
AD-753 961

OPTIMAL ESTIMATION OF MEASUREMENT BIAS

William S. Agee, et al

L National Range Operations Directorate
White Sands Missile Range, New Mexico

December 1972

DISTRIBUTED BY:

Na81iona1 TOchnical Iiforn0atieo Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road. Springfield Va. 22151



A

I'A !

1. OPTIMAL ESTIMATION OF MEASUREMENT BIAS

BY

WILLIAM S. AGEE and ROBERT If. TURNER

DECEMBER 1972

MATHEMATICAL SERVICES BRANCt
ANALYSIS & COMPUTATION DIVISION

NATIONAL PJAGE OPERATIONS DIRECTORATE
WHITE SANDS MISSILE RANGE, NEW MEXICO

Ihes.oduced by t

NATIONAL TECHNICAL
INFORMATION SERVICE

Department of Commerce
Sprinefield VA 22151

Approved for public release; distribution unlimited,

$/A/P
•1• i ! 111 IJ [I Jll II t V



1,U 3 C I .A S S I F I E D ~a d l . * ' n ' i , ~ ~ n

tiC"X!'!:H~ CCNT-Q ULA CTA - It r)

I. O$1lrNA TING ACT 7VI I V I( ,it ... rate ni**ilSUr) AS IC 1 1Z

Analysis and Computation Division UNCLASS IF I ED
N~ati onal flange Operations Directorate 2b.GRU

White sands Nissile R~ange, il: 8,3002 NA
3. REPORT TITLE

OPIMAIi!L ESTIMATION OF MEJASURLECIVI DIAS

4. OESCRIPTIvL NOTES (Tpe of rep~ort and Inclusive dates)

S. AUTHOR(S) (First name. middle initial, loot namel) :

William S. Agee and Robert If. Turner

6. REPORT OATE 7A. TOTAL NO. OF PAGLS rb O.O REFS

December 1972 39 T7 9
Sc. CONTRACT OR GRANT NO. 9a. OIIIGINATOWS RLPORT NUP.1,CRIS)

NA T O
6. PROJECT O

11A NA
C. b. OI.4ER ArPOrar NOIS) (Any otl,.l rumberi that may be. eaaI.n~d

this leper,)

10. DISITF41UTION STATEMENT

DISTRIBUTIO-1 OF THIS DOCU'IEIT IS Ut"LWI-TED

111. SUPPLEMENTARY NOTES 1 2. SPONSORING MILITARY ACTIVITY

13. ABSTRACT *
A metnod is described for the oDtinal estimation of measurement biases in a K~alman
filtering application. The method, which was originally developed by B. Friedland,
is based on the decouplinq of a large Kalm~an fillter into tw..o smaller filters. One of
the smaller filters produces a state estimate which assumies that all measurenment
biases are zero and the other called the bias, filter astim~ates th~ esrmn bises
The outputs of the tw:o smialler filters are ri~corabir.2d to forl th,-' 0optiM31 statel
estimates. Restrictions on tha form of tCie ?lil-16ers -which are imnosed by thle cecoupnlij
are discussed. Several extension~s of Friedland's c'rioinal1 method are presented.
Finally, the implementation of. the filters via square root filtering techniquas is
developed.

Repoduced from
bestI available copy.

1% II OPM 4 -1 s~REPLACES 00D PCNM 1478. 1 JAN 04. "MIICH4 1SDD 111111011*1 473 OBS11OLETs FOR ARMY Use. . U:ICLASSir~lr,
Security Classification



UIIMCLASSI F1 ED
nnerira_ ( ha.,ia ,~ if - -

L•IK A LINK 0 LINVC

ROLE WY UOLL WT POLI "Ah

Estimation Theory
Filtering
fleasuremeonl Bias

UiCLASSIFIED

Security CIassifilctioa



Destroy this report when no .longer needed. Do not return to the
originator.

- . t

Disclaimer

The findings of this report are not to be construed as an official
Department of the Army position unless so dcignated by other authorized
documents.

eI
4,

4



TECHNICAL REPORT

No. 41

OPTIMAL ESTIMATION OF MEASURENENT BIAS

BY

WILLIAM S. AGEE and ROBERT H. TURNER

DECEMBER 1972

MATHEMATICIAL SERVICES BRUNCH
ANALYSIS & COMPUTATION DIVISION

NATIONAL RANGE OPERATIONS DIPECTORATE
WHITE SANDS MISSILE RANGE, NEW MEXICO



So i

TABLE OF CONTENTS

Page

INTRODUCTION . . . . . . . . . . . . .1

BIAS ESTIMATION WITH TIHE KALMAN FILTER ..... . . 3 , , , * 3

DYNAMIC STATE EQUATION ........ .. . . . . .. . . . . 3

OBSERVATION EQUATION ..Q.T ........ . . . . . . . . . . 3

PREDICTED STATE ESTI TAATE .. .............. 5

CORRECTED STATE ESTIMATE .E.S.T.E......... .. .. . 5

FILTER DECOMPOSITION .................... .. 7 7

RESTRICTIONS IMPOSED BY THE GAIN CONDITION . ... , . . 9 , 9

SUMMARY . . . . . . . . . . . . ... 13

ZERO-BIAS FILTER. . . . . . . . . . . . . . , . . . . . . . 13

BIAS FILTER . . . . . . . . . . . . . . . . . . . . 13

OPTIMAL STATE ESTIMATE. .......... . . . . ... , . . 14

EXTENSION TO THE NONLINEAR CASE. . ,. . . . .... ,... 14

APPROXIMATELY OPTIMAL STATE ESTIMATE. . . . . . . . . . . . 19

BIAS ESTIMATION WITH THE FADING MEMORY KALMAN FILTER, . . . . 19

PROBLEMS ENCOUNTERED IN BIAS ESTIMATION . . . . . . . . . , 22

SQUARE ROOT IMPLEMENTATION OF BIAS ESTIMATION. . . . . . . . . . 25

BIAS FILTER REINITIALIZATIO .......... .,.,°.28

APPENDIX A. . . . . . . . . . . . . . .... . . , 32

APPENDIX B ..... . . . ... . .. . . 33

REFERENCES ....... . . . . . . , .... • . . • . . . • 34

DISTRIBUTION LIST . . .. • . . .. 35



OPTIMAL ESTIMATION OF 1IEASUREMEIIT BIAS

INTRODUCTION. A Kalman filtering program has been developed by the

authors to provide a Best Estimate of Trajectory (BET) for flight tests

conducted at White Sands Missile Range (WSMR). This optimal filtering.

program combines measurements from radar, fixed camera, cinetheodolite,

dovap, velocimeter, and accelerometer which are optimally weighted using

on-line estimates cf the measurement variances. One of the most

impiortant considerations in developing a BET technique is to account for
inconsistencies produced by bias errors in the measurements As a matter
of fact, a BET is not very useful unless these measurement errors have

been accounted for. It was for this reason that this research project

began. As a result of this project, we now have a very effective tech-

nique included in the BET program to estimate the measurement bias errors.

Since our BET program uses a Kalman filter it was desirable that the

bias estimation technique be developed within the framework of the

Kalman filter theory. Theje is a natural way of including bias terms

in the Kalman filter. One merely adds an additional state variable for

each bias term to be considered and forms the optimal estimate of the

biases in the same way as for the other-states of the system. This

technique is fine for cases where there are only a few bias terms to be

considered. However, a typical application of our PET program has a

large number of measuring instruments involved. For example-, a LANCE

flight test might have two radars, 28 dovap receivers, eight fixed

cameras, and eight cinetheodolites. Considering only one bias error

per measurement this results in 66 additional state variables to be

estimated. If the dimension of dynamic state is nine, we would then

have to compute filtered estimates for 7b state variables. An ordinary
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Kalman filter program using a 75 dimensional state vector is computa-

tionally p.ohibitive at the present time, Thus, we must develop some

technique, other than the straightforward method of augmenting the

filter state vector, for estimating measurement bias errors within the

Kalman filter framework. The research problem may be stated concisely

as follows: Develop a computationally feasible method within the Kalman

filter framework for estimating the biases of all measuring instruments

participating in a WSMR mission.

A preliminary search of the literature reveals two possible tech-

nique. which might be applicable to the bias estimation problem. A

third technique developed by the author was also considered. Finally,

during the course of the research an additional technique was found.

Of the four methods considered, all of which were computationally

feasible, three were discarded either because of numerical difficulties

or excessive errors in the bias estimates. The remaining method, which

was published by B. Friedland (in Reference (1)) was developed and

extensively evaluated for IIS4. applications. Several extensions of

Friedland's method were made so that it would be applicable to the

instrument bias problem at WSMR. Also, this report employs a derivation

different than Friedlands.

The evaluation of this instrument bias estima'.ion technique was

performed using simulated measurement data from a nearly ballistic

trajectory. The simulated in3trumentation included four fixed cameras,

six cinetheodolites, one accelerometer, and two radars with doppler.

Thus, there were a total of twenty-nine bias states estimated in

addition to nine dynamic states of the basic filter. The technique was

also tested using real data from a similar trajectory having the same

instrumentation. The simulated data has bias and noise added to each of

the exact measurements. Evaluation of time varying as well as constant

bias were considered in the evaluation.

2

ýM.7



BIAS ESTIMATION WITH THE KALMAN FILTER. We will consider only tile

discrete case of the Kalman filter. The following equations descri7-2

the discrete Kalman filter as used in this report.

DYNAMIC STATE EQUATION. The model of the process we are observing is

represented by the linear difference equation

x(k+l) A(k) x(k) + Ux(k) (1)

(nxl) (nxn) (nxl) (nxl)

where x is the state vector of the process and u,(k) is a random vector

representing our uncertainties in how well the model defined by the

homogeneous portion of the difference equation acually represents the

system. We assume that

E (k 0

and

E~u.(~u x Q xM(k26,

OBSERVATION EQUATION. At discrete instants of time t. we have vector1

valued observations z(i) available. The z(i) are assumed to be linearly

related to the state by

Z = HM) x(i) + G(i) b(i) + v(i) (2)

(mxl) (mxn) (nxl) (mxp) (pXl) (mXl)

where v(i) is a random vector of measurement errors with mean zero and

covariance

SE v~ jj :R(i)6ij

t3



b k) is a vector of measurement biases which obey

b(k+l)= B(k)b(k) t ub(k) (3)

where. ub(k) is a zero mean random vector with covariance

E[ub(k)uT(L)] Qb(k) 6 kL

By adjoining the vector b to the vector x we form the augmented state

vector y

y [ (4)

Then the dynamics of y are

Y(k+l) rF(k)Y(k) + U(k) (5)

where

A( k)

- nxn

r(k)

B(k)
pxp_

and

U (k)
u(k)=

4Ub~k)I



The observation equation becomes

z~) L(k)y(k) + v(k) (6)

where

L(k) H[(k)G(kJ

A

PREDICTED STATE ESTIMATE. Let y(k) denote the optimal state estimate of

the 'augmented system

rA~

A x(k)I
y(k) --- (7)

Lb(k)J

At tk+1 the predicted state estimate is

AA

y(k+llk) F(k)y(k) (8)

CORRECTED STATE ESTIMATE. The optimal estimate at tk+l is defined by.

y(k+l) y(k+llk) + W(k+l)(z(k+l) - L(k)y(k+llk) (9)

"where W(k+l) is the optimal gain matrix defined in terms of the posterior

covariance matrix P(k+l) A$

W(k+l) = P(k+l)LT(k+l)R- 1 (k+l) (10O

The covariance of the predicted state denoted by P(k+llk) is defined by

P(k+llk) F(k)P(k)FT(k) +Q(k) (11)

5



I

where

Q ~ 0 Qb(k)]

The posterior covariance P(k+l) may be defined as

T 1 -P(k+l) P- (k+llk)+ L (k+l) k+)L(k+l (12)

Direct implementation on a digital computer of the augmented Kalman

filter equations defined by (7) thru (12) is computationally prohibitive

when the dimension of the bias vector b is large. However, by utilizing

suitable restrictions on the bias dynamics, Friedland (Reference (1)) was

able to decouple the augmented Kalman filter so that a dynamic state

x*(k) and a bias b(k) are separately estimated and then the optimal

state estimate x(k) is computed by

A Ax(k) = x*(k) + T(k)b(k) (13)

where T(k) is an nxp matrix. The state estimate x* is computed by

assuming all biases to be zero. P will find that there are certain

restrictions which must be placed on the form of the augmented filter

in order that the decoupling be possible. One such restriction will be

that Qb' the covariance of the stochastic term in the bias equation, be

zero. The development is not restricted to measurement biases; biases

in assumed constants in the state dynamics may also be included.

Friedland approached the decoupling of the Kalman filter by trans-

formation of the discrete Ricatti equatior. The derivation given in this

report will be based upon an examination of the conditions for which

6



the decoupling, of the state. -stimates specified by (13) is possible.

FILTER DECOMPOSITION4. A general form for a discrete time, 1iivearJ

recursive filter for the augmented state vector may he written in the

form of (9)

A~k y.\ k1 WAk) I~)Hkxkkl-~~~j-) (4

where for the present we will consider W(k) to be an arbitrary gain
A

matrix. The augmented state estimate y(k) may be decomposed into
AA

estimates X(k) and b(k)

x(k) x(kjk-l) + W,( ) W z(k)-H(k)x(kjk-l)-G(k)b(kjk-1)) (15)I

A 

A*x(kkl) A(kk-1)x+WbW ~)Hk-l)kl-~kbkk-) (6

b(ki-) =b(kk-l)b + 1

where W(k) in (14) is.

W (k)

nxm

'W(k)

PXm

Now let x*(k) be the state estimate that would be obtained if all

biases are assumed to be zero. We will call this the zero-bias

estimate. The recursive estimation equations for x*(k) are

x*(k) - x*(klk-1) + W*(k)(z(k) - U(k)x*(kI k-i))
- (17)

x*(ki k-i) -A(k-l)x*(k-l)

.7



Now we ask the question: Under what conditions can we decompose

the optimal estimate x(k) as

x(k) x*(k) + T(k)b(k)

Denote the residual by r(klk-1).

A ~AA
r(klk-l) z(k) - 1(k)x(klk-1) - Q(k)b(klk-i) (18)

If the decomposition (13) holds, substitution of (13) with k replaced
by k-l into (18) results in an alternative expression for r(klk-l)

A A

r(klk-l) z(k) - H(k)x*(kik-l) - S(k)b(k;.. ) (19)

where

S(k) G(k)B(k-1) + H(k)A(k-l)T(k-1) (20)

Now substituting (16), (17), (19), and (20) into (13) we find

x(k) x(kik-1L) + [WM) + T(k)Wb(k)Jr(klk-l)

(21)
+ [Tk)B~k + W*(k)S(k) -A(k-l)T(k-l)]b(k-1)

Note, if we assume that (15) and (16) define the optimal linear

filter, r(kJk-i) and b(k-l) must be linearly indepehdent random vectors.
In this case the following conditions must hold in (21).

W (k) W * (k) + T(k)Wb(k) (22)x x

T(k) A(k-l)T(k-l)B-l (k-i) - W*(k)S(k)B-l (k-i) (23)
8



By examination of (21) we easily see that an arbitrary linear filter is

also decomposable into the form specified by (13), if the above condi-

tions hold. However, these conditions are not necessary for decomposi-

tion of a general linear filter. In addition to the conditions specified

by (22), which we will call the gain condition and (23), the recursion

equation for T(k), we must also have

x(O) x (0) + T(O)b(O) (24)

since we assume that the decomposition holds for all k. A natural

choice for the initial conditions to satisfy (24) will in many cases beA
x(q) = (0), T(O) = 0, i.e. we assume that the biases have no initial

effect on the optimal estimate.

The conditions expressed by (22), (23), and (24) are the basic

requirements for a general linear filt..r to be decomposed.

RESTRICTIONS IMPOSED BY THE GAIN CONDITION. The conseo11Qrtces of the

gain condition stated in (22) will be examined when both the estimators

for xk and x(k), b(k) are Kalman filters. The gain for the Kalman

filter giving the zero-bias estimate x can be written as

S T -1V = M P Xk)H MR ( (25)

The matrix P (k) in this case (with biases actually present) may be
xdefined as

P M =k E (x (k)-x(k)+T(kmb(k))(x (k)-x(k)+T(k)b(k))T (26)

We will now examine the ,elati-ns between the varioqs Kalman covariance

matrices PM(k), P (k), and Pb(k). Rewrite the decomposition equation
as



x - x(k) + T(k)b(k) x(k)-x(k) + T(k)(b(k)-b(k))) (27)

Then multiplying this equation by its transpose and taking expected

values we find

P (k) W Px(k) t T(k)P b(k)TT - PXb(:)TT(k) - T(k)P bX(k) (28)

where

T T
P W(k) E[(x(k)-x(k))(b(k)-b(k)) T ], Pbx(k) P(k) (29)

A similar result for P (klk-I)

IN
P (kik-1) " P (klk-1) + A(k-1)T(k-l)Pb(k-l)TT(k-1)AJ
x x b uc l

(30)
-Pxb ( k k-.I)TT(k-I)A C-AT,.-A (k-l)T(k-I )P bx (k- i)

/

The gain for the augmented Kalman filter is

Substituting the gain condition into the first component of (31)

WPx(kiT-P(k) )P (k k

(÷(k)IIT(k) Pb(k)GT(k -l(k) Wx(k) + T(k)Wb(k) (32)

Then substituting the second component of (31) for Wb(k) and (25) for

SMk), we find the satisfaction of the gain condition requires

10



P ,x(k)(G(k)+Il(k)T(k))T = T(k)Pb(k)(G(k)+!I(k)T(k) T (33)

Thus, the gain condition holds if we impose the requirement that

P xb(k) = T(k)Pb(k) (34)

We have translatedthe gain condition into a covariance restriction, but

we must continue to examine the covariance relations to determine the
wa-~ing of (34). The relation between gain and covariance in the

filter can be written as

P(k) (I-W(kLk)))P(klk-1) (35)

or

P xM P xb(k ) "[-W x(k)H(k) -Wx(k1)G(k

Pbx(k) Pb(k)J L-Wb(k)h(k) I-Wb(k)G(k)J

(36)

(klk-.1) P xd,(kik-)
Pbx (kik-1) P b(klk-1)J

Then

Pxb(k) = I-Wx(k)H(k))Pxb(kik-l) - Wx(k)G(k)Pb(klk-l) (37)

Pb(k) = (I-Wb(k)G(k))Pb(k k-1 - Wb(k)I(k)P x, Ik-1) (38)

Now suppose that the covariance condition (34) holds at k-l, P xb(k-1) =

T(k-I) P:(k-1)

11



Then

TPxb(klk-1) A(k-l)T(k-I)P b(k-l)B (k-i) (39)

TPb(klk-l) B(k-l)Pb(k-l)B (k-i) + Qb(k-l' (40)

Substituting (39) and (40) in (37) and (38) and using (20) and (22) gives

P b(k) =T(k)(S(k-l)-Wb(k)S(k) ) P(k-1)BT(k-l1)

(41)

[W 1(k)+T(k)W (k) G(k)Qb(k-1)

T~kl)Pb(k) B(k-)W()~')Pb(- k1

+ ( =w~~s~ %~c1 ~(42)

Clearly, the condition

P xbl(k) =T(k)Pb(k)

holds if

Qb(k-1) 0

Thus, we cannot have a stochastic term in the dynamics of the bias states.

There does not seem to be any way of removing this restriction. This

restriction may lead to a divergence problem in the bias estimation, but

fortunately we can treat this problem in another way which will be

discussed later.

12



SUMMARY. The following formulas summarize the decomposition of the

optimal linear filter for the process described by (1) thru (6)..

ZERO-BIAS F'ILTERI

X *(kjk-l) =A(k-l)x*(k-i)

P *(klk-l) A(k-I)P*(k-l)AT(k-i) + Q (k-1)

P*) W P*-'ki -1 + H~)-i~) T(k

x Wx (klk-l) + W*(k)~ Z(k)-H(k)x*(kl.k-l))

W x(k) P(k)HT k)1)W

BIAS riLTERj

S(k) = G(k)B(k-l) + H(kYI'(kjk-l)

C(k) =H(k)P (kjk-l) T k W R(k) (43)

b(k k-1) = B(k-l)bNk-1)

b (k) (= b(kfk-i) +Tk)-~)~)(5

VWbk P b(k)S k)Cl(k) (46)

13



OPTIMAL STATE ESTIMATE

T(kjk-l) A(k-l)T(k-l)

T(k) T(klk-l) - W*(k)S(k)x

x(k) = x(k) + T(k)b(k)

P(k) W = (k) + T(k)P W~)TT(k) (47)
x xb

The numbered equations in the summary have not been derived but are easily

obtainable. Equation (44) is merely (40) with Qb(k)=O, and (47) comes

from (28) with Pxb(k)=T(k)Pb(k). Equations (43, (45), and (46) can be

derived by substituting the relations between covariances in (12).

EXTENSION TO THE NONLINEAR CASE. The extension of the bias esti-

mation procedure to the case where the state dynamics are nonlinear and

the observational equations are nonlinear functions.. . of the state can be

performed in any one of the ways by which the Kalman filter is usually

extended to the nonlinear case. Let the discrete time nonlinear

dynamics be represented by

x(k) = f(x(k-l),k-l) + uW(k) (48)

and let the nonlinear observation equations be written as

z(k) h(x(k),k) + G(x(k),k)b(k) + v(k) (49)

also we will employ the additional notation

HM)= h(x(k),k)+G(x(k),k) -Ik-l) , (klk-l)



G(k) G(x(klk-l),k)

Since'the extended Kalman filter is not optimal we view the decomposition

as applying to an arbitrary linear filter. Also, the decomposition of

the extended filter is not an exact procedure as in the linear case but

holds only approximately since an additional linearization is required

to derive the gain condition and recursive definition of T(k).

.The extended Kalman filter is

)b(k)kl) =1 0 (k-l) k-l)

A A .
b(k k-1))

where

x(kjk-l) f B A1)k-

b~klk1) B(k-l)b(k-l)

[Wb [x(k) P bk J[(k)JP W

x x 15

R- M

W k P M P T

b4 -4.b



[ x~k Pbd(k) L j k-1) P (kj k-1) -
Pb I

+~~k Pbl~k)H -G~kJ

p~ ~ \X bkk-l Pkk1 bPk)0 B(kJ -i)

P(k-i) (kl

A T (k-1))

0PBT(k-1).

[AT (k-1) 0

The extended Kalman filter frthe zero bias case is

x Mk x Xklk-i) +w*(k) z(k)hx(l-) (50)

16



x (klk-1)'" f(x*(k-l),k) (51)

W MkP M~kH ..(k)RC1(k) (52)

xwe

P (klk-l))= Af(k-i), (kI)A (k-i) + Q ()bk-l) (54)
X AX

where

H M( )ah(x,k)l
-,hx (I x (k"k-1)

A (k-1) [f(x~k-1)()

•(x~kk-Z), ax,- x (kk- 1),k 5

The derivation of the conditions under which the decomposition approxi-

mately holds proceeds exactly as in the linear case. The additional

linearizat ions

A*

f(x(k-i))=f(x (k-l),k) + A (k--l)T,(k-l)b(k-i) (55)

h(x(kjk-i),k)<)h6C(kjk-i),k) + IH (kA (k-i)T(k-l)b(k-l) (56)

G(x(klk-i),k)=G(x (klk-i),k) =G (k) (57)

are required in obvious places. The details of the derivation will not

be given but the results of the decomposition are summarized below.

17



ZERO-BIAS FILTER

x *(klk-1)' f(x*(klk-1),k)

P *(klk-1) AMk-1)P*(k-1)AT(k-i) Q Q(k-1)

* ~ ~~~~ -
1 kk11()*T )1 -

P (k) k kk1 + H*(k)R W W

x Wk X (klk-1) + W*(k) (Z()<)-h(x (klk-1),k))x

A * T A -I

H~k M k)h (xk)R k

[Lhaxk x (kik-1)

BIAS FILTER

S (k)M G (k)B(k-i1) + H (k)T(klk-1) (58)

C (k) H*(k)P*(klk-1)H *kW + R(k) (9

AA

b('#%-k-1) B(k-1)ob(k-i) (60)

Pb(klk-1) BMkl)P,(k-l)B T (k-1) (61)

Pb(k) (P b'(klk-1) + S* (k)Z (kS*(klf (62)

-
f; A .

b(k) -b(kglc-i) V1,(k)(z(k)-h(xwklk-l)-S (k)b(kfk-1)) (63)

AT *-I
Wb(k) Pb(k)S (kc Mk (64)

is



APPROXIMATELY OPTIMAL STATE ESTIMATE

T(klk-l) A(k-l)T(k-l) (65)

T(k) T(klk-l) - W S (k (66)

Ax T (68)
x(k) (k) + T(k)b(k) (67)

Pxuk) P k) + T)PbMTT(k) (68)
x xb

BIAS ESTIMATION WITH THE FADING MEMORY KALMAN FILTER. The

restriction on the filter decomposition imposed by the gain condition

that there be no state noise on the bias state variable, i.e. Qb(k)=O

may lead to a filter divergence problem as previously noted. Thus in

the bias estimation technique we need to develop some other method for

devaluing the effect of old observations on the bias state estimates.

The divergence problem arises from numerical errors in computation and

from errors Sn modeling the dynamics and covariancc matrices. The

divergence caused by numerical errors is most easily controlled by

employing some standard numerical analysis techniques and reformulating

the Kalman filter in terms of the square roots of the covariance

matrices, see Reference ( 2). We use this reformulation and also

process only scalar observations in our BET program to control numerical

errors. The treatment of mismodeling errors is .)nsiderably more

difficult. The mismodeling errors may either be intentional, e.g.,

modeling a measurement bias as a single state variable when we have a

much more realistic bias -model available containing several state

variables, or inadver'tantiy when we do not have a realistic model avail-

able. Intentional mismodeling may arise because we consider some terms

in the bias model to be small and we do not wish to unnecessarily

complicate the filter. We may also delete some mor6 important terms

from the bias model when it is obvious that the geometry of the
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instrumentation ig not sufficient to estimate these terms.

The decomposition procedure will not permit most of the conventional

methods of treating errors caused by mismodeling, e.g., we have already I
seen that no state noise on the bias variables is permItted. Also, the

method of directly overweighting the observations is also excluded by the

decomposition. Another method for devaluing the effect of old observations

on the estimates is the fading memory Kalman filter which we were able to 2

show is allowed by the decomposition. The fading memory filter weights

the observations exponentially according to their age. It was first used

in the Kalman framework by Fagin [5] and more recently by Tarn and

Zaborsky [6], and Sorensen and Sachs [7]. Sorensen and Sachs showed that

the fading factors need not be constant as previously used and also

exhibited some other previously unreported properties of the fading memory A

Kalman filter.

The basic idea of the fading memory filter is that observations should

be assigned increasingly larger variances as they become older. Let t be I
n

the current tima at which an estimate is desired. At tn we model the

dynamics and the observations (using the augmented state vector y) by

y(i,n) A(i)y(i-l,n) + u (i,n) (69)

z(i) L(i)y(in) + v(i,n) (70)

Tb_ observation noise and state noise covariances are defined as

n-i ,

1 (E Tin~ (in R(i,n) R(i)exp- C. (71)1

•4
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E Ux(in)u (i',n) = Qx(i,n) = Q(i)exp [ ) (72)

where Q(i) and R(i) are the usual covariance matrices. The scalars c.>0i-

are called the fading factors. From (71) and (72) we can see that the

covariances assigned to the state noise and observation noise become

larger as their time t. recedes from the current time t n In addition,S~n
we also fade the uncertair.,'y associated with the initial state estimate

y 9(O,n).

E (y(0,n)-y(0)(y(0,n)-y(O)) P(0)exp( ni c. (73)
j=l

With the above definitions the fading memory Kalman filter estimates

y(i,n) may be derived. Actually, we only consider the estimates y(n,n)

and drop the double subscript. We will not derive the fading memory

estimates here but will only indicate the changes friom the usual Kalman

filter equations. The only changes occur in the equations for computing

the predicted covariance matrices which become

P (4k-1) = a(k-l)A(k-1)P (k-l)A T(k-1) Q (k-l) (74)x ~ x

T3
Pb(kik-l) = a(k-l)B(k-l)Pb(k-lI)B (k-1) (75)

P (klk-1) a(.~-l)A(k-l)OP. (76)'(-1

whene

Ckl
a(k-I) e
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The fading a(k) is. chosen to reduce errors in the bias estimates

caused by mismodeling while the state noise covariance QC(k) is used to

Xreduce the effects of mismodeling in the process dynamics. The fading

also effects the weighting for the zero-biase state estimates x (k), but

the effect is normally small since the fading factors ck are nearly

unity in our applidation to instrument bias estimation. The fading
memory filter, although useful in reducingerrors due to mismodeling in

bias estimation, is not entirely satisfactory because it does not allow

for treating each bias term individually.

PROBLEMS ENCOUNTERED IN BIAS ESTIMATION. The major problems

encounterd in estimating measurement error bias are concerned with

modeling not only of the instrument biases but also modeling of the

trajectory. Trajectory moaeling causes problems in bias estimation

since if an adequate representation of the trajectory dynamics has not

been included in the Kalman filter, it will be impossible to separate

the resulting trajectory estimation errors from the measurement bias

estimates. Fo•7 example, if a constant acceleration is assumed for the

dynamics of a missile trajectory when in reality the missile is turning,

estimates of accelerometer biases will be significantly effected by the

trajectory estimation error caused by the constant acceleration

assumption. Although the measurement bias estimates will be useless in

cases where they are severely confused with the trajectory modeling

errors the trajectory state estimates obtained by including the bias will

often be a significant improvement over the trajectory state estimates

provided by the zero-bias filter. j

Another source of confusion of the bias error estimates occurs

from modeling the random noise characteristics of the measurements. If

the measurement noise is predominantly low frequency and the filter

assumes the noise to be purely random (usually the case), the measure-

ment bias estimate will in-lude a significant portion of the low frequency

noise components.
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Another type of modeling problem occurs in modeling the measurement

biases. As an example cofisider the following bias error model for a

radar azimuth measurement.

AA = a0 + altanlosinA0 + a2tanE0cosA 0 + a3tanE0 + a4secE0

+a + a A+ a Aa5A0 60 7 0

where A0 and E are measured azimuth and elevation and AA is the azimuth0 0
bias error

a0  Zero set error

a1 tan1o0sinA0+a2 tanE0cosA0  Mislevel error

a3tanl 0  Orthogonality error

as 5 Servo velocity error

a6A Timing error

a A Servo acceleration error

Many more terms could be included in the above error model but the

terms listed will serve to illustrate the desired points. The first

problem with the azimuth error model is obvious; the timing and servo

velocity error terms have exactly the same form which implies that a5

and a6 cannot be separately estimated. Thus, we will only be able to

estimate the sum of a5 and a6. Now suppose that the trajectory being
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estimated is approximately a level flying aircraft and that the ground

range from the radar is such that the elevation angle is nearly constant

over large segments of the trajectory. In this case tanE0 and secE0 are

effectively zero set error terms. In this case there is little chance

of obtaining meaningful estimates of ao, a 3 , and a 4 . The three terms may

be lumped and a single zero set error estimated or if the ao, a3 , and a4

are separately estimated, the sum a0 +a 3 tanE a secE0 may be a meaningful

estimate. This example shows that each term in an error model must be

well exercised along the trajectory in order to obtain meaningful esti-

mates of the error coefficients.

Another problem in modeling measurement biases involves the large

number of error coefficient terms which would be required to adequately
model all measurement bias errors in some WSMR missions. Consider again
the LANCE example given in the introduction where there were 66 different

measurements. If an average of three error coefficients are required to

model a bias error in this example, which is certainly not unrealistic,

198 bias state variables are required in the Kalman filter. Even though

the technique presented in this report has greatly speeded up the

computation of bias error estimates, it is doubtful that the estimation

of 198 states is feasible.

To summarize the above remarks on modeling problems the following

requirements must be satisfied in order to do a completely satisfactory

job of bias estimation.

1. An adequate representation of the trajectory dynamics must be

included in the filter.

2. A realistic model of the measurement noise including serial

correlation must be available.
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3. Each term In a measurement bias error model must be well exercised

along the trajectory.

4. The ntuber of bias state variables must be small enough for the

computational problem to be feasible yet large enough so that no severe

aliasing errors are present.

In any case careful study is required to determine what terms to

include in the bias error model and to determine if the resulting bias

estimatesare actually due to the error source assumed or are significantly

effected by some other factors such as trajectory modeling errors, low

frequency measurement noise, or missing terms in the bias error model.

Although the modeling problems presented above pose some very difficult

problems, they do not impose a serious limitation on the use of bias

estimation, if one is willing to accept the premise that the primary

purpose of bias estimation is to improve the trajectory state estimates.

SQUARE ROOT I PLEI NTATION OF BIAS ESTImaTION. Several matrix square root

formulations of the Kalman filter equations have been presented in the

literature. A comprehensive survey of these methods along with an excellent

bibliography is given in (8]. Until recently we used the matrix square

root methods presented in [2] and [4]. Presently we employ the square root

filtering methods described in [3] which are summarized below. We have

found that thesquare root filter provides computational efficiency as well

as numerical stability in the mechanization of the Kalman filter. The

square root filtering equations given below consider only the processing

of scalar observations. This is no restriction since either the square

root method employed is easily extendable to the processing of vector

observations or the problem of processing vector observations may be

reduced to the processing of scalar observations.
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After a time update the predicted covariance matrix P*(kI k-i) of

the zero-bias filtu, is decomposed as

P*(kJ k-1) - L(kl k-l)D(kI k-l)LT (k k-i) (77)

where LT(klk-l) is a lower triangular matrix having ones along the

diagonal and D(klk-l) is a diagonal matrix having positive diagonal

elements. This triangular decomposition is related to the Choleski

decomposition. The algorithm for decomposition is summarized in Appendix

A. For further details see [9]. For each scalar observation occuring at

the new time tk an updated triangular decomposition of the covariance and

an updated state estimate are computed. Let x*(k) denote the zero-bias

state estimate after processing the ith scalar observation at tk and let

(1) (1) (i)TL(k) D(k) L(k)

be the triangular decomposition of the covariance matrix after the ith

measurement update at tk. The updated triangular decomposition satisfIes

(i) (i) (i)T Ui-1) Ui-1) (-1)"r M ()()

L(k)D(k)L(k) -L(k) D(k) L(k) - Y Y (78)

where the vector y() and the scalar C. are computed from

M1 Ui-l) (i-l) W1
- L(k) D(k) u* (79)

C(i) 2/( 4 i) U MD U(i) (80)

uii

ui Lii~k)THTi(k) (81)

(0) (0)
Also L(k) - L(kJk-i) and D(k) - D(kIk-i).

The updated state estimate x (k) is computed from
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) ,(i-l) M M ()(Zk) 11 Mx M) (82)

x (k) x (k) + C, y

x (k) - x*(k k-1).

An algorithm is derived in (3] for computing the L(k) and D(k) in (78) given
(i-l) (i-l) Mi) Mi)

L(k) , D(k) ,C , and y, . This algorithm is summarized in Appendix

B.

The triangular decomposition

Pb (k) = Lb(k)Db(k) Lb (k)

is also used for the bias filter. We will consider only the case where
the elements of the bias vector are assumed to be constant. 'In addition
to being easier to handle numerically the case of constant bias is probably

the most useful in practice. The triangular decomposition for the

more general case of linear bias dynamics res~tlts In slight~y more

numerical work. With constant bias dynamics the square root bias filter

equations at a time update are

b(klk-i) - b(k-l) (83)

Lb(kI k-l) = Lb(k-l) (84)

Db(kI k-l) Db(k-l). (85)

For each scalar measurement update at the new time tk the updated

triangular decomposition satisfies

(i) (i) (i)T (i-1) (i-1) (i-l)T (i) . (i) (i) T

Lb(k)Db(k)Lb(k) " Lb(k) Db(k) Lb(k) - Cb Yb Yb (86)
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The vector Yb and the scalar Cb are computed from

M (i-l) (i-) (i)

b Lb(k) Db(k) ub (87)

W1 Mi (i-l) W1
Cb W /( k + ub Db(k) ub ) (88)

i)-(i-I)T
Lb(k) s (k) (89)

*T (i-i) ,
Ct(k) - Ri(k) + ui D(k) ut (90)

(0) (0)
Lb(k) - L(kJ k-i), Db(k) D(kJk-i) A

The updated bias state estimate is

(i) A(i-1) Wi) Ci) W T (i-l)
b(k) - b(k) + Cb Yb (ri(k) - si(k)b(k) ) (91)

rl(k) = Z (k) - Hi(k)x (k) (92)

(i-i)
s1 (k) = Gi(k) + 11i(k)T(k) (93)

For each measurement update at tk the combining matrix T is updated as

MI (i-1) Wi Wi
T(k) T(k) - C, y, si* W (94)

(0)
T(k) - T(kj k-i)

'BIAS FILTER REID"ITIALIZATION. The dimension of the bias state vector may

change frequently during the execution of the filtering process. This

dimension change is required when a measuring instrument begins to take

observations after the initialization of the filter or when an instrument

is deleted from the filtering solution because it has stopped taking

observations, its bias is considered too large, or its observations are
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chronically inconsistent with their statistics. The decomposition of

the optimal filter into a zero-bias filter and a bias filter requires

that the zero-bias state estimate be orthogonal (in the usual statistical

sense) to the bias state v•stimate. This condition must be satisfied when

reinitializing the bias filter. In addition we require that there be no
A

change in the trajectory state estimate x and the remaining bias state
estimates due to reinitialization.

The orthogonality and continuity conditions are automatically met

when a new measuring instrument first enters the B.E.T. program provided

We assume that its initial bias estimates are uncorrelated with the

zero-bias state estimate. However, when a measuring instrument is deleted

from the filtering solution, considerable effort is required in reinitial-

ization in order to meet the orthogonality and continuity conditions.

Let x , _ denote the zero-bias state estimate and its covariance
just prior to dropping a measurement from the filtering solution and let

x+ and P+ be the same quantities after dropping the measurement and

reinitializing the filter. Let b and b+ be the bias state estimate before

r dropping a measurement. b is formed by deleting the component

of b_ corresponding to the measurement being dropped. T_ and T+ are the

combining matrices before and after. T+ has one less column than T-.

P and P are the bias covariance matrices before and after dropping a
b+ b-

measurement. Pb is formed from Pb by deleting the row and column
+

corresponding to the measurement being dropped. The updating equation

for x• is

x mx + t (bi -pb+) (95)

where t1 is the column of T being deleted and b is the bias estimate of
Si* A

measurement being dropped. The vector p is chosen so that x+ and b+ will
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be orthogonal. Using the triangular decompositions P L D LT and
P L D LT the updating e.quation for P may be written as

T T TT

L+D+L + LDL_ + (Pb (i,i) - P b p) t:,. (96)

where Pb (i,i) is the diagonal element of the row and column of Pb

which are being deleted. The algorithm of Appendix B is used to compute

L+ and D+ in the above equation. Similarly, using the triangular de-

P = L D LT and Pb+ = L b+D b+LT+ deldte the ith row andcompositions Pb bbDb bLbb

column of both L and D . Call the resulting matrices and Db

The updating equation for P can then be written as
b

. T

LDbL L D.L + d XiZ (97)
Lb b b b. b. ii i

where X is the column deleted from L and di is the diagonal element

deleted from Db. Lb and Db are computed using the algorithm of

Appendix B. Having computed Lb+ and Db+ the vector p which is chosen so that

X and b+ will be orthogonal is computed by solving the triangular
equation

L bY = i (98)

for y and then solving the triangular equation

L +p Dyb ,+ (99)

In order to satisfy the conditions that the state estimate be

unchanged after reinitialization of the bias filter, set

T+ VTA+ tipT 10
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where T' is formed "by deleting the ith column, ti, from T.. This will

make x+ x_. The bias estimates automatically remain unchanged.
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APPENDIX A

Let P be an nxn symmetric, positive definite matrix. The following

algorithm computes a lower triangular matrix L with Z(iji) = 1 and
a diagonal matrix D with di d(i,i)>O such that P - LDLT. For

further details, see [9].

d, p(ll)

p*(kl) p(k,l) k>l

pL(k,l) = p , ,) d

i-i.,
di , p(i,i) -p .P(i,j.£(i,j) k>i

j-l

L(k,i, = p (k,i)/di
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APPENDIX B

Let L be a lower unit triangular matrix and D be a positive diagonal

matrix D such that P - LDLT is positive definite. Given a scalar c

and a vector x such that P*' -P + cxx T is positive definite, compute

a unit lower triangular matrix L' and a positive diagonal matrix D'
.T

such that P' = LD'LT. The following algorithm computes L' and D'

given L, D, c, and x.

df~ d+o(1)2
dj mdi + c i) X

/-dii

(i+l) =c (iW

x{

.?1

c '3
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