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This report summarizes work tc Gz2te on a new method,
simple yet accura:e, feor analyzing the turbulent boundary
layer for the variation of sarfzce shear stress and heat
transfer under fairly arbitrary conditions. Earlier werk
was concerned with two-dimensior:al compressidle flow and

was summarized in the report by hite 2néd Christoph (197C)

and a subsequent published peper, White and Christoph
(1972). Another, more comprehensive paper, including cuch
effects as roughness end wall transpiration, has also been
published: White and Christoph (1971). The latter paper
is also confined to two-dimensional flow.

The present report extends this new theory t¢ +wo new

types of conditions: 1) a skin friction theory for

axisymmetric and three-dimensionel flow conditions; and
2) a new analysis for two-dimensional surface heat
transfer. The approach retains the earlier philosophy of
using only wall-releted temperature and velocity profiles
to develop integral relations for skin friction and heat

transfer which are devoid of shape factors or integral
thicknesses. Thus, for example. the axisymmetric theory

results in a single differential equation for wall skin
friction, with no other variables epdearing.

It is convenient to di.iie the report intc three
chapters. Th

f P

z first chapter develops a two-dimenslonal thec
for surface heat transfer (or Stanton rumber) for compress-

ibdle flow with arbitrary wall temperature. This extends the
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earlier repor:, white and Christoph {1970), which consiier-
ed -kin friction oniy and elirdnated the temperature thrcugh
a Crocco approximation. The new theory results in two first-
order ccoupled differential eguations for skin friction
ccefficlent and Stanton number. The theory is compared with
variable wall temperatiure ené rressure gradient experiments,
anc an approximate correlation is found which relatzs the
R2ynolids anelogy factor (ch/cf) to the local pressure
gradient.

The =econd chapter develops an analysis for compress-
ible axisywietric {low with Dressure gracdients. The boundery
layer 1s assiued to be thick, so thst transverse curvature
is irmortant, end temperature is eliminated through the
Crocco spproximation. The resalit is a single first-order
differential equatior for the skin friciion coefficient.
Comparison is made with experiments for supersonic flow
along thin >yiinders and bodles of revolution. The transverse
curvature effect can be quite large, causing skin froction
‘ncreases of 100% or more in bcth subsonic and supersonic
filows. Some earlier work on this type of analysis was
given in a pdper by White (1972).

The third and finsl chapter is concerned with three-
dimen~sional incompressible turbulent skin friction. The
distinguishing characteristic of a three-dimensiona~l
boundary layer is a crossflow normal to the freestream
direction, resulting in a vector wall shear stress which has

both streamwise and crossflow components. Since both shear

At .
N ,!4_'('\1.,{}' L .,
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components vary with bveth surface coordinaces, partial
differential equations are inevitable. The present analysis

uses voth a streamwlise and g8 crossilow law-of-the-wall to

equations for the two surface shear >omponencs. As with
previous work, there are no shape factors or *‘ntegral thick-
ness present. Also, the partial 4iffe-~~tia” equat:-ons

are of such simple fhma " ar They, 7P .0 mF ALt o & Ve
simple finite diffcrence technigue. U'» -+ .ciors - =z
spplied to several experimenisl flows K and *le = reement 1s
very rromicing, particularly considering tn= . lative

inaccuracy of present three-dimensiscn=} flow ~asurements.
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Thapter One

Heat Trarsfe: Analy:zis

Introducticn

Jed
b

The purpose of this chapter is 1o develop a method for
calculating heat trarsfer coefficients for arbitrarily high
Mach numbers, variable wall temperatures, and varisable
streamwise pressure gradients. The present analysis is
restricted to steady, two-dimensional flow of a perfect gas
in a compressible turbulent boundary layer. The latersl
pressure gradlient will be neglected since, although the
lateral gradient strongly infiuences the momentum thickness
in high Mach number flcws, it appears to have negligible
effect on the approach proposed here. Ty~ coupled, first
order, ordinary differential equations are derived which
have for dependent variables only the skin frietion coeffi-
cisnt and the Stanton number. Stanton numbers are calculat-
ed and compared to the data of Moretti and Kays {1965). A
relationship among skin friction, heat transfer, and pressure

gradient is presented.

1.2 Development of the New Method
The equations governing compressible, two-dimensional
turbulent boundary layer mean flow analyses were apparently

first given by Young (1953) in the following form:

-~ —— e a— e o




a) The continuity eguation:

%;(p u) + %y(p vi = © SERY

oy
-t

The momentum equation:
a -
pu g% + pv %% = - E§ + %% (-7

¢) The energy equation:

dn, an, y
pu s *+ PV 37 = 3§(q 5 urt) {i-3,

d) The perfect gas law:

]

) ¢ RT, or: T/Tw = p./pP (1-5)

L]

it

Here h = c T + u?f2 is the stagnetion enthalpy, and the
sympols q &and 1 represent the heat flux and shear

stress, respectively. That is,
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Tnere are six unknowns (¢ ,u,v,ho,q,r) and only four
equations, so that further relations are needed. The
finite difference methods model the eddy viscosity and eddy

conductivity, thus correlating the variables g and T with
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Zocal conditions, and then attack the complete governing
equations. The so~called von Karman integral methods
eiiminate p v from equations (1-2; and (1-3) by eguation
{1-1} and then integrate with respect to y across the entire
boundary layer, thus obtaining the ven Kirman integral
relations. Additional relations for these integral methods
are trhen brought in as correiations between integral param-
eters.

The compressibie fiow analysis of White and Christoph
(1975, 1972) was based on Crocco's approximation for the

energy equation - cf, Schlichting (1363):
Prandtl number = unity; T = & + bu + cug, (1-€)

where a,b,c are determined from boundary conditions.
Basically, the analysis of White and Christoph (1570.1372)
non-dimensionalizes the velocity u with respect to wall
quantities and then integrates equations (1-1) and (1-2)
with respect to the law-of-the-wall variable y = yu%*/ Vs
where u* = ('rw/pw)l/2

Crocco's upproximation one can compute local heat transfer

is the friction velocity. With

only through & Reynolds analogy. Crocco's approximation
will not be made here, Instead, the energy equation, as
given by equation (1-3), will be used. The velocity u

and the temperature T are non-dimensionalized as follows:

3
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u’ = u{x,y)/ur(x) end T = T{x,7)/T (%) . (3-7)

: . y + +
Quantitative expressions for u ani T eare needed,
The cimpi= incompressibvle formula

-

&= 2.5 1n(y+) + 3.5 {1-8)

and a similar expressiour for ™" are not adequate, bpecause
we need tc include compressivility, heat transfer, and
pressure gradiesnt effects in th- velocity and temperature
correlations. An anaiytical approach of finding expressions

+
for u

and T was desired, so that as little empiricism as
possible wouid be introduced into the present method., The
cheme adopted was based on the eddy viscosity approach of
Deissler (1959), which assumed that the Prandtl mixing
length approximation could be extended to the variable
density case with no further changes. Let us first derive

an. exrression for u+. The total shear stress is related

to an eddy viscosity and mixing length as foliows:

-
i}
—~~

-
+
M
o/
«ig
-
~
ot
)
L
——

where g = p,:gy‘lg-;{

and x = C.4 is von Kirmsn's constant. Also, near the wali,




the boundary layer 1s agproximately a Couette flow with

regiigible acceieration, sc that equation (1-2) becomes

: d
T+ (1-10)

Non-dimensionalizing equations (1-3) and (1-137) with respect
to wall varishles, we neglect the laminar portion of the
tota: shear in equation (1-39) (This step greatly simplifies
the final form of u’ but has a negiigivlie effect on the
numerical values of u+.). Equating equations (1-9) and

{(1-10) resuits in

7/
awt _ (tta+ oyt (1-11)
2 + +
2 4 Ky
where
\J' d
T = T (1-12)
w

This is th2 same parameter a , termed the "pressure
gradient" parameter, which appeared in White's (19692)
analysis, and which was susgested t7 the work of Mellor
(1966). It is an ideal parameter for this method because

it 15 directly related to the shear stress without any




-

integral thicknesses. We now need sn expression for T+

Foliowing the same approach, the total heat flux is related

to an eddy concductivity as follows:

c
b AT B
g = ¥ (u +¢) T (z-13

where PT is the turbulent Prandtl nw..er. Near the wall,

one obtains from eguation (1-3)

q = ut +q (1-1%;

Again, non-dimensionalizing equations (1-13) and (1-14),
neglecting the laminar portion of the total heat flux in
egustion (1-13), and equating equaticns (1-13) and (1-14)

resuits in

3Tt _ (B2yut(l+a yhyrt M2 (1-15;
ay+ ‘y+ (1+ a y+)1/?’
where
Ppy an*g
g = m and Yy = -Q_CT (1_1‘(_\,‘
w P w p VW

The parameters B and vy will be referred to as the "heat




transfer” perameter and tne "compressibility” parameter,
respectively. Tne effects of the parameters a , B,
and y on u' are shown in Figure (1-1). Positive o
(adverse pressure gradient) and positive B  {cold wall
heat transfer) raise at above the incompressible lLogarith-
mic law, and negative a (favorable pressure gradient)
and negative B (hot wall heat transfer) have the opposite
effect, The parameter vy , which is always positive,
lowers u+ celow the incomvressible result, If more than
one cf these parameters are nonzero, the effect is roughly
an additive one, Precisely these =2ffects have been found
experimentally, e.g., Kepler and O'Brien (1959), lLee et al
(1969), and Brott el al (1969). The "heat transfer"and
"compressibility” parameters have the same qualitative
effect on T' as they do on u'. The "pressure gradient”
parameter alone does not affect T+. However, a positive

a combined with either a positive B or a negat.ve

B depresses the B8 effect on . A negative a has
+he opposite effect, The compressibility effect is
increased with a positive a and decreased with a nega-
tive B . These results are shown in Figure (1-2).

Equations (1-11) and (1-15) give, for zero pressure

gradient,

art 3Tt dy
dut dy ou

i
]

< B-2yu' (1-17)

10




Effect of positive « (adverse
pressure gradient) and
positive 8 (cold wall / 5

heat transfer). /
/
/
/
/

-
-
-
/

Effect of vy {compressibility},
negative g (favorable pressure
gradient), and negative 8
(hot wall heat transfer).

—
-

(v cannot be negative)

+
log(y )

Figure 1.1. ILLUSTRATION OF THE EFFECT OF VARIOUS
PARAMETERS ON THE VELOCITY LAW-OF-THE-WALL
FOR COMPRESSIBLE TURBULENT FLOW.
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Figure 1.2. ILLUSTRATION OF THE EFFECT COFf VARIOUS
PARAMETERS ON THE TEMPERATURE LAW-OF-THE-WALL
FOR COMPRESSIBLE TURBULENT FLOW,
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In.egrating equation (1-17) ¢ives

X

Fo1s gut - yut, (1-1€)

T

which is the form of Crocco's relation used by White snd
Christoph (1970, 1972). If a does no%t equal zero, one
then obtains

+ ) + +
du 1t ay

which is not a Crocco relation.
Iet us continue the method of solution, by first

defining a compressible stream function ¢ as follows

g%— = pu; %%— = - PV (1-20)

Eliminating p v from eguations (1-2) and (1-3) by
equation (1-20), and non-dimensic(nalizing u and T as in

equation (1-7) glves

*
p uru’ %;(u*u+) - %§~ %——-?;;(u*u+) =
W
- %% + :* él} (1-21)
w oy

13
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and

2..+2

+ 3 d¢ u* 3 + u*y _

(p u¥a TS5 By+, (CPT;T 4--7?--) =
W

*
%—-— _B__; (ut + q) (1-22)
w oy
The pressure gradient in equation (1-21) is related to the

freestream conditions by the inviscid Bernoulli relation:

%g = - 90,0 HES (1-23)

The y'-derivatives in equations (1-71) and (1-22) are no
problem because these equations are going to be integrated
with reespect to y¢, but the x-derivatives must dbe calculated,
The functionsl relationships of u', T, and ¢ A, (% has

dimensions of viscosity) are

o, T, ¢4, = fen(y', 2,8, V) {1-24)

The r-derivatives are calculated by using the chain rule:

P BY 3 1
1 T (2-.2)
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7or skin friction arnc heat <rans

'y

er calculations, it is

cenvenient <o define furtnher non-cdimensionalizations:

.. ‘e . ~ym L/2
x* = x/L 7 = JE/UO : A = ((/bf) /
(1-26)
2
+ 7T /™ - = T/ -
= T/T : L qw-e,(perTw) ,
where L, Uo’ and T are constan: reference values. Now

use equations (1-2€) in the definitions for v, a, B, and
v and carry out the partial derivatives in equation (1-25).
In so doing, derivatives of Vs Pus and Te will arise.
Eliminate such derivatives in Favor of (dT_/dx*) and
(dv/dx*) through eq.ation (1-<} and a viscosity power-law
assumntion i «TY, where T is taken here as 0.67 for air.

Also use *he rela*ion between velocity, pressure,

and
temperature in the Ireestream:
B daT
v _ de _ -k e _ - A
k Me —V = - —‘; = ?K:l Te ’ (k = CP/CV) . (.!.-;7)

The net result is that equation (1-25) can now be written as:

dyr, - -
L § 1 + 2 P A a
e Tl ax¥ Y —"”:y + 3zt 3 - v 5

TIT o4 oA n D - a - , 3 (1/'\])" a

+ = ¥ ?::-;"' + 73 =3 + zv v, \l R =
(1-28)

17 Y -

T . A 2 B o
+-€- -y (‘J *1/2)—1‘:}‘?*‘0("'*'1/2)5—5-?%_

1 Dol a -~ (kfl) 2w A a 2
*Lax st 2""§v CE-VNy -8 ovsg

Pt
n

R e —

) u:p"a"ﬁ' ke s



where the primes denote differentiaticn with recpect to x¥.
Equazion (1-28) is now substitutec in<o equations (1-21)

and (1-22) and the resulting egquations inegrated ‘rom

+

v =0 (== ) O y o= g (+ = 0j. The result is
Qo s o
d\ ) (i/l’) Hf\ )‘1 dlh
~lli-y3)- 1 s - = <y
dx* ‘1 < E] Y, ox¥ 2
L 2
VT, B k+1 . . gy PR
+tay 5 1 —51-3H3-( = ) M; (¢H2~“1~d9 f1-29)
£ o
-\ % af+~+1) Ho+H, = RV
and
404 - "
dxl (H-3ae) - Ay (1/V) He i il LV
ax¥ 5 HE' RL 1? ax¥ i,
Vi (k1) 2 -
- Xl v H5+_'~h74' 5 Me (aﬂé—Hs-H.?)_ (1—70)

t1- - T o FTL 3
-\ F ,“(m+1/2)H6+H8< = RL( e/*w) bk vV

where RL is an effective RZeynolds number deflned as:
UL u T 1/2
0 e e
R = -— () () . (1-31)
L ve u"d Tw
The H1 coefficients are integrals involving u+, T+ and the
law-of-the-wall parameters; they are il-ted in Appendix A.
It is possible to numerically evaiuate these H's once

+ +

aut aut aut ATt Attt sy
expressions for the derivatives =’ 3B’ =3B %’
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%%—, and %%~ are found. FExpressions for these derivatives
are vbtained by differentiating, with respect to «a, 8, and

v, the previously derived integrals for u+, T+, ancd ¢,

Egns.(1-11,15,20) respectively, at a fixed y+. Integral

expressions for these partial derivatives ar= given in

Appendix A; the change of variables aut = (>u+/=y+)dy+ has
been made. The coefficients H1 are then evaluated by

integrating the relations in Appendix A from u+ =0 to

u+ = u = 2, (T /T )l/efor various values of a, B, and
e 1‘V'e "w

Y.

*
The turbulent Prandtl number P, 1is taken as 0.9 .

The starting value of T@ is 1.0, and the initial value of

v’ 1s taken to be 0.1108 = exp(-5.5/2.5) to match with the

incompressible logarithmic law (Eqn.1-8) in the limit.

Curve
fit expressions for the coefficients

Appendix A.

Hi are also given in

The parameiers a, 8, and vy are releated to the dependent

variables xl and x2 as follows:

a = a3 (V)R

+2 - gk-l) 2
Yue PT 2 Me (Te/Tw)

+
Bue = P_ A

. i Ay M (k-1)(T,/T,)

*

PT = 0.9 was found experimentally by Simpson, Whitter and
Moffat (1970). It is also the value assumed in most

finite-difference calculations, e.g. Cebeci (1971).

17
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Equations (1-29) and (1-20} are, then, two coupled,
first order, nonlinear, ordinary differential equations in

and 1, only. The freestream Mach number and wall tempera-

M 2
ture distributions must be known, plus the values of xl and
x2 at some initial x¥. Unfortunately, 5+ appears in
equation (1-29) and must be calculated. However, st need
not ba known precisely for accurate calculations of L5Y and
12. An approximate way of calculating 5+, and the onse
recommended, is to first assume 2 Crocco law of the form in
equation (1-18). With this expression for T , equaticn

(2-11) may be integrated analytically as

~o
ain b (cYg ‘B) = 8in~* (EYuo B) +
(1-33)
— P+l -
v P-1
+ —Z .2 (P-P ) + 1n (m P—Z-‘j-)— y
2, ,031/72

where Q= (8 and P = (1+0Y+)1/2

Equation (1-33) needs to be initialized. By plotting ut
versus y+, as in Pigure 1-1, it is seen that the curves for
various values of a, B aad Y converge at y+ slightly less
than ten. The initial conditions u: = 0 and y; = 0.1108
were tazken. Unfortunately, y+ is ar implicit function of
u" so that an iteration scheme must be used.

The dependent varieble \2 is directly related to the
Stanton number

Ap(k-1) 3 (Te/Tw)

°h T (T AT (1-34)

18




where the Stanton number has been cdefined as

e, = —————r . i-35
h o op e UT ) ( )

e T Taw

Since X, is defined as (2/cf)l/2, equations (1-29) and
(1-30) give ¢, and ¢, directly - no auxiliary information
is needed about the behavior of integral thickmness or shape
factors. Another impcrtant and unique property of equations
{(1-29) and (1-30) is an explicit flow separatior criterion.
As separation 1s approached, dllfdz* approaches infinity

and hence Ce approaches zerc ~ which is precisely the
definition of ‘wo-dimensional separation. One need not
worry about attempting to predict separation according to

a particular value of the stape factor.

One basic assumption is made in the development of the
present method; tha:. ls, that the velocity and the tempera-
ture profiles, correlated L¥ inner variables only, are valid
all the way to the edge of the boundary layer. This
assumption leads to = siight miscalculation in 6+, as seen
by Figure 1-3. The outer wake is not predicted accurately.
But, as was pointed out earlier, it is not terriovly
imrortant to know 5+ precisely in order to obtain accurate
skin friction and heat* transfer coefficients. Also, in a
supersonic turbulent boundary layer, the wake almost
disappears. Of course, there will be some error in the
romentum and the displacement thicknesses, 1f one wishes to

calculete them. In passing, it should be noted that, from

19
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PRESENT THEORY:
EQN. (1-33)

TRUE "WAKE"

NCOMPRESSIBLE
LOGARITHMIC
LAW, EQON. (1-8)

Figure 1-2.
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1og(y+)

COMPARISON OF THE PRESENT NEAR-WALL
THEORY WITH THE ACTUAL LAW-OF-THE-WAKE.
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+
equation {i-11), if 2y is greater than minus one, then

+ +

2
;$+ };§+! <« O. Thus the velocity gradient is negative, or
tne velocity insice *he boundary .2yer has become greater
than the freestream veicci-v. 70 aveid this difficulty,

it is suggested the* one take ﬁ;ax = -1/2 in the case of
a favorable pressure gradient.

This is not believed to

handicap the present methoc.

(28]

comparison With Heat Traznsfer Experiments
1.3.1 Flat Plate ata

Pirst, i1t seems appropriate to consicder a specisal case,
daT dq :
_—w;._.“':—::-ﬁ:“,
namely when 9x % ax v} For this case, the
present analysic reduces to the analysis given by White and

Christoph (197C, 197:z). Egua-ion (1-29) reduces to:

a,
which integrates to:
0.455
:f - :’ 2 " g ~- i )l « (l~3’7;
AT 0.06 (T_/T, )R /A

where A is the van iriest flat rlate parameter, given by

equation (2-32) and plotte¢ in Figure z-3.
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"his result is expressed in terms of a flat plate
compressibllity transformation for skin friction as follows

(in the notation »f Spalding and Chi (1964)):

- 4 2
[d ——I‘:cf

P . (RxFRx) where F = A

c "in
(1-38)

- m 1+q
and F = (‘e/Tw) /A

The present theory and five other theories, the five most
porular and accurate xnoimn, were compared to 427 adiabatic
and 230 cold wall heat transfer data points. The five

other theories were cast in the same form as equation (1-38),
but of course Fc and ng were differ-nt for each theory.

All theories were computed with the incompressible skin
friction formula of Spalding and Chi (19654), which apparent-
ly gives the best agreement with incompressible friction
data. Both the root mean square error and the mean abso-
lute error were computed. The results are shown in Table
1-1. Fo: adiabatic wall, the methods of Spslding and Chi
(1964), van Driest (1956b) and the present theory are
equally accurate. For cold wall heat transfer, the present
theory has the lowest percent error, with Mcore (1962)
second. The rpresent method is thus the most accurate flat
plate theory avallable at the presen: time, with.the added
advantage that it can be extended to more general freestream

and wall conditions (White and Christoph 1971).
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TABLE 1-1

COMPARISON OF SIX THEORIES WITH FPLAT PLATE FRICTION DATA

ADIABATIC: 427 POINTS COLD WALL: 230 FOINTS
AUTHOR RMS % ERROR| ABS % ERROR ||RMS % ERROR |ABS % ERROR
Fekert (1955) 12,44 9.06 29.45 25.56
Moore (1962) 8.8&7 6.54 17.69 13.08
Sommer and 9.40 7.77 23.55 20.14
Short (1955) : - 1 . .
Spald &
e (%ggu) 7.59 5. 46 21.13 16.94
Van Criest .55 5.45 17.46 13.81
#2 {1956b) T ) :
Present B
Theory, 7.80 5.2¢ 14.31 11.28
Eqn. (1-37)
1 -~ Y/2
Noie: PFMS Error = (§ ¢ _;) ;
MEAN ABS Error = % T el

Data Source:

23
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1.3.2 Data of Moretti and Kavs

Next, the present method was compared to the data cf
Moretti and Kays (1965). Their data were taken in a
rectangular duct which followed a system of rectanguler
nozzles. This test section was designed to provide various
desired distributions of stream velocity and surface tempera-
ture. The velocities and heat transfer rates for these
experiments were low, so the bouncary layers were essentially
constant property layers. However, the important effec*s
of wall temperature variation and freestream velocity
variation were present. In fact, predicting heat transfer
under varying freestream conditions, especially accelerat-
ing flows, has become of practical concern in such probiems
as cooling of gas turbine blades and rocket nozzles.

Figure 1-4 shows the Stanton number as a function of
position along the rectangula—- duct for a constant f{ree-
stream velocity and for a sharp Cecrease in the wall . empera-
ture. No data was given by More .ti anc Fays {1965) over the
first one-third of the flow field. ince the Stanton
number must be known at the starting point of integration of
equations (1-29) and (1-30), and since it was desired to
predict the effect of the wall temperature decrease which
occurred in the firs. one-third of the flow field, equation-
(1-29) and (1-30) we'e integrated forward and backward from
the first data poinc. Skin friction coefficients were not

given by Moretti and Kays, so the starting value of \1 was

24
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chosen such that Cy, = 0.2 c,.

ture distribution was chosen to be ¢f the form

The curve-fit wall tempera-

¥O

where (a,b,c) were fitted constants and xf was the x*

position where the wall temperature change started. The

present theory and the digital computer finite difference

method of Herring and Mellor (13.C; are compared to the

data in Figure 1-4. Agreement by both methods 1s excellent.

The second Stanton number distribution measured by
Moretti and Kays consisted of a wall temperature change plus
an acceleraiing freestrear velocity. Again, the wall
temperature distribution was fitted by equation (1-39),

but the freestream velocity distribution was fitted by a

polynomial. The present method and the method of Herring

and Mellor are compared with the data in Figure 1-5. Once

again both methods accuralely vredict the data. A more

severe test of the present method, and of the methed of

Herring and Mellor, ic the s*teep favorable pressure
gradient as given by Moretti and Keys' data in Figure 1-6.
If one helieves in a constant Reynolds analogy factor, one
would expect an increase in the Stanton number o- at most a
constant or slightly decrzasing Stanton number. As seen in

Pigure 1-6, the Stanton number decrz2ases considerably.

Both the present theory and the method of Herring and Mellor

= = 4a+ b cos 1(x*—x$)/c“ (1-39)
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qualitatively predict this decrease. However, neither the
present method nor the method of Herring and Mellcr are
able %o fully recover after the favorable pressure gradien*
has ended - the present method doing somewhat better than
the method of Herring and Mellor.

The effect of an adverse pressure gradient on the
Stanton number is shown in ¥igure 1-7. There is z notice-
able difference between the present method and the methed
of Herring and Mellor toward the end of the flow region.
The present method shows a slight increase in the Stanton
number, whereas Herring and Mellor show a slight decrease.
The Jgats 2f Moretti and Kays remain approximately constant

and are in reasonable agreement with either theory.

1.4 Conclusion

The purpose of this chapter was to develop a simple
and accurate method for analyzing heat transfer and skin “ric-
tion in two-dimensional, compressible turbulent boundary
layers. This method uses law-o1r-the-wall velocity anrd
temperature correlations which incluvde pressure graident,
heat transfer, and compressivility effects. After integrat-
ing the continuity, momentum, and energy equations across
the boundary layer, iwo coupled differentisl equations
result which have as thelr dependent variables the skin
fric+ion ccefficient and the Stanton number. Contrary to

the von Karman techr.ique, integral thicknesses and shape

to
(@)




factors are not used. The present heat transfer analysis,
which is for arbltrary ‘reestream velocity and wall
temperature distributions, compares favorably with the data
of Moretti and Xays (1925) and is as accurate as the
sophisticated finite difference technique of Herring and
Mellor (19€8).




Chapter ™o

Axisymmetric Comrressible Flow

2.1 Introduction

In this chapter, our tasic aprroach is applied to
derive a methed for computing skin friction in a thick
axisymmetric, compressible turbulent toundary layer. The
analysis is restricted tl steady “low and a rerfect gas is
assumed for convenience. The freestream Msch number and
pressure gredient may be arbitrarily large and variable.
Nonadiabatic wall temperature is allowable, but the
variations should be "modest", that is, the streamwise
derivative of wall temper._cure is neglected. The tempera-
ture is eliminated in favor of velocity through the Crocco
approximation. 1t has alrezdy teen shown that this
simplification has little effect on the accuracy of skin
friction computation (White and Christoph 1972).

The transverse curvature effect is introduced through
a coordinate change suggested by Rao (1367). The resulting
differeritial equation for skin friction (Eq. 2-25) is thus
valid for arbltrarily large ratios of the boundary leyer
thickness to the body racdius.

Rao's transformation was used by white {1972) to
compute the skin friction in turvulent incompressible flow
rast a long cylinder of constant radius. The basic results

of that paper can be summarized es two formulas for turbu-
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lent incompressible skin fric<ion on very long cylinders:

-

0.0015 + 0.20 + 0.01€ (x/ro)o'u_ 3;1/3
(2-1)

. " . 0.4 -1/

5 0.0015 + 0.30 + 0.015 (L/r,) A3

(@]
'}

O
]

Here r, is the cylinder radius, x is the axial distance
from the leading edge, and 2= ch/\J is the local Reynolds
number for an assumed constant ‘reestream velocity Uo. The
quantity CD is the total friction drag coefficient on a
cylinder of length L. Equztinns (2-1) are accurate to + 5%
over the entire turbulent flow range (106<Ry < 109) and for
cylinder lengths up to (L/ro) = 106. Similar results will
be cbtained here for compressible flow along a cylinder.

2.2 The Axisymmeiric Law-of-the-Wall

In order to use the rresent method, it is necessary *o
have a realistic expression for the law-of-the-wall in a
thick axisymmetric boundary layer. This law differs
considerably from the two-dimensional law because of the
effect of the radial variable in the momen’um equatiocn.
With reference to Figure 2-1, let the body radius be ro(x).
Within the sublayer, both the convective acceleration and
the pressure gradient terms in the momerntum equetion ere

negligivle. The equation reduces to:

A A 2
;;(PT; = 0 ,

|93
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. = = kS au
or: rt = r, g, = constant £ rp 2o (2-2)

With 1t thus approximated by the viscous stress only, we may
integrate Eqn. (2-2) to obtain an approximate velocity

profile in the sublayer:

u = r
Mo o Tw

in(r/r,) (2-3)

If we now define the shear velocity u* such that w = Py u®s,

Eqn. (2-3) may be rewritten in law-of-the-wall form:

w" = rlin(r/r)) , (SUBLAYER) (2-4)

where u' = u/ u* and r; = pwu*ro/uw. Equation (2-4) is in

marked contrast to the two-dimensional sublayer, for which

U (x) _®(x)

Figure 2.1. DEFINITION SKETCH ILLUSTRATING COORDINATES
FCR AXISYYMETRIC BOUNDARY LAYER FLOW.
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u+ simply equals y+, as in Chapter 1. Since y+ correlates
the entire wall region in two-dimensional flow, 1t was
suggested by Rao (19€7) that *he variable rg 1n(r/ro) in
Eqn. (2-4) would similarly correlate an axisymmetric flow.
Thus Rao's hypothesis for incompressible axisymmetric flow

is that

ut o= fen(Y"), where Y = Ty ln(r/ro) . (e-5)

Equation (2-4) would hold in the sublayer, while the loga-

rithmic overlap layer would be characterized by the relation

u = 1D(Y+) + B ( = 0.40, B = 5-5) (2'6)

o1
<
Rao (1967) and later white (1972) showed that Eqn. (2-6)
is an excellent approximation for = wide variely of thick
axisymmetric boundary layers. As the boundary layer becomes
thicker, this axisymmetric wall law tecomes valid across
the entire boundary layer, that is, the outer or "wake"
layer becomes vanishingly small.
Note that Egn. (2-6) 1is consistent with a turbulent
eddy viscosity € and mixing iength & given by

p & Y° (r/r.} %% cos(a) , (2-7)

(@]
]

or & <Y (r/ro)1/2 ’

where o = tan'l(dro/dx). Por this report, we shall take
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» = 0°, that is, we neglect the slope of the bodr and take,
approximately, r = rg t Y- The error is negligible except
near the stagnatlion point, which does not concern us. Since
Y as defined by Egn. {Z2-5) is smaller than y, 2 as defined
by Egn. (2-7) is smaller than its two-dimensional eguivalent
£ = Ky, the physical explanation being tha* a2 cylinder has
less ability to create curbulent shear than a plane surface.
Equation (2-7) may be used to derive a law-of-the-wall
for compressible flow with pressure gradient. As in the
two-dimensional case (White and Christoph 1971), we neglect
the convective axceleration, and the axisymmetric streamwi:e

momentum equation becomes

2 dpe . I
.}_r(r 1’) - r T = 0 (2‘8)

Integrating from the wall (r=ro) outward, we have:

dp
1 e 2 2
rt = rgegt s (77 -rg)

(2-9)

This mav be integrated ageain by assuming that viscous shear
is negligible and that . = € (au/ay), where ¢ 1is given by
Egn. (2-7). Substituting for . and rearranging in terms of

law-cf~the-wall variables, we obtain:

+ . +, 1/z
du 1 1/z - a _+ Y /r =
e (-7 R W A (LA S
ay’ eyt ¥ 20 ’
(2-10)
where a = Vg pe




The pressure gradient parameter a is the same quantity
which appeared in previous analyses for two-dimensional
flew (Chapter 1 and White 1969).

Equation (2-10) can be integrated for the velocity
profrile u+(Y+) if we make an sssumption about the density
variation. Since we are concerned only with predicting

skin friction, we assume a perfect gas,
P = pRT, or: pH/p = TH/T . (2-11)

plus a Crocco approximation, T = a + b u + ¢ u2, which may

be rewritten in terms of wall variables as follows:

+ +2 -
/T, = 1+B8u - yu 2 Pw/P , (2-12)

where 8 and vy are the same parameters used in previous

work (White and Christoph 1970, 1972):

heat transfer parameter;

(2-13)
compressibllity psrameter.

B = g /(T Kk, )

r u*e/( 2, T,)

<
1

Equations {2-10) and (2-12) may row be combined and integrat-
ed to obtain the desired law-of-the-wall u+(Y+,a,5,y). or
particuler interest is a closed form which can be obtained

for the special case (a=0,8=0):
u'(1%,0,0,v) = Wl' sin/T 1n(y'/v7) (2-14)

where we take Y; = 0.1108 so that the formule reduces in the

limit of large radius to the two-dimensional law-of-the-wall.
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Equation (2-14) corresponds to supersonic adiabatic flow
along & cylinder, for which experimental thick boundary
layer data is available {Richmond 1957).

Some velocity profiles obtalned from integrating
Eqn. (2-10) are shown in Figure 2-2. The effect is generally
the same as in the two-dimensional flow study (White and
Christoph 1970), with positive a (adverse pressure gradient)
raising the curves above the incompressible log law and vy
(the compressibility effect) tending to lower the curves.
Note that the parameter r: has no effect on the curves

unless a is finite.

2.3 Derivation of the Besic Differential Equation
We now assumne tnait the compressible law-of-the-wall
for a thick axisymmetric turbulent boundsry layer is known

as the integrated combination of Equations (2-10) and (2-12):
+

Y 21
w(vha,8,¢0) = [ wpe(l +But - w2
0 (2-15)

a 21{’“/*"‘l +
M -%o (3 -e ro)j2 4y

This relation, 1f accepted as a reasonabls aspproximation
across the entire boundary layer, provides closure to the
problem of computing the wall shear stress on & body of
revolution. That is, we can now derive a single different-
ial equation for Cf(x) under arbitrary flow conditions.

The boundary layer equations for compressible, axi-

symmetric, turbulent boundary layer flow are given by, for
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Figure 2-2. SOME EXAMPLES OF THE AXISYMMETRIC LAW-OF-THE-WALL,
COMPUTED FROM EQUATIONS (2-10) and (2-12).
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example, Herring and Melior (196€):
a) Continuity:

&:—i(pur) + Z(pvr) = 0 (2-16)

2y

b) Momentum:

Da *u dpn
puT T3 - pUr T = - gt
(2-17)
2.(r7
(7
c) Energy:
ah =h r 1
o ~
pur — + VT o = %? r(q + ») (2-18)

where the notatiion is the same as in Figure 2-1. Az in
Chapter 1, the quantity ho = h + u2/2 is the stagnation
enthalpy. Now in fact Egn. (2-16), although included for
completeness, is not needed here, since the temperature relates
directly to velocity through the Crocco approximation,
Egn. {2-12). As mentioned, the eifect of this simplification
upon skin {riction is slight, but knowledge o the 3tanton
number distribution is lost. If desired, one could extend
the temperature wall law technique of Chapter i to this axi-
symnetric case for computing wall heat transfer.

The continuity relation (2-1€) is satisfied identically
by defining an axisymmetric stream function ¢ such that:

§§ =pur ; f% = -pvr {2-19)

e —— i — it~ . ——— =

eyt




Since p, u, r, and y are each related to wall variables, it
fcllows from the first of Eqns. (2-19) that § itself is a

law-of-the-wall -rariable:

+
Y -
L +
?/kwro = 5 %_ (% )‘ u ay’ = fcnrY ,a,ﬁ,%rzj (2-20)
0 w o

This fact is important in compucing the velceity v from the
second of Egns. (2-19). Utilizing wall law variables

wherever possible, the momentum relation, Eqn. (2-17), now

becomes:
dp
- 2 rorat) - 22 X2 ot = - e
pr v u’ So(veu) - =% - >y+("“ ) T a&x
(2—21)
w*
+ = 2(re)
w y

where @ = (,w/pw}elis the wall firiction velocity. The y+
derivatives are related £o Rao's variable el through the

relation

A r
e - I (2-22)

¥y o Y

which follows from Eqn. (2-5). The x derivatives must de
handled by the chain rule, since each of the parameters
(a,B,Y, r:) in the law-of-tne-wall is a function of x.

Thus we substitute

*
3
»
i

+
L:ﬁL_+EEE_+AB_BB.+ML
X AX Ayt AX aa AX A - X av
. (2-23)
+>r0>
AX




In carrying out the partial derivatives in Egn. (2-23}), we
rctain our previous approximation (White and Christoph 1970,
1972) of neglecting the derivatives with respect to x cf

Py Tw’ s and q, wherever they apgeszr in 2,8, v, ete. It
is felt that these terms have only a small effect on wall
skin friction.

It remains only to carry out our basic integral
procedure, namely, comblning Egqns. {2-21, 22, 23) snd inte-
grating the entire equation with respect tc Y+ across the
boundary layer from (Y =0, . = w) to (yt = Y:,¢ = 0).

The result is a single first order differential equation for
the wall frictlon velocity u¥(x). It is convenient <o

define dimensionless variables as in Chapter 1:

x = ‘1276f 3 x* = x/L ; V =1U/(x)/U, , (2-24)

e

-~

where C, = 2¢w/(peU§), and L and U are suitable reference
values. In terms of these variables, the final integral

momentum equation becomes

; I

Ay ia. - 3y - A - =
xlhy - 38)) + 5 a(F - A)) %T A (1/V)'r = RV
1 27 (e-25
BT

o}

1
where Ry = (U L/v,)(i, " Y(To/T,)Z enc ¥ = %— 22

ri(e ?Y;/rg - 1).
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Equation (2-25) is the central result of this chapter - 2
first order ordinary differential equation fcr A(x*),
subject only to some assumed initial condition l(x*o) and

known flow conditions U (x), T (x), T (x), r_(x), and M_(x).

The functions (A, A,, A,) arise from the integration

across the boundary layer and are defined as follows:

+
Ye . + + + + + +
Ay = g {(Te/Tw)exP(QY /To)r ut? _ By g& + 2y u %% ]
+ +
B__ 3w 2y w2} o4t
+ ———— —r— - ——t— d - 6
BT, 38 F w, T ay 3yt Y (2-26)
+
Ye T + +
= r{_= exp(21'+/r+ ot 24 1 3 3u V1 4t
A; 31T, o) U 33 o & 3yt (z-27)
b4+ +
= I + .t P P + To +
Ay = (u/T) exp{cY /r ) r(u’) - r(v) t ay
L \ r b4
] £ ° MwTo } (2-28)
— + Ty 2 3
where 1() = (Y - ) 5 *+ % ar,

=
w
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In order for Eqn. (2-25) to be viable, it is necessary to
heve analytic approximations for these coefficient functions.
After extensive numericel computation of Egns. (2--26, 27,
28), using Eqn. (2-15) for the wall law, we offer the
following curve-fit approximations:

”~ ~ 2
N 8.0exp{°"“5“°"s‘“°“’°185 },

1 3 A (1 +0.2Q) (2-29)
where S = exp(C.42A /A)/r: ,
re = Rr /(A1) ,
QR = %'ar: {exp(2Y:/r:) -1} .
A, = 0. 06 expf 0.82 A(I igg 370.0018 21 (2-30)
and where
Y. 2 0.1108 exp( 0.5 - 2.2 ¢¥/3), (2-31)
where £ = }?sin-l {(ova*- 8)/(8%+ 402} .

Equation (2-31) is a curve-7it to the law-of-the-wall itself’,
Egn.(2-15), and Y: is needed to evaluate the prgssure gradient
parameter Q above. Kote that, in the 1limit of very large

r; , Q approaches (ab+), which is the incompressible two-
dimensional parameter originally used by White (1963).

4y
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The parameter "A" in these formulas accounts for the
combined effect of wall temperature and Mach number, as
was done in white and Christoph (1972). It is the same

parameter defined In a flat plate analysis by van LCriest
(19%6):

1/2
A= (T, /T, - 1) /sin"Y(a/e) + sin-l(b/c)i]. , (2-32)

vhere a = (Taw+Tw)/Te -2 b = (Taw-Tw)/Te

c? = I'('raw+Tw)/'re]2 - 4T /T,

Values of A for various Mach numbers and wall temperature
ratios are snown in Figure 2-3. Note that the incompressible
adiabatic 1limit is A = 1.

2.4 Comparison with Experiment

Equation (2-25) may be used to compute the turbulent
skin friction distribution C.(x) = 2/\2(x) along a body of
revolution in arbitrary subsonic or supersonic flow, provid-
ing only that variations in wall temperature are not too
great. A starting value lo(x=xo) is needed; if the
computation is started at the transition point, the value
Xo = 20 1s recommended. The solution of (2-25) mey be
continued downstream until the separation point (if any) is
predicted to occur when the coefficient (A,-3aA,) vanishes.

¥e now consider three applications: a) flow along a

slender cylinder; b) supersonic attached flow past a cone;
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Figure 2,3, THE COMPRESSIBILITY AND WALL
TIMPERATURE PARAMETER A, FROM EQN. (2-32).




and c¢) supersoni> “low past z slender body of revclution.

2.4.1 Compressible Flow Along & llender Crlinder

‘the application of the rresent theory 1s to consider

the effect «f compressibility and ‘transverse curvature with
no pressure gradien:. A cylinder has Ty = constant and, to

excellent approximation, U 6 = U = constant. Equation (2-25)

reduces to:

Al 'é')'r:’ = RI. 2 (2-33)

vhich may be separated and integrated for a direct relation
between skin fric:ion and local Reynolds number:

) 1/2 » +
Ry = f(uu X7,/ f A,0,0,B6,v,r ) ¢r(2-34)

(4

With zero prescure gradient, -he curve-fit approximation

to Al is:

A, = 8.0 exp;'% (0.48 % - .20 2 + 0.0018 )],  (2-25)
Ll J

Further, rg is directly related to ) and the radius Reynolds

= r /v follows:
number Ra Ue o/ gr 85 1 llows

- i/2
o ~ aa/ \(“w/ue)(Tw/Te) ] (2-36)

Since Ry is constan: for the cylinder, Eqrs. (2-35,30; =a,

be substituted into Zgn. (2-34) and the integration csriles

- et . e =

[ W

eaid

ey g2 At




out for the desired relation Rx(l), or better, its inverse
Cpe = Cf(Rx’Ra)' As an example, the computed skin friction
on an adiabatic cylinder at a Mach number Me = 5 is shown
in Figure 2-4. It is seen that there are substantial
transverse curvature effects which raise the skin friction
over its flat plate value. As Ra becomes very large, which
is equivalent to the cylinder being very short, the flat
plate skin friction is approached from above.

Since the integral in Eqn. (2-34) cannot be found in
closea foi.i. 1t 1s appropriate to find a curve-fit formula
for the results, in the spirit of the correlations (2-1)
proposed for incompressible flow. It was found that the
flat plate formula of White snd Christoph (1972) could be
generalized tc include the effect of x/ro = Rx/Ra as

follows:
1

cp = o.l455/[A21n2(b R (1e/hy) (Te/Tf/A) T (2-37)
- 6/7
where b = 0.06/1:1 + 0.025(x/r ) ] .

This formula is valid with accuracy to #1307 over the entire
turbulent Reynolds number reange (105—109) and for Mach
numbers from zero to ten. The slenderaess ratio (x/r_) may
be as high as 106; note that the formula predicts a roughly
5% increase in skin friction for (x/ro) as low as ten. Por
very small (x/ro), the formula reduces to the compressible
flat plate formula, Equation {24) of White and Christoph
(1972).




Equations (2-32&:) or ({-37) may be compared with
experimental data of Richmond (1957) for supersonic
turbulent flow past long cylinders. Richmond generated a
supersonic flow at Me = 5.8 pas* three cylinders: r, = 0.012,
0.032, and 0.125 inches, respectively. For the largest
cylinder (0.1257), skin fric‘ion was measured with a floating
element balance for one conditlon (R, = 20,400) and was
estimsted from the velocity profiles for the other two
cylinders. The authors attempted an alternate skin
friction determination, using 2 sort of axisymmetric
"Clauser-plot” which mar be inferred from our postulated
law-of-the-wall, Egqn. (2-15). Since the cylinders are
assumed adiabatic and the pressure gradient is zero {a=B=0),
Egqn. (2-15) may be integra‘ed in closed form to give the

focllowing expression:

Wt (v5,0,0,v,57) = & st T m(YAD)T (2-38)

where Y; = 0.110& -5 ma*ch with the incompressible log law
in the 1imit. By in‘rocducing -he definition of v from
Eqn. (2-13) and rearranging, we obtain an equivalent
logarithmic lew:

B/w = 2 1y /0.1108) , where &= U_sin”l(w/u)

AR TS

and where U_ = (2c T /r
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This relation shows that a plot of the "reduced" velocity
4 versus Rao's variasble Y should be semi-logarithmic and
follo+ the incompressible law. Further, if the veloclity
profile u(y) is known, cne may use Eqn. (2-39) to infer the
friction velocity uw* and hence Cf itself. That is, 1if we
eliminate @ in favor of C.. Eaqn. (2-39) may be rewritten
as follows:

(= SO 72 1m(r A7) +5.5. (2-40)

- 1/2
where 7 = (a/UD)(Ta/Tw)‘/‘ and ™ = B zn(r/ro)

(“e/u‘w)(Te/Tw)l/2
Equation (2-40) may be plotted with C, as a par ‘eter, as
shown in Figure 2-5. when data for [ versus ™ is placed cn
this chart, it should pocsess a logarithmic overlap layer

from which one can infer Cf bv interpolating between the
plotted parametric lines. This has been dcne in Figure 2-5
for four supersonic cylindrical profiles given by Richmend
(1957). Note that all profiles demonstrate the proper

slope and behavior and thus substantiate the present law-of-
the-wall epproach. In 211 four cases, the inferred Cf is
lower than tha:t reported by rRichmond (1957). Table 2.1
summarizes the skin “riction datz and compares with two
theories: the more "exact” integral computation of Eqn. (2-34}

and the curve-<it “ormulz of Zgn. (2-37). Also included for N

| msokiaser

comparison is a flit plate computation for Rx in the same
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range. Note tnat transverse curvature has increased Cf

ty at least 40% to as much as 100%. The present theory
seems in good agreement, falling between the two skin
friction estimates {Zichmond and the "Clauser-plot"). To
the author's knowledge, nc other theory, whether integral
or finite difference irn nature, has been applied to thece
important thick axisymmetric supersonic boundary layer
experiments. 2ichmond (1957) also reported low speed
friction and velccity profile measurements along slender
cylinders; these were analyzed in the incompressible theory
of White (1972).

2.4.2 Supersonic Attached Flow Past a Cone

A classic problem in the litlerature is that of super-
sonic flow past a ccne at zero incidence. If the resJiting
shock wave is attached to the cone vertex, the freestream
flow along the cone surface is approximately constant
velocity (a = O0). This 1s somewhat analogous to the
cylinder case of the previous example, except that here the
surface radius T varies. If x is along the cone generators,

we have

ro=xsino s (2-41)

where @ 1s the ccne half-angle. It is of interest to try
and relate the cone skin friction to an eguivelent fliat

plate ¢~ cylinder at {he same Reynclds number Rx' Accordinr

o3

vhe

akike e

7 pikbu g it




to the classic turbulent analysis by van Driest (1952),

Ce at position Rx on the cone is equal to C, on a flat

Yt
plate at position (RX/E). Thus, for equal R, the cone

skin friction is 10-15% higher than the plsete C This

e
analysis of course does not account for boundary liaye:
thickness ef'fects, which the present theory ircludes as

the (rZ) effect cn th2 law-of-the-wall. With U, = constant,
Egn. {(2-25) reduces forcone flow to:

er _
xR ’ {2-42)

>

|

+

=
-

-0

and, since ¢ is constant, (l/ro)(dro/dx*) = 1/x* from

Eqn. (2-41). If transverse curvature is important, i.e.
if the boundary layer is thick compared to the cone radius,
then Al and A3 depend upon r;(x,x*) and the variasbles are
not separable in Egn. (z-42). However, if we assume a
thin boundary layer (large r:), then our curve-£fit

approximatiocns give:

Al =

LV
>
A
10
[s+]
m
-
o]
n
(o8
L]
e
-
o
i}
3
-
~
=
p—g

(2-43)

7or this case, Eqn. (2-42) has a closed form solution:
- b R, x*
_ i -0 L - a_l
YE5 T o) ’ (P-44)
which may be compared to the analogoucs sclution for flat

plate tlow, Eqn. (2-37) or (1-35):

Ut
Foy




l - -
»=5 Wb B x*/a | (2-46)
By comparing (2-44) and (2-45), one may deduce a first-
order turbulent “cone rule’:
T ]
C. (at R ) = C. (at i 1+0.96/4A ) (2-46)
fcone x f.plate %r/“ - '

This may ove compared with the classic cone rule developed
by van Driest (1952):

Co {Rx) = Cf ( Rx/z) (2-47)
‘cone plate

From Pigure £-3, A = 1.0 at low Mach numbers, so that the

correction factor for Reynolds number equals 1.96 approxi-

mately, or verv close to van Driest's factor of 2.0. A

later analysis by Terervin (1969) gives a factor of

(2.0 + 1/N), where N is the exponent in an assumed (1/N°?)

power-law relation between Cr and momentum thickness

Reynolds number. Since N is of the order of 5 to 9,

increasing with Reynoids number and Mach number, Tetervin's

factor 15 also abcut two. Figure 2-6.a shtows values of

the ratio of cone to plate friction coefficient as

calculated from Eqn. (2-46). The predicted increase in

cone friczion is o7 the order of 5 to 15%4, being higher
at lcw Reynolds numbe:rs.

Tn fact, however, neither Eqn. (2-46) nor the van

Iriest or Tetervin analysis is sccurate lor small cone
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b) EXACT CALCULATIONS FOR Me = 2.0, EON.(2-42).

Figure 2.6. ILLUSTRATION OF THE TURBULENT CONE RULE.




angles, because of the transverse curvature effect
(large B/ro). That 1s, a numerical or graphical solution

of Eqn.(2-42), using the actual formulas fer A, and A, fram

1 3
Egns.(2-29,31), shows 2 further increase in cone skin friction
at the smaller cone angles. These numerical solutions are
1llustrated in Figure 2.6.b for a freestream Mach number of
2.0 along the cone surface. Thus transverse curvature adds
an additional 10 to 30% to the skin friction, and only the
thicker cones (20° to 45° half angle) approximate the firstc
order cone rule above (2-46,47). By analogy with the cylinder
analysis (Eqn.2-37), the relevant transverse curvature
parameter is (x/ro) = csc(y) for a cone. Hence the numerical

solutions in Figure 2.6.b may be correlated into the following

formula for constant pressure (attached) flow along a cone:

0.455
22ty R (T /TR (Y

Co(cone) = (2-48)

where b = 0.06(1 + 0.96/&)-1(1 + 0.03 csc ?)-l.

This formula i< accurate to about +3% over the complete
supersonic turbulent cone flow range, including constant
nonsdiabatic walil temperature, which is accocunted for by

the van Driest parameter A in the formula (Egn.2-32}.
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2.4.3 Supersonic Flow with Pressure Gradlent:

For flow past a general body of revolution, the complete
differentiel equation for skin friction, Eqn.(2-25), should
be used, since a # 7 and r, = ro(x). In one sense, these
effects are mutually exclusive, because if pressure gradients
are important, transverse curvature is probably not important,
and vice versa. Tha* 1s, only a slender body can have large
(6/ro), but =2 slender bodv cannot have large pressure gradients.
However, the shape effect term (A3/ro)(dr°/dx*) is nearly
always important.

We give here 3 typical solution of the general theory
by comparing Eqn.(2-25) with the skin friction measurements
of Allen (1970) for supersonic flow past a so-called Haack-
Adams bodv of revolution, shown to scale in Figure 2.7. The

shape of the body is given by the following formula:

- - 1/
+ 0.16934 cos ¢ + t(l—te)l/‘ ,

1.5

/ = 0.707(1-t%)

r/r
¢ max

where t = (1 - 2z/L). (2-49)

Note that 2 is the axlal, not the surface, coordinate (see
Pigure 2.1). Allen (1970) tes*=d a wind tunnel model with

L = 3% inches and fhax " 1.S inches. Skin friction at seven
stations was measured wi‘h a Preston tube and also estimated
bv 1) the 3aronti-Libby law; and &) the Penter-Stalmach law.

The upstream Mach number wee —aried from 2.5 to L.5, aend
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the example shown {M_ = 2.96) is typical of both the data
and the theory. With L = 36 inches, the Reynolds number R,
in Eqgn.(2-25) was equal to 3.0x106. The freestream Mach
number distribution Me(x) is shown, and the velocity
distribution is of a similar shape and was curve-fit by

the expression

V(ix*) = 1 + 0.156(t-t2) , t

]

x* - 0.139. (2-50)

Figure 2.7 shows three different analytical estimates:

1) the exact theory, Eqn.(2-25); 2) a flat plate theory
based on local R, Eqn.(1-36); and 3) a long cylinder
theory, Eqn.(2-37), based on local R, and ro(x). It is
seen that the cylinder and flat plate formulas give an
estimate of the average skin friction on the body. The
difference between these two is about 5%, which represents
the transverse curvature effect. The exact theory 1is in
excellent agreement with the data over the entire body.
The higher values of Cf (compared to a flat plate) at the
front of the body are due to roughly equal contributions
from 1) the term (A3/ro)(dro/dx*); and 2) the favorable
pressure gradient. Similarly, the lover values at the rear
are due to 1) a change in sign of (dro/dx*); and 2) the
adverse pressure gradient. The same excellent agreement
with experiment was found for the other three conditions

(Mm = 2.5, 3.95, 4.5) investigated by Allen (1970).
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3.2 4+
M DATA, ALLEN (1970)
e O O
@)
3.0 + O
@)
2.8 O | l I l l
0 0.2 0.4 0.6 0.8 1.0
x*= x/L
J7.003
O DATA, ALLEN (1970):
O = BARONTI-LIBBY LAW
~ \ 00 = FENTER-STALMACH LAW
£ \\ PRESTON TUBE
0.002 T
14 THEORY :
EXACT, EQON, (2-25)
—-~.— CYLINDER, EQN. (2-37)
————-—FLAT PLATE, EON. (1-36)
0.001 +
M =2.96
-.< HAACK-ADAMS BODY
5 | | ] 1 [
n 3.2 0.4 0.6 0.8 1.0
x*= )(/L

Figure 2.7. COMPARISON OF THEORY AND EXPERIMENT FOR

SUPERSONIC FLOW PAST A BODY OF REVOLUTION AFTER ALLEN {1970).
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2.5 Summary

This chapter has presented a complete thecry for the
computation of turbulent skin frietion in comoressible
axisymmetric flow past arbitrary bodies of revolution. The
approach leads to a single first order ordinary differential
equation, Egn.(2-25), for Cf(:) and accounis for superscnic
flow, nonadlabatic wall temperature, and exiremely thick
boundary layers, where a transverse curvature correction is
necessary. Applications to cylinder {low, cone flow, and
flow past a pointed body of revolution all show good
agreement with experiment. 1t 1s therefore thought thart
the present theory has no significant deficiencies. Since
this theory 1is also apparently the simplest comparable
anelysis to be found in the lit=srature, we therefore

recommend it to engineers for general usage.

62

 ————— e e




“hapter Three

The Prediction of Three Dimensional Skin Friction

3.1 Introduction

The most common type of boundary layer encountered in
practice, and the most intractable from the standpoint of
analysis, is the three-dimensional turbulent boundary layer.
Reviews 0of the state of the art with recpect to this impor-
tant class of flows have been given by Cocke and Hall (1962),
Joubert, Perry and Brown (1967) and more recently by Nash
and Patel (1972). Existing theories are few and seem unduly
complicated while available experimental data are usually
unreliable. Historlcally, two approeches have been used to
analyvze three dimensional turbulent boundary layers; the
integral arproach and the differential approech.

Typical of the integral approach 1s the work of Smith
(1966), and Cumpsty and Head (1967). These authors used two
momentum integral equations plus an auxiliary equation to
account for variations in the streamwise shape factor. They
extended Heed's (1958) two-dimensional entrainment relation
to three dimensions but retained his two-dimensional empirical
functions.

Differential methods have been given by Bradshaw (1971)
ané Nash (1969); both are extensions of the two-dimensicnal
method of Bradshaw et al (1967) which utilizes the turbulent

energy equation. The major difficulty with differential
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methods is in the specification of toundary conditions. For
a given domain, boundary condéitions must be specified along
all surfaces where fluid is entering from the outside.

In this chapter a new integral method is developed
which greatly reduces the computational difficulties inherent
in the calculation of three dimensional skin friction. The
analysis results in two coupled, non linear partial differ-
ential equations with the skin friction coefficient and the
tangent of the angle between the total surface shear stress
vector and the shear stress vector in the freestream direction
as the only unknowns. This is accomplished by assuming
suitable "law-of-the-wall" velocity correlations for both
the freestream and cross flow directions and then inte-
grating the governing equations with respect to the law-of-
the-wall coordinate y+. The resulting partial differential
equations may be easliy solved by finite difference tech-
niques since they require iritial data along cnly a single
curve.

Thus the new method is a compromise between the "classi-
cal” integrsl and differential techniques. It is much more
straight-forward and contains considerably lsss empirical
content than the former, and 1s computationally much
simpler than the lsiter.

At the present time this method i: limited to incompress-
ible flows; however, extending it to account for compress-
ibility, heat transfer, and variable fluid properties should

bz possible in view of chapter 1 of this report and the past
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efforts of white and Christoph (1970).

In order to discuss three-dimensional boundary iayer
flows it is most appropriate to work in a curvilinear
coordinate system composed, in part, of the projection of
the free streamlines onto the boundary surface. The
coordinate along these free streamline curves is designat-
ed as s, while the coordinate along the orthogonal
trajectories of the free streamlines, in the surface, is
designated as n, and the coordinate normal to the surface
is designated as y. Corresponding to these three coordinate
directions are the metric coefficients hl’ h2, and h3, and
the mean velocity components u, w, and v respectively. For
simplicity, it shall be assumed that the curvature of the
bounding surface does not change abruptly and that the
boundary layer thickness is small compared with the principal
radii of curvature of the bounding surface, so that h3 may
be taken equal to unity and y becomes a simple distance

normal to the surface. As a consequence, hl and h, are

2
known functions of s and n provided that the inviscid flow
over the surface is known. This coordinate system is shown

in Figure ~.1.

- o - av - -
h-\AE xS (hEu) ¥ hl 2 Aan (hlw) + Ay =0, (3 l)

_

the s component of the momentum equation
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hz,n,w

CROSSFLOW

TOTAL SURFACE
SHEAR VECTCR

hl,s,u
FREESTREAM

Figure 3.1. 'THREE-DIMENSIONMAL BCOUNDARY LAYER
COORDINATE SYSTEM WITH SKEWING
IN ONE DIRECTION ONLY.
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A\l

ahl 2 ah

u U W o au 2 0w W 2
- + e A -
EI aS H; an aY h1h2 an hihﬁ AS
(3-2)
. 1lap,127s
phl AS p ay
and the n component of the momentum equation
U AW W AW AW L uw Ay 42 Ay
HI as ~ h, an Ay h1h2 AS hihg an
.1 ap,17m . (3-3)
POy, AD - P Ay

In these equations .,_ and h represent total shearirg

S
stresses and incluce the effects of viscosity and Reynolds
stress, Since only incompressible flow 1is to be considered,

the energy eaquation is not needed.

The distinguishing feature »f
boundary layer is crossflow (the w
and the resulting vector character
stress. Crossflow cccurs when the

are curved, which gives rise tc an

a three dimensional
component of velocity)
of the surface shear
freestream streamlines

unbalanced centrifugal

pressure gradient in the boundary layer. Such crossflow

imposes a shear stress on the surface, normal to the free-
stream direction (Tn)’ which skews the total surface stress
vector. If the direction of curvature of the freestreanm
streamline is reversed, skewing ir twc lateral directions
can occur in a single velocity profile. Typical velocity

profiles showing skewing in one and two directions are shown

o —— . ———
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hl,s,u
. FREESTPEAM
h,.n,w TOTAL SURFACE
CROSSFLOW SHEAR VECTOR

Figure 3.z, THREE-DIMENSIONAIL BOUNDARY LAYER
WITH BILATERAT SKEWING.
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in Figures 3.1 and 2.Z.
Since *he present method depends upon an apriori

specifica~ion of wvalocity corrclations in both the free-

stream direction and the crossflow direction it would seem

aporopriate to discuss these in some detail.

2.2 Specificetion of Velocity Correlations

in general, integral techniques are insensitive to
de.glls of the assumed veloclity correlations. However,
this does not mean that one can be completely cavalier in
their specification- 1In order to insure that “he chosen
correlations incorporate the correc: physical parameters,
consider that near the wall the force balances given by

equations (*-2) and (3-3) reduce to

3 ,
+ }%1- =y (3-4)
end
™= Taw * g% an Y (3-5)

Assuming tha: the shear stress in the freestream
direction in a three-dimensional boundary layer may be
represented by the same eddy viscosity relation as for a

two dimensional toundary layer gives

¥
2 ) u

I5oi3y (3-6) )

4

é

with von Ksrman's constant x equal to 0.4. Nondimensional- ;
%

-
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izing equations (3-4) and (3-6) with respect to wall

quantities and solving for the velocity gradient gives

1/2
+ +
24 - (1 +ay) (3-7}
3y ——

v

-y

The pressure gradient parameter a, is defined by

o B
where u* = (TSw/p)l/E is the shear velocity in the free-
stream direction. Equations (3-7) and (3-8) are exactly
the same results as have been previously obtained by White
and Christoph (1372) for the two-dimensional case; except
that here a includes the curvilinear scale fac*tor hl.

Thereicre, it will be assumed that the law-of-the-wall
co.srelation for iune streamwise velc ity ccmponent, in a
three-dimensional boundary layer (Egn. 3-7) does not differ
from the two-dimensional correiation "™ iz is a reasonable
assucption as has been pcinted out * . 223 {196G) and others.

it would bhe extremely z2ttractive <o carry through
3imilar srgunents fcr the c-ossflow correlaticn. However,
this immerdiately leads to excessive comrlicaition. The
reason is that the simple eddy viscosity approximation of
eguation (3-C) does not arpear adequate to desc+ibe the
crossflow profile. Instead cne must invoke a coupled eddy
viscosity expression such as suggested by Cousteix, guemard

and Michel (:971):
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duy 9 -
‘ay' y (3-.’,'

where P is a subleyer damping factor suggested by van Driest
(2956)

F=l-exm [ppe ()7 (3-20)
and
1 = 0.085 &5 Tanh (?5‘.';85' -g-) {3-11;

Nondimensionalizing and combining (3-5) and (3-9)
leads to

- (e + an y+)

(3-123
I-i—?&'] 1°%°

Y 1Y
=1
+

with

anzfr_vu"”ﬁl_—%% {3-1z;
nw 2
The symtol @ stands for the tangent of the angle between
the zotel surface shear vector and the shear stress vector
in the freestream direct{ion.

Expression {2-12) is obvi 'asly much too complicated t-.
be tractable ac a crossflow ve.ocity correlation. Portuna*- -
an alternative exists in the simple hodogreph models, which
often give a better representstion of the crossflow velocity

profile than does {3-1Z).

The earliest hodograph model was proposed by Prandtl
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(1946) who specuiated that

w = veg(l) (3-14)
where g was a function such that g(C) = 1 and g(1) = 0. He
took g to he

g)=1-% (3-15)

Mager (1951) suggested a more accurate form in which

e = (1- H? (3-16)

Recently, several more sophisticated hodograph models have
been proposed. Johnston {1957) represented the crossflow
velocity by a triangular hodograph such that

Yool 1< (%) (3-17)
Ue Ue U; Ue P
X -p (1- 4 ) 3 u u
U iR ? =— > (3) (3-
e e Ue Ue P

where (u/Ue)p corresponds to the apex of the triangie and is
given by

(Gp = @+ )™ (3-18)

and Ue is the freestream veloclity. Johnston's model is
sketched in Pigure 3.3. This model has several shortcomings.
There are situations in which the outer region is not
adequately represented by a straigh® line and there are
siiuations ir which the apex of the triangle is not well

T2




cis

INNER
REGION

OUTER
REGION

Figure 3.3.

e s e e v e

APPROXIMATION, AFTER JOHNSTON (1957).
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defined. Also,

he éxperimental determination of B is
very difficult due to the fact that the inner region of the

model actually corresponds to the viscous sub layer.

Eichelbrenner and Peube (1966) modeled the crossflow velocity
by a polynomizl of the form

w u r u RS B u 2 u .4 a 451
== a1+ a(x) + b“! )"+ c(—-—)" + d{57— + e(s)
U; U, U, 7: U, [ U,

(3-29)
where a,b,c,d,e are evaluate2 by using toundary conditions
at the wall and at the ounter edge of the houndary layer.
These constants are also extremely difficult to verify
experimentslily. This model does, however, have the
advantage of being ablie to predict the "S-shaped” crossflows
which w2-e discussed in Section 3.1 and observed experi-

mentally by Klipksiek and Pi=rce (1970).

With these considerations in mind it was decided by

the authors to emmloy the hodograph model as proposed by
Mager (1951) in the fom

u+ P
= e (1- =+)¢

:l;A

(3-20j
This choice secmed a good compromise between complexity and
relative accuracy.

In fact this cortrelation compares well
with some experimental data as shown in Figure 3.5.

Until
such time as more reliable three-dimensionsl dats become
avallabie,

and in particular profile dats,

the use of a more
sophisticated hodograph model does not seem warranted.
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*.3 The Method of Solution

In order to solve equations (3-1), (3-2), and (3-3)
they are first nondimensionalized using the shear velocity

in the freestream direction. The result is

+ +
u*u 9 + u¥w 3 , .+ u¥* o +
Ty g5 (W) T gy (W) 2 v e g ()

(2-21)
. e anm
+ yre wtwt P uesyte eh, . -_1 2  u* AP
u HIE" an A TS pr. T3 pv <y
Id z
and
a*y’ 2

+
u¥*w @ + u* 3 +
he Sh ('J*’d ) + v > W (u*w )

s ()

(2-22)
R A M O o2 gg L ur 8T
h152 as hyhy an phy on © pv oy

where the veiocity v 1s determined from the continuity
equation:
+

r1 3 . + 1 3 +y7. 4+
-BIHE = \hgu'u ) + EEEE'EH'(hlu*" ) 4y .

Vo= -

v
uE

O -3 O

(3-23)

Expressions for the partial derivatives with respect to both

s and n are needed. Note that

ut = fen(y', a.)

(3-24)

and

who= fcn(y+, a, 6, 6+)

. (3-25)

Therefore,
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+

aut oyt 2% Y At
3 =5 EX2NME E (3-26)
+ + .+ 2da 4 + +oet
w _ 3y aw s oW R0 Aw 26 aw
S T3 S rwmo v el (3-27)

plus similar expressions for the n derivatives. ¥For the
purpose of skin friction calculetions, it is convenient to
make the following non-dimensionalizations:

UL
M2, By = /i, g = 1 Ry =
(2-28)

+
Ay =4 = (z/cfs
= Ue(s,n)/Uo

where L is a reference length, and Uo is a reference speed.

Then, from the definition of as

a8 X, 8 R 282 (1/v) (3-29)

and

A 3n_ AA 2.3 52
s s 1 1 @
i 3, A RL Wi (1/v)

(3-30)

The partial derivatives of 5+ with respect to s and n are
more difficult to compute. Equation (3-7) integrates
analytically to

u" =2 [o(p-p,) + 1n (2:}5_"_‘5%) }
1r p-1 4\ - (3-31
== "2{p-1) + 1n ey ("_s-i;)) L,
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where

+.1/2
p=(1+ay)

At the edge of the boundary layer, equation (3-31) becomes

ul o=, = 2(p - 1) + 1n(Ps~1 (___r))1 (3-32)
e 1l b —:;Ff T.yg

where

= (Q+asb /2.

Differentiating equation (3-32) with respect to s and n
results in:

+ 2 3 aa

A r -1 6 +

267, [e(pg 1 e Y e (3-33)
a p6 a52p62

and a similar expression for the n derivative. Combining
equations (3-26), (3-27), (3-29), (3-30), and (3-33) glives:

(3-3%)

(3-35)

ll (2 2L
n .Y 3y - R e 3

walyivviks  § oue
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e
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ECE ST Y wT T Psmth 2Pp 70
+ 2 3
i ( 5 5 5) 3w 1av i+ 3w, -
e 2 B RN L H Y B )
a “p
s b
N ~ 3 5
+ric_x_ _(abv.é Pg +P5) awjxl 3:_2 (1) AT AW
< 5% 35 R 2s \'4 3S Ae
a “p L
s b
+ o + + P 1 v
w1 1 [__+ 3w el 5.(_@__).3"’
monm LY T P m A, W%
S s° b
- 3a a.b pg p53+p5) w1 1 avi+ 3ﬁ+7
: — 57 YV LY syl (3-37)
5 Pp
2 a s’ + 1 2
[E- 2% Do Po) ey 2 2 d) 4 se aw'
o Ry B R W VU

fter substitutinz the partiel derivatives, equations (3-34)
throu=h (3-37), into equations (3-21) and (3-22) and inte-
rratins the rcsulting equrtions from y+ =0 (7= Tw) to

+ + .
v =& (r = 0). cne obtrins
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\ 1 v
By 7T (Gm38) + e 35 (470 -C)) - 7Ry 7w O
4
Ak . G~ _Z -
1l 1 1 c R~ 4
+ B-,é STl (G3-3~* uy x,G%) -R-I—Iy;f- 3—52 (-:*)
(3-38)
4 ~ ‘ *
M %A 1y 1se s 1 Mg
_ Iy« +28g -
RLﬁg agan VY h¥ 3n 76 H?Eg an 7
) ah%
b —% Gp = RV
RERF 55 06 T L
1
2y AV, 2ot 1 av

ﬁ* Y (G -3 Gy-Gy) + 55* = (A

1 "1 (G qu 3% e
+ = -3a_Gy5-39Gy2) - < =2 (5
h% > 11 127M%13) T RRF % 9
(3-39)
2 e A A
e e ac (_ e e
‘ﬁzﬁg" H{ s 14 n¥ 3n 15
Ay Bh{ Ay ahg

+ RFAE BN "*‘H{ v = B8RV

Thg G coefficientsin equations (3-38) and (3-39) are
definediin terms of quadratures over the velocity correlations
and quious gradients of th- velocity correlations. These
are iaﬁuleted and evaluated in appendix A.

Equations (3-38) and (3-339) are two, coupled, non-
linear, partial differential equations which have for

dependent variables only the skin friction coefficient and
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the tangent of the angle between the total surface shear
stress vector and the shear stress in the freestream
direction - no integral thicknesses need be calculated.
The inviscid flow solution is assumed known, o, may be
computed frua its definition, and 5" nay be computed from
equation (3-32). As should be the case, equation (3-38)

reduces to the incompressibie, two-dimensional analysis

of Wnite (1969) when Bga.ﬁ. -0, wt =0, and hi -2,
X ¥35 T 3

3.4 Comparison with Experiment

3.4.1 The Rotating Disk Problem

A convenient starting point to test the validity of
any three-dimensional theory is the problem of a smooth
plane disk rotating in an otherwlse stationary fluid.
While axisymmetric, this problem eahibits the essential
feature of a three-dimensional flow, namely crossflow and
the resulting vec'or character of the surface shear stress.
The presen: theory has teen applied to the rotating disk
problem in a paper by Lessmann and Christoph (1972Z) and
is discussed below.

The boundary layer equations, equations (3-1), (3-2)
and (3-3), may be reduced to those governing the bcundary
layer flow on a rotacing disk by identifying s with the
coordinate €7 and n with the coordinate r, both fixed in
space. The metric coefficients become hl =rand h, = 1

2
and the equations reduce to




129 AV .

F37 (W) + 55 =0 (3-40)
d 3u u 1 i
u W
"F?+V'6‘§+T_E ﬁel (3-41)
and
- aT

Aw 3% u° _  lap .1 %y R

“%‘?*V?;'?“'E'a‘%*‘grr N Gt

A1l derivatives with respect to 8, have been eliminated
because of symmetry.

The boundary conditions on the equations are that at

the rotating plate v=w=0 anc¢ u=-r{. Here 0 is the angular

velocity of the rotating disk, assumed counterclockwise

about the y axis. 1In the freestream v, v, and w as well s&s
the sh.aring stresses are zero. As a consequence of this

30 _ o -
3 =0 (3-43)

For what follows, it wlll be convenient to transform

equations (3-41) and (3-42) so as to obtain more conven-

tional boundary conditions. Defining a new circumferential

velocity as

u' = u +

(3-4%)

the boundary condltions at the plate becomz u' = v=w=0 and
X -~

in the freestream v=w=0 while u!

= rn. Using equation (3-44)
equations (°-41) snd (3-42) become

é1
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2t
- al w1 e (3-45)
R TS e iR
and
2w 3 2 1°% ‘
w E—I\- + v -5—:-’- + 2{2‘1’ - Y‘Q = -p— ET . (3-46)

Mager's crossflow velocity correlation, equation (3-20),

will te used and since as = 0,
+ + - \
n = 2.51n(y ) + 5.5 (3-47)

wil) be used or the streamwise velcecity. Comparison of
these two velocity correlations with the datz of Cham and
Head (1969) is shown in Figures 3-4 and 3-5. Tre velocity
v is eliminzted from equations {3-45) and (3-40) by the
continuity equation, and the resulting eguations za2re non-
dimensionzlized with respect to wall variables. Por
convenience u¥* is related to the circumferential skin

friction coefficient by

and r is non-dimensionalized by the relation
«/,-
n = r(n/v)tc . [3-49)

Note that m is the square root of the radisl Reynolds

number. Ir integrating the {two momentum equations from
+ + o Tl i §
y =0toy =&, the shear velocity In tke rsdial

direction, v* = (¢rw/p)l/2. will eppear. The shear velocily
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v* is eliminated in “avor of u* 3y the expression

o = f[yrfux)?

(3-50)
The result is
di.
I - 48 . o2 P
1 T by ° a t D3 =" {3-51)
and
di
T de 2
where
+ + vt L
+ s
Dy = 7 (rTw' o+ myE ;§+ * §§§~dy+)dy+
Q 0
(3-53;
— + 2
= a5’ (0.61 A -3.95 3y 4 9.8%4)
+ +
5 + v +
T - Au Ny w + +
eh s 0 e e
0 0
(2-5&)
. _+ -
=B 11 (1.52 X1-9-8h)
5? + +
* —- - + y
Ly = 3 ({(2u -211)m”'~ %;# r w+dy+))dy+
0 0
{3~55)

= %*)1 (3‘58 X1'29'5)
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This probiem reduzes to the considerazicn of ccocupled
oréinary differential equaticns as s resul: ¢f *he Tact tha‘
the rotazing dizk is 2 twc-cogrdinate preblem.

The resulis of the presen
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dictions, using equations (3-31) and {3-57), for *he

circumferential skin fric+ticn coefficient c.

cshearing stress, €. These are compared with experlmentel

]

esulisz ir. Pigures 3-6 and 23-7. Piguire 3-£ shows that the

present celcuiation of c._ ccmpares very favorably with the
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experimentsl ceatz and falls approximately halfway between
the reszults 97 Tooper (1971} and von Karman (1946).
Zooper uced z “inlte difference scheme based on the work
of Smith and "ebeci (19¢£,1371). Pigure 2-7 is reprocuced
“rom the wcrl of Cham and Head (1929) and compares several
gredict-ions for ¢ with one measured value. Uafortunate.v,
“re uncer:ain-v zssccilated with thls single data point is
rele-ively large. #@ith this in mind, 1t can be seen that
the pressnt “heory, as well as the entrainment method of
Thar anu Kead (1969), and the prediction of Banks and
Jadd (12€2) give plausible results. Both the present
caliculation andé that of Cham and Head show a tendency tc
fall with incressing radiezl Reynolds number, while the
prediction of Banks and Gadd (1962) is for a constent value
of @. 7Toover 11071) cin not concern himself with predicting
“e¢-al shear and hence no comparison with his work is possibi-~
on tnis roin..

Since *he rresa2nT approach end the analys’. of von
K& rman (134£) are intexral methods it is informative to
consider voth the simi_arities and important differences
berween theses ~wo works. The velocity correiations used

b
v von Xarman sre {in *he present notation

S

u = r(¥/6) . (2-59)

w = gu(l-y/5) . {3-£0)

- e Ty




These are tc be compared with equations ({3-47) ana (3-20).
It 1s well known that the 1/7 power law gives = good
reprasentation of fully turbulent velocity profiles; at
leasr for a limited range of Reynolds numoser. This fact
accounts for the relatively good agreement with the
circumferentia. skin friction date. AL the same time, the
crossflow correlezion used by +.n Karman does not give e
good representation of the rsdial velocity profile as is
shown in Pigure (3-8). Also, in order to get an exact
solution of his ~quations, von Karsan assuamed £ to be
constant and the bovndary layer thickness & proporticnal to
r?;5. These facts account for th2 relatively poor pre-~
diction of 8 = 0.162. 1In order to carry through the

7/
celculation fcllowing von Kerman, one must express the wa:l

shear stresses Tou and T as functions of e and 6. This

-

is in contrast to the present analysls in which the
dependent varliebles are @ ang the circumferentiml skin
friction coefficient. No shear siress correlations are
necessary. Jmne can carry cut von Kérman's analysls retain-
ing the - dependence ¢f & and 6 and zisc consider the effect
¢f replacing (3-60) with Mager's correlation. As is shown
in Pigure 3-6, both of these lead to essentially the same
skin friction curve, which is somewhat low. The effacts of
these changes on the prediction of @ is more crastic as
shown in Pigure 3-7. When ohe Keeps the original velocity

correlaticn but allows for r variation, the result is a

—————— o . &
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curve wnich falls rapidly <o en as;mpio:ic benavicr

approaching € = 0.162. Using Mager's correlation with

von Karman's approach glves = predlction for © which agrees

closely with the present method for small Revnolds number

and tecomes asymptotic to & = 0.217 for higrer Reynolds

number. Apparently this difference 1s cdue to the fact

that the logarithmic law-¢f-t:e-wall properly accounts for

Reynolds number variation, while the /7 power law does not.
t should be pointed ou* that all calcuiations of e

in the present study assumed an initial value of e = 0.228.

This initial vaiue was chosen so as to generate a monatonic

curve for @ as & f:incticn of r. It was found that perturbing

this initial conditicn caused the calculaticn to rapicély

converge to the curve shown in Figure 3-7.

3.4.2 Johnston's Swept, Forward-Facing Step

Jehnston (1970) experimentally investigated the flow
over a two inch high recisngular step, swept at forty five
degrees to the maln flow direction. Wwhile an example of
a fully three-dimensional situatlion, this flew Is not
strictly a boundary layer due to the large variation of
pressure in the normsl direction. For the purpose of the
present analysis the “:reestream” veiocitv Aistridbution was
gztermined by fitting a polynomial to Jc..acion's pressure

coefficient data. Three differ~nt such distributions were

T e menar— o~ — ——




considered, one ccrresponding to the wall pressure coef?icient,

one to the vertically averaged pressure coefficient, and
one assuming a constant "freestream" velocity. As expected,
use of the average pressure coefficient gave the best

results but norie 0f the calculations agreed well with the

(v 8

ata.

3radshaw (1971) 2lso analyzed Johnston's dats using a
finite dlfference scheme. Hls calculations, using the wall
pressure coefficient, showed similar behavior to the present
results. In order ‘o overcome this difficultr Bradshaw
determined the local value of the "'freestream" pressure
gradient ‘rom tlre two-dimensional pressure coefflcient
da*a glven by Johnston. With this additional complicstion
Bradshaw's final results agreed fairly well with the data
except in tne reglon close %o separation. In this context,
separation refers to the condition where the surface flow
in *his "bouncdary layer” has become parallel to the step.

The present analysis follows directly from equations

(2-28) and (3-39). Making the assumption that the sweep
is incinite, and hence that all verlations parallel to the

s.ep are zero, relates derivatlves in the s and n directions

by
2 A
3s . Tan (2-61)

Also the metric coefficients h1 and h2 are equal to unity.

T"hese simrlifications result in iwo ordinary differential

B
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equations for 1, and e as functions of s* = s/L. The
characteristic length L is tsken to be the distance from
the step to the initial point of the calculation, along
the "freestream line"”.

The results of this analysis are shown on Figures
3-9 and 3-10. Also, Bradshaw’s finite difference
calculation is displayed for comparison. On Figure 3-9,
it can be seen that use of *le vertically averaged pressure
coefficient gives good agreement with the ckin friction
up to about s* = 0.8. The calculation using the wall
pressure coefficient is low while use of a constant free
stream velocity gives results which are much too high.
Bradshaw'!s results are also in good agreement but extend
as far as s* = 0.85. None of these predictions agree with
the measured separation, w!.ch occurs at about s* = 0.93.

Figure 3-10 shows a ccmparison between the presaont
theory and Johnston's data for €. Again the average
pressure gradient case gives the best agreement but
predicts separation too early. 3radshaw's celculation is
somewhat better but also shows early separation.

These results should not be construed as indicating
some intrinsic deficiency in the present theory, sinc2 this
flow is not truely a bcundary layer flow. Actually, in
order to accurately predict the swept step flow field one
should use the full Navlier-Stokes equations and not the

boundary layer equations.
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Figure 3.9. COMPARISON OF PRESENT THEORY FOR

THREE PRESSURE DISTRIBUTION ASSUMPTIONS WITH

THE STREAMWISE SKIN FRICTION DATA OF JOHNSTOW
(197G} FOR FLOW NEAR A 45° SWEPT STEP.
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3.4.% Iatz of rFrancis and Pie-.e

Francis and Pierce (1967) meas~:26 e, the tsngent of
the angie be‘ween the “otal surface chear strers vector and
the shear stress in the freestream 4irentlon, in a rectan-
gular channel. The 10 inch wide chinnel consisted of a L&
inch straigh* inle* sec*ion followed by a curved section
of ei<her a 5% inch centerline radius o7 curvature (referred
t0 8s series 5) or a 25 inch centerline rzdius of curvature
(referred tc 2s series 2) and a 48 inch straight discharge
section. Most of “le measurements were taken on the center-
line but a2 few 0F the measurements were taken 2 inches
either sicée of the centerline. The Zevnoids number was
1.071_0.0311'3é per foot for both series 5 and series 2.
The frees*ream velocity variation was about 0.3 percent per
foot, while the crossfiowx velocitvy variation was from 20
to 54 percent per foot in the radial direction. This
experiment rrovides the possiblility of examining effects
produced by 2 crossflow pressure gradient without the
influence of a strong pressure gradient in the freestream
“low direction.

Fruazions (2-38) and (3-39) are solved with the

following simrlifications:

- 1y 3 _ 2 1, 2 2 1, av _
BT RIS TSRy m oW By, ss 0 0 ¢
(3-62) :
S S T S S
hihy s hihZ an pU~ 2y* R* %
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where x¥*, v#, ané ¥ are respectively the streamwize flow
direction, *he direction ncrmal %0 the sireamwise Tlow

direction, and the radius o
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ized with respect to the leng*h cf the channel. This
results in two coupled partial ciffsrential eguaticns for

1, and ¢ e&s functions of x¥* anc y*. 1+ is assumec *“ha*

1

3. angd @ are known along scome initial line x* - no sice

- o
bhoundery conditions neec be known.
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ives

occurring in these equations may be numeric=zlly

2]

pproxicated
in a rumber of ways. For illustrative purposes, ~hey wers
calculated by forward di“ferences. Zackwarc or central
differcaces cculdé have been used “ust as eariliv. Also,
if more accuracy i3 desirec it ic possible *tc keep
A

correcting ;él and ;;; with their average values iteratively.

The results ¢f ‘hese caluclations for ‘he center strean-
line are compared to the measurec values c¢f e gnd to the
skin friction as computed by Frencls and Pierce us:rg the
Ludwieg and Tillmann {1950; shear iaw, as shown in rfigures
3-11, 3-12, 3-13, end 3-1s. Agreement with tne daa over
about the first half of both channels s qui:e gocd, but
then the theory and the data diverge. The skin friction as
computed by the present theory is 3wer tham: thzt computed
by the ludwleg and Tiilmann iaw, snd thz theoreticel wvalues
of @ are considerably higher than the measure¢ valuez. Cne
possible reason for these discrepancles is that Mager's

profile may not adequately represent Prancis &nd Plerce's

data. Shanebrook ané Hatch (1970) suggested a more
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Figure 3.12. CCHPARISON Cf PRESENT THEORY WITH
E¥PERTMENTAL SKIN FRICTION AS ESTIMATED IN
A CURVES DUCT BY PRANCIS & PIERCE (1967),
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sophisticated family of hodograph models for crossflow
profiles. Their method extended Eichelbrenner's (1966)
polynomial representation by forcing consecutive higher
order derivatives to be zero at the wall and at the
boundary layer edge. This family is called the (pi,qJ)
family of hodograph models where Py is the number of
consecutive zero derivatlves at the wall beginning with
the ith derivative and qy is the number of consecutive
zero derivatives at the boundary layer edge beginning
with the jth derivative. Besides containing many terms,
Shanebrook and Hatch's hodograph models also contain the
angle B that is used in Johnstoa's (1957) triangular
model, Figure 3-3. By the use of the momentun integral
equations and an entrainment equation, Shanebrook and
Hatch compared their hodograph model with Mager's velocity
correlation.féi Francis and Plerce's data. Shanebrook
and Hatch's model shows better agreement with the data,
but the same trends as the present theory, as seen in
Figures 3-12 and 2-14. However, Nash and Patel (1972)
showed that Mager's correlation was in excellent agreement
with the crossflow velocity data for Francis and Plerce's
experiment.

Theretore, it is felt that the disagreement between
the oresent theory and Francis and Pierce's data is not the
fault of the assumed crossflow velocity correlation. Rather,

it 1s believed, as Nash and Patel pointed out, that the
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boundary layer in Prancis and Pierce’s curved channel was
dominated by the effecis of corner flow at the junction of
the slde wails and the floor of the channel. These effects

were not accounted for in the present analysis.

2.4.4 Data of Klinksiek and Pierce

As is pointea ocut In the introduction to this chapter,
Msger's veloclity correlation is not capasble of represent-
ing the so-called S-shaped crossflow veloclity profiles,
Figure 3-2. However, it is nelieved that the present theory
will give accurate results even if the crossflow velocity
profile is only grossly approximated; as long as & 1is well
predicted, ana apparently Msger's correlation predicts »
accurateiy. Klinksiek and Pierce (1970) conducted an
experiment in which they obtained S-shaped crossilow
velocity profiles. Thelr experiments were conducted in a
doubly curved channel of rectangular cross section. An
initial straigr: section of 76.7 inche. was followed by &
60 degree bend with a 25 inch centerline radius of curvature.
This in turan was followed by a 12 inch straight section and
a 60 degree bend in the opposite direction with a 55 inch
centerline radius of curvature. The same equations (3-38)
and (3-39) tha* were used to compare with the data of
Francis and Pierce apply to this situation. The results are
shown in Figures 3-15 and 3-16. The theoretical values of
8 are considerabiy above the data, presumably again because

of side wall 1nfluence. The S-shaped profiles were observed
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Figure >.15. COMPARISON OF PRESENT THEORY WITH
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in the latver curvec porticn of the channel with ‘he ==

2]
'y
[#1
[)]

inch centerline rad o7 curvature (starting at ¢o.5

inches in Pigu-es -1

N

and 3-1€). 5y this point in tre
calculazion the theorv considerably diverges from -he data.
Thus ne conclusiocn can te drawn about the genesral use c¢f
Mager's ccirrelaion in situatlons where bilateral skewing

o° tne crossflow rrofile is p esent.

2.5 Summary

The zpproacnh to calculating three-dimensional skin
friction presentec in this chapter seems to offer grea:
promise. 1t is an integral method which utilizes “law-
of-the-wall velociiy correlations and results in two,
coupled, par:tial differential equations having the stream-
wise skin friction and the angiz between tne total surface
shear siress vector and the shear stress in the freestream
direc*ion as -he aependent varilables. This snalysis
contains significar<ly less emniricism than "classical’
integral me-hods and is computationally much simpier than
currently availatle differential approaches.

An area requiring more study is the vroblem of
specifving 2 suirzable crossflow velocity correlation.
Mager's hodograph model was used here as it would seem to
offer the tes? current comprorise between accuracy and
complication. However, it is not capable of predicling

crossflow profiies with reversed skewing; and this must
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be regarded as a deficiency for any generally applicable
theory. 1t 1s felt that the development of a more

accurate crossflow model must wait upon the svailability of
more accurate profile data.

The approach developed here compares extremely well
with the rotating disk data of Cham and Head and with other
predictions of this flow. The relatively poor performance
of the present method when compared to the data of Jomston,
Prancis and Plerce, anc¢ Klinksliek anc Pierce should not
be taken as an indication of any serious deficiency in the
theory. Johnston's swept step flow was not truly a
boundary layer due to the presence of a large vertical
pressure gradient and the Francis/Plerce and Klinksiek/
Pierce data sets were strongly influenced by channel co>rner
flows. Thus, serious eveluatlon of the present method must
awalt the avallabllity of a clean set of experimental data
for a three-dimensional boundary layer Jlow. Such a set of
date should include direct measurements of skin friction in
both the freestream and crossflow airections as well as
accurate measurements of the pressure gradient along the

freestreasw line and veloclity profile data.

. \\\;.
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APPENDIX A

The coefficients Hi for use in the heat transfer

differertisl equatiocns, Egns.(1-29,30), are defined as:

H

&

b S

u+ 3’ utaut B Sut w  2v aut 3w +
{—=, - 8¢ + 2y = + = - — ) av
T+ g T+ u, 3+ 98 T Uy Fy
F’ +
“, ( MR 1 3u aw) avt
, mE T u a9
¢ ut ot B 3ut W +
A e 8 3 T 5 3yt 38 ) dv
0 - w
&t 2
1, ut vt Jut 3 3u* 3 +
I A= -8 — — ¢+ = — =) dv
h 2 Tt T+ 38 u, vt 28
&’ 2 4+
Cone? L st wt | wart P8t d
5 T T 21+ P TV e 3y T 2u 34+ 3B
2
y at*t 2 ut ‘3 2 ut’ g_u_’
TP oyt v TR TN
ut sut 2 ut 3t W +
+ Y8 E W 3 " 2y 1_1. ay‘, v ) dy
v w
st
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2 , 2 T+ 38 U 3yt 3B + 38
+ .+
u ¢ o +
-y8 2 By gy
L, oyt o8
&y, gutart  8Pr ot 3y w? 't
Hp = [ 3 P P A, m " PE o®m
z + +
u du +
4"—'—*Yﬁa:§;fs-e-)dv

The various partial cerivatives which are needed in the above

expressions may be evaluated as follows:

[ 4 +
+ u u + +
%3 = rfryteayt s —By’dg ] du +
0 0 (1¢+ oy ) 2T (1 + ay )
+ + + * +
a o F &)
of 0 2t o 1+ ayt
+ u; + u*
R R ENE S
0 ™
+
lf ] ue -8yt out
da 0 (lfay*)z
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ing are curve-~it eéxpressions for the coefficients H,:
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+
- 3.5 8 ( {0.%82-3.78) u,
7 ° T-158

(1 + 0.1(as) %
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10000. By exp{(O.uG-r?GO'v- 38) u,

1 + £(3200 1)7'~
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0.46 n: (1+0.33 yugz)

1/2 !

=3
(113

0.33 exp{

[1+ 0.2(a8¥) 741 (1 + 0.25 Bn:)

In order to use these curve-fit expressions, one first
evaluates a, B, and vy from their definitions, Egnec.(1-32),
and then evaluates 6+ from the two-dimensional law-of-
the-wall, Eqn.(1-33). The only other parameter in the
formilas for H, 1is u’;, which is directly related to

skin friction by the relation u: = 1(Te/Tv)l/2.
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A.2. The coefficients Gi for use in the “hree-dimensicrel

theory, Eqns.(3-38,39), are defined as foliows:

6*
6 = [ ut? gyt
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& + ' 't Y* ut ¢+ +
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2 0 Ea Wo Es

st
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Using the law-cf-the-wall and the Mager hodograph, these
integrals may be evaluated numerically as functions of the
kS
parameters Al’ @, ®, and 5 . The following curve-fits

are suggested for the numerical results:
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15 1 1 s° 1
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2,4 N
- 876 (0.2 A 1

s + i 2_ _ + - +.
G, 2 85 [0.4 xl 6.11 Al + 19.65 asé (0.87 Al asa Y]

It is these curve-fits which were used to compare the

present theorw, Egns.{3-38,39), with the three-dimensional

flow experiments of Figures ?,9 through 3.16.
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