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OPTIMAL ESTIMATION OF MEASUREMENT BIAS

EﬁIgQDUCTION. A Kalman filtering program has been developed by the
authors to provide a Best Cstimate of Trajectory (BET) for fiight tests
conducted at White Sands Missile Range (WSMR). This optimal filtering
program combines measurements from radar, fixed camera, cinetheodolite,
dovap, velocimeter, and accelerometer which are optimally weighted using
on-line estimates cf the measurement variances. One of the most
important considerations in developing a BET technique is to account for
inconsistencies produced by bias errors in the measurements As a matter
of fact, a BET is not very useful unless these measurement errors have
been accounted for. It was for this reason that this research project
began. As a result of this project, we now have a very effective tech-

nique included in the BET program to estimate the measurement bias errors.

Since our BET program uses a Kalman filter it was desirable that the
bias estimation technique be developed within the framework of the
¥Kalman filter theory. There is a natural way of including bias terms
in the Kalman filter. One merely adds an additional state variable for
each bias term to be considered and forms the optimal estimate of the
biases in the same way as for the other.states of the system. This
technique is fine for cases where there are only a few bias terms to be
considered. However, a typical application of our BET program has a
large number of measuring instruments involved. For example, a LANCE
flight test might have two radars, 28 dovap receivers, eight fixed
cameras, and eight cinetheodolites. Considering only one bias error
per measurement this results in 66 additional state variables to be
estimated. If the dimension of dynamic state is niﬁe, we would then
have to compute filtered estimates for 75 state variables. An ordinary
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Kalman filter program using a 75 dimensional state vector is computa-
tionally p.ohibitive at the present time. 71hus, we must develop some
technique, other than the straightforward method of augmenting the
filter state vector, for estimating measurement bias errors within the
Kalman filter framewcrk. The research problem may be stated concisely
ags follows: Develop a computationally feasible method within the Kalman
filter framework for estimating the biases of all measuring instvuments

participating in a WSMR mission,

A preliminary search of the literature reveals two possible tech-
niques which might be applicable to the bias estimation problem, A
thir§ technique developed by the author was also considered. Finally,
during the course of the research an additional technique was found,

Of the four methods considered, all of vhich were computationally
feasible, three were discarded either because of numerical difficulties
or excessive errors in the bias estimates. The remaining method, which
was published by B. Friedland (in Reference (1)) was developed and
extensively evaluated for USHR applications. Several extensions of
Friedland's method were made so that it would be applicable to the
instrument bias problem at WSMR. Also, this report employs a derivation
different than Friedlands.

The evaluation of this instrument bilas estima‘.ion technique was
performed using simulated measurement data from a nearly ballistic
trajectory., The simulated instrumentation included four fixed cameras,
8ix cinetheodolites, one accelerometer, and two radars with doppler.
Thus, there were a total of twenty-nine bias states estimated in
addition to nine dynamic states of the basic filter, The technique was
also tested using real data from a similar trajectory having the same
instrumentation. The simulated data has bias and noise added to each of
the exact measurcments. Evaluation of time varyiang as well as constant

bilas were considered in the evaluation.
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BIAS ESTIMATION WITH THE KALMAN FILTER., We will consider only the

discrete case of the Kalman filter. The following equations descrilz

the discrete Kalman filter as used in this report.

.

DYNAMIC STATE EQUATIOM. The model of the process we are observing is
represented by the linear difference equation

x(kb1) = ACK) x(K) + v (k) W
(nx1)  (nxn) (nx1) (nX1)

where X is the state vector of the process and u_(k) is a random vector
representing our uncertainties in how well the model defined by the

homogeneous portion of the difference equation acually represents the
system, We assume that

B[ux(k)] =0

and

E[ux(k)\i:(z)] = ()8,

OBSERVATION EQUATION. At discrete instants of time ti we have vector

valued observations z(i) available. The 2(i) are assumed to be linearly
related to the state by

2(i) = H(i) x(i) + 6(i) b(i) + v(i) (2)
(mx1)  (m¥n) (nx1)  (mxp) (pX1)  {mx1) ‘

where v(i) is a random vector of measurement errors with mean zero and
covariance

s{vgm"cﬂ] - R(1)813
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b(k) is a vector of measurement biases which obey

i B P LAt s 2w, i et S

b(k+l) = B(KIb(K) + w (k) (3) ,
where.ub(k) is a zero mean random vector with covariance g
Elu (k)uT(lﬂ = Q (k)$ : C é

b b b kL E

By adjoining the vector b to the vector x we form the augmented state

vector y

y=[ﬂ ' (4)

Then the dynamics of y are

EASCLA R 8 N S LR Yo ek B

Ry

Yarn) = FaoYao ¥ %o (5)

where

ACK)
nxXn

F(k) =
B(k)

i 0 PXp_

and
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u(k) = i
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The observation equation becomes

z(k) = L(k)y(x) + v(k) (6)

where

AT SR T e £ 38 Yoo et

L}

' L(k) [H(k)G(kﬂ

”~

2 .
PREDICTED STATL ESTIMATE. Let y(k) denote the optimal state estimate of
the ‘augmented system

O B A S o o B

g iy

%(k) . ]
~ E
y(k) = | ' (7) ;

b(k)
At t, . the predicted state estimate is :
~ 3
y(k+1]k) = F(k)y(k) (8) ;
CORRECTED STATE ESTIMATE. The optimal estimate at tk+l is defined by i
y(k+1) = y(k+1|K) + W(k+1)(z(k+1) - L(k)y(k+1|K) (9) %
"where W(k+l) is the optimal gain matrix defined in terms of the posterior 3

covariance matrix P(k+l) as

W(k+1) = PCk+1)LT (k#1)R (k1) (10

The covariance of the predicted state denoted by P(k+llk) is defined by

P(ke1l k) = FCKPCRIFT(K) +Q(K) . (11)

Sy 3, R N T T I B T SO T ST
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where

Qx(k) 0
Q(k) =
0 Qb(k)

The posterior covariance P(k+l) may be defined as

P(k+1) = [P'l(k+1|k) + LT(k+l)R-l(k+l)L(k+1i]-1 (12)

Direct implementation on a digital computer of the augmented Kalman
filter equations defined by (7) thru (12) is computationally prohibitive
when the dimension of the bias vector b is large. However, by utilizing
suitable restrictions on the bias dynamics, Friedland (Reference (1)) was
able to decouple the augmented Kalman filter so that a dynamic state
x*(k) and a bias b(k) are separately estimated and then the optimal
state estimate x(k) is computed by

x(k) = x*(k) + T(K)b(K) (13)

where T(k) is an nxp matrix. The state estimate x* is computed by
assuming all biases to be zero. ¥: will find that there are certain
restrictions which must be placed on the form of the augmented filter
in order that the decoupling be possible. One such restriction will be
that Qb’ the covariance of the stechastic term in the bias equation, be
zero. The development is not restricted to measurement biases; biases

in assumed constants in the state dynamics may also be included.

Priedland approached the decoupling of the Kalman filter by trans-
formation of the discrete Ricatti equation. The derivation given in this

report will be based upon an examination of the conditions for which

: ;
4
;
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the decoupling of the state .stimates speciried by (13) is possible.

FILTER DECOMPOSITION. A general form for a discrete time, linear
recursive filter for the augmented state vector may he written in the
form of (9)

y(k) = y(k|k-1) + w(k)(z(k)-u(k);(k|k-1)-G(k)£(kIk-l)) (24)

where for the present we will consider W(k) to be an arbitrary goin :
A .

matrix. The augmented state estimate y(k) may be decomposed into

estimates x(k) and h(k)

x(k) = ;(k|k~1) + wx(k)(z(k)-H(k);(k|k-l)-G(k)g(k|k-l)) (15)

-;(k[k-l) = A(k-1)x(k-1)

. af o P (B8 8 OGR4 s b b Jiwhn

Q(k) = g(klk-l) + wb(k)(z(k)—u(k>§(k[k-l)~a(k)§(klk-l)) (16)

§(k|k~1) = B(k-1)b(k-1)

a2t L St S KR i R

where W(k) in (18) is.

2ty e,

W (k) :

X i

nxm E

W(k) = ]

W, (k) :

p*m %

: : i

Now let x%*(k) be the state estimate that would be obtained if all %
biases are assumed to be zero., We will call this the zero-bias i

estimate. The recursive estimation equations for x%(k) are

x*(k) = x*(k|k=1) + W, (k) (z(k) - H(k)x*(k|k-1)) an

x*(k] k-1) = A(k-1)x*(k-1)

FEHL R St DA P bt 3 e, B

b ad ”MW*WM ML




Now we ask the question: Under what conditions can we decompose

I3

the optimal estim?te x(k) as
x(k) = x*(k) + T(kIb(K)
Denote the residual by ;(klk-l).
;(k]k-l) = z(k).- H(k);(klk—l) - q(k)ﬁ(k|k-1) (18)

If the decomposition (13) holds, substitution of (13) with k replaced

by k-1 into (18} results in an alternative expression for r(k|k-1)
p(k[k-1) = 2(k) - HOK)x%(k|k-1) = SCRIBCK:: ~ ) (19)
where
S(k) = G6(k)B(k-1) + H(X)A(k-1)T(k-1) (20)
Now substituting (16), (17), (19), and (20) into (13) we £ind

x(k) = x(k|k-1) + [w:(k) N T(k)wb(k)];(klk-l)

(21)
. [T(k)B(k) + WH00SK) - A(k-l)’l‘(k-l)]b(k-l)

Note, if we assume that {15) and (16) define the optimal linear
filter, r(k|k-1) and b(k-1) must be linearly independent random vectors.
In this case the following conditions must hold in (21),

%
ﬁx(k) = wx(k) + T(k)wb(k) (22)

T(k) = A(k-1)T(k-1)B"*(k-1) - w:(k)s(k)n‘l(k-l) (23)

| . -
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By examination of (21) we easily see that an arbitrary linear filter is
also decomposable into the form specified by (13), if the above condi-
tions hold. However, these conditions are not necessary for decomposi-
tion of a general linear filter. In addition to the conditions specified.
* by (22), which we will call the gain condition and (23), the recursion %

equation for T(k), we must also have

PN Lt L

%(0) = x(0) + T(0)b(0) _ (2u)

since we assume that the decomposition holds for all k. A natural
choice for the initial conditions to satisfy (24) will in many cases be
~ 1

x(0) = x (0), T(0) = 0, i.e., we assume that the biases have no initial

effect on the optimal estimate.

The conditions expressed by (22), (23), and (24) are the basic
requirements for a general linear filtir to be ﬂecomposed.

RESTRICTIONS INPOSED BY THE GAIN CONDITION. The consequences of the
gain condition stated in (22) will be examined when both the estimators

* . . .
for x, and x(k), b(k) are Kalman filters. The gain for the Kalman

%
filter giving the zero-bias estimate X can be written as
* % -
Ho(k) = B COR (KR (K) (25)

*
The matrix Px(k) in this case (with biases actually present) may be

defined as

P:(k) . n[( x*(k)-x(k)'l»'r(k)b(k))( x*(m-x(k)n(k)h(k))’] (26)

o e ot A Ml b B W i LS 03 30D NS it . S 0 Bt 02 8 A B, KD N TR e A SV S Lt SEY 2 ! o S

We will now examine the relatinns between the various Kalman covariance

3
4
3
i
1

#
: matrices Px(k)’ Px(k)’ and Pb(k). Rewrite the decomposition equation
as
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x (k) = x(k) + T()b(K) =( x(K)-x(k)  + T(k)(g(k)-b(k)a

(27)

Then multiplying this equation by its transpose and taking expected

values we find

® - T Ry
Px(k) = Px(k) + T(k)Pb(k)T (k) - be(L)T (k) - T(k)pr(k) (28)

where

P00 = ELG0-x00) bk)-b k)T, By, (k) = P (6)

: %
A similar result for P (k|k-1)

# T T
P (klk-1) = P (k[k-1) + A(k-l)T(k-l)Pb(}-l)T (k-4 )\

o T T . - - -
-be(klk-l)T (k=2)A"C:r2-ACk=2)T(k-1)P, (k-1)

/

The gain for the augmented Kalman filter is

R (k)

, T

W, (k) [bx(k) P (k)] [R(K)
T

wb(k) [?bx(k) Pb(k) G' (k)

Substituting the gain condition into the first component of (31)

(Px(k)HT(k) + Fxb(k)GT(kaR‘l(k) = H:(k) + T(k)H, (k)

(29)

(30)

(31)

(32)

Then substituting the second component of (31) for W (k) and (25) for

W (k), we find the satisfaction of the gain cond1t1on requxres

ARG T PSR T T LS PN PR B LE N PP LR, 2
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pxb(k)(cs(k)m(k)'r(k))T = T(k)Pb(k)(G(k)+H(k)T(k))T (33)
\. )

Thué, the gain condition holds if we impose the requirement that

P (k) = T(kIP, (k) ' (34)

We have translatedthe gain condition into a covariance restriction, but

o Wl 34 b2 ST

we must continue to examine the covariance relations to determine the

we~~ing of (34). The relation between gain and covariance in the

A At

filter can be written as

VLRI

' P(k) = (I-H(k)L(k))P(klk-l) : (35)
or
Px(k) be(k) ) I-wx(k)H(k) -wx(k)c(k)
Polk)  PLCR) || W GOR(K) =W (0)6(K)
(36)
Px(klk-l) pxbgklk-l)
_?bx(klk-l) Pb(klk-l)
Then
P k) = (I-Wx(k)H(k))be(klk-l) - Wx(k)G(k)Pb(klk-l) (37)
P (k) = (I-Hb(k)G(k))Pb(klk~l) - wb(k)u(k)be(k|k~l) (38)

Now suppose that the covariance condition (3u4) holds at k-1, be(k-l) =
T(k-1) Pb(k-l)

11
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Then

.

A(k-l)T(k-l)Pb(k—l)BT(k-l) (39)

P p(k[k-1)

B(k-l)Pb(k-l)BT(k-l) + Q (k-1} (40)

Py (k|k-1)
Substituting (39) and (40) in (37) and (38) and using (20) and (22) gives

- m - To:
P ](k) = .(k)( a(k-l)-wb(k)s(k)) Pb(k~l)B (k-1)
(%1)

®
- [Wx(k)+T(k)wb(k)] c(k)ob(k~1)

- . T
Ph(k) = ( B(k-l)-Hb(k)Sﬂc))Pb(k-l)B (k-1)
- (42)
+( I-¥, (k)s(k) ) Q, (k-1)

Clearly, the condition

be(k) = T(k)Pb(k)

holds if -

Qb(k“l) = 0

Thus, we cannot have a stochastic term in the dynamics of the bias states.
There does not seem to be any way of removing this restriction. This
restriction may lead to a divergence problem in the bias estimation, but
fortunately we can treat this problem in another way which will be

discussed later.
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] SUMMARY. The folléwing formulas summarize the decomposition of the
optimal linear filter for the process described by (1) thru (6).

ZERO-BIAS FILTER

x*(klk-l) = ACk-1)x" (k-1)
e ® & T
P (k|k-1) = ACk-1)P (k-1)A"(k-1) + Q, (k-1)
: P:(k) = ( P L(k|k-1) + H(k)R'l(k)HT(k))’JL
: x (k) = x(k]k-1) + w:(k)( Z(k)-H(k)x*(ka-l))
W = P 0oRTa0R )

BIAS TILTER

s(k) = 6(k)B(k-1) + H(k)T(k|k-1)
c(k) = n(k)p*(k;k-l)aT(k) +.R(k) (u3) 1
] Bk k-1) = B(k-1)b(k-1) :
P, (k|k-1) = B(k-1)P, (k-1)87(k-1) (44) !
. £
1
1
‘ P(K) = (P;l(klk-l) +sT(1:)c"1(1<)s(k))'l (45) :
b(k) = g(klk-l) M, (k) (z(k)-n(k)x*(klk-l)-S(k)Q(klk-l)) é
- ;
- T -1 X
W(k) = Py (kIS (k)CT (k) (46)
33
;

13
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OPTIMAL STATE ESTIMATE

T(k|k-1)

= A(k-1)T(k-1)
' (k) = T(k|k-1) - W.(K)S(K)
x(k) = x7(K) + T(K)B(K)
K = P(K) + TOP, (K)TT (k) (47)
P (k) = P (k} + T()P (k)T (k .

The numbered equations in the summary have not been derived but are easily
obtainable. Equation (44) is merely (40) with Qb(k)=0, and (47) comes
from (28) with be(k)=T(k)Pb(k). Equations (43, (45), and (46) can be

derived by substituting the relations between covariances in (12).

EXTENSION TO THE NONLIKEAR CASLC. The extension of the bias esti-

mation procedure to the case where the state dynamics are nonlinear and

the observational egquaticns are nonlincar functions of the state can be
performed in any one of the ways by which the Kalman filter is usually
extended to the nonlinear case. Let the discrete time nonlinear

dynamics be represented by

®(k) = f(x(k-1),k-1) + ux(k) ' (48)
and let the nonlinear observation equations be written as

z(k) = h(x(k),k) + G(x(k),k)b(k) + v(k) (49)

also we will employ the additional notation
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6(k) = G(xCk|k-1),k)

of (x(k-1) ,k-1)
A(k‘l) = [ L ]A
9%y x(k-1)

Since the extended Kalman filter is not optimal we view the decomposition
as applying to an arbitrary linear filter. Also, the decompdsition of
the extended filter is not an exact procedure as in the linear case but
holds only approximately since an additional linearization is required
to derive the gain condition and recursive definition of T(k).
.The extended Kalman filter is
A ” A~ A
x(k) = x(klk-l)ﬂlx(k)( z(k)-h(x(klk-l),k )-c( x(klk-l),k)

g(klk-l))

f;(k) = b(klk-l)+wb(k)( z{k)~h ( ;.():I}:-l),l: ) -C (;(klk-l),k)

ﬁ(klk-n)
where
;:(klk-l) = f( ;(k-l),k-l)
g(klk-l) = B (k-1)b(k-1)
T

W (k) P (k) P,(k)| | K (k)

. -1

= T R “(k)
wb(k) Pbx(k) Pb(k) G (k)
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P(k) P, (k) P (k[k-1)  F, (k|k-1)
P (k) P (K) \ [Ppy(Klk=2) P, (k]k-1)
1T ()]
+ K05 [H(6)G(K) ]
LGT(k) '
Px(klk—l) be(klk-l) A(k-1) 0
Pbx(klk-l) P, (k|k-1) 0 B(k-1)
P (k-1) P (k-1)
P (k-1) P (k-1)
AT (k-1) 0
L o BT (k-1)
Q, (k-1) 0
+l
0 0

The extended Kalman filter for the zero bias case is

«tk) = %" (kfx-1) + w:ck)(z(k)-h(x"‘(klk-n,k))

16

-1

(50)

perp e A0

o m——— g



R TR I W N, ORI TN Y
T N P R ARV s R i iR RO, U LTS e RS AN e

]
. o e s et T oA
L N R N L 50 BV P A BIIEINC A LEA T b ST LS M b S Lo R o RN o po e A AL

x*(klk-l)

£(x " (k-1) k) (51)

1

#*
W (k)

PR # (R (k) . (52)

*

F, (k)

[ p:'lckl k.-l)+nf=T(k)R’l(k)H*(k)J -1 (53)

%
Px(klk-l)

A" (k-1)P, (k- DA (k1) + Q (k-1) I 1)

B (k)

[ah(x,k)] '
X x (k|k-1)

e = [af(ggk—l)] .
x (k-1)

SN L D 63

The derivation of the conditions under which the decomposition approxi-
mately holds proceeds exactly as in the linear casec. The additional

linearizations

TR )

F(x(k-1))=F(x (k-1) k) + A (k=1)T(k-1)b(k-1) (55)

g

A LI

. hCx(k[k-1) 1)=h(x (k| k-1) k) + B OOAT(K-1)T(k-1)b(k-1)  (56)

Sa

§Pa b I2AT o

Gx(k|k-1) K)=C(x (k[k-1),k) = G (k) (57)

are required in obvious places., The details of the derivation will not

be given but the results of the decomposition are summarized below.
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ZERO-BIAS FILTER

x*(klk-l)'= f(x*(klk-l),k)
& . ] T
P (k[k-1) = A(k-1)P (k-1)A"(k-1) + Q (k-1)

P:(k) =( p*fl(klk-l) + u*(k)R“l(k)H*T(k)) -1

) = x*(klk-l) + W:(k) (z(k)-h(x*(klk-l),k))
k) = PO TR (k)
WGy s [éhﬁgikl:] x"(k|k-1)
BIAS FILTER
s*(k) = ¢F(K)B(K-1) + H*(k)T(klk-l)
f = Har k]k-0ET00 + R
g(kjk-l) = B(x-1)b(k-1)
Py (k|k-1) = B(@-l)?b(k-l)BT(k-l)
PCk) = (Prh(k[k-1) + §*Tc™ 2 gos e
b(K) = b(k|k-1) wb(k)(z(k)-h&*(kzk-l);s"(k'){:‘(ic:k-l))
CIED X (S (3 Yo%)
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APPROXIMATCLY OPTIMAL STATE ESTIMATE

T(k|k-1) = A(k-1)T(k-1) (65)
. ® %

T(k) = T(k[k-1) - H S (k) (66) 9
x(k) = (k) + T(k)b(k) ’ (67) ;
o T ’ :EQ
=P 68 b
Px(k) Px(k) + T(k)Pb(k)T (k) (68) 3
BIAS ESTIMATION WITH THE FADING MEMORY KALMAN FILTER. The %

restriction on the filter decomposition imposed by the gain condition
that there be no state noise on the bias state variaBle, i.e. Qb(k)=0
may lead to a filter divergence problem as previously noted. Thus in
the bias estimation technique we need to develop some other method for
devaluing the effect of old observations on thé bias state estimates.
The divergence problem arises from numerical errors in computation and
from errors in modeling the dynamics and covariance matrices, The ;
divergence caused by numerical errors is most easily controlled by :
employing some standard numerical analysis techniques and reformulating g
the Kalman filter in terms of the square roots of the covariance :
matrices, see Reference ( 2). We use this reformulation and also
process only scalar observations in our BET program to control numerical
errors. The treatment of mismodeling errors is . onsiderably more

difficult, The mismodeling errors may either be intentional, e.g.,

Wia Lo s st T e sy 8

modeling a measurement bias as a single state variable when we have a
much more realistic bias -model available containing several state
variables, or inadvertantly when we do not have a realistic model avail-

able. Intentional mismodeling may arise because we consider some terms

in the bias model to be small and we do not wish to unnecessarily
complicate the filter. We may also delete some more important terms

from the bias model when it is obvious that the geometry of the

. -~
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instrumentation is not sufficient to estimate these terms. ]

- o . ;

The decomposition procedure will not permit most of the conventional E

methods of treating errors caused by mismodeling, e.g., we have already %

’ scen that no state noise on the bias variables is permitted. Also, the s

method of directly overweighting the observations is also excluded by the
. ' decomposition. Another method for devaluing the effect of old observations

on the estimates is the fading memory Kalman filter which we were able to

show is allowed by the decomposition. The fading memory filter weights
the observations exponentially according to their age. It was first used
in the Kalman framework by Fagin [5] and more recently by Tarn and
Zaborsky [6]), and Sorensen and Sachs [7]). Sorensen and Sachs showed that
the fading factors need not be constant as previously used and also
exhibited some other previously unreported properties of the fading memory

Kalman filter.

R T 3 N 28 T A N 9 D8 Vit 2T 2 DN e

The basic idea of the fadiné memory filter is that observations should

be assigned increasingly larger variances as they become older. Let t be

PRI DR ITH

the current time at which an estimate is desired. At t, ve model the

dynamics and the observations (using the augmented state vector y) by

y(1,n) = Ay (L-1-,n) + u (i,n) ' (69)

z(1) = L()y(i,n) + v(i,n) (70)

UL T WP TONN DRI Y X R0 CNEs

4 bt e 0

Th2 observation noise and state noise covariances are defined as

gk

Tadsde,

n-1

E l:v'(i,n)vT(i,n) :’= R(i,n) = R(i)exp' 1§ ¢ \

. (71)
\ j=1 /.

A
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o . . nol
E[ux.(l’p)ux(l’n)] = Qx(lan) = Q(l)exp Z Cj (72)

j=i+d

LYo,

vhere Q(i) and R(i) are the usual covariance matrices. The scalars cjzp
are called the fading factors. From (71) and (72) we can see that the
covariances assignéd to the state noise and observation noise become
larger as their time ti recedes from the current time T In addition,
we also fade the uncertairty assnciated with the initial state estimate
A

Y(o,n)-

. n-l
E[:(y(O,n)~y(0)(y(0,n)-y(o))T] P(O)exp( ) c{) (73)
i=1 -/,

Hith the above definitions the fading memory Kalman filter estimates
y(i,n) may be derived. Actually, we only concider the estimates y(n,n)
and drop the double subscript. We will not derive the fading memory

estimates here but will only indicate the changes from the usual Kalman

alk-2) = e

filter equations. The only changes occur in the eguations for computing
the predicted covariance matrices which become ¥
i T(ko1) + Q (k-
. Px04k~l) = a(k~l)A(k-l)Px(k-l)A (k-1) + Qx(k 1) (74) 3
]
: Py (K k-1) = a(k-1}B(k-1)P, (k-1)B" (k~1) . (75) ;
T
be(klk—l) = a{n~1)A(k-l)be(k-l)B (k-1) (76) ;
where f
k-1 :

T d N A b ad D
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The fading a(k) is chosen to reduce errors in the bias estimates
caused by mismodeling while the state noise covariance Qx(k) is used to
reduce the effects of mismodeling in the process dynamics. The fading
also effects the weighting for the zero-biase state estimates x*(k), but
the effect is normally small since the fading factors ¢, are nearly
unity in our application to instrument bias estimation. The fading
memory filter, although useful in reducingerrors due to mismodeling in
bias estimation, is not entirely satisfactory because it does not allow

for treating each bias term individually.

L hnL Y BRI AN T Bk ok M L 2220 b £ AT P it St At i Y

PROBLEMS ENCOUNTERED IN BIAS ESTIMATION. The major problems

encounterd in estimating measurement error bias are concerned with

modeling not only of the instrument biases but also modeling of the

WA a3 M a S St e 0 £

trajectory. Trajectory modeling causes problems in bias estimation
since if an adequate representation of the trajectory dynamics has not
been included in the Kalman filter, it will be impossible to separate

the resulting trajectory estimation errors from the measurement bias

L T2 RIS N B GR u R R

estimates. TIor example, if a constant acceleration is assumed for the
dynamics of a missile trajectory when in reality the missile is turning,

estimates of accelerometer biases will be significantly effected by the

IO TAVY XTI WG I0Y-

trajectory estimation error caused by the constant acceleration

- aden

assumption. Although the measurement bias estimates will be useless in
. cases where they are severely confused with the trajectory modeling
errors the trajectory state estimates obtained by including the bias will

often be a significant improvement over the trajectory state estimates

R LRI PSRN T S e

provided by the zero-bias filter.

Lo N %

Another source of confusion of the bias error estimates occurs
from modeling the random noise characteristics of the measurements. If

the measurement noisc is predominantly low frequency and the filter

NPT T TN )

assumes the noise to be purely random (usually the case), the measure- ;
ment bias estimate will in.lude & significant portion of the low frequency

noise components. .

At aniat v i
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Another type of modeling problem occurs in modeling the measurement
biases. As an example consider the following bias error model for a

radar azimuth measurement.

T TR T ALY

1 . AA = a tanBosano + a2tanE cosAo + a tanEo + ausecB0

1 0 3

ota

o

+a5Ao + a6A° + a7A0

: . where A, and Bo are measured azimuth and elevation and AA is the azimuth

0
bias error
a0 = Zero set error
- . altanE031nAo+a2tanBocosAo = Mislevel error

A
S ARG s ot B AL AL SRR B o KA 230 AL B AN D S o 5t B 8t e BT LA 3 N G It LWL S Sk Bt S LA

aatanEo = OrthOgonalitj error
. ausecBo = Collimation error 3
aSA = Servo velocity error g
A
. . §,
aGA = Timing error 5
a7A = Servo acceleration error 4
Many more terms could be included in the above error model but the 4

terms listed will serve to illustrate the desired points. The first
problem with the azimuth error model is obvious; the timing and servo
velocity error terms have exactly the same form which implies that ag =

and a_. cannot be separately estimated. Thus, we will only be able to

6

estimate the sum of ag and . Now suppose that the trajectory being

O N T T

YRR,

23

m..mwazm Caz

£ 3 32 Toho @ B b
- v — - - et ® o




BT OF R SRR AR R

estimated is approximateiy a level flying aircraft and that the ground ?
range from the radar is such that the elevation angle is nearly constant E
over.large segments of the trajectory. In this case tanEgy and sech are ;
' effectively zero set error terms. In this case there is little chance
1 . of obtaining meaningful estimates of agy ag, and a,. The three terms may
be lumped and a single zero set eraorhcstimatﬁd or if the ags 2qs and a, f
are separately estimated, the sum ao+a3tanE0_aasccE0 may be a meaningful é

estimate. This example shows that each term in an error model must be
well exercised along the trajectory in order to obtain meaningful esti-

mates of the error coefficients,

et it b

Another problém in modeling measurement bias:s involves the large

number of error coefficient terms which would be required to adequately

ity e Do

model all measurement bias errors in some WSMR missions. Consider again
the LANCE example given in the introduction where there were 66 different

measurements. If an average of three crror cuvefficients are required to

L2'sv il Lvirda 4y

model a bias error in this example, which is certainly not unrealistic,
198 bias state variables are requircd in the Kalman filter. Even though
the technique presented in this report has greatly speeded up the

)k Sl e AT

computation of bias error estimates, it is doubtful that the estimation
of 198 states is feasible,

To summarize the above remarks on modeling problems the following

B L s et e PerT e o DSl

requirements must be satisfied in order to do a completely satisfactory
job of bias estimation. .

Ldenhhe

£360 i Kast,

1. An adequate representation of the trajectory dynamics must be
included in the filter.

‘ 2. A realistic model of the measurement noise including serial

Eohed fRATNI

correlation must be available.
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3. Each term in a measurement bias error model must be well exercised

along the trajectory.

4, The number of bilas state variables must be small enough for the
computational problem to be feasible yet large enough so that no severe

aliasing errors are present.

In any case careful study is required to determine what terms to
include in the bias error model and to determine if the resulting bias
estimatesare actually due to the error source assumed or are significantly
effected by some other factors such as trajectory modeling errors, low
frequency measurement noise, or missing terms in the bias error model.
Although the modeling problems presented above pose some very difficult
problems, they do not impose a éerious limitation on the uge of bias
estimation, if one is willing to accept the premise that the primary

purpose of bias estimation is to improve the trajectory state estimates.

SQUARE ROOT IMPLEMENTATION OF BIAS ESTIMATICY. Several matrix square vroot

formulations of the Kalman filter equations have been presentad in the

literature. A comprehensive survey of these methods along with an excellent
bibliography is given in [8]. Until recently we used the matrix square

root methods presented in [2] and [4]). Presently we employ the square root
filtering methods described in {3] which are summarized below. We have
found that thesguare root filter provides computational efficiency as well
as numerical stability in the mechanization of the Kalman filter. The
square root filtering equations given below consider only the processing

of scalar observations. This is no restriction since either the square

root method employed is easily extendable to the processing of vector
observations or the problem of processing vector observations may be

reduced to the processing of scalar observations.

25
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After a time update the predicted covariance matrix P*(k]k-l) of

the zero-bias filte: is decomposed as
P*(k| k-1) = L(k| k=1)D(k| k-1)LF (k| k-1) a7

where_LT(klk-l) is a lower triangular matrix having ones along the
diagonal and D(klk-l) is a diagonal matrix having positive diagonal
elements. This triangular decomposition is related ¢o the Choleski
decomposition. The algorithm for decomposition is summarized in Appendix
A, TYor further details see [9]. For each scalar observation occuring at
the new time tk an updated triangular decomposition of the covariance and
an updated state estimate are computed. Let x*(k) denote the zero-bias
state estimate after processing the ith scalar observation at ty and let

(1) (1) (DT
L(k)D(k)L(k)

be the triangular dccomposition of the covariance matrix after the ith

heasurement update at tk' The updated triangular decomposition satisfies

1) (1) T (1-1) (1-1) @-1T
LOODMOL() = L(k) D) LK) - Sy (DT (78)

(1) (1)

where the vector y,”" and the scalar C,™° are computed from

(1) (i-1) (i-1) (1)

¥p = LK) D(k) u, (79)
-1) (1)

e = 1R + NOM el (80)

{-1)T T
uf = L((k)) H, (k) (81)
(0) (0)
Also L(k) = L(k|k-1) and D(k) = D(k|k-1).

1)

The updated state estimate x*(k) is computed from
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g
: - (1-1) :
(1) (1-1) (1) (1) * 4
(0)

* *
x (k) = x (k|k=1). j
(1) (1) _
An algorithm is derived in [3] for computing the L(k) and D(k) in (78) given g
(1-1)  (1-1) (1) (1) g
L(k) , D(k) ,C, , andy, . This algorithm is summarized in Appendix %
B. 3
3
)
The triangular decomposition g
. T :;S

PT P

is also used for the bias filter. We will congider only the case where

the elements of the bias vector are assumed to be constant. ‘In addition é

. 3

to being easier to handle numerically the case of constant bias is probably 4

the most useful in practice, The triangular decomposition for the ?

more general case of linear bilas dynamics resulits in slightly more ;

numerical work, With constant bias dynamics the square root bias filter g

equations at a time update are §

3

. N 4

b(k|k~1) = b(k-1) (83) !

L, (Kl k-1) = L, (k~1) ' _ (84) :
Db(klk-l) = D, (k=1). (85)

For each scalar measurement upaate at the new time t the updated

triangular decomposition satisfies

At g e 2T PRI TR et DB L 31

(1) () Wr (1-1) (1-1) ({-1)T (1) (1) (T
Lb(k)Db(k)Lb(k) = Lb(k) Db(k) Lb(k) =C Y Yy (86)

PR
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E; The vector Y and the scalar Cb are computed from
E (1) -1 (1= (1) ;
: Y, = L,(k) D (k) u (87) :
- W (1) (1-1) (1) :
¢, =1/(c;(k) + v D(K) v ) (88) E
. ' q
1-1T 3
1) L (k) s, (k) . (89) 3
i
*T (i-l) * "ﬁ
Ci(k) = gi(k) +u D(k) uy (90) g
: (0) (0) §
L (k) = L(k|k-1), D (k) = D(k|k-1) 3

The updated bias state estimate is

A T g

N A W@, T (4-1)

b(k) =b(k) +C y (r (k) -s (Kb ) (91) ,

= e |
(1-1)

si(k) = Gi(k) + Hi(k)T(k) (93)

For each measurement update at t the combining matrix T is updated as

1) - W W,
T(k) = T(k) - C, y, s;(k) (94)

(0)
T(k) = T(k|k-1)

.

BIAS FILTER REINITIALIZATION. The dimension of the bias state vector may
change frequently during the execution of the filtering process. This

:
§

dimension change is required when a measuring instrument begins to take

b st 3 o 2 D PR 200 LS D ) It d MM AL > Ao a2 AL

observations after the initfalization of the filter or when an instrument
is deleted from the filtering solution because it has stopped tgking

observations, its bias is considered too large, or its obscervations are
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chronically inconsistent with their statistics. The decomposition of

the optimal filter into a zero-bias filter and a bias filter requires
that the zero-bias state estimate be orthogonal (in the usual statistical
sense) to the bias state «stimate. This condition must be satisfied when
reinitializing the bias filter. In addition we require that there be no
change in the trajectory s:iate estimate ; and the remaining bias state

estimates due to reinitialization.

The orthogonality and continuity conditions are automatically met
when a new measuring instrument first enters the B.E.T. program provided
We assume that its initial bias estimates are uncorrelated with the
zero~bias state estimate. However, when a measuring instrument is deleted
from the filtering solution, considerable effort is required in reinitial-

ization in order to meet the orthogonality and continuity conditions.

* %
Let x_, P_ denote the zero-bias state estimate and its covariance

Just prior to dropping a measurement from the filtering solution and let

*

X, and P: be the same quantities after dropping the measurement and

reinitializing the filter. Let b_ and b be the bias state estimate bLefore

and after dropping a measurcment. b is formed by deleting the componcit
of b corresponding to the measurement being dropped. T_ and T+ are the
combining matrices before and after., 1+ has one less column than T_.

Pb and Pb are the bias covariance matrices before and after dropping a
+

measurement, Pb is formed from P by'deleting the row and column

b
+ -
corresponding to the measurement being dropned. The updating equation
for x* 1s
% * ~ T )
Xy =X + t.i(b1 -pby) | (95)

where ti is the column of T_ being deleted and b is the bias estimate of

measurement being dropped. The vector p is chosen so that x+ and b+ will

st e e T
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be orthogonal. Using the triangular decompositions Pt.= L_D_LE and
P* = LD LT the updatiﬁg equation for P* may be written as
+ vt
T T T T
L+Q+L+ =LDL_ + (Pb-(i,i) -p Pb+p)t:iti (96)

where'Pb (i,i) is the diagonal element of the row and column of Pb

which are being deleted. The algorithm of Appendix B is used to compute
L+ and D+ in the above equation. Similarly, using the triangular de-

T T .
compositions Pb = Lb_Db_Lb_ and Pb+ Lb+Db+Lb+ delete the ith row and

column of both Lb‘ and Db . Call the resulting matrices Lg and Dg .

The updating equation for Pb can then be written as
L D L, =L D L + dizi": (97)
+ 4+ 4+ - - :

where 21 1s the column deleted from Ly and di is the diagonal element

deleted from D, . L and D, are computed using the algorithm of
b_ b+ b+

Appendix B, Having computed Lb and Db the vector p which is chosen so that
+ +

* .
L and b+ will be orthogonal is computed by solving the triangular
equation

L y=2& : (98)
b+ i .
for y and then solving the triangular equation

Li p =Dy, | (99)
+ . + .

In order to satisfy the conditions that the state estimate be
unchanged after reinitialization of the bilas filter, set

T -~

T, =T+ t,p (100)
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where '1‘: is formed by deleting the ith column, tyo from T_, This will

~
make X, X . The bias estimates automatically remain unchanged.
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APPENDIX A

Let P be an nxn symmetric, positive definite matrix., The following
slgorithm computes a lower triangular matrix L with 2(i,1) = 1 and
a diagonal matrix D with di = d(1,1)>0 such that P = LDLT. For
further details, see [9].

dl = p(1,1)
*
p (k,1) = p(k,l) k>1
*
2(k,1; = p k,1)/d)
' i-1
dy =p(1,1) - ] p (1,3)0(4,9) k>4
j=1
, :
2(k,1; = p (k1) /4,
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APPENDIX B ' ;

Let L be a lower unit triangular matrix and D be a positive diagonal ;
matrix D such that P = LDLT is positive definite., Given a scalar c §
and a vector x such that P" = P + cxxT is positive definite, compute i
a unit lower triangular matrix L” and a positive diagonal matrix D~ 3
such that P* = L°D’L°T. The following algorithm computes L” and D” E
given L, B, ¢, and X, ®

M eY =c, <1y

-
PR

N o D P S e S e

df =4 {
x(i+1) = x(i) - xii) 2(3,1) i=1,n
J J ) j =i+, n
- REVINCD
2°(3,1) = 2(3,1) + —— xj“*l)
; i .

d.N\2
(i+1) (i
0 = 0(3)
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