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ABSTRACT

" Laminar Mach 26 flow past a blunt-nosed cone with a

spherical after-body that injects mass axially from its base

! into the air, was studied in two finite difference calculations.
1 The mass injection rate for both calculations was 0.15 1lb/sec,
i and Reynolds numbers relative to base diameter were 735 and

, 4150. Computations were performed with a code (AFTON 2A) which,

apart from discretization error, generates solutions to the

T+ time-depencent Navier-Stokes equations for axisymmetric systems

that contain mass-injecting bodies. In both cases steady flow

g was approached asymptotically in time from initial flow fields

derived from simple inviscid theory.

At the lower Reynolds number, the cone and after-body
boundary layers remained attached, and the interaction between

the incident airstream and the injected plume gases was similar

I ] e

to that of two impinging supersonic streams. By contrast, at

the higher Reynolds number the cone and after-body boundary

layers both separated, giving rise to a double-vortex pattern

and a complex system of shock waves.

AFTON 2A results were compared with a theoretical invis-
cid model of a mass source in a uniform hypersonic stream. In
the AFTON 2A calculations, the predicted plume radius was much
larger than that of the model, with an increased plume volume
caused by heat transfer across the dividing streamline.

Although absolute magnitudes of plume-shock and dividing-

streamline radii did not follow the inviscid scaling law,

Wl Gmed Beed el et G e e

ratios of the radii were found to vary inversely as the fourth

root of the plume drag coefficient, in accord with inviscid
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The two calculations also demonstrated a structural
difference in the plume inner core. At the lower Reynolds
number the inner core was nearly isentropic, whereas at
the higher Reynolds number heat penetrated the plume core
in an amount sufficient to produce significant entropy

gradients.
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1. INTRODUCTION

| Two low-Reynolds-number calculations were made of : :J
5’ ' complete hypersonic plume-body flow fields governed by the |
Navier-Stokes equations. Results of the calculations, and

the computational procedures employed, are reported herein.

: Interest in the interaction of a jet plume with a
hypersonic free stream has attended the development of high-
altitude rockets and re-entry vehicles. The importance of the

near-body flow field then manifests itself in several ways:

for example, exhaust plumes can induce flow separation on
1 the surface of an aerodynamic object, creating conditions that
f | interfere with the operation of sensing devices. However,
plume-body interaction has generally been ignored in past
analytical studies of plume-hypersonic-airstream interaction,
with attention focused instead upon far-field behavior.
Further, while heat conduction effects have been included in
some prior calculations of plume flow, heat transfer has always
been assumed negligible below the inmer shock; the plume innerl
l core is then approximated as isentropic. Only'one pertinent
near-field study appears to have been performed, and that in
'3@ support of an experimental investigation of plume-body-airstream
.: interaction;6 guided by observed flow field structure, an
analytical model was developed to predict separation on a cone
and other near-cone flow phenomena. Each of the referenced
investigationsl-6 has been carried out by methods specialized

with respect to both flow conditions and body geometry.

) Some experiments have been conducted to study base

injection, but generally at Reynolds numbers much higher than d

those encountered under high-altitude flight conditions. Of




special relevance is the work of Boger, Rosenbaum and Reeves6,
which included wind-tunnel measurements for Mach 10 flow past

a 6-degree-half-angle, flat-based cone with axial base injection;
the Reynolds number range covered was 1.3 - 105 to 1.3 - 106ﬁ

A Reynolds number of a few thousand is not uncommon for hyper-
sonic re-entry vehicles at altitudes above 100 km. Such low
Reynolds numbers are difficult, if not impossible, to produce

in a wind tunnel at hypersonic speeds; on the other hand, for
full-scale vehicles under real flight conditions, instrumentation
is insufficient to determine any but gross flow properties, thus

emphasizing the need for more precise theoretical methods.

The two flow fields considered here were calculated in
finite difference approximation using a computer code called
AFTON 2A, The AFTON 2A code is based on finite difference
equations for unsteady axisymmetric continuum motion; underlying
the equations is a general method for writing discrete analogs
of the laws governing classical fieldé. For both calculations
the body was a blunt-nosed cone wiih a spherical after-body,
the free-stream Mach number was 26, and the mass injection rate
was 0.15 1lb/sec. Reynolds numbers for the two cases were 735
-3; and 4150 - flow conditions that correspond to a free-stream
| velocity of 22,500 fps and altitudesvof 300,000 and 270,000 feet,

37 subtended by the body normal to the free-stream flow direction.

respectively,

} A In Section 2 below the AFTON 2A computer code is described;
. calculations for the two different Reynolds numbers are discussed
- in Sections 3 and 4, while in Section 5 the two flow fields are

E 13 compared; Section 6 contains a summary of the results of the
§ - program and associated conclusions.
£ '
i‘“” T Unless otherwise statéd, all Reynolds numbers herein are
F based on free-stream flow conditions, and on the maximum length




2. THE AFTON 2A COMPUTER CODE

For the present program, the AFTON 2A computer code was used

to integrate the Navier-Stokes equations for time-dependent compres-

sible axisymmetric flow with mass injection. AFTON 2A is one of a
set of computer codes known as the "AFTON" codes. Many laminar
flow fields have been computed with the AFTON codes, and the
accuracy of numerical flow fields so generated has been evalu-
ated. Among the motions calculated have been aerodynamic flow
around objects of practical interest under conditions of two-
dimensional plane =2 and axial13 symmetry, and for fully
asymmetric three-dimensional14 systems. In most cases, as in
the present study, first-of-a-kind numerical solutions have
been developed to the complete flow equations, including the
effects of compressibility, heat conduction, viscosity, and

mass addition.

A generalized form of the discrete equations of
von Neumann and Richtmyer15 comprises the basis for the AFTON
codes. The generalized equations, which have been used success-

fully not only in solving gasdynamic problems but in many other

branches of continuum mechanics as well, are of the "time-
marching" kind; time is used as an independent mechanical
variable and the solution of any given problem of motion proceeds
through a series of stepwise advances in time. Similarly the
space continuum is replaced for numerical purposes by a discrete
set of points termed a "finite difference mesh'"; alternatively,
the points of a finite difference mesh can be considered as

S the vertices of polyhedra of finite size, termed "cells" or

| t "zones", that subdivide physical space in one-to-one fashion.

At each timestep the dependent variables of the motion are




updated in each cell of a given finite difference mesh, in

accord with discrete analogs of the equations of continuum

motion.

The principle used to deduce the AFTON finite difference
equations is applicable to all the fields of classical physics,
and insures that certain fundamental transformation properties
of classical continua are preserved exactly in the finite
difference equations that issue from it; moreover, the finite
difference equations so obtained are unique in preserving
those transformation properties. Specifically, for example,
the AFTON finite difference analogs of the equations for mass
conservation, momentum conservation, and the First Law of
thermodynamics, can be shown by rigorous algebraic manipulation
to imply exact conservation of total energy in each zone, or
all, of a finite difference mesh, just as in the case of the
corresponding differential equations of motion of a continuous
medium. The success of the AFTON difference equations is
thought to be due, at least in part, to their energy conser-
vation properties. A more detailed discussion of the trans-
formation properties of the AFTON equations is given in
References 16 through 19,

A modest amount of code modification was required to
make AFTON 2A suitable for plume-body interaction calculations;

the code was altered in four ways:

(1) Provision was made for axial mass addition from the
base of the body;
(2) Changes were made to insure that plume rarefaction

effects would be accurately accounted for;
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(3) An artificial viscous stress, differing from zero
only in the near-vicinity to the shock front that
encloses the totzi region of disturbed flow, was

incorporated into the code;

(4) A procedure was developed for the serial calculation
of heat conduction and hydrodynamic motion, and

included in the computational scheme.

The four modifications are discussed in Appendix A.




3. A CALCULATION OF SEPARATION-FREE PLUME FLOW

The first of two AFTON-calculated hypersonic-airstream-
plume-interaction flow fields is described below. Computational
details are presented in Section 3.2. Results of the calcu-
lation are given in Section 3.3, including comparisons with the

predictions of an inviscid theory.

3.1 STATEMENT OF THE PROBLEM

The problem addressed is that of calculating the
field of steady flow past a conical body (Figure 15, with
particular emphasis on the features of the near field.
Nondissociated air, whose properties are defined in Table 1,
flows past the conical body at Mach 26; the Reynolds number
for the flow is 735. The body is at zero angle-of-attack
and ejects air at a rate of 0.15 lb/sec, corresponding to

a ratio of plenum-chamber pressure to ambient pressure

(pc/pm) of 5.76 '106. Since boundary-layer separation does

not occur, the calculation is referred to subsequently as

the separation-free plume calculation,

3.2 APPLICATION OF AFTON 2A

The finite difference mesh used in the separation-free
plume calculation (Figure 2) was generated by a technique
developed for the present study (Appendix B). The mesh
consists of the intersection of 35 streamline-like lines
with 224 potential-like lines. Zones are closely spaced
in the vicinity of the body (including two zones to define the
sonic orifice) and gradually increase in size with distance

from the body.
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Density, specific inte?nal energy and fluid velocity
assumed their free-stream values at the upstream boundary
of the mesh. A no-slip velocity boundary condition was
enforced at the surface of tlie cone, which was assumed iso-
thermal at a temperature c¢f 540°R. Frictionless flow was
maintained along the axis and along the top of the mesh (or
lateral boundary); particle velocities at mesh points along
the system's axis were updated by the same equations used at
interior points, but taking into account the symmetry of the
field about that axis. Boundary conditions based on the

method of characteristics for inviscid flowg’lz’13 W

ere
employed at the downstream boundary. Conditions at the
sonic orifice were characterized by the following values of
injection density, p¥*, specific internal energy, E*, and

K

velocity, U¥*:

5

0.7050

ot

B~ 0.1675 (1)
B,

Uk

U= 01535

In Equation (1), py_ and Et_ are the free-stream stagnation
density and specific internal energy, respectively; U_ is

the free-stream velocity.

Initial conditions for the calculation were based
primarily on inviscid theories. For example, flow near
the nose of the cone was determined from Newtonian Theory,

while elsewhere near the cone surface approximate flow




conditions were obtained by recourse to conical shock-wave theory.

=Y

Also, plume properties were defined from the "universal

correlation (developed by Jarvinen and Hilll) of solutions

obtained by the method of characteristics. Viscous effects
were accounted for near the cone surface where the merged
viscous-shock layer was approximated with linear velocity
profiles. A velocity vector plot of the initial flow field
is presented in Figure 3, in which the vectors emanate from
mesh points and have magnitudes proportional to local flow

speed.

As noted in Section 2 and Appendix A, an artificial
viscosity was used only in the near-vicinity of the shock
surface that formed an inner boundary of the region of free-
stream flow. As part of a numerical experiment, a portion of
the calculation was repeated using the artificial viscosity in i1
the plume-body interaction region as well; the resulting changes |

in the computed flow field were negligible. 14

The calculation was carried out in the following three 1
steps: first with the full mesh shown in Figure 2, ther on
the portion of the mesh downstream of Curve 1, and finally
on the portion of the mesh downstream of dashed. Curve 2.

The equations of motion were integrated in the first part of
the calculation to a characteristic time, v, of 1.12 (unit
characteristic time corresponds to the time required for a
free-stream fluid particle to travel one base diameter).
Fluid property variations with time were examined throughout
the mesh. It was found that upstream of the dashed

Curve 1 of Figure 2 the flow was not changing appreciably
with time when 7 reached the value 1.12; as an example, the

time-variation of pressure along the cone surface is shown in




Figure 4. Hence, there was no point in continuing to update
the flow field upstream of Cu;ve 1. The second part of the
computation was therefore confined to the region downstream of
Curve 1 which became the upstream boundary of a truncated mesh.
Flow-field variables along the boundary did not change with
time during the second step of the computation, which required
an additional 0.49 units of characteristic time. In the third
step, the upstream boundary was moved to Curve 2 of Figure 2,
and an additional 0.14 units of characteristic time was required’
) for the flow variables in the reduced mesh to asymptote to
"infinite" time values. Again, attainment of steady flow was
established by investigating the temporal variation of flow

4 E properties throughout the flow field (e.g., see Figures 4

-

through 7). The separation-free plume calculation was carried
out to a characteristic time of 1.75; required computing time

was equivalent to 3.4 hours on a CDC 7600 computer. -f

| T 3.3 DESCRIPTION OF THE CALCULATED FLOW FIELD

4 A velocity vector plot of the numerical flow field in
the vicinity of the base of the body is shown in Figure 8.
No boundary-layer separation appears, and the resulting flow

field resembles the collision of two supersonic streams.

In Figure 8, heavy solid lines denote three shock waves

in the interaction region. The thin solid line traces the

(The methods employed to trace the dividing streamline and

map the shock waves are described in Appendix A,) Two shocks

lie in the airstream with a third in the plume gases. The
airstream shocks are the conventional cone shock and plume shock.
The cone shock is caused by the vehicle geometry which turns

l streamline separating the free stream and the plume gases.
‘ the free-stream flow. The plume shock is present to turn the

10




airstream about the effective.plume body defined by the
dividing streamline. The shock in the plume gases, which
is referred to as the inner shock, likewise turns the plume
flow to accommodate the effective body shape presented by

the dividing streamline.

The importance of viscous and thermal diffusion effects
becomes apparent when the separation-free calculation is
compared to inviscid predictions. The most complete inviscid

description of a hypersonic-stream-plume-interaction flow

field is provided by the Jarvinen-Hill model1 of a mass source

in a uniform hypersonic stream. Calculated shocks and dividing
streamline are compared to Jarvinen-Hill predictions in

Figure 9. Predicted inner-shock positions differ little;
however, plume-shock and dividing streamline radii are predicted
to be much larger by the AFTON 2A calculation than by the
Jarvinen-Hill theory. Specifically, the dividing streamline
radius for the numerical flow field is approximately 60 percent
larger than the inviscid result at distances greater than one

and one-half base diameters downstream of the base.

An explanation for the increased plume volume can be
perceived in the calculated internal energy contours shown in
Figure 10. Strong temperature gradients exist in the vicinity
of and normal to the dividing streamline; hence, substantial
heat transfer across the plume boundary causes hotter plume
gases than in inviscid predictions, with an attendant increase

in plume volume.

Although some current plume models account for viscous and
heat-conduction effects, all assume that an inviscid, isentropic

core exists below the inner shock. Since inner core conditions
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have a pronounced effect on the Mach disc, the inner core can
conceivably affect the flow field far beyond the near-body region;
the isentropic-inner-core hypothesis was therefore examined.
Calculated pressure (p), density (p), and Mach number M)

contours are shown in Figures 11, 12 and 13, respectively,
Contours below the inner shock indicate that the flow is source-
like in the inner core (i.e., constant-density surfaces are
approximately spheres centered at the injection orifice), which

is the structure postulated in the Jarvinen-Hill theory. The
three sets of contours are similar; hence, all three flow prop-
perties can be expressed as a function of any one of the three,
just as in isentropic flow. Figure 14 indicates the variation

of p as a function of 4 along both the system axis and two stream-
lines in the inner core; the streamline locations are shown in
Figure 13. Figure 14, a log-log plot, presents an almost straight
line whose slope is 1,375, very close to the assumed specific

heat ratio of air (y = 1.4); p/pY is therefore nearly constant
along streamlines in the inner core, and the flow there is

approximately isentropic.

In summary, three significant features of the plume-
body flow field have been noted; flow separation does not
occur for the assumed flow conditions, which include a Reynolds
number of 735; heat transfer across the dividing streamline
increases the plume volume over the size predicted by inviscid
theories; the region below the inner shock is isentropic. The
separation-free plume predictions are compared further with
other theories and experimental data in Section 5, but before

that the second of the two calculations is described (Section 4).




| 4, A CALCULATION OF PLUME-INDUCED FLOW SEPARATION

4.1 STATEMENT OF THE PROBLEM

As with the separation-free plume calculation described i
in Section 3, Mach 26 air ilow passes over the body shown in
Figure 1; however, the Reynolds number is increased to 4150,
The body is again at zero angle-of-attack and emits 0,15 1b/sec
of air, corresponding to a reduced ratio of plenum-chamber 1
pressure to ambient pressure of 1,04 - 106. In contrast to
the computation discussed in Section 3, the cone and afterbody
boundary layers separate at the increased Reynolds number, l{
The calculation is therefore referred to as the separation-

plume calculation.

4.2 APPLICATION OF AFTON 2A

The separation-plume calculation was performed in three
distinct steps. In the first step the "ull finite difference
mesh used for the separation-free plume calculation was employed
(Figure 2); it was expected that the higher-Reynolds-number flow
field would be so similar to that at the lower Reynolds number i
that the same mesh would suffice to define flow details for both.
The steady flow field varibales of the separation-free plume

1 calculation were used as initial data, except that (a) the density,

o, “bove the dividing streamline was increased by a factor of 5.6

in order to achieve a Reynolds number of 4150 and (b) the specific
internal energy above the inner shock was decreased by one percent

to provide the temperature appropriate to an altitude of

(8 270,000 ft. Steady flow conditions were reached at a calculated
P characteristic time of 6.58 (Figure 15).
I

13




In the second step the density of mesh points was greatly
increased in the near-body region to obtain better definition of
base flow details. To that end, twenty streamline-like lines
were added to the original finite difference mesh, yielding the
mesh shown in Figure 16. Initial conditions for the calculation
of step two were obtained by linear interpolation in the flow
field obtained from the first calculational step. A modest

amount of flow-field adjustment occurred in a few cycles and

smaller changes took place thereafter. In close analogy with the

separation-free plume calculation, the flow field was -soon found

steady upstream of the dashed line of Figure 16, in this case

after advancing the solution in time by .07 characteristic units.

Values of the flow field variables along the dashed line there-
fore provided accurate upstream flow conditions for the third
calculational step, in which computation was confined to that
portion of the mesh of Figure 16 downstream of the dashed line.
The equations of motion were integrated over the reduced mesh
for another 1.5 units of characteristic time, when steady flow

was achieved (Figures 17, 18 and 19).

In all three steps the boundary conditions were identical
to those employed in the separation-free plume calculation. The
artificial viscosity was again localized to the cone and plume
shocks above the interaction region, with a single exception

noted below.

Overall, the separation-plume calculation was carried to
a characteristic time of 8.15 on a UNIVAC 1108 computer, and
required the equivalent of 9.8 hours on a CDC 7600 computer

14
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for its completion. Three factors caused an iﬁcrease in com-
puting time (relative to the nonseparated case). First,
scaling the low-Reynolds-number flow field yielded an initial
field with much more internal energy than was appropriate to
the higher Reynolds number; converging to the less dissipative
high-Reynolds-number flow field was a time-consuming process.
Secondly, the artificial viscosity was used at the outset in
the interaction region; however, as the calculation proceeded,
the artificial viscosity assumed non-zero values outside shock
layers and therefore had to be removed. To avoid numerical
difficulties, it was necessary to eliminate the artificial

U viscosity gradually, over a substantial number of calculational

o cycles., Finally, the computed flow field was far more compli-

- cated than the separation-free field described in Section 3,

- and therefore took longer to compute; the higher-Reynolds-

‘e number field contained a region of separation and a complicated

b1 system of shocks in the interaction region.

4.3 DESCRIPTION OF THE CALCULATED FLOW FIELD

- The flow field at a Reynolds number of 4150 is quite
unlike that observed in the separation-free plume calculation
of Section 3. The cone and after-body boundary layers both
separate, giving rise to a double vortex pattern (referred to
as the separation bubble) and a complex system of shock waves.
N Figure 20 shows the flow field near the base, including the
system of predicted shocks. There are five shock waves in

[ the interaction region, including three in the airstream and
H

two in the plume gases. The airstream shocks are the cone
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shock, the airstream separaﬁion shock, and the plume shock.
The airstream separation shock is required to turn the flow

at the upstream edge of the separation bubble. Only one of
the plume-gas shocks is shown in Figure 20, namely, the plume
separation shock (also caused by the separation bubble) which
turns very rapidly at the point of contact of (a) air flowing
around the upstream portion of the separation bubble, and

(b) plume gases flowing over the bubble's downstream side.

The other plume-gas shock, or "inner" shock, is first seen
approximately one base diameter downstream of the base; delayed

formation of the inner shock will be discussed further below.

Qﬁalitative structure of the higher-Reynolds-number
flow field is similar to that recorded6 in a shadowgraph taken
of the flow past a 12-degree flat-based cone at Mach 10 and
Reynolds number 1.34 '105. That the shadowgraph (Figure 21)
exhibits the same complicated multiple-shock system as that
calculated here was established independently by Boger, Rosenbaum
and Reeves6 in a careful, exhaustive analysis; since their work
is not easily accessible,. a more complete account of the shadow-

graph analysis is presented in Appendix C.

As in the lower-Reynolds-number flow field, the plume
shock and dividing streamline radii are predicted by the AFTON 2A
calculation to be much larger than their inviscid counterparts.
The near-field structure is compared to the Jarvinen-Hill
predicticns in Figure 22, Beyond 1.5 base-diameters downstream
of the injection orifice, the fractional increase of 557 in
plume size is slightly less than the fractional increase found
at the lower Reynolds number (60%). A smaller fractional increase

in plume size is consistent with a ‘reduction, relative to the




flow at lcwer Reynolds number; in the amount of heat conduction
across the dividing streamline; such reduction might be caused
by the smaller thermal diffusivity associated with the higher
Reynolds number. Verification of the hypothesis of reduced

heat transfer across tae plume boundéry is obtained by comparing
specific internal energy contours for the separated flow field
(Figure 23) with specific internal energy contours for the case
of low-Reynolds-number (Figure 10). Contours are more closely
spaced and temperatures higher near the plume shock at Reynolds
number 735 than in the separated case, indicating a higher heat

transfer rate.

Unlike the separation-free plume calculation, there is

an appreciable difference between the inner shock location
Predicted by AFTON 2A and that of Jarvinen and Hill. The

AFTON 2A inner shock is about 25% further from the symmetry

axis than its inviscid counterpart. Furthermore, inspection of
Figures 24, 25 and 26 shows that the Mach number contours differ
greatly from the pressure and density contours. Both types of
observation suggest that the plume's inner core is not isen-
tropic at the higher Reynolds number. Confirmation is provided
by log-log plots of p versus , (Figure 27); the curves show the
P-p relationship along the System axis and along two inner-core
streamlines; the streamline locations are indicated in Figure 26.
The slopes of the various curves lie between 1.30 and 1.33,
indicating that p/pY, and hence the entropy, varies both across
and along streamlines. Reasons for the enlarged nonisentropic
inncr core found in the separation-plume calculation are

discussed in Section §.

The inner shock does not appear upstream of the axial

station x/D = 1 (Figure 22), which is also the approximate
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end point of the plume separation shock. Appeal to Mach line
behavior in the interaction region (Figure 28) provides an
explanation of the mechanisms underlying midstream termination
of the plume separation shock and delayed inner shock formation.
The Mach lines shown in the figure are part of an expansion fan
which emanates from the injection-orifice lip. The expansion
fan catches and weakens the plume separation shock, whose
strength is so reduced thereby that the shock is nearly parallel
to a Mach line at x/D = 1. The expansion fan then reflects
from the plume-separation shock as a compression wave which
eventually becomes.the inner shock. Steepening of the com-
pression wave is evidenced by Mach line coalescence after

reflection.

Summarizing, four significant points have been noted
regarding the separation-plume calculation: the cone and after-
body boundary layers separate at the increased Reynolds number
of 4150; heat transfer across the dividing streamline causes
approximately the same fractional plume volume increase over
inviscid prediction as the lower-Reynolds-number volume
increase; the plume inner core is not isentropic; inner shock
formation is delayed by interaction of the plume-separation
shock with the expansion fan from the lip of the injection

orifice.

18




5. EVALUATION OF THE TWO COMPUTED FLOW FIELDS

The separation-free plume flow fiecld and the separated
plume field differ markedly in boundary-layer separation and in
inner-core structure. As will be discussed in the following
sections, axial forces acting on the body are similar for the
two plume flows and, surprisingly, the two calculated fields
are consistent in one importent respect with a simple scaling
law. The strecamline plots of Figure 29 show the main contrasts.,.
Heavy solid lines denote the various shock waves present in the
flow fields and the dashed lines define the dividing strcamlines.
The scparation bubble of the higher-Reynolds-number flow occupies
a region near the after-body within which lie two families of
closed streamlines; each family outlines a region of recirculating

vortical flow.

bsl BOUNDARY LAYER SEPARATION

Boundary layer scparation is observed for only one of
the flow fields as is consistent with the Reynolds number
difference; with decreasing Reynolds number, boundary layers
become more stable and less likely to separate in an adverse
pressure gradicnt.Zl’22 A criterion for stability of a
boundary layer with respect to separation is often expressed
in terms of a parameter which provides a measure of the
relative importance of (a) the strength of the local pressure
gradient and (b) the magnitude of the viscous strevs. In parti-
cular the separation of classical boundary layers has been found
empirically to take place in accord with the criterion A s -12

where A, the Pohlhausen parametcr,21 is defined by the relation

A, =0 S Sl o (2)

19
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In Equation (2) Pos Hgs Ue denote density, viscosity and velocity

e
at the edge of the boundary layer, Py is the fluid density at the
solid boundary, & is the boundary layer thickness and dp/ds is

the streamwise pressure gradient.

The parameter A was evaluated for the calculated separation-
plume and separation-free plume flows. Since both fields had
merged viscous and shock layers, the boundary layer thickness
was taken as the distance between the cone shock and the cone
surface at the intersection of the cone and after-body; Pas Mo
and Ue were assigned the free-stream values of density, viscosity
and flow speed, respectively. The calculated pressure field was
used to evaluate the gradient of pressure at a number of boundary-
layer points near the base of the body, and dp/ds (Equation (2))
was equated to the maximum adverse gradient so computed. The
wall density o, Was determined from the fluid's thermal equation
of state using the known wall temperature and the surface
pressure at the point of maximum adverse pressure gradient. It
was found that A had the value -6.85 for the separation-free
plume calculation and -16.0 for the separation-plume calculation,
a result consistent with the Pohlhausen prediction that separa-
tion occurs for A < =12, Conformity with the Pohlhausen criterion
is noteworthy whether it be interpreted as a further point of
agreement of the calculations with basic flow field behavior,
or as an indication that the criterion applies not only to

classical boundary layers but also to boundary layers that

merge with shocks.

20
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5.2 INNER CORE STRUCTURE

Another major structural difference between the two
computed flow fields occurs in the plume's inner core. As
noted in earlier sections, the inner core is nearly isentropic
for a Reyrolds number of 735, whereas entropy varies in the
core when the number is increased to 4150. Close examination
of the flow field below the inner shgck has made intelligible

the relation between the computed cores.

Differences between the two inner cores are evident in
the dissimilar Mach-number contour plots of Figures 13 and 26,
whereas the streamline plots of Figure 29 indicate that the
flow is source-like below the inner shock for both Reynolds
numbers. Thus, it is reasonable to expect the dissimilar Mach-
number fields to be associated with correspondingly different
inner-core temperature fields. Inspection of specific internal
energy (or, equivalently, temperature) contours in the inner-
core region (Figures 30 and 31) shows that, to a distance of
about three-quarters of a base diameter downstream of the
orifice, the two flows are virtually identical; further down-
stream, however, the contours differ markedly. The inner-core
temperature decays more rapidly with downstream distance at
the lower Reynolds number, and the inner core is hotter when
the Reynolds number is 4150 — results consistent with the
observation in Section 4.3 that the fractional increase in
inner-shock radius over inviscid predictions is noticeable only

for the higher-Reynolds-number calculation.

Inner-core heating at Reynolds number 4150 is evidently

a heat conduction effect; the closely-bunched specific internal

-energy contours near the inner shock indicate that strong
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temperature gradients occur much closer to the axis at the

higher Reynolds number than in the nonseparated case. Further,

at a Reynolds number of 4150 the temperature near the inner
shock is much higher than in the lower-Reynolds-number field
(see Figures 30 and 31). The higher temperatures are a direct
result of two sources of heat peculiar to the separated flow
field, namely, intense shock heating in the interaction region
from (a) the airstream separation shock and (b) the nearly
normal plume shock. Heat generated in the interaction

region is convected along streamlines, and penetrates the

plume inner core by thermal conduction across streamlines.

A final point regarding the structure of the inner core
can be noted from Figure 31. At the higher Reynolds number a
large temperature gradient is present normal to the axis of the
system and below the inner shock, in a region where streamlines
are not parallel to isotherms. Heat therefore diffuses along
streamlines of the higher-Reynolds-number field, causing some
redistribution of energy within the inner core. Further study
will be required in order to assess the effects of such heating

on important plume features like the Mach disc.

5.3 AXIAL FORCE

It was found for both Reynolds numbers that rocket
thrust far exceeded all other calculated axial forces on the
body. Moreover, pressure and viscous forces caused the thrust
to increase further, rather than to decrease; as can be seen
from Table 2, the force increments were 9% and 4%, respectively,
for Reynolds numbers 735 and 4150. In order to exhibit the
magnitudes of the various forces acting, several axial force

coefficients are presented in Table 2, namely, Cx A ACX,
R
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Xp 8Cx. and Cy. The coeff%cient Cx_1is proportional to
the axial force on the body due to the rocket thrust

specifically,

p*A‘:’: (]_ + YM‘.'.‘Z
= (3)

where A*, p* and M* denote nozzle exit area, pressure and Mach
number, respectively, and q, is the free-stream dynamic pres-
sure (qm==%pm Ui);'the coefficients ACX, aC, Acx{ and Cx

are similarly defined as the total axial aerodynamic force on
the body, the axial pressure force on the body, the axial vis-
cous force on the body and the total force on the body from all
Sources, respectively, divided in each case by the reference
force (n/4)D2 9o. The axial components of the total aerodynamic
force (ACX) and the pressure force (LCXP), respectively, were
computed by contractirg the total stress and the stress due to
Pressure with a unit normal to the body surface, and integrating
the axial component of the resulting product over the surface
of the body (excluding the nozzle exit), ACXT was then calcu-
lated as the difference between ACy and ACXP; also, Cy was

computed as the sum of CXR and AC,,

A comparison of the axial-force coefficients of Table 2
with corresponding coefficients for the flat-based cone studied
by Boger, Rosenbaum and Reeves6 indicates a definite advantage
for the round-based configuration: The thrust is enhanced by
the body even when boundary layer Separation occurs. The
explanation for the augmented thrust lies in the fact that
rounding the base permits boundary layer separation to occur
further downstream than in the case of a flat base. For a

flat-based vehicle, the plume induces the separation region
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to move forward from the flat base tc the cone forebody with

an attendant increase in drag (a decrease in thrust).

5.4 PLUME SCALING LAWS

Although the absolute magnitudes of calculated plume
shock and dividing streamline radii differ from inviscid
predictions, a surprising correspondence with the Jarvinen-
Hill thecory has been established: Calculated ratios of plume
shock and dividing streamline radii obey the Jarvinen-Hill
scaling laws. The correspondence is evident from the nearly
identical fractional increases (over inviscid prediction)
in plume size noted for the two calculations. TFor example,

the stated scaling law for plume shock radius, s is

r2 = 0.726.x. (B/q,)? )

where x is axial distance downstream of the mass source and D
is plume drag. The two calculated flow fields had the same
plume drag and free-stream velocity; hence, at a fixed value

of x, the plume shock radii are predicted by Equation (4) to

vary as
L
_(735) (@150) [ %
p =]
G150) 735) (5)
rp pw

where numerical superscripts are used to denote the Reynolds
numbers at which the variable was calculated. Equation (5) is
satisfied by the numerical data of the AFTON 2A calculations to
within 7% at all points downstream of x/D = 1.5. The dividing
streamline radius can similarly be shown for inviscid flow to

vary inversely as the fourth root of free-stream density, and

25



ratios of the calculated d]Vldlng streamline radii again agree

with the Jarvinen-Hill predlctlon to within 7%.

5.5 OTHER COMPARISONS

For both Reynolds numbers, some further quantitative
comparisors of the numerical results have been made with the
small set of pertinent theoretical and experimental data pres-
ently available. For example, the calculated bow shock strength
at the centerline of the system lies within 5% of the theoreti-
cal value for both Reynolds numbers. For the calculation at a
Reynolds number of 735 the density distribution differs by no
more than 5% from the Jarvinen-Hill distribution aloaug the sys-
tem's centerline downstream of the injection orifice. Also, the
computed cone shock angles were 9.8 and 10.0 degrees for Reynolds
numbers 735 and 4150 respectively; the corresponding inviscid

angle is 9.5 degrees,

In a final quantitative comparison presented in Figure 32,
it can be seen that AFTON-2A-computed cone-surface pressures exhibit
the same kind of variation with Reynolds number (based on position)
as that found both experimentally and in previous theoretical pre-
dictions. AFTON 2A cone-surface-pressure distributions for both
calculations appear in the figure together with cone-surface pressure
data23’24 for a variety of cone flows. Pressure is given in
units of Newtonian pressure and is shown as a function of a

parameter, x, defined by the relation

X = — */Re (6)

sin

where ec is the cone half-angle and C* is a constant of propor-

tionality between temperature and viscosity. Nose-bluntness
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effects were found to be unimportant aft of a point halfway

down the cone (Appendix D), and the numerical data are there-
fore presented for points downstream of the halfway point and
upstream of the spherical base. Theoretical weak-interaction
predictions of Probstein and the strong-interaction predic-
tion of Stewartson27 are represented in the figure, along with

the predicted free molecular limit for each cone flow.

Figure 32 indicates that surface pressures (@ symbols)
from the two calculations reported herein fall between the
limits represented by hypersonic weak-interaction theory and
free molecular flow. The trend followed by the computed pres-
sures is consistent with Waldron's data for a 20-degree-half-
angle cone (& symbols) which follow the Probstein weak-inter-
action prediction up to a value of ¥ ~ 2 and then tend

asymptotically toward the free molecular limit as X — .

Qualitative comparisons were made between (a) the cone
surface pressure and skin friction calculated in the present
program, and predictions of hypersonic interaction theory,
and (b) the base pressure distribution computed for the
separated field, and corresponding experimental data for flat-
based cones. The AFTON surface pressure and skin-friction
distributions, shown in Figure 33, decrease with increasing
Reynolds number. Since the hypersonic interaction parameter,
%, 1s inversely proportional to RE at constant free-stream
Mach number, % is greater for the X lower-Reynolds-number
flow field. Therefore, the calculated surface pressure and

skin-friction distributions decrease with decreasing values

of x, in accord with weak-interaction theory.




The computed base-pressure distributions at Reynolds
numbers 735 and 4150 are shown in Figure 34; the ordinate of
the figure is the base circumferential angle, 8 measured
counterclockwise from the system axis. In the lower-Reynolds-
number case, where no flow separation occurred, a large pres-
sure rise was found near eb = 47° as a result of the collision
of plume and airstream gases. For the high-Reynolds-number
flow, boundary layer separation on the spherical after-body
produced a rapid rise in both the plume and external airstream
pressures to a nearly constant pressure plateau in the separ-
ation region; the domain of constant pressure extended from
o, = 35° to o

b b
was measured on the flat-based cone tested by Boger, Rosenbaum

o . .
= 70". A similar regime of constant pressure

and Reeves6 at Mach 10, Reynolds number 1.34 - 105, o = OO,
ard pc/pm =1.7 106 (Figure 35).
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6. SUMMARY AND CONCLUSIONS

The AFTON 2A computer code has been used to calculate
two complete hypersonic plume-body flow fields, Although
the two flows differ only in Reynolds number, and then by a
factor less than six, the computed flow-field structures are
very different. While no flow separation is observed at a
Reynolds number of 735, the cone and after-body boundary
layers both separate at a Reynolds number of 4150, yielding
a separation bubble and a complicated system of shock waves.
i Thus, the results indicate that the structure of hyperscnic-
2 plume-interaction flow fields varies greatly over the Reynolds-
2 number range spanned in this study, and the determination of
- flow field structure must therefore be considered part of the

- total problem of flow field prediction. 3

Two further conclusions related to the interaction of

a jet plume with a hypersonic airstream have been drawn in
this study. First, based on the evidence provided by the two
numerical flow fields, heat conduction effects cannot be
neglected in the plume, even in the inner core, Secondly,
despite the sensitivity of the near field to Reynolds number,
and the larger plume size calculated relative to the Jarvinen
and Hill prediction, scaling of the plume shock and dividing
streamline radii with Reynolds uumber are consistent with the

i Jarvinen-Hill scaling law.

The second point should be further verified for differ- ;q

ent flight conditions and geometries; such a viscous scaling

-
-t

e
.

law, if generally valid, might serve as a check for existing

hypersonic-free-stream plume interaction models. However,

=

- !
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the first point is at wide variance with other hypersonic

plume theories, and is sufficiently important to merit future
study; it must be emphasized that the effects of a non-isen-
tropic inner core extend far beyond the near field, and have

a marked effect (for example) on the Mach disc.
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Figure 1. Blunt-nosed cone with a spherical after body,
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calculation (Problem 563.0).

Figure 3.
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8 Figure 10, Internal energy contours of the flow field downstream of the

base for the separation-free plume calculation. The contour
parameter is internal energy nondimensionalized by the free-
stream stagnation internal energy; Curves 1, 2 and 3 denote
the locus of the plume shock, inner shock, and dividing
streamline,
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Figure 11, Pressure contours of the flow field downstrcam of the base

for the separation-free plume calculation; the contour
parameter, Z, is defined as Z = |1og10 (p/pe, )I, where p¢

is the frce-strecam stagnation pressure; Curves 1, 2, and 3
denote the locus of the plume shock, inner shock, and
dividing strecamline, - :




Figure 12, Density contours of the flow field downstream of the base
for the separation-free plume calculation; the contour
parameter, Z, is defined as Z = |logjg p|; Curves 1, 2,
and 3 denote the locus of the plume shock, inner shock,
and dividing strcamline,
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Figure 13. Mach-number contours of the flow field downstream of the
base for the separation-free plume calculation; Curves 1,

9

3 Z 4
i 2 and 3 denote the locus of the plume shock, inner shock, B
. and dividing streamline; Curves 4 and 5 denote streamlines
] ,f in the plume inner core.
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Figure 14. Variation of pressure with density along streamlines in
the plume inner core for the separation-free plume
calculation, 2
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Alr Separation Shock

Alr Plume Shock

Inner Shear Laver Edge
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Figure 21. Shadowgraph of the plume-external airstream interact ion
reglon with plume-induced separation on the cone; o = 0°;
R, /ft = 2.5210°, M = 10, I’L_,-’r‘r_ = 1.72x10°,
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Figure 24.

Pressure contours of the flow field downstream of the basec for
the separation plume calculation. The contour parameter Z is
defined as Z = 1Tlogm (p/ptm)L where py_ is the free stream
stagnation pressure; Curves 1, 2 and 3 denote the locus of the
plume shock, inner shock and dividing streamline, respcctively;
Curves & and 5 denote the separation shocks; Curve 6 denotes
cone shock.




Figure 25. Density contours of the flow field downstrcam of the base
for the separation plume calculation, The contour parameter 2
is defined as Z = |Log10 p|; Curves 1, 2 and 3 denote the
locus of the plume shock, inner shock, and dividing streamline,
respectively; Curves 4 and 5 denote separation shocksj Curve 6
denotes cone shock.,
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' Figure 26. Mach-number contours of the flow field downstream of the base

for the separation plume calculation. Curves l, 2 and 3 denote

the locus of the plume shock, inner shock, and dividing stream- -
! line, respectively; Curves 4 and 5 denote the separation shock;

Curve 6 denotes the cone shock; Curves 7 and 8 denote streamlines

in the plume inner core,
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DENSITY RATIO, po/p*

Variation of pressure with density along streamlines
in the plume inner core for the separation plume
calculation, ;
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Figure 28, Mach lines in the vicinity of the plume
separation shock and inner shock.
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REYNOLDS KUMBER = 4150

©

%

-~

(=]
SERE SR

L]
b, A el

r/D

, MACH NUMEER = 26
REYNOLDS NUMBER = 735

]

;cfn

Figure 29. Streamlines for the twvo calculated flow fields; Curves 1, 2
and 3 denote cone, plume and inner shock, respectively;
Curves &4 and 5 indicate airstream separation and plume

separation shock, respectively; dashed lines show the
dividing streamline, 59

s o i




.mocﬂagouumououuoccwouocovmvcdwmocﬂvuzmmvmmsoo.nxuosm
I2uuT 9yl So3oudp [ dAIn) {L8I9uU0 [RPUISIUT UOTITUSLIS WEdIIS-991F OY3 Yjuol duo
Lq pazreuorsuswrp-uou {810ud JPUIIIUT ST I93dweaed INOJUOD SY3 SuorleInoled sunid
@2a3-uoT3eardos 9yl 103 9100 Iauul sunjd 9yl uUT sano3udd AJIoud ruUIdIUT oT3IToadg

*0€ 2an814




*SOUTIWCIAIS 210D

A9UUT 930USp 4 pUB ¢ SOUTT PSYSLP 242 dous Iduur oumid 93 sajousdp 7 oazn) fyo0us
uotjeaedos aunid syl sojoudp 1 sAxn) (LJaoud TTUIDJUT UOTILUZLIS WidI3Is-993F 2U3 y3uol
suo £q pdzyjruorsuUdWIp-tou L3isud JEUIIIUT ST ao3sueavd ano3L00 9yl fuorzeInsied
sun1d uorjexedss syl I0J 5200 IauUT SumTd 943 UT sano3uod LSasus TEuiaIUT 3131o9dg

bt LY

- - LA - LY eie
...-I.h. -, ELL RN P J

o ..&ﬁ.&ﬂ\.., e wrg m N N,
LT . . P . ~ . . X - gead
i “esen o o ie A _ am & g - [ARTER - te o= o astehae s AT
R iamt P 4 ML aing g o, "\ § ad kY 5~ oy ke o 2 oS ntand R e
. n g

Bplte s smtmoms =y

A me et s,
L L ! -~ . & EE E L e s e nw sy, -
ot kg, g - BB EE b Aves e B mee 0t e
g L S R Yoo N0l b @ an oS
= s o, P e ses *ete amenars

T —— .
. L we o~ / % J J =y - >
"W . - b . o TR Y TR s e i

i T e g ) e
At T ol el L A %
- T e IR m et

e

o et L e T . r % »
.t_-._l.l.-::n.... ni.._f-...n_-.....-lﬁ....\tl- ~d - T4 .l.(l-f.u‘-\.




*SUOFIBRINOTEY YZ NOILAV @243 JO SITNSax [eoTIawnu ayj pue suoj3ofpaad

TeOFI2I09Y] YITH S3ULWIINSEaW 3anssaxd 290BJANS 9UOD JO UOTIBTIIA0) °ZE 2andTd
2
6 UIs
84
Z01 10t & goL -0l
ﬂu | 90 S R i i P I 1D IR ] I —.o—
| _ :
" | |
m ] m -
[ SISATVNY 1NICSUd |, B 802-L€ o¢ ) !
; NOLORNIMBVH(o0c9 | 000°51-6007 | CZ5L | ¥ ;
m ANV NCSNINTIAY o8 |000°6L-0007 1| ® : r
m NOMEIVM o0z | 00077052 | vz-el | ¢ i 2
; S — % ;
. 9 NV ‘W ; 2 P A= "dpd =
; : m g HMIs A / T
m m : 3¥NSSIV NVINOLIMAN -  F
: m _" | <
I m m / . <
m-._..:llll..i.llll.....il.l.-_.l:-.l.l:l. IIIIII _.-ll_ll.ill.._.l._-.l.l._.l IIIIIIIIIIIIIIIIIIIIIII ﬁ lllllllllllllll ..- lllllllll 94 OOF mﬁ
i a2 : ;
! 0T = _ : - @
o, o2 0 09 m 2 5
eac L | > oco! ; )
80°0°xz 2= % _gooeo .\\\\\. u =g o
Bl i “ P ; :
| €79 = B : : 80° = 11 SISATVNY
: i S _ NOILDVHILNI NI3 158034
m 8= %69 = “R | -
€10°0 = 1/ 1 ] SISATVNV " _
_ w, . | NOIIOVHAIN] NIZISE0Ud |
m Lg =2z ="n | YOI . : =
H SISATVNY NOIILOVEILINI ¢ 5
: HNOYIS-NOSINVMILS ; -
-I.l .aﬂ_ﬂ-m.|I_I.lll:l......_.f.l..l._l.l.l._I.II_I.I_I._I_I_-__I_I.I_II._II...-II:-I.II.I-;IL ”ON

O o e o —h e um u "
I

R

™~
O




T
—t

=
(=]
-] £
b/". ‘INIIDILII0D NOTIOTHZ

B

o
(27]
S
=¥
o
=
3
=
b=
1]
:
¥

T T T T T T
0,2 0.4 0.6 0.8 1.0 1.2 1.4
x/D

Figure 33, Pressure and shear stress distributions along the surface of the
re-entry body; solid lines indicate surface Pressure distributions;
dashed line indicates initial surface pressure distribution (derived
from Newtonian Theory); — ~ — 1ines indicate surface shear stress
distributions; () symbol denotes inviscid stagnation pressure at the
leading edge of the body (Reg. = 735); qew and Pt denote free-stream
dynamic and free-stream stagnation pressures, respectively,
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Pe/Pg = 175500.0
Re = 2.5x 108

M =10.0
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Figure 35, Plume-induced pressure distribution on a 12° flat-bascd
cone from the measurcments of Boger, Rosenbaum, and Reeves.




APPENDIX A

NUMERICAL TECHNIQUES AND CODE MODIFICATIONS

The AFTON 2A code had to be modified, and data
reduction techniques developed, for the present program.

Four code modifications were made, namely:
1. Provision for mass addition;

2. Inclusion of plume rarefaction effects;

[QY]

Incorporation of an artificial viscosity function
to effect shock transitions along the shock front

enclosing the total region of disturbed flow;

4. Introduction of a serial calculation of heat flow
and hydrodynamic motion into the computational

procedure,

In addition, to aid with reduction of code output, auxilliary
computer routines were written to trace streamlines and map

shock waves.

Al Mass Addition Modification to AFTON 2A

In modifying the AFTON 2A code to simulate mass
injection, it was assumed that the injected fluid and the
primary fluid were identical substances, namely, viscous
polytropic gases characterized by a constant polytropic

exponent. Mixing of different gas components, either by

convection or molecular diffusion, was not taken into account.

Since conditions of no-slip flow are normally enforced at a

body surface in the AFTON 2A code, the main task of code

modification was that of providing for steady conditions of

i B, i C— s i - i
e T 1 o Ty W = o i

S




discharge of jet or rocket exhaust along a portion of the

base around (and including) the system axis. Code changes

were made to permit the simulated emission of rocket or jet
exhaust from any desired portion of the body's base, under
arbitrary exit conditions; accordingly exhaust parameters

of density, specific internal energy, and velocity were

added to the input required to define individual problems

for AFTON 2A. For the problems solved in the present program,
material in a single constant flow state was injected into the

flow field in a direction parallel to the system's axis.

A2 Tnclusion of Plume Rarefaction Lffects in AFTON 2A

s

A region of highly rarefied flow is found near the

axis of symmetry in the plume's inviscid core, at all free-

ik
T Y T IR AR

stream conditions of interest in upper-altitude flight

(source flow). The gas density approaches zero in the
rarefaction region, and according to kinetic theory28 its
temperature, which would otherwise also approach zero,
reaches a lower bound or "freezing temperature'. On the
basis of kinetic theory and with some hypersonic approxi-
mations, the source flow problem was reduced to a relaxation
process with two translational temperatures, namely, a
temperature T11 along streamlines, and a temperature T1
transverse to the streamlines. Near the nozzle exit where
the frequency of molecular collisions is high, T1 o2 Tll;
as collisions between gas molecules become less frequent,

T.~—= 0, while T,, remains frozen at its terminal value.

1 11
For instance, for a spherical source flow, the ratio of

freezing temperature T11 to sonic orifice temperature T*
is a function of the Knudsen number, Kg , at the orifice,

. D
i.e.,




K* = \%/D (Al)
n
D

where A* is the mean free path at the sonic orifice and D is
the orifice diameter. For the orifice gas flow state, which
was identical in both calculations, the Knudsen number was
4,35 10"6 and the freezing temperature about 70°R — a
value that does not vary much with the molecular model

assumed,

To impose a lower temperature bound on the order of
70°R is not only realistic for the gas, but also is‘useful
in integrating the equations of motion numerically, since it
helps prevent gas expansion to zero density. At the same
time, both total mass and total thermal energy are low in
the rarefaction region, and imposition of a lower temperature
bound therefore has little quantitative effect on flow-field

properties near the Mach disc.

The AFTON 2A computer code was modified to include a
lower temperature bound, TL’ in regions of high rarefaction.
For local temperatures less than or equal to TL, the tempera-
ture (or corresponding specific internal energy) was equated
to TL. With the temperaturc so specified, the continuum
continuity and momentum equations were solved in the usual
manner for the remaining dependent variables of density and

) 16,19
velocity.

A.3 Artificial Viscosity

ity . b I x
An artificial viscosity > proportional to the

. . 12 .
square of the velocity divergence = was introduced

68




to effect certain shock transitions. Application of the
artificial viscosity was restricted to the bounding shock
front that enclosed the entire disturbed region of flow;

the cone shock defined the forward portion of the bounding
front, with the plume shock contributing the rest. In order
to minimize the possibility of introducing nonphysical effects
into the flow, no artificial viscous stresses were employed

in the body interaction region.

Location of the bounding shock was determined at
the start of each calculational cycle by first using the
artificial viscosity, designated '"Q", in an indirect manner.
Values of Q were calculated throughout the portion of the
mesh above and including the interaction region. The
Q-field was then examined along potential-like coordinate
lines of the finite difference mesh (see Appendix B and
Section 3.2 for a description of the AFTON 2A finite dif-
ference mesh) starting from the lateral boundary of the
system and moving toward the system's axis. The first
relative extremum in Q encountered on such a path defined the
boundary shock front around the disturbed region of flow.
However, the artificial viscosity was added to the diagonal
elements of the stress tensor only in a thin band of zones

clustered about the shock contours (Sections 3.2 and 4.2).

Some numerical experimentation was carried out in
which the artificial viscosity was introduced into the
interaction region. Details are presented in Sections 3.2
and 4.2.




A4

Serial Calculation of Heat Cunduction and Continuum
Motion

To rcduce computing time, the calculations of heat

conduction and hydrodynamic motion were accomplished in

series. Thus, advantage was taken of the fact that the time-
step for the calculation was heat-diffusion-limited, and only
the specific internal energy had to be updated at every time-
step; other fluid propertics were updated only as often as
required for stable calculation in the absence of heat
conduction. To compute heat flow and fluid flow sequentially
two kinds of timestep were used. For hydrodynamic cyclecs

(a "cycle" being a timestep of calculation) the time was
incremented in steps, termed '"macrosteps'", that were small
enough for the stable calculation of momentum diffusion;
similarly, still smaller steps, termed "microsteps", were
employed to compute thermal diffusion stably. Internal
energy was updated in microstep time increments while all
other hydrodynamic variablecs were advanced in time by macrosteps.
Microsteps were so determined that each macrostep in time
would always be spanncd exactly by a set of consecutive
microsteps. Thus the specific internal encrgy was updated
due to heat conduction through all the microsteps that

covered a given macrostep. A hydrodynamic calculation

(excluding heat conduction) was then performed whereby the

density, specific internal energy, and velocity wecre updated

by the usual differcnce equations of motion through a

macrostep.

By numerical experimentation it was established that

hydrodynamic motion could be calculated as infrequently as

cvery sixth microstep for a Reynolds number of 735, and at

cvery other microstcp at Reynolds number 4150; details are
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presented in Appendix E. To test the accuracy of the procedure
a portion of the lower-Reynolds-number calculation was

repeated with the hydrodynamic operations performed at every
timestep. The results of the test calculation agreed to four

significant figures with those of the serial calculation.

A5 Streamline Tracing and Shock-Wave Mapping

Streamlines in the AFTON-computed flow fields were

determined by numerical integration of the equation

i FE (A2)

where u and v are the velocity components in and normal to
the free-strcam direction, respectively. Many streamlines
were traced in both the airstream and plume gases. Coalescence

of plume and air streamlines defined the dividing streamline.

The positions of the various shock waves present in
the computed flow fields were located by indirect use of
the artificial viscosity function, Q, in a manner similar
to that described in Section A.3. Specifically, after
steady state conditions were attéined, values of Q were
computed throughout the numerical flow field. Contours of
maximum Q were then located manually and identified as the
shock loci; by examining the artificial viscosity function
along each coordinate line of the mesh (either streamline-
like or potential-like, as in Figure Bl) and thereby locating
extrema along the line; the locus of an extremum defined a

shock front.
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APPENDIX B

A SCHEME FOR CALCULATING POSITIONS OF
POINTS IN FINITE DIFFERENCE MESHES

A technique was developed and used in the present study
to assign to the points of a finite difference mesh positions
suited to the calculation of flow past a round-based conical
body. The method consists of generating two families of non-
intersecting lines (streamline-like lines and potential-like
lines) which merge smoothly with prescribed sets of control
lines; points of intersection of the two families define the
mesh. The location-specifying equations represent a mapping
between integer variables (j,k) and the axial and radial (x,r)
coordinates of a point; in the AFTON 2A code, an integer k is
associated with each potential-like coordinate line, and an
integer j is associated with each streamline-like coordinate

line.

A schematic of a typical set of control lines is shown in

Figure Bl, together with dashed lines that represent j-lines and
k-lines. Two streamline-like control lines and four potential-
like control lines are used in the process of mesh construction
described here. The lateral boundary of the mesh (j==j£) and the
L body-surface~-and-axis contour (j =jb) are streamline-like control
= lines, while the potential-like control lines are the curves desig-
l nated by the k~indices ku’ kb’ kt and kd; in the present study, the
r k-control lines were chosen as parabolas. Coordinates of

points on the various control lines were found by assigning
e | values to one of the two coordinates in accord with a geo-

I metric progression; the value of the other coordinate followed

from the known analytic expression for the shape of the control
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line. For example, along the potential-like control line

k=k_, the following relations were employed. For j <j=j,

b, (1-v]3b)
r(j sk ) = r(J sk ) + =
b b’"b (1-vy)
x(3,k,) = Blyz(j,kb) +By(3,k,) + B, (B1)
g _ [r(j fo,kb) - r(jbskb)] (1'Y1)
1

(1"Yi£-Jb)

where Y1 is the rate of increase of spacing of the mesh points,
Al is the minimum increment between mesh points, and Bl’ B2,
and B3 are known constants,

The technique was implemented by generating mesh-point
coordinates in each of the three regions shown in Figure Bl.
A smoothing function was then used to guarantee continuous slope
for the streamlince-~like lines at the boundaries of the three
regions. For each region, the coordinates were calculated from

equations of the form

g r : ' :
r(j,k) = F r(§,,k) + Fp r(3,,k) (2)
and
. X . X .
x(§,k) = Fp x(§ k) + Fp x(§,k) (B3)
r . r X X . . - ! .
where FL, FB’ FL, and FB are weighting functions. The weighting

functions for the three regions are presented below.
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REGION I

The radial coordinate weightiné functions are defined

as follows:

o [XGpky) - x(jz,w] r [x(jz,k) - X(J'E»WJ

FF = F F
L 1L X(Jz’kb)"x(Jz’ku) 2L X(Jz’kb) 'X(Jz,ku)
where
Fr _ Pr(j’ku) = r(jb’ku)
1L .r(Jz’ku)"r(Jb’ku)J
and
; Fr _ r(J’kb) = r(Jb’kb)
{ : 2L .r(Jz’kb) -r(Jb’kb)j
I o x(Gpaky) - x(§y, k) - x(j,,k) - X(Jb,kU)"J
] B 1B x(jb’kb)"x(jb’ku) 2B X(jb’kb)-x(jb’ku)
l where
I Fr _ [r(jl’ku) = r(j,ku)]
| 1B |x(5,,k,) mr(jy.k,)
] 1 and

Fr - rr(jzykb) O r(j,kb)]
-r(jz’kb) B r(jb’kb)

sy
)
&=

Weighting functions for the axial coordinate are:

} FX X X(jz’kb) = X(jy’k)] A F;][X(?ﬂ,k) r X(?z’ku)]
%@,k ) - X(Jz,ku)

= F . —
L 1L X(Jz,kb)“X(Jz,ku)




where .
= 'x (3 I,’ku) - x‘(j,ku)l
1L [x(jz,ku)-x(jb,ku)‘
and . . ]
o [x (3 poky) = x(3,kp)

2L h {X(J z,kb) -x(jb’kb)-

% % x(jb’kb) = x(jb,k)] FX [x(jb,k) = x(jb’ku)
2B

F_ =PF 2 - : :
B 1B X(Jb’kb) = X(Jb ,ku) X(Jb’kb) = X(Jb ,ku)
where )
L [FU gk - xGky)
1B LX(J z,ku) = x(jb’ku)—
and
FX ~ -X(j z,kb) = X(J ’kb)
2B LX(J z’kb) = X(Jb’kb)-
REGION 11

For the radial coordinate, the weighting functions are:

r r [X(J E’kt) = X(j zak)J Fr [X(j z,k) - x(3 z,kb)]

F. =F - - - :
L 1L} x(j z’kt) -x(J z’kb) 2L{x(] z’kt) - x(] z’kb)
where
Fr - r(j ,kb) = r(jb’kb)
1L r(j z,kb) e r(jb’kb)
and

r r(j,kt) - r(jb’kt)]
F2L B r(j ﬁ’kt) ' r(jb’kt)
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P [xUyok) - x(jb,k>J . [x(jb,k> - x(jb,kb>]
T KGR Gy k)|t TR, KRG R

Fr(j z’kb) ® r(jskb)]
_r(j z’kb) - r(Jb’kb)

(5 k) - r(j,kt>}
_r(j z’kt) - r(jb ’kt)

The weighting functions for use in calculation of the

x-coordinate in Region II are defined as follows:

Fx x h(j Z’kt) - X(j E’k)} % [X(J I,’k) = X(j Z’kb)

= F : : F : :
L 1L X(J z’kt) = X(J E’kb) 2L X(J z’kt) = X(J z’kb)

where

) x(j:kb) - x(jb’kb)]
Lx(jz’kb) -x(jb’kb)"

x(3,k,) - x(jb,kt>]
T %G, b0 %Gy k)

2B

X X(jb’kt) = X(jbsk)J 5 Fx [x(jb’k) = x(jb’kb)

F . : z ;
1B X(Jb ’kt) = X(Jb ’kb) X(Jb’kt) - X(Jb’kb)

X(j E’kb) = X(j ’kb).
_X(J 2’kb) -X(Jb’kb)_j

rx(j z’bt) W X(j ’kt)
_X(J Z’kt) = X(Jbskt)J




REGION III

The weighting functions for the r-coordinate are:

r_r [XU k) - X(jz,k)J " [X(jz,k) - x( k)

R e cpna) I x(3 k)
where
gy (:g,k% . z:b:t;
S - b’ 7
and )
| i [T (k) = v k)

2L 7 [¥G k) 10,0k

r r [x(jb’kd) = X(jb,k):l + Fr [x(jb,k) = x(jb,kt)
2B

F_ =T = - . :
B 1B X(Jb,kd)"x(Jb,kt) x(Jb,kd)- X(Jb,kt)
where
1B r(J f,,kt) = r(Jb’kt) ] i
and _ |
. 2B (3 kg -v G,k ) ;

The weighting functions for the x-coordinate are defined

by the following relations:

- % [X(jz,kd) - X(jz,k)J « [X(jz,k) - x(jz’kc)
= +

F =F - - - -
L 1L X(Jz,kd)"X(Jz.kt) X(Jz,kd)"X(Jz,kt)

where
§ % [x(j,kt) - x(jb,kt):l

Bl =

X(J z’kt) - X(Jb’kt)




Fio =

x(j,ky) - X(jb,k(j)J
B [X(j z’kd> - x(Jpsky)

[x(jb’kd) S X(jb,k)} L Fx [x(jbak) 3 X(jb’kt)
2B

1B{x (3, k) - x(3y . k) x(Jyokg) =2y k)

X(j E’kt) = X(j,kt)
hx(J ﬂ’kt> - X(Jb’kt> ]

-X(j l,’kd> - x(j’kd).
Lx(j ﬂ’kd> - X(jb’kd) |

B e s e e e e



APPENDIX C

PREDICTION OF SHOCK STRUCTURE IN THE
INTERACTION REGION BY THE METHOD
OF CHARACTERISTICS

By means of shadowgraphs, pressure measurements, and
the method of characteristics, Boger, Rosenbaum, and Reeves6
described the complicated flow phenomena associated with the
interaction between the plume and external flow (leaving the
cone surface) in the base region of a flat-based cone with a
vertex angle of 12°. The body was immersed in a Mach 10 air-
stream at Reynolds number 1.29 - 106 with a chamber-to-ambient
pressure ratio (pc/pm) of 2.2 - 104. These conditions produced
a plume which did not induce separation on the cone forebody;
the base flow field was therefore amenable to analysis by
classical methods, However, at the point where the inner shear
layer edge of the external flow impinged on the plume gases, the
multiple-shock pattern produced is identical to that of plume-
induced cone-forebody separation (see Figure 21). An inter-
pretation of the shock structure for the non-separated case is

therefore directly applicable to the separated case.

Figure Cl shows the flow just behind the cone base.
The plume boundary expands nearly 90 degrees at the nozzle
lip, but gradually bends away from the base, with a plume
separation shock forcing the fluid to move in a direction
parallel to the boundary. The boundary and shock are obtained
from a method-of-characteristics calculation with the experi-
mental values of chamber pressure and base pressure as input
quantities. At the point where the plume flow and external

flow meet, the plume separation shock turns very rapidly and

a second shock (designated the plume shock) is formed in the
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external stream. The shock and boundary locations of Figure Cl
are obtained by calculating the deflection angles for the plume
and external flows in order that they share a common pressure
boundary. Calculated directions of the shocks and plume bound-
ary agree with the shadowgraph of the flow field shown in
Figure C2. Features of the field visible on the shadowgraph
include the cone shock, plume shock, plume separation shock,
and the boundary of the shear layer leaving the end of the

cone,
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Plume Shock

[nner Shear Laver Edg. _\ \Z
Plume Sepa

Alr

ration Shock

Figure €2, Shadowgraph of plume-external airstream interaction region
without separation on the cone; o= 0%, Rr_ /it = 2.,4x10°,
M = 10, P /P = 2.2x10%, =
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APPENDIX D

EFFECTS OF NOSE BLUNTNESS ON THE CONE FLOW FIELD

Since the re-entry body of Figure 1 is rounded
(radius = 1.2 inches) and not pointed at its upstream tip,
it is appropriate to consider the effects of nose bluntness
on the computed flow fields; such effects are superimposed

on the effects of viscous-inviscid interaction.

The relative importance of viscous-inviscid interaction
and nose bluntness depends on the leading-edge Reynolds number,

i.e.,
o Ud.
R = — D1
oy - (01)

where dn is the nose diameter, U_ the free-stream velocity,
p, the free-stream density and p_ the free-stream viscosity.
Experimentally, it is known for cones that when Re”d is less
than 100, leading-edge-bluntness effects may be n
considered negligible compared to the effects of interaction
between the viscous layer and the external inviscid flow.29
For the separation-free plume problem, the Reynolds number,
based on the nose diameter, is Re“dn = 89; for the separation
plume problem, the Reynolds number is Reoodn = 500. Thus,
bluntness effects should be small when compared to the effects
of viscous-inviscid interaction for the separation-free plume

problem, but should become more significant for the separation-

plume problem.

The possibility of important nose-bluntness effects in

the present study became very remote when it was shown for




both the flows calculated that rounding the nose of the cone
had little influence on the pressure distribution halfway

down the cone forebody. To decide the issue, use was made of

a correlation of the effect of nose bluntness on the pressure
distribution about a cone; the correlation was derived by
Griffith and Lewis25 from pressure measurements taken about
various blunt-nosed cones at different Reynolds numbers and in
the Mach number range 10 to 20. An approximate fairing through
the Griffith-Lewis data is presented in Figure Dl. The abscissa

of Figure D1 is used to define values of the parameter
= 2 %
Xo = (x/d) [62/ (ek)?] (D2)

where x is axial position measured from the cone nose, 9

L

Y+1), and

k the nose-drag coefficient, is equal to .964 for a spherically

blunt cone. The ratio of the local pressure coefficient to

1s che cone-half angle, ¢ is the compression (¢

. the Newtonian pressure coefficient is specified along the
ordinate of the figure. It can be seen that in the Mach
number range 10 to 20, the pressure change (relative to the
slender body limit) arising from nose bluntness varies with
axial position, cone half-angle, cone diameter, and compression. z
For the two problems solved in this numerical study the para- .
meter Xe had the value 1.47 halfway down the cone, where it
is therefore evident from the figure that in the cases of
interest here the pressure is nearly asymptotic to its slender-

body value. 3
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APPENDIX E

STABILITY CRITERIA FOR AFTON 2A

For the AFTON codes, as for almost all practical tools
for time-marching integration of the equations of continuum
motion, considerations of numerical stability dictate that
the timestep not exceed a finite flow- and mesh-dependent
upper bound. In the plume calculations reported here, diffu-
sive processes — thermal and momentum diffusion in the
heat conduction and hydrodynamic phases of computation — always
limited the timestep. Sequential calculation of heat conduc-
tion and hydrodynamic motion offered an attractive path to
improved computational efficiency because the timestep limits
Att and Atv associated with thermal and viscous diffusion,

respectively, differed considerably; At, and Atv are defined

t
by the formulas

At %Aalat (E1)

at = ku2/y (E2)

where 4 is the zone width of the least stable zone of the mesh,

o, is thermal diffusivity and v is kinematic viscosity.

(98

It was found>©° that for a Reynolds number of 735 the
calculation proceeded stably with timesteps of .8 Att and
.7 Atv, respectively, for heat conduction and viscous momentum
diffusion. However, the numerical flow field then oscillated
spatially and in time with large but bounded amplitude; a
further increase by a factor of two in either timestep resulted
in unstable oscillation of the field. Thus, the stability

propercies of the AFTON 2A code do not differ significantly
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from those predicted by simple stability theory,

The amplitudes of the nonphysical oscillations produced
with timesteps of .8 Att and .7 e, had to be greatly reduced
to obtain numerical solutions of acceptable accuracy. To

that end it was established by numerical trial-and-error that

satisfactory solutions were produced using a heat-conduction
timestep equal to .25 Att and a timestep of .7 Atv for viscous
momentum diffusion, and those timesteps were actually used to
carry out the calculation for a Reynolds number of 735, For a
Reynolds number of 4150, thermal and viscous timesteps of i»Att and
J:Atv were used, after again establishing by numerical experi-
mentation that acceptable numerical solutions would then be

obtained.

88




REFERENCES

1. Jarvinen, P.0., and Hill, J.A.F., "Universal Model for
Underexpanded Rocket Plumes in Hypersonic Flows," pre-
sented at the 12th JANNAF Liquid Propulsion Meeting,
Las Vegas (November 1970).

2. Jarvinen, P.0., and Dyner, H.B., "Rocket Exhaust Plume
Dimensions," J. Spacecraft, Volume 6, No. 11, p. 1309
(1969).

3. Boynton, F.P., and Thomson, A., "Numerical Computations
of Steady, Supersonic Two-Dimensional Gas Flow in Natural
Coordinates,' Journal of Computational Physics, 3, p. 379
(1969).

4.  Sherman, F.S., "A Source Model of Viscous Effects in
Hypersonic Axisymmetric Free Jets,'" Arch. Mech,
Stosowanej, Vol., 2, No. 16, p. 472 (1964).

5. Roberts, L., "The Action of a Hypersonic Jet on a Dust
Layer," IAS Paper No. 63-50 (1963).

6. Boger, R.C., Rosenbaum, H., and Reeves, B.L., "Flowfield
Interactions Induced by Underexpanded Exhaust Plumes,"
AIAA Journal, 10, p. 300 (1972).

7. Trulio, J.G., Niles, W.J., Carr, W.E., and Rentfrow, R.L.,
"Calculations of Two-Dimensional Turbulent Flow Fields,"
NASA CR-430 (1966).

8. Trulio, J.G., and Walitt, L., '"Numerical Calculation of
Viscous Compressible Fluid Flow Around an Oscillating
Rigid Cylinder," NASA CR-1467 (1969).

9. Trulio, J.G., and Walitt, L., "Numerical Calculations of
Separated Flows," Symposium on Viscous Interaction Phenom-

! ena in Supersonic and Hypersonic Flow, University of

! | Dayton Press (1969).

n 10. Walitt, L., "Numerical Studies of Supersonic Near Wakes,"

il Ph.D. Dissertation, University of California at Los Angeles
(1969); also Report No. 69-26, School of Engineering and

n Applied Science, UCLA (1969).

89




11,

12.

13.

14,

15.

16.

17.

18.

19.

20.

REFERENCES (continued)

Trulio, J.G., and Walitt, L., "Numerical Calculations
of Viscous Compressible Fluid Flow Around a Stationary
Cylinder," NASA CR-1467 (1969) .

Walitt, L., Trulio, J.G., and Liu, C.Y., "Numerical
Calculations of Flow About a 20° Flat-Based Wedge Under
Hypersonic Conditions," Applied Theory Report No. ATR-
22-72 (1972).

Srinivasa, D,, Trulio, J.G., and Liu, C.Y., "A Time-
Dependent Method for Problems with Axial Symmetry and
Its Application to Hypersonic Near Wake," Applied
Theory Report- to be published (1973).

Walitt, L., Trulio, J.G., and King, L.S., "A Numerical
Method for Computing Three-Dimensional Viscous Supersonic
Flow Fields About Slender Bodies," Proceediags of the
Symposium on Analytical Methods in Aircraft Aerodynamics,
Ames Research Center, NASA SP-228 (1969); also NASA CR-
1963 (1971).

von Neumann, S., and Richtmyer, R., "A Method for the
Numerical Calculation of Hydrodynamic Shocks,' J. Applied
Physics, 21, p. 232 (1950).

Trulio, J.G., "Theory and Structure of the AFTON Codes,"
AFWL-TR-60-19 (1960) .

Trulio, J.G., and Trigger, K.R., "Numerical Solution of

the One-Dimensional Lagrangian Hydrodynamic Equations,"
UCRL-6267 (1961).

Trulio, J.G., Carr, W.E., and Mullen, J.B., "PUFF Rezone
Development,' AFWL-TR-69-50 (1969).

Trulio, J.G., "Notes on the Eulerian AFTON Equations for
Fluid Mechanics Calculations,' ATR-73-33-1 (1973).

Batt, R.B., and Kubota, T., "Experimental Investigation
of Laminar Near Wake Behind a 20° Wedge at M = 6," AIAA
Journal, Vol. 6, No. 11, p. 2077-2083 (1968).




z1,

22,

23.

24,

25,

26.

27.

28.

29,

30.

REFERENCES (continued)

Schlichting, H., Boundary Layer Theory, Fourth Edition,
McGraw-Hill, p. 245 (1960).

Kawaguti, M., and Jain, Padam, "Numerical Study of Viscous
Fluid Past a Circular Cylinder," MRC Technical Summary
Report #590, University of Wisconsin (1965).

Waldron, H.F., "Viscous Hypersonic Flow Over Pointed Cones
at Low Reynolds Numbers," AIAA Paper 66-34, AIAA 3rd Aero-
space Science Meeting, New York (January 1966).

Wilkinson, D.B., and Harrington, S.A., "Hypersonic Force,
Pressure, and Blunt Slender Cones," AEDC TDP-63-171 (1963).

Griffith, B.J., and Lewis, C.H., "Laminar Heat Transfer
to Spherically Blunted Cones at Hypersonic Conditions,"
AIAA Journal, 2, p. 438 (1964).

Probstein, R.F., "Interacting Hypersonic Laminar Boundary
Layer Flow Over a Cone," Technical Report AF 279811,
Brown University (1955).

Stewartson, K., "Viscous Hypersonic Flow Past a Slender
Cone," Physics of Fluids, 2, p. 5 (1964).

Hamel, B.B., and Willis, D.R., '"Kinetic Theory as Source
Flow Expansion with Application to the Free Jet," Phys.
of Fluids, Vol. 9, No. 5, p. 529 (1966).

Cox, R.N., and Crabtree, L.F., Elements of Hypersonic
Aerodynamics, p. 195-198, Academic Press (1965).

Aprlied Theory, Inc. letter, J.G. Trulio, to R. H. Lee
of Aerospace Corporation, "Stability of the AFTON Finite
Difference Equations," July 1972,

9L



