one type.

C.1.b.7 Program Structure - Executable Units -
Subroutines/Procedures

A subroutine (or procedure) consists of a self-contained set of

instructions necessary to accomplish a well-defined mathematical or

logical operation. A subroutine definition has two essential com-

ponents, namely, (1) a header statement which defines the name,

denotes the attributes, and specifies the associated input/output

161

parameters (if any), and (2) the subroutine body consisting of the

declarations and procedural statements. Subroutines are usually

defined in terms of formal or dummy parameters, which are replaced

by actual parameters when the routine is called. A closed subroutine,

in contrast to an open subroutine, is constructed, via linkages, so

that code may be localized and invocation from multiple points

within the main program does not result in the generation of any

in-line code.

Programming languages differ in various aspects of subroutine

usage and parameter passage. In particular, some languages allow

for multiple entry points, for the nesting of subroutines, and for

recursion (i.e., a call by a subroutine to itself). Language-specific

rules govern the complexity of the allowable parameters (e.g.,

variables, expressions, subroutines), and the correspondence which

must exist between the parameter list of the invoked procedure and

the parameter list of the invoking statement. Parameter passage may

be accomplished in three ways, namely, call-by-value, call-by-name,

and call-by-address, each of which results in a different mode of

subroutine initialization prior to execution.

Subroutines/procedures provide for economy of storage and

support the concept of modular/structured programming. Multi-level

program implementation is facilitated in that all code at a given

level represents the same degree of abstraction.

AED Procedures are defined by a statement of the form:

DEFINE [<type>] [RECURSIVE] PROCEDURE <name>

[(<args>) WHERE <arglist>] TOBE <statement>

where <statement> is, most often, a BEGIN...END block.

162

Procedure definitions may be nested within a procedure

definition; the scope of their names is limited to the

containing procedure. A number of 'outer' procedures may

be defined within a 'program'—a compilation unit of the

form:

[<name>] BEGIN.. .END FINI

(The <:name> has no function.) All outer procedures have

global (loader-known) scope, and any data declared within

a program but outside any procedure is common to all the

procedures defined in the program.

A call to a procedure is a reference of the form:

<name>(<arglist>).

References on the left are permitted; F(X,Y)=<expression>

is interpreted as F(X,Y<expression>) (see C.l.b.6).

The WHERE clause in a procedure definition declares

the expected types of the passed arguments. The type, if

any, is declared not only in the DEFINE statement but also

within the calling procedure, viz:

<type> [RECURSIVE] PROCEDURE <name>

Arguments are not type-checked, but are assumed to match

the parameters. Argument-passing is by location.

The standard ISARG routine package permits handling

of variable-length parameter lists.

Multiple entries to a procedure are not permitted.

The ability to have multiple outer procedures within a

program and shared data makes multiple entries unnecessary.

163

Static (textual) and dynamic (call) nesting is allowed

to any depth.

If a procedure is recursive, it must be so mentioned

in the DEFINE and in the PROCEDURE declaration for any

calling procedure. There is no provision for generally

reentrant code; recursion is a relatively easy special

case.

COBOL The standard language provides for three types of

procedures or subroutines: internal, external, and internal

assembly code.

Internal procedures require no definition and no

arguments, since all data is available for any part of

the program. These procedures may be executed in two ways,

as part of the PERFORM loop and/or as a direct 'next

sentence' entry.

External procedures do not require a specific

definition statement; however, if data is to be transferred

and a USING clause is specified, this data must be defined

in both programs in the LINKAGE Section. The number and

attributes of the arguments in the called procedure must

be identical to the parameters supplied by the calling

program. A called program may not be segmented. External

procedures may have multiple entry points defined by the

ENTRY verb, which may have a USING clause. Called pro-

cedures may call other procedures, but none may call the

main or calling procedure. Storage used by a called pro-

gram may be released by the CANCEL statement in the calling

program.

164

Internal assembly-coded procedures are defined by

the ENTER statement followed by the assembly language code.

Special care must be given to the boundary positions of

data used in these procedures.

JOVIAL The definition of procedures and subroutines is

discussed under C.l.a.2; this section will go into

broader aspects of their construction.

Procedures may be defined internally with PROC and

CLOSE, and externally with CLOSE (START/TERM). Commonly-

used definitions may be centralized in libraries for

subsequent inclusion in programs.

PROC procedures are referenced by simply writing the

procedure name and parameter list. Functions are referenced

by including the name and parameter list in an expression.

CLOSE procedures (both internal and external) are

referenced by GOTO <closename> statements.

Main programs are defined as follows:

START [<numericorogin>] $

<statementlist>

TERM $

Data definitions may be introduced via the COMPOOL by

explicit definitions, or, for simple items, by reference.

COMPOOL-defined data is known throughout all internally-

compiled procedures of a program. Data defined for a

procedure is known only for all procedures internal to that

procedure. Data used by procedures can be passed either

165

as parameters or by scope of name. Functions have only

input or no parameters defined, while procedures may have

only input, only output, both, or no parameters.

There is no provision for multiple names of pro-

cedures representing multiple entry points, nor for

recursion or reentry.

PL/I A procedure is delimited by a PROCEDURE statement and

an END statement. A procedure not included in another

block is an external procedure and a procedure included in

another block is an internal procedure. All external

procedures must be defined by their calling procedures

(on IBM machines the first procedure is defined by use of

the OPTIONS (MAIN) in the PROCEDURE statement). Internal

procedures may or may not be declared, according to the

compiler. Subroutine procedures are invoked by calling

procedures by the use of a CALL statement. A procedure is

identical to a function in PL/I, except that a function

returns a value in the RETURN statement.

Parameters are associated with the entry point and

are put into one-to-one correspondence with the arguments

used in a CALL statement.

Procedures may have more than one entry point in PL/I.

Procedures may be invoked either at the primary entry

point (the procedure statement) or secondary entry points

(the entry statement). The entire procedure is said to be

active no matter what point of entry is used. An entry

point may have the attribute GENERIC which defines a name

as a family of entry names, each of which is referred to

by the name declared. The proper entry point is selected

166

based on the attributes of the arguments specified in

the procedure reference.

Frocedures can be nested and any procedure that is

inside any other block is called an internal procedure. A

variable is known only in the block in which it was de-

clarec. unless it was declared EXTERNAL.

Procedures can be both recursive and reentrant, if the

procedure is declared to be RECURSIVE.

C.1.c Program Structure - Compile-time Features

Compile-time features consist of that set of statements which

convey information to the compiler about actions to be performed

before, or coincidental with, the actual compilation process. As

such, operations usually involve the program in its original (source)

form. Representative of some such operations are:

1. scurce text manipulation

2. language rule modification

3. initialization of variables

4. inclusion of other languages

Macro-preprocessors represent perhaps the most powerful capability

for source text manipulation. In effect, they provide the capability

to achieve the self-extendability of a language and also the specializa-

tion of a language for particular applications. Most preprocessors

are limited to the expansion of macros, but some of the more advanced

programming languages provide for a limited set of logic operations.

167

The ability to access precoded units (such as library routines,

macros, and declarations) from a central file and to insert them

into individual programs at compile time is a desirable feature of

programming languages. Referred to as fcommon text insertion', it

is a useful aid in reducing coding effort and in standardizing and

centralizing the management of common system elements.

Additionally, the nature of some problems makes it extremely

useful to have the capability to modify the standard language rules

(for example, to override the preset default options). Some pro-

gramming languages provide compiler directives for this purpose.

The initialization of variables and the inclusion of 'other

language' statements within the source code both require an inter-

action with the compiler.

AED Source Text Manipulation. There is a macro preprocessor

of the 'skeleton' type: sample code of the type to be

generated is written, with dummy variables (parameters) to

be filled in at call time. A call is of the form:

<macroname> (<argl>, <arg2>, ...)

The expansion of the macro (i.e., the skeleton code

fleshed out by filling in the actual arguments for the para-

meters) replaces the call, and is itself rescanned for

instances of macro calls. This is weaker, though simpler

to use, than 'interpreter' type preprocessors such as

PL/I's. However, a user exit (procedure call) to an AED-

coded subroutine is also allowed. This subroutine can

interact with the preprocessor, subject to its interface

rules. Almost any operation should be possible this way,

although one suspects that such a facility must be complex

to use.

168

Common source code of any kind, including macro

definitions, may be stored in a file and called into

individual programs by an INSERT <filename>.

la addition, there is a provision for one-time pro-

cessing of INSERT files into 'item' format, which can be

processed by the compiler much more rapidly than raw

input text.

There is also an item-level 'synonym' facility, which

allows substitution on a token-for-token basis. Tokens

may be ordinary identifiers, key words, or punctuation. For

exaraplB, one may define ';' to be equivalent to '$'. This

synonym facility is independent of the macro preprocessor;

synonym definitions are recognized and substitution is

performed by both the preprocessor and the compiler.

Language Rule Modification. Except for redefining punc-

tuation (see previous section) the compiler cannot be

instructed to change its ways—e.g., to alter the defaults.

Initialization. An interpretive PRESET language, AED-like

but a subset of the full language in capability, is

available for setting up initial values of variables and

data structures at compile time. Elementary arithmetic

operations are permitted.

Inclusion of Other Languages. Commendably, AED does not

allow switching back and forth with other languages within

a procedure. Depending on linkage conventions in a

particular installation, other languages may be called from

169

AED and vice versa. Historically, compatibility of this

type with FORTRAN is maintained.

COBOL Source Text Manipulation. Specific preprocessing statements

are not part of the language. The COPY and USE verbs and

statements are used, respectively, to COPY source text and

incorporate it into a program, and to USE specified input/

output techniques on program files. The compiler does

generate data positioning and alignment as needed prior to

data manipulation, thereby handling all mixed mode, format,

and usage differences coded by the programmer.

The COPY verb used in the environment area allows for

accessing user-supplied and system-supplied library

routines.

Language Rule Modification. There is no provision within

COBOL for language rule modification.

Initialization. Initialization of data is accomplished by

the VALUE clause defined with elementary data items in the

DATA Division. Range of data values is specified by the

RANGE clause.

JOVIAL

Inclusion of Other Languages. Other language processing is

included when the ENTER verb is encountered. All necessary

language interfaces are generated by the compiler. Control

returns to COBOL with the ENTER COBOL statement.

Source Text Manipulation. JOVIAL has nothing which cor-

responds to any sort of macro preprocessor, but provisions

170

are made for common text insertion and for simple text

substitution. COMPOOLs contain definitions, and libraries

contain procedure code; both mechanisms are accessed

through implementation-specified control cards. JOVIAL's

common-text insertion feature provides for centralization

of commonly-used code and is particularly useful in large-

system implementation.

Simple text substitution is provided by statements of

the form:

I)EFINE<name> Tl<text>f' $

where <name> is a legal JOVIAL name and <text> is any

combination of symbols, including other DEFINE <name>s.

Once DEFINEd, a <name> may be redefined but never undefined.

Language Rule Modification. Unless explicitly defined,

JOVIAL processes all simple item references as if they had

been declared integer. The MODE statement provides for

general assignment: of a data type to all undefined simple

items, which can be any legal JOVIAL definition and may

include presetting the items. The MODE definition applies

to all code following it in the source program and may be

overridden by another MODE statement. The MODE statement

has the general form:

MODE <itemdescription> [p<optionallysignedconstant>] $

Initialization. JOVIAL provides for full compile-time

initialization of variables, usually in the form of

BEGIN/END blocks for defined variables and of a MODE

option for undefined simple items. All data organizations

as well as all data types may be initialized.

171

Inclusion of Other Languages. JOVIAL provides for the

insertion of assembler code between the two primitives

DIRECT and JOVIAL. Inserted assembler code generally will

conform to assembler formatting requirements; in any case,

this feature is very implementation-dependent.

PL/I Source Text Manipulation. The primary compile-time

directives in PL/I are the macro facilities. These

facilities allow the programmer to alter the source program,

at compile time, in the following various ways:

1. change any identifier appearing in the source

program

2. indicate which sections of the program are to be

compiled

3. incorporate a string of text from a user library

into the source program

In most cases the compile-time statements must be

preceded by a percent sign (i.e., % DECLARE A CHARACTER;).

Compile time for PL/I is defined in two stages:

1. Preprocessor Stage - Preprocessor statements are

executed to alter the source text being scanned.

The altered source text is input to the second

stage.

2. Processor Stage - Output of first stage is compiled

into an executable object program.

Common text can be inserted in a source program by

using the preprocessor. This can be accomplished in one of

two ways: (1) a character variable could be replaced by a

172

string of text which would then be compiled as part of the

source program, (2) the text could be included by using

the % INCLUDE preprocessor command. This command incor-

poratss strings of external text into the source program.

Preprocessor variables can be specified to be either

FIXED or CHARACTER. No other attributes can be declared

for a preprocessor variable.

Language Rule Modification. The DEFAULT statement allows a

user 1:0 specify the default attributes to be applied to

designated identifiers that require implicit declarations.

The DEFAULT statement can specify attributes for:

'... explicitly declared identifiers

2, contextually declared identifiers

3. parameter attributes

i\. values returned from function procedures

Initialization. Declarations cannot be preset in PL/I

except: that they may be included as part of the code by

use of the % INCLUDE command. A new IBM optimizing compiler

also allows the user the capability of presetting default

declarations.

Inclusion of Other Languages. Because of the way PL/I sets

up its procedure calls, procedures written in other higher-

level languages cannot be called. The exceptions are pro-

grams compiled under the IBM Optimizing Compiler, which

allows calls to other language subroutines including

FORTRAN and COBOL, but not to PL/I subroutines not compiled

under the optimizer.

173

C.2 Program Structure-Organization

Throughout this appendix the subject languages have been defined

in terms of basic tokens, data types and organizations, elementary

program statements, and mechanisms for constructing higher-level

executable units.

It remains in this final section to discuss the program structure;

that is, the sequencing rules governing the organization of the pro-

gram elements and the implication of this arrangement on the scope

of data names. Each language has specific rules relative to program

structure and the manner in which subunits may be sequenced and

combined. Most, however, are based on the concept of a main executive

routine and a collection of subordinate routines, nested to any

arbitrary level. Each such subprogram operates on a definitive data

set and must have the means of accessing the data and determining the

associated data attributes. This may be accomplished by global

declarations, but efficiency considerations and multi-programmer

implementations usually dictate a more localized approach. Language-

specific rules governing the placement of declaration statements

within a hierarchy of subunits will allow a common data name to be

associated with the same or different storage areas throughout program

execution. Thus, the range over which a data name is 'known' is

under programmer control.

AED Program Format. Statements or statement groups to be

executed in sequence are written in sequence, separated

by '$'. Selection of one of two statements (groups) or

alteration of the normal dynamic sequence can occur due to

compound (C.l.b.3) or GOTO statements (C.l.b.2.b).

174

The format of the procedure and the program is dis-

cussed in C.l.b.7. Declarations of variables may occur

anywhere in the block, except for declarations of the

parameters, which must appear in the WHERE clause of the

procedure definition (C.l.a.2). However, declarations

within an included BEGIN-END will apply only over that block.

Scope of Names. Names generally apply over the innermost

block in which they are declared, and any blocks contained

therein to any depth. The scope of a procedure name is

both internal to the procedure and the immediate external

environment of the procedure ('outer' procedures become

known to the system loader).

COBOL Program Format. This is a very structured language, so that

most structuring violations will create a severe error at

compilation. There are two organizational areas—actual

input format and program coding sequence.

The actual 'card' input is divided into five distinct

parts; the sequence number field, the continuation field,

program area-1 starting field, program area-2 starting

field, and the identification field. The first and last

fields are optional; the continuation field is used for the

line comment code and a continuation symbol (-), needed

when ar. identifier or literal has been split in the middle;

program area-1 starting field is used for all headers,

section names, paragraph names, file descriptions, non-

contiguous data level numbers, and record number indicators

(01); program area-2 is used for all sentences and state-

ments. Data description entries (other than 01 and 77) may

175

Start anywhere after the start of program area-1. All

sentences and clauses must be in area-2 only; if the line

is a continuation or a new sentence, the allocate area-1

field must be blank. The actual size of each area is an

implementation design option.

The COBOL program itself must be organized in a

standard set sequence. The basic sequence is division,

section, paragraph, sentence, statement, and clause.

The specific program requirements are:

1. IDENTIFICATION DIVISION. The mandatory paragraphs

are the PROGRAM-ID paragraph with 8-character

names, and DATE-COMPILED paragraph with a user-

supplied date. Other optional paragraphs are AUTHOR,

INSTALLATION, DATE-WRITTEN, and SECURITY.

2. ENVIRONMENT DIVISION. This division has two

sections: CONFIGURATION and INPUT-OUTPUT. The

first section, CONFIGURATION SECTION, has two

mandatory paragraphs: SOURCE-COMPUTER to specify

the compiling equipment, and OBJECT-COMPUTER to

specify the executing equipment. The optional para-

graph is SPECIAL-NAMES. The second section, INPUT-

OUTPUT SECTION, has two major paragraphs: FILE-

CONTROL which names the files and the external media

with hardware attributes, and I-0-CONTROL which

specifies the memory area shared, the processing

techniques, file location on multiple-file tapes,

and the rerun points.

3. The DATA DIVISION is divided into optional sections:

FILE, WORKING-STORAGE, CONSTANT, LINKAGE, and REPORT.

The division header may have a PREPARED FOR clause,

if the data descriptions were written for a

176

Computer other than the object computer. The

sections, even though optional, must appear in

the following sequence: FILE SECTION, WORKING-

STORAGE SECTION, CONSTANT SECTION, LINKAGE SECTION,

and REPORT SECTION.

4. The PROCEDURE DIVISION must be included in every

program. The DECLARATIVE Section must be at the

beginning of this division, started by the reserved

word DECLARATIVES and terminated by END DECLARATIVES.

The remainder of this division is composed of

sections and paragraphs named by the user. If one

paragraph is in a named section, than all para-

graphs must be in sections. Section names must

be unique and paragraph names must be unique

within a section. The PROCEDURE Division, if in

a called program, may have a USING clause in its

header, which specifies the arguments being passed.

The physical program ends with the last COBOL sentence

in the PROCEDURE Division.

Scope of Names. The data element names are known to the

entire internal program because of the basic COBOL

structure. Paragraph names are known only within a section,

unless qualified. All names must be uniquely identifiable.

JOVIAL Program Format. The overall organization is based on that

of a procedure, which may contain other procedures con-

taining other procedures, etc.; so that, by proper inser-

tion, a hierarchy of structures may be established as

follows:

177

Main Program

Proc . . r Proc
(D,l (D.n.

-J—i
Proc - . . Proc

(1,1),1 (1,1),n2

Proc ,, . . Proc
(l,l,n2),l (l,l,n2),n3

Programs are compiled either as main programs or

CLOSE subroutines (i.e., subroutines without parameters,

which are accessed with GOTOs and return control to the

next statement after the calling GOTO). Programs consist

of directives, definitions, and statements. Directives

consist of the MODE and DEFINE statements (see C.l.c).

Definitions, which may be provided as part of the original

source code or included from COMPOOLs and libraries,

establish characteristics of elements (i.e., data and

internal and external procedures), except for simple items.

The definition of an element must precede its use. The

general form of a main program is:

START [<numericorigin>] $

<statementlist>

TERM [<entrystatementlabel>] $

The general form of a CLOSE subroutine is:

CLOSE<closename>$

START [<numericorogin>] $

<statemen£list >

TERM $

178

Scope of Names. In terms of the hierarchy shown above,

names generally are known only in those procedures subordi-

nate 1:0 the one in which the name is most recently defined.

COMPOOL and library definitions always occur at the highest

level; all names defined at the highest level are said

to have global scope,and all others have local scope. The

definition of a name at a higher level may be overridden by

redefining the name at a lower subordinate level. Each

loopv£.riable name is local to its loop, to all nested

loops, and to all procedures called from these loops.

Device names are predefined for each implementation and so

are global in scope. The same name may be used without

conflict for (1) a device, (2) a statement, program

(i.e., PROGRAM or CLOSE), or switch, and (3) an item, table,

file, procedure, or function.

The only names which do not need to be defined before

being used are simple item names (which then default to

integer or the most recent MODE definitions), statement

names, functional modifiers, and REM and REMQUO.

PL/I Program Format. There are no sequence rules required

for PL/I except those dictated by the program logic.

Declarations, internal procedures, and remote formats may

appear anywhere and, unless altered, control flows through

blocks sequentially. However, preprocessor data must be

defined before it is used.

Scope of Names. The scope of a name is dependent upon its

type oJ: declaration. There are three types of declarations

in PL/I: explicit, contextual, and implicit. If a variable

179

is declared explicitly, the scope of its name is the block

to which it is internal, except those blocks to which

another explicit declaration of the same variable is

internal. A variable declared contextually has a scope

as if the variable were explicitly declared following the

PROCEDURE statement of the external procedure in which the

name appears. This has the same effect as if the variable

were declared in the external procedure, even if the state-

ment causing the contextual declaration appeared internal

to a block contained in the external procedure. Finally, the

scope of implicit declarations is as if the variable were

explicitly declared after the first PROCEDURE statement of

the external procedure in which the name is used.

Variables may also be declared with the EXTERNAL attri-

bute in more than one external procedure or block. Each

declaration establishes a scope and the scopes are linked

together so that all such references refer to the same

name. The scope of the name is the sum of the scopes of

all the declarations of that name within the program.

180

BIBLIOGRAPHY

AED

COBOL

JOVIAL

PL/I

Language Reference Manuals

AED-0 Programmers Guide, Report ESL-R-406, M.I.T., Elec-
tronic Systems Laboratory, Cambridge, Massachusetts,
January 1970.

Codasyl COBOL Journal of Development 1968, National Bureau
of Standards Handbook 106, U. S. Government Printing Office,
Washington, D. C., July 1969.

Standard Computer Programming Language for Air Force Command
and Control System (CED 2400), Air Force Manual AFM 100-24,
Department of the Air Force, Washington, D. C., June 1967.

IBM System/360 Operating System PL/I (F) Language Reference
Manual, GC28-8201-3, IBM Corporation, White Plains, New
York., July 1970.

Texts

Galler, B. A., and Perlis, A. J., A View of Programming Languages,
Addison-Wesley Publishing Company, Reading, Massachusetts, 1970.

Hassitt, A., Conputer Programming and Computer Systems, Academic
Press, New York, N. Y., 1967.

Hellerman, H., Digital Computer System Principles, McGraw-Hill Book
Company, New York, N. Y., 1967.

Higman, B., A Comparative Study of Programming Languages, American
Elsevier Publishing Co., Inc., New York, N. Y., 1967.

Johnson, L. R., System Structure in Data, Programs, and Computers,
Prentice-Hall lie, Englewood Cliffs, New Jersey, 1970.

Rosen, S., Programming Systems and Languages, McGraw-Hill Book Com-
pany, New York, N. Y., 1967.

Sammet, J. E., Programming Languages: History and Fundamentals,
Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1969.

Sanderson, P. C.., Computer Languages: A Practical Guide to the Chief
Programming Languages, Philosophical Library Inc., New York, N. Y., 1970.

181

Texts (Concluded)

Wegner, P., Programming Languages, Information Structures, and Machine
Organization, McGraw-Hill Book Company, New York, N. Y., 1968.

Reports and Articles

Ayers, E. R., "The Current State of COBOL", Software 71, Proceedings
of a Conference Sponsored by Software World, Maxwell Scientific
International, Inc., Fairview Park, Elmsford, New York, 1971,
pp. 127-135.

Beech, D., "A Structural View of PL/I", Computing Surveys, Volume 2,
No. 1, March 1970, pp. 33-64.

Bemer, R. W., "A View of the History of COBOL", Honeywell Computer
Journal, Volume 5, No. 3, 1971, pp. 130-135.

Brampton, M. N., "PL/I Compared with Other Major Languages", Software
71, Proceedings of a Conference Sponsored by Software World, Maxwell
Scientific International, Inc., Fairview Park, Elmsford, New York,
1971, pp. 141-143.

Bromberg, H., "The COBOL Conclusion", Datamation, Volume 13, No. 3,
March 1967, pp. 45-50.

Brooks, F. P., Jr., "Programming Systems and Programming Languages",
Proceedings Third Australian Computer Conference, Australian Trade
Publication Pty. Ltd., Chippendale, N. S. W., Australia, May 1966,
pp. 265-269.

Budd, A. E., A Method for the Evaluation of Software: Procedural
Language Compilers - Particularly COBOL and FORTRAN, The MITRE
Corporation, MTR 197, Volume 2, Bedford, Massachusetts, April 1966.

Burkhardt, W. H., "PL/I: An Evaluation", Datamation, Volume 12,
No. 11, November 1966, pp. 31-39.

Callender, E. D., and Rhodus, N. W., J-3, PL/I and a Data Base,
Aerospace Corp., San Bernadino, California, February 1969. Available
from Defense Documentation Center as SAMSO-TR-69-25 (AD682305).

Chapin, N., "What Choice of Programming Languages?" Computers and
Automation, Volume 14, No. 2., February 1965, pp. 12-14.

182

Reports and Articles (Continued)

Corbato, F. J., "PL/I As a Tool for System Programming", Datamation,
Volume 15, No. 5, May 1969, pp. 68-76.

Currie, R. L., 'PL/I Compared with ALGOL, COBOL, and FORTRAN", Pro-
ceedings Third Australian Computer Conference, Australia Trade
Publication Ptv. Ltd., Chippendale, N. S. W., Australia, May 1966,
pp. 377-379.

DeBlasi, J., "COBOL Versus UNCOBOL", Datamation, Volume 14, No. 6,
June 1968, pp. 67-69.

Dorn, P. H., "Why Another Programming Language?", Data Processing
Volume XIII, Proceedings of the 1968 International Data Processing
Conference and Business Exposition, Data Processing Management
Association, Washington, D. C, June 1968, pp. 68-76.

Dos, K. and Otto, H., "Optimal Dynamic Use of Memory for PL/I Object
Programs in a Real Memory Environment", The Computer Journal,
Volume 15, No. 1, February 1972, pp. 18-20.

Edelman, H., "A Short Guide to the Wonderful World of COBOL", Data-
mation, Volume L5, No. 12, December 1969, pp. 161-164.

Engel, F. Jr., The Air Force JOVTAL Compiler Validation System
(JCVS), The MITRE Corporation, MTR 2091, Bedford, Massachusetts,
A?7iT 1971.

Freiburghouse, R, A., "The Multics PL/I Compiler", Proceedings AFIPS
1969 Fall Joint Computer Conference, Volume 35, pp. 187-199,

Gauthier, R. L., "PL/I - Pros and Cons", Data Processing Volume XIII,
Proceedings of the 1968 International Data Processing Conference and
Business Exposition, Data Processing Management Association,
Washington, D. C, June 1968, pp. 76-81.

Gauthier, R. L., "PL/I Compile Time Facilities", Datamation,
Volume 14, No. 12, December 1968, pp. 32-34.

Giles, P., "Mini-COBOL", The Computer Journal, Volume 12, No. 3,
August 1969, pp. 208-214.

Haverty, J. F., Programming Language Selection for Command and Control
Applications, The RAND Corp., P-2967, September 1964.

Hess, H., and Margin, C., "TACPOL - A Tactical C&C Subset of PL/I",
Datamation, Volume 16, No. 4, April 1970, pp. 151-157.

183

Reports and Articles (Continued)

Hicks, H. T., Jr., "Modular Programming in COBOL", Datamation, Volume
14, No. 5, May 1968, pp. 50-59.

Hicks, H. T., Jr., "The Air Force COBOL Compiler Validation System",
Datamation, Volume 15, No. 8, August 1969, pp. 73-81.

Hicks, H. T., Jr., "A Communication Facility for COBOL", Datamation,
Volume 15, No. 12, December 1969, pp. 148-158.

Hicks, H. T., Jr., "ANSI COBOL", Datamation, Volume 16, No. 14,
November 1970, pp. 32-36.

Johnson, W. L., Porter, J. H., Ackley, S. I., and Ross, D. T.,
"Automatic Generation of Efficient Lexical Processors Using Finite
State Techniques", Communications of the ACM, Volume 11, No. 12,
December 1968, pp. 805-813.

Lawson, H. W., Jr., "PL/I List Processing", Communications of the
ACM, Volume 10, No. 6, June 1967, pp. 358-367.

McCracken, D. D., "The New Programming Language", Datamation,
Volume 10, No. 7, July 1964, pp. 31-36.

Naftaly, S. M.,"Compiling a COBOL Questionnaire", Datamation,
Volume 10, No. 8, August 1964, pp. 30-33.

Nicholls, J. E., "PL/I - A Status Report", Software 71 - Proceedings
of a Conference Sponsored by Software World, Maxwell Scientific
International, Inc., Fairview Park, Elmsford, New York, 1971,
pp. 120-126.

O'Brien, W. M., Jovial Evaluation Project, Data Dynamics, Inc.,
Los Angeles, California, October 1968. Available from Defense
Documentation Center, Alexandria, Virginia, as ESD-TR-68-452.

O'Brien, W. M., Jovial Application Questionnaire, Data Dynamics, Inc.,
Los Angeles, California, December 1968. Available from Defense
Documentation Center, Alexandria, Virginia, as ESD-TR-68-454
(AD 681471).

184

Reports and Articles (Continued)

O'Brien, W. M., Approach for Change - Jovial Evaluation Project, Data
Dyanmics, Inc., Los Angeles, California, December 1968. Available
from Defense Documentation Center, Alexandria, Virginia, as
ESD-TR-68-455 (AD681472).

Perstein, M. H., Some Techniques for Describing Programming Languages,
System Development Corp. SP-2916/000/01, Santa Monica, California,
January 1968.

Radin, G., and Rogoway, H. P., "NPL: Highlights of a New Programming
Language", Communications of the ACM, Volume 8, No. 1, January 1965,
pp. 9-17.

Raphael, B., "Th€i Structure of Programming Languages", Communications
of the ACM, Volume 9, No. 2, February 1966, pp. 67-71.

Remy, E. H., "Learning to Use PL/I", Datamation, Volume 16, No. 7,
July 1970, pp. 47-51.

Ross, D. T., "The AED Approach to Generalized Computer-Aided Design",
Proceedings 22nd National Conference ACM, 1967, pp. 367-385.

Ross, D. T., "The AED Free Storage Package", Communications of the
ACM, Volume 10, No. 8, August 1967, pp. 481-491.

Ross, D. T., and Brackett, J. W., "Automated Engineering Design
(AED) Used for Graphics", Honeywell Computer Journal, Volume 5,
No. 3, 1971, pp. 136-139.

Ross, D. T., and Rodriguez, J. E., "Theoretical Foundations for
the Computer-Aided Design System", Proceedings AFIPS 1963 Spring
Joint Computer Conference, Volume 23, pp. 305-322.

Rubey, R. J., "A Comparative Evaluation of PL/I", Datamation,
Volume 14, No. 12, December 1968, pp. 22-25.

Rubey, R. J., et al, Comparative Evaluation of PL/I, Logicon, Inc.,
San Pedro, California, April 1968. Available from the National
Technical Information Service, Springfield, Virginia, as
ESD-TR-68-150.

185

Reports and Articles (Continued)

Sammet, J. E., "Programming Languages: Current and Future Trends",
Computers and Automation, Volume 16, No. 3, March 1967, pp. 32-34,
38.

Sanderson, J. G., "The Theory of Programming Languages - A Survey",
Proceedings Third Australian Computer Conference, Australia Trade
Publication Pty, Ltd., Chippendale, N.S.W., Australia, May 1966,
pp. 321-324.

Schwartz, J. I., "Comparing Programming Languages", Computers and
Automation, Volume 14, No. 2, February 1965, pp. 15-16, 26.

Shaw, C. J., An Outline/Questionnaire for Describing and Evaluating
Procedure-Oriented Programming Languages and Their Compilers,
System Development Corp., FN-6821/000/00, Santa Monica, California,
August 1962.

Shaw, C. J., "JOVIAL and Its Documentation", Communications of the
ACM, Volume 6, No. 3, March 1963, pp. 89-91.

Shaw, C. J., "A Specification of JOVIAL", Communications of the ACM,
Volume 6, No. 12, December 1963, pp. 721-736.

Shaw, C. J., "A Comparative Evaluation of JOVIAL and FORTRAN IV",
Automatic Programming Information, No. 22, College of Technology,
Brighton, England, August 1964.

Shaw, C. J., "PL/I for C&C?", Datamation, Volume 14, No. 12,
December 1968, pp. 26-31.

Sibley, R. A., "A New Programming Language: PL/I", Proceedings 20th
National Conference ACM, 1965, pp. 543-563.

Sullivan, J. E., A Comparison of the Programming Languages PL/I and
AED Applied to Text Processing, The MITRE Corporation, MTR 2221,
Bedford, Massachusetts, September 1971.

Vaughn, P. H., "Can COBOL Cope?", Datamation, Volume 16, No. 10,
September 1970, pp. 42-46.

186

Reports and Articles (Concluded)

Wexelblat, R. L., "History of the PL/I Programming Language",
Proceedings of the Fifth Annual Princeton Conference on Information
Sciences and Systems, Princeton University, Princeton, New Jersey,
March 1971, pp. 171-181.

Wigg, J. D., "COBOL Coding Standards", The Computer Bulletin,
Volume 15, No. 7, July 1971, pp. 249-251.

187

Security Classification

DOCUMENT CONTROL DATA -R&D
(Security classification of ti'le, body of abstract and indexing annotation must be entered when the overall report is classified)

1 ORIGINATING A C TI VI T Y (Corporate author)

The MITRE Corporation
P.O. Box 208
FteHfnrH. MARS.

2a. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
2b. GROUP

3. REPORT TITLE

A GENERAL BASIS FOR COMPARATIVE EVALUATION OF AED, COBOL, JOVIAL,
AND PL/1

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

5. AUTHOR(S) (First name, middle initial, last name)

J.C DESROCHES

6. REPORT DATE

FEBRUARY 1973
7a. TOTAL NO. OF PAGES

193
7ft. NO. OF REFS

71
8a. CONTRACT OR GRANT NO.

F19628-71-C-0002
ft. PROJECT NO.

572B

9a. ORIGINATOR'S REPORT NUMBER(S)

ESD-TR-72-330

d.

9ft. OTHER REPORT NO(S) (Any other numbers that may be assigned
thia report)

MTR-2429
10. DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILI TARY ACTIVITY

Deputy for Command and Management Systems
Electronic Systems Division, AFSC
L. G. Hanscom Field, Bedford, Mass.

13. ABSTRACT

This report provides an analysis of the technical features and pertinent characteristics of the
programming languages AED, COBOL, JOVIAL, and PL/1, which were chosen for evaluation
because of general applicability to programming problems within the scope of Air Force
interest. The methodology derives from the development of a Language Feature Outline and a
Language Evaluation Questionnaire for which programmer/analysts supplied detailed technical
information and subjective evaluations. The intent of this report is to provide material in
support of evaluations of the relative suitability of the four languages for specific applications.

DD FORM 1473
Security Classification

Security Classification

KEY WO RDS
RO LE WT

AED

COBOL

JOVIAL

LANGUAGE STRUCTURE

PL/1

Security Classification

I

