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This work- was performed under US Army Natick Laboratories Contract 
No. DAAGI7-7O-C-OI27 during ehe period of 1 Apr 70 to 31 Mar 71, and 
follows the work reported on in report reference No. 7. The Project No. 
was 1F162203D195 entitled "Exploratory Development of Airdrop Systems", 
and the Task was No. 13 entitled "Impact Phenomena". Messrs.Edward J. 
Giebutowski and Marshall S. Gustin of the Airdrop Engineering Laboratory 
served as the Project Officers. 

The effort is part of a continui.-g investigation directed toward 
obtaining a better understanding of the failure mechanism of energy dissipater 
materials, and the response of airdroppable supplies and equipment to 
lirdrop inroact Phenomena; and toward obtaining improved airdrop energy 
dissipater materials and techniques. 

This report is concerned primarily with the development of design 
analyses of the dynamic response of a complex structure to the shock of 
a vertical and planar airdrop impact. Primary consideration was given to 
the use of the finite element method of analysis, of a three dimensional 
lumped mass model of the Army's M-37 truck. 
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ABSTRACT 

The principal purpose of this study has been to 
develop a procedure for analyzing the response of complex 
structures to impact and to provide a computer code for 
making the necessary computations.  Attention has been 
focused specifically on the displacements., velocities and 
accelerations produced at various points in military vehicles 
subjected to ground impact in airdrop operations. 

The vehicle is modeled by a lump ^d parameter (spring- 
mass) system.  Using the finite element method, a set of 
equations of motion is formulated for this model.  Then 
these equations are solved numerically by the Runge-Kutta 
method.  A model for representing a specific vehicle, namely 
the M-37 military truck cushioned for an airdrop is used to 
illustrate the procedure.  Some of «the physical constants 
for the model are modified as required to bring the com- 
puted displacements and accelerations at various points in 
the model into agreement with measured values.  It is found 
that the response of a structure properly cushioned and 
subjected to impact loading is not sensitive to. the elastic 
properties of the interconnecting members.  Thus, the develop- 
ment of a suitable lumped parameter model of a given vehicle 
is simplified.  However, special attention should be given 
to the more important components of the vehicle such as, for 
example, the engine. 

Experimental results show that more than one fourth 
of the system energy is dissipated through the structural 
damping.  Hence, damping must be included in the equations 
of motion. 

Thi most essential factor affecting the dynamic 
response of the system has been found to be the force applied 
as a result of the impact.  In the example used, this force 
is applied by the cushioning system. 

VI 



INTRODUCTION 
The finite element method appears to be ideally 

suited to the problem under consideration, namely, the com- 
putation of the displacements, velocities and accelerations 
at selected points in a structure subjected to an impulsive 
loading.  To apply this method of analysis one must first 
prepare or select a conceptual representation of the contin- 
uous structure as an assemblage of structural elements inter- 
connected at nodal points.  The idealized structure is assumed 
to be acted on by external equivalent forces and to possess 
equivalent inertia properties only at the nodal points.  Thus 
the continuous structure is replaced, for analytical purpose?, 
by a lumped parameter system.  The accuracy of the predicted 
dynamic response of a structure will depend on how well the 
structure is represented by the selected lumped-parameter 
model.  It has been reported  that even for a very simple 
beam or uniform plate with boundary conditions which can be 
exactly expressed in mathematics, errors in the predicted 
responses can easily be as much as 35 percent.  Although no 
investigation of the validity of lumped parameter models for 
complex structures, such as vehicles, has been reported in 
the literature, it may be assumed that discrepancies of even 
more than 35% can be expected for poorly represented struc- 
tures.  The general details of the, finite element method have 
been discussed in the literature.'1'  However, the nature of 
the model which will best represent a structure such as a 
vehicle, with its varied elements, irregular geometry and 
disc.-rete masses, is not at all clear.  The primary objective 
in this study will bj to select a model and then determine by 
computation and by experiment how valid the model is.  It is 
expected that some suitable rules can be formulated regarding 
the representation of vehicles by lumped parameter models. 
A model for representing a specific vehicle, namely the M-37 
military truck, cushioned for an airdrop is used to illustrate 
the procedure. 

In the procedure followed for this study, the lumped 
parameter model for the M-37 is first developed.  Then the 
equations of motion of the model are formulated following stan- 
dard finite element methods.  These equations, with appropriate 
initial conditions are then solved using the Runge - Kutta 
method.*  Some important factors such as structural elastic pro- 
perties, damping, and impulse loading which affect the dynamic 
response are investigated.  Finally, an experimental prograr 
of actual truck drop tests is carried out, and the results are 
compared with computed results.  In the analysis of the sathe- 
matical model, the concept of linear transformation is exten- 
sively used.  Linear transformation techniques streamline and 
simplify considerably the procedures involved in the analysis. 
It should be mentioned here that the computer program devel- 
oped for the vehicle is also applicable to other complex struc- 
tures . 

*  Algorithms for this method are available in most computa- 
tional facilities. 

1 



MATHEMATICAL MODEL 
A vehicle such as the M-37 truck may be represented 

by the model shown in Fig. 2.1.  In this model the enginä, 
transmission, transfer case, differentials and wheels ara 
treated as discrete masses.  The mass of the wincn is assumed 
to be distributed uniformly along the two main longitudinal 
and the remaining transverse members of the truck frame.  The 
adoption of this model is, however, quite arbitrary.  Many 
other arrangements of masses wculd, no doubt, be equally accept- 
able. 

When a structure such as this vehicle is to be intention- 
ally subjected to an impact, cs in an airdrop, cushioning is pro- 
vided to reduce the severity cv the shock produced by the impact. 
Usually all of the discrete masses shown in Fig. 2.1 would be 
cushioned independently, if possible.  For the M-?7 truck the 
engine is not cushioned independently, partly because i; is shock 
mounted on the frame, and partly because of geometrical and struc- 
tural problems.  The engine ij supported on rubber cushions, or 
shock mounts at three points, one in front and two in tiie rear. 
The action of these mounts can be represented by the spring- 
damper system shown in Fig. 2.2.  The stiffness and the damping 
capacity of a mount depends on many factors such as the hardness 
of the rubber, the shape, and the age.   Rather than try to deter- 
mine a precise set of values for the M-37 mounts, values of 

,;      20,000 lb/in. for k and 60% of critical for the dampinc were arbi- 
trarily assumed.  Later these values were varied to improve the 
"fit" between experimental observations and computed results. 

The transmission is actually attached to the engine 
but since it can be cushioned independently, it has be<m 
assumed to be a mass which is attached to the engine by a 
very stiff element. 

The transfer case is supported at four points on two 
central cross frame members which act as spring supports for 
it. 

Wheels and differentials are connected by the ixles 
which in this analysis are assumed to be rigid, massless rods 
attached to leaf springs.  Tires absorb considerable e lergy 
and this energy is given back in rebound.  Also measured 
relative displacements between the rear axle and truck frame 
indicate that little energy is dissipated through the -our 
shock absorbers associated with the wheels during the Impact. 
Consequently the shock absorbers are neglected and the vehi- 
cle is supported by the leaf springs in Fig. 2.3. 

The spring constants K and damping factor C for tne 
tire in Fig. 2.3 must be determined experimentally, or be 
estimated using whatever guidance is available.  These quan- 
tities are initially assumed to be 7,000 lb/in. and 2C% res- 
pectively. 

The winch and the other distributed masses of the 
truck are cushioned with the two main longitudinal frame 
members.  In the model shown in Fig. 2.1, all individual 
components are interconnected at the nodes numbered from 
1 to 39.  In the present study only a vertical, planar im-- 
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pact Is considered.  Consequent!" each nodal point in the 
model is to have onlv 3 degrees of freedom, consisting of 
o ie vertical translation and two nlanar rotations.  Three 
degrees of freedom are associated with each end of ail members 
as shown in Pig. 2.''. 

ANALYSIS OF THE [10DFL 

For the model shown in '''ig. 2.1 with assumed damning 
subject to impact loading, the equation of motion can be 
written as: 

;_1 « + g rt + I a = F (t) (3.1) 

where M, C_ and K are square matrices of inertia, damning 
and stiffness respectively and F(t) is the column matrix 
of cushion forces.  The generalized displacement matrix o_ is 
numbered in the seauence according to the joint numbers.  For 
example, coordinates Qo-_p q.^. _-, and q,. are associated with 
the translator and two rotational motions about common datum 
cixes, at the i'^h nodal joint of the model.  yor example, at 
Joint 5, the coordinates are !■,,- 2  q15_. 

(11S_0  
or li^  Qi/i 

and q. c. 
J " ' 

The stiffness matrix K of the complete ^.element assembly 
is obtained by the direct stiffness method.   This method 
consists of first deriving the Individual element stiffness as 
in element coordinates, followed by a coordinate transforma- 
tion and the subsequent superposition of each element stiff- 
ness so that the translational and rotational degrees of free- 
dom of all elements which share a common nodal point are ex- 
pressed in the same coordinates.  The superposition of each 
transformed stiffness is accomplished by adding its individual 
terms into the complete stiffness matrix according to the 
element nodal point numbers.  The same method can be emploved 
to obtain the mass matrix M and the force vector F.  The 
derivations of mass matrix"M, stiffness matrix K, force vector 
F and damping matrix C are discussed in detail as follows: 

1.  Element Displacement Functions 
To determine the elastic and inertia properties of a 

structural element the strain and kinetic energies of the 
actual continuous element are equated to the corresponding 
quantities for the eouivalent discrete model.  Consider now 
a uniform structural element in the horizontal plane as shown 
in vig. 3.1.  The common datum (X,Y,Z) is established for all 
structural elements so that all displacements and corresponding 
forces will be referred to this common coordinate system.  The 
origin of element coordinates (x,;/,z) is located at node 1 
with the ox axis taken along the length of element and with the 
oy and oz axes as the principal axes of the element cross 
section. 

The column matrix U for this element, as mentioned before, 
consists of six displacements, two vertical (Z direction) deflec 
tions U, and IK and four rotations, V.?,   U~, üV }  and uV. 
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Fig. 3.1 Element Coordinates 

ul 
U2 
U3 
% 

s 
[U6 -               - 

(3.2) 

Denote the displacement functi< 
in element coordinates as: 

v; 

w 
v (3.3) 

The displacement furction w may be assumed as 

w„ =  C, + C0x + C,x  + C,,x3 + C_y + C.xv 

where C, to Cg are constants to be determined by boundary 
conditions at both ends of the element. 

At node 1:  (x = 0, y = 0) 

U, w z 
8Wr 

9wr 

ay" 

'1 "1 

= c. 

- + u2 - c5 

At node 2:  (x = L, y = 0) 

w„ = U, = C. + C„L + C,l/ + C,,L3 z    4    1    2    3     4 
3W „ 

- Ug = C2 + 2C L + 3C4L 9X 
9w 

Solving for the C's, 

C5 + C6L 

Cl = Ul 
c2 = - t 

1 
3 

C3 = ^2  [ - 3'J1 + 2LL'3 + 3U4 + LUg ] 
ij 

Ch   =  ~    L 2U2 - LU3 - 2U^ - LU6 ] 

c5 - u2 

C6 - E C - U2 * U5 ] 

(3 . *) 

(3.5a) 

(3.5b) 

(3.5c) 

(3/5d) 

(3.5e) 

(3.5f) 

(3.6) 



Define the nondimensional parameters 

r = * = l * = z 
Thus the displacement function w becomes 

w = (1 - 3r2 + 2r3 )U, + Ls (2 - r)U, z 1 / 

+ L(- r + 2r2 - r3)U3 + (3r? - 2r3)U4 

+ LrsU- + L(r2 - r3)U, 5 6 
The displacement function w caused by twisting is 

(3.7) 

(3.8) 

w Ltd - r)U2 - LrtU5 (3.9) 

i+- can be obtained This is a direct geometric relationship, 
by assuming +   2     3 + Q       + c 

y    1    2     3      4      5     6 
The displacement function w is 

oW      9W 
W = - 2-r=- - y-4 (3.10) 

Then by combining 3.8, 3.9, and 3.10 obtain 

w = 6t(r -r2)U1 + Ltd - 4r + 3r2)U-. 

+ 6t(- r + r2)U  -i- Lt(- 2r + 3r2)U6 (3.11) 

Thus the displacement functions w can be expressed in terms 
of the discrete displacements U as 

w = a U (3.12; 

where a is the 3x6 matrix whose transpose is given by: 

T a  = 

6t(r - r ) 

0 

Lt(l - 4r + 3r2) 

6t(- r + r2) 

0 

Lt(- 2r + 3r2) 

0 

- Lt(l -r) 

0 

0 

- Lrt 

0 

2     3 1 - 3r  + 2r 

- Ls(l - r) 

L(- r + 2r2 - r3) 

o 2   _ 3 3r  - 2r 

- Lrs 

L(r2 - r3) 

(3.13) 

2. ' Element Mass Matrix 
To d3termine the element mass matrix begin with the 

element displacement functions w in terms of discrete dis- 
placement U as indicated by E q. 3.12. 
The transpose of w is: 

T   ..T  T w = U a (3.14) 



and the second time derivatives are: 

w = a U 

The virtual displacement of w is: 

6w = a6U 

and its transpose is 

6w  = 5U a 

(3.15) 

(3.16) 

(3.17) 

Thus the virtual work done bv the inertia force of the element is: 

avi inertia V 
i$w  (pw) dV 

T T 
6U a (p a U) dV 

= 6U" p a a dV)U 
V 

where the integration is performed over the whole volume of 
the element. 
Hence the element mass matrix is defined as: 

m = p a a dV (3.18) 
V 

Substituting the matrix a [Eq. (3.13)] into Eq. (3.13) and 
performing the integrations, the resulting 6x6 mass 
matrix, Eq. (3.19) is obtained.    In the mass matrix, terms 
with the moment of inertia I  represent rotatory inertia and 
terms with the polar moment of inertia I  represent the tor- 
sional inertia of the element.  From the results of numerical 
computation, the effects of rotatory and torsional inertia of 
the element during impact are considered negligible. 

3.  Element Stiffness Matrix 
The bending strain in the xz plane of the element 

shown in Fig. (3.1) is: 
2 w 

eb = 
)X 

6r)U. i (- 6 + 12r)U, + i(4 
Jj 

+ -2(6   - 12r)U4 + jr(2 - 6r)Uß 
Jj 

The twist strain is: 

et = IT1- U2 " u5) 

The total strain e in matrix form is 

e = b U 

(3.20) 

.3.21) 

:3.22) 

where 



156   +   504-i. 
Al/ 

symmetric 

m - pAL 

I 
140-4 A 

■22L  -   42-=-£ 
AL 

54   -   504-^ 0 
AL^ 

70^ 

■13L  -   42^ AL 

4L2   +   56-£ A 

I I 
-13L  +  42^       156   +   504-^„ 

AL AL2 

0 14 0— 
A 

-3L2   -   144 A 22L  +   42^ 
I 2 x 0        4L     +   56-^ 

A 

(3.19) 

_k i__ —fci. 



and 

b = 

- (-1 + 2r)   0  i(4 - 6r ) -9(6 - 12r)  0 ~(2  - Or) 
L 

1 
'L 

1 
L 0 

(3.23) 

The bending moment if: 

S, = El e, b     y b 
where E is elasticity modulus.  The twisting moment is: 

St = GJet 
where G is the shear modulus and J is the torsional constant 
for the element. 
Thus the stress-strain relationship in matrix form is: 

S = A e (3.24a) 

Where: 

b 3.24b) 

A = 
El 0 

0     GJ 

From Eq. (3.22), we have the virtual strain 

Se = b6U? 
and the transpose of virtual strain 

6eT = 6UTbT. 

Thus the virtual strain energy expression is: 
'L 

6V strain 
T 6e s dx 

(3.24c) 

(3.25) 

(3.26) 

T T 
6U b A b U dx 

J 0 

T 
= 6U ( bTA b dx)U (3.27) 
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The element stiffness Jj is then defined as: 

•L 
t dx 

^ 0 
(3.28) 

Substituting the matrix jj [Eq. (3.23)] and 4 [Eq. (3.24c)] into 
Eq. (3-28) and performing the integrations, the 6x6 stirfness 
matrix k is obtained as follows: 

k = 

12 
m 

0 GJL2 

EIy 
0 

0 

symmetric 

El 

-3* 
-6L 

-12 

H," 

6L 12 

0 GJL2 

El 
y 

0 0 GJL2 

El 
y 

-6L 0 2L2 6L 0   i;L2 

_ . 

(3.29) 

4.  Element End Forces 
In general, the virtual work done by the external forces 

p_(x,t) acting along the element at any instant in time through 
virtual displacements 6w is: 

6w external 
T 6w p_ ds 

m m 
6U'§xj> ds 

6U 7 T § p_ ds 

Thus the eauivalent concentrated forces f at the element ends 
due to a distributed loading £ is: 

JE T A § £ ds (3.30) 

11 



However, the forces f in Eq. (3.30) are the fixed end forces 
(with the signs reversed) of the element corresponding to 
the distributed forces £ along the element.  Two cases of 
cushioning forces applied on the element as shown in Fig. 3.2 
are considered in the analysis. 

*<  1 

CASE 1 
CONCENTRATED FORCE P 

CASE 2 
UNIFORM FORCE 

Fig. 3.2 Element Forces 
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■?—- •^jpr-i 

The  fixed end  forces   for  case   1  are: 

f   = 

where; 

Mn 

M, 

(3.3i; 

For  case   2: 

,w, [J(L  -  L±   +  L2)    (L 

[2f(L  +   Lx   -  L2)    (L 

L2)    +  M3   -   M4]/L 

0 

-M 

-   L,    -   L0)    +  M,   -   M,]/L 

+M, 

where: 

(3.32; 

M,   ■  —_[(L   -   L,)3    (L  +   3L,)    -   hi    (4L   -   3L-)] 3        12L2 1 12 2 

M,   =  —,[(L   -   L~)3    (L  +   3L   )    -   L3    (4L   -   3L   )] 
12L 
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5.  Linear Transformation 
If the set of coordinates q with n degrees of freedom 

in the equation of motion Eq. (3.1) is a linear combination of 
a different set of coordinates u with m degrees of freedom, 

2 = B u (3.33) 

then the mass, damping, stiffness  and force matrices in u 
coordinates can be calculated by using the concepts of energy 
and virtual work.  The elements of the n x m matrix B [Eq. (3.33) 
are constants. 
In the q coordinate system, the kinetic and potential energy 
expressions have the matrix forms: 

I T = i <£TM 2 (3.34) 

V = i 2.TK g. (3.35) 
I — 

where M and K are mass and stiffness matrices in q coordinates 
respeCCivelyT 
From Eq. (3 . 33) , 

g, ■ B u (3.36) 

and the transposed matrices 

T    T„T (3.37) 
f a    -  u B 
i 

2T = uTBT (3.38) 

Introducing the linear transformation Eqs. (3.33), (3.36), (3.37), 
and (3.38) into the kinetic and potential energy expression Eqs. 
(3.34) and (3.35) results in: 

1  T T = 7 i M ä 
= hT^!i (3.39) 

1 'T  • = 7u  m u 

1  T v « 2 a £ ä 

-JuTBTKBu (3-40) 

i T7 

where. 
m = BTM B (3.41) 

k = BTK B (3.42) 
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are the corresponding mass and stiffness matrices in the u 
coordinate system.  Since M and K are symmetric, it follows 
that m and k are symmetric"." The~"virtual work done by the 
external forces F in q coordinates acting through the virtual 
displacement 6q_ xs: 

6W = 6c[TF (3.43) 

Since the virtual displacements 6c are related to the virtual 
displacements 6u by: 

and: 

thus 

where 

<5c£ = B5u (3.44) 

T     T T 6ä  = 5H (3.45) 

5W = 6a
TF = auTBTF = 6uTf              (3.46) 

f = BTF (3.47) 

are the external applied forces corresponding to the u 
coordinates. 
Consider now the viscous damping force D.  These internal forces 
may be expressed as: 

D = - C 2. (3.48) 

where C is the damping matrix in q coordinates.  The virtual 
work done by the damping forces D is: 

m        T ~~ T T T 
5W = 6£ p = -52 C 2 = -JUBC B u = -6u C U    (3.49) 

where 
c = B C B (3.50) 

is the damping matrix in u coordinates. 
In summary, the mass matrix M, stiffness matrix K, 

damping matrix C and force vector F TVi the q coordinate sys- 
tem under the linear transformation 2 = 2. ü are transformed 
into the element mass matrix m, the stiffness matrix k, the 
damping matrix c, and the force vector f in the new u~coor- 
dinate syctem according to the following transformations: 

m = BTM B (3.51a) 

k = BTK B (3.51b) 

c ■ BTC B (3.51c) 

f ■ BTF (3.51d) 

6.  Transformation of Element Coordinates to Datum Coordinates 
Since the element mass matrix m, stiffness matrix k, 

and end force vector f are initially calculated in local eTe- 
ment coordinates, suitably oriented to minimize the computing 
effort, it is necessary to introduce transformation matrices 
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changing the frame of reference from a local to a datum 
coordinate system.  Consider again the element shown in 
Fig. 3.1.  U-, to U, are displacements in the direction of 
local coordinates x,y,z and Q, to Q, are displacements in 
the directions of datum coordinates XYZ.  0 is the angle 
between ':he r and X axes.  The displacements U can be related 
to displacements Q as: 

Ul = Ql 
U2   =  Q2

COS0   +  QoSinQ 

U^   =  -QpSinO   +  Q,cos0 

U4   *  Q4 

Ur   =  Qccos0   +  Qrsin0 

Uc  =  -Qr-sinO   + Q,cos0 6 5 6 
or in matrix form 

U = B Q 

where 

B  = 

10 0 

0 cosG sine 

ü -sine       co93 

(3.52) 

1       0 

0       cos9 

-sin0 

0 

sin0 

cos3 

(3.53) 

The element mass matrix m*, stiffness matrix k*, and the force 
vector f* in q- displacements can be obtained~by using the 
transformations of Eqs. (3.51a), (3.51b), and (3.51d) as: 

m* = B m B 

k* = BTk B 

f* 

(3.54) 

T 
B f 

7.  System of Assembled Structure 
Since all element stiffness matrices, mass matrices 

and force vectors are now referred to the common datum, the 
stiffness marrix, mass matrix and force vector of the complete 
element assemblage can be obtained by the direct stiffness 
method as mentioned previously. The concentrated masses at 
nodal joints such as transmission, differentials and wheels 
are simoly added to the corresponding diagonal terms in the 
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assembled mass matrix.  For example, the mass of the wheel at 
node no. 24,* which is associated with fie  coordinate q, can 
be directly added to the diagonal element m?_,7  of the aiosi 
matrix of the system.  The concentrated cushion forces applied 
_, _ nodal points are also simply added to the corresponding 
terms in the system force vector.  For example, the cushion 
force applied3 at the transmission can be added to the element 
ffi~ of the system force vector F.  "'owever, the discrete masses 
such as the engine and transfer case which connect several 
nodal points can not be superimposed on the system directly. 
A special study of these masses is necessary. 

8.  Engine and Transfer Case 
Since the engine, transfer case and similar masses 

are all supported at several nodal points, special considera- 
tion of these parts is required.  Consider now a discrete mass 
supported by n-springs with coordinates q-,.... q .  Since three 
points define a plane, q, , q~ and q.,, as generalized coordinates, 
sufficiently define the motions of mass.  Let u,, u«, and u., be 
the rotations about the principal axes of mass and the vertical 
translation respectively.  The relationships between coordi- 
nates q's and u's can be formed in the following way: 

Fig. 3.3 shows the system under consideration: 
->■  ->- 

a,, a- = The unit vectors along two prin- 
cipal directions of the mass. 

= unit vectors along datum coor- 
dinates X, Y, Z. 

Z. = coordinates of supports. 

d-, = position vectors of points where 
the springs attach to the mass, re- 
ferred to the center of mass. 

-y 
e. = vectors from support point q-, to q. . 

For small rotations, 

X. , Y. , 
l'  l' 

q± = 
u
1(a1 x a. + u2(a2 x S2 k) + u. 

which in matrix form is 

i = 1,2,3 

*1 
-y 
ai x d. 

^2 
= ->- 

ai x 32 

.   q3   . 
x a3 

k 

> 
k 

a? x d, • k 

a„ x d, 
2    z 

a2 x 23 

1 

£   l 

£   l 

(3.55) 

1 
ui ! 

U2I 
."3J 

or a = AU 

*  The q coordinates at node ">%   are q7fw translation in the Z 
direction, q7,, rotation about the x-axis and q72* rotation 
about the y-axis. 
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Thus 

where 

H ^ A_1a = B a 

B = -1 

3.56a) 

(3.56b) 

If m, , m2 and m_, are the mass moments of inertia and the mass, 
then the matrix of the discrete masses in the u coordinate sys- 
tem can be represented as: 

m = 

m. 

m. 

[ 
0 m. 

According to the linear transformation (3.56a), 
mass matrix corresponding to the q coordinate system is: 

the 

m* T = B m B 

f. If there are cushioning forces ....,, 
directions, then in u,, u«, and u3 

and q., directions 

f! 

(3.57) 

f„ and f,. directly applied 
tne forces in the q-, , q~, 

are: 

f * 

f * 3 

=  B' 

or T 
f* = B f (3.58) 

Now the mass matrix m* can be added to the mas? matrix of 
the complete element-assemblage and the forces f* can be 
added to the system forces.  It must be noted that before 
taking this step, the constraint coordinates q. through q 
should be eliminated from the system.  To do this, first 
find a transformation matrix B such that: 

3/ 

q n 

B 

*i 
a. (3.59) 

and then by linear transformation get the modified mass, 
stiffness and force matrix of the whole system. 

The transformacion matrix B in Eq. (3.59) is formu- 
lated by finding all the expressions of q. through q  in 
terms of q-, , q2/ and q,.  Consider now the displacement q. 
as indicated in Fig. 3.3.  The vectors from support 1 to 
2, 3 and i can be expressed as: 
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e2 = (X2 x-L) l + (y2 - y, ) 3 + (a. q1)k 

e3 " lX3 

e. = (x. 

x1)i + (y3 - y±)j   + (q3 qx)k 

x1)i + ^ yi " Y1JD' + (qi " ql)!^ 

Since supports 1, 2, 3 and i are in a plane, 

or 
e2 x e3 

X2   Xl 

3    1 

x. - X-, 

?2 ~ y± 

y±  - yx 

^ - q- 

qi " qi 

Solving this equation for q. results in 

where 
El = 

E2 = 

E3 = 

El   E2 + E3 

X3 " Xl 

x. - x, 
l    1 

X2   Xl 

x. - X, 
1   1 

x2   Xl 

x3 - xx 

qn - E,q„ + E„q '1^2 

y3 - yx 

yi " *i 

^2 " yi 

l 

2M3 

Yi - y 

Yo - y- 

y3 - yi 

(3.60) 

(3.61a) 

(3.61b) 

(3.61c) 

(3.61d) 

Thus all displacements q. through q can be expressed 
in terms of q, , q„, and q^. simply by replacing the index i in 
the determinants E, and E„ by the numbers 4 to n. 

9.  Static Condensation 
If an element is not rigidly connected to another 

element, for example, a hinged connection, the element stiff- 
ness matrix, mass matrix and fixed end force vector must be 
modified.  If some coordinates included in the static analysis 
are excluded from the dynamic analysis, or some coordinates 
with zero or very small mass must be removed from the equa- 
tions of motion to avoid unreasonable numerical results (infi- 
nite values in computed accelerations), then the system mass 
matrix, stiffness matrix and system force vector must all be 
modified.  All the modifications can be achieved by a static 
condensation technique.    By using this technique a trans- 
formation matrix similar to the matrix B in Eq. (3.33) can 
be formulated.  Then the modified matrices can be written in 
the format of Eq. (3.51). 

The first step is to partition the mass matrix M, 
stiffness matrix K, force matrix F and displacement matrix 
U into: 
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M 

K = 

ill V 
-12 

=21 M =22 

111 £l2 

=21 |22   . 

£1 
F-2 

(3.62a) 

(3.62b) 

(3.62c) 

U = 
U. 

(3.62d) 

The column matrix CJ, refers to all the displacements 
we wish to retain, while U~ denotes all the remaining displace- 
ments which will not be employed in formulating the new equi- 
valent matrices.  The displacements U~ may be determined from 
the static equilibrium equation F = K U by assuming that the 
forces F_2 corresponding to the displacements U- are axl equal 
to zero.  Hence: 

-2 ~ "=22 =21 -1 

thUS .: 

U = 

~:f422 £21 

U, = B* U 

(3.63) 

(3.64) 

where I is a unit matrix and 

3* = 
=22 =21 

(3.64a) 

Thus the modified mass matrix M*, stiffness matrix K*, and 
force matrix F* for displacements U  are obtained from Eq. 
(3.51) as:      _              _,              „ 

M* = B* M B* ,  K* = B*'K B* ,  F* = B* F (3.65) 

Eq. (3.6 5) may be obtained directly from the equations 
of motion as follows: 

«11Ü1 + ^12^2 + ill^l + |l2Ü2 = £l 

M21Ü1 + ^2 + hi^.1   +  K-2 2^2 -2 

(3.66a) 

(3.66b) 
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Eq. (3.6 6b) cap be re writ wer» a-: 

U2 = -I22I2Ä 
+ ^22 ( 12   ~  !2lüi " ^22^2 ) (3'66c) 

If we assume F„ and U to be linear in a small time interv. 1, 
then the second time derivative of Eq. (3.66c) is 

-2 = --22-2Ä. (3.66d) 
Substituting Eqs. (3.66c) and (3,66d) into Eq. (3.66a) 

the mass matrix M*, stiffness matrix K* and force matrix F* are 
obtained as shown in Eq. (3.65).  These are the matrices that 
will now be used in Eq. 3.1 for actual computations. 

10.  Structural Damping 
Until now the discussion of the damping matrix in 

the equations of motion Eq. (3.1) has been intentionally 
avoided.  However, earlier experimental studies of the M-37 
truck indicate that an appreciable amount of energy may be 
dissipated through internal friction within the truck body 
or at joints between frame elements.  Structural damping 
forces D are proportional in magnitude to the internal elas- 
tic forces and opposite in direction to the velocity of the 
system.  The force may be represented as: 

D = i b, K 2. (3.67) 

where b, is a constant and i is the imaginary number. 
This expression for the damping force is not readily 

amenable to structural analysis.  Thus the concept of viscous 
damping is used in the analysis as indicated by the damping 
matrix C in Eq. (3.1).  Furthermore, this damping matrix may 
be assumed to be proportional to the mass and stiffness matrices 
as: 

C = a M + b K (3.68) 

where a and b (b is not the same as b,) are constants and can 
be determined so as to give reasonable damping in the system. 
If Eq. (3.68) is substituted into Eq. (3.1), the modified 
differential equation 

M 2 + (a M + b K) j + K 2 = F(t) (3.69) 
is obtained.     —    — 
Since both M end K have non zero off-diagonal coefficients, 
these differential" equations are coupled.  By using the modal 
matrix, obtained from the arrangement of normal modes, as a 
transformation matrix, the equations of motion can be reduced 
to a set of uncoupled equations of the type: 

m q  + lam  + bk ) q  + k q  = f (t) (3.79) r^r     r    r  nr   r^r   r 
where q  is the normal coordinate in rth mode of the system 
and m and k  are the corresponding mass and stiffness in 
that mode respectively. 

Since this equation is the same form as the single 
degree of freedom equation, the critical damping in the rth 
mode is: 

(am + bk )   = 2m u (3.80) r    r er    r r 
where u  = k /m  is the natural frequency of rth mode. 



Dividing bo.h sides of Eq. (3.80) bv M , 

or 

(a + bu  )  = 2u r er    r 

a  , . wr 
■a— + b —s- 3.-31) 

where 3  is the ratio of actual to critical damning. 
For given values of a and b the frequency 5 which 

yields a minimum value for the damning ratio S can be foun 
by differentiating En. (3.8l) with resnect to u^ and then 
setting the derivative equal to zero.  Thus 

and 
oi  =   ^i/b 

^/ab S 

1 

3.82a) 

3.82b) 

If  S  and  a)  are  given,   the  damning coefficients  a 
are  calculated  from  the   following  eciuations: 

and 

a = S a) ( - 

and 
b = S/w 

3.23a) 

3.83b) 

Therefore, if th 
for a structure 
the constants a 
However, in the numerical analysis of this study, the fren 
of the structure 
mated as: 

e significant frequency range is established 
and the equivalent modal damning is selected, 
and b can be calculated from Ens. (3.83). 

is not calculated 
uency 

The value of u is esti- 

n   I  •Vm1 3.8M 

where m. and k. 
matrix and stiff 

It anpears 
value of danming 
Ea. (3.84) Is ar 
comparison betwe 
was made. 

i=l 
are the diagonal elements in the n x n mas 
ness matrix, 
that for the "1-37 truck model a reasonable 
ratio S corresponding to the frequency u> 

cund 0.01.  This number was estimated afte 
en some computed and some experimental res 

in 
r a 
ults 

NUMERICAL SOLUTION 

1.  Runge-Kutta Method 
The equations of motion Ea. (3.69) can be solved 

numerically by using the Runge-Kutta method.  However, En 
(3.69) must be decomposed into first order differential 
equations in order tc apply the Runge-Kutta method. 

Premultiply all terms in the equations of motion 
Ea. (3.69) by M  and eliminate the coefficient of a. 

^ + (al + 

where I is a 
discussed In 

bM-1K)i ri-1K g_ M XF(t) 

Thus 

('I 

unit matrix, and all matrices are modified as 
the sectio;. on static condensation.  By letting 

= ä (4.2) 
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from which 
a - ä (1.3) 

The set of equations (1.1) is decomposed into 2 sets of first 
order ordinary differential equations:* 

i = u (4.4a) 

Ü = M_1F - M_1K £ - (al + b^ 1K)u (4.4b) 

For the study of airdropped impact, the initial displacements 
q  (usually q » 0)   and initial velocity q 

the initial conditions are: 

u = 4„ 

_o are known, thus 

(4.5a) 

(4.5b) 

Equation (4.4) with initial conditions as expressed by Eq. (4.5) 
can be solved numerically by the Runge-Kutta method.  Eqs. 
(4.4a) and (4.4b) may be combined in a compact form as: 

i = £(t,v) (4.6) 

where t is the independent time variable and 

u— J 

(4.7) 

The corresponding initial conditions are 

v = o (4.8) 

If the system has n degrees of freedom, then the expression 
of Eq. (4.6) in index notation is: 

vi = g1(
t» v; v0 ) 2n 1,2 •2n  (4.9) 

The basic equations in the Runge-Kutta method for solving 
the s?t of ordinary first order differential equations of 
Equations (4.9) are: 

v±  (t + h) = vi (t) + |>(a1 + 2b1 + 2ci + di; 

1 ■ 1,2 . 2n (4.10) 

where 

*  u should not be confubcd with a displacement.  It is intro- 
duced here purely for convenience and is as defined by Eq.(4.2) 
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time step length of integration 

a.   = hfg.U^ v2n)] 

lu .    lu 1 

b.   = h[g.(t + |h,  vx + §ar    v2n + la2n)] 

c. = h[g.(t + jhf   vL  + ^ v2n + ?b2n)] 

d. = h[g.(t + h,  v.   + c±f      v2n + ^c2n)] 

2.  Digital Computer Program 
A computer program code has been developed to solve 

the equations of motion with the initial conditions of the 
drop impact problem.  This program is listed in the appendix. 
The required input data are nodal point coordinates, mass 
distribution, cushioning forces, initial displacements and 
velocities, damping coefficients, and member properties such 
as cross sectional area, flexural rigidity El, torsional 
rigidity GJ, and torsional inertia I .  The computer program 
automatically generates the structural mass matrix, stiffness 
matrix and force matrix and then solves the equations of motion 
by the Runge-Kutta method.  The displacement, velocity and 
acceleration at any coordinate at any time may be printed out. 
The printed out displacement is relative to the position where 
impact begins.  From these displacements the relative displace- 
ment of any two points can be computed. 

This program is primarily developed for either checking 
the design of an existing vehicle which may be subjected to 
airdrop impact or as a guide in designing a vehicle which may 
be destined for delivery by airdrop.  This program can be used 
not only for vehicles but for any complex mechanical structure 
that can be represented by a grid structure model.  It is 
expected that through the use of this computational procedure 
the amount of actual experimentation required for developing 
cushioning systems can be materially reduced.  If elements 
of the vehicle which might undergo excessive deformations 
during impact can be identified before the vehicle is drop 
tested, or even built, the computer program will serve as 
a design tool as well as an aid in cushioning design. 

FACTORS AFFECTING THE RESPONSE TO IMPACT 

The previous analysis shows that the dynamic response 
of a structure is dependent upon the nature of the applied 
forcing function, the elastic and inertia properties of the 
structure, and the damping characteristics of the system.  By 
study of these factors, information on design of cushioning 
systems and the design of the structure itself may be obtained. 
Insight into the appropriateness of the lumped-parameter model 
should also be provided.  In following sections, these factors 
are discussed in detail.  The effects of the tires on the 
structural response to the impact, and the dynamic behavior of 
the engine on the rubber supports will also be considered. 
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1. Shape of Applied Force 
In an airdrop of a vehicle it is fastened to a platform 

which holds the cushioning system in place but provides no 
support for the vehicle.  In order to avoid excessive damage 
to the vehicle, cushioning materials are placed between it 
and the platform.  According to previous experimental inves- 
tigations,    the force transmitted to the structure through 
the cushioning material is essentially independent of the 
degree of crushing.  The amplitude and duration of the force "K 

are generally dependent upon the arrangement of the cushioning 
materials and the crushing characteristics of these materials. 
To study the response of a structure to the force applied by 
the cushioning, the response of the structure due to the appli- 
cation of a rectangular impulse can be examined.  The effect 
of amplitude and duration of the force on the behavior of 
the structure is of particular interest.  Three rectangular 
pulses with different amplitudes and durations and one trian- 
gular pulse, shown in Fig. 5.1, were chosen for this study. 
For simplicity, the area of each pulse was kept the same. 
Thus the momentum imparted to the structure is the same for 
each pulse.  In order to simplify the analysis, the centroid 
position of the pulse has been chosen as a characteristic 
parameter.  In Fig. 5.1, case A is the impulse for a design 
acceleration of 17.5g.  Case B and C represent the same 
impulse as A, but with different time duration.  Case D is 
a triangular pulse with the same area and time duration as 
case A. 

Neglecting the damping, the maximum displacements and 
peak accelerations at all nodal points in Fig. 2.1 for all 
cases have been calculated.  For the purpose of demonstration 
and discussion, the maximum displacements and peak accelera- 
tions at node 18 are shown in Fig. 5.2 and 5.3 respectively. 
This node is on the frame over the left rear wheel of the 
truck.  There is no cushioning force applied directly at 
this point.  Fig. 5.2 shows that the maximum vertical displace- 
ment of this point as a result of the application of the four 
different pulse shapes to the truck is linearly proportional 
to the time to the centroid of the pulse shape. 

The peak accelerations produced by each of the different 
impulses are shown.  These results suggest that both the dis- 
placement and acceleration produced by a given impulse depend 
essentially on the time to the centroid of the area under the 
force-time (impulse) curve. 
2. Structural Properties 

The structure of an M-37 truck is so complicated that 
simplifications must be made for analytical studies.  If the 
truck is to be represented by a simplified model, the question 
of how to estimate the stiffness of the structure must be 
answered.  As a part of the attack on this problem the signi- 
ficance of changes in the impact response with variation in 
the structural properties should be investigated.  Consider 
now the mathematical model of the M-37 truck shown in Fig. 2.1. 
Three different sets of values of stiffness are assumed: 

Case 1:  All member stiffnesses are estimated 
based on the truck frame only 

Case 2:  All member stiffnesses of case 1 are 
multiplied by five 
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Fig.  5.1    Impulse Shapes. 
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Case 3:  All member stiffnesses of case 1 are 
multiplied by ten. 

Computed total displacements and peak accelerations 
along the main frame joint No. 1 through No. 10 for the above 
three cases are shown in Fig. 5.4 and 5.5.  All calculations 
are assumed t-j be for a 1"! ft. equivalent drop height with 
a design acceleration level of 17.5g and no damping.  The 
centroid of the honeycomb area is located intentionally 6 
inches toward the front from the center of gravity of the 
loaded truck.  This causes a non-uniform crushing of the 
honeycomb cushioning as shown in Fig, 5.4.  The most uniform 
displacement occurs for case 3, the truck with the greatest 
stiffness.  However, Case 2 deflection? differ very little 
from those of Case 3.  The peak acceleration curves shown in 
Fig. 5.5 indicate that case 3 also has the most uniformity 
in the acceleration at all points along the truck frame. 
The differences in peak accelerations among the three cases 
at a given point are small.  All curves are very close toge- 
ther.  Thus it appears that a reasonable impact response can 
be obtained by using very rough approximations to the struc- 
tural stiffness. 
3. Damping 

The amount of structural damping in the vehic]3 
must be determined by experimentation.  If experimental data 
or reliable information is not available, no damping should 
be assumed in the analysis since the omission of damping 
results in conservative estimates of deflections, and conser- 
vative cushioning system designs.  Numerical computations 
for the M-37 model (Fig. 2.1) show that at all points of the 
truck frame the absolute magnitudes of displacements are 
increasing as damping decreases but the peak accelerations 
are affected very little.  Fig. 5.6 shows the maximum crushing 
displacements for a damping ratio range from zero up to 0.015. 
There is no change in the configuration of the truck for all 
three cases.  The crushing displacement curve with 0.009 as 
the damping ratio is the one which approximates most closely 
the experimental M-37 measurements which are shown later in 
section 6. 
4. The Effect of Tires on the Response of Vehicle Body 

Since the vehicle body is connected to the wheels 
through a leaf spring arrangement, the magnitude and shape of 
forces transmitted to the vehicle body as the result of an 
impact would be significantly affected by the material pro- 
perties of the tires.  These forces must be considered in 
computations of the overall response of the vehicle body. 

For the purpose of analysis, the wheel and tire are 
replaced by a mass, a spring K, and dashpot C arrangement 
as depicted in Fig. 2.3.  Using different sets of values of 
K and C for the tire, the displacement-time curves at point 
No. 3 (q_J of the vehicle body, and the wheel at point No. 
24 (q~.)~have been calculated =md plotted in Figs. 5.7, 5.8, 
5.10, and 5.11.  In Figs. 5.r/ and 5.12, the maximum displace- 
ment and acceleration of nodal point No. 3 and the wheel have 
been plotted as a function of spring constants and damping 
ratios. 

In general, the larger the spring constants and the 
damping ratio, the smaller the displacement oc-   the vehicle. 

30 



~1—- 

1* 

I m 
i 

& 
i 
s 

5 

-2 

-4 

-6 

-8 

iHiiimfi dn IjlMllAllMJIlimlH   llllUJjtlJJJJJ« 

5      6 7 6        9 10 

NODAL   NUM3ER 

CASE  I 

Fig. 5.1* Structural Stiffness Effeot on Maximum 
Displacements. 

31 



?—" 

1 * 

200 

10 

NODAL NUMBER 

Fig. 5.5 Structural Stiffness Effect on Taak Accelerations. 

32 



•w 

0» 
Id 
X 
o 
z 

2 
S 

q 

afcnA . ........ i..........U..J......I. ..■■■ ..I........ J. .i 
23                 4                  567               8               9   10 

NODAL NUMBER 

-1 • 

-2 C > DAMPING RATIO 

-3 » 

-4 
"^--.^^-c s0.009^^ .*''        / 

"*^-..>-   CsO.OOJ"^^^             s'               / 

-5 

"-. 
N                                                          / V                                                   ^ 

«^                                   y 
>»                           y 

-s ' 

Fig. 5.6 Structural Damping Effect on Maximum Displacements, 

33 



q,   (FRAME) 

- I 

\ 
\ 
\ 
\ 

.     \ 

(A 
US 
X o z 

s 
< 

?! 
Q 

-2  - 

-3 

-4 

-5 

~6 

->—*- 
10 20 30 40 

TIME -  MILLISECONDS 

50 

\ 
\ 

\ 

C   * 0.2 

\ K = 10,500   lb /in 

/ 
/K = 7000 lb/in 

/ / 
/ / 

/ / 
/ / 

/ / 
/   / 

■ *'     K = 3500 lb/in 

\ 

\ 
\ 

X 

>s 

• ^  K = 0 lb/in 

Fig.   5.7    Spring Constant Effect  of Tire on Frame 
Displacement. 

34 



i ql4< WHEEL) 

-i 

\ 

to 
I- % 

vv 

w 
-2 h 

10 
X .4. 

20 SO 40 

TIME   - MILLISECONDS 

50 

-S 

I 
-4 

-5 

-6 

e s 0.2 

x 

/ 

K »10,500 lb/in 

K * 7000 lb/ in 

y 

K ■ 3500   lb/in 

**<* — ■—"■"' 

-.^   K « 0 Ife/i« 

Pig.  5.8    Spring Constant Effect of Tire on Wheel 
Displacement» 

35 



14.ü 

i 

i 100 

« -2 

ü. 

2 s 
-•  is 

it {FRAME) 

C   « 0.2 

WHEEL) 

•000        10,000 15,000       to, 000 

TINE SWtlHg CONSTANT«  - li/l* 

. K 
28,000 

WHEEL) 
e * 0.2 

s I   -' q, ( FRAME ) 

'ig. 5.9    Spring Constant Effect of Tire on Maximum 
Displacements and Accelerations. 

36 

» - i '!■ inii 



f—- 

-I 

\ 
\ 
\ 
\ 
\ 

W    \ 

V) 

I o z 

UJ 

i 
ö 

-21 

-3 

-4 

-5 

-6 

10 20 30 

TIME   - MILLISECONDS 

\ 

K s 7000 lb /in 

V 
fc 

\ 
^ 

\\\ w \ 

Vx- \ \    - — 
\ s 
\       N 

N    ^ ^. \ 
N 

N 

40 50 

C = 0.6 

C =0.2 
/ 

C = 0.0 
/ / 

/ / 
/ 

Fig. 5.10  Internal Damping Effect of Tire on Frame 
Displacement. 

37 



T* 

0 

u»   - I 
I o 

x -2 
1 
Hi 

% 

5 -3 

1» 

\ I 
* 

- 4  ' 

\\\ 

\\ \ 
\ 

i i i 
10 20 30 

TIME   - MILLISECONDS 

K= 7000  lb/in 

v\ "V 
C = 0.6 

\ s 
\ _ 

40 

y 

C= 0.2 

C cO 

/ 
/' 

/ 
/ 

s 

50 

Fig. 5,, 11 Internal Damping Effect of Tire on Wheel 
Displacement. 

38 



L q.tl 

i   200 
z 
o 
g 
o: 
UJ 
-I 
UJ 

8   loo 
< 

</> 
UJ 
I 
c> 
z £     -2 

Z 
UJ 
2 
UJ 
o 
< -4 

q, (FRAME 

_•«;_  

q24l WHEEL ) 

0.2 

K =   7000. lb / in 

c 
-A—•* 

0.4 0.6 

DAMPING   RATIO 

0 .8 1.0 

q.4 (WHEEL) K s 7000  lb/in 

q,   (   FRAME) 

Pig.   5.12    Internal Damping Effect  of Tire on Maximum 
Displacements and Accelerations. 

39 



wheels have 
is the reason 
tires. The 
show a ly sig- 
the damping 

It is also seen in Figs. 5.9 and 5.12 that the 
less displacement than the vehicle body.  This 
that fewer cushion pads are required under the 
peak acceleration of the vehicle body does not 
nificant variations as the spring constant and 
ratio of the tires vary in the range of this investigation. 
5.  The effect of Engine Pupports on the Behavior of Engine 

The idealized engine supporting arrangement is shown 
in Fig. 2.2.  Computational results indicate that the values 
of the spring constant K and damping ratio C in Fig. 2.2 affect 
neither the peak accelerations nor the maximum displacements 
at any point :n the vehicle except the engine itse.i-r during 
the period of impact.  Figs. 5.13 through 5.16 show the effects 
of the elastic stiffness and internal damping of engine supports 
on the dynamic responses of the engine.  As in the case of 
the tire, in general, the larger the spring constant and inter- 
nal damping of the supports, the smaller the engine relative 
displacement to the truck frame. 

The peak acceleration of the engine is not influenced 
much by the spring constu.it of the supports but it decreases 
with an increase in internal damping of the support. 

EXPERIMENTAL INVESTIGATION ■- M-37 TRUCK DROP TEST 
To obtain some experimental data for comparison with 

the computed results as described in the previous chapters, 
three drops of the M-37, 3/4 ton truck with a 1500 lb. simu- 
lated load of sandbags have been made from a drop height of 
10 ft., and at a design acceleration of 17.5 g. 

The cushioning system used for all drops is shown 
in Fig. 6.1.  Typical design calculations for such cushion- 
ing systems are shown in the Appendix.  The cushioning mater- 
ial used throughout this series was 80-0-1/2 paper honeycomb 
with a characteristic stress-strain curve as shown in Fig. 6.2 
and an average crushing stress of 6400 psf.  The truck was 
rigged for drop by attaching lifting plates and shackles to 
each of the wheels.  The entire rigging is she .m in Fig. 6.3. 

Accelerations are measured wich fluid damped resistance 
type accelerometers.  Engine displacements relative to the 
truck frame are measured with slide-wire type transducers. 
A special deflection gage shown in Fig. 6.4 is used to measure 
the displacements at other positions on the vehicle body. 
Accelerometers and displacement gages were mounted on the 
vehicle in the following positions: 

Drop No. 1  (Series No. M-37-17) 
Accelerometers at 

Engine front  (Joint No. 23) 
Thin plate above the winch  (Joint No. 21) 
Rear bumper  (Joint No. 36) 
Right rear wheel  (Joint No. 33) 
Right middle frame  (Joint No. 6) 

Displacement gages at 
Engine front - Relative to frame (Joint No. 23 

relative to No. 3) 
Rear frame - Relative to wheel (Joint No. 18 

relative to No. 35) 
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Drop No. 2  (Series No. M-37-18) 
Accelerometers at 

Frame (Joint No. 2) 
Transmission (Joint No. 28) 
Rear Differentia1 (Joint No. 34) 

Displacement gages at 
Front frame (Joint No. 3) 
Rear frame (Joint No. 18) 
Transfer case (Joint No. 30) 
Engine rear - Relative to frame (Joint No. 3 8 

Relative to No. 4) 
Drop No. 3  (Series No. M-37-lb,) 

Accelerometers at 
Engine front and rear (Joints No. 23 and No. 38) 
Truck bed 

Displacement gages at 
Front frame (Joint No. 1) 
Middle frame (Joint No. 5) 
Left wneel (Joint No. 35) 

All acceleration and displacement data were recorded by a 
magnetic tape system and re-recorded from the tape to a 
visible record on paper using a Visicorder oscillograph. 

In addition to acceleration and displacement records, 
high-speed motion pictures were taken for all drops.  These 
pictures were studied to determine the gross ~spects of vehi- 
cle motion during impact. 

Numerical values used in the computation for the M-37 
truck model are as follows: 

Drop height 10 ft. (or impact velocity 302 in/sec.) 
Design acceleration level - 17.5 g. 
Impact duration = 45.2 milliseconds 
Average crushing stress of paper honeycomb = 6400 psf. 
Dimensions and arrangement of cushioning pads (see Fig. 

6.1) 
Applied cushioning forces: 

Concentrated forces - 
Wheels and tires each  F = 350 x 18.5 = 6480 lb. 
Differentials each    F™d = Frd = 480 x 

18.5= 

8890 lb. 
Transmission   FTr = 200 x 18.5 = 3700 lb. 

Gear Reducer   F  = 300 x 18.5 = 5550 lb gr 

Uniform distributed forces: 
At pad A,, F  = 20600/(2 x 23) = 448 lb/in. 
At pad A   ,   FZ,   =   13900/29 = 475 lb/in. 
At pad AA,   F4 = 13100/19 = 697 lb/in. 
(See Appendix B) 

The weights of some of the vehicle components were obtained 
from the M-37 technical  manual7 and others were assumed.  These 
weights are listed as follows: 

Total truck weight = 5,390 lb. 
Load weight       = 1,500 lb. 

Discrete masses: 

4 9 



Engine 600 lb. 
Wheels and tires 

(each;  350 lb. 
Transmission       200 lb. 
Gear Reducer       3uu lb. 
Differentials (each)480 lb. 

Uniformly distributed masses: 
All weights not included in discrete masses distri- 
buted as follows: 

Longitudinal frame members: 
Joint No. 1 to No. 6, and No. 11 to No. 16, 

- 570/2 x 97 = 2.94 lb/in. 
Joint No. 6 to No. 10, and No. 16 to No. 20 

= 2560/2 x 89 = 14.38 lb/in. 
Transverse frame members: 

Joint No. 2 - No. 12 (Winch) = 10 lb./in. 
■Joint No. 3 - No. 13        =2.3 lb/in. 
Joint No. 5 - No. 15        =1.2 lb/in. 
Joint No. 6 - No. 16        =0.8 lb/in. 
Joint No. 10 - No. 20       =0.8 lb/in. 

Except for Joint 2 to Joint 12 these weights were arbi- 
trarily assigned.  They are approximately proportioned to the 
member cross section.  All member properties, calculated using 
truck frame cross-sectional dimensions only, are listed in 
Table 6.1.  The tire spring constants are assumed to be 7000 lb/ 
in and the damping ratio 0.2.  The spring constants of the 
engine supports are 12,000 lb/in at front and 40,000 lb/in at 
rear and the damping ratio is 0.6.  The structural damping 
ratio is assumed to Ke 0.009.  Joint coordinates in an x-y sys- 
tem with the origin at the rront of the truck as shown in Fig. 2.1 
are given in Table 6.2. 

The measured results (solid line) are plotted with the 
calculated results (dotted line) in Figs. 6.5 to 6.20.  These 
results are discussed in the next chapter. 
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Member Cross Section 

i _ 

Moment of Polar Moment Torsional 
Area Inertia of Inertia Constant 

Start  En^ 
Joint - Joint 

■ 2 A -• in I  - in4 
Y 

. 4 I  - in 
X 

■ 4 J - in No.    No. 

1-6 1.6 4.29 4.39 0.021 

6-10 2.0 10.8 11.0 0.027 

11 - 16 1.6 4.29 4.39 0.021 

16 - 20 2.0 10.8 11.0 0.021 

2-12 100.0 100.0 20.0 20.0 

2-21 0.3 0.01 0.5 0.01 

21 - 12 0.3 0.01 0.5 0.01 

3 - 13 3.4 4.47 12.57 10.6 

24 - 26 40.0 30.0 60,0 GO.O 

33 - 35 40.0 30.0 60.0 60.0 

4 - 14 100.0 100.0 100.0 100.0 

27 - 28 100.0 100.0 100.0 100.0 

5 - 15 1.3 0.383 1.4 0.017 

6 - 16 1.3 0.383 1.4 0 .017 

7-17 2.0 6.3 8.0 14.4 

9 - 19 1.8 2.5 5.2 0.024 

10 - 20 1.8 2.5 5.2 0.024 

3-4 

13 - 14 

7-9 2.0 0.167 0.92 0 917 

l"7 - 19 

Table 6.1 Member Properties 



wm 

Joint Coordinates Joint 
No. 

Coordinates 
No. X-in, Y-in X -in. Y-in. 

1 0 15.0 21 6.0 0 

2 6.0 15.0 22 17.0 0 

3 17.0 15.0 23 17.0 0 

4 51.0 15.0 24 34.0 15.0 

5 87.0 18.6 25 34.0 5.0 

6 97.0 19.0 26 34.0 -15.0 

7 117.5 .19.0 27 5x.O 0 

8 147.5 19.0 28 66.0 0 

9 177.5 19.0 29 87.0 6.0 

^0 186.0 19.0 30 87.0 -6.0 

11 0 -15.0 31 97.0 6.0 

i2 6.0 -15.0 32 97.0 -6.0 

13 17.0 -15.0 33 147.5 19.0 

14 51.0 -15.0 34 147.5 5.0 

15 87.0 -18.6 35 147.5 -19.0 

16 97.0 -19.0 36 186.0 12.0 

17 117.5 -19.0 37 186.0 -12.0 

18 147 .5 -19.0 38 51,0 15.0 

19 177.5 -19.0 39 51.0 -15.0 

20 186.0 -19.0 

Table 6.2  Joint Coordinates 
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DISCUSSION 
L.  Mathematical Model 

The analysis of the complex structure presented in 
this work is based on the possibility of modeling the struc- 
ture by a lumped-parameter system.  Modeling of the structure 
is somewhat arbitrary.  In general, however, the following 
two faccors need to be carefully considered. 

(a) Select and sort out the components in the struc- 
ture whose motion is to be studied. It is impractical to try 
to include all the components of the structure in a model. 
It is necessary for the designer to select the components 
whose motions are considered to be most important.  For example, 
in an airdrop of a vehicle, the motion of the engine block, 
transmission, differentials, and wheels may be the important 
parameters for the proper design of a cushioning system to 
protect the vehicle.  Consequently the model should be so 
designed as to represent the motions of these components as 
realistically as possible.  On the other hand, if the task is 
to design a cushioning system for the protection of a car 
radio, a completely different model will be needed.  The mode] 
shown in Fig. 2.1 is developed for the purpose of designing 
a cushioning system for the protection of the vehicle during 
airdrop.  The weights of the engine, transmission, transfer 
care, differentials, and wheels are modeled by concentrated 
masses at proper nodal points.  The winch and the frame of 
the truck were replaced by two longitudinal beams coupled 
together by eight transverse beams.  The weight of the truck 
frame and the load are further assumed to be uniformly dis- 
tributed along the two longitudinal beams.  The stiffnesses 
of all the connecting members in Fig. 2.1 are calculated on 
a static basis using the dimensions of the truck members.  It 
should be noted that Fig. 2.1 is a particular model, many 
other models may be developed for the same purpose.  The suita- 
bility of the present model will be discussed in the section 
where the comparison is made between the measured and computed 
results. 

(b) Estimate the motion of the structure.  In model- 
ing a complex structure, information on the environment that 
the structure is likely to be subjected to is also very impor- 
tant.  In airdrop of a vehicle, the whole structure is expected 
to land with an impact velocity of approximately 30 fps, and 
the rise time of the impulse imparted to the vehicle Is of the 
order of milliseconds.  These are important data.  A continuous 
elastic structure, such as a vehicle, has in principle an 
infinite number of modes of vibration that can be excited.  A 
lumped parameter system can be excited in only as many modes 
as it has degrees of freedom.  Therefore a lumped parameter 
system can not be expected to accurately represent a continuous 
structure under conditions in which the higher modes of the 
structure might be excited.  The long rise cime of the impulse 
applied to the vehicle means that the higher modes will not 
be excited and the lumped parameter model can therefore pro- 
vide a suitable approximation to the motion of the prototype 
system.  On the other hand, an input force with a very short 
rise time would tend to excite higher modes of vibration.  As 
a consequence a lumped parameter model would not be able to 
represent the motion of the prototype structure. 
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In the present work, the whole truck body is modeled 
by a lumped parameter system with 39 nodal points.  Since 
there are six degrees of freedom at each nodal point, the 
total number of degrees of freedom of the system is 234. 
Only a normal impact (in the vertical direction) is considered 
here, hence the vertical displacements of the nodal points 
are of the main concern.  The six displacements possible at 
each nodal point consist of three translational motions and 
uhree rotational motions.  Two of the translational displace- 
ments and one of the rotational displacements can be disre- 
garded.  Thus the total number of degrees of freedom are 
reduced to 117.  This number can be further reduced to 39 
by eliminating the remaining two rotational components at 
the nodal points by the static condensation process. 

In the numerical computations, the element mass matrix 
and stiffness matrix are calculated according to equations 
(3.19) and (3.29) respectively.  The element end forces are 
calculated by equations (3.31) and (3.32).  Only concentrated 
forces and uniformly distributed forces are considered in the 
analysis.  The direct stiffness method is used to formulate 
the system mass matrix and stiffness matrix.  The structural 
damping matrix is treated as a linear combination of the mass 
and stiffness matrices of the system.  The amount of computer 
storage required by the program for this analysis is 30,000 
words.  For the CDC 6CGJ computer, the formulation of the 
equations of motion requires three minutes.  The numerical 
integrations by the Runge-Kutta method require 1.5 minutes 
for an impact '"u.vation of 45 milliseconds, using an inte- 
gration step size of 0.1 milliseconds. 

2.  Comparison of Measured and Computed Results 
From Fig. 6.5 to 6.20, it may be seen that agreement 

between measured and computed results is, in general, not 
very good, so far as the shapes of the curves are concerned. 
However, the agreement in the amplitudes of displacements and 
accelerations, with the exception of the accelerations of 
wheels and differential is quite good.  The maximum discre- 
pancy between measured and computed displacements occurred 
at the front uram  and is 18%.  The maximum discrepancy 
between m3asured ^nd compu. ' accelerations at the engine 
is 34%.  For the acceleration OJ- the differential the maxi- 
mum discrepancy is 70%, and for the wneels the maximum dis- 
crepancy is 50%.  The displacements are believed to be more 
significant as indicators of possible damage, than the acceler- 
ations.  Hence it is encouraging to find, in this example, 
that the displacements can be computed with the degree of 
success indicated.  The actual shapes of the displacement and 
acceleration curves are probably of little consequence except 
for the indications they give of the adequacy of the lumped- 
parameter model. 

The agreei.    between computed and measured displace- 
ments and accelerations may be improved in several ways, 
namely: 
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(a) Change ^he centroid position of the impact 
forcing function by adjustments in the cusr jn- 
ing areas. 

(b) Adjust the structural damping ratio. 
(c) Adjust the spring constants and damping ratios 

for a more accurate representation of rubber 
properties. 

(d) Replace the constant cushioning force applied 
to the wheel by a linearly varying force. 

Finally, it should be noted that computed and measured 
results should not be expected to agree in all details since 
the model on which computations are based is only an approxi- 
mation of the real structure, and the initial conditions used 
for computations are idealized approximations to the initial 
conditions that actually occurred in the experiments.  In 
general, in lumped-parameter modeling, the parameters can be 
adjusted to provide agreement between computed frequencies 
and corresponding frequencies in the prototype structure, or 
the adjustment can be made so amplitudes of displacements and 
accelerations at selected points agree between model and pro- 
totype.  However, agreement between frequencies, and between 
amplitudes cannot both be achieved simultaneously.  A decision 
must be made before parameter values are assigned, as to what 
quantities are to be matched. 

CONCLUSIONS 
From the previous discussions the following conclusions 

are believed to be justified. 
a. Displacements, velocities and accelerations at 

various points of a complex mechanical structure can be satis- 
factorily predicted using a lumped parameter mathematical 
model and a numerical computation procedure, 

b. The dynamic response of a complex structure when 
properly cushioned and subjected to an impact loading is not 
sensitive to the elastic properties of the structure.  Thus 
the elastic coupling between masses in the lumped parameter 
model need not be known to any great degree of precision. 

c. Structural damping dissipates a considerable 
amount of energy, and as a consequence decreases the displace- 
ments.  However, the peak accelerations at various points in 
the structure are affected very little by the structural 
damping. 

d. The forcing function is the major factor which 
affects the dynamic response of the system.  It must be repre- 
sented as exactly as possible.  This means that the cushioning 
characteristics are very important. 

e. The procedure for handling the engine and transfer 
case in the analysis can be applied to any rigid discrete mass 
which cannot be included in the elastic properties of the struc- 
ture . 

f. The developed computer program can be employed to 
predict the dynamic response of any complex mechanical struc- 
ture if the structure can be represented by a grid type model. 
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This program can be used to determine where large relative 
deflections may be expected to occur if an existing struc- 
ture is subjected to an airdrop impact, or to pinpoint trou- 
ble points, so far as airdrop is concerned, in vehicles 
still in the design stage. 

RECOMMENDATIONS FOR FURTHER STUDIES 
a. Only vertical motion was considered in this study. 

This is an oversimplification of the real situation because 
non-vertical and ..on-planar motion is always possible due to 
wind drift and system oscillation in the airdrop process,. 
The effects on the dynamic response r^ a structure due to 
non-vertical and non-plana>" impact   juld be investigated. 
This can be done by introducing si>  agrees of freedom at 
each nodal point of the lumped parameter model in the mathe- 
matical analysis.  However, shearing properties of cushioning 
materials will be needed. 

b. For the purpose of structural design, the computa- 
tion of stresses in all members should be included in the com- 
puter program.  It may be necessary to consider the behavior 
of elast'i-plastic structural elements when subjected to high 
velocity impact.  However, the step-by-step numerical integra- 
tion method used in this study can be modified to include the 
yield conditions of the element. 
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LIST OF SYMBOLS 

a Transformation matrix relating W and U. 

A Matrix relating stress and strain  S = A C 

a-, , a~ Unit vectors 

b Matrix relating strain and displacement  e = b U 

B Transformation matrix  q = B U 

c Dampinc, matrix in u coordinates 

C Damping matrix in q coordinates 

c A damping coefficient 

c, _ -, Constants 

D Damping force matrix  D = -C q_ 

?1' * d^. Position vectors 

e Strain matrix 

e. Bending strain 

e. Torsional strain 

F Force 

F(t) Cushion force matrix 

f Equivalent concentrated forces acting at element ends 
due to distributed forces. 

f* Force 'rector in global coordinates 

G Shear Modulus 

I Torsional inertia x 
I Rotatory inertia 
+ ■+ -+ 1,3, k Unit vectors along datum coordinates 

J Torsional constant (polar moment of inertia) 

k Element stiffness matrix in u coordinates 

k* Element stiffness matrix transformed to global coordinates 

K Stiffness matrix 

K A spring constant 

L Element length 

m Element m.^s matrix in u coordinates 

m* Element mass matrix transformed to global coordinates 

M Mass matrix 

M Moment 

c(x t) External force matrix, acting as an element 

g. Joint coordinates 
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Q.      Displacements in direction of datum coordinates X,Y,Z 

r = X/L Nondimensional parameter 

s = Y/L Nondimensional parameter 

S      Stress matrix 

S,      Bending moment 

S      Twisting moment 

t = Z/L Nondimensional parameter 

T      Kinetic energy 

U j_     Element displacements referred to local coordinates 
x,y,z 

U Displacement matrix 

V Volume, strain energy 

W. Displacements referred to element coordinates x,y,z 

W Work 
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APPENDIX A 

Flow Chart and Computer Program 
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PH       »     ■   '    '     I1" 

START 

INPUT      JOINT  COORDINATES 
MEMBER   PROPERTIES 
MASS   DISTRIBUTIONS 
APPLIED   FORCES 

GENERATE   STRUCTURAL   STIFFNESS  ,   MASS    AND 

FORCE   MATRICES 

STATIC   CONDENSATION   PROCESS 

INPUT   DAMPING   COEFFICIENTS 
IMPULSE   SHAPE 
INITIAL   CONDITIONS 

COMPUTED   DISPLACEMENTS ,  VELOCITIES  , ANC 

ACCELERATIONS    BY  RUNGE - KUTTA    METHOD 

< 

LAST   LOADING   CONDI1 ION   FOR    THIS 

STRUCTURE    ? 

I     VPS 
± Y=:S 

END 

NO 

Fig.  A.l    Hain Program Plow Chart, 
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c 
c 
c 

c 
c 
c 
c 
c 
c 
c 

c 
c 

NUMERICAL SOLUTION OF A LUMPED« 
AIRDROPPED STRUCTURES bv USING 
CDC 6600 , FORTRAN IV» STORAGE 

PARAMETER MODEL FOR 
RUNJGE-KUTTA METHOD, 
REQUIRED 3000P WORD? 

PROGRAM  ARDROP (INPUT,OUTPUT) 
COMMON  N,S(120,120),SMK(40,/<0) 
COMMON  TM(20),CP(20)rSF(l?0),wG(120).LNl#LN2,SLOP 
COMMON  NDP,JP1(52),JP2(50:,,DP(50) 
COMMOtl     GAMA,SK,BETA   ,MTF 
DIMENSION  W(6,6),RCfc,6),WM(6),WFC6),FD(6),EM(6),AB(6), 

1 DAC6,6),DAT(6,6),t0C6,6),Af;6,6),B(6,6),D(6,6), 
2 SK(l20),SM(120),X<a0),Y(ft0},MR(120),TR(120),NR(120>, 
3 .'1Vtl20)#MO(120J»NO(120),YJ(80),OF{5#80) #SF0(i20) 
U   , EFC6),SO(120) 
PRINT 6001 

► READ IN  JNT 
MT 

10 

C 
C 
C 
c 
C 

15 
20 

C • 
c 
c 
c 

■ NO. 
»NO. 

LAGMsNO» 

IOR 

JOINTS 
ELEMENTS 
DISCRETE MASSES 

POINTS MORE THAN TWO 
B-lf ELIMINATING ALL ROTATIONAL COORDINATES 

OF 
OF 
OF SUPPORTED BY 

a 0/ NO REDUCING IN 
«NO, OF COORDINATES 

READ   5040, JNT,MT,LAGM,IQR 
PRINT  5040, JNT,MT,LAGM#II3R 
READ IM  EBMODULUS OF ELASTICITY 

G«SHEAR MODULUS 
READ 57110, E,G 
PRINT 5010,E,G 
IR=3*JNT 

$  SF(I)»0, 
SMCI330, 
$   S(I,J)B0. 

COORDINATES 
WILL BE ELIMINATED 

DO ltf 1=1,IR 
SD(Ijsp,0  $ 
DO 10 J»i#IR 
CONTINUE 

DO 20 1=2.JNT 

$  M6(I)a0.  $  SKCI)»0. 

— READ IN J   8 
XU), OF NOPE J 

JOINT NUMBER 
Y(J)sX,Y COORD 

WM(l),WM(2),WM(3)aMASS,MASS MOMENT 
ABOUT X AND Y RESPECTIVELY AT 

WFC!)«FORCES APPLIED AT NODE J 
READ 5020, J,X(j;,YCJ:,(WM(K),Kal,3),(WF(K),K«l,3) 
PRIMT 5020,J,X(J)#Y(J.,(WM<K),K«1,3)#(WF(K),K«1,3) 
Kl=J*3-2  S  WG(Kl)aWG(Kl)-NM(l)*386,4 
DO 15 Kal,3  S  SF(Kt)«SF(Kl)*WF(K)  * 
KlaKl+1 
CONTINUE 
CONTINUE 

DO 220  IMB«1,MT 
READ IN  NJ1,NJ2SJ0INT NUMBER AT ELEMENT ENDS 

MRCDsl, RELEASE THE MEMBER CONSTRAINT 
MEMBER COORD. U(I) 

= 0,NO MEMBER CONSTRAINT IS RFLEASED IN 

OF INERTIA 
MODE J 

8M(Kl)cSM(Kl)<>WK(K) 

IN  THE 

U(I) 
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c 
c 
c 
c 
c 
c 

c 

K F • I' , N 0 ~~ E M H F.: k F 0 R C f. S 
ct, UN!FOR~ MEM8fR FOPCES 
:2, CONCENTRATED FORCf AT TH€ ~fMSE~ 

~0~ MA~S PER UNr1 LENGTH OF T~E Mf~bER 
!!.1.,.\T.,:',J~C·.?-:: Arr:: .. \,,"'O~!:~J't OF UJf.~T!.4, POL4R f<l!.:·iF.NT 

OF TNERTIA ANO TORSIONAL CCHSTANT OF 
THE MEM8ER R~,PECTIVELY 

F' D ~. lJ :-J H" 0 P !1 F 0 R C F:. F 0 U ) F ~ 0 ~ F D C 2 ) T I) F 0 C3 ) , 0 P 

C CONCENTRATED FORCE ~T FDC2' 
READ 5030, NJ1,NJ2,(MRCI),Iot,b),KF,AI,GJ,RO,(FDCI),tct,3) 

26 
30 
c 

11 

c 

60 

READ 501~rXJ,AA 
PRI~T 5~!~, N.Jt,NJ2,(MR(I),I~t,b),KF,AI,GJ,RO,CFO(I),I~1.3) 
DR!~T 5~70,XJ,AA 

X1:X(NJ2)•XCNJ!) $ Yl=VCNJ?1•VCNJ1) 
~~~5QRT(X\~X191\•Yll 

Ir~SL) 25~25,30 

K1=NJ1*3•2 $ K2sNJ2*3•2 S SKCK1 ) •SK(~S ) +AI 
S~(K2 ) 2SKCK2) +AI 
S(K1,K1l•SKCK1) $ S(K2,K2)•5K(~2l 
IFCK1,GT.K2) GO TO 2b 
SCK1,K2):5CK1,K2)•AI ! GO TO 220 
S(K2,Kll=SCK2,K1)• AI S GO TO 220 
G1=X1/SL ~ G2=Y1/SL $ CS•E*AI/SL**l 
*R* T~ANSFCRMAT!ON MATRIX (DIRECTION COSINES) *** 
DO 11 J:t,~ $ DO 11 J21,6 
OA(l,J)oP!•"' 
DA ( 1, 1) a 1 • e 
0A(3,2):s•G2 
0~(5,S):.G1 
OA(b,6):G1 

! 0A(2,2)=Gt 
$ 0AC'J,3):G1 
$ DA(5,6):G2 

s o•c2,3)•G2 
S OAC4 1 4):st,A 
S 0A(6,5-)t:•G2 

ST!FF~JESS *** *'1\* ELE~ENT 
~(1,1)=:12.~ 
,o~(l.!,1)u•12, 

~C2,2):G•GJ/CSL*CS) 
W(LI,2):0. 
W(3,3)a:LI,•SL**2 
~Cb,3l:2,•SL**2 
111Co,4):6,•SL 
~'~Cb,o):4,•SL**2 

$ W(2,1)a0, 
$ W(5,1)•0, 

S W(3,2)•0, 

S W(3,1)••6,0•SL 
s·wc6,1)••6,0•SL 

! W(5,2)••W(2,2) S W(6,2)•0, 
S ~(4,3)•6"*8L S W(5,3)•0, 

$ W(4,4)•12, S W(5,4)•0, 
· $ W(5,5)sWC2,2) S WC6,5)•0, 

DO Q0 J:1,6 S DO 40 I•J,6 S W(I,J)•CS•WCI,J) 
W(J,!)cW(I 1 J) 
IFCRO,LE,0,) GO TO 70 
CM:RO*SL/a20, $ 00 60 !•1,b S DO 60 J•t,6 · 
R(!,J):"• 
~M(l):R0*386,U S WMC2)a0, $ WMC3)•SL 
CALL ENDFOC (EM, t,WM,SL) 
A2:AI/AA S A1sA0/SL J A2•A1/SL S AJ•XJ/AA 
S2:~:SL*SL 
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r ••• ;Lrur~' ~-~! •&TIIt ••• 
~r:.: ~t1CL,+~~~.•A2 • ~(1,1l••12.•,L•4~,•AI 
~~~ ,u•y ~a.-~~u.•&2 t •ct,~>•t1,•~L•41.••t 
~C?,;:~l~'.•4J I Q(?,~1•1~ 1 •tJ 
~~ 1 .3'~a.·~l·~~ •• ,, t ~r1,•1••l1.•~L•ol.••t 
~(},~j~-1.•5?·1~.··, 

~r~.~l~1~~.·~,~.••2 t •c•,~l•l2.•,L•4~.••t 
~(~.~:~~~~ ••• J J ~(~,~,····~l·~~.··· 
~)~,.,!Ill!.~ ! 00 1" J•!,#l 
.-c:,..;,.!;l{r,J)•C"' 

rs ~{J,l)~vrr.J) 
i ~ ::'o.,, •1 ~vt. 

P"(-<~.LC;"j GO 1'0 ep 
C•LL f~OFCCCf,,(F,,O,!Ll 

Be oo 1~r r•t,~ 

q~ 

110 

120 
121 

110 

205 

?.20 

r~(~~(!~.L~,0) GO TO 1•• S ~•t 
IF(W(I,I).!~.~.) '0 TO t•t 
oo 110 J•1,~ s NeN+t s I'CJ.fQ, I) ;o TO •• 
TR( ~)e•W(Z,J)I~CI,l) S ~AC~)•J I ;o TO ttl 
......... 1 
C:JP~o'T'lllj:.J~ 

CALL CON~S' (w,~,NR,5,t,TD) 
IF((F) 130,t50,tle 
DO l21 ~c\,M I ~1-~A(~) 
EFC~l)•fF(Kt)+fr(t)•T~(~) 
fF(l)e~. 

CO~~!~UE ! I~CRO,LE,I) GO TO t•a 
CaLL CON~8~ (Q,e,NR,S,I,TR) 
DO 131 Kat,~ S Kt•NR(K) 
E~CK1)~f~(~1)+fM(I)•T~CK) 
EM(I)•0, 
COIIITI~LJE 

~1•~J1•l•3 S ~2•NJ2•l•l I CO 170 tat,} I J•t+J 
~~CI>•Kl+I I MR(J)•K2+I 
CO~TI~Uf I CALL T-A~S'COA,OAT,.,., 
CALL ~MULC~,ot,F.o,.,.,., s CALL M~ULCOAT,ro.w,•,•·•l 
CALL AOOMS(w,.,S,SK,IR,"R't) 
IFC~F,Lf,!) GO TO 281 
CALL M~Ll(OAT,fF,A8,~) $ 00 198 l•t·• s K•M•(t) 
SF(~)•SF(K)+Aa(I) 
lFC~D.LE.0) GO TO 220 
CALL ~uL1COAT,fM,l8,.) 

00 Zil!5 I•l,t. S K••.Ut(l) ·1 Wfi(K)•IIIG(K)•AIC!) 
CONTl"--Uf 
C•LL M~ULCR,oA,Eo,.,&.•> • CALL "MULCOAT,ro,•,•·•·•, 
CAL~ AOOMS(R,.,S,SM,IR,MR,l) 
CO~>~TI~UE 

IJ•0 S r•ae 1 00 2't I•t 1 tR I lK•tK•l 
!P( 5~Cl>.Gr,a,) GO TO 248 
IK•IK•t S IJ•IJ+S I MY(!J)•t S GO TO ZSI 
t.~Q(II(.)ai 

CONTI ·~t.JE 

1 
;f 
~~: 

.~J 

~i 
'f~ 

'19 ·~ 
E EST AVA~LABLE COPY:! 

. ;ii 
:\ia 
. ~~~ 



c 
.• 

c 

285 

330 

' .. · .... 

~A~~ qF~n~~ C5,~~.IR,MV,!J, 2) 
:,.··~!- RE:~o;: C sr -!q,"'V,!J) S CALL ~f~i'l~ fwG,I~,MV,tJ) 
•...•.• T} 

L'·:r'.C". ' ',i,''""C·Rr.~ OF -~ D!SCCJfH MA'S 
L~~ ~UST BE :qFAT~Q T~A~ TW01 

"'o , _: ~ •! :-:! :-· '- .J v; E ~ "l;; 9 'J'"' P 0 Q T -~ 

J:C,Y_-~: Ct~<~l-iCID Cf' "t!iS 
_'(L 'I 'II ~·.:-. ~ ·~ i•l ~-. =<EES ~fT"'Et~ TI-!E PQI~CIPlL 

A'f~':' <;J:. T"'E. ·~! P-0 :t:•Ht3 
~F(l),WF(?),WC(])a ~PLIED ~OM~~TS ASO~T X1 V A~f~ 

~ND FO~Cf I~ Z~)!RECTION RESPECTIVELY 
Q(!,l;,q(2,2},R(l,~,~~A5S MOMENTS OF I~ERTI4 A~O~T 

,·,v n:::~ .\"10 ••.p.:: ~ESP~CT!VELY 
RE'2 ;~~e,~~s.~M~(Jl,J•l,LHS~ 
PRI~T S0~0,L~S,tMRCJ),J~l,L~S) 
~EAD 50~2,XC,YC,XA,YA,(WF(J),J~t,3),(R(J,J),J•1,3) 
PR!~T 50a2,XC,VC,XA,YA 1 (W~(J),J:1,3),(R(J,J),Jct,3) 
XA:X~*3,141~/1B0. ~ YA•VA•3.1416/t~0. 
IFCL~S,LE.3) r:o r0 310 

~~~L~S-3 S Kt•MR(1) S K2•MRC2) S Kl•MPC3) 
A1:X(~2)•X(~lJ S A2•YCK2l•V(K1) S B1•X(K3)•X(K1) 
62~r'l'C~3)•YCf<l) S · CC•A1*B2•42•B1 
DO 2~5 J~1,3 ! ~!2MR(J)*3•2 
NR(J)sM4CH(N~rtR,KI) 

DO 3e~ Ja4,LvS $ J1•J•3 $ KKcMQ(J) S C1•XCKK)•X(K1) 
C2•~(KK)•Y(k1) $ AA•Rt•C2•B2•C1 ! BB•A1•C2•A2*C1 
!R(~l=CAA•BB•::;;cc S TR(2)=•AA/CC S TR(l)•BB/CC 

~V(Jl)cMAC~CN~,IR,kK) S LMK•HV(J1) 
CALL CONMSCS,SK,IR,NR,3,LMK,TR,1) 
CALL CONM5\S,S~,IR,NR,J,LMK,TR,2) 
CALL CO~F(!F,I~,NR,3,L~K,TR) S CALL CO~~CWG,IR,NR,3 1 LM~,TR) 
CONTINUE 
CALL REMOMSCS,SK,IR,MV,MN,1) 
CALL RE~OM!{S,S~,IR,~V,~N,2) 

.: .• :.. ~.. ~ E ... Q F c 3 ~ I I ~ I M v , H ~J) ' c A L. L R E ~ r, F ( w G , I R , ~ v I M N ) 
CA~L SE~N(N~,!R,MV,MN) 
CO'-.ITit.JUE 
A(1,1lcC05(XA) $ A(1,2)•StNCXA) S AC2,1)•rCS(YA) 
AC2,2)=SINCYA) $ 00 320 J•1,3 S ~•MR(J) 
!)(J,1)zXOO•XC 
J(J,2):::Ycn-vc 
Dr 330 J•1r2 ! CO 31~ K•1,3 
~(( 1 J)aA(J 1 1)*D(~,2l•A(J,2)*DC~,1) 
OJ :SU0 Ka1,l 
B(K,J)st, 

··!''· 

.~~ 

~r;~~~ 

J',;,l' 



35feJ 
360 

370 

380 
385 

388 
C -« 
C 

400 

435 
aas 

410 

430 

450 
470 

510 

CALL 
CALw 
CALL 
E F c n 
CALL 
3D 3 7 
K IB^R 

COMI 
MVCII 
* G t J 3 
COMI 
CALL 
COKTI 
COMI 
IFCIQ 
COM"! 
IF IG 
READ 
RE AT 
PRINT 
GO TO 
CONT 
iQPaJ 
K2c2* 

HQ(K<? 
IQsl 
00 60 
IFCIQ 
IF(HQ 
IQBIQ 

IFCMO 

I 

*IV(B#ED,3)  S  CALL  *wut(««,ED,>i#5#5i3) 
TRAN5P{  ED#D,3»3)  S  CALL MM-L .CD,8,»,3,3,35 
MJL1 <D,*F , AB, 3) 
sR(3,3)*386,4  $  EF(?)«0,   «  FF(3)«0, 
*'. *.l CP.EF,FD,33 
<" 113 1,3 

GO TO 
S  L>3 350 J«1,IR 

(II)*3-2  f  irfNQ(J).FQ.Kl) 
NUE   S  GO TO 370 
)BJ  S  SF (J)»SF(J)*A3(II) 
«wG(J)»fD(II) 
NUE 
A[inMS(W,3,S,SM,Ii?,MV,2) 
NUE 
NUE 
R)  400,408,388 
NUE 
R GREATER THAN ZERO 
IN  MQ(I)«COORD, JO 8E ELIMINATED 

SÜUtd,       (HQ(I),I»1,IQR)   $ 
5040,   (MQ(I)fI»i,IQR) 
408 
TNUE 
NT*2  S  00 405 I«1,JNT  S  12-3*1 
I  S  K1SK2-1  $  MQ(Ki)oIl 
)«I2 
$   J130 

3 1*1,IR  '  Il«II*l  J 
.GT.IOR)  Gd TO 450 
(Ifl),NE,K )  GO TO 430 
♦1  S  GO TO 470 
(IQ) .GT.K)  GO TO 450 

IQ«1 

11*12- 

K«NQ(I) 

IF(MOdQ) .GT.K)  GO TO 45 

IQ«IQ*1  S  GO TO 410 
IFCSMCn.GT,?.)  GO TO 600 
J1«M*1  S  MV(Jl)« I 
MBp 

00 560 *1«1,IR 
IF(3K(wi),EQ,0.)  GO TO 
M3H*1 
IFfMl-Tl  s;?0.S!S.540 

31 
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. l 

', ....... 

, ... t•.;·,·" 

_ .. 
.... ,:.~' 

' ~ ' . l' 

. ' l. 

·l ~• '' :~v(5.~ 

!I & .~ 

~f)~ 

&10 
~1'S 

b!" 
beS 

. ' J 

. , :" 

.,,;,"<,./; 

\ ~ .. "" . . .. '., \ 

:,··' e-'!~ • .,75 

~ " " ' , l 
.~;-t-( 

~Q~ co·.r:·. t: 
~'~•lg•.C 

c ·-· ,. 

f'JC ,._. 

·' T 'f ! ! l l 
'),J'14~~. 

n ~c;. I~tl,I~ 

>;; f""WS "'•~•(( I) 

SI~~!P , iVG••SU"/Sl~ 

1EA) :•. "'0!.\[a L:)ACtl...~ CUf ."'U1o18fR 

· :' ~ .a "' ~ • 0 ~ \ I " t J ll S r> A N, I ~ G 5 

:iUHa5H~·UCTullo..t OAMPt-.,G "flTIO CJ' CA(TICAL V&LIJf 
~EAC ~Z~0,NCA,!,~OP,G&~& 
!iC~~A~E.Lf.~J GO TO 8~3 
P q I '\ r b :.• ~ t 
~~!~· ~:~J,~C!!f,~OP 1 ~•~1 
··~· e'ltl !•1,!~ 
Hn•~. 
xcn•e. 

&ET••GAMI/AVGW +1, I JAMA•CA~A•&V'W 
~EtJ I~ lLP~A,TE~O• 9E~I~1HG &NO £NO O' TtWE CALCULATlO~ 

>--- '; 

Q(SIII!'CTtVfLV 
DT~ f!Mf I~Tf~V&L 0' PRINT OUT 
~c•t"PiC1 VELJClTY 
!M~I):Tf~[ SIZES O' I~TfCIATtON tN RUNG!•KUTTA ~fTMOO 

BEST AVAILABLE COPY 

. ' ' . 
', ... ~'!' < \<' ~,.. ~f'l ,. ' 



READ 
PRINT 
NTTal 

«EAD 
PRINT 
READ 
SF0CI 

C 
C 
C 
CC 

C 
C 

621 

622 
625 

696 

612 

700 

710 

720 
725 

730 

READ 
PRINT 
IF(NC) 
READ 

FO 
Jl 
J2 

READ 
PRINT 
JlsJl 
JP2CI 
IF(J2 
J2=J2 
DP(I) 
SKCI) 
CONTI 
CONTI 
JNT3« 
HoEM( 
uO 61 
SF(I) 
*TF = 0 
MNF=1 
DO 70 
YJ(I) 
DO 71 
YJ(I) 
KsNQC 

DO 72 
IFCI. 
12*11 
rj(i2 

5050, ALPH 
5050,  AL 
S  ALPHA 
56)50, ^E 
5050, (E 

IN IMPULSE 
)saF(i;t 

K«NO. 
TM(J)= 
CP(J)s 

I 
5060, K,( 
5060, K,( 

P.LE.0)  G 
IN SPRING 
R REPRESEN 

JOINT NU 
JOINT NU 
RIGID SU 
6200,Jl, 
6200rJl, 

*3«2  $  J 
)80 
.LE.0 )  G 
f-3-2  S  J 
3DPC*2,*SQ 
sDK/TR(J) 
NUE 
NUE 
JNT*3  $ 

NTT) 
2 1*1,IR 
=SF0(I) 

A,TEND.DT»  Vfc 
PHA,TEND,DT, 
0BALPHA 
M(I),181,6) 
M(I),I»1,65 
SHAPE 

OF TIME STATIC 
TIME FROM IMP 

RATIO OF FORCE 
NPUT FORCE 
TM(J),CP(J),Js 
TM(J),CP(J),Js 
0 TO 625  $ Ü 
CONSTANT DK AN 
TING RUBBER MA 
MBER OF THE AS 
MBER OF THE SU 
PPORT IF J2«0 
J2,DPC,DK 
J2.DPCDK 
Pl(I)aMACH(NQ, 

V3 

MS OF THE PULSE SHAPE 
ACT BEGINS OF STATION 
AT STATIHN J TO THE 

1,K) 
1,K) 
0 622 1*1,NOP 
0 DAMPING RATIO DPC 
TERIAL PROPERTIES 
SOCIATED MASS 
PPOPT,OR 

IR,J1)  $  JBJPI(I) 

0 TO 621 
P2(I)*MACH(NO,IR,J2)  $  DKsSD(J) 
RT(DK/TR(J)) 

JNT6«JNY*6 

$  M^d)»! 

0 I«t,JNT6 

»0. 
0 I*2,JNT6,6 
3V0 
1)  S  li = l 
0 Isl TNT3 
NE.K)  Gf iG /20 
*2-l  S   3«I2+i 
' CYJCK2) 

$  K2aK*2««  $  K3*K2+1 

IFCI1.GT.IR)  rj 
CONTINUE 
CONTINUE 
LN180 
OMEGA3ALPHA+DT 
IF("MEGAAE.TEND) 

YJ(I3)sYJ(K3 

TO 725  $  KsNQtll) 

GO TO 727 

$ 
;1*M + 1 

33 
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7?H *St! f.ifl 

73b 

731 

73? 
733 
73« 

735 
740 

750 

5010 
5020 
5030 
5040 
5GI42 
5050 
5060 
5070 
508? 
6001 
6004 
610B 
6200 
7000 
800 

PR IN 
r'LL 
'; ü 7 
OFGs 
IKCA 
X(Il 
CONT 
:i*c 
iasi 
IF(I 
G'i 7 
MNC = 
WTF = 
IFCtf 
MQH 
SFCI 
1F(Y 
MQCI 
SFCI 
PHIN 
IF(A 
ALPH 
IFCN 
ALPH 
NTT» 
FORM 
FORM 
FORM 
FORM 
FORM 
FORM 
FORM 
FORM 
FORM 
FORM 
FORM 
FORM 
cORM 
FORM 
STOP 

T b*0« 
R f, ' T 

«0 1 = 2 
Dr' ' •I 
B3(0FS 
/■DFG 
INUE 

/2     S 
3.E0.1 
0 (7iC 
1 $ 
1 
Q(I«). 
4) = 2 
4)«0. 
JCI   ), 
4)B3 
Ü)=3F0 
T   6100 
H3(YJ( 
A=OMEG 
TT   ,GE 
ASALPH 
NTT + 1 
AT(8F) 
ATCI3» 
AT(2I5 
ATC16I 
AK4F1 
AT(3F1 
AT C110 
ATC20X 
AT(I10 
AT(1H1 
4 T t      C V 
m i  \     JA 

ATC2I5 
AT(2I5 
ATC12F 

%     E 

,      D-EbA 
(ALPH*.,nMEG4,H,YJ,DF) 
,U,?     i     TIHI/2  f  ir--iT-i   %     13BMQ(H) 
>/3?6.s 
)«LE.X(Ii; '•  GO TO 73t 
S  VfinrOMEGA 

3   S  I3»I3-H*3*3 
I53liil*l 

)  GO TO 73i 
,733,7355,M-.:f 
IFCYJC1 ).LT,3t0 .ANO.MGClaj.LC.l)  GO TO 7«8 

EQ.l)  732,734 
S  MNF»£ 

$     GO TO 7^0 
GE.0.)  GO TO 732 
$  MNFs3 
(14) 
,11,13  ,YJ(I2),YJCn,OF(l,n ,OFG 
1)).GT,100,)  GO TO 750 
A  $  GO TO T

J0 
,M  GO TO Ö00 
AB 
$  GO TO 696 

0.65) 
F7.2,7F10.2) 
, 6I1.I4,6F10.3) 
5) 
0.3,/,<?F10.3) 
0,5) 
,10X,6rl0.3,/,(8Fi0,3)) 
,6Fie,4) 
,4E12.3) 
) 
,* T**,F10,5) 
,3E12,3, 2F9.2) 
,3F10,3) 
11.2) 
ND 



SUBROUTINE  RGKT<Al,Ä2,A3,YJ,D) 
C     *** RUNGE-KUTTA METHOD *** 

COMMON  N 
DIMENSION  D(5,80),YJC80),W(10),An0),PHIC80),B(a,3), 

1  X(10),Y(5,80> 
C —  COEFFICIENTS 

k(l)ani(4)«la/6a S W(2J«W(3)tl,/3,     S>    KKB« 
A(2)sAC3)«,5  $  A(fl)*l. 
fl(2#l)BB(S#2)«a5  S  B(3,l)aß(4,l)aBCtl,2)a0,  I  B(ü,3)e: 
IQ s 4   S   FCT « 19./270. 

7 
6 

9 
11 

12 
13 

14 

15 

19 
20 
22 
25 

i   IOP1 » 
SIGN B i, 
SIGM s -la 

•±««« 

ALPHA = Al  $  OMEGA « A2  $  H * A 
IQBKK 

IQM1   a   IvJ-1        $        IOP1   s   IOfl 
ISTP s 0   S 
IF( H.LT.0. ) 
X(i) B ALPHA 
DO 3 Isl,N 
Y(l,I) a YJ(I) 
MM s 1   $   IFLG B o 
M a MM   %        MM B M ♦ 1 
IF( MM,GTSI3P1 )   MM a 1 
X(MM) a X(M) + H 
TEST a OMEGA - XCMM3 
TEST1 c TEST/OMEGA 
IF QUOTIENT OVERFLOW 7,8 
TEST1 B TEST 
IF( ABS(TEST1).LT,!.0E-10 )   GO TO 12 
IFC SIGN*TE3T1 )   9,12,13 
TEST2 = OMEGA - X(M) 
H B TEST2   S   IFLG B 0 
X(MM) B X(M) ♦ H 
ISTP s i 
XJ 3 X(M) 
DO 1« I«1,N 
YJ?I) B Y(M,I) 
• *-  RUNGE-KUTTA PROCEDURE 
DO 25 K*1»KK 
IP( K.EQ.i )   GO TO 22 
XJ a XCM) ♦ H*A(K) 
DO 15 1=1,N 
PHICI) = 0, 
KMl s K -1 
DO 19 Jal,KMl 
P'lICI) a PHI(I) ♦ H*B(K,JUD{JJ) 
YJ(2) a Y(M,I) ♦ PHI(I) 
CALL OERFCNCXJ,YJ,K,DJ 
CONTINUE 

RKAM9UB ENTRY POINT 
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<ww 

105 
5 pi« 

27 

29 
30 

100 

C 

10 
15 

20 

30 
40 

50 

60 

65 
70 
80 

,---  RKAMSU8 EXIT POINT 
A2i*C*M*'  J  *3 = i- 
DO 1^5 1 = 1 #N 

) = YCMM,I) YJCI 
KETU 
ENO 
CALL 
00 2 
PHIC 
00 3 
DO 2 
PHIC 
YCilM 
IFC 
GO T 
COMT 

DER 
7 I» 
1J = 
(1 Is 
9 KS 
I)  B 
,1) 
ISTP 
0 6 
INUE 

FCM«*l»YJ#irOJ 
1,N 

0. 
1,N 
1»KK 
PHICI) ♦ H*W(<)*rOCK,I) 

8 Y(M,I) ♦ PHICI) 
•EQ.l )   GO TO 100 

SUBROUTINE 
*** OIFFERE 
COMMON  N,S 
COMMON  TMC 
COMMON  NOP 
COMMON  GAM 
DIMENSION 
Nl«N/2  $ 
IFCXJ.I.E.TM 
IF(XJ.LE,TM 
LNlaLNHl 
CONTINUE 
DO 20 I»i,N 
SQCI)s*GCI) 
DO 30 I»l,N 
SUCI)aSU(I) 
CONTINUE 
DO 60 1*2,N 
SUM1»3, 
DO 50 Jal,M 
SUMlaSUMHS 
SUMJsSUMltG 
OFCM,I)aSUC 
CONTINUE 
IFCNDP.lE.0 
DVsYJ(Il)*0 
IFCI2.LE.0) 
DVa(YJill)- 
GO TO 70 
I38I1-1  S 
DFCM,I1)=DF 
CONTINUE 
MTFB0 

RETURN  $ 

DERFCNCXo»YJ,M,OF) 
NTIAL EQUATIONS *** 
C120,120),SMK(40,«0) 
20),CP(20)#8F(120),WßC120)fLM»LN2#3LOP 
,JPl(50),JP2C50),DPC5kO 
A,SK,BETA   ,MTF 
3Q(40),DFC5>80),YJC80),SUC40),:KC120) 
IFCLN1.E3.0)     GO   TO   10 
CLNl).AND.MTF.E<3t0)     GO   TO   40 
CLNin      GO   TO   15 

1 
+CP(LN1)*SF(I) 
1     $     SUCI)«0.   3   DO   30   J«1,N1 
♦AIJ(S,I,J,2)*SQCJ) 

,2      %      K«I-1      S      DFCM,K}*YJCI)      *      11*1/2 

1      S     J1=J*?-1 
MK(I1,J)*YJ(J|)   *BETA 
AMA*YJCI) 
m-suMi 

)  GO TO 80  S  00 70 I»1,NDP  $  I1«JF1(I)*2 
PCI)   $  I2sJP2CI)*2 

GO TO 65 
YJC!2))*0PCI)  3  DFCM,I2)aOFCM#I2)*0V 

0VBDV*SKC1)*YJCI3) 

CM,I1)-DV 

END 

86 



*w m 

SUBROUTINE  RGKT(A1,A2,A3,YJ,0) 
C     *** RUNGE-KUTTA METHOD *** 

COMMON  N 
DIMENSION  D(5,80),YJ(80),W(10),.tU0),PHI(80),B(a,S), 

1  XC10J,Y<5,80) 
C .......  COEFFICIENTS 

W(l)S*(4)»l./6, 8 W(2)»W{3)3i,/3,     i KK*4 
A(2)sA(3)»,5  $  A(4)*t. 
8<2,l)eB(3,2)«.5  S  B(3,l)«B(fl,l)3B(«,2)»0,  $  B(4,3)ei 
IQ = 1   S   FCT ■ 19./270. 

Al  S  OMEGA « A2  $  H 

7 
3 

9 
11 

12 
13 

14 

15 

19 
20 
22 
25 

$   IQPt s 
SIGN * 1, 
SIGN s -1, 

ALPHA = Al  S  OMEGA ■ A2  $  H i 43 
IßcKK 
IQH1 « IQ-!   S   IQP1 s 10*1 
ISTP =0   $ 
IFC H.LT.0, ) 
X(i) s ALPHA 
DO 3 Isl,N 
Y(l,I) » YJ(I) 
MM s 1   $   IFLG a H 
M 8 MM   %        MM ■ M ♦ 1 
IF( MM.GT.IQP1 )   MM a 1 
X(MM) a X(M) ♦ H 
TEST * OMECA - X(MM) 
TEST! c TEST/OMEGA 
IF QUOTIENT OVERFLOW 7,8 
TEST1 a TEST 
IF( ABS(TEST1),LT.1.0E-10 )   GO TO 12 
IF« ÖIGN*T5ST1 )   9,12,13 
TEST2 = OMEGA - XC«) 
H a TEST2   S   IFLG a 0 
Xt'MM) a X(M) + H 
ISTP a 1 
XJ 3 X(H) 
00 14 I>1,N 
YJ(I) a y(M,I) 
••«  RUNGE-KUTTA PROCEDURE 
DO 25 K«1»KK 
IF( K.EQ.l )   GO TO 22 
XJ a XCM) + H*A(K) 
DO 15 1*1,N 
PHI(I) = 0. 
KM1 B K - 1 
DO 19 Jal,KMl 
PHI(I) « PHI(I) ♦ H*B(K,J)*D(J,I) 
YJ(I) a YCM,I) ♦ PHI(I) 
CALL DERFCN(XJ,YJ,K,D) 
CONTINUE 
....  RKAMSUB ENTRY POINT 
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SUBROUTINE CONF f A» "R.^R, IO#LMS,T) 

20 

15 
10 

20 

30 

2 
4 
10 

20 

30 

40 

DIMENSION  Adr*" 
DC 10 1*1,ID  5 
A(Il)«A(Il)*A(L.i: 
AlL*S)»0.0 
RETURN  $  END 

,1KC12&),TC120> 

;»*T(;) 

SUBROUTINE 
DIMENSION 

T/PAM'J 

DO   20   1=1,NR     8 
*CJ,I>«A<I,J} 
RETURN     *     cMD 

;3   Jri,NC 

SUBROUTINE   äfcGi- 'iNfSf ?S,*V»MN) 
DIMENSION     NÜ U 205, MV( 1**0),NEW (120) 
li«0 
DO   20   1=1,IR     tf     Il»X»*t 
DO 10 K3j,MN  $  XF(i»£Q.KV(K))  15,10 
Iloll-i  S  GO TO 20 
CONTINUE 

N£W(Il)«NQ(Ii 
CONTINUE 
IRsIR-MN  $  DO 30 1=1,IS 
NQ(I)=NEWiIi 
RETURN  S  END 

SUBROUTINE  SYMINV(A,M) 
DIMENSION  A(120^120),T(120) 

DO la in,HI s KD.-a. * Du if) J»i, H i 
2,0 IF(I.GE.J) 

B«ACI,J)  $  GO TO 10 
B«A(J,Ii 
TCI)*TCI)+B*A(M,J> 
A2»3.  S  DO 20 1=1,Ml 
A2«A2*T(I)*A(M,IJ 
A2BA(M,M)-A2  S  A281./A2  S  A(M,M)*A2 
DO 30 1=1,Ml 
A(M,I)«-T(I)*A2 
DO 40 Inl,Mt  S  DO «0 J«I,M1 
A(J,I)=A(J,I)-A(M,:)*T(J) 
RETURN  $  END 

- 

L 
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15 
10 
20 

20 

10 

20 

30 

10 
15 
20 

30 

SUBROUTINE 
DIMENSION 
11 = 1 
DO 20 1 = 1,IR 
DO \A   X=i,MN 
I-Ü.E3. 

CONT.'MUE 
CONTINUE 
RETURN 

SUBROUT I 
OIMENSIO 
DO 2W 1= 
DO 20 K= 
CCI,J)=C 
RETURN 

REMOF(A,IR»HV,MM) 
A(l20)»MV(12fl) 

*  11*11*1 

S  A f'1)54(1; 

$   END 

NE MMUI. '''. B,C, MR, Ni 2, NO 
N   A(6f6),3(6f6)»C(6*6) 
1,NR  $  DC 20 J«1,NC  $ 
1,M2 
(I,J)+ACI,K)*9(K,J) 
S  END 

CCI,J)«0, 

SUBROUTINE ENDFOC CEF,NG0,DF,SL) 
DIMENSION  EF(b)fOF{b) 
EF(2)=0,   $  EFv5)*0, 
GO TO (20,1?) -NGO 
B*SU-0F(2) 
EFC1)»DP(1)*B **2*(SL + 2,*0F(2n/SL**3 
w?5DF(l)*0F(2)*B/SL**2  $  F.F(3)B " 
GO TO 30 
IP(OFC3),EO.0.)  OF(3)sSL 
A3DFC2)  $  B=SL-DF(3)  $ 

i     EF(a)aDF(2)-EF(t) 
B*wP  $  EF(<>)«DFC2)*WP 

FF(S)*»EF(3)  S 
RETURN  $  END 

SUBROUTINE  ADDMS(W,M»S,SD»IR»IJ#IK) 
DIMENSION  W(6.6)#S(120#120),SO(120),IJtl20) 
DO 5 IdflR 
S(X»I)sSDCX) 
DO 30 I3J,M  $  I1«IJ(I) 
DO 20 J«I»M  $  JlsIJ(J) 
IFCJl.GE,Il,AND,IK.EQ.l) 
IFCJ1.LE.H.AND.IK.F.Q.2) 
GO TO 15 
sciifji)«s(ii»Ji)*w(i,j) 
s(ji»ii)«s(Jit n)*i«fCi#J) 
CONTINUE 
SOCDBSCXlfZl) 
CONTINUE 
RETURN  $  END 

GO 
GO 

TO 
TO 

1 PI 
10 

S  GO TO 20 
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10 

10 
20 

20 

21 
22 
30 

51 
32 
aß 

50 

60 
78 
80 
90 
100 

120 

150 

163 

SUBROUTINE  MUL1(A,B,C,IR> 
OIMENSION   A(6,6),B(6),C(6) 
ÜO li? I>1»XR  $  C(I)»0, 
DO 10 J*1,IR 
C(I)*C(I)*A(I,J)*8(J) 
RETURN   $  END 

FUNCTION  MACH(NQ,IR,KI) 
DIMENSION  NQ(120) 
1)0 10 I = UIR 
!F(NO(I).Nt.KI)  GO TO 10 
HACHsI  $  GO TO 20 
CONTINUE 
CONTINUE 
RETURN  $  END 

C0NMS6C3,M,MR,ID,LM5,TR) 
C6,6),MR(120),TR(120),T1(120),T2(120) 

DO 30 Isl,M 
IF(I.GE.LMS,AND.IK.EQ.i; 
Tl(I5sS(LMS»I) S GO TC 
T1(IJSS(I,LM8) 

SUBROUTINE 
DIMENSION 
IK*1 
DO 30 Isl,M 

21, ?2 
30 

CONTINUE 
00 110 I»1,ID 
DO '40 Jsl 

S  II«MRCI) 
DO '40 J»1#M 
IF(J.GE.Il,AND.IK.EQ.l) 
A3S(Ii,J)  S  GO TO Ü0 
A3S(J,I1) 
T2(J)sA*TR(I)*Ti(J) 
00 50 JM,1D  $  J1*MR(J) 
T2(Ji)sT2(Jl)*T2(L*S)*TR(J) 
L i * I -'. 

IFCL1.LE.0) 
DO 60 1.31,11 
IF(K.EOfMR(L)3  GO TO 100 
CONTINUE 

00 
DO 

100 KBl,M 
60 1.31,11 

GO TO 70 

CONTINUE 
IF(K.GE.Il.ANO.IK.EQ.l) 
SCIl#K)aT2(K) $ GO TO 
SCX,Il)sT2(K) 

80,90 
100 

CONTINUE 
CONTINUE 
DO 150 Isl,M 00 150 Isl,M 
IF(I.GE.LHS.ANO.IK.EQ.l)  120,1«0 
SCLMS,I)«e,  $  GO TO 150 
S<l,LMSi«e.0 
CONTINUE 
DO lt>0 I«1,M  $  DO 160 J»I,M 
S(J,I)sS(I,J) 
RETURN  S  END 
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6 
7 
20 

30 

40 

50 

60 
70 

80 
90 
100 
110 

150 

10 

£0 

30 

SUBROUTINE C0NM3(S,SD,M,MR,ID,LMS,TR,IK) 
DIMENSION   S(120,120),90(120),M9(120), TR( 120), Tl (120), 

1  T2C12B) 
DO 7 I=j,M 

S(I.I)aSDCI) 
DO 30 1*1,M 
T1(I)«ATJ<5. 
CQNT! JüE 

IJsMRil) 

IF(L1,LE.0) 

GO TO 1=50 

GO TO 7Pi 

GO 
GO 

TO 
TO 

80 
80 

00 110 1*1,ID 
DO 40 J*1,M 
A*AIJ(S,I1,J,IK) 
T2(J)*A+TR(I)*T1(J) 
CONTINUE 
00 50 J»ltID  S  J1»MR(J) 
T2(Jl)*T2(Jl)fT2(LMS)*TR(J) 
L1=I-1 
00 100 K«i,M 
00 60 L«1#L1 
IFCK.EQ.MRCD) 
CONTINUE 
IF(K.GE.Il.AND.IK,EQ.l) 
IF(K.LE.Il.AN0,IK,fQ.2) 
GO TO 90 
S(IlfK)sT2(K) %     GO 70 100 
S(K,I1)=T2(K) 
CONTINUE 
CONTINUE 
SCLMS»LMS)aß. 
00 150 1*1,M  $  SD(I>«S(I,I) 
CONTINUE 
RET'JSN  $  END 

SUBROUTINE REMOMS(S,SD, IR,MV,MK,IX) 
DIMENSION  5(120,120),SO(120),MV(120),TU203 
DO 2 1*1,IR 
SCI,I)=SO(I) 
11*3 
DO 50 1*1,IR 
DO 10 K*1,MN 
11 B 11- 1  $  GO 
CONTINUE 
Ka0 
DO 30 J«I,IR  5 
DO 20 L«1#MN  $ 
K*K-1  $  GO TO 
CONTINUE 
T(K)«AIJ(8fXfJ#XK) 
CONTINUE 
DO 40 J«l#K  5  L'Ii+J-1 
IFU.GE.Il.AND.IK.EQ.l)  GO TO 32 
IFCL.LE.II.AND.IK.EQ.Z)  GO TO 32 
GO TO 23 

$  11*11*1 
$ IFCI.NE.MV(K)) 
TO 50 

KsK + 1 
IF(J.NE.HV(D) 

30 

GO TO 10 

GO TO 20 
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'   ■'■!' 

32 S(I1,L)»TCJ)  $  GO TO 40 
33 S(L»!l)aT(J) 
40   CONTINUE 

80(ii)«3(ii»xr.) 
50    CONTINUE 

RETURN  $  END 

FUNCTION AIJ(S,I1,I2,IK) 
DIMENSION  S(120,120) 
IF(I2.GE,Il.AND,IK,EO,n  GO TO 1 
IFCI2.LE,IltAND.IK.EG.2>  GO TO 1 
GO TO 2 

1     *IJ"S(Ii,I2)  $  GO TO 3 
?     AIj3SCI2,Xi) 
3     RETURN  $  END 

SUBROUTINE MIV(A,U#NM) 
DIMENSION  A(6,6),U(6,6) 
00 9001 I»1,NM 
00 9331 J»1,NM 
UCI,J)*0, 
IF CI.EQ.J) U(I»J)«l.fl 

9001  CONTINUE 
EPSa0,0000001 
DO 9015 I»lfNM 
K»I 
IF (1-NM) 9021,9007,98c! 

9021  IF (A(Ifl)-EPS) 9005,9006,9007 
9005 IF(-A(I,I)-EPS) 9006,9006,9007 
9006 <ak+i 

0Ü   c?033   vsi,NM 
U(I*J)*U(X»J)*UCK»J) 

9023     ACl,J)sA(I,J)*ACK,J) 
GO   TO   9021 

9007 OIVaA(Irl) 
DO 9009 J«1,N* 
UCI,J)«U(I,J)/DIV 

9009 A(I,J3BA(I,J)/DXV 

DO 9015 MM«1»NM 
DELTBA(MM,I) 

IF   (ABS(DELT)-EPS) 9015,9015,9016 
*016  IF (MM-i; 9010,9015,9010 
9010 DO 9011 JalfNM 

U(MMf,J)aU(HM,J)-U(I,J)*DEL^ 
9011 4(M1,J3*A<MM,J)-A(I,J5*DELT 
9015  CONTINUE 

RETURN 
END 
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APPENDIX B 

Cushioning System Design 

Q? 



Cushioning System Desig11 
The weight distribution of an M- i"7 3/4 ton truck 

with 1500 lb. simulated load of sandbags and the arrange- 
ment of cushioning forces are shown in F..g. B.l.  In order 
to have uniformity in the crushing of the honeycomb cushion- 
ing, the centroid of the honeycomb area or the center of 
cushioning forces should be located at the center of gravity 
of the loaded vehicle.  Wheels, differencials, gear reducer 
and transmission can be cushioned independently and the 
cushioning forces for those masses are calculated as: 

(Design acceleration level 17.5 g) 
F  = ' 18.5 • 350 - 6480 lb. Wheels and tires (each 

Differentials (each) 

Gear Reducer 

Transmission 

w 
= F 

fd    rd 
= 8890 lb. 

F   = 18.5 x 

= 18.5 x 480 

300 = 

Tr 18.5 x 200 - 

Tha remainder of the structure is cushioned by F, , 2F~ an 
through the truck frame. 

cushioned forces with inertial 

55 50 lb. 

3700 lb, 

d 2F„ 

IF 

Fn 

0 (Balance of 
forces) 

+ 2Fn + 2F, (1500 + 1060 + 570 + 600 + 300) x 18.5 

or 
x 1 

I 

2P, 

+ 2F 

CG 

2 

= 0 

80. 

2F. 

+ 2F4 = 74,500 (B.l) 

(Sum of moments of cushion forces about CG) 

5 + (2F 

+ FTr 

w 

x 31 

f F ,) X 50. rd' 

2F  + w fd ) x 63 

II X P, + 5 x F 

or 
161F. 2F? - 81F, 

gr 

- 415,325 (B.2) 

Since we have three unknowns, F,, F„, and F. we need 
one more constraint equation.  This can be achieved by intro- 
ducing an artificial hinge at the internal cushioned point F~. 
If we take the moment about this point, we get: 

Thus 

2F4 x 81.5 = (1500 + 1060) x 45 x 18.5 

F, = 20,600 lb. 

F2 = 13,900 lb. 

(B.3) 

FA   =   13,100 lb. 4 The sizes of the pads required for the cushioning 
calculated by: 

»■I 

:ces are 



I 

where 
A = required area of honeycomb under 'cushion force F. 
S = average stress of honeycomb (6400 psf). 

From a work energy balance, the stack height z required to . 
provide the volume of honeycomb necessary to cushion the vehi- 
cle is determined from: 

Z - Gi^ - 17.5 x   0.7 - 9'7 

where 
H = equivalent free drop height (10 ft.) 
G = design acceleration level (17.5) 
e = design strain 

M 
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