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This work was performed under US Army Natick Laboratories Contract,
No. DiaAGl7-70-C-0127 during the period of 1 Apr 70 to 31 Mar 71, and
follows the work reported on in report reference No. 7. The Project No.
was 1F162203D195 entitled "Exploratory Developnent of Airdrop Systems",
ard the Task was No. 13 entitled "Impact Phenomena". Messrs.Edward J.
Giebutowski and Marshall S. Gustin of the Airdrop Engineering Laboratory
served as *he Project Officers.

The effort is vart of a continui.z investigation directed toward
obtaining a better understanding of the failure mechanism of energy dissipater
materials, and the response of airdroppable supplies and equipment to
s2irdrop imvact vhenomena; and toward obtaining improved airdrop energy
dissipater materials and techniques.

This ireport is concerned primarily with the development of design
analyses of the dynamic response of a complex structure to the shock of
a verticel and planar airdrop impact. Primary consideration was given to
the ugse of the finite element method of analysis, of a three dimensional
lumped mass model of the Army's M-37 truck.
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ABSTRACT

The principal purpose of this studv has been to
develop a procedure for analyzing the response of complex
structures to impact and to provide a computer code for
making the necessary computations. Attentiorn has been
focused specifically on the displacements, velocities and
acceleraticns produced at various points in military vehicles
subjected to ground impact in airdrop operations.

The vehicle is modeled by a lump:d parameter (spring-
mass)system. Using the finite element method, a set of
eguations of motion is formulated for this model. Then
these equations are solved numerically by the Runge-Kutta
method. A model for representing a specific vehicle, namely
the M-37 military truck cushioned for an airdrop is used to
illustrate the procedure. Some of the physical cconstants
for the model are modified as required to bring the com-
puted displacements and accelerations at various points in
the model into agreement with measured values. It is found
that the response of a structure properly cushioned and
subjected to impact loading is not sensitive to the elastic
properties of the interconnecting members. Thus, the develop-
ment of a suitable lumped parameter model of a given vehicle
is simplified. However, special attention should be given
to the more important components of the.vehicle such as, for
example, the engine. ’

Experimental results show that more than one fourth
of the system energy is dissipated through the structural
damping. Hence, damping must be included in the equations
of motion, ‘

The most essential factor affecting the dynamic
response oi the system has been found to be the force applied
as a result of the impact. 1In the example used, this force
is applied by the cushioning system.




INTRODUCTION .
The tinite element method appears to be ideally

sulted to the problemr under consideration, namely, the com-
putation of the displacements, velocities and accelerations
at selected points in a structure subiected to an impulsive
loading., To apply thlis method of analysis one must first
prepare or select a conceptual representation of the contin-
uous structure as an assemblage of structural elements inter-
connected at nodal points. The i1dealized stiructure is assumed
to be acted on hy external equivalent forces and to possess
equivalent inertia properties only at the ncodal points. Thus
the continuous structure is replaced, for analytical purposes,
by a lumped parameter system. The accuracy of the predicted
dynamic response of a structure will depend on how well the
structure is represented by fhe selected lumped-parameter
model. It has bean reported™ that even foni a very simple
beam or uniform plate with boundary conditions which can ke
exactly expressed in mathematics, errors in the predicted
responses can easily be as much as 3% percent. Although no
investigation of the validity of lumped parameter models Ior
complex structures, such as vehicles, has been reported in
the literature, it may be assumed that discrepancies of even
more than 35% can be expected for poorly represented struc-
tures. The general details of thg finite element methoc have
been discussed in the literature.” However, the nature of
the model which will best reprecent a structure such as a
vehicle, with its varied elements, irregular geome*ry and
discrete masses, is not at all clear. The primary objective
in this study will . to select a model and then determine by
computation and by experiment how valid the model is., It is
expected that some suitable rules can be formulated rega~ding
the representation of vehicles by lumped parameter models.

A mcdel for representing a specific vehicle, namely the M-37
military truck, cushioned for an airdrop is used to illustrate
the procedure. '

In the procedure follcwed for this study, the lumped
parameter model for the M-37 is first developed. Then the
equations of motion of the model are formulated following stan-
dard finite element methods. These equaticons, with appropriate
initial conditions are then solved using the Runge - Kutta
method.* Some important factors such as structural elastic pro-
perties, damping, and impulse loading which affecit the dynamic
response are investigated. Firally, an experimental progran
of actual truck drop tests is carried out, and the results are
compared with computed results. 1In the analysis of the tathe-
matical model, the concept of linear transformation is exten-
sively used. Linear transformation techniques streamline and
simplify considerably the procedures involved in the analysis.
It should be mentioned here that the computer program devel-
oped for the vehicle is also applicable to other complex struc-
tures.

* Algorithms for this method are available in mest computa-
tional facilities.




L MATHEMATICAL MODEL
A vehicle such as the M~37 truck may be represented

by the model shown in Fig. 2.,1. 1In this model the enginz,
transmission, transfer case, differentials and wheels ar:z
treated as discrete masses. The mass of the winch is assumed

to be distributed uniformly along the two mein longitudinal

and the remaining transverse members of the truck frame. The
adoption of this model is, however, quit=2 arbitrary. Many
other arrangements of masses wculd, no doubt, bec equally accept-
able.

;:II--IIIV* == b e L4 T
|
|

When a structure such as this vehicle is to be intention-
ally subiected to an impact, «s in an airdrop, cushioning is pro-
vided to reduce the severity «." the shock produced by the impact.
Usually all of the discrete masses shown in Fig. 2.1 would be
cushioned independently, if possible. For the M-37 truck the
engine is not cushioned independently, partly because i: is shock
mounted on the frame, and partly because of geometrical and struc-
tural problems. The engine is supported on rubber cushions, or
shock mounts at three points, one in front ard two in the rear.
The action of these mounts can be represented by the spring-
damper system shown in Fig. 2.2. The stiffness and the damping
capacity of a mount depends on many fagtors such as the hardness
of the rubber, the shape, and the age. Rather than try to deter-
mine a precise set of values for the M-37 mounts, values of
20,000 1b/in. for k and 60% of critical for the dampinc were arbi-
trarily assumed. Later these values were varied to improve the
"fit" between experimental observations and computed results.

The transmission is actually attached to the engine
but since it can be cushionel independently, it has been
assumed to be a mass which is attached to the erigine b a
very stiff elcment.

The transfer case is supported at four points on two
central cross frame members which act as spring suppor:s for
1t

Wheels and differentials are connected by the axles
which in this analysis are assumed to be rigid, massless rods
attached to leaf springs. Tires absorb considerable eiergy
and this energy is given back in rebound. Also measurad
relative displacements between the rear axle and truck frame
indicate that little energy is dissipated through the four
shock absorbers associated with the wheels during the impact.
Consequently the shock absorbers are neglected and the vehi-:
cle is supported by the leaf springs in Fig. 2.3.

The spring constants K and damping factor C for tne
tire in Fig. 2.3 must be determined experimentally, or be
estimated using wiiatever guidance is available. These quan-
tities are initially assumed to be 7,000 lb/in. and 2(% res-
pectively.

The winch and the other distributed masses of the
truck are cushioned with the two main longitudinal freame
members. 1In the model shown in Fig. 2.1, all individual
components ar=2 interconnected at the nodes nunbered from
1 to 39. 1In the present study only a vertical, planar im-

2
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pact 1s considered. Consecuently each nodal point in the
model 1s to have onlv 3 degrees of freedcm, consisting of

o1e vertlcal translation and two nlanar rotavions. Three
degrees of freedom are asscciated with each end of all members
as shown in Fig. 2.0,

AMALYSIS OF THE !ODEFL

¥or the model shown in Wig. 2.1 with assumed damning
subject to Impvact loading, the eauation of motion can be
written as:

S 6g K al=lEGE) (3.1)

=

where M, ¢ and [ are sauare matrices of inertia, damning

and stirfness respectively and F(t) is the column matrix

of cushion forces. The generalized displacement matrix q is
numbered in the seauence accerairg to tne Joint numbers. For
example, ccordinates q q and a,. are associated with

tne translatory and twd176tarsbndl motiohs about comrion datum

aXes, At the ith nodal joint of the model. VFor examnle, at
cint 5, t rdi 3 1. . a .

Jcirt 5, the couordinates are Gyg-2 d151p Y50 T 13, Ty

and ..

The stiffness matrix K of the comnlete,element assembly
is obtained bv the direct stiffness method. This method
consists of first deriving the individual element stiffness as
in element coordinates, followed bv a coordinate transforma-
tion and the subsequent supernosition of each element stiff-
ness so that the translaticnal and rotational degrees of free-
dom of all elements which share a common nodal point are ex-
pressed 1n the same coordinates. The sunerncsition of each
transformed stifrness is accomnlished by adding its individual
terms into the complete stiffnesz matrix according tc the
element nodal point numbers. The same method can be emploved
to obtain the mass matrix !l ard the force vector 7. The
derivations of mass matrix M, stiffness matrix K, force vector
F and danping matrix C are discussed in detail as follows:

1. Element Disnlacement Functlons
Tc determine the elastic and inertia oronerties of a
structural element the strain and kinetic energles of the
actual contfnuous element are eaquated tc¢ the csrresnonding
cuantitles for the eauilvalent discrete mcdel. Consider now
a unifcrm structural element in the horizontal plane as shown
in ™g. 3.1. The common datum (X,Y,Z) is established for all
structural elements so that all dlsnlacements and corresponding
for:es will be referred to this common coordinate system. The
origin of element cocrdinates (x,/,z) is located at node 1
with the ox axls taken along the length of ei-ment and with the
oy and oz axes as thc nrincinal axes of the element cruss
section. .
The column matrix U for this element, as mentioned before,
consists of six displacements, two vertical (Z direction) deflec-
tions Ul and Uu and four rotations, UZ’ U3, US’ and U6'

5
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Fig. 3.1 Element Coordinates

The displacement furction w
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where C, to C
conditi%ns at b

At node 1: (x = 0, y

At node 2: (x

awz

97

ow
2

3
Scolving for the
C1 =

2

3

L

Denote th

W
X

F.

may be assumed as
2
w_=C, + C,x + C,x" + Cl,x3
A 1 1

+ C_v + C xy
5¢ 6u

are constants to be determined by bocundary
oth ends of the element.

+ C.L + C,LS + CuL3

3

=C. + 2C.L + 3CUL2

= O)

Ug =&

“Uy = C,
+U, = C,

=L, y=0)

U, = & 2
=S enes 3
+ = + C

Ug = Cg + CgL
ks,

Uy

. f

U3

V0= 30w 2L0
) 1

L

l§ [ 2u; - LU,

I

U,

1 . o

r [~ Uy+Ug ]

6

3

+ 3Uu +

LU¢ ]

- 2Uu - LU6 ]

(5312

e dlsplacement functicn:
in element coordinates as:

(Bw3)

(30 2)

(3.5e)

GErsts)




Define the nondimensional parameters

= =4 = £ 3
r T s 3 t T ( )
Thus the displacement function v, becomes
= 2 3 il o
W, & (L ~ 3r” + 2r )Ul + Ls(2 v,
+ L(-r + 2r2 = r3)U3 + (3r? = 2r3)U4
+ LrsU. + L(r2 - r3)U

5 6 (3.8)
The displacement function wy caused by twisting is

o Lt(l - r)u, - LrtUg (3.8)
This is a direct g=ometric relationship, i+ can be obtained
by assuming _ o= 2 8
= Cl + Cox + C3x + C4x + CSZ + C6xz.
The displacement function v is
awz ow
= - —— - {
W Z—5% 5% (3.10)
Then by combining 3.8, 3.9, and 3.10 obtain
_ _..2 _ 2
DA 6t(r -r )Ul4- Lt(1l 4r + 3r )U3
+ 6t(- r + r’)U, + Lt(= 2r + 39T (3.11)

Thus the displacement functions w can be expressed in terms
of the discrete displacements U as
w=alU {3.12)

where a is the 3 x 6 matrix whose transpose is given by:

6t(r - r’) 0 1- 32 4 203 | (3.13)
0 C o= Lt{1l -r) - Ls(1 - r)
Lt(l1 - 4r + 3r2) 0 L(- r + 2r? - r3)
%T - GE (= + r2) 0 3r2 = 2r3
] 0 - Lrt - Lis .
Lt (- 2r + 3r?) 0 L(r? - r3)

b 2. Element Mass Matrix )
To d2termine the element mass matrix begin with the

element displacement functions w in terms of discrete dis-

placement U as indicated by Eq 3.12.

The transpose of w is:

wo = U a (3.14)

P
}
I
)
!
)
)
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FVTV X

and the second time derivatives are:

w=3al (3.15)
The virtual—aisplacument of w is:
§w = asu (3.16)
and its trangpose is
swl = sUTa (3.17)
Thus tle virtual_work done by the inertia force of the element is:
SWinertia - J §W T(pﬁ)dv

It

suta’ (o a §) av

0" o 22 ang
pae

It

where the integration is performed over the whole volume of
the element.

Hence the element mass matrix is defined as:

m = [ o a'a av (3.18)
= W= =

Substituting the matrix a [Eq. (3.13)] into Eq. (3.13) and

performing the integrati®ns, the resulting 6 x 6 mass

matrixn, Bqg. {3.13) is obtaine<. In the mass matrix, terms

with the mcment of inertia I represent rotatory inertia and

terms with the polar moment df inertia I represent the tor-

sional inertia of the element. From the results of numerical

computation, the effects of rotatory and torsional inertia of

the element during impact are considered negligible.

3. Element Stiffness Matrix
The bending strain in the xz plane of the element
shown in Fig. (3.1) is:

2
3 W
_ z _ 1, : 1 _
ey = 5 = =5\ 6 + 12r)Ul + f(4 6r)U3
IX L
1 = 1
+ ;2(6 - er)d4 ¢ E(Z - 6r)U6 (3.20)
The twist strain is:
P
e, = f( U2 + US) (3.21)
The total strain e in matrix form is:
e=bU (552 2)
L
where e = eb
t
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I
156 + 504-12
AL
0
5
-22L - 4224
I
54 - 504—12
AL
0
Iy
131 - 422

X
140—X

70—

i b

symmetric
2, 56X
41" + 56 X
Y Iy
-13L + 42AL 156 + 504 2
AL
I_x
0 0 140_K
2 Iy Iy o an? s 56
-3L° - 14 % 22L + 42AL
(3.19)
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and
[ S 1+20 0 Xa-s6r) L (6-12r) 0 22 - 6r)
2 L 2 L
I L L
b =
= 1 1
l 0 T 0 0 T 0
(3.23)
The bending moment ie:
Sb = EIyeb
where E is elasticity mcdulus. The twisting moment is:
St = GJet

where G is the shear modulus and J is the torsional constant
for the element.

Thus the stress-strain relationship in matrix form is:

S =4k (3.24a)
Where:
S
e (3.24b)
e t
EI 0
a= Y (3.24c)
- 0 GJ
From Eq. (3.22), we have the virtual strain
e = bdU, (3.25)
and the trangpose of virtual strain
seT = sUTH . (3.26)
Thus the virtual strain energy expression is:
sV = P
strain - =
Jo
(L
= | su'b'ab U ax
lo T T~
T L T
= U ( b"A b dx)U (3.27)

10

{'v‘ . -
[




an

The element stiffness k 1s then defined as:
Lop
I_Sj[ R4 L dx (3.28)

Substituting the matrix b [Eq. (3.23)] and § [Eq. (3.2bc)] into
Eq. (3.28) and performing the integrations, the 6 x 6 stiffness

matrix k 1s obtained as follcws:

e

12 =
2
0 %%h— syvmmetric
y
By e 0 112
LA 3 -12 0 6L 12 (3.29)
o _GIL® 0 o GILE
BT, BT,
-6L 0 L2 6L 0 LL
L .

4. FEiement End Forces
In general, the virtual work done by the external forces

p(x,t) acting along the element at any instent in time through
virtual displacements 6w 1is:

./.Gﬂ?g ds

S

= f GQ‘QTR d's
S

- ngf a’p as
S

Thus the eaulvalent concentrated forces f at the element ends
due to a distributed loading p is:

o o

Gwexternal =

f = N ngp_ ds (3.30)
. S

gl
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Fowever, the forces f in Eq. (3.30) are the fixed end forces
{with the signs reversed) of the element corresponding to

the distributed forces p along the element. Two cases of
cushioning forces applied on the element as shown in Fig. 3.2
are considered in the analysis.

¢, ‘ E r"
{2 - i @ ‘ @i {—}—» {s
fy i B fS
- ! —2p
i L‘ _—....N
CASE 1

CONCENTRATED FORCE P

|
L, I L2 fe

CASE 2
UNIFORM FORCE

Fig. 3.2 Element Forces
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- uw Ml 2 o>
The fixed end forces for case 1 are:
[ 1
. PLl + Ml - M2 1
} L |
| 0 a
...Ml
iy = (3.31)
PLJ + M2 - M1
L
0
My
where: PLL L2
M. = 172
1~ _”ZE_
PLZL
1=2
oY= 2
L
For case 2:
w
['Q-(L = Ll + L2) (L - Ly = LZ) + M3 = M4]/L
0
_M3
f= i
[f(L + Ll - L2) (L -~ Ll - L2) + M4 - M3]/L
0
+M4
(3.32)
where:
M =-W—[(L-L)3 (L + 3L.) —L3 (4L - 3L.)]
3 b 2 1 i 2 2
12L
" 3 3
M, = EZ[(L - L2) (L + 3L2) - L (4L - 3Ll)]




5. Linear Transformation

If the set of coordinates with n degrees of freedom
in the equation of motion Egq. (3.1) is a linear combinction of
a different set of coordinates u with m degrees of freedom,

g=Bu (3.33)
then the mass, damping, stiffness and force matrices in u
coordinates can be calculated by using the concepts of energy

and virtual work. The elements of the n x m matrix B [Eq. (3.33)]
are constants. =5

In the g coordinate system, the kinetic and potential energy
ckpressions have the matrix forms:

T=%Q_T§_g (3.34)
vV = % 9?5 q (3.35)

where M and K are mass and stiffness matrices in g coordinates
respectively™
From Eq. (3.33),

g=Bu (3.36)
end the transposed matrices

T o Tt (3.37)

g = atsT (3.38)

Introducing the linear transformation Egs. (3.33), (3.36), (3.37),
and (3.38) into the kinetic and potential energy expression Egs.
(3.34) and (3.35) results in:

1.,T
BN (e
1.7 .
s BB u (3.39)
=L Th g
= e ae
1 7
V=g K
_ % ET§¢5 Bu (3.40)
1 T
= e U
where . T
m=BMB (3.41)
E (3.42)

I
e
=
o

H:'\'
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are the corresponding mass and stiffness matrices in the u
coordinate system. Since M and K are symmetric, it follows
that m and k are symmetrlc. The™virtual work done by the
exterfal foTces F in g coordinates acting through the virtua!
displacement &g Is:

W = Gg F (3.43)

Since the virtual displacements ¢g are related to the virtual
displacements 6&u by:

6q = Bsu (3.44)
and:

§q° = 6u'B" (3.45)
thus

SW = 6q'F = Su'B'F = 6u'f (3.46)
where T

t=BF (3.47)

are the external applied forces corresponding to the u
coordinates.
Consider now the viscous damping force D. These internal forces
may be expressed as:

2=-.C_§1 (3.48)
where C is the damping matrix in g coordinates. The virtual
work done by the damping forces D is:

T.T

5w=ogg=—agc§-—agg__g=—aggg (3.49)
where T B B
g = B¢ o (3.50)

is the damplng watrix in u coordinates.

In summary the mass matrix M, stiffness matrix K,
damping matrix C and force vector F fn the g coordinate sys-
tem under the lTnear transformation g = B u are transformed
into the element mass matrix m, the stiffness matrix k, the
damping matrix ¢, and the forTe vector f in the new u~coor-
dinate syztem aTcording to the following transformations:

m=B8"MB (3.51a)
k =B'KB (3.51b)
c=BcB (3.51c)
£ =8"F (3.51d)

6. Transformation of Element Coordinates to Datum Coordinates
Since the element mass macrix m, stitfness matrix k,
and end force vector f are initially cZTlculated in local eTe-
ment coordinates, suitably oriented to minimize the computing
effort, it is necessary to introduce transformation matrices

15




changing the frame of reference from a local to a datum
coordinate system. Consider again the element shown in

Fig. 3.1. U, to U, are displaccments in the direction of
local coordinates x,y,z and Q, to Q, are displacements in

the directions of datum coordinates XYZ. 0O 1is the angle
between “he »r and X axes. The displacements U can be related
to displacements Q as:

Up =9
U2 = choso + Q351n®
U3 = —stan + Q3cos®
Uy = Q
U5 = Qscos® + QGSan
U6 = —Q531n6 + QGCOSO
or in matrix form
¥=Bo (3.52)
where -
1 8] 8]
0 cosd sino
0 -simd coso
-B_ =
B 1 0 0
0 0 cosd sind
-~sSirpd cosd

(3.53}

The element mass matrix m*, stiffness matrix k*, and the force
vector f£f* in g- displacements can be obtained™by using the
transformations of Egs. (3.5la), (3.51lb;, and (3.51d) as:

+3

WS g
k* = Bk B (3.54)
f£x = B'

[
=
I+h

7. System of Assembled Structure

Since all element stiffness matrices, mass matrices
and force vectors are now referred to the common datum, the
cs:iffness matrix, mass matrix and force vector of the complete
element assemblage can be obtained by the direct stiffness
method as mentioned previously. The concentrated masses at
nodal joints such as transmission, differentials and wheels
are simoly addcd to the corresponding diagonal terms in the

16




assembled mass matrix. For example, the mass of the wheel at
node no. 24,* which is associated with *"ie coordinate gy, can
be directly added to the diagonal element m.,., 0 of the mus:
matrix of the system. The concentrated cushion forces applied
.- nodal points are also simply added to the corresponding
terms in the system force vector. For example, the cushion
force appliecd at the transmission can be added to the element
f of the system force vector F. “owever, the discrete masses
suéh as the engine and transfer case which connect several
nodal points can not be superimposed on the system directly.

A special study of these masses is necessarvy.

8. Engine and Transfer Case
Since the engine, transfer case and similar masses

are all supported at several nodal points, special considera-
tion of these parts is required. Consider now a discrete mass

supported by n-springs with coordinates dyee--9p: Since three
points define a plane, i+ 4 and gq as generaflzed coordinates,
sufficiently define the motidns of mass. Let u, and u., be

the rotations about the principal axes of mass and %he vert%cal
translation respectively. The relationships between coordi-
nates q‘'s and u's can be formed in the following way:

Fig. 3.3 shows the system under consideration:

31, a, = The unit vectors alonyg two prin-

cipal directions of the mass.
, k = unit vectors along datum coor-
dinates X, Y, 2.
= coordinates of supports.

erv><.‘

Y., Z

3 G a = position vectors of points where
éhe springs attach to the mass, re-

. ferred to the center of mass.

e vectors from support point q; to qj -

For small rotatlons,

q; = uy (a X ai - k) + uz(a2 X 32 - k) + usy
i=1,2,3
which in matrix form is
| I-—» > > LT {
q4 I a; x 31 k a, X al k 1 W uy !
_ - > .-> > - . T {
q, = a, x d, k a, X &2 k 1 u, ]
d5 31 X 33 -k 32 X 53 -k 1 ugy J
(3.55)
or q = AU

* The g coordinates at node 7% are g,,, translation in the 2
direction, dqqpr rotation about the x-axis and S ePY rotation
about the y-aXis.
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Fig, 3.3 Mass Supported at Several Points,
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Thus
u=A"q=Bg (3.56a)
where B
B =1 (3.56b)
If my, m, and m, are the mass moments of inertia and the mass,

then the matrix of the discrete masses 1u the u coordinate sys-
tem can be represented as:

f .

According to the linear transformation (3.56a), the
mass matrix corresponding to the q coordinate system is:

n* = BTm B (3.57)

If there are cushioning fovceg f and f dlrectly applied

]I
in u,, u and u, directions, thén tﬁe forces in the dys dy
and d5 dlrections are:

*

B £y
X3

5 _ T | £,
. =

£3 £3

or
£x = BTf (3.58)

Now the mass matrix m* can be added to the mass matrix of
the complete element~assemblage and the forces f* can be

added to the system forces. It must be noted that before
taking this step, the constraint coordinates g, through g
should be eliminated from the systecm. To do this, first

find a transformation matrix B such that:

r -
94 } | 91
‘ =B | 9 (3.59)
9n J 93

2and then by linear transformation get the modified mass,
stiffness and force matcix of the whole system.

The transformacion matrix B in Eq. (3.59) is formu-
lated by finding all the expressioils >f q, through g_ in
terms ¢f g,, g and d3- Consider now the displacement q,
as indicated in Flg 373. The vectors from support 1 to
2, 3 and i can be expressed as:
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52 = (x2 - xl)z + (y2 - yl)f + (q2 - ql)K
o _ > _ - ~ >
ey = (X3 - x))1 + (y3 - y))) + (g3 - q)k
> _ N - N d ] _ kg - >
CH S G S R A S A e T A

Since cupports 1, 2, 3 and i are in a plane,

> > > =10
e2 X e3 Q ei =
or
X ) V2 B 95 = 9
X35 = Y3 ~ ¥ LI =
X = X Y; - ¥ q; -9 (3.60)

Solving this equation for q; results in
E. - E, + E

_ 1 2 3
q; = E, a; E,q, + E,q; (3.6la)
where
By S =g 5 Fy Y3 © ¥
X; =X Y; - ¥ (3.61Db)
Bl = o = %, Yo = %
Xi = X Y; Y (3.61lc)
Eg =1 %2 - = Y - Y3
Xy = X Yy - ¥ (3.614)

Thus all displacements q, throuvgh g_ can be expressed
in terms of q,, q%, and g, simply by replacing the index i in

the determinants 1 and E by the numbers 4 to n.

9. Static Condensation

If an element is not rigidly connected to another
element, for example, a hinged connection, the element stiff-
ness matrix, mass matrix and fixed end force vector must be
modified. If some coordinates included in the static analysis
are excluded from the dynamic analysis, or some coordinates
with zero or very small mass must be removed from the equa-
tions of motion to avoid unreasonable numerical results (infi-
nite values in computed accelerations), then the system mass
matrix, stiffness matrix and system force vector must all be
modified. All the modigications can be act.eved by a static
condensation technique. By using this cechnique a trans-
formation matrix similar to the matrix B in Eg. (3.33) can
be formulated. Then the modified matriTes can be written in
the format of Eg. (3.51).

The first step is to partition the mass matrix M,
stiffness matrix K, force matrix F and displacement mat¥ix
U into: -

20




=11 =12
M = (3.62a)

§ = K K (3.62b)

F = (3.62¢)

U= (3.62d)
- 9-2

o

The column matrix U, refers to all the displacements
we wish to retain, while U, denotes all the remaining displace-
ments which will not be employed in formulating the new equi-
valent matrices. The displacements U, may be determined from
the static equilibrium equation F = KU by assuming that the
forces F, corresponding to the displacements U, are &+l equal
to vero. Hence:

= =k
S0 5 s mzl (3.63)
thus.:
b
= - - *
S U, =B* Yy (3.64)
w22 =21
where I is a unit matrix and
-
B* =| o1 (3.64a)
= | “Eo7 K1

Thus the modified mass matrix M*, stiffness matrix K*, and
force matrix F* for displacements Ul are obtained from Eq.
(3.51) as: '

M* = B*'M B* , K* = B* F (3.65)

R
Eq. (3.65) may be obtained
of motion as follows:

Bl + 550

directly from the equations

+ §1191 + Elzﬂz = El {3.66a)

+ +

o I O R &

21

M1 *+ MyoU, (3.66b)

|
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Eg. (3.66b) car be rewriiticn a-:

L 1 . "
U= Koot Lo Egmi g el pp Lo I S6e)
If we assume F, und U to be linear in a small time interv. 1,
then the seconé time derivative of Eg. {3.66c) is
B -1 -
Ly = Eozkoily (BEtlod)

Substituting Egs. (3.66c) and {(3.66d) into Eqg. (3.66a)
the mass matrix M*, stiffness matrix K* and force matrix F* are
obtained as shown in Eq. (3.65). These are the matrices that
will now be used in Eq. 3.1 for actual computations.

10. Structural Dampirnrg

Until now the discussion of the damping matrix in
the equations of motion Eq. (3.1) has been intentionally
avoided. However, earlier experimental studies cf the M-37
truck indicate that an appreciable amount of energy may be
dissipated through internal friction witnin the truck body
or at joints between frame elements. Structural damping
forces D are proportiornal in magnitude to the internal elas-
tic forces and opposite in direction to the velocity of the
system. The force may be represented as:
D =1 bl g q (3.67)

where b, is a constant and i is the imaginary number.

This expression for the damping force is not readily
amerable to structural analysis. Thus the concept of viscous
damping is used in the analysis as indicated by the damping
matrix C in Eq. (3.1). Furthermore, this damping matrix may
be assufled to be proportional to the mass and stiffness matrices
as:

C=aM+bkK (3.68)

where a and b (b is not the same as b,) are ccnstaunts and can
be dotzrmined so as to give reasonablé damping in the system.
if Eq. (3.68) 1s substituted into Eg. (3.1), the modified
differential equation

Mg+ (aM+bK q+ZKgqg-=F(t) (3.69)
is obtain¥d. = = =

Since both M end K have non zero off-diagonal coefficients,
these diffeFentiaT equations are coupled. By using the modal
matrix, obtain~d from the arrangement of normal modes, as a
transformation matrix, the equations of motion can be reduced
t> a set of uncoupled equations of the type:

_ m.g. + (am_ + bkr) q. + qur = fr(t) (3.79)
where ¢_ is the normal coordinate in rth mode of the system
and m_ and k_ are the corresponding mass and stiffness in
that fhode regpectively.

Since this equation is the same form as the single
degree of freedom equation, the critical damping in the rth
mode is:

(amr + bkr)cr = 2mrwr (3.80)

where wi = kr/mr is the natural frequency of rth mode.
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Dividing bo.h sides of Eq. (3.8Q) bv M,

2 =
(a + bwr )cr = 2wr
or
= & + (358 2. 27
Sr 2wr b 2 ()- Jd

where 5 1s the ratio of actual to critical damning.

Fob given valves of a and b the freauencv @ which
vields a minimum value for the damning ratio S can be found
by differentiating Ea. (3.81) with resnect o w_ and then
setting the derivative equal to zero. Thus T

w = ,/g>b (3.82a)
S = b (3.821)

If S and w are given, the damning ccefficients a and b
are calculated from the following <eauations:

and

a=35g (3.83a)
and -
b = S/w {3.83L)

Therefore, if the significant freauency range is established
for a structure and the ecuivalent modal damoing is selected,
the constants a and b can be calculated from Eas. (3.83).
However, in the numerical analysis of this study, the freauency
of thHe structure is not calculated. The value of w is esti-

mated as: n QV/G?
i \
j{ = (3.84;

i
i=1
where m, and k, are the diagonal elements in the n x n mass
matrix %nd stifpness matrix.

It appears that for the "M-37 truck model a reasonable
value of damping ratio S corresponding to the freaquency w in
Ea. (3.84) is around 0.01. This number was estimated after a
comparison between some computed and some experimental results
was made.

w:

3\
I

NUMERICAL SOLUTION

1. Runge-Kutta Method
The equations of motion Ea. (3.69) can be solved
numerically by using the Runge-Kutta method. However, Ea.
(3.69) must be decomposed into first order differentizl
equations in order tc apply the Runge-Kutta method.
Premultiplzlall rerms in the equations of motign
Eq. (3.6Y) by M ~ and eliminate the coefficient of d. Thus
g+ (al +vp g + 1K g = UR(E) (4.1)
where I is a unit matrix, and all matrices are modified as
discussed in the sectio.. on static condensation. By letting

u=g (4.2)
23




from which )
3 =g (4.3)

The set of equations (4.1) 1is decomposed into 2 sets of first
order ordinary differential equations:¥

4=u (4.ba)
0= p'F - ¥k g - (al + bu YKy (4.1p)

"

For the study of airdropped impact, the initial displacements
i a, (usually a, = 0) and initial velocity ¢

the initial conditions are: -
‘ 4 = q, (4.5a)

o are known, thus

> u =4, (4.5b)

Equation (U4.4) with initial conditions as exgressed by Eq. (4.5)
can be solved numerically by the Runge-Kutta® method. Eqs.
(4.43) and (U.4D) may be combined in a compact form as:

v = g(t,v) (4.6)
where t 1s the independent time variable and
’ g
v = (4.7
u
. The corresponding initial conditions are:
9
XO = (L.8)
&,

—

If the system has n degrees of freedom, then the expression
of Eq. (4.6) in index notation 1is:

vy o= gi(t, Vi eeee Vo) 1i=1,2 ....2n (b.9)

The basic equations in the Runge-Kutta method for solving
i the s2t of ordinary first order differentlial equations of
Equations (4.9) are:

_ 1
vy (¢ +h) = vy (8) + 2(a; + 2by + 2¢, + d,)
' 1i=1,2 .... 2n (Lk.10)

where

¥ u should not be confuscd with a displacement. It is intro-
duced here purely for convenlence and is as defined by Eq.(4.2)
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P’v“'v X

h = tine step length of integration

a, = h[gi(t,vl, oo ols V2n)]
b. = hlg., (t + lh v, + 1 v + 1 )1
i = 27 2017 *°°"°*' Y2n 2°2n
~ 1 1 1
ci_h[gi(t+§h' Vl+'i'bl, cseay V2n+-2—b2n)]
1
- +
di h[gi(v + h, v + Cpr woves Voo + §c2n)]

2. Digital Computer Program

A computer program code has been developed to solve
the equations of motion with the initial conditions of the
drop impact problem. This program is listed in the appendix.
The required input data are nodal point coordinates, mass
distribution, cushioning forces, initial displacements and
velocities, damping coefficients, and member properties such
as cross sectional area, flexural rigidity EI, torsional
rigidity GJ, and torsional inertia I, . The computer program
automatically generates the structural mass matrix, stiffness
matrix and force matrix and then solves the equations of motion
by the Runge-Kutta method. The displacement, velocity and
acceleration at any coordinate at any time may be printed out.
The printed out displacement is relative to the position where
impact begins. From these displacements the relative displace-
ment of any two points can be computed.

This program is primarily developed for either checking
the design of an existing vehicle which may be subjected to
airdrop impact or as a guide in designing a vehicle which may
be destined for delivery by airdrop. This program can be used
not only for vehicles but for any complex mechanical structure
that can be represented by a grid structure model. It is
expected that through the use of this computational proecedure
the amount of actual experimentation required for developing
cushioning systems can be materially reduced. If elements
of the vehicle which might undergo excessive deformations
during impact can be identified before the vehicle is drogp
tested, or even built, the computer program will serve as
a design tool as well as an aid in cushioning design.

FACTORS AFFECTING THE RESPONJE TO IMPACT

The previous analysis shows that the dynamic response
of a structure is dependent upon the nature of the applied
forcing function, the elactic and inertia properties of the
structure, and the damping characteristics of the system. By
study of these factors, information on design of cushioning
systems and the design of the structure itself may be obtained.
Insight into the appropriateness of the lumped-parameter model
should also be provided. 1In following sections, these factors
are discussed in detail. The effects of the tires on the
structural response to the impact, and the dynamic behavior of
the engine on the ruibber supports will also be considered.
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1. Shape of Applied Force

In an airdrop of a vehicle it is fastened to a platform
which holds the cushioning system in place but provides no
support for the vehicle. In order to avoid excessive damage
to the vehicle, cushioning materials are placed between it
and the plagform According to previous experimental inves-
tigations, the force transmitted to the structure through
the cushioning material is essentially independent of the
degree of crushing. The amplitude and duration of the force "
are generally dependent upon the arrangement of the cushioning
materials and the crushing characteristics of these materials.
To study the response of a structure to the force applied by
the cushioning, the recponse of the structure due to the appli-
cation of a rectangular impulse can be examined. The effect
of amplitude and duration of the force on the behavior of
the structure is cf particular interest. Three rectangular
pulses with different amplitudes and durations and one trian-
gular pulse, shown in Fig. 5.1, were chosen for this study.
For simplicity, the area of each pulse was kept the same.

Thus the momentum imparted to the structure is the same for
each pulse. In order to simplify the analysis, the centroid
position of the pulse has been chosen as a characteristic
parameter. In Fig. 5.1, case A is the impulse for a design
acceleration of 17.5g. Case B and C represent the same
impulise as A, but with different time duration. Case D is

a triangular pulse with the same area and time duration as
case A.

Neglecting the damping, the maximum displacements and
peak accelerations at all nodal points in Fig. 2.1 for all
cases have been calculated. For the purpose of demonstration
and discussion, the maximum displacements and peak accelera-
tions at node 1€ are shown in Fig. 5.2 and 5.3 respectively.
This node is on the frame over the left rear wheel of the
truck. There is no cushioning force applied directly at
this point. Fig. 5.2 shows that the maximum vertical displace-
ment of this point as a result of the application of the four
different pulse shapes to the truck is linearly proportional
to the time to the centroid of the pulse shape.

The peak accelerations produced by each of the different
impulses are shown. These results suggest that both the dis-
placement and acceleration produced by a given impulse depend
essentially on the time to the centroid of the area under the
force-time (impulsz) curve.

2. Structural Properties

The structure of an M-37 truck is so complicated that
simplificatioans must be made for analytical studies. If the
truck is to be represented by a simplified model, the questior
of how to estimate the stiffness of the structure must be
answered. AS a part of the attack on this problem the 51gn1—
ficance of changes in the impact response with variation in
the structural properties should be investigated. Consider
now the mathematical model of the M-37 truck shown in Fig. 2.1.
Three differeant sets of values of stiffness are assumed:

Case 1l: All memmber stiffnesses are estimated
based on the truck frame only

Case 2: All member stiffnesses of case 1 are
multiplied by five
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Case 3: All member stiffnesses of case 1 are
multiplied by ten.

Computed total displacements and peak accelerations
along the main frame joint No. 1 through No. 10 for the above
three cases are shown in Fig. 5.4 and 5.5. All calculations
are assumed +o be for a 17 ft. eguivalent drop height with
a design acceleration level of 17.5g and no damping. The
centroid of the honeycomb area is loceted intentionally 6
inches toward the front from the center of gravity of the
loaded truck. This causes a non-uniform crushing of the
honeycomb cushioning as shown in Fig. 5.4. The most unifocrm
displacement cccurc for case 3, the truck with the greatest
stiffness. However, Case 2 deflectiounz ditffer very little
from thosc of Case 3. The peak acceleration curves shown in
Fig. 5.5 indicate that case 3 also has the most uniformity
in the acceleration at all points along the truck frame.

The differences in peak accelerations among the three cases
at a given point are small. BAll curves are very close toge-
ther. Thus it appears that a reasonable impact response can
be obtained by using very rough approximations to the struc-
tural stiffness.

3. Damping

The amount of structural damping in the vehicl-=
must be determined by experimentation. If experimental data
or reliable information is not available, no damping should
be assumed in the analysis since the omission of damping
results in conservative estimates of deflections, and conser-
vative cushioning system designs. Numerical computations
for the M-37 model (Fig. 2.1) show that at all points of the
truck frame the absolute magnitudes of displacements are
increasing as damping decreases but the peak accelerations
are affected very little. Fig. 5.6 shows the maximum crushing
displacemerts for a damping ratio range from zero up to 0.015.
There is no change in the configuration of the truck for all
three cases. The crushing displacement curve with 0.009 as
the damping ratio is the one which approximates most closely
the experimental M-37 measurements which are shown later in
section 6.

4, The Effect of Tires on the Response of Vehicle Body

Since the vehicle body is connected to the wheels
through a leaf spring arrangement, the magnitude and shape of
forces transmitted to the vehicle body as the result of an
impact would be significantly affected by the material pro-
perties of the tives. These forces must be considered in
computations of the overall response of the vehicle body.

For the purpose of analysis, the wheel and tire are
replaced by a mass, a spring K, and daslkpot C arrangement
as depicted in Fig. 2.3. Using different sets of values of
K arnd ¢ for the tire, the displacement-time curves at point
No. 3 (q}) of the vehicle body, and the wheel at point No.

24 (q24)‘have been calculated =aand plotted in Figs. 5.7, 5.8,
5,10,“dnd 5.11. In Figs. 5.9 and 5.12, the maximum displarne-
ment and acceleration of ncdal point No. 3 and the wheel have
been plotted as a function of spring constants and damping
ratios.

In general, the larger the spring constants and the
damping ratio, the smaller the displacement of the vchicle.
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It is also seen in Figs. 5.9 and 5.12 that the wheels have
less displacement than the vehicle body. This i1s the reason
that fewer cushion pads are required under the tires. The
peak acceleration of the vehicle body does not show any sig-
nificant variations as the spring constant and the damping
ratio of the tires vary in the range of this investigation.
5. The uffect of Enginn Cupports on the Behavior of Ingine
The idealized engine supporting arrangement is shown
in Fig. 2.2. Computational results indicate that the values
} of the spring constant X and damping ratio C in Fig. 2.2 affect
] neither the peak accelerations nor the maximum displacements
a* any point ‘n the vehicle except the engine itsel® during
f the period of impact. Figs. 5.13 through 5.16 show the effects
of the elastic stiffness and internal damping of{ engine supports
on the dynamic responses of the engine. As in the case of
) the tire, in general, the larger the spring constant and inter-
E nal damping of the supports, the smaller the engine relative
1 displacement to the truck frame.
The peak acceleration of the engine is not influenced
b much by the spring consta:at of the supports but it decreases
| with an increase in internal dampinrg of the support.

T Y ———

DAPERIMENTAYL INVESTICATION -- M-37 TRUCK DROP TEST
To obtain some experimental data for comparison with
& . the computed results as described in the previous chapters,
three drops of the M-27, 3/4 ton truck with a 1500 1lb. simu-
lated load of sandbags have been made from a drop height of
b : 10 ft., and at a design acceleration of 17.5 g.
The cushioning system used for all drops is shown
in Fig. 6.1. Typical desiyn calculations for such cushion-
i ing systems are shown in the Appendix. The cushioning mater-
ial used throughout this series was 80-0-1/2 paper honeycomb
with a characteristic stress-strain curve as shown in Fig. 6.2
and an average crushing stress of 6400 psf. The truck was
rigged for drop by attaching lifting plates and shackles to
each of the wheels. The entire rigging is shcwn in Fig. 6.3.
Accelerations are measured wlch fluid damped resistance
type accelerometers. Engine aisplacements relative to the
truck frame are measured with slide-wire type transducers.
A special deflection gage shown in Fig. 6.4 is used to measure
the displacements at other positions on the vehicle body.
Accelerometers and displacement gages were mounted on the
vehicle in the following positions:
Drop No. 1 (Series No. M-37-17)
Accelerometers at
Engine front (Joint No. 23)
Thin plate above the winch (Joint No. 21)
Rear bumper (Joint No. 36)
Right rear wheel (Joint No. 33)
Right middle frame (Joint No. 6)
Displacement gages at
Engine front - Relative to frame (Joint No. 23
relative to No. 3)
Rear frame - Relative to wheel (Joint No. 18
relative to No. 35)
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Drop No. 2 (Series No. M-37-18)
Accelerometers at
Frame (Joint No. 2)
Transmission (Joint No. 28)
Rear Differential (Joint No. 34)
Displacement gages at
Front frame (Joint No. 3)
Rear frame (Jcint No. 18)
Transfer case (Joint No. 30)
Engine rear - Relative to frame (Joint No. 38
Relative to No. 4)
Drop No. 3 (Series No. M-37-1Y%)
Accelerometers at
Engine front and rear (Tuoints No. 23 and No. 38)
Truck bed
NDicpliacement gages at
Front frame (Joint No. 1)
Middle frume (Joint No. 5)
Laft wneel (Joint No. 35)

All accelieration and displacement data were recorded by a
magnetic tape system and re-recorded from the tape to a
visible record on paper using a Visicorder oscillograph.

In addition to acceleration and displacement records,
high-speed motion pictures were ‘taken for all drops. These
pictures were studied to determine the gross -spects of vehi-
cle motion during impact,

Numerical values used in the computation for the M-37
truck model are as follows:

Drop height 10 ft. (or impact velocity 302 in/sec.)

Design acceleration level - 17.5 g.

Impact duration = 45,2 milliceconds

Average crushing stress of paper honeycomb = €400 psf.

Dimensions and arrzngement of cushioning pads (see Fig.

6.1)
Applied cushioning forces:
Concentrated forces -

Wheels and tires each F = 350 x 18.5 = 6480 1lb.

R . \%Y L — ] N=
Differentials each Ffd = Frd = 480 x 8.5
8890 1b.
Transmission FTr = 200 x 18.5 = 3700 1b.
Gear Reducer Fgr = 300 x 18.5 = 5550 1}
Uniform distributed forces:
At pad Al, Fl = 20600/(2 x 23) = 442 1lb/in.
At pad A2, F2 = 13900/29 = 475 1lb/in.
At pad Ay, F, = 13100/19 = 697 1b/in.
(See Appendix B) .

The weights of some of the vchicle components were obtained

from the M-37 technical manual’ and others were assumed. These

weights are listed as follows:
Tctal truck weight = 5,390 1b.
Load weight = 1,500 1b.
Discrete masses:
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Engine 600 1b,
Wheels and tires
(each; 350 1b.
Trarsmission 200 1ib,
Gear Reducer 500 1b.
Differentials (each) 480 1b.
Uniformly distributed masses:
All weights not included in discrete masses distri-
buted as follows:
Longitudinal frame members:
Joint No. 1 to No. 6, and No. 11 to No. 16,
= 570/2 x 97 = 2,94 1b/in.
Jcint No. 6 to No. 10, and No. 16 to No. 20
= 2560/2 x 89 = 14,38 1b/in.
Transverse frame members:

Joint No, 2 - No. 12 (Winch) = 10 1b./in.
Toint No. 3 - No. 13 = 2.3 1lb/in.
Joint No. 5 - No. 15 = 1.2 tb/in.
Joint No. 6 ~ No. 16 = 0.8 1lb/in.
Joint No. 10 -~ No. 20 = 0.8 1lb/in.

Except for Joint 2 to Joint 12 these weights were arbi-
trarily assigned. They are approxinately proportioned to the
member cross section. All member properties, calculated using
truck frame cross-sectional dimensions only, are listed in
Table 6.1. The tire spring constants are assumed to be 7000 1lb/
in and the damping ratio 0.2, The spring constants of the
engine supports are 12,000 lb/in at front and 40,0C0 1lb/in at
rear and the damping ratio is 0.6. The structural damping
ratio is assumed to he 0.002. Joint coordinates in an x-y sys-

tem with the origin at the rront of the truck as shown in Fig. 2.

are given in Table 6.2.

Th> measured results (solid line) are plotted with the
calculated results (dotted line) in Figs. 6.5 tc 6.20. These
results are discussed in the next chapter.
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Member Cross Section Moment of |Polar Moment orsional
Area Irertia of Inertia Constant
Start Enﬁ '
Jgé?t J;g?t A - in2 Iy - in4 IX - in4 s in4 !
|
1 -6 1.6 4.29 4.39 0.021 !
6 - 10 2.0 10.8 11.0 0.027 |
11 - 16 1.6 4.29 4.39 0.021
16 - 20 2.0 10.8 11.0 0.021
2 - 12 100.0 100.0 20.0 20.0
2 = 21 953 0.01 0.5 0.01
21 - 12 0.3 0.01 0.5 0.01
3 - 13 3.4 4.47 12157 10.6
24 - 26 40.0 30.0 60.0 60.0
33 - 35 40.0 30.0 60.0 60.0
4 - 14 100.0 100.0 100.0 100.0 |
27 - 28 100.0 100.0 100.0 160.0 |
5 - 1% 1.3 0.383 1.4 0.017
6 - 16 iss 0.383 1.4 0.017
7 - 17 2100 6.3 8.0 14.4 ;
9 - 19 1.8 2.5 5.2 0.024
10 - 20 1.8 2.5 512 0.024
3 -4
13 - 14
7 - 2.0 0.167 0.92 0 917
17 - 19 |

1

o1

Table 6.1 Member Properties




Joint Coordinates Joint Coordinates

No X -in, Y =in, No. X-in, | Y-in,

1 15.0 21 6.0 0

2 .0 15.¢ 22 17.0 0

3 17.0 15.0 23 17.0

4 51.0 15.0 24 34.0 15.0

5 87.0 18.6 25 34.0

6 97.0 19.0 26 34.0 -15.0

7 117.5 19.0 27 51,0

8 147.5 19.0 28 66.0

9 177.5 19.0 29 87.0 .0
+0 186.0 19.0 30 87.0 -6.0
11 0 -15.0 31 97.0 .0
L2 6.0 -15.0 32 97.0 -6.0
13 17.0 -15.0 33 147.5 19.0
14 51.0 -15.0 34 147.5 5.0
15 87.0 -18.6 35 147.5 -19.0
16 97.0 -19.0 36 186.0 12.0
17 117.5 ~-19.0 37 186.0 -12.0
18 147 .5 -19.0 38 51.0 15.0
19 197 a5 -19.0 39 51.0 -15.0
20 186.0 -19.0

Table 6.2 Joint Coordinates
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DISCUJSSION
L. Mathematical Model

The analysis of the complex structure presented in
this work is based on the possibility of modeling the struc-
ture by a lumped-paramecer system. Modeling of the structure
is somewhat arbitrary. In general, however, the follcwing
two faccors need to be carefully considered.

(a) Select and sort out the components in the struc-
ture whose motion is to be studied. It 1s impractical to try
to include all the components of the structure in a model.

It is necessary for the designer to select the components
whose motions are considered to be most important. For cxample,
in an airdrop of a vehicle, the motion of the engine block,
transmission, differentials, and wheels may be the important
parameters for the proper design of a cushioning system to
protect the vehicle. Consequently the model should be so
designed as to represent the motions of these components as
realistically as possible. On the other hand, if the task is
to design a cushioning system for the protection of a car
radio, a completely different model will be needed. The model
shown in Fig. 2.1 is developed for the purpose of designing

a cushioning system for the protection of the vehicle during
airdrop. The weights of the enyine, transmission, transfer
cacc, differentials, and wheels are modeled by concentrated
masses at proper nodal points. The winch and the frame of

the truck were replaced by two longitudinal beams coupled
together by eight transverse beams. The weight of the truck
frame and the load are further assumed to be uniformly dis-
tributed along the two longitudinal beams. The stiffnesses

cf all the connecting members in Fig. 2.1 are calculated on

a static basis using the dimensions of the truck members. It
should be noted that Fig., 2.1 is a particular model, many
other models may be developed for the same purpose. The suita-
bility of the present model will be discussed in the section
where the comparison is made between the measured and computed
results.

(b) Estimate the motion of the structure. In model-
ing a complex structure, information on the environment that
the structure is likely to be subjected to 1s also very impor-
tant. In airdrop of a vehicle, the whole structure is expected
to land with an impact velocity of approximately 30 fps, and
the rise time of the impulse imparted to the vehicle ‘is of the
order of milliseconds. These are important data. A continuous
elastic structure, such as a vehicle, has in principle an
infinite number of modes of vibration that can be excited. A
lumped parameter system can be excited in only as many modes
as it has degrees of freedom. Thereforc 2 lumped parameter
system can not be expected to accurately represent a continuous
structure under conditions in which the higher modes of the
structure might be excited. The long rise time of the impulse
applied to the vehicle means that the higher modes will not
be excited and the lumped parameter model < n therefore pro-
vide a suitable approximation to the motion of the prototype
system. On the other hand, an input force with a very short
rise time would tend to excite higher modes of vibration. As
a consequence a 'umped parameter model wonuld not be able to
represent the motion of the prototype structure.
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In the present work, the whole truck body is mrodeled
by a lumped parameter system with 39 nodal points. Since
there are six degrees of freedom at each nodal point, the
total number of degrees of freedom of the system is 234.

Only a normal impact (in the vertical direction) is considered
here, hence the vertical displacements of the nodal points

are of the main concern. The six displacemenrts possible at
2ach nodal point consist of three translational motions and
three rotational motions. Two of the translational displace-
ments and one of the rotaticnal disglacements can be disre-
garded. Thus the total number of degrees of freedom are
reduced to 117. This number can be further reduced to 39

by eliminating the remaining two rotational componenti at

the nodal points by the static condensation process.

In the numerical computations, the element mass matrix
and stiffness matrix are calculated according to equations
(3.19) and (3.29) respectively. The element end fcrces are
calculated by equations (3.31) and (3.32). Only concentrated
forces and uniformly distributed forces are considered in the
analysis. The direct stiffness method is used to formulate
the systen mass matrix and stiffness matrix. The structural
damping matrix is treated as a linear combination of the mass
and stiffness matrices of the system. The amount of computer
storage required by the program for this analysis is 30,000
words. For the CDC 660. computer, the formulation of the
equations of motion requires three minutes. The numerical
integrations by the Runge-Kutta method require 1.5 minutes
for an impact “Javation of 45 milliseconds, using an inte-
gration step size of 0.1 milliseconds.

2. Comparison of Measured and Computed Results

From Fig. 6.5 to 6.20, it may be seen that agreement
between measured and computed results is, in general, not
very good, so far as the shapes of the curves are concerned.
However, the agreement in the amplitudes of displacements and
accelerations, with the exception of the accelerations of
wheels and differential is quite good. The maximum discre-
panc; between measured and computed displacements occurred
at the front l.ra: ind is 18%. The maximum discrepancy
between mz2asured and compu. accelerations at the engine
is 34%. For the acceleration o. the differential the maxi-
mum discrepancy is 70%, and for the wicels the maximum dis-
crepancy is 50%. The displacements are believed to be more
significant as indicators of possible damage, than the acceler-
ations. Hence it is encouraging to find, in this example,
that the displacements can be computed with the degree of
success indicated. The actual shapes of the displacement and
acceleration curves are probably of little consequence except
for the indications they give of the adequacy of the lumped-
parameter model.

The agree. between computed and measured displace-
ments and accelerations may be improved in several ways,
namely:
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(a) Change the centroid positicn of the impact
forcing function by adjustments in the cust >Hn-
ing areas.

{by Adjust the structural damping ratio.

(c) Adjust the spring constants and damping ratios
for a more accurate representation of rubber
properties.

(d) Replace the <onstanu cushioning force applied
to the wheel by a linearly varying force.

Finally, it should be noted that computed and measured

results should not be expected to agree in all details since
the model on which computations are based is only an approxi-
mation of the real structure, and the initial conditions used
for computations are idealized approximations to the initial
conditions that actually occurred in the experiments. 1In
general, in lumped-parameter modeling, the parameters can he
adjusted to provide agreement between computed frequencies
and corresponding frequencies in the prototype structure, or
the adjustment can be made so amplitudes of displacements and
accelerations at selected points agree between wmodel and pro-
totype. However, agreement between frequencies, and between
amplitudes cannot both be achieved simultaneously. A decision
must be made before parameter values are assigned, as to what
quantities are to be matched.

CONCLUSTONS

From the previous discussions the following conclusions
are believed to be justified.

a. Displacements, velocities and accelerations at
various points of a complex mechanical structure can be satis-
factorily predicted using a lumped parameter mathematical
model and a numerical computation procedure,

b. The dynamic response of a complex structure when
properly cushioned and subjected to an impact loading is not
sensitive to the elastic properties of the structure. Thus
the elastic coupling between masses in the lumped parameter
model need not be known to any great degree of precision.

c. Structural damping dissipates a considerable
amount of en=zrgy, and as a consequence decrcases the displace-
ments., However, the peak accelerations at various points in
the structure are affected very little by the structural
damping.

d. The forcing function is the major factor which
affects the dynamic response of the system. It must be repre-
sented as exactly as possible. This means that the cushioning
characteristics are very imporiant.

¢. The procedure for handling the engine and transfer
case in the analysis can be applied to any rigid discrete mass
which cannot be included in the elastic properties of the struc-
ture.

f. The developed computer program can be employed to
predict the dynamic response of any complex mechanical struc-
ture if the structure can be represented by a grid type model.
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This program can be used to determine where large relative
ceflections may be expected to occur if an existing struc-
ture is subjected to an airdrop impact, or to pinpoint trou-
ble points, so far as airdrop is concerned, in vehicles
still in the design stage.

RECOMMENDATIONS FOR FURTHER STUDIES

a. Only vertical motion was considered in this study.
This is an oversimplification of the real situation because
non-vertical and .Lon~planar motion is always possible due to
wind drift and system oscillation in the airdrop process.

The effects on the dynamic rasponse c¥ a structure due to
non-vertical and non-planar imnact suld be investigated.
This can be done by introducing six =2grees of freedom at
each nodal pcint of the lumped paramcter model in the mathe-
matical analysis. However, shearing properties of cusl.ionirg
materials will be needed.

n. For the purpose of s*ructural design, the computa-
tion of stresses in all members should be included in the com-
puter program. It may be necessary to consider the behavint
of elastr-plastic structural elements when subjected to high
velocity impact. However, the step-by-step numerical integra-
tion method used in this study can pe modified to include the
yield conditions of the element.
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LIST OF SYMBOLS

Transformation matrix relating W and U.

Matrix relating stress anrd strain S =

i

¢
Unit vectors

Matrix relating strain and displacement e =

no
Y

Transformation matrix q=8B1U1
Damping matrix in u coordinates
Damping matrix in g coordinates
A damping coefficient

Constants

Damping force matrix D = -C g

Position vectors
Strain matrix
Bending strain
Torsional strain
Force

Cushion force matrix

Equivalent concentrated forces acting at element ends
due to distributed forces.

Force vector in global coordinates

Shear Modulus

Torsional inertia

Rotatory 1nertia

Unit vectors along datum coordinates

Torsional constant (polar moment of inertia)

Element stiffness matrix in u coordinates

Element stiffness matrix transformed to global coordinates
Stiffness matrix

A spring constant

Element length

Element m._s matrix in u coordinates

Zlement mass matrix transformed to global coordinates
Mass matrix

[Moment

External force matrix, acting as an element

Joint coordinates
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Q
r = X/L
s = Y/L
S
Sp
Sre
t = 2/L
T
Ui
I_I
\
W.
1
W

Displacements in direction of datum coordinates X,Y,Z
Nondimensional parameter

Nondimensional parameter

Stress matrix

Bending moment

Twisting moment

Nondimensional parameter

Kinetic energy

Element displacements referred to local coordinates
X,V,Z

Displacement matrix

Volume, strain energy

Displacements referred to element coordinates x.y,z
Work

"-’v"‘




T RS PRSI

—

e

APPENDIX A

Flow Chart and Computer rrogran
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INPUT  JOINT COORDINATES
MEMBER PROPERTIES
MASS DISTRIBUTIONS
APPLIED FORCES

GENERATE STRUCTURAL STIFFNESS , MASS AND
FORCE MATRICES

INPUT DAMPING COEFFICIENTS
IMPULSE SHAPE
" INITIAL CONDITIONS

[ STATIC CONDENSATION PROCESS

COMPUTED DISPLACEMENTS , VELOCITIES , ANT
ACCELERATIONS BY RUNGE — KUTTA METHOD

Y
LAST LOADING CONDITION FOR THIS ™
STRUCTURE ? ),;:>:i

Y€S

END

Fig. A.1 Main Program Flow Chart,
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NUMERICAL SOLUTIGN OF A LUMPED-PARAMETER MODEL FOR
AIRDROPPED STRUCTURES bY USING RUNGE=KUTTA METHQOD,
CDC 66¢0@ , FORTRAN IV, STORAGE RERUIRED 37200 WORDS
PROGRAM ARDRUP (INPUT,QUTPUT)
COMMGCN  N,S(122,120),SMK(48,10)
COMMON  TM(20),CP(272),SF(1°d),wG(120) LNL1,LN2,SLOP
COMMON  NDP,JP1(52),JP2(50,,DP(50)
COMMON GAMA,SK,BETA ,MTF
ODIMENSION W(6,6),R(E,6),WM{b),WFl6),FD(6),EM(E),AB(6),
1 Dﬁ(brb),DAT(b,ﬁ)'El)(épb),A(b,b),ﬂ(b,é),D(b;b)r
2 SK(120),SM(12@),X(dR),Y(4B),MR(120),TR(128),NR(120),
3 My(120),MQ(12P),NQ(128),Y0(80),DF (5,80) ,SFQ(120)
4 , EF(6),5D(120)
FPRINT 6901
READ IN JUNT =3NO, OF JOINYS
MY =aNJ, OF ELEMENTS
LAGMENQ, OF DISCRETE MASSES SUPPORTED BY
POINTS MORE THAN TwO
IGR s=1, ELIMINATING ALL ROTATIONAL COOQORDINATES
3 @, NO REDUCING IN COORDINATES
sND, OF COORDINATES WILL Bt ELIMINATED
READ 5040, JNT,MT,LAGM,IQR
PRINT 5@48, JNT,MT,LAGM,IGR
READ IN EsMOUULUS OF ELASTICIYY
GsSHEAR MODULUS
READ 5710,E,6
PRINT 5910,€E,6
IRZI*JINT
DO 1¢ 1=1,IR & SF(I)=A, 3§ AG(I)=@, $ Sk(I)=@a,
SD(I)=p,8 & SM(1l)=0,
D0 1@ J={,IR % S(I,J)ep,
CONTINUE
D0 28 1=1,JINT
READ IN J = JOINT NUMBER
X(J),¥Y(J)=sX,Y COORD, OF NODE J
WMC1),WM(2),WM(3)3MASS,MA3S MOMENT OF INERTIA
ABOUT X AND Y RESPECTIVELY AT MODE J
WF(I)SFORCES APPLTIED AY NODE J
READ 5020, JeXC(JI3»Y(JI2o(WM(K),KB1,3), (WF(K), Kx1,3)
PRINT 5326,J,X(J),Y(J.,(WM(K),K=1,3),(WF(K),KS1,3)
KisIx3=2 8§ WG(KI)EWG(KL)eWM(1)238b6,4
NO 15 K=1,3 $§ SF(K1I=SF(KI)+WF(K) 3 BM(K1)=SM(Ki)+wM(K)
1sK]+]
CONTINUE
CONTINMUE
DN 220 IMBai,MT
REAT IN NJ1,NJ22JOINT NUMBER AY ELEMENT ENDS
MR(I)=1, RELEASE THE MEMBER CONSTRAINT IN THE
MEMBER CONRD, U(I)
=3 ,NO MEVMBER CONSTRAINY I8 RFLEASED IN UCI)

(i




(¢} OO0 00Oy

[49)
(#3]

26
30

i1

49

68

Kr ®l', N MEMHER FORCES
€l, UNIFORM MEMHBER FORCES
B, CONCENTRATED FORCE AT THE MEMBER
ROz MASS PER UMIT LENGTH OF THE MEMBER
AL AT TG0 AR A, MOMENT QF IMNERTIA, POLAR ML isNT
UF TNERTTA AND TORSIONAL CCMSTANT OF
THE MEMBER RESPECTIVELY
FD « UNIFORY FORCE FNCL) FROM FDC(2) TN FO(3),iR

e Rt < mR S BT 2 WA sk 5 L

CONCENTRATED FORCE AT FD(2)
READ 5030, NJ1,NJ2, (MR(I),1=1,6), KF,Al,GJ,R0, (FD(I) 1=21,3)
READ S010,XJ, 44
PRINT Sazg, NJiuNszfHR(I)rIuirb)0KF1AI:GJ'ROIcFD(I)'I31'3’
PRINT 5a70,XJ,A4
XK1z X(NJI2) =X (NI $ YiayY(NJI2Y=Y(NJY)
SLEIQRT (Y iaXieriwyYy)
aF:)L) 25:2513@
KIzNJ{*#3w2 § K22NJ2%3w2 § SK(KY ) =SK(KJ ) +Al
SK(K2 3 aSK(K2) +Al
S(K1,K1)=SK(K1) § S(K2,K2)=m8K(K2)
IF(X1,GT,K2) GO TO 26 .
SIK1,K2)=2S(Ki,K2wAT $ GO TO 220
S(K2,K1)2S(K2,K1)~ Al $ GO 7O 220
GisX1/8L 8 G2=Y1/SL % COWEXAI/SL*xw3
* % g TRANSFORMATTON MATRIX (DIRECYION COSINES) nxw
on 11 I=1,6 5 DO 11 J’llb
oAlI,J)=n,0

DA(1,1)31,0 $ DA(2,2)=61 § DA(2,3)xG2
DA(3,2)3=62 $ DAC(3,3)=6G1 $ DA(4,4)31,0
0a(5,5)=G} 3 DA(5,6)=262 8 DA(6,5)m=G2

DA(6,6)=G1
*ak ELEMENT STIFFMESS wuw

W(1,1)E12,0 3 w(2,1)=0, $ W(3,1)ma6,0%SL
ACU, 1) u=12, $ W(5,1)m0, S Wlb,i)umb,OwSL
W{2,2)26*GJ/(SL*CS) § W(3,2)=0, |

W(4,2)=8, $ W(S,2)m=W(2,2) $ W(6,2)m0,
W(3,3)mY, #SLaw2 $ Wld,3)mb, w8 S w(5,3)m,
W(by3)22,%SLu*2 § W(L,4)m12, § W(5,4)m0Q,

WCo,8)Z6, %S| .S W(5,8)mW(2,2) $ wi6,5)s0,

WN(b,6)zU *#SLwrp , o
DO 4@ J=1,6 $ DO 40 IsJ,6 S W(I,J)=C8wW(I,J)
W{J,IduW(l,J) , . .
IF(ROLLE,®,) GO 70 72

CM=RO%S_ /428, 3 DO 6@ Isi,6 $ DO 68 Jsi,b6
R(I,J)=4,

AM(L1)E=RO®386,4 § WM(2)30, . 3 WM(3)=3L

CALL ENDFOC (EM, {,WM,8L)

AZ=AI/ZAA 8 ALTAG/SL 8 A2mALl/8SL 8 AJmXJ/AA
S2eSL a8y,

&”
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s
72

e

120
121
11

151

168

178

192

220

ces

242
252

s ELLWINT MARA MATRTY eee
;(1-:?:}‘#,03?0'.‘2 t Q(lt‘)"??-'sL-‘?'.‘!
Sliaute R, e804, 082 8 R([,M)8fY,e8 D, 04y
U2 P0R14P 08 8 A(2,57078 04
VITe3tze,o82e86, 040 8 3(Y,4)me1Y, 08 002, 001
‘il el mel w82a1g #AQ

Mid, i 1% oS2u 002 % Rla,8)222 oS ead, e
(8,8 e L2, e0] % R(A,8)84,082e8548 020

neovs HERIPY | b 20 7% J't'ﬁ
N{I,JNmRIT,0)eCm

{(d,y1)=01r1,70)

>
4
=
&
<
™

1F(%s (6,2 GO TO AR

ALL ENDFCCLER,XF,FD,8L)

G 160 1mi,s

FIMROIY,LEL@) GO TO j6f $ wmp
IF(W(I,1),66,4,) GG T0 168

J 112 Jal,e 8 mMmMel 3§ IF(J.EQ, 1) GO YO &2

TRO MImew(7,J)/w(1,1) 8 NA(M)®) 8 GO T0 140

ME M-y

CONTINUE

CALL CONMER  (w,6,NR,S,1,70)
IF(xF) 132,158,120

00 121 X1, § KisNR(K)

EF (X1 ImEF(KI)SEF(1)mTR(X)
EF{l=2, ) -
CONTINUVE 8 IF(ROLLE.®) GO YO 162
CaLlL CONMSZs (R,0,NR,S%,1,TR)
0O 131 KEf{,d § XisNR(X)
EM(MIINEM(KL)SEM(T)aTR(K)
Ex{I)se,

CONTINUVE

e {2y e {Y T

K1sNJ1a3ed § K28NJ2e3e} S 050 170 Isi,} $ Jsle$

MR(IYsx1e] § MR(J)eK2e!
CONTINUE 3 CALL TRANSP(DA,DAY,b,6)

CaL | ”HUL(Nrol'ﬁD'.'.l.) 3 C‘LL H"UL(DAY.!Da‘p‘.b.b}

CALL ADDMS(W,5,8,8K,IR,MR,1)
IF(XF,LE,B) GO YO 2080

CALL MULL(DAY,EF,aB,6) & 0O 190 Ist,s 3§ Klﬂl(!)

SF(X)BSF(K)eaAR(])

IF(ROD,LE,®) GO TD 229

CALL MULY(DAY,EN,AB,s)

DC 225 l®i,6 3 KsHR(I) 3 wWOH(K)uNS(K)eAB(])
CONTINUE

CALL MMULIR,DA,ED,6,6,6) 8 CALL MMUL(DAT,ED,R,6,6,6)

CAL‘. AOD"S(R,&.S,SN,IN,NR;?)

CONTINUE

IJe@ § Ixm@ 3 DO 290 Isi,IR § IKsIKe}
IF( SM(1),67,3,) GO Y0 249

INsIx=y 3 IJsIJey 3 mMy(lJ)sl S GO YO 2523
NG(In) s

CONTINUE
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s
-4

LI IR V)
s -}
| IS

L 4

NS R NRE Ne N4

285

129

318

v A e e aea
'\‘DLF-'H! ; 7

) A R PR R

TalL REMAMA (S, 3H, IR, MV,1J, 2)

Uhln REMOF (ST .18,%v,19) 8 CALL REMD* ‘WG, IR,MV,1J)
Cliayy

. .‘,~u':r‘ = N Tl’:f

S
RICEERTPS - R O S U o28e Jt,3 8 D) 282 xwui,3
Ri.er=g,
YEe . i LMAEND, 3 SUTYCRTE OF A DISCQETE MASS
LMS MUST 8E “AFATER THAN TWD)
MR MOTE N GMBEL )6 Sy=ANRTY
L.y 7w CENTRCIC 2F ase :
Xh,vem LNTOES (M 0 FEES BETWEEN THE PQINCIPAL :
AYES IF YHE .88 aAvD Ywaul$ '
AF(1),wF(2),WE(3)s 9P IED MOMEMTS ABOUY X,Y AXER
AND FQORCUE IN 2-2IRECTION RESPECTIVELY
R{Y,10,802,23,R(3,3)aA858 MOMENTS OF INERTIA ARALY
TaY AXTE AND vATS QFSPECTIVELY
RELY P I FRE LR D INNE SR Y
PRINT SQ4B,L %S, (MR(J),Jx1,LKRS)
READ S8U2,xC, YL, XA, YAL(NFLJI),JU=1,3),(R(J,J),Ix8,3)
PRINT  5842,XC,YC XA, YR, (WF(J),J=1,3),(R(I,T),J=8,3) .
XAaXAwl 1416/182, b YAaYA«d 1U414/180, L !
IF(LMS,LE,.3) 0 ¢ 319 ‘

MN2i “Swl § X{isMR(1) $ K2EMR(2) 8 K3IsMR(3})
AlsX ("2)mX (¥} ) $ A2aY(K2)=Y(K1) $ BisX(KI)eX (K1)
B2rY(X3)=Y(K]) S . CCxA{nB2=A2#B

00 285 J=i,3 $ KIaMR(J)*3e?

NR(J)SMACHING, IR,KI)

PO 328 Jmd,LvS & Ji1mJ=3 § KKEMR(J) 3 Cla)x(KK)eX(Ki)
C2mVv(KK)mY (K1) § AASR1#(2=B2+C1 S BBmAI*C2eA24C1
TROL)=(44-8B+227/8C 8§ TR(2)==AA/CC 8 TR(3)=BB/CC ‘
Kz hlep ps
MY(JLIeMACKH(ND, IR, KK) $ LMKaMVv(Ji)

CALL CONMS(S,SK,IR,NR,3,LMK,TR,1)

o YN CONMS{S,S",IR,NR,3,LMK,TR,2)

CALL CONF(8F,IR,NR,3,LMK,TRY 8 CALL CONF (WG, IR,NR,3,LMK,TR)
CONTINUE

TRLUL REMOMS(S,3K,IR,MV,MN,1)

CALL REMOMS (S,34,IR,MV,MN,2)

SALL REMOF(3F,IR,MV,HM) 8 CALL REMOF(WG,IR,MV,MN) i
CALL SEQNINT, 1AMV, MN) i
CONTINUE _ i
AC1,1Y=C08(XA)  § AC1,2)8SINCXA) S A(2,1)800S(YA)

A(2,2)=SIN(YA) & DO 328 Jai,3 8 KsMR(J) -
D{J,1)EX(K)=XC

DU P23 =Y (XYaYC !
0C 3313 Js1,2 S £O 333 Kai,3 ;
50X, J)RACS, 1) %D (K 2) AT, 2)%D(K,1)

D) 3u% Key,3

8(x,3)=1{,

29



CAL_ MIVIB,ED, V) $  CALL MU (RNED,4,3,3,8)
CAL., TRANSP{ ED,D,3,3) § CaLlL MM_ L (D,B,R,3,3,3)
caLL MULL D, wF, AR, 3)
FF(1)sR(3,3)e38b,4 $§ EF(2)39, ¢ FF(3)=2,
CallL MU 1(DL,EF,FC, 22
o0 3T¢ Itsmi.d 8 02 352 U=y, IR
KIsMR(JI)w3=2 & I7INQ(J), FQ,xI) GO 7O 362
IS¢ COMTINLE $ GO 10 370
360 MV (TI)=) $8 SF(J)aSF(J)ean{Il)
AG(IYIEWG(J)»FD(IT)
370 CONTINUE
CALL ADDMS(R,3,S8S,SM,IR,My,2)
3ao CONTINLE
188 CONTINUE
IF(IQR) 4PR,d4dnR8,388
188 CONTINUE
== IF IGR GREATYER THAN ZERO

¢ READ IN MQ(I)=COORD, TO BE ELIMINATED
READ  S@u@, (MQ{I),I31,IQR) § 108}
PRINT 5343, (MQR(I),Is1,IQR)
GO TO «@8

400 CONTINUE
I13RraJaT*2 8§ D0 42S I=1,INT $§ I2=3+]1 § I13]2=]
Kee2#] $ Ki=xK2el & MQ(X1)BI}
4as MG(K2)=l2
428 IQey & Ji130
DO 682 I=1,IR " Ii=llel $ «KkKsNQ(])
410 IF(IQ,GTLIGRY o YO 454
IFIMGIIQY NELXK ) GO 7O 430
IdelQe+y 8 GO TO &7€
43e IF(M0(I7) ,G7,K} GO TO 4S9

IGsIQ¢y $ GO TO 410
450 IF(Sm(1),67,2,) GO TO 4020
47 JisJiel & MV(J1)E I
S{e MEQ
NG Sed Mi=mt, IR
IF(Sx(1),EQ,2,) GO TO Sen
MEM$ |
[F(41=]) 520,515,540
515 MaMel § GO TO S62
520 4dsS(M1,I) & GO TO S55@
S4dQ 88=3(I,M1)
§59 TR(4)=«88/8K(]I) $ MR(M)=mM\
SeR CONTINUE
CALL CONMSC(S,SK,IR,MR:M, 1 ,TR,!)
CALL CONF(SF,IR,MR,M, I ,TR)
IF(SM(]),EQG,Q,) GO YO 672
CALL CONMS(S,S5M, R,MR,M, 1 ,TR,2)
CALL CONF(wG,IR,MR,4, I ,TR)
684 CCNTINUE
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NBIReg

G 9%, Tel, lm

wETIT a8 11

Se 1 el 806 JTRLYY)
YuMaP,

freo n8, 1=y,18

DTS metu (15

SINTI® 3 AvGwaSUM/SI@

LONTIN,E

REAY Irn wsra8fe L2ACINS [tSE NUMBER
SRR AT, DF MISCOUS DaAMPINGS

GAMAISTRUCTURAL, DAMPING HATIO OF CRITICAL VALUE
READ 6222 ,HCATE ,NDP,GaNG

¥ (MUARE LF Q) 6O 10 asa

PRINT sy 3
e BLEI S NCATE ,NDP, Gam) |
ey I".!u :
y{l)s2, §
X(1)ap, |
BETARGAMA/AVGH ¢, 8 GAMABGAMASAVGH ‘ :
RE:> IN  ALPHA,TEND® BEGINING AND END OF TIME CALCULAT)OH :

RESPECTIVELY
DYs {IME INTERVAL OF PRINTY QU7
SRRIMPACTY VELICITY
EMIIJZYIME SIZES OF INTEZGRATION IN RUNGE=KUTTA MFTHOD

.

i s ik

R s i ¥ it




c L X

OO0

DO O0

621

t 622
625

* 696
612

720

710

720
725

730

READ Sos5e,
PRINT S5054@,
NTT21 §

ALPHA,TEND.OT, V&
ALPHA,TEND,DT, V&

ALPHAQGZALPHA

READ S658, (EM(I),l21,6)

PRINT 5058, (EM(I),I=z=1,6)

READ In IMPULSE SHAPE

SFO(I)=5F (I
KENO, OF TIME STATIONS OF THE PULSE SHAPE
TM(J)= TIME FROM IMPACT REGINS OF STATION J
CP(J)=RATIO OF FORCE AT STATION J TO THE

INPUT FORCE

READ 58608, K,(TM(J),CP(J),J=1,K)

PRINT 5068, K, (TM(J),CP(J),J=1,K)

IF(NOP,LE,@) GO TO 625 § DO 622 Isi,NDP

READ IN SPRING CONSTANT DK AND DAMPING RATIO DPC

FOR REPRESENTING RUBBER MATERIAL PROPERTIES

Ji= JOINT NUMBER OF THE ASSOCIATED MASS

J2=z JOINY NUMBER OF THE SUPPORT.OR

RIGID SUPPORTY IF J2=za
READ 62%90,J1,J2,0PC,DK
PRINT 6220,.J1,J2.D0PC,DK
JizJinl=2 8 JPI(I)=MACH(NG,IR,J1) § JsJP1(1)
JP2(11)=0
IF(J2.,LE,® ) GO 7O e2t
J2eJerle2 8§ JP2(I)nMACH(NQ,IR,J2: $ DK=SD(J)
DP(I)=DPCw2 xSART(DK/TR(J))
SK(I)aDK/TR(I)
CONTINUE
CONTINUE
JNT32 JINT«3 8§ JNTORJINT#é6
HEEM(NTT)
v0 612 I=t,IR & MO(1)=mi
SF(1)=SFO(1)
MTF=0
MNF =
D0 708 Im1,JINTé
YJ(l)=e,
DO 710 Ix2,JNT6,6
YJ(I)=ve
KENAQ(L) & 1.
DO 728 I={ INT3
IF(ILNE LK) 6D TG 729
I2elixe=t 8 IsI2e] § K2zKwowe!' § KIBK2+l
YJ(I2 eYJ{ke) & VYJ(I3I=YJIK3IY % I1=mT{ei
IF(I1.6T,IRY "y TO 725 8 K=NG(I1)
CONTINUE
CONTINUE
LN1sD
OMEGAZALPHA«DT
IF(NMEGALELTEND) GO T0O 727
()3
it e




7.8

736

734

732
733
734

735
T40

750

5mA10@
5020
5@3e
5040
5042
50506
5960
SavTe
s@8f
60801
6304
6100
620a
78049
ae2

e A t
LB

2ima -
DT TR
PRINT &34 (OVEGA
TALL ROUT CALFRA,OMERA,H, YT DF)
T T4R Tmgeke2 8 TisI/2 8 IFuYe! $ I3=NQITUL)
JFGERT T LY AR0e,

IF(ABS(DFEG) JLELY (IS © GO TN T73e
»{I1.,3DFG 8§ Y(I1)=0OMEGA
CONTINUE

I1={13+23/2 3 IXail=l{x3+3
ldsl/2 & I53lde¢d
IF(13,EQ,1) GO 70 735:

G YO (TLC.733,735;,M0F
MNEz] § TF(YJ(I ) LT.2,8 .AND,MG(I4}.tC,1) GO TO 74d
MYF=1

IF(MQ(I4) . EQ.1) 732,734

M3iI4)=2 3  MNF=se

SF¢(I4g)=a3, & GO 70 740

IF(YJ(I ),GE.9,) &0 IO 732
MG(I4)=3 § MNF=3

SF(IU)=3F@A(I4)

PRINT 6100, I1,13 ,YJ(I12),YJC(D),DF(L,1) ,OFG
IFCARS(YJ(1)),6T,18A,) (O TO 75@
ALPHASOMEGA 8 GO TO 710

IF(NTT (GE %) GO TO «0@n
ALPHARALPHAD

NTTaNTT+y & G2 TO 696
FORMAT(BFI1Q,6)
FORMAT{I3,F7.2,7F10,2)

FORMAT (215, 6I1,14,6Fi0,3)
FORMAT(1615)
FORMAT(UF10,3,/,3F10,3)

FORMAT (3F10,%)
FORMAT(I10,10X,6F10,3,/7,(BF10,3))
FORMAT (28X ,6F1¢,4?
FORMAT(I1Q,4E12,3)

FORMATI LML)

FORMAT{ 5X,% Tzx,F{0,5)
FORMAT(215,3E12,3, 2F9,2)
FORMAT(Z215,3F19,3)
FORMAT(12F11,2)

ST0oP % END




Fvvf |

SURRCUTINE RGKT(A{,Aa2,A3,YJ,0)
c kakx RUNGE=KUTTA METHOD wwnw
COMMON N
DIMENSION D(5,82),YJ(88),W(1D)},aC102),PHI(BO),B(4,3),
1 X(19),Y(S,84)
C svwewews (COEFFICIENTS
W(1)sw(d)mi /6, & W(2)aw(2)=,, /3, $ KK=s 4
A(e)=A(3)=,S5 & A(4)=t,
B(2,1)=R(X,2)%,5 3§ B(3,1)uB(4,1)3B(4,2)s0, $ B4,3)E]
I3 = 4 $ FCT = 19,/278@,
ALPHA = A1 8 OMEGA = A2 $§ KW = AZ
I0eKK
1M1 B [y=i $ iGP1 = IQ+1
ISTP = @ $ SIGN = 1§,
IF( H.LT,2, ) SIGN = =t
X(1) = ALPHA
00 3 I=i1,N
3 Y(L1,1) = YJ(1)
4 MM = $ IFLG = @
b M = MM s MM & M ¢
IF{ MM, GY IQPY ) MM =
X(MM) = X(M} ¢+ H
TEST a OMEGA = X (MM}
TEST: = TEST/OMEGA
IF QUOTIENT OVERFLOW 7,8
TESTY = TEST
IF( ABS(TEST1),LT,!,RE=~10 ) GO 70 12
IF{ SIGN«TEST! ) 9,12,13
TEST2 = OMEGA = X(M)
H 2 TEST? 3 IFLG = @
X{MM) = X(HM) + H
12 IsSTP = |
13 XJ 3 X(#M)
D0 14 I=g,N
14 YJLIY = Y(M,I)
C mwasmnce RUNGE=KUTTA PROCEDURE
DO 25 K=31,KK
IF( KeEQ,a1 ) GO TO 22
XJ 3 X{M) ¢ HrA(K)
DO 15 I=i,N
{5 PHI(I) = 0O,
KMl S Kk =
DC 19 Jsy,KM{
19 PHICI) = PHI(CI) ¢ HrB(K,JI®D(J, 1)
20 YJ(I) = Y(M,1) ¢ PHI(I)
22 CALL DERFCN(XJ,YJ,¥,D)
25 CONTINUE
{ wswwess REAMEYB ENTRY POINT
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C onowenw= RKAMSUB EXIT POINT

105
Spa

27

34

142

10
15

2e

39
4o

1%

60

6%
79
8a

A2zX(MMT 3 Alzk
0C 1d% Isi,N

YJ(IY = Y(MM,T)

RETURN

END

CALL DERFUNCAL,YJp1,D)
DO 27 1=1,N

PHI(I) = @,

DO 30 I=1,N

PO 29 K=i. KK
PRICI) & PHI(I) + HaW(xK)«D(X,I)

Y (MM, 1) = Y(M,I) + PHI(I)
IF( ISTP,EQG,1 ) GO TO 1829
G0 TOQ 6

CONTINUE

SURRQUTINE DERFCM(XJT,YJ,M,DF)

*xx DIFFERENTIAL EQUATIONS #awx

COMYON N,S(120,120),SMK(40,48)

COMMON  TM(20),CP(2@),SF(12M),WG(128),LNL,LN2,SLOP
COMMON NDP,JP1(58),JP2(S0),DP(Su’

COMMON GAMA,SK,BETA ,MTF

DIMENSION SQ(U4B),0F(5,80),YJ(88),SU(uR), K(1206)
NlzN/2 8 IF(LN1,EQ,@) GO T0 im
JF(XJWLE,TM(LNL) ,AND MTF,EQ,Q) GO TO 4@
IF(XJLLE,TMCLNLY)Y GO TO 1S

LNf{=LNT ¢t

CONTINUE

PO 20 I=1,Ni

SRCI)=wG(IY+CP(LNI)I®SF(I)

D0 30 I=f{,Ni $ SU(I)s@, 8 DO 3@ Jeqi,Ni
SUCTIaSUCI)«ATIJ(S,1,J,2)%8Q(J])

CONTINUE

DO 60 132,N,2 & Kel=y $ DF(M,K)eYJ(I) §$ 1Iis1/2
SuMi=a,

00 SO Jag,N{ & Jizjnlel
SUMIaSUMI+SMK(IL,J)nYJ(J1) #BETA
SUMS{sSUMI+GAMAXYJ(I)

DF(M,I)=SU(TI1)=8UM]

CONTINUE

IF(NDP,LE.®) GO T0 8@ $ DO 72 Is{,NDP & I1=2JF1(Il)2?
DVeYJ(I1)wDP(I) $ I22J3P2(1)w2

IF(I2.LE,®) GO TO 65

OVE(YJ(I1)=¥YJ(I2))NDP(1) 8§ ODF(M,I2)=DF(M,12)¢0YV
GO T0 7@

13271« & OVEDV+SK(1)xYJ(I3)
DF{M,11)=DF (M, 11)=DY

CONTINUE

MTFag

RETURN 8§ END
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SURROUTINE RGKTY(Af,A2,43,YJ,0)
C kAx RUNGE=KUTTA METHOD xx»
COMMON N
DIMENSION D(S5,82),YJ(80),W(10),2(10),PH1(8BA),B(4,3),
1 X(i92i,Y(S,88)
L ==wwmmma (COEFFICIENTS
W(tlsw(4)my, /6, & W(2)2W({3)=t,/3, $ KK=y
A(2)=A(3)=,8 8 A(4)=y,
B(2,1)cB(3,2)8,5 3 B(3,1)=8(4,1)38(4,2)=02, $ B(4,3)=}
IQ = 4 s FCT a 19,7270,
ALPHA = Al % OMEGA = A2 $§ W =z A3
IQeKK
IaM1 3 IQet $ IGP1 = 1Q+1
ISTP = 0 $ SIGN = ¢,
1IF( HelT,@, ) SIGN = =%,
X(i) = ALPHA
DO 3 I=t,N
Y(i,1) =2 YI(I)
MM = | $ IFLG = ¢
M g MM % MM 8 M ¢
IF( MM, GT,IGF1 ) MM = |
X(MM) = X(M) ¢ H
TEET = OMECA = X{MM)
TESTY = TEST/OMEGA
IF QUODTIENT OVERFLOW 7,8
TESTY = TEST
IF( ABS(TESTI),LT,1,0E~tQ ) GO T0 {2
IF{ SIGNXxTESTH ) 9,12,13
TEST2 = QOMEGA = ¥ (M)
H x TEST? $ IFLG = o2
K{MM) = X(M) ¢+ H
12 ISTP =
13 XJ 3 X(M)
00 14 lat,N
14 YJ(I) & YiM, 1)
£ wewmera RUNGE=KUTTA PROCEDURE
DO 25 K=1,KK
IF( K,EQ,1 ) 60 TO 22
XJ 3 X{M) ¢+ HeA(K)
DO 15 I=t,N
15 PHI(L) = 0,
KMy & Kk = |
DO 19 Jsy,KM1
19 PHICI) = PHICI) ¢+ HwB(K,J)wD(J,1)
28 YJ(I) = Y(M,1) ¢ PHI(I)
22 CALL DERFCN(XJ,YJ,K,0)
25 CONTINUE
 «voweee RKAMSUB ENTRY POINT
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SUBROUTINE CDNF cAbTR’MR'ID'LMSIT)
DIMENSION AC17¢ MR (123),T(122)
DC 1@ I=y{,ID T T1aMR(Y)
ACIL)=a(TL)¢ACL i T ()

ALLMS)=2,0

RETUKN & END

SUBROUTINE TRar 3~ ., "y uR,MC)
DIMENSION EQoet ). 4i8410))

DO 2@ I=s1,NR 8 % 23 Jel,NU
B(J,1)8A(1,J,

RETURN $& &4D

SUBROUTINE SBG (NDaYR,MY)MN)
DIMENSION NOC12@),MV(1e9),NEW(120)
[i=?
DO 29 I=t,IR & Iiultiel
00 12 K331 ,MN & TF(1.Z3.MV(IK)) 15,19
Iisli={ 8 GO TO 20
CONTINUE

NEW(TIL)ENQ(T)
CONTINUE
IREIR=MN $§ DO 39 I=i,IR
NI(IISNEWLL?
RETURN § END

SURROUTINE SYMINV(A,M)

DIMENSION A(122-128),T(120)

MizMel

DO 12 I=t,Mi & T(I)7%, & DG i¢ Jsi.Mi
IF{I,GE.J) 2,¢

BsAa(I,J) §$ GO 7O 1@

BeA(J,1)

TCIIET(I)4BRA(M,J)

A2z3, $ DO 20 Isi,mi
A2BA2¢T(II*A(M,I)

A2BA(M,MY=A? & A2z1,/42 $ A(M,M)zA2
DO 32 I=1,M1

ACM,1)eaT(I)RA2

DO 42 Imi,ML & D0 42 Jesl, Mt

ACJ I)SA(I,I)=A(M,2)nT(])

RETURN 8 END
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SUBRROUTINE REMOF(&,IR,MV,MN)
DIMENSION A(123).MV(12M)
I11=2

DO 22 I=1,IR & Iialie+d

DO 1A KzlpMN
Tiatos B amihar ke
TizsTt= £ "
CONTINUE &
CONTTIHUE
RETJRN & END

SUBRQOUTINE MMUL, 72,8,C,NR,N1Z,NC)

SIMENSTION (bpc?.%(b,bi,C(hpb)

00 20 (=1,NR & OC 20 Jei,NC $ C(l.J)=0,
DO 22 wk=i,Ni2

ClI,J)=C(1,3)+A(I,K)%xB(K,J)

RETURN § END

y
G :
peTirsalll '

SUBROUTINF ENDFOC (EF,NGO,DF,SL)

DIMENSION EF(5),DF )

EF(2)=@, $ EF{S)=pa,

GO TO (20,108) ,NGO

B=SL=DF (2)

EFCL)Z0OF(1I%R »#2#(SL+2,#DF(2))/SL**x3 & EF(U4)IsDF(2)~EF (1)
WPZDF (13*OF (2)*B/SL*%2 $ EF(3)e=BawP § EF(S)BDF(2)%WP
GO TO 22

IF(DF(3),EQ,B.) DF(3)38L

A3DF(2) 3 B=aSL=DF(3) § WP= DF(1)/(12,*SL*SL)
EF(3)mwPu’ (SL=A)wxda(SL+3 wA)=Ban3w (4 »SL=3,%B))
EF(6)s=WPw((SLB)*x3n (S +3,#B)wAn#x3n (4, #SL=3 #4))
SHEDF(3)=DF(2) § AMzSH=(B +SHZ2 ,1%DF (1)
EFCL)S(AMSEF(3)+EF(6))/SL 8 EF(4)=SH*DF (1) =EF (1)
EF(3)s=EF(3) $ EF(&)==EF(6)

RETURN & END

SUBROUTINE ADOMS(W,M,8,SD,IR,1J,1K)
DIMENSION W(h:6),5(120,120),50(120),1J0120)
DO S I=i,IR

${I1,13=5D0(1)

DO 32 Iag,m $& IimIJ(I)

DG 29 J=l,M & Ji=lJ()
IF(JL.GE., 11, ANDIK,EQ.1) GO TO 1@
IF(J1.LE.T1,AND,IK,FR,2) GO TO 10

GO TO 15

S(I1,J1)aSCIs,Ji)+w(I,J) 8 GO TO 20
$(J1,11)28(CJ1,11)+wW{X, )

CONTINUE

SDEIL)=S(Y1,1I1)

CONTINUE

RETURN & END
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162
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SUBROUTINE MUL1(A,B,C.,IR)
OIMENSION ACS,6),B(6),C(6)
DO e I=t,IR § C(I)=@e,

b0 1@ J=1,IR
CCIISCCI)+A(I,J)wB(J)

RETURN $ END

FONCTION  MACH(NG,IR,KI)
OIMENSTION NQ(120)

PO 12 I=1,IR
TF(NG(I)NELKI) GO 7O 10
MACH=I §& GO TO 290
CONTINUE

CONTINUE

QETURN & END

SUBROUTINE CONMS6(S,M,MR,1D,LMS,TR)
DIMENSION 8(6,6),MR(120),TR(120),T1(120),T72(120)
IKmY

DO 32 I=zi,M
IF(L,GELMS,AND,IK,EQ,1) 21,22
T1CI¥=S(LMS,I) & GO TO 3@
T1C1,3S(C1,LM8)

CONTINUE

DO 1108 Ia1,ID $ I1=MR{1l)

DO 49 J=i,M

IF(J GE.I1,AND IK,EQ,.Y) 31,32
A3$(It,J) & 50 TO 42

A3S(J,11)

T2¢H)RASTR(II*TL1(J)

DO S@ J=1,1D0 8§ JiaMR())
T2(J1)eT2(Ji)+T2C(LMSY2TR(J)
Liele!

DO 1022 k=1 ,M & IF(L1,LE,®) GO TO 7@
DO 60 L=t1,L1

IF(KEQ.MRCL)) GO TO 100
CONTINUE

IF(K.GE.I1,AND,IK,EQ,1) 80,90
S(I{,K)=T2(K) $& GO TO 109
S(X,I11)=T2(K)

CONTINUE

CONTINUE

D0 159 I=1,M
IF(l,GE,LMS,AND,IK,EQ,1) 12@,140
SCLMS,I)=sB, $ GO TO 15¢@
5(1,LM8)=2,0

CONTIMNUVE

DO 160 Imi1,M $ DO 160 JaI,M
S(J,1)=8(I,J)

RETURN 8§ END
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4a

50

CY)

70

8@
90
100
110

150

10

")

kY

SUBROUTINE CONMS(S,SDsM,MR,ID,LMS, TR, IK)
DIMENSION $(120,120),80(12@) ,MR(120), TR(120),T1(12Q),
t 12(122)

Do 7 I=10M

S(I.1)=8D(I)

0N I 1=y,M

TL(IXZATIOS SUMA oy W

ConTl e

00 119 I=1,ID § Ti=MR(I)

DO 42 J=ag,M

AZATJI(S,I1,J,1IK)

T2(IY=2+TR(II*TY ()

CONTINUE

DO S@ J=1,ID0 8§ JizMR(
T2(J1)=T2(J13¢T2(LMS)I*TR(J)

Lizl=1{

DO {P@ <=1, $ IF(LI,LE.@) GO 7O 77
D0 62 L=1,L1

[F(K,EQ,MR(L)) GO TO 190

CONTINUE

IF(K,GE,I1,AND,IK,EQ,1) GO TN 80
IF(K.LE,I1,AND,IK,,EQ,2) GO TN 80
GO Y0 99

SCI1,X)=T2(K3 & GO 70 109
S(K,I1)=T2(K)

CONTINUVE

CONTINUE

S(LMS,LMS)=E,

DO 150 I=t,™ $ SDCI)sS(I.I1)
CONTINUE

RETYRN & END

SUBROUTINE REMOMS(S,SD, IR,MV,MN,IX)
DIMENSION S§(120,120),80(1203,MV(120),T(120)
DO 2 I=%,1IR

§(1,1)=80(1I)

I1e?

DO S0 I=1,IR & Ii=Ii+l

DO 19 K31 ,MN 8 IF{INE,MV(K)) GO TO 17
itslf«1 & 6O TO 50

CONTINUE

Kag

CO 42 Jel, IR % Ksi+i

00 22 Lai,MN 8 IF(JJNE MV(L)) GO YO 2P
KzKegy $ GO TO 390

CONTINUE

T(K):AIJ(SrIoJ'IK)

CONTINUE

DO 4@ cat, Kk 8§ Lali+let
IF(L.GE,I1,AND,IK,EQ,1) GO VO 32
TP(LLELJ1,AND,IK,EQ,.2) GO YO 3¢

Go TO 13

g0
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9009

016
9019

9211
90145

S(I1,L)=T(J) 8 GO 7O 4@
S(L,1132T7(J)

CONTINUE

SO{I1I=S(IL,I)

CONTINUE

RETURN § END

UNCTION ALIJ(E,I1,12,1K)
DIMENSION S(120@,12€)

IF(I2.,GE,I1AND,IK,EG,1) GO YO
IF(I2.LE T ,AND,IK,EQ.2) GO TO ¢

GO T0 2

AIJaS(1i,I2) & GO 70 3
L1J=5(12,1)

RETURN & END

SUBROUTINE MIV(A,U,NM)
ODIMENSION A(6,6),U(b6,6)
00 9401 I=i,NM

D0 30231 J=1,NM

u(l,J)«o,

IF (1.E0,J) U{I,J)=1,0
CONTINUE

EFS20,0200001

20 3915 Isi,NM

K3

IF {(1=NM) 9821,90087,90<1
IF (ACI,I)~EPS) 9005,90816,9007
IF(=A(l,1)=EPS) SB26,90036,9007
BV 41

QU 9¢23 L=i,NM
UCT,J)=U(I,J)+U(K,J)
ACL,J)=A(CT,J)+A(K,J)

GO TO 9dzt

DIVaA(I,I)

D0 9099 Jmi,NM
UCI,Ji=sUu(I,2)/01v
A(I,Ji=4(1,J)/01V

DO 915 MM=Y ,NM
DELT=A(MM,I)

1F (ABS(DELT)=EPS) 9P15,9015,9016

IF (MM=]; 9010,9015,9810

DO 90211 Jz)l,NM

UMM, JYaU (MM, J) =U(T,J)2DELT
ACMM, J)Y2A{MM, D)= A(T,Ji"DELT
CONTINUE

RETURN

END
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Cushioning System Design




Cushioning System Design

The weight distribution of an M-:7 3/4 ton truck
with 1500 1lb. simulated load of sandbags and the arrange-
ment of cushioning Zorces are shown in F:g. B.l. 1In order
to have uniformity in the crush.ng of the honeycomb cushion-
ing, the centroid of the horeycomb area or the center of
cushioning forces should be located at the center of gravity
of the loaded vehicle. Wheels, differen-:ials, gear reducer
and transmission can be cushioned independently and the
cushioning forces for those masses are calculated as:

(Design acczaleration level 17.5 )

Wheels and tires (each Foo = 18.F ~ 350 = 6480 1b.

Differentials (each) Ffd = Frd = 18.5 x 480

= 889N 1b.
Gear Reducer Fgr = 18.5 x 300 = 5550 1lb.
Transmission FTr = 18,5 x 200 = 3700 1lb,

Thz remainder of thz structure is cushionz=d by F,, 2F, and 2F
throuein the truck frame.

tF = 0 (Balance of cushioned forces with inertial

forces)
Fl + 2F2 + 2F4 = (1500 + 1060 + 570 + 600 + 300) x 18.5
or
Fl + 2F2 + 2F4 = 74,500 (B.1)
ZMCG = 0 (Sum of moments of cushion forces about CG)
2F4 X 80.5 + (2Fw + Frd) X 50.5
= 2F2 + FTr x 31 + (2Fw + Ffd) X 63
+ 8l x F, +5 xF__
1 gr
or
161F4 - 2F2 - 81F1 = 415,325 (B.2)

Since we have three unknowns, F,, F,, and F, we need
one more constraint equaticen. This can be achieved by intro-
ducinrg an artificial hinge at the internal cushioned point F,.
If we take the moment about this point, we get:

2F, x 81.5 = (1500 + 1060) x 45 x 18.5 (B.3)
Thus F, = 20,600 1b.

F, = 13,900 1b.

F, = 13,100 1b.

The sizes of the pads required for the cushioning forces are
calculated by:

A =

wnjH



where
A required area of honeycomb under cushion force F,
S average stress of honeyconb (6400 psf).
From a work energy balance, the stack height z required to
provide the volume of honeycomb necessary to cushion the vehi-
cle is determined from:

H _ 10 x 12 _ "
Ge ~IT5=z0o.7 " 27

]

VA

where
H = equivalent free drop height (10 ft.)
G = design acceleration level (17.5)
e = design strain

)
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