
ex
o

CD

: LIST

Copy No._J_of_^—WJb

ESD-TR-72-164

GUIDELINES FOR THE DESIGN AND IMPLEMENTATION
OF RELIABLE SOFTWARE SYSTEMS

B. H. Liskov

FEBRUARY 1973

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

MTR-2345

sc*>''

... o**

Approved for public release;
distribution unlimited.

Project 671A

Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract No. F19628-71-C-0002

AblfiWS

When U.S. Government drawings, specifications,

or other data are used for any purpose other than

a definitely related government procurement

operation, the government thereby incurs no re-

sponsibility nor any obligation whatsoever; and

the fact that the government may have formu-

lated, furnished, or In any way supplied the said

drawings, specifications, or other data is not to be

regarded by Implication or otherwise, as in any

manner licensing the holder or any other person

or corporation, or conveying any rights or per-

mission to manufacture, use, or sell any patented

invention that may in any way be related thereto.

Do not return this copy. Retain or destroy

ESD-TR-72-164 MTR-2345

GUIDELINES FOR THE DESIGN AND IMPLEMENTATION
OF RELIABLE SOFTWARE SYSTEMS

B. H. Liskov

FEBRUARY 1973

Prepared for

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
ELECTRONIC SYSTEMS DIVISION
AIR FORCE SYSTEMS COMMAND

UNITED STATES AIR FORCE
L. G. Hanscom Field, Bedford, Massachusetts

Approved for public release;
distribution unlimited.

Project 671A

Prepared by

THE MITRE CORPORATION
Bedford, Massachusetts

Contract No. F19628-71-C-0002

FOREWORD

The work described in this report was carried out under the sponsor-

ship of the Deputy for Command and Management Systems, Project 671A,

by The MITRE Corporation, Bedford, Massachusetts, under Contract No.

F19628-71-C-0002.

REVIEW AND APPROVAL

This technical report has been reviewed and is approved.

MELVTN B. EMMONS, Colonel, USAF
Director, Information Systems Technology
Deputy for Command and Management Systems

ii

ABSTRACT

This document describes experimental guidelines governing the
production of reliable software systems. Both programming and man-
agement guidelines are proposed. The programming guidelines are
intended to enable programmers to cope with a complex system effec-
tively. The management guidelines describe an organization of per-
sonnel intended to enhance the effect of the programming guidelines.

iii

PREFACE

This report has been produced under the Highly Reliable Program-
ming Task in support of Air Force Project 5550 of the Advanced Devel-
opment Program. The necessity for reliable software in computer-
based Air Force systems such as AABNCP is easily recognized; current
methods of system development have seldom resulted in software which
is free of errors. Therefore, the objectives of this task have been
to determine which available techniques might facilitate production
of reliable software, to demonstrate how these techniques can be
applied to software development, and finally to recommend to the Air
Force ways to realize the benefits of these techniques.

The first step taken in this task was to perform a survey of the
literature and an analysis of current approaches to the problem of
software reliability.(l) One of these approaches, called the "con-
structive" approach, was selected as the most feasible at this time.
This approach is concerned with a methodology for system development
which seeks to eliminate the sources of errors by making a concern
for reliability an integral part of the development process.

This report represents the second step in meeting the objectives
of the Highly Reliable Programming Task. In order to demonstrate the
effectiveness of the constructive approach, a set of guidelines has
been developed. These guidelines govern the application of a combina-
tion of techniques which separately have been used to aid in the pro-
duction of reliable software.

The guidelines described here will be conscientiously applied to
the construction of a small, but complex, file management system so
that they may be evaluated and refined. Ultimately the guidelines
will be restated in a form suitable for use by the Air Force in con-
trolling the development of software systems, either in-house or
acquired from contractors, so that the resulting software will be
reliable.

iv

TABLE OF CONTENTS

SECTION I INTRODUCTION
OBJECTIVES
DESCRIPTION OF PAPER

Page
1
1
2

SECTION II

SECTION III

SECTION IV

BASIC TECHNIQUES 3
MODULARITY 3
STRUCTURED PROGRAMMING 5

Structured Programs and Higher Level
Languages 6
Structured Programming and Proofs of
Correctness 6

Structured Programs and Levels of
Abstraction 7
Structured Programming and System Design 7

PROGRAMMING GUIDELINES 8
GUIDELINES FOR SELECTING LEVELS OF
ABSTRACTION 9
Useful Abstractions 9
Simplification of Levels of Abstraction 10
System Maintenance and Modification 11
A Special Guideline for Asynchronous
Systems 11

An Example from Venus 12

GUIDELINES FOR BUILDING SYSTEMS 15
THE DESIGN PHASE 16

How to Proceed with the Design 17
Design of an Asynchronous System 17
Special Problems Which Must Be Solved
During the Design 18
Structured Programming 19
Specifications of Levels and Functions 19
End of the Design Phase 20
Organization of Personnel 21
Design Meetings and Project Documentation 22

IMPLEMENTATION AND TESTING 23
Design Within Implementation 24
Order of Implementation 24
Specifications 25
Order of Testing 25
Organization of Personnel 25
The Programming Secretary 26
Project Documentation 27
Documentation of the System 29

REFERENCES 30

SECTION I

INTRODUCTION

OBJECTIVES

The purpose of this paper Is to establish experimental guidelines
governing the building of reliable software systems. These guidelines
will be tested by attempting to follow them when building an on-line
interactive multi-user file management system later this year. Through-
out the building of the system, the success or failure of the guide-
lines will be noted, hopefully leading to the establishment of a set
of more useable guidelines as a result.

Our primary objective is to learn how to build reliable software,
containing no errors upon delivery. It is customary to divide the
building of a software system into three phases: design, implementa-
tion and testing. Design involves both making decisions about what
precisely a system does and then planning an overall structure for
the software which permits it to perform its tasks. This structure
is traditionally represented by flowcharts. Implementation consists
of writing the programs which make up the software system; these pro-
grams fit into the structure specified by the design. Testing is
debugging of the software; it is usually performed first on the indi-
vidual programs and then on combinations of programs (system integra-
tion) .

In the title of this paper, only design and implementation are
mentioned. This is done purposefully to underline the approach of
this project, which considers testing as an integral part of design
and implementation. The standard approach to building software sys-
tems, involving extensive debugging, has not proved successful in
practice. As Dijkstra said, "Testing shows the presence, not the
absence of bugs."'2' What is required is a methodology for designing
and implementing systems which permits (informal) proofs of the cor-
rectness of the software before testing begins. These proofs will
turn up relevant test cases. Another requirement on the software is
that there is a small number of such test cases; this is only
possible if considerations about testing influenced design and imple-
mentation. If this is true, then it will be possible to exhaustively
check every test case. When this exhaustive testing is combined with
the informal proofs, it is reasonable to expect software reliability
after testing is complete. This expectation is borne out by certain
experiments performed in the past.'3,4)

In addition to producing reliable software, it is also necessary
to produce readable software which is relatively easy to modify and
maintain. Systems of any size can always be expected to be subject
to changes in requirements, resulting in recoding of parts of the
system. A reliable system which cannot adjust to such changes is
therefore not satisfactory.

DESCRIPTION OF PAPER

We will consider building complex software systems. A two-fold
definition is offered for "complex." First, there are many system
states in such a system, and it is difficult to organize the program
logic to handle all states correctly; programming guidelines will be
proposed whose purpose is to help programmers deal with this complexity
effectively. (In this paper, all people concerned with production of
software, both in design and implementation, are called programmers.)
Second, the efforts of many individuals must be coordinated in order
to build the system; management guidelines will be proposed governing
the organization of the programmers, the coordination of their efforts,
the communication between them, and the scheduling of the project as
a whole. In addition, management guidelines provide support for pro-
gramming guidelines. It is generally accepted that the organizational
structure of people imposes a structure on the system being built. ^-*'
Since we want a certain system structure as established by the pro-
gramming guidelines, we must therefore structure the people correctly
in order to achieve this.

The guidelines proposed in this paper are experimental, and it
is too much to expect that they are complete or even correct. It is
fairly easy to look at a given system and say that it is poorly con-
structed. It is more difficult to say why a design is poor. But it
is extremely difficult to propose guidelines which will lead to the
good design of a new system. For this reason, an important part of
the project will be the evaluation of the guidelines.

The paper is organized as follows. In the next section two
techniques are described, one primarily intended for design and the
other primarily for implementation; these techniques together form a
framework within which the system will be built. Section III contains
a number of programming guidelines intended to help with the organi-
zation of the software; thus, these guidelines are primarily of use
in the design phase, but will also apply to implementation when deci-
sions have to be made. The final section examines the various stages
of building systems, relates the stages to the programming guidelines
and the organization of personnel, and establishes documentation pro-
cedures which will help to evaluate the project when it is over.

SECTION II

BASIC TECHNIQUES

As was stated previously, our fundamental concern is for produc-
ing reliable software systems. We will concentrate on two important
aspects of the production problem. The first is the development of a
system structure which copes with the inherent complexity of the sys-
tem in an effective and understandable way; this will be done through
the technique of modularity. Then, given the system structure, it is
necessary to insure its clear and understandable representation in the
system software; this will be accomplished through the technique of
structured programming.

MODULARITY

To reiterate, a complex system is one in which there are so many
system states that it is difficult to understand how to organize the
program logic so that all states will be handled correctly. The
obvious technique to apply when confronting this type of situation
is "divide and rule." This is an old idea in programming and is known
as modularization. Modularization consists of dividing a program
into subprograms (modules) which can be compiled separately, but
which have connections with other modules. We will use the definition
of Pamas:(6) "The connections between modules are the assumptions
which the modules make about each other." Modules have connections
in control via their entry and exit points; connections in data,
explicitly via their arguments and values, and implicitly through
data referenced by more than one module; and connections in the ser-
vices which the modules provide for one another.

Traditionally, modularity was chosen as a technique for system
production because it makes a large system more manageable. It per-
mits efficient use of personnel, since programmers can implement and
test different modules in parallel. Also, it permits a single func-
tion to be performed by a single module and implemented and tested
just once, thus eliminating some duplication of effort and also
standardizing the way such functions are performed.

The basic idea of modularity seems very good, but unfortunately
it does not always work well in practice. The trouble is that the
division of a system into modules may introduce additional complexity.
The complexity comes from two sources: functional complexity and
complexity in the connections between the modules. Examples of such
complexity are:

(1) A module is made to do too many (related but different)
functions, until its logic is completely obscured by the
tests to distinguish among the different functions (func-
tional complexity).

(2) A common function is not identified early enough, with the
result that it is distributed among many different modules,
thus obscuring the logic of each affected module (functional
complexity).

(3) Modules interact on common data in unexpected ways (com-
plexity in connections).

The point is that if modularity is viewed only as an aid to
management, then any ad hoc modularization of the system is acceptable.
However, the success of modularity depends directly on how well modules
are chosen. We will accept modularization as the way of organizing
the programming of complex software systems. A major part of this
paper will be concerned with the question of how good modularity can
be achieved. First, however, it is necessary to define what good
modularity is. This definition will be partially provided by defining
modularity in terms of a new technique for organizing software: levels
of abstraction.'J'

Levels of abstraction provide a conceptual framework for achieving
a clear and logical design for a system. The entire system is con-
ceived as a hierarchy of levels, the lowest levels being those closest
to the machine. Each level supports an important abstraction; for
example, one level might support segments (named virtual memories),
while another (higher) level could support files which consist of
several segments connected together. An example of a file system
design model based entirely on a hierarchy of levels can be found in
Madnick and Alsop.'''

There are two important rules governing levels of abstraction.
The first concerns resources (I/O devices, data): each level has
resources which it owns exclusively and which other levels are not
permitted to access. The second involves the hierarchy: lower levels
are not aware of the existence of higher levels and therefore may not
refer to them in any way. Higher levels may appeal to the functions
of lower levels to perform tasks; they may also appeal to them to
obtain information contained in the resources of the lower level.

Levels of abstraction differ from modules because a level con-
sists of a group of related functions whereas a module is associated
with only one function (at least externally). Levels of abstraction
differ from modularity as previously defined because they are

accompanied by rules governing the connections between the levels.
We will therefore change our definition of modularization as follows;

Modularization is defined to be the division of the system
into a hierarchy of levels of abstraction, each level con-
sisting of one or more externally accessible functions
which share common resources. These levels are connected
to one another in very simple and well-defined ways. Recall
that connections exist both in control and in data. Con-
nections in control are limited as follows:

(1) Each function has only one entry point and always
exits to the place from which it was invoked.

(2) The rule about hierarchy of levels is observed.

Connections in data between two levels of abstraction are
limited to the explicit arguments passed to a function and
the values returned. Implicit interaction on common data
may only occur among functions in the same level of abstrac-
tion.

STRUCTURED PROGRAMMING

Structured programming is a programming discipline which was
introduced with reliability in mind.(^,8) it is defined, and the
rationale for it given, in Liskov and Towster^1) only a brief sum-
mary is presented here. One justification for structured programming
is that the resulting programs are easier to understand and to read
than ordinary programs; this ease is then linked to the correctness
of code before testing, thus increasing the chances of a reliable
system.

There are three main rules which together define structured pro-
gramming. The first defines the syntax of structured programs. A
program may be thought of as made up of statements connected together
by control structures. In structured programs only the following con-
trol structures are permitted: concatenation, selection of the next
statement based on the testing of a condition, and iteration. Con-
nection of two statements by a goto is not permitted. The statements
themselves may be assignment statements or procedure calls.

The second rule, concerning how structured programs should be
written, is the most important. It states that programs should be
developed from the top down. The highest level of a program describes
the flow of control among major functional components of the program;

names are introduced to represent these components. These names can
be associated with code later; this code describes the flow of control
among still lower level components, where again names are introduced
to represent the components. The process stops when no undefined
names remain. Each expansion of a name is called a module;-*- it is a
goto-free program, having one entry point, and always exiting to the
statement immediately following the one which refers to its name.

The third rule limits the size of structured program modules.
The success of structured programming is based in large part on the
readability of the resulting code. For this reason, modules are
limited in size so that an entire module can be easily read and under-
stood. A size of one computer printout page per module is suggested.(4)

Structured Programs and Higher Level Languages

A language which supports structured programming is a special
kind of higher level language. From the very start it was obvious
that we wanted to write the software in a higher level language,
since readability and understandability of software were primary
project goals. In addition, there is a general trend nowadays toward
writing software, even for systems like operating systems, in a higher
level language.t°) The primary motivation is programmer productivity,
which is considered more important than the efficiency of the code
produced. The problem of inefficient code is in any case being alle-
viated by designing special languages for programming operating and
similar systems.(10.11) A language of this sort which also supports
structured programming has been designed and implemented for this
project.

Structured Programming and Proofs of Correctness

The following connection exists between structured programs and
proofs of correctness. Before code is written for a module, a spe-
cification of the module exists which explains the input and output
of the module and the function which it is supposed to perform. A
form for this specification will be given in Section IV. When the
module is coded, it is expressed in terms of specifications of lower
level modules. The theorem to be proved is that the code of the
module matches its specification; this proof will be given based on

1 (4) Originally these expansions were called segments, but "segment"
now means "named virtual memory," so it seemed advisable to select
a different name. It is hoped that no confusion will result from
the choice of "module," which is no longer being used in this paper
to define modularity.

axioms stating that lower level modules match their specifications.
The proof should not be too difficult because the module itself is
small and logically straightforward due to the omission of goto's.

Structured Programs and Levels of Abstraction

A level of abstraction is made up of functions (or procedures),
some of which may be referenced by other levels of abstraction (the
external functions) while others (the internal functions) are used
only within the level to perform certain tasks common to all work
being performed by the level. Associated with each such function
will be a structured program module, and the name of the function
will be the same as the name of the module. In addition, however,
modules are sometimes introduced in order to clarify the logic of a
given function; thus, a function may be associated with more than one
module.

Structured Programming and System Design

Structured programming is obviously applicable to system imple-
mentation. However, it is also a valuable aid for system design.
Structured programs can replace flowcharts as a way of specifying
what a program is supposed to do. It is no more difficult to write
a structured program than a flowchart, since both contain approximately
the same level of detail. The advantage of the structured program is
that it is part of the final program; no translation is necessary
(with the attendant possibility of introduction of errors). In
addition, the structured program is more rigorous than a flowchart.
For one thing, it is written in a programming language and therefore
the semantics are well defined. For another, a flowchart only describes
the flow of control among parts of a system, but a structured program
defines the arguments and values of a referenced module. If a change
in level of abstraction occurs at that point, then the connection
between the two modules is completely defined by the structured pro-
gram. This should help to avoid interface errors usually uncovered
at system integration.

The way structured programs are written is very close to modu-
larization as it is traditionally defined; in both cases the work to
be performed is divided among lower level subprograms. This closeness
is illustrated by calling these subprograms modules (this word is no
longer being used for the definition of modularization). This means
that structured programming is a particularly good environment in
which to perform modularization. Structured programming does not
explain how modules are to be grouped into levels of abstraction;
this grouping occurs as a result of concepts about the system which
are developed independently of the structured programs. But structured
programs do provide a good way of expressing the system as a program
as it develops.

7

SECTION III

PROGRAMMING GUIDELINES

In the preceding section, modularization was redefined in terms
of levels of abstraction. Within this framework, the success of
modularization depends on how well the levels of abstraction are
selected. We will now present a tentative definition of good modu-
larization supporting the goal of software reliability.

A good modularization satisfies the following requirements:

(1) It satisfies the definition of modularization given in the
preceding section and summarized here for convenience. The
system is divided into a hierarchy of levels of abstraction,
each level consisting of one or more externally accessible
functions which share common resources. The connections
in control among the levels are limited by the rule about
hierarchy of levels. Connections in data are limited to
the explicit arguments passed to the functions in the
levels and the values returned.

(2) The combined activity of the functions in a level of abstrac-
tion supports a single abstraction and nothing more. For
example, a level of abstraction supporting files composed
of many virtual memories should not contain any code sup-
porting the existence of the virtual memories. The result
of this restriction is that each level is substantially
less complex than the system as a whole.

(3) The system structure, which is defined by the way control
passes among the functions of the levels of abstraction,
is logically clear and understandable and is expressed by
a structured program.

A system modularization satisfying the above requirements is compatible
with the goal of software reliability. Since the system structure is
expressed as a structured program, it should be possible to prove that
it satisfies the system specifications, assuming that the structured
programs which will eventually support the functions of the levels of
abstraction satisfy their specifications. In addition, it is reason-
able to expect that exhaustive testing of all relevant test cases will
be possible. Exhaustive testing of the whole system means that each
level must be exhaustively tested, and all combinations of levels must
be exhaustively tested. Exhaustive testing of a single level involves
both testing based on input parameters to the functions in the level

8

and testing based on intermediate values of state variables of the
level. When this testing is complete, it is no longer necessary to
worry about the state variables because of requirement 1. Thus, the
testing of combinations of levels is limited to testing the input
and output parameters of the functions in the levels. In addition,
requirement 2 says that levels are logically independent of one
another; this means that it is not necessary when combining levels
to test combinations of the relevant test cases for each level. Thus,
the number of relevant test cases for two levels equals the sum of
the relevant test cases for each level, not the product.

GUIDELINES FOR SELECTING LEVELS OF ABSTRACTION

Now that we have a definition of good modularization, the next
question is how can a system modularization satisfying this definition
be achieved. The traditional technique for modularization is to
analyze the execution time flow of the system and organize the system
structure around each major sequential task. This technique leads to
a structure which has very simple connections in control, but the con-
nections in data tend to be complex (for examples see Pamas(l2) and
Cohen(13)), The structure therefore violates requirement 1; it is
likely to violate requirement 2 also since there is no reason (in
general) to assume any correspondence between the sequential ordering
of events and the independence of the events.

If the execution flow technique is discarded, however, we are
left with almost nothing concrete to help us make decisions about how
to organize the system structure. The guidelines presented here are
intended to rectify this situation. These guidelines tend to overlap,
and when designing a system, the choice of a particular level of
abstraction will generally be based on several of the guidelines.
Following the guidelines, an example of the selection of a particular
level of abstraction within the Venus system(l4) is presented to
illustrate the application of several of the principles; an under-
standing of Venus is not necessary for understanding the example.

Useful Abstractions

The most important reason for introducing a level of abstraction
is as support for a useful abstraction. Abstraction is a very valu-
able aid to ordering complexity. Abstractions are introduced in
order to make what the system is doing clearer and more understandable;
an abstraction is a conceptual simplification because it expresses
what is being done without specifying how it is done. Whenever a
useful abstraction is identified, a level will be introduced to sup-
port it. Some abstractions express system features useful to the users

of the system, while others are primarily intended to aid the system
designers, and the system users may never be aware of them. Examples
of useful abstractions are: spooling of a shared device such as a
card reader or printer, processes (see page 12)» or virtual memories.

The following types of useful abstractions are to be expected
when designing a system:

Abstractions of Resources

Every hardware resource available on the system will be repre-
sented by an abstraction having useful characteristics for the user.
This abstraction will be supported by a level of abstraction whose
functions map the characteristics of the abstract resource into the
characteristics of the real underlying resource or resources. (This
mapping may actually occur over several levels of abstractions.) For
example, in an interactive system "abstract teletypes" with end of
message and erasing conventions are to be expected.

Abstract Characteristics of Data

In most systems the users are interested in the structure of data
rather than (or in addition to) storage of data. The system can
satisfy this interest by the inclusion of a level of abstraction which
supports the chosen data structure; functions of the level will map
the structure into the way data is actually represented by the machine
(again this may be accomplished by several levels). For example, in
a file management system such a structure might be an indexed sequen-
tial access method.

Simplification of Levels of Abstraction

According to requirement 2, the functions comprising a level of
abstraction support only one abstraction and nothing more. Sometimes
it is difficult to see when this restriction is being violated. The
two following guidelines are intended to help the system designer
satisfy requirement 2:

Simplification Via Recognition of Common Functions

One candidate for a level of abstraction is a function (or group
of functions) which is obviously going to be generally useful. Sepa-
rating such groups is a common technique in system implementation and
is also useful for error avoidance, minimization of work, and stand-
arization. The existence of such a group simplifies other levels,
which need only appeal to the functions of the lower level rather
than perform the tasks themselves.

10

Sometimes a level of abstraction already exists which supports
tasks very similar to some work which must be performed. When this
is true, every effort should be made to use the functions of this
other (lower) level, provided that this use does not force additional
complexity on those functions.

Simplification Via Limiting Information

Another way of simplifying levels of abstraction is to limit
the amount of information which they need to know (or even have
access to). An example of such information is the formatting of data
which is peripheral to the true function of the level (the data would
be a resource of the level). The level may require the information
embedded in the data but need not know how it is derived from the
data (or possibly even where it is). This knowledge can be success-
fully hidden within a lower level of abstraction whose functions will
provide requested information to higher levels when called; note that
the data in question becomes a resource of the lower level.

System Maintenance and Modification

Producing a system which is easily modified and maintained is
one of the primary goals of the project. This goal can be aided by
separating into independent levels of abstraction functions which
are performing a task whose definition is likely to change in the
future. For example, if a level is paging data between core and some
backup storage, it may be wise to isolate as an independent level of
abstraction those functions which actually know what the backup stor-
age device is. Then if a new device is added to the system (or a
current device is removed), only the small independent level of
abstraction need be changed; the larger level will already have been
isolated from such changes by the requirement about connections
between levels.

A Special Guideline for Asynchronous Systems

Not all complex systems need be asynchronous; however, systems
which must deal with asynchronous events (for example, input/output
interrupts) will necessarily be asynchronous. In addition, systems
which need not be asynchronous are sometimes built to be asynchronous
for reasons of efficiency (two or more events can then occur simul-
taneously). The file management system to be built for this project
will be asynchronous. A special guideline is presented for simplify-
ing the design of asynchronous systems.

11

A Model for Asynchronous Systems

(3,14,15,16) , £J Recent work in operating systems has defined a model
for asynchronous systems. This model both simplifies the conceptual
difficulties of asynchronous systems and also reduces the amount of
code required. It is based upon the concept of the work of the sys-
tem being performed by a community of cooperating processes. The pro-
cesses communicate and synchronize with one another by means of primi-
tives provided by a very low level of abstraction which also serves
to establish the existence of the processes; this level defines the
system nucleus. P and V operations on semaphores are an example of
such primitives; more useful communication devices, such as queues
or mailboxes, can be provided at a slightly higher level.

The advantage of the communicating process approach is that it
allows the many system tasks which are logically asynchronous to be
handled in a physically asynchronous manner. This leads to clarity
and reduced complexity in the design, which in turn reduces the com-
plexity required of the implementation. Since complexity is a pri-
mary obstacle to building correct systems, reduction of complexity
cannot help but aid the goal of system reliability.

Cooperating processes are related to levels of abstraction in
the following way. Whenever control passes from one level of abstrac-
tion to another, this may occur either by calling a procedure or by
synchronizing with another process. Within a level, however, probably
only calls are legal, for the reason that the decision to change pro-
cesses is a major one and probably coincides with a change in level.

The Guideline

The previous model should be used when designing the file man-
agement system.

An Example from Venus

The following example from Venus is presented because it illus-
trates many of the points made about selection, implementation, and
use of levels of abstraction. The concept to be discussed is that
of external segment name, referred to as ESN from now on.

The concept of ESN was introduced as an abstraction primarily
for the benefit of users of the system. The important point is that
a segment (named virtual memory) exists both conceptually (as a place
where a programmer thinks of information as being stored) and in
reality (the encoding of that information in the computer). The
reality of a segment is supported by an internal segment name (ISN)

12

which is not very convenient for a programmer to use or remember.
Therefore, the symbolic ESN was introduced.

As soon as the concept of ESN was imagined, the existence of a
level of abstraction supporting this concept was implied. This level
owned a nebulous data resource, a dictionary, which contained infor-
mation about the mappings between ESNs and ISNs. The formatting of
this data was hidden information as far as the rest of the system was
concerned. In fact, decisions about the dictionary format and about
the algorithms used to search a dictionary could safely be delayed
until much later in the design process. A collective name, the dic-
tionary functions, was given to the functions making up this level
of abstraction.

As soon as the ESN level existed, it was necessary to define
the interface presented by this level to the rest of the system
(using a structured programming technique for design, a level would
probably begin to exist when the first function within this level
was specified). Obvious items of interest are ESNs and ISNs; the
format of ISNs was already determined, but it was necessary to decide
about the format of ESN. The most general format would be a count
of the number of characters in the ESN followed by the ESN itself;
for efficiency, however, a fixed format of six characters was selected.

At this point a generalization of the concept of ESN occurred,
because it was recognized that a two-part ESN would be more useful
than a single symbolic ESN. The first part of the ESN is the symbolic
name of the dictionary which should be used to make the mapping; the
second part is the symbolic name to be looked up in the dictionary.
This concept was supported by the existence of a dictionary contain-
ing the names of all dictionaries. A format had to be chosen for
telling dictionary functions which dictionary to use; for reasons of
efficiency, the ISN of the dictionary was chosen (thus avoiding
repeated conversion of dictionary ESN into dictionary ISN).

At this point we had the identification of a level of abstraction.
We knew what type of function belonged in this level, what sort of
interface it presented to the rest of the system, and what information
was kept in dictionaries. As the system design proceeded, new dic-
tionary functions were specified as needed. Two generalizations
were realized later. The first was to add extra information to the
dictionary; this was information which the system wanted on a segment
basis, and the dictionaries were a handy place to store it. The
second was to make use of dictionary functions as a general mapping
device; for example, dictionaries are used to hold information about
the mapping of record names into tape locations, permitting simplifi-
cation of the higher level.

13

In reality, as soon as dictionaries and dictionary functions
were conceived, a core of dictionary functions were implemented and
tested. This is a common situation in building systems and did not
cause any difficulty in this case. For one thing, extra space was
purposefully left in dictionary entries because we suspected we might
want extra information there later although we did not then know what
it was. The algorithm selected was straight serial search; the search
was embedded in two internal dictionary functions (not available for
calling from outside the level) so that the format of the dictionary
may be changed and the search redefined with very little effect on
the system or most of the dictionary functions. This follows the
guideline of modifiability.

14

SECTION IV

GUIDELINES FOR BUILDING SYSTEMS

This section describes the guidelines to be followed when build-
ing the file management system. The programming guidelines of Sec-
tion III will be applied whenever decisions are being made. This
section is concerned with giving motivations for decisions within the
various stages of building a system. In addition, management guide-
lines are given governing the way that personnel will be used in
each stage and also specifying administrative techniques for keeping
track of the development of the system and the application, success
or failure of the various guidelines.

As was mentioned in the introduction, it is customary to divide
the building of a system into three phases: design, implementation
and testing. In this section we will distinguish two phases: a
design phase, and an implementation and testing phase. This division
is based on the organization of personnel: one organization is
required for the design phase, and another is used for both imple-
mentation and testing. Personnel are organized into a structure which
will hopefully permit global design considerations to control local
decisions and which will encourage informal proofs of correctness,
thus enhancing the chances for a reliable system.

The design phase consists of making global decisions which
affect the system as a whole and representing these decisions in
structured programs. Thus design is concerned with identification of
levels of abstraction and the connections between them. Implementa-
tion includes making local decisions within a level of abstraction
and representing them by structured programs; these decisions may
even involve the introduction of new levels, which will, however, be
completely hidden from the rest of the system by the level being
implemented. Thus implementation includes making design decisions;
however, fewer global considerations will be required, which means
the decisions are not as difficult to make.

In the course of building a system, a point is reached when the
design is considered to be complete; an attempt will be made to cap-
ture the characteristics of the system at that time. This distinction
is important for determining what constraints to put on subcontractors
and should also be useful for analyzing the progress of software being
produced in-house.

15

THE DESIGN PHASE

The design phase is the most difficult part of building a system
because it is at this point that the full inherent complexity of the
system is encountered. It is also the most critical phase, because
all important (i.e., global) decisions are made at this time and a
general outline of the way in which the implementation should proceed
is given. If the design is bad, then the problems encountered within
implementation and testing are increased and hopes of obtaining a
reliable system diminish. It is during the design phase that the
programming guidelines of Section III will be most relevant.

So it is important in the design phase to achieve a "good" system
design, satisfying the following working definition:

(1) The system will satisfy its requirements.

(2) The design produces a good system modularization as defined
in Section III.

Obviously this is a very vague definition; if this project can produce
a better one, that will be a substantial contribution.

When system design begins, descriptions of the services which
the system is supposed to provide are given. An important part of
system design is to turn these descriptions into precise specifications
which will support the building of the system. Care must be taken
that none of the original intent of what the system was supposed to
do is lost in this process.

In addition to defining initial system specifications in light
of expected user services (these are often referred to as top-level
considerations), the initial design phase will also be concerned with
the hardware on which the system is going to run (bottom-level con-
siderations) . The concern with hardware may include the selection
and purchase of the hardware; in any case a thorough understanding
of the characteristics of the hardware will be necessary so that the
evolving design will be consistent with these characteristics. Thus
the purpose of the design phase is to produce a system design satisfy-
ing system specifications in a way which is compatible with the hard-
ware on which the system is going to run. The design will be exhibited
as a system modularization as defined in Section II; the guidelines
of Section III will be used to help identify what this modularization
should be.

16

How to Proceed with the Design

The very first phase of the design (phase 1) will be concerned
with defining precise system specifications and analyzing the hard-
ware requirements of these specifications. The result of this phase
will be a number of abstractions which represent the eventual system
behavior in a very general way. These abstractions imply the existence
of levels of abstractions, but very little is known about the connec-
tions between the levels, the flow of control among the levels, or
how the work of the levels will be accomplished. Examples of such
abstractions from Venus are: spooling of the card reader and printer;
limited ownership of teletypes; existence of an executive to control
jobs; existence of a loader to run jobs; etc. Every important exter-
nal characteristic of the system should be present as an abstraction
at this stage. Many of the abstractions have to do with the manage-
ment of system resources; others have to do with services provided to
the user. One abstraction to be expected in an interactive system is
that of a general command language; when this is missing, the result
is likely to be a confusing duplication of commands meaning different
things in different environments.

The second (and final) phase of system design (phase 2) investi-
gates the practicality of the abstractions proposed by phase 1 and
establishes the data connections between the levels and the flow of
control among the levels. This latter exercise establishes the place-
ment of the various levels in the hierarchy. The second phase occurs
concurrently with the first; as abstractions are proposed, their
utility and practicality are immediately investigated. A level has
been adequately investigated when its connections with the rest of
the system are known and when the designers are confident that imple-
mentation of the abstraction is practical. Varying depths of analysis
are necessary; for example, the ESN level of abstraction requires
almost no analysis, while spooling requires much analysis with the
resulting identification of several internal levels of abstraction.

Design of an Asynchronous System

The design of an asynchronous system should be based on the model
described in Section III. This means that the functions performed by
the system nucleus as well as the meaning of such concepts as "process"
should be identified early in the design phase since they represent a
basis upon which the whole system design will rest. At this point,
it is necessary to define the primitives to be used by system processes
to synchronize with each other and to share system resources (these
primitives need not be made available to the users of the system).
These primitives may be supported directly by the system nucleus, or
they may be supported by a very low level of abstraction using primi-
tives of the nucleus.

17

Special Problems Which Must Be Solved During the Design

A few difficult problems which must be solved during the design
phase are enumerated here. It is not clear that solutions to some
of these problems fit into levels of abstraction or are handled well
by structured programs.

1) System startup and shutdown. One problem of system startup
is the initialization of the resources of the various levels
of abstraction. This is best solved by including in each
level of abstraction a special function whose job is to pro-
vide initialization for that level. A similar function may
be required to shut down the level.

2) Error Protection. The system must be protected from the
effects of user errors. A partial solution to this problem
is to localize the effect of errors as much as possible;
this is also helpful to the user for debugging his program.
System errors should also be localized if possible, and
error handling by the levels of abstraction is an important
part of the design of the system.

3) Error Recovery. This is a very difficult problem. Solu-
tions are based on redundancy of information and protection
of critical data by frequent snapshots. Information must be
kept about ownership of resources if "warm" starts are
desired.

4) Efficiency. There are many types of efficiency, and there
are often tradeoffs between the different types. We are con-
sidering efficiency of performance here. A system often has
performance criteria to meet, and it is necessary to evaluate
a given system structure in depth to be sure it will support
these criteria. In general, however, system efficiency is
very difficult to define during the design phase (especially
in an asynchronous system) because the tradeoffs are not yet
clear, and the designers should beware of spending too much
time in optimizing any one part of the system. A better
approach is to make the system as modifiable as possible,
intending to tune it after it is built.

5) Instrumentation. It is only possible to tune the system
if its behavior can be measured. As the system design evolves,
some attention should be paid to the question of what types
of measurements are required. Most important is the require-
ment for the existence of a very low level of abstraction
(possibly supported by hardware) which permits measurement
of the behavior of the system without changing that behavior
significantly or at all.

18

6) Debugging Aids. An interactive system must provide inter-
active debugging aids for its users. It is not clear where
such aids fit in in the hierarchy of levels.

7) Sharing of resources among the users. The system must be
designed to insure that the available resources (including
data) are shared among the users in a deadlock-free manner.

8) Sharing of data resources within the system. The system
may share data differently from the users for reasons of
efficiency. Again care must be taken to avoid deadlock;
ownership of only one resource at a time or some ordering
on the way ownership can be obtained are both satisfactory
solutions.

9) Synchronization. The synchronization of the processes
making up the system must occur in the correct order.

Structured Programming

It is not clear exactly how early structured programming of the
system should begin. Obviously, whenever the urge is felt to draw
a flowchart, a structured program should be written instead. Struc-
tured programs connecting all the levels of abstraction together will
be expected by the end of the design phase. The best rule is probably
to keep trying to write structured programs; failure will indicate
that system abstractions are not yet sufficiently understood and per-
haps the effort will shed some light on where more effort is needed.

Specifications of Levels and Functions

As the structured programs are written, names are introduced to
represent lower level modules. Often these names will stand for func-
tions of lower levels of abstraction. In this way levels of abstrac-
tion come into existence and are linked to existing levels. As the
names are introduced, specifications should be given describing what
the proposed module should do.

The concept of system reliability as discussed in this paper is
based on informal proofs of correctness that code matches specifica-
tions. It is important, therefore, that specifications be complete
and understandable. We discuss here the information to be contained
in such specifications. Specifications will be given for both levels
of abstraction and for the functions within the levels; in this way
the grouping of functions into levels is emphasized. Not all the
information discussed below will be known in the design phase; much
information will be added during implementation (including the addi-
tion of many new functions and possibly even new levels of abstraction).

19

The following information should be contained in the specifica-
tion of a level of abstraction:

1) the name of the level;

2) a description of the abstraction which it supports;

3) a list of the hardware resources owned by the level, if any;

4) a list of the data resources owned by the level (this includes
the data holding information about the state of the level);

5) information about the placement of the level within the hier-
archy of levels and whether the level occupies its own process;

6) a list of the functions of the level which are externally
accessible;

7) a list of the functions of the level which are internally
accessible (probably not known until implementation).

The following information should be contained in the specifica-
tion of a function:

1) the name of the function;

2) the name of the level of abstraction to which the function
belongs and whether the function is external or internal;

3) a description of every argument passed to the function and
every value returned. In each case, the legal bounds on the
arguments and values should be carefully delineated.

4) a description of what the function does (not how it works)
based on its arguments and values, including the handling
of errors;

5) the expectations of the function about the state of the
resources of the level when it is entered and its effect on
that state, including error handling (probably not known until
implementation).

End of the Design Phase

The design will be considered finished when the following criteria
are satisfied:

20

1. All major levels of abstraction have been identified, the
system resources have been distributed among them, and their
positions in the hierarchy established. It is known how the
levels are distributed among the processes.

2. The system exists as a structured program, showing how the
flow of control passes among the levels of abstraction. The
structured program consists of several modules, but no module
is likely to be completely defined (in the sense of being
ready to execute). Specifications exist for all levels and
functions. The interfaces between the levels have been
defined, and the relevant test cases for each level have
been identified.

3. Sufficient information is available so that a skeleton of a
user's guide to the system could be written. Many details
of the guide would be filled in later, but new sections
should not be needed.

Organization of Personnel

The design phase is accomplished by the design team, which con-
tains everyone connected with the design in some capacity. Within
this team is a very small design team core which has the responsibility
for producing the design. Members of the core must have a global
knowledge of the system and will use this knowledge first to generate
the abstractions of phase 1 of the design and then to decide between
alternative solutions produced through phase 2 analysis. The core
should contain at least two members, so that global system considera-
tions can be discussed intelligently and thus provide a check on the
correctness of the developing design. However, the core should be
small to avoid wasted time and energy. One member of the core will
be designated the project leader (in reality, the responsibilities
of the leader may be distributed among members of the core).

The team core is first of all responsible for suggesting the
abstractions of phase 1 of the design, although suggestions of mem-
bers of the design team will certainly be welcome. The core will
also decide what type of phase 2 analysis these abstractions require
and will direct that this analysis be carried out by selected members
of the design team (including core members). Examples of types of
analysis range from asking a team member or members to develop a
solution to support an abstraction in order to determine whether
implementation is practical, to asking them to examine several alter-
native methods of accomplishing an abstraction and then to present
the strengths and weaknesses of the alternatives. Finally, the core
is responsible for writing the structured program or programs which
tie the levels of abstraction together.

21

Each member of the design team is responsible for performing
phase 2 analysis as directed by the core. At the beginning of the
design he may have as much knowledge about the global requirements
of the system as members of the core, but as the design progresses,
this will probably not be true as more and more of his time is spent
in performing detailed analysis of a part of the design. Therefore,
he must expect to present a justification for his decisions to the
design core, who will evaluate them with respect to global system
considerations. Sometimes his decisions will conflict with these
considerations (although the core should explain relevant considera-
tions to him in advance to avoid this as much as possible). In this
case his work will have to be redone. If his analysis has gone very
deep, considerable effort will be wasted. For this reason, the core
will try to specify a depth of analysis in advance, and the team mem-
ber must resist the temptation to exceed this depth. A depth of ana-
lysis such that design decisions are being made based on earlier
decisions which have not been approved is probably too deep.

Design Meetings and Project Documentation

There will be frequent meetings during the design phase. These
meetings will always be attended by members of the design team core;
some members of the design team may also attend. In the early stages
of the design these meetings are likely to be very informal as abstrac-
tions are proposed, decisions about hardware are made, certain abstrac-
tions are selected for investigation, and representation of the system
as a structured program is attempted. Later in the design the meetings
should become more orderly (as the design itself becomes better defined);
meetings will consist of presentations of phase 2 analysis followed by
design decisions or requests for more analysis.

In addition to team members, meetings will always be attended by
a secretary. An important responsibility of the project leader is to
keep a history of the project in a design notebook; one facet of that
history will be a record of all design meetings. The secretary's job
will be to help as much as possible with the preparation of the note-
book. The notebook should contain a brief but lucid history of the
project; for this reason, verbatim meeting notes may not be desirable.
Instead a brief description of a problem under discussion should be
dictated to the secretary; such dictations will occur throughout the
meetings. The notebook should include information about the basis for
every design decision, together with alternative solutions rejected
and why. In addition to records of design meetings, the design note-
book should contain a record of any other significant development;
for example, descriptions of spontaneous discussions and whatever
else the project leader considers significant.

22

It is very likely that as the design continues inadequacies in
the guidelines will be detected. Notes of these inadequacies, together
with any changes which seem reasonable, should be entered in the guide-
line notebook. The team leader has the responsibility not only to
make sure that these entries are made but also to examine current pro-
cedures in order to detect inadequacies.

IMPLEMENTATION AND TESTING

Our guidelines for implementation and testing will be based to
a large extent on the work of Harlan Mills.W These techniques have
already been partially verified by work performed at MITRE in the
building of the SPIL compiler.

Mills's techniques for implementation and testing were defined
with reliability in mind. Implementation is carried out from the
top down, using structured programs. Thus, modules are specified
and the interfaces between modules defined before the code supporting
the modules is written. In addition, the modules are structured in
such a way that the flow of control is emphasized, and modules are
limited in size to less than one page. The result is that the pro-
grams are very readable. This readability is then exploited by
requiring that modules be read by someone other than the programmer;
this technique is bound to uncover many errors.

Testing does not begin until an entire subsystem has been coded.
The subsystem is tested within the framework of the entire system.
This means that it is not necessary to write testing programs which
drive the various modules; on the other hand, it may be necessary to
write program stubs to stand for parts of the system which are not
yet defined. One advantage of this approach is that the central logic
of the system is tested the most, since it is run every time a new
subsystem is tested. The primary advantage, however, is that this
technique eliminates system integration problems almost entirely.
When a newly coded subsystem is tested, it must be integrated with
all the parts of the system which are already defined; thus, each
part is integrated only once.

We will modify Mills's techniques in a few significant ways. In
the first place, we will be working within a hierarchy of levels of
abstraction. Thus, we will talk about implementation of levels rather
than of subsystems. However, testing of levels will occur (as much
as possible) within the framework of the entire system as defined by
Mills.

23

In addition, we will not limit ourselves to a strict top-down
implementation and testing, because this is not practical in the
production of large systems, which must generally be completed within
a certain time period. In order to satisfy time constraints, it is
often necessary to implement parts of the system in parallel, and we
intend to attempt this in order to see if it is compatible with
reliability. Even without parallel implementation, it is not clear
that top-down implementation is always the best; for example, it
might benefit production if certain low levels of abstraction, which
are well-defined and widely used, were implemented and tested first.
Therefore, we will make decisions about the order of implementation
and testing based on tradeoffs between practicality and reliability.

Design Within Implementation

It must be recognized that many design decisions will still
remain when implementation begins. Also the work that the level per-
forms may still be very complex, requiring further modularization.
The person performing the design should rely on the programming guide-
lines to help him make decisions. He must understand where the level
fits in the hierarchy and what services are performed for it by
lower levels. Care must be taken that the resulting design makes use
of these services and that it does not violate the global considera-
tions of the system (management guidelines will be set up to insure
this).

Order of Implementation

Implementation will be carried out on an entire level of abstrac-
tion at a time. Ordinarily implementation will not begin until the
design phase is over; however, for certain particularly well-defined
levels, it may be practical to begin implementation before this (as,
for example, with the dictionary functions in Venus). The danger in
early implementation is that changes in the functional specifications
may be made as the design progresses, thus invalidating the implemen-
tation, so the decision to implement early should be made very cau-
tiously. Within a level, implementation should be entirely top-down,
following the rules governing structured programming.

When the design is complete, an order of implementation of the
levels must be selected. Generally, higher levels should be imple-
mented first. For one thing, certain design decisions may still
remain which will have to be made as the implementation progresses;
it is better if these decisions are made during implementation of
high levels of abstraction because then it is easier to accommodate
global considerations. The exceptions to this order are low levels
which are essentially independent of most of the design and which
provide widespread support for higher levels. It does not matter
when such levels are implemented, but they should probably be tested
very early in order to minimize the testing effort.

24

The order of implementation suggested here is neither top-down
nor bottom-up, but rather a combination of both. Implementation
should be bottom-up when it is obvious that this is the right way to
proceed; however, when there is a choice, top-down (highest levels
first) implementation should be the rule. This is different from the
usual order of implementation which is generally always bottom-up.
Simultaneous implementation is possible for levels which are indepen-
dent of one another (the design decisions required do not depend on
one another).

Specifications

New information will become available as implementation progresses.
This information should be added to the specifications which were
started during the design phase (see previous section); specifications
should also be given for all new levels and functions defined during
implementation.

Order of Testing

Testing will occur on entire levels of abstraction at a time
and will not begin until the entire level has been implemented. The
order of testing need not be the same as the order of implementation,
but generally the same order will be a good idea. This means that
with the exception of certain low levels, testing will occur on
higher levels before lower levels. Top-down testing will obtain the
advantages discussed earlier in this section. However, two questions
immediately arise: 1) It is most important that all relevant test
cases be tested; will this occur naturally in top-down testing?
2) Top-down testing implies simulation of lower levels (rather than
the standard simulation of higher levels); how much effort does this
require? We hope to answer these questions while building the file
management system.

Organization of Personnel

A hierarchical structuring of personnel seems reasonable for
implementation and testing. At the top is the project leader whose
responsibility is to resolve conflicts between implementations of
levels and global considerations of the system as a whole. The proj-
ect leader also decides when and in what order levels of abstraction
should be implemented and tested. The actual implementation and
testing of a level of abstraction (or possibly several connected
levels) is carried out by an implementation and testing team. One
member of the team is the team leader; this person is responsible
for:

25

1) performing any design which may still be necessary. This
design must be cleared with the project leader who will
evaluate it with respect to global requirements. The design
will be expressed in structured programs.

2) assigning pieces of the level to team members for implementa-
tion. He should not do any further implementation himself.

3) reading the structured programs produced by team members and
satisfying himself that they are correct. He may ask team
members to justify their code to help in this task.

A) designing tests for the level of abstraction. These tests
must cover every relevant test case, as determined by the
legal ranges of input and output values of procedures in the
level. In addition, internal logic must be tested, and the
team leader may request the implementer to help him define
these tests.

Team members will implement procedures of the level as directed
by the team leader. As soon as a procedure has been implemented, it
becomes public and is entered in a notebook accessible to everyone.
It may be compiled and corrected, with the changes becoming public
as they occur, but no testing may be performed. If an implementer
has questions, he may ask the team leader, or he may consult the pub-
lic listings of other implemented procedures.

Since we intend to implement some of the levels in parallel,
more than one implementation and testing team will be active at once.
It is likely that project members will serve on more than one team,
and they may do so in different capacities. In particular, the
leader of one team could be an ordinary member of another team.

The Programming Secretary

In a system of any size there is a lot of work involved in simply
getting new information to those who need it, keeping decks up to
date, and so forth. The requirement that code be public adds to this
burden. If programmers must perform these tasks, a considerable por-
tion of their time is used in non-productive ways. In addition, there
is the danger that the work will not be done, and this work is essen-
tial to the reliability of the system. Therefore, the project should
have the services of a clerical person to do this work; we will call
this person the programming secretary as Millst*i does. The program-
ming secretary will perform all clerical tasks associated with the
project; this includes use of the computer to edit and compile pro-
grams, but ability to program is not necessary. Secretarial skills

26

are much more desirable. The programming secretary should work dir-
ectly for the project leader and could also do the secretarial tasks
discussed in the design phase; the work to be performed (in order of
priority) is:

(1) attend design meetings and update the design notebook and
other project documentation as directed by the project
leader;

(2) perform programming secretary tasks; and

(3) do other secretarial work on a low priority basis.

Project Documentation

The design notebook and guideline notebook started in the design
stage should be continued in the implementation and testing stage.
In addition, two new notebooks will be made; one containing a Test
History, and one containing an Error History.

Design Notebook

This notebook contains a chronological history of the development
of the system. During the implementation and testing stage, the
following information should be included in the design notebook:

(1) notes of all meetings. Generally brief summaries of deci-
sions rather than verbatim notes will be included. Meetings
will become less frequent as this stage progresses, but
will still be called when design decisions need to be made.
One reason for such decisions will be an analysis of design-
within- implementation decisions with respect to global con-
siderations. Another, which will hopefully not occur, will
be design errors discovered as implementation and testing
proceeds.

(2) Chronological information such as:

(a) date implementation of a level began (including ana-
lysis of why this particular order of implementation
was chosen);

(b) size of implementation and testing team;

(c) date implementation was finished;

(d) date testing began (and analysis of order);

27

(e) date testing finished. At this point some indication
of the difficulty of generating the test environment
should be included.

Guideline Notebook

This notebook should be continued as in the design phase. An
analysis of the success or failure of the guidelines will be an impor-
tant part of the entries in the guideline notebook. Information
about the success or failure of the management policies should be
included.

Test History

This notebook will include information about the running of tests
for the various levels. Its purpose is to make this information avail-
able so that if the system is modified in the future, tests for unaf-
fected levels can be rerun as insurance that the modifications did not
harm them in any way. Entries will include: an analysis of relevant
test cases, input testing these cases (decks will also be saved), and
a history of successful runs on these cases, with dumps of significant
information.

Error History

Many of the management procedures described in this paper are
aiming at the elimination of errors before testing begins. Therefore,
errors found during testing will be an indication of failure. Such
discoveries may be very serious, possibly indicating design errors;
information about these errors (if any) will be entered in the design
notebook. All other errors are implementation errors (although such
errors may also be serious in the sense that much recoding will be
required).

An entry should be made in the Error History notebook for each
implementation error uncovered during testing. This entry should tell:

(1) name of level of abstraction being tested;

(2) name of procedure in which error occurred;

(3) an analysis of the error. This analysis should be fairly
specific; i.e., "logic error" is not enough information.

(A) it is possible that the error uncovered occurs in a different
level of abstraction than the one being tested. This other
level will already have been tested and this would indicate

28

that some relevant test case had been ignored in those
tests. If this occurs, an analysis of the failure of the
test should be included (of course, a new test should be
added to the test history notebook as a result).

Documentation of the System

Two forms of documentation of a system are customary: user docu-
mentation and system documentation. The user documentation describes
the services provided by the system and tells the user how to make
use of these services; it explains very little about how the services
are provided. An outline of this document should be available from
the design phase; sections will be filled in as implementation pro-
gresses. New sections should not be needed, since these would indi-
cate some aspect of the system not considered in the design. If a
new section is needed, an analysis of why it is needed should be
entered in the design notebook.

System documentation is intended for the systems programmer who
is going to modify or maintain the system. It must contain sufficient
information to permit him to find the part of the system which con-
cerns him, to understand that part within the framework of the system
as a whole, and to understand the logic of the part itself. We are
hoping that the structured programs together with the function and
level specifications will constitute an adequate system documentation.
When the system is complete, we will analyze the structured programs
and specifications to see if they are in fact adequate, add any infor-
mation which is lacking, and make an entry in the guideline notebook
describing the additional information required.

29

REFERENCES

1. B. H. Liskov and E. Towster, "The Proof of Correctness Approach
to Reliable Systems," The MITRE Corporation, ESD-TR-71-222,
Bedford, Massachusetts, July 1971.

2. E. W. Dijkstra, "Structured Programming," Software Engineering
Techniques, J. N. Buxton and B. Randell, (eds.)» October 1969,
84-88.

3. E. W. Dijkstra, "The Structure of the "THE" - Multiprogramming
System," Communications of the ACM, 11, 5, May 1968, 341-346.

4. H. D. Mills, "Structured Programming in Large Systems," Debugging
Techniques in Large Systems, R. Rustin (ed.), Prentice Hall, Inc.,
Englewood Cliffs, New Jersey, 41-55.

5. M. Conway, "How Do Committees Invent?," Datamation, 14, 4, April,
1968, 28-31.

6. D. L. Parnas, "Information Distribution Aspects of Design Method-
ology," Technical Report, Department of Computer Science, Carnegie-
Mellon University, February 1971.

7. S. Madnick and J. Walsop,II, "A Modular Approach to File System
Design," AFIPS Conference Proceedings. 34, (1969), AFIPS Press,
Montvale, New Jersey, 1-13.

8. E. W. Dijkstra, "Notes on Structured Programming," Technische
Hogeschool, Eindhoven, The Netherlands, August 1969.

9. F. J. Corbato, "PL/1 as a Tool for Systems Programming," Datamation,
15, 5, (May 1969), 68-76.

10. W. A. Wulf, D. B. Russell, and A. N. Habermann, "BLISS: A Lan-
guage for Systems Programming," Communications of the ACM, 14, 12,
(December 1971), 780-790.

11. B. L. Clark and J. J. Horning, "The System Language for Project
SUE," Proceedings of a SIGPLAN Symposium on Languages for Systems
Implementation, SIGPLAN Notices, 6_, 9, (October 1971), 79-85.

12. D. L. Parnas, "On the Criteria to be Used in Decomposing Systems
into Modules," Technical Report CMU-CS-71-101, Carnegie-Mellon
University, August 1971.

30

13. A. Cohen, "Modular Programs: Defining the Module," Datamation,
18, 1, (January 1972), 34-37.

14. B. H. Liskov, "The Design of the Venus Operating System," Com-
munications of the ACM, 15, 3, (March 1972), 144-149.

15. P. Brinch Hansen, "The Nucleus of a Multiprogramming System,"
Communications of the ACM, 13, 4, (April 1970), 238-250.

16. P. J. Denning, "Third Generation Computer Systems," Computer
Surveys, 3_, 4, (December 1971), 175-216.

31

Security Classification

DOCUMENT CONTROL DATA R&D
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report i.v classified)

\Za, REPORT SECURITY C L A SSI Fl C A Tl

UNCLASSIFIED

1 ORIGINATING AC Tl VITY (Corpora le author)
The MITRE Corporation
P. O. Box 208
Bedford, Massachusetts 01730

2b. GROUP

3 REPORT TITLE

GUIDELINES FOR THE DESIGN AND IMPLEMENTATION OF RELIABLE
SOFTWARE SYSTEMS

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

3- AUTHORIS) (First name, middle initial, last name)

B. H. Liskov

6 REPORT DATE

FEBRUARY 1973
7a. TOTAL NO. OF PAGES

36
76. NO. OF REFS

16
8a. CONTRACT OR GRANT NO.

F19628-71-C-0002
6. PROJECT NO.

671A

9a. ORIGINATOR'S REPORT NUMBER(S)

ESD-TR-72-164

9b. OTHER REPORT NOISI (Any other numbers that may be assigned
this report)

MTR-2345
10 DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

II SUPPLEMENTARY NOTES 12. SPONSORING MILI TARY ACTIVITY

Deputy for Command and Management Systems
Electronic Systems Division, AFSC
L. G. Hanscom Field, Bedford, Mass. 01730

13 ABSTRACT

This document describes experimental guidelines governing the production of reliable
software systems. Both programming and management guidelines are proposed. The
programming guidelines are intended to enable programmers to cope with a complex
system effectively. The management guidelines describe an organization of personnel
intended to enhance the effect of the programming guidelines.

DD,FNr6,1473
Security Classification

Security Classification

KEY WORDS
ROLE IT

PROGRAMMING TEC HNIQUES

SOFTWARE DEVELOPMENT

SOFTWARE RELIABILITY

STRUCTURED PROGRAMMING

Security Classification

