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SECTION I
INTRODUCTION

A study to apply the moving dislocation model for interpreta-
tion of near-field earthquake strong-motion records has been in progress
for six months. This semi-annual report gives an account of what has been

accomplished to date.

Digitized raw strong-motion accelerograms were acquired
directly from the Earthquake Engineering Research Laboratory of the
California Institute of Technology or through the National Geophysical Data
Center of NOAA. These raw data have been checked and reorganized into
a uniform format and stored on a magnetic tape for processing and analysis.

Section II describes in detail the reorganization of this data base.

Our analysis relies heavily on comparing the observed and
the theoretically computed waveforms. Since the observed waveforms are
given at the acceleration level whereas the theoretical waveforms are initially
obtained at the displacement level, processing of either or both of these
two waveforms is required before comparison analysis can be undertaken.
Problems are mcie likely to come from the observed waveforms which
contain many more features than a highly idealized model can explain.

Thus, Section III is devoted to an evaluation of data processing procedures
which are followed in order to obtain integrated velocity and displacement
waveforms from the recorded accelerograms. This discussion is followed

by an evaluation of the integrated velocity and displacement waveforms (Section
IV) to determine which type is more suitable for comparison with their

theoretical counterparts.
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In Section V preliminary results from analysis of the Pacoima
Dam site accelerograms durfng the San Fernando earthquake of February 9, 1971
and the Station 2 accelerograms during the Padfield earthquake of June 28, 1966
are presented, In Section VI the theoretical velocity waveforms based on
linear and exponential ramp dislocation time functions are compared with the
integrated experimental waveforms to determine which one of these two
source time fﬁnctions explains the observations better. Finally, Section VII

gives a summary of the work accomplished to date.
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SECTION II

ORGANIZATION OF THE DATA BASE

To insure ease of future handling, the raw data that was
acquired for this project was stored in a standard format on nine-track
magnetic tape. Since the raw data was received on cards and on magnetic
tape, the software for organizing it incorporated capabilities to handle

both input types and their respective formats.

Primary importance was placed on designing the software
to standardize the storage data file., Figure II-1 shows the format of each
data file; this file format was chosen to save storage space and to cenform
as closely as possible to the input formats. The acquired data'consists of
52 digitized three-component strong -motion accelerogram records sent from
the California Institute of Technology and NOAA. Consequently, the data
file is broken down into a header record and three data records. The header
record is also standardized and contains sufficient information to identify the
accelerogram record and to read the data records from tabpe. An example

of a header record is given in Figure II-2.

Thirty six accelerogram records were received on cards.
Before these records were stored on tape, a thorough check for errors
was required. Preliminary processing had uncovered errors such as
duplicate cards and invalid characters. Therefore, software was written
to search the cards for errors of this nature. Figure II-3 is a sample of
the output from this processing. The cards were corrected using references

which listed valid data.
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Having completed the error scal process, the data on cards was
ready for storage. Information for each file header was punched on cards. On-
line checks between file headei information and component header information
prevented any disordering of data, An example of the printed output, shown

in Figure 1I-4, illustrates how the process was monitored.

The remaining 15 accelerogram records were recrived on seven-
track rnagnefic tape. The contents of this tape were stored alphanumerically in
a card image format., Hence, the software for this tape-to-tape process was
designed to convert tlie input data to a floating point repr:sentation and then
store it on nine-track tape in standardized files, Error monitoring and correc-
tion was accomplished during data conversion. Information for the file header
was extracted from the component headers during the processing. The printed l
output for the tape-to-tape operations, an example of which is shown in Figure

II-5, provided a means of monitoring the processing.
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SECTION II1
DATA PROCESSING PROCEDURES

Digitized strong-motion accelerogram records are integrated
twice to obtain ground velocity and ground displacement records. These
traces are compared with results computed from a moving dislocation
source model. The integration was carried out by a Legendre-Gaussian
Quadrature which incorporated a quadratic interpolation scheme. Since
the Legendre-Gaussian Quadrature will compute exactly the integrals for
any order polynomial, the degree of accuracy depends solely on the order
of the polynomial used for interpolating. Figures III-1 and III-2 show the
results of two integration schemes. Figure III-1 are results from linear
interpolation (trapezoidal integration), and Figure III-2 are results from
quadratic interpolation. Comparison shows that the general characteristic
of the integrated traces are very similar. However, the differences in values
for velocity and displacement are large enough to justify the use of quadratic

interpolation,

The application of baseline corrections for the accelerogram
and velocity trace are crucial in improving the quality of the integrated
traces. The baseline for the accelerogram is found by fitting a straight
line to the accelerogram record. The linear equation obtained from this
process is used for the baseline, Mathematically, this may be expressed
as follows:

Let:

A, be the raw acceleration at time, ti.
1
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L(ti) = L0

used as the baseline,

Thus, the corrected record AA(ti) is:

A = -
A(ti) = A L(ti)

Using the least squares criterion to estimate L0 and L1 requires that
b 2
Y A (ti) be a minimum over a given interval lta' tb].

b 2
e on ) DU S
0 iza A @
and
b 2
d Z A
=== (t)=0
oL, FL,. a4l

Taking the partial derivatives and solving for L. and L1 yields

0

b b

.E A E ty
iz a iz a
/o

-
n

> 2
Al E 4
1= a 1= a
b
N EAi

1= a /
Ll=b b D

E ti 2 tiAi

i=a i= a

where N = number of data points in the interval lta' tb].

111-4

+ Ll(ti) be a linear equation in time, ti'




| b |
N Z t

and D= 1=a
b b 2

Z PO

i= i=a

This fitting process may be applied to the accelerogram record

over any chosen interval [ta. tb]. For example, consider the accelerogram

in Figure III-3. It has been found that for this particular record (and in general)

a better linear fit can be achieved in the regions oi noise as indicated on the
figure. Therefore, the interval [10, 30] is chosen for the fit, and a baseline
is obtained. New accelerations are computed for the entire record [0, 30]

relative to this new baseline.

The preciseness of the baseline fit does not appear to be
critical to later processing; changes in the velocity and displacement traces
resulting from the baseline correction method usually are small, as can be
seen by comparing Figures III-4 (without baseline correction) and III-5
(with baseline correction). Thus, a linear fit for the baseline determination
appears to be adequate in that it serves to eliminate slight drifting in the
accelerogram record but does not sigrificantly alter estimates of the

velocity and displacement waveform,

The region containing first motions of the shock is of most
interest in the comparison studies with the theoretical model. Therefore,
in preparation for the velocity correction process, the trace is truncated to
a length of approximately ter seconds centered about the shock, thereby
constraining the correction to this region. The correction process involves
a least squares fit of a cubic curve to the ten second velocity trace. This
order fit was found to adequately cancel long-period noise without affecting
the important characteristics of first motion pulses. The equations for

this fit may be derived following an approach similar to that outlined above

111-5
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for the linear case.

Vi = uncorrected velocity at t, on the interval
'S
[t t4]
CcC(t)=20C
i

in time, ti, used for correction.

C.=0

0
ithi Vi
; t? Vi

0 1

wheret, =t + 10 sec.
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d
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L= wrd | Jp— tm 2 m

e

L.

where

D= 11 T 1 1.1
) i ) I
1i 1 i ii

and all summations run fromi = ¢ to d.

The corrected velocities AV (ti) then are computed from the equation:
A = -
v =V, -ct)

In this analysis the cubic fit is contrained to zero at ti in order that the
initial condition for the velocity trace ( Vc = 0) remain unchanged. The
contrast between Figures III-6 and III-7 illustrates the typical effectiveness
of this correction process. The dotted line through the uncorrected velocity
trace in Figure III-6 is the Correction cubic curve which is subtracted

from that trace to obtain the velocity trace in Figui'e III-7. Th. functional
characteristics of the correction cubic curve in Figure III-8 p-rovidea a

quick evaluation of the fitting process.
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SECTION IV

AN EVALUATION OF VELOCITY AND DISPLACEMENT TRACES IN
COMPARISONS BETWEEN ACCELEROGRAM DATA AND THE SOURCE MODEL

The objective of the processing steps in the previous
section is to obtain velocity and displacement traces suitable for comparison
with waveforms generated by the source model. It became apparent soon
after work began on processing accelerograms that the resultant displace-
ment traces are extremely critical to baseline and velocity correction measures.
Several velocity correction schemes were considered and tested in an attempt
to find one which would improve details in the traces and minimize the sensi-
tivity of the displacement trace to changes in the processing parameters. The
correction scheme invoiving a cubic fit as described in Section III was found
to yield displacements which were rensitive to the choice of starting and
terminating points of the fit. Nonfitting processes which use correction
quadratics and cubics whose coefficients are determined by constraining
them to intersect the velocity trace at specified points also produces results

that were sensitive to the choice of these points,

To illustrate these findings, consider the processed accelero-
gram record, for the N65°E component, of the Parkfield earthquake, June
28, 1966, Station #2, Cholame, California in Figures III-5 and IV-1. Figure
IIT-5 shows the results of a cubic coxrraction fitted over the interval [0, 10]
as explained in Section III. In Figure IV-1 the correctiun is fitted to the whole
record [0. 44]. Contrasts between the displacement traces illustrate its
typically sensitive behavior to the choice of parameters for the fit. On the

other hand, the velocity traces remain relatively unchanged. Figures 1V-2

IvV-1
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and IV-3 are results from a nonfitting process which uses, in this case,

a cubic to correct the velocity. The s74°w accelerogram component
recorded at the Pacoima Dam during the San Fernando earthquake, February
9, 1971 is depicted in these figures. The cubic intersected the uncorrected
velocity trace at 0, 15, 21 and 30 seconds to yield the results in Figure IV-2
and at 0, 16, 22 and 30 seconds for the results in Figure IV-3, These points
were chosen to insure that the corrected velocity trace approached zero late
in the record. Again, the resultant displacement traces are quite different,

whereas the velocity traces are quite similar,

Thus, it was concluded that, in general, comparisons between
velocity traces and theoretical velocity waveforms will be more reliable

than comparisons between displacement traces and displacement waveforms.
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SECTION V

INTERPRETATION OF THE EARTHQUAKE STRONG-MO TION RECORDS BY
A MOVING DISLOCATION MODEL

Application of synthetic displacement waveforms calculated
from a moving dislocation model for interpreting the earthquake strong-motion
records were first made independently by Aki (1968) and Haskell (1969). Aki
takes the Fourier transforms of integrals derived by Maruyama (1963), carries
out a numerical integration over the fault plane to obtain the displacement
spectrum, and finally returns to the time domain by an inverse Fourier
transform. Haskell adopts a somewhat different approach in that he takes
the Green's function integrals and evaluates them numerically over the fault
plane. For our present purpose Haskell's method is used. According to
Haskell, explicit expressions for the three Cartesian components of a displace-
ment time function due to a moving longitudinal or transverse shear éiélocation
in an infi;nite homogeneous elastic medium are given in integral forms. Figure
V-1 shows the coordinate system and the geometry of the fault plane. The
dislocation on the rectangular fault plane is such that 7 fracture front is
formed instanteously at time t=0 across the width W and subsequently
propagates at a constant velocity V for a length L along the X axis. At any
given point on the fault plane the dislocation increases linearly from 0 at
time t = X /V to a constant final value of DO att= X/V + T where T is
called the rise time of the dislocation motion.

A computer program for obtaining the displacement waveforms
by numerical integration of the Green's function integrals derived by Haskell

(1969) has been written. The theoretical displacement waveformsa can be
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used for comparison with the experimental displacement waveforms to give

an estimate of the dislocation parameters T, V, L, W, and D.

Unfortuhately. there exists some serious difficulty arising
from the fact that the experimental displacement waveforms have to be derived
by integrating the recorded acceleration waveforms twice. As mentioned in
a previous section, the resultant experimental displacement waveforms
often are highly dependent on the base-line corrections made in the integration
process. This results in an unacceptably large uncertainty in the estimates

of dislocation parameters.

On the other hand, the experimental velocity waveforms result-
ing from integrating the recorded acceleration waveforms culy once are far
less dependent on any particular base-line (orrection procedure. Thus,
more reliable estimates of the dislocation parameters can be obtained by
comparing the experimental and theoretical velocity waveforms. The
theoretical velocity waveforms to be used for this purpose can be derived
from the corresponding theoretical displacement waveforms by numerizal
differentiation with respect to time. In the process, the earthquake dislocation
parameters T, V, L, W, and D are adjusted by trial and error until a
reasonable fit of the theoretical to the experimental velocity waveforms
is achieved. Sometimes the dimension parameters L (fault length) and W
(fault width) are known from othe1: seismological observations such as the

ground surface fractures or the distribution of aftershocks.

Remembering that the theoretical velocity waveforms are
good only for an infinite homogeneous elustic medium, they will not be
strictly comparable to the observed data at the free surface. For the present
purpose the effect of free surface will be compensated for by doubling the

amplitude of theoretical waveforms computed for the infinite medium.
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The accelerograms have heen analyzed for two earthquakes
in California: the San Fernando earthquake of February 9, 1971 and the
Parkfield earthquake of June 28, 1966. The results are described below.

A. THE SAN FERNANDO EARTHQUAKE OF FEBRUARY 9, 1971

The three-component acceleration traces recorded at the
Pacoima Dam accelerograph site during the 6.6 magnitude earthquake are
shown in Figure V-2. The waveforms are reproduced from the digitized
version of the records provided by the Earthquake Engineering Research
Laboratory of the Californis Institute of Technology. The corresponding
velocity waveforms obtained by integration of the acceleration traces are
shown by the solid curves in Figure V-3, Unlike the acceleration waveforms
which are characterized by the large deflections occurred five seconds or
more after the onset of recording, the integrated velocity wavefoims have
brought out the predominant motion between two and four seconds after
the onset of recording. This portion of the velocity waveforms is taken to
be directly related to the earthquake dislocation process., This example
also clearly suggests that the integrated velocity waveforms are superior
to the original acceleration traces as far as interpretation in terms of

dislocation is concerned.

The instrumentally-determined focus of the San Fernando
earthquake of February 9, 1971 was put at a depth of about 13 km. Surface
fracture is centered about 12 km south of the epicenter with an overall
trend in S70°E. Total lateral extent of the surface fracture is about 12 km
long. The northern block has been thrust southwestward over southern block,

The fault-plane solution gives a well-defined plane striking N70°W and dipping

52° in the northeasterly direction (Whitcomb, 1971; Canitez and Toksoz, 1972),

On the basis of this data a dislocation model is constructed as

follows: The dislocation surface is taken to have length L = 16, > km, width

e =

~
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W = 14 km and to dip 52° in N14°E. The upper edge of the dislocation surface
ie made to coincide with the surface fracture. Then the lower edge would

be located at the same depth, i.e., 13 km, as the instrumentally-determined
focus. The dislocation is assumed to initiate along the lower edge and
propagate up and to the south, past and under the Pacoima Dam accelerograph
site, until it intercepts the ground surface in the Sylmar-San Fernando area.
Figure V-4 shows the horizontal projection of the modeled dislocation plane

as compared to the Pacoima Dam accelerograph site, the epicenters of the
main shock and aftershocks, and also the surface fault traces published by
Trifunac and Hudson (1971).

Given a constant rupture velocity V = 3,0 km/sec, a rise
time T = 0.6 is found to be appropriate for the earthquake, The resultant
theoretical velocity waveforms are the dashed traces in Figure V-3, over-
lapping the integrated experimental velocity waveforms. The fit between
the observed and the theoretical waveforms is remarkably good, especially
for the two horizontal components. The final thrust dislocation is estimated
to be about 150 cm if the free surface effect is approximated by doubling the
amplitudes of the theoretical waveforms computed for an infinite homogeneous
medium. A small amount of final strike-slip dislocation, 15 cm is included

in obtaining the theoretical waveforms.

It has been suggested on the basis of the fault plane solution
and static dislocation model that the final strike-slip dislocation may be as
large as the final thrust dislocation. (Canitez and Toksoz, 1971). We have
tried this possibility and found that the resultant theoretical veloctiy waveforms
do not have comparable relative amplitudes between the two horizontal components
as indicated by the observed velocity waveforms, This is illustrated by the

three-component theoretical velocity waveforms shown in Figure V-5. In
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this case, the strike-slip dislocation component is set to be half as large

as the thrust dislccation component. The theoretical amplitude ratio of

the S740W component versus the SlboE component amounts to only i:4 in

the present case. This falls far below the actual ratio of albut 1:2 as revealed
by the upper two traces in Figure V-3. Thus, on the basis of the preceding
evidence we concluded that the dynamic dislocation process associated with

the San Fernando earthquake is predominated by thrust motion.

The dislocation parameters determined above can be combined

to give an estimate of the seismic moment by:
M,= ¥ DWL (V-1)

where Bis the modulus of rigidity, D is the average dislocation across the

fault surface which has a width of W and length L., Taking the values mentioned
1

above, namely, D= 150 cm, W= 14 km, L = 16.5 km and setting{‘=3 x 10 1

4 . 25
dyne cm 2, we find M_= 10.4 x 10 "dyne cm. This last value is smaller than

0
25
the one esiimated from static displacement data 16.4 x 10 "dyne cm, but is
25
larger than the one determined from surface-wave data, 7. 5x10 dyne cm,

as reported by Canitez and Toksoz (1971).

In view of the highly simplified model of the actual dislocation
process, the overall results are indeed very encouraging. However, we also
hasten to point out that only a relatively small portion in the beginning of
the records has been explained. There still exists a large later portion during
which the maximum acceleration occurs which is left completely unexplained.
Inclusion of a free surface and layering of the medium in the model may help

explain the latter portion of the record.
B. THE PARKFIELD EARTHQUAKE OF JUNE 28, 1966

We have also applied the moving dislocation model to interpret

the Parkfield Station 2 record. Figure V-6 shows the location of Station 2

vV-10




the Parkfield Station 2 record. Figure V-6 shows the location of Station 2
with respect to the San Andreas Fault and the surface cracks associated

with the earthquake. The instruments of Station 2 were situatec only about

80 meters from the fault trace. Only the vertical and one horizontal component
available is reproduced in the upper part of Figure V-7 from the digitized
version of the original waveform., The integrated velocity waveform is shown
by the solid trace in the lower part of Figure V-7, The dashed trace is the
theoretical velocity waveform corresponding to a right-lateral strike-slip
dislocation propagating southeastward starting from a point about 8 km to

the northwest of Station 2 and ending at a point 2 km to the southeast of Station
2. The width of the dislocation surface W is set to equal 6 km. To the extent

that the free surface boundary conditions are approximately satisfied by adding

an image source, we may regard the plane bisecting the fault width as represent-

ing the free surface and the half of the dislocation surface lying about this
level as representing the image of a fault whose real dimensions are 10 km

by 3 km. Because of the closeness of the observation point to the fault plane,
i.e., 0.08 km, we use Simpson's method of numerical integration over a grid
of 100 x 60 points covering the dislocation surface for numerical integration.
With a given rupture velocity of 2.2 km/sec the rise time is found to be

about 0.9 sec. The resultant theoretical velocity waveform, as shown by the
dashed trace, fits very well witl} the integrated waveform, as shown by the
solid trace in the lower part of Figure V-7, The final right-lateral strike-slip

dislocation is determined to be about 200 cm.,

Haskell (1969) has proposed a source time function consisting
of two discrete ramp steps for this earthquake. The time duration for the
dislocation to reach its final value was determined as 0. 84 sec in this case.
Thus, our value of 0.9 sec for the rise time is in good agreement with

Haskell's result. As mentioned earlier, Aki (1968) also has interpreted the
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same record using a Fourier synthetic technique. He has estimated the final
dislocation to be about 60 cm. Thus, our value of 200 cm is more than three
times larger than Aki's estimate, This discrepancy results largely from the
fact that Aki uses a step source time function whereas we use a ramp function.
To illustrate this point, we have computed the theoretical velocity waveforms
for two different valucs of rise time. Figure V-8 shows the three-component
velocity waveforms calculated by using the following dislocation parameters:
L=6.4km, W= 3.0km, V= 2.2km/sec, D= 200 cm, T = 0.8 sec. These
waveforms are to be compared with the corresponding ones shown in Figure V-9
which are computed with all parameters unchanged except the rise time has
been reduced from 0.8 sec to 0.4 sec. Itis apparent that a reduction of riee
time by half has caused the theoretical waveforms in both horizontal components
to substantially shorten the pulse durations on one hand and to nearly double

the pulse amplitudes on the other, With a very small rise time approaching

a step function the increase of theoretical velocity amplitudes would be even
greater. Thus, given the observed waveforms, the infcrred final dislocation

will decrease with decreasing rise time.

Because there are so many parameters involved in this type
of analysis the outcome is necessarily non-unique. However, if the integrated
velocity waveforms are of sufficiently good quality, some proper limits for
the parameters can be established. For instance, if the theoretical waveform
of the N65°E component shown in Figure V-9 is compared with the observed
waveform shown previously in the lower part of Figure V-7 it immediately
becomes clear that a rise time of 0.4 sec is too small to account for the

observed pulse duration.
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The seismic moment of the Parkfield earthquake has been
determined as 1.4 x 10?'5 dyne cm from surface-wave data by Tsai and Aki
(1969). By setting l‘- 3x lOlldyne cm-z and using the parameters estimated
above, namely, L = 10 km, W= 3 km, D = 200 cm, we obtain a seismic
moment M0 = I.8 x 10?'5 dyne cm. The agreemeni of the two values is
excellent. The fault length L of the earthquake has heen determined as 30
to 37 km from various sources of information [Brown and Vedder, 1967;
Filson and McEvilley, 1967; Tsai and Aki, 1969]. This is more than three
times larger than the 10 km inferred from the strong-motion record at
Station 2. If we use this fault length and the seismic moment mentioned
above then the average final dislocation over the whole length will amount
to only one third of the 200 cm estimated in the present study. This strongly
suggests that the dislocation along the fault associated with the Parkfield
earthquake is not uniform but concentrated in the 10 km portion near the

southeastern tip of the fault,

V-17

P, gy,
C [

P e s




SECTION VI
EVALUATION OF TWO DISLOCATION TIME FACTORS

In this section two time functions, a linear ramp function
and an exponential ramp function, for dislocation are evaluated. These two

dislocation time functions are plotted in Figure VI-1l. The linear ramp

function has been investigated by Haskell (1969) with some success. The
exponential ramp function was proposed by some investigators as an alterna-
tive to the linear ramp since this function has similar characteristics and is
continuous for all time greater than zero. Contrasts between the velocity
functions associated with these mechanisms raised doubts, however, concerning
the quality of resultant waveforms, especially at relatively distant observation

points.

The evaluation was based on the comparison between theoretical
waveforms and first motion pulses in velocity traces obtained from accelerograms
recorded at the Pacoima Dam site during the San Fernando earthquake of
February 9, 1971. The velocity traces are shown in Figure V-3. Although
some of the model parameters were determined from field observations for
this earthquake, the remaining parameters were adjusted oy trial and error,
Particular attention was given to the effect of different rise times on the
theoretical waveforms. As described in Section V, satisfactory agreement
between the linear ramp results in Figure VI-2 and first motion pulses

was obtained for 0.6 second rise time.

Figures VI-3 and VI-4 depict velocity waveforms for the
exponential ramp at 0.3 second and 0. 6 second rise time, respectively,

The observations from these two cases and from other cases for the exponential

VI-1
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ramp are fourfold: 1) Amplitudes of first motion pulses are generally
smaller than those for the linear ramp. Since the relationship between
amplitude and final displacement, DO' is linear, the results in Figure VI-4,
for example, would require fault dislocations of six meters, approximately
four times the accepted value. 2) First motion pulses are followed by
downward swings whose durations become larger and tend to dominate the
waveform as the rise time is increased. 3) Changes in the rise time do not
affect that upswing pulse widths which for these cases are too short to fit

the observation. 4) While the arrivals of pulses for the Sl6°E and S74°W
components can be made to coincide with those observed in Figure V-3, the
vertical pulse consistently lags behind its observed counterpart. Apparently,
the gradual decay of the exponential velocity function is the cause of these ill
effects in the resultant velocity waveforms. Thus, based on these observations,

the exponential ra;up is regarded as inferior to the linear ramp.
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-~ v. —aesw. SECTION VII
SUMMARY

In summing up our accomplishments to date concerning the
analysis of near-field earthquake strong-motion records, the following

remarks are appropriate:

° Major programs performing the calculations of theoretical
waveforms, the processings of digitized strong-motion
records have been written, checked, and are operational.
All the computer programs related to this project have
the capability to make Calcomp plots as well as printer

plots for visual inspection.

® A file of fifty-one three component digitized strong-motion
records has been set up in a unified format and stored on
a nine-track magnetic tape. This has greatly reduced the
time and labor required in data handling, thus providing
excellent conditions for more rapid data processing in the

future.

° It was found that a linear and a cubic least squares corrections

of the acceleration and the integrated velocity waveforms,

respectively, can result inreasonably reliable experimental
velocity waveforms for interpretation using a moving dislocation

model,

vi-1




The one-time integrated velocity waveforms are far less
sensitive to various schemes of numerical integration and
baseline corrcctions than the corresponding twice integrated
displacement waveforms. Thus, it is suggested that comparison
of the experimental and the theoretical waveforms can be

more reliably carried out at the velocity level.

Interpretation of the accelerograms at the Pacoima Dam site
recorded during the San Fernando earthquake of February 9,
1971 using the moving dislocation model yields the following
picture of the dislocation process associated with the
earthquake: The rupture was initiated at the depth level of
the instrumentally~-determined focus and then propagaied up
and to the south, past and under the Pacoima Dam accelero-
graph site along a fault surface dipping at 52°, The final
dislocation and the time to reach it are estimated as 150 cm
and 0.6 sec, respectively. The seismic moment estimated
using the determined dislocation parameters is 10.4 x 10

dyne cm.

The dislocation process associated with the Parkfield earthquake
of June 28, 1966 as inferred from analysis of the Station 2
accelerograms using the moving dislocation model is as follows:
The right-lateral strike-slip dislocation amounted to about

200 cm along a 10 km segment of the San Andreas fault near
Station 2. The dislocation began at a point northwest of the
recording site and propagated past and to the southeast of
Station 2. The dislocation rise time and the seismic moment

for this earthquake are estimated as 0.9 sec and 1.8x 10

ViI-2
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dyne cm, respcctively, Our estimates here, when compared
with other seismological observations suggest thaot the dislocation
associated with the Parkfield earthquake is not uniform over

the whole fault length of up to 37 km but concentrated along the

10 km segment near the southeastern end of the fault.
A linear ramp dislocation time function appears to be superior

to an exponential ramp function for interpretation of earth-

quake strong-motion records.
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