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NOTATION

Polynomial coefficients

Constant of integration

Prismatic coefficient of nose or tail

Diameter or thickaess of body
Polynomial associated with d
General adjustable parameter at end
"Quasratic” polynomial

"Square root'' polynomial

Polynomial associated with ko

Polynomial associated with il

Curvature
Cu—vature at x = 0

Rate of change of curvature at x = 1

Length of nose or tail

Arc length . \
Degree uf polynomial

Polvnomial

Pelynomial fcr restraining conditions
Polynomial associated with r
End radius

Polynomial asscciated with s

PSR

End slope

.

Axial coordinate

Normalized axial cocrdirate

Radius or offset

Normalized radius or offset

General function of offsst of least-sauares fitted bedy
Generat functicn of offset of body to be fitted

Unspecified constant

Adjustapie conditions

sl nentts, X s -~

Unspecified constant
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Conditions of restraint

Unspecified constant

Single differentiation with respect to x
Double differentiation with respect to x
Triple differentiation with respect to x

Quadruple differentiation with respect to x

ey

b

1.

Y
-
e
P
==




ABSTRACT

Two-parameter geonietric systems are developed for noses
and tails attached to parallel middle bodies in terms of inde-
pendent polynomials. A new parameter is introduced--the rate
of change of curvature with arc length at the juncture with
the parallel middle bedy. "Quadratic' polynomials are con-
sidered for bodies of revolution and ''square root" pulvnomials
for symmetric two-dimensional bodies. Permissible ranges of
the two adjustable parameters are obtained for selected
geometrical constraints such as the presence of inflection
points,

ADMINISTRATIVE INFORMATION

The work described in this report was spcnsored by the Naval
Ordnance Systems Command (Code 035B) and was funded under UR 123-01-03.

INTRODUCTION

The geometrical characteristics of streamlined bodies of revolution
and symmetriczl two-dimensional bodies have been developed in a previous
report.1 There, a body is divided into a forebedy and an afterbody at the
maximum section, and the curvatuve at the junction is one of two adjustable
parameters controlling the shape. These forebodies or afterbodies may also
be attached to parallei middle bodies. 1n this case, it is considered more
desirable in hydrodynamic applications if the junction curvature is made
zero tc match that of the parallel middle body in order to avoid discon-
tinuities in curvature. The use of a junction curvature of zeio, however,
eliminates an adjustable parameter ard leaves only one adjustable parameter
for the polynomials involved.

It is the purpose of this report to recura to a two-parameter system
for Eorebodiés or noses and afterbodies cor tails to be attached to parallel
middle bodies in order to have a more extensive group of shapes. A new

adjustable parameter has been introduced, namely, the rate of change of

1Granville, P. S., "Geometrical Characteristics of Streamlined Shapes,"
NSRDC Report 2962 (Mar 1969); Journal of Ship Research, Vol. 13, No. 4
(Dec 1969).




curvature at the junction with the parallel middle body. The requirement
of zero curvature here becomes an additional restraint.

The method developed in Reference 1 is followed closely. The so-
called "quadratic' and ''square root' polynomials are used in & system of
independent polyncmials controllec by the two adjustable parameters. The
analytical description of the polynomials is obtained by a factoriai method
vhere feasible, Rounded, pointed, and cusped ends are considered. Pec-
missibie ranges of the adjustable parameters are considered in terms of
geometric criteria such as the presence of inflection points. Regions of
well-behaved shapes are delimited by boundary curves obtained by an

envelope analysis. The least squares fit of graphicaliy or analyticaily

delineated shapes is also considered. The fullness of the shapes is ob-

tained in terms of a prismatic coefficient.
GENERAL ANALYSIS

The shapes of families of noses or tails of bodies of revolution

and of two-dimensional symmetrical bodies may be stated functicnally as
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where Y is the raiius cof the body of revolution or the offset of the
two dimensional becdy,

X 1is the axial distance of the bcdy measured from the end of the
ncse or tail,
a, are the parameters to be varied which specify the family, and

.

J

The analytical analysis is more useful in a normalized coordinate
system [x, y}: y=0at x=0, andy =1 at x = 1.

If D is the diameter or maximum thickness of the parallel middle

are the boundary conditions or restraints.

e

body, and L is the length of the nose or tail, then the normalized

coordinates become

Lo
‘ D

(2)

M,‘ML“L‘_‘ .

(48]
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and
X
X = —I:- (3}

as shown in Figure 1.

To achieve "hydrodynamic continuity" as contrasted with msthematical
continuity, it is considered necessary that the position, slope, and curva-
ture match at the junction of the nose or tail with the parallei middle
body. In this case the slope and curvature at the junction are zero.

In normalized courdinates the contour is given by

[
f
Pt

-
3%
-
.
.

y = f[x o, 8] ' )

where oy and Bjare now defined in nommalized coordinates. In this study two
adjustable parameters 04 and a, are to be considered for sinplicity of
analysis.

If a functional form like that of a polynomial is selected as
a=n n
y= E a x = Pn[x] (5)
n=0

a resolution into linearly independent polynomials may be obtained like that
of linearly independent vectors multiplied by scalars, such as

y = E £lo,] P i [x] + ;23 £ [BJ.] P, {x] (6)

or since the Bj are constant

y=If[o]P ; [x]+Qlx] )
1

where

Q[x] = I £[B;]P
j J

[x] (8)
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This permits the effect of the controilable parameters a; to be obtained
independently of each other.

The independent polynomials may be determined by substituting, one
by one, conditions a, and Bj into the general polynomial, by evaluating
the polynomial coefficients by a solution of the resulting simultaneous
algebraic equations, and then by a gathering of terms corresponding to
each Q. Another method is to use the factorial properties of polynomials
in considering conditions a, and Bj’ which is illustrated in the specific
cases to follow.

Not all ccmbinations of a; give desirabie shapes. It will be
of value to analyze the possible limitations in terms of simple criteria:

1. Zero condition--y = 0 for 0 < x < 1; negative values of y would
be meaningless.

2. Unity condition--y = 1 for 0 < x < 1; bulges above y = 1 are
undesirable.

3. Maximum or minimum condition--dy/dx = 0 for 0 < x < 1; no other
maximum or minimum is to be permitted than at x = 1,

4. Inflection-point condition--dzy/dx2 = 0 for 0 < x < 1; inflection
points are undesirable on noses.

For example, the condition for zero values of y
y [x a,0,]=0 0<x<1 (9)

may be studied as follows.

If o and 0, are now considered as variables, and x is considered
as an adjustable parameter, a line may be defined for each x-value. An
envelope to these lines may be developed which represents the boundary
of regions for values of o and ay with values of y = 0 for different
values of x. The envelope condition is given by

3 ro. _ .
'3; Yy ix; al’ az] =0 (10)
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From Equations (9) and (10)

Q
)

1 = £ [x] (i

=]
"

2 = £, [x] (12)

A plot of a, against ¢y for the range of values of x, 0 < x < 1 gives the
envelope curve. Other conditions may be handled in a similar way.

For the shapes to be considered, a common adjustable parameter to be
used is the rate of change of curvature with arc length at the junction of
the nose or tail with the parallel middle body at x = 1, given by

% dk
K © (‘&'9.') ] (13)
x =1

where k is curvature, and £ is arc length,

In general
2 2|%/2
k = (i?—g-) 1+ (%) (14)
X

and

(1s)
For
d dzy
X=1,a§='—2-=0
dx
and then
3
k1~(—7> (16)
dx
x=1

e W
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"QUADRATIC" POLYNOMIAL REPRESENTATION

GENERAL

The functional relation

y = L a, x (17)

is called the "quadratic" polynomial for want of a better name. It is very
suitable for describing bodies of revolution for which volume is an impor-
tant consideration, since it represents the axial distribution of the
cross-sectional area. It has the additional advantage of providing a means
of accommodating the analytical descripticn of bodies with rounded ends,
scmething the ordinary polynomial cannot do because of the requirement of
infinite slope at x = 0. In addition to bodies with rounded ends, the
'quadratic' polynomial may also be applied to bodies with pointed ends and
cusped ends.

Although any number of adjustable parameters o, may be used, the
analysis here is to be limited to two. This is sufficiently general for

describing a wide variety of geometrical shapes.

ROUNDED ENDS

The adjustable parameters ay to be considered at each end of the
curve are

alz r = radius of curvature at x = 0
r = _____é (18)

b, e




- - - —~—— " A 4 ~— - v A dikad
ay: il = rate of change of curvature at x = 1
‘3
> d
ky = (“%‘) (19
dx x =1

The boundary conditions Bj are

n
[er]

8: x=0,vy

(20)

84: xX=1,—%=0

Since there are six conditions in all, n = 5.
The a, and Bj are substituted into the polynomial. Differentiating
Equation (17) successively with respect to y gives

_ 2 3 4, dx n
2y = (a] + 2 ax + 3 azx” + 4 a,x” + S acx ) ay (21)
and
2 3 4. d’x
2=(a, +2ax+3ax +4ax +5ax)—
1 2 3 4 S dyz

(22)

2
2 3, dx
+ (2 a, + 6 azx + 12 a,x" + 20 acx )( dy )

N\

Since a1 # 0, dx/dy = 0 at x
end. Then

0. This automatically provides a rounded

e e W
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The other substitutions yield

a2: 6 a, + 24 a4 + 60a, =2k

5 1

82: a,+a +a,+a +a, +a.=1 (23)

83: a1 + 2 32 + 3 a3 + 4 a4 + 5 8¢

84: 2a,+6a,+12a

2 3 + 20a,. =0

4 S
The solution of Equations (23) by determinants shows that the a's
are linear functions of r and'il. Hence yz is also a linear function of

r and il and may be written as

y?* = rR[x] + k; K [x] + Qlx] (24)

where R[x], illx], and Q[x] are also polynomials of the fifth degree in x.
It is possible to determine R[x], Kl[x], and Q[x] by first solving for the
a's from the simultaneous equations and then regrouping terms applicable to
R([x1, kl[x], and Q[x]. Another method is to use polynomials as follows.

It is evident that the relations for a; and Bj correspond to

d 2
Yy [0l =2r

alz
a,: :is yz[l] = 2 il
By y?[0] = 0
B,: y*[1] = 1
9
- b & - - M~ A rcst RN Sacstate

el s, W
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By %;yz[l] =0

2

a2
B,: < y°[1] = 0 (25)
¢

Since the foregoing apply identically to r and il because of
linearity, it is further evident that

t 0.1:

where RI = dR/dx, RI

Evaluation of R{x]

R'[0] = 2, & "[0] = Q¥[0] = o

EIIII[I] a2, RII[1y = ofMg) = o

polynomial of the fifth degree, R[x] may be written as

since RI[0] = 2, « =
Then

2.

R[0] = K;[0] = Q[0] = 0

Q1] = 1, R[1] = K,[1] = 0 (26)

R} = k(1) = Q1 = o

Ry = kM = g = 0

= a%R/dx?, etc.

since R[0] = R[1] = R'[1] = RMT[1] = RTTT[1] = 0, and R[x] is &

R[x] =a x (x - )? (27)
R[x] =2x (x - 1)* (28)

10
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Evaluation of Rl[x]

since K, [0] = & '[0] = K [1] = K "[1j = & "1 = 0, & [x] may be
written factorially as
K [x] = 8x° (x-1)° (29)
N § § S
Since Kl [1] = 2, B =1/3, then
K] =55 (x-1° (30)

Evaluation of Q[x]

I

Since QI[O] =Q[1] = QII[I] = QIII{I] =0, QI[x} may be written

factorially as

I 3
QUlx} =y x (x-1) (31)

Then integrating produces

xs 3x4 3 xz
Q[x]=v(?-—;-+x-—>+c (32)

With Q[0] = 0 and Q1] =1, C = 0, and y = 20. Then

QAxl =- x> 4 x> -15x%+20x-10)=1- x-1D% 4x+1)
(33)
For Rounded Ends in Summary
y* = rRix] + k, K [x] + Qlx] (243
with
4
R[x] =2x (x-1) (28)

" gl
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> 3
K; Ix] =-§-x2 x -1) (30)

Qxj =1- x-D4 @x+1) (33)

PERMISSIBLE RANGES GF PARAMETERS r AND il

Zero Conditicn

yz-f[x; T, illzo 0<x<1 (34)

The envelope in r and il with x as the variable parameter is given by

*h

1}
X%

|

=0 (35)

The two envelope conditions, Equations (34) and (35), provide two

simultaneous equations in r and k1 which are solved by the Cramer rule to
give r{x] and El[x]:

2 ., .2
x” (3 x7 - 10 : + 10) (36)
2 (x-1

T =

s .303 - 5%+ 10 x - 10)
1 x -1

(375

The envelope curve is shown in Figure 2, Since the tangent lines represent-
ing values of r and il for y = 0 are outside the envelope curve, the inside

region contains values of r and il which do not have values of y = 0 (except
at x = 0).

Unity Condition

The unity condition is that

y2 = f[x; r, il] =1 0<x<1 (38

12
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The envelope in r and il with x as thc variable parameter is given by

Lg-1n=0 (39)

The two envelope conditions, Equations (38) and (39), provide two

simultaneous equations in r and il’ which are solved by the Cramer rule to
give

3 x+2
L (40)
2
by 3 (x -1
kl =—_(—TL (41)
X

The envelope curve is shown in Figure 2. Desirable veluzs of r and El’
that is, without bulges, are on the "inside curved" side of the envelope
curve.

Marimum or Minimum Condition

The maximum or minimum condition is given by

dy _ (I _
Fef =0 (42)

The envelope curve in r and EI with x as the variable parameter is given
by

£° =0 {43)

The envelope curve is shown in Figure 2. A better understanding of
the envelope curve is developed in Figure 3. Each point on the envelnpe
curve represents a tangent, giving the locus of values of r and il which
provide a maximum or minimum at each value of x other than the maximum at
x = 1 which preveils at all times. Two such loci are represented. Their
point of intersection provides a value of r and il’ representing maxima or
miizima at two values of x. Evidently from any point in the region outside

the envelope curve, two tangents may be drawn to the envelcpe curve. Thus

13
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Figure 2 - '"Quadratic'" Polynomial: Rounded End, Permissible Range

of Parameters r and k1
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Figure 3 - "Quadratic" Polynomial: Rounded End, Delineation of Regions
by Envelope Curve for Maximum or Minimum Condition
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the region outside the envelope curve represents values of r and il’ giving
two maxira or minima. The region inside the envelope curve provides no
maximum or minimum. Finally there is only one maximum or minimum specified
by the envelope curve.

The two envelope conditions, Equaticns (42) and (43), provide two
simultaneous equations in r and il’ whick are solved by the Cramer rule
to give r[x] and kl[x] as

2
r=——td X (44)
10 x™ - 5 x+1
~ 30 (x - 12
k), =2 (45)
10x" -5x+1
Inflection-Point Condition
The inflection-point condition is given by
dzy =0
.2
dx
For y2 = f[x]
2
2e ¢l ol 2 g (46)
and the envelope condition
£ o 47

The two conditions provide two simultancous equations in r aad El in terms

of x. Since the boundarv condition leads to a quadratic relation, the Cramer
rule does not apply. For specified values of x the two simultaneous equa-
tions may be numerically solved by direct substitution of one equation

into the other. The results are shown in Figures 2 and 4. The results for
the rounded end are summarized in Table 1.
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TABLE 1 - SUMMARY OF "QUADRATIC" POLYNOMIALS FOR ROUNDED END

Polynomial Equation:

_vzer[x]d-E‘ il[x3’0[x] 0<x<l
where

Rlxd=2x (x- 1)

Kix] -;—xz (x - 13

Ul =1-(x-D @@xen)

Envelope Equations:

Zero Condition:
o3 10x10) ;L 30l o527 4102410
26-1)" i tx -3y’

tnity Coendition:

pedxt2 o 30x-1
2x xz

Meximm or Minime Condition:

2 . 2
SN L F S P N L)

1
10 -5x4+1 10x2-5x+1

Inflection-Point Condition: Mumerical calcslation

16

‘-‘

- — il W




POINTED ENDS

The adjustable parameters @, are

0y: S = slope at x = 0

_(dy (48)
s = _
x=0

a,t il = rate of change of curvature at x =1
3 (49)
1 3
dx _
*» =1

The boundary conditions Bj are the same as those given in Equation
(20)

62: x=1,y =1
(50)
M = ‘gx =
83. x =1, i 0
2
By X = 1,-9—§-= 0
dx

Since the ''quadratic" polynomial as previously used give: infinite slope at

x = 0, an additional condition, indicated as follows, is necessary to give
controlled slopes at x = 0.

Hence, the degree of the polynomial becomes
six.

For al

o AN TS v

7y (51)
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Since y = 0 at x = 0, dy/dx + «, unless 8, = 0. For a

indeterminate at x = 0. Then by the L'H3pital rule

dy ( dy > a,
L —=}—/ 2 § = —
dx dx x=0 3

X > ®

1

or
2 _
! S - az
o then requires that
a. =0
bA
. 2
a,=s

The other substitutions yield

6a, +24a +60a, +120a, =2k

&yt 3 4

BZ: ao + a1 + a2 + a3 + a4 + a5 + a6 =1

R.,: a1 + 2 a2 + 3 a3 + 4 a4 + 5 a5 + 6 a6 =0

84: 2 a, + 6 a; + 12 a, + 20 ag + 30 ag = 0
y2 is then a linear function of s2 and il or

y? = s% s[x] + k) K [x] + Qlx]

The analysis proceeds as before, and the results are shown in
Table 2 and Figures S and 6.

18

= 0, dy/dx is

(52)

(53)

(54)

(55)
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TABLE 2 - SUMMARY OF 'QUADRATIC'" POLYNOMIALS FOR POINTED END

Polynomial Equation:

y2 = s S[x] + kK[l +Qx]  0<xgl

where
S[x] = x2 (x - l)4

T(][x] =-;-x3 (x - 1)3

Al =1-(x-1 (108 +ax4+1)
Envelope Equations:

Zero Condition:

2.32@xf-6x+8) 5 6(2x®-9x+15x-10)

(x - 1) " (x - 1)3
Unity Condition:

2.3@%e2x+1) 5 6-1f(2x+)
2 ' 3
X X
Maximum or Minimum Condition:
2 30 x2 o~ 60 (x-1)?
iy O T 2
Ex“ -4 x+1 5x° -aax+1

Inflection-Point Conditfon: Numerical calculation

19
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In analyzing the inflection-point condition, a problem arises for

x = 0, where an indeterminate condition exists. By the L'HSpital Tule

d%y - 24 s% - 3 k, + 120

2 (56)
dx X =0 6 s

The boundary curve at x = 0 is then

128 El +60=0 (57)

CUSPED ENDS

The adjustable parameters a, are

oy ko = curvature at x = 0
) (58)
K = (u)
[¢] de
x=0
a,: El = rate of change of curvature at x = 1
N 3 (59)
kl = _‘_i_).'.
de
x=1

The boundary conditions Bj are the same as those of Equation (20),
except for the additional condition of zero slope at x = 0.

0, y=0

w
e
bl
i

(7]
b
Hn
[
<
"
fe—
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gie
n
o

1,

2
B x=1,3—§=o

d

o

(60)

As will be shown the cusped end requires two additional conditions which

makes n = 8.

For
For
82:
For
Then
dy
dx

For

e

Qatx=0,a =0

N
~
1+
+
»

22

(61)

(62)

(63)

(64)




For

L2
d2y 6a;x+ ... +nn-1) an" -2, (g¥-)
—r = (65)
dx 2y
Then
i 2 n-3 n-3 n-2 2
' d%y i 2[633+...n(n-1)anx ](a3+...+anx )-( 3a3+...+nanx )
27 3/2
dx 4 <a 3., 42 xn-8/3)
3 n
(66)
X . 2 2
Equation (66) gives d“y,/dx” -+ » at x = 0.
To prevent this, let az = 0.
Now
' 2 n-4 n-4 n-3 2
d%y ) 2[12a4+...+n(n-1)anx ] (aé+...+anx )- (4a4+...+nanx )
2 3/2
dx n-4
4(a4+...+a X )
(67)
At x = 0
d? 1/2
L£Yl-2a (68)
2 4
dx [
4
2
r -
4 a, ko

ayc 6 az+ ... +n n-1(n-2) a =
83: Ay + .ot an =1
23

2 k

(69) ‘ }

1

o e w

-




n
BS: 12 8, + ... +n (n - 1) a = 0 (70)
yz is then a linear function of k°2 and il
2 2 PR
vt = k2 K [x] + k) K [x] + Qlx] (71)

The analysis proceeds as before, and the resuits are shown in Table 3
3 and Figures 7 and 8.

""SQUARE ROOT'" POLYNOMIAL REPRESENTATION

GENERAL
% . The functional relation
1/2 n=n n
y=a X I a_x (72)
P ) 1/2 n=g P
[
H is to be called the ''square root" polynomial for want of a better name.

It is svitable for describing two-dimensional shapes with rounded ends,
since the square-root term gives infinite slope at x = 0. Of course,
without the square-root term an ordinary polynomial remains.

The same analysis procedure used for the quadratic polynomial is to
be applied where possible to the square-root polynomial for the same cases:
rounded ends, pointed ends, and cusped ends.

ROUNDED ENDS

The adjustable parameters a, are the same as those for the quadratic

polynomial
)
alz r = radius of curvature at x = 0
- 1
T = —
( dzx ) (73)
2
dy x=20
24

r
>
i
I
1
|
r
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TABLE 3 - SUMMARY OF ""QUADRATIC'" POLYNOMIALS FOR CUSPED END

Pciynomial Equation:

v¥ = k? K[x] + Ky Ky[x] + QL]

vhere
Ko[x] = %-x4 (x - 1)4
KD =3° (x-1)3

QLx] = x3 (35 x° - 120 x® + 140 x - 56)

Envelope Equations:
Zero Condition:
(2. 8x2 (15 5% - 40 x + 28)

s _12.(5x3 - 20 x% + 28 x - 14)
° 4 s Ky = 3
(x - 1) (x - 1)

Unity Condition:

(2.405x4+203+18x% +12x+5)
o 3

~

k. = 12 (x - N2 (5 +6x2+3x+ 1)
1

<0

Maximum or Minimum Condition:

L 2. 840 X ©o. 840 (x - 1)
©  4x-16x+5 ) 14x-16x+5

ol m.‘m‘wmmmwwn‘.wm.am,,m. .

Inflection-Point Condition: Numerical calculation
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ayt il = rate of change of curvature at x = 1
. 3.\ 74
k=/.d_>1) 74
1 3
dx
x=1

The boundary conditions Bj are the

same as those for the quadratic
polynomial

82 x=1, y=1

(75)
e'x=1 .d—y=0
3 ! dx

2
. B,: = 1,-9—%.= 0
i dx

Since there are six conditions in all, n = 4.

The s and Bj are su»stituted into the polynomial.

For al:
Differentiating Equation (72) with respect to y gives
. A SV . - 1y dx

1= (2 31/2 X ta +...me2 X ) Iy (76)

or : .

1/2 ‘
g—;'(-=—]'-a + a xl/zt +na x2n-1/2 " {
2 71/2 1 T n
At x =

0, dx/dy = 0 which ensures a rounded end.

Differentiating Equation
(76) with respect to y gives

Y Iurmw&:h“ln:ru}mh S

T T

2
1 2n - 1/2)(1 2n-1/2)
1=(2a1/2+...+nanx 231/2"'..."'1‘13“}(

2 1

2n - 1/2
d ; 2-31/2 - .. -n(n-1)x
dy

I
s . W

—n A&

(78)

o s A a1
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- _ 2
At x=0,r=1/2a 1/2

=vY2rT

41/2

or

. 3 = ¥
2° g8 31/2 + 6 a3 + 24 a = k1

Byt ayta tayragta =l

1

Poay, +3a,+4a, =0

ta v2a, 3 4

1 . _
-_3'31/2 + 2 a2 + 6 a3 > 12 a4 =0

E-Y

The presence of the square-root term prevents the use of the
factorial analysis.

The solution as simultaneous equations in the a's produces

y = /21 R[x] + il il[x} + Q[x]
with
R[x] = x/? +X (5 6% - 20 %% + 35 x - 35)

l~<1[x} =-§(x - 1)3
Qx] =1- (x- »*

The permissible ranges of parameters v2 r and il are studied as
before, and the results are shown in Table 4 and Figures 9 and 10.
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TABLE 4 - SUMMARY OF "SQUARE ROOT'' POLYNOMIALS FOR ROUNDED END
Polynomial Equation:
y-fz_rR[x]'Fi-‘ i][X]"'Q[XJ 0_<_X£]

where
RIX] = &+ 56 (563 - 21 2% + 35 x - 35)
KD =g x (x - 1)°
olx] =1 - (x- 1)

Envelope Equations:

Zero Condition:

32 ,.2
e -8 x (x° - 4 x+6)
28 x-4-x7%(3xf-14x+35)

- 24 (7x3-20x2+18x-4)-3x¥2 (x* .10 %7+ 59 %2 - 112 x + 70)
ky = 7 VT .2
(x-1)"[28x-4-x (3 x°-14x + 35)]

Unity Condition:

i -8 (x - 1432
X6 [28 x - 4 - x3/% (3¢ - 18 x + 35)]

= 3 (x-1)[56x2+8x-x'2(x3-7x%4+35x+135))
ky = 3 VT2
x“ {28 x -4 - x (3 x° - 14 x+ 35)]

Maximum or Minimum Conditior:

3.3/2
AT = - 48 (x - 1)° x
28x-17x+1-x7¢ (18 x3 - 62 x° + 97 x - 35)

> ij-1L[28x-4-x3/2(3x2~14x+35)]
Ky =2 372 z z
28x“-17x+1-x (18 x© - 62 x° + 91 x - 35)

Inflection-Point Condfition:

Ay 96 (x - 1)% /2
WXt -15x+3+2x7 (185 - a0 x+21)

e 12D x-3+x"(3x-7)
Vol -sx+3+2x72(18x%-40x+21)

29

e, w®

—— A




&\
&
<
RS el MAXIMM OR MIHIMM _
. & COMDITION

INFLECTION-POINT \

CONDITION

P RRP

1} 4 8 12 16 20 3 28 R
il
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POINTED ENDS

The ordinary polynomial is utilized, namely

The adjustable parameters a, are the same as those for the
polynomial

R
(7]
[]]

slope at x = 0
dy >
o= (&
dx X =0
2" El = rate of change of curvature at x =1

. 3
k, =[4Y
1 x>
X

x =1

The boundary conditions Bj are the
polynomial

- dy
Byt x =1, &=
42
BIX=1, y=0
] 2
dx

Since there are six conditions in all, n = 5.

31

—

(85)

guadratic

(86)

(87)

same as those for the quadratic

(88)
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Substitution of oy and Bj into the polynomial produces

2: 6 a3 + 24 a4 +60a, =k

[ 1
81 ao =0
(89)
82: ao + al + az + a3 + a4 + as =1
63: a1 + 2 a2 + 3 a3 + 4 a, + 5 ag = 0
64: 2 a2 + 6 a3 + 12 a4 + 20 as = 0
v is a linear function of s and il’ or
y = s S[x] + k; K [x] + QIx] (90)

The analysis proceeds as before, and the results are shown in Tabie 5
and Figures 11 and 12.

CUSPED ENDS

Th2 urdinary polynomial is utilized

y= ¥ a_x (5D

The adjustable parameters a, are the same as those for the quadratic
polynomial

o
n

curvature at x = 0

- (dzy)
o 2
dx x=0

(92)

=
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TABLE 5 - SUMMARY OF ORDINARY POLYNOMIALS FOR POINTED END

Polynomial Equation:

y=ssSIxI+k KIxI+Qx] 0<xg
where

S[x] = x (x - 1)4

lex] =-%-x2 (x - 1)3

Qxl=1- (x-D* (@4 x+1)

Envelope Equations:

Zero Coandition:

s‘—‘

x2 (3 %2 - 10 x +10) . k. = 6 (x3 -5x%+10 x - 1G)

(x - 1)°

Unity Condition:

2
_3x+2 .7 _6(x-1
§$ = ,k-l-———z—-L-

X X

Maximum or Min‘mum Condition:

30 2 T 12 (x - 1)2

s = b =
Wx-5x+1 'V 6x°-4x+1

Inflection-Point Condition:

s = 5 (6 x2 -4 x+1) | k. =60 (x - 1)2

(x = 1)°

10x°-10x+3 ' 10x°-10x+3
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il = rate of change of curvature at x = 1
3 (93)
" d
k. = (_L>
1 3
dx
x=1

The boundary conditions Bj are the same as those for the quadratic
polynomial

M = SX =
82. x =0, ax 0
63: x=1,y=1 (94)

BS: x =1, —5= 0

Since there are seven conditions in all, n = 6.

Substitution of ay and Bj into the polynomial produces

2 [o]

0yt 6 a; + 24 a, + 60 ag + 120 ag = k1

Bl a0 =0
& By 3y =0 (95)
1
P 83: 34 +a, +a, az +a, +ag tag = 1
{ 84 a, + 2 a, + 3 az + 4 a, + 5 ag + 6 ag = 0
)

BS: 2 az + 6 a3 + 12 a4 + 20 as + 30 a6 =0

35
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y is a linear function of ko and il in

y =k, K [x] + k K [x] + Qlx] (96)

The analysis proceeds as before and the results are shown in Table 6 and
Figures 13 and 14,

LEAST-SQUARES FIT

Given shapes either in graphical form or in analytical form may be
fitted to the polynomials of this report by a least-squares fit. If
z=y

for quadratic polynomials, or

Z =Yy

for square-root polynomials; then, in general
z = d D[x] + El il[x] + Q[x] (97)

where d and D[x] refer to the appropriate type of shape. For example,
d = r, and D[x] = R[x] for the rounded nose.

In general, a least-squares fit requires that fé (z - zl)2 dx
be minimized where zl[x] represents the body shape to be fitted. Conse-
quently, by differentiating with respect to the coefficients to be deter-

mined, there result two simultaneous equations

1.2 ~ 1 1 1 _
d fo D® dx + k1 fo D Kl dx + fo D Q dx - fo 2, Ddx =0 (98)
Aok dx+k ARZax+ AR Qdx-sa K odx=0 (99
0" M 17001 01 04 ™M

The values of d and Rl are then determined by the Cramer rule. Values of

the indicated integrals for the various polynomials may be found in Table 7.
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TABLE 6 - SUMMARY OF ORDINARY PQLYNOMIALS FOR CUSPED END
Polynomial Equation:

y=k KIxJ+k KIx]+Qlx] 0<x<l
where

k,[x] = ; 2 x-nt

KIxl = g & (x- 1)

Ax]=1-(x-D(0xf+ax+1)
Envelope Equations:

Zero Condition:

622 -6xe8) ¢ 12(2x3-9x%+15x-10)
0 (X'])‘ 1 (X'1)3

Unity Condition:

K = 6 (2 x2 +2x+1) . . = 12 Ix - 1)2 (2 x +1)

0 xz * M X

Maximum or Minimum Condition:

5 602 . .12 (x-1)°

° 5 x2 «4x+] * 5 xzi- 4 x+1

Inflection-Point Condition:

60 x° (10 x° - 10 x + 3)
ko =32 3 2
50 x' - 80 x"+45 x“ - 10x+1

- 120 (x - )2 (10 X2 -5 x +1)
Ky ==—=71 3 7
50 x -80 x" +45x" - 10x+1
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TABLE 7 - INTEGRATED VALUES FOR LEAST-SQUARES FIT

] 2 ] - ] ] -~ 2 ] -~
Polynomial J D™ dx J- D K] dx I D Q dx J. K‘ dx I K.| Q dx
0 0 0 0 0
4 ] 14 ) 43
Rounded 398 ~ 7980 395 20,780 |~ 11,880
g
< 1 1 202 1 529
& | Pointed @% |- 30,888 5,005 | 08,708 | 360,360
g
Cusped 1 } 1 647 1 oM
uspe 3,500,640 | - 2,333,760 4,084,080 | 1,225,224 | - 7,450, 448
39,91 947 218.1 N N D
= Rounded 101,376 |~ 2,661,120 | 1,138,368 | 79072 2160
[«
& ] 1 7 ] 43
g Pointed 7% < Y920 395 83,160 |~ 23,760
3
] 1 59 1 529
Cusped 75,780 |~ 173,552 30,030 332,432 720,720
39
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PRISMATIC COEFFICIENT

The fullness of a shape is given by the prismatic coefficient, which
is the ratio of the volume of the body to the volume of a prism having the
maximum cross-sectional area and the length of the body.

The prismatic coefficient Cp for the shapes of this report is then

Cp = Sy v’ dx (100)
for bodies of revolution, and

Ié y dx (101)

(@]
it

for two-dimensional bodies.
For the polynomials of this report

_ 1 T B 1
CP =d fo D dx + k1 IO Kl dx fo Q dx (102)
Consequently for bodies of revolution described by quadratic polynomials

rounded end

-r 1 .2
Cp =15 " 180 * 3 (103)
pointed end
2k
-5 __1 .4
Cp =105 " 320 "7 (104)
cusped end
2 -~
L B S (105)
P 72520 ' 1512 79

40




ard for two-dimensional bodies described by square-root polynomials

rvounded end

C =~jL—/§ T - il +:L 106
P 192 120 5 ( )
pointed end
C =S_-ﬁ_+_2_ (107)
P 30 360 3
cusped end
k k
=0 __1 .4
Cp =310 " %40 * 7 (108)

Lines of constant CP are plotted in Figures 4, 6, 8, 10, 12, and 14.
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